Bug Summary

File:clang/lib/CodeGen/CGExprScalar.cpp
Warning:line 3770, column 39
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprScalar.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/include -I /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-12-11-181444-25759-1 -x c++ /build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp

/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp

1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "ConstantEmitter.h"
20#include "TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/FixedPoint.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalVariable.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/IR/Module.h"
38#include <cstdarg>
39
40using namespace clang;
41using namespace CodeGen;
42using llvm::Value;
43
44//===----------------------------------------------------------------------===//
45// Scalar Expression Emitter
46//===----------------------------------------------------------------------===//
47
48namespace {
49
50/// Determine whether the given binary operation may overflow.
51/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
52/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
53/// the returned overflow check is precise. The returned value is 'true' for
54/// all other opcodes, to be conservative.
55bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
56 BinaryOperator::Opcode Opcode, bool Signed,
57 llvm::APInt &Result) {
58 // Assume overflow is possible, unless we can prove otherwise.
59 bool Overflow = true;
60 const auto &LHSAP = LHS->getValue();
61 const auto &RHSAP = RHS->getValue();
62 if (Opcode == BO_Add) {
63 if (Signed)
64 Result = LHSAP.sadd_ov(RHSAP, Overflow);
65 else
66 Result = LHSAP.uadd_ov(RHSAP, Overflow);
67 } else if (Opcode == BO_Sub) {
68 if (Signed)
69 Result = LHSAP.ssub_ov(RHSAP, Overflow);
70 else
71 Result = LHSAP.usub_ov(RHSAP, Overflow);
72 } else if (Opcode == BO_Mul) {
73 if (Signed)
74 Result = LHSAP.smul_ov(RHSAP, Overflow);
75 else
76 Result = LHSAP.umul_ov(RHSAP, Overflow);
77 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
78 if (Signed && !RHS->isZero())
79 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
80 else
81 return false;
82 }
83 return Overflow;
84}
85
86struct BinOpInfo {
87 Value *LHS;
88 Value *RHS;
89 QualType Ty; // Computation Type.
90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
91 FPOptions FPFeatures;
92 const Expr *E; // Entire expr, for error unsupported. May not be binop.
93
94 /// Check if the binop can result in integer overflow.
95 bool mayHaveIntegerOverflow() const {
96 // Without constant input, we can't rule out overflow.
97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
99 if (!LHSCI || !RHSCI)
100 return true;
101
102 llvm::APInt Result;
103 return ::mayHaveIntegerOverflow(
104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
105 }
106
107 /// Check if the binop computes a division or a remainder.
108 bool isDivremOp() const {
109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
110 Opcode == BO_RemAssign;
111 }
112
113 /// Check if the binop can result in an integer division by zero.
114 bool mayHaveIntegerDivisionByZero() const {
115 if (isDivremOp())
116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
117 return CI->isZero();
118 return true;
119 }
120
121 /// Check if the binop can result in a float division by zero.
122 bool mayHaveFloatDivisionByZero() const {
123 if (isDivremOp())
124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
125 return CFP->isZero();
126 return true;
127 }
128
129 /// Check if either operand is a fixed point type or integer type, with at
130 /// least one being a fixed point type. In any case, this
131 /// operation did not follow usual arithmetic conversion and both operands may
132 /// not be the same.
133 bool isFixedPointBinOp() const {
134 // We cannot simply check the result type since comparison operations return
135 // an int.
136 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
137 QualType LHSType = BinOp->getLHS()->getType();
138 QualType RHSType = BinOp->getRHS()->getType();
139 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
140 }
141 return false;
142 }
143};
144
145static bool MustVisitNullValue(const Expr *E) {
146 // If a null pointer expression's type is the C++0x nullptr_t, then
147 // it's not necessarily a simple constant and it must be evaluated
148 // for its potential side effects.
149 return E->getType()->isNullPtrType();
150}
151
152/// If \p E is a widened promoted integer, get its base (unpromoted) type.
153static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
154 const Expr *E) {
155 const Expr *Base = E->IgnoreImpCasts();
156 if (E == Base)
157 return llvm::None;
158
159 QualType BaseTy = Base->getType();
160 if (!BaseTy->isPromotableIntegerType() ||
161 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
162 return llvm::None;
163
164 return BaseTy;
165}
166
167/// Check if \p E is a widened promoted integer.
168static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
169 return getUnwidenedIntegerType(Ctx, E).hasValue();
170}
171
172/// Check if we can skip the overflow check for \p Op.
173static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
174 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 175, __PRETTY_FUNCTION__))
175 "Expected a unary or binary operator")(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 175, __PRETTY_FUNCTION__))
;
176
177 // If the binop has constant inputs and we can prove there is no overflow,
178 // we can elide the overflow check.
179 if (!Op.mayHaveIntegerOverflow())
180 return true;
181
182 // If a unary op has a widened operand, the op cannot overflow.
183 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
184 return !UO->canOverflow();
185
186 // We usually don't need overflow checks for binops with widened operands.
187 // Multiplication with promoted unsigned operands is a special case.
188 const auto *BO = cast<BinaryOperator>(Op.E);
189 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
190 if (!OptionalLHSTy)
191 return false;
192
193 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
194 if (!OptionalRHSTy)
195 return false;
196
197 QualType LHSTy = *OptionalLHSTy;
198 QualType RHSTy = *OptionalRHSTy;
199
200 // This is the simple case: binops without unsigned multiplication, and with
201 // widened operands. No overflow check is needed here.
202 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
203 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
204 return true;
205
206 // For unsigned multiplication the overflow check can be elided if either one
207 // of the unpromoted types are less than half the size of the promoted type.
208 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
209 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
210 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
211}
212
213/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
214static void updateFastMathFlags(llvm::FastMathFlags &FMF,
215 FPOptions FPFeatures) {
216 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
217}
218
219/// Propagate fast-math flags from \p Op to the instruction in \p V.
220static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
221 if (auto *I = dyn_cast<llvm::Instruction>(V)) {
222 llvm::FastMathFlags FMF = I->getFastMathFlags();
223 updateFastMathFlags(FMF, Op.FPFeatures);
224 I->setFastMathFlags(FMF);
225 }
226 return V;
227}
228
229class ScalarExprEmitter
230 : public StmtVisitor<ScalarExprEmitter, Value*> {
231 CodeGenFunction &CGF;
232 CGBuilderTy &Builder;
233 bool IgnoreResultAssign;
234 llvm::LLVMContext &VMContext;
235public:
236
237 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
238 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
239 VMContext(cgf.getLLVMContext()) {
240 }
241
242 //===--------------------------------------------------------------------===//
243 // Utilities
244 //===--------------------------------------------------------------------===//
245
246 bool TestAndClearIgnoreResultAssign() {
247 bool I = IgnoreResultAssign;
248 IgnoreResultAssign = false;
249 return I;
250 }
251
252 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
253 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
254 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
255 return CGF.EmitCheckedLValue(E, TCK);
256 }
257
258 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
259 const BinOpInfo &Info);
260
261 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
262 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
263 }
264
265 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
266 const AlignValueAttr *AVAttr = nullptr;
267 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
268 const ValueDecl *VD = DRE->getDecl();
269
270 if (VD->getType()->isReferenceType()) {
271 if (const auto *TTy =
272 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
273 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
274 } else {
275 // Assumptions for function parameters are emitted at the start of the
276 // function, so there is no need to repeat that here,
277 // unless the alignment-assumption sanitizer is enabled,
278 // then we prefer the assumption over alignment attribute
279 // on IR function param.
280 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
281 return;
282
283 AVAttr = VD->getAttr<AlignValueAttr>();
284 }
285 }
286
287 if (!AVAttr)
288 if (const auto *TTy =
289 dyn_cast<TypedefType>(E->getType()))
290 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
291
292 if (!AVAttr)
293 return;
294
295 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
296 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
297 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
298 }
299
300 /// EmitLoadOfLValue - Given an expression with complex type that represents a
301 /// value l-value, this method emits the address of the l-value, then loads
302 /// and returns the result.
303 Value *EmitLoadOfLValue(const Expr *E) {
304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
305 E->getExprLoc());
306
307 EmitLValueAlignmentAssumption(E, V);
308 return V;
309 }
310
311 /// EmitConversionToBool - Convert the specified expression value to a
312 /// boolean (i1) truth value. This is equivalent to "Val != 0".
313 Value *EmitConversionToBool(Value *Src, QualType DstTy);
314
315 /// Emit a check that a conversion from a floating-point type does not
316 /// overflow.
317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
318 Value *Src, QualType SrcType, QualType DstType,
319 llvm::Type *DstTy, SourceLocation Loc);
320
321 /// Known implicit conversion check kinds.
322 /// Keep in sync with the enum of the same name in ubsan_handlers.h
323 enum ImplicitConversionCheckKind : unsigned char {
324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325 ICCK_UnsignedIntegerTruncation = 1,
326 ICCK_SignedIntegerTruncation = 2,
327 ICCK_IntegerSignChange = 3,
328 ICCK_SignedIntegerTruncationOrSignChange = 4,
329 };
330
331 /// Emit a check that an [implicit] truncation of an integer does not
332 /// discard any bits. It is not UB, so we use the value after truncation.
333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334 QualType DstType, SourceLocation Loc);
335
336 /// Emit a check that an [implicit] conversion of an integer does not change
337 /// the sign of the value. It is not UB, so we use the value after conversion.
338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340 QualType DstType, SourceLocation Loc);
341
342 /// Emit a conversion from the specified type to the specified destination
343 /// type, both of which are LLVM scalar types.
344 struct ScalarConversionOpts {
345 bool TreatBooleanAsSigned;
346 bool EmitImplicitIntegerTruncationChecks;
347 bool EmitImplicitIntegerSignChangeChecks;
348
349 ScalarConversionOpts()
350 : TreatBooleanAsSigned(false),
351 EmitImplicitIntegerTruncationChecks(false),
352 EmitImplicitIntegerSignChangeChecks(false) {}
353
354 ScalarConversionOpts(clang::SanitizerSet SanOpts)
355 : TreatBooleanAsSigned(false),
356 EmitImplicitIntegerTruncationChecks(
357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358 EmitImplicitIntegerSignChangeChecks(
359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360 };
361 Value *
362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
363 SourceLocation Loc,
364 ScalarConversionOpts Opts = ScalarConversionOpts());
365
366 /// Convert between either a fixed point and other fixed point or fixed point
367 /// and an integer.
368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
369 SourceLocation Loc);
370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
371 FixedPointSemantics &DstFixedSema,
372 SourceLocation Loc,
373 bool DstIsInteger = false);
374
375 /// Emit a conversion from the specified complex type to the specified
376 /// destination type, where the destination type is an LLVM scalar type.
377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
378 QualType SrcTy, QualType DstTy,
379 SourceLocation Loc);
380
381 /// EmitNullValue - Emit a value that corresponds to null for the given type.
382 Value *EmitNullValue(QualType Ty);
383
384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
385 Value *EmitFloatToBoolConversion(Value *V) {
386 // Compare against 0.0 for fp scalars.
387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
388 return Builder.CreateFCmpUNE(V, Zero, "tobool");
389 }
390
391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
394
395 return Builder.CreateICmpNE(V, Zero, "tobool");
396 }
397
398 Value *EmitIntToBoolConversion(Value *V) {
399 // Because of the type rules of C, we often end up computing a
400 // logical value, then zero extending it to int, then wanting it
401 // as a logical value again. Optimize this common case.
402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
404 Value *Result = ZI->getOperand(0);
405 // If there aren't any more uses, zap the instruction to save space.
406 // Note that there can be more uses, for example if this
407 // is the result of an assignment.
408 if (ZI->use_empty())
409 ZI->eraseFromParent();
410 return Result;
411 }
412 }
413
414 return Builder.CreateIsNotNull(V, "tobool");
415 }
416
417 //===--------------------------------------------------------------------===//
418 // Visitor Methods
419 //===--------------------------------------------------------------------===//
420
421 Value *Visit(Expr *E) {
422 ApplyDebugLocation DL(CGF, E);
423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
424 }
425
426 Value *VisitStmt(Stmt *S) {
427 S->dump(CGF.getContext().getSourceManager());
428 llvm_unreachable("Stmt can't have complex result type!")::llvm::llvm_unreachable_internal("Stmt can't have complex result type!"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 428)
;
429 }
430 Value *VisitExpr(Expr *S);
431
432 Value *VisitConstantExpr(ConstantExpr *E) {
433 return Visit(E->getSubExpr());
434 }
435 Value *VisitParenExpr(ParenExpr *PE) {
436 return Visit(PE->getSubExpr());
437 }
438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439 return Visit(E->getReplacement());
440 }
441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442 return Visit(GE->getResultExpr());
443 }
444 Value *VisitCoawaitExpr(CoawaitExpr *S) {
445 return CGF.EmitCoawaitExpr(*S).getScalarVal();
446 }
447 Value *VisitCoyieldExpr(CoyieldExpr *S) {
448 return CGF.EmitCoyieldExpr(*S).getScalarVal();
449 }
450 Value *VisitUnaryCoawait(const UnaryOperator *E) {
451 return Visit(E->getSubExpr());
452 }
453
454 // Leaves.
455 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456 return Builder.getInt(E->getValue());
457 }
458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459 return Builder.getInt(E->getValue());
460 }
461 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462 return llvm::ConstantFP::get(VMContext, E->getValue());
463 }
464 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466 }
467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469 }
470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472 }
473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474 return EmitNullValue(E->getType());
475 }
476 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477 return EmitNullValue(E->getType());
478 }
479 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483 return Builder.CreateBitCast(V, ConvertType(E->getType()));
484 }
485
486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488 }
489
490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492 }
493
494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
495 if (E->isGLValue())
496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
497 E->getExprLoc());
498
499 // Otherwise, assume the mapping is the scalar directly.
500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
501 }
502
503 // l-values.
504 Value *VisitDeclRefExpr(DeclRefExpr *E) {
505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
506 return CGF.emitScalarConstant(Constant, E);
507 return EmitLoadOfLValue(E);
508 }
509
510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
511 return CGF.EmitObjCSelectorExpr(E);
512 }
513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
514 return CGF.EmitObjCProtocolExpr(E);
515 }
516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
517 return EmitLoadOfLValue(E);
518 }
519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
520 if (E->getMethodDecl() &&
521 E->getMethodDecl()->getReturnType()->isReferenceType())
522 return EmitLoadOfLValue(E);
523 return CGF.EmitObjCMessageExpr(E).getScalarVal();
524 }
525
526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
527 LValue LV = CGF.EmitObjCIsaExpr(E);
528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
529 return V;
530 }
531
532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
533 VersionTuple Version = E->getVersion();
534
535 // If we're checking for a platform older than our minimum deployment
536 // target, we can fold the check away.
537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
539
540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
541 llvm::Value *Args[] = {
542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
545 };
546
547 return CGF.EmitBuiltinAvailable(Args);
548 }
549
550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
553 Value *VisitMemberExpr(MemberExpr *E);
554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
556 return EmitLoadOfLValue(E);
557 }
558
559 Value *VisitInitListExpr(InitListExpr *E);
560
561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562 assert(CGF.getArrayInitIndex() &&((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 563, __PRETTY_FUNCTION__))
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?")((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 563, __PRETTY_FUNCTION__))
;
564 return CGF.getArrayInitIndex();
565 }
566
567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568 return EmitNullValue(E->getType());
569 }
570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572 return VisitCastExpr(E);
573 }
574 Value *VisitCastExpr(CastExpr *E);
575
576 Value *VisitCallExpr(const CallExpr *E) {
577 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578 return EmitLoadOfLValue(E);
579
580 Value *V = CGF.EmitCallExpr(E).getScalarVal();
581
582 EmitLValueAlignmentAssumption(E, V);
583 return V;
584 }
585
586 Value *VisitStmtExpr(const StmtExpr *E);
587
588 // Unary Operators.
589 Value *VisitUnaryPostDec(const UnaryOperator *E) {
590 LValue LV = EmitLValue(E->getSubExpr());
591 return EmitScalarPrePostIncDec(E, LV, false, false);
592 }
593 Value *VisitUnaryPostInc(const UnaryOperator *E) {
594 LValue LV = EmitLValue(E->getSubExpr());
595 return EmitScalarPrePostIncDec(E, LV, true, false);
596 }
597 Value *VisitUnaryPreDec(const UnaryOperator *E) {
598 LValue LV = EmitLValue(E->getSubExpr());
599 return EmitScalarPrePostIncDec(E, LV, false, true);
600 }
601 Value *VisitUnaryPreInc(const UnaryOperator *E) {
602 LValue LV = EmitLValue(E->getSubExpr());
603 return EmitScalarPrePostIncDec(E, LV, true, true);
604 }
605
606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607 llvm::Value *InVal,
608 bool IsInc);
609
610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611 bool isInc, bool isPre);
612
613
614 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615 if (isa<MemberPointerType>(E->getType())) // never sugared
616 return CGF.CGM.getMemberPointerConstant(E);
617
618 return EmitLValue(E->getSubExpr()).getPointer();
619 }
620 Value *VisitUnaryDeref(const UnaryOperator *E) {
621 if (E->getType()->isVoidType())
622 return Visit(E->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E);
624 }
625 Value *VisitUnaryPlus(const UnaryOperator *E) {
626 // This differs from gcc, though, most likely due to a bug in gcc.
627 TestAndClearIgnoreResultAssign();
628 return Visit(E->getSubExpr());
629 }
630 Value *VisitUnaryMinus (const UnaryOperator *E);
631 Value *VisitUnaryNot (const UnaryOperator *E);
632 Value *VisitUnaryLNot (const UnaryOperator *E);
633 Value *VisitUnaryReal (const UnaryOperator *E);
634 Value *VisitUnaryImag (const UnaryOperator *E);
635 Value *VisitUnaryExtension(const UnaryOperator *E) {
636 return Visit(E->getSubExpr());
637 }
638
639 // C++
640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
641 return EmitLoadOfLValue(E);
642 }
643 Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
644 auto &Ctx = CGF.getContext();
645 APValue Evaluated =
646 SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
647 return ConstantEmitter(CGF.CGM, &CGF)
648 .emitAbstract(SLE->getLocation(), Evaluated, SLE->getType());
649 }
650
651 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
652 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
653 return Visit(DAE->getExpr());
654 }
655 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
656 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
657 return Visit(DIE->getExpr());
658 }
659 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
660 return CGF.LoadCXXThis();
661 }
662
663 Value *VisitExprWithCleanups(ExprWithCleanups *E);
664 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
665 return CGF.EmitCXXNewExpr(E);
666 }
667 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
668 CGF.EmitCXXDeleteExpr(E);
669 return nullptr;
670 }
671
672 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
673 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
674 }
675
676 Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
677 return Builder.getInt1(E->isSatisfied());
678 }
679
680 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
681 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
682 }
683
684 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
685 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
686 }
687
688 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
689 // C++ [expr.pseudo]p1:
690 // The result shall only be used as the operand for the function call
691 // operator (), and the result of such a call has type void. The only
692 // effect is the evaluation of the postfix-expression before the dot or
693 // arrow.
694 CGF.EmitScalarExpr(E->getBase());
695 return nullptr;
696 }
697
698 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
699 return EmitNullValue(E->getType());
700 }
701
702 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
703 CGF.EmitCXXThrowExpr(E);
704 return nullptr;
705 }
706
707 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
708 return Builder.getInt1(E->getValue());
709 }
710
711 // Binary Operators.
712 Value *EmitMul(const BinOpInfo &Ops) {
713 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
714 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
715 case LangOptions::SOB_Defined:
716 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
717 case LangOptions::SOB_Undefined:
718 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
719 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
720 LLVM_FALLTHROUGH[[gnu::fallthrough]];
721 case LangOptions::SOB_Trapping:
722 if (CanElideOverflowCheck(CGF.getContext(), Ops))
723 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
724 return EmitOverflowCheckedBinOp(Ops);
725 }
726 }
727
728 if (Ops.Ty->isUnsignedIntegerType() &&
729 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
730 !CanElideOverflowCheck(CGF.getContext(), Ops))
731 return EmitOverflowCheckedBinOp(Ops);
732
733 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
734 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
735 return propagateFMFlags(V, Ops);
736 }
737 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
738 }
739 /// Create a binary op that checks for overflow.
740 /// Currently only supports +, - and *.
741 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
742
743 // Check for undefined division and modulus behaviors.
744 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
745 llvm::Value *Zero,bool isDiv);
746 // Common helper for getting how wide LHS of shift is.
747 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
748 Value *EmitDiv(const BinOpInfo &Ops);
749 Value *EmitRem(const BinOpInfo &Ops);
750 Value *EmitAdd(const BinOpInfo &Ops);
751 Value *EmitSub(const BinOpInfo &Ops);
752 Value *EmitShl(const BinOpInfo &Ops);
753 Value *EmitShr(const BinOpInfo &Ops);
754 Value *EmitAnd(const BinOpInfo &Ops) {
755 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
756 }
757 Value *EmitXor(const BinOpInfo &Ops) {
758 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
759 }
760 Value *EmitOr (const BinOpInfo &Ops) {
761 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
762 }
763
764 // Helper functions for fixed point binary operations.
765 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
766
767 BinOpInfo EmitBinOps(const BinaryOperator *E);
768 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
769 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
770 Value *&Result);
771
772 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
773 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
774
775 // Binary operators and binary compound assignment operators.
776#define HANDLEBINOP(OP) \
777 Value *VisitBin ## OP(const BinaryOperator *E) { \
778 return Emit ## OP(EmitBinOps(E)); \
779 } \
780 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
781 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
782 }
783 HANDLEBINOP(Mul)
784 HANDLEBINOP(Div)
785 HANDLEBINOP(Rem)
786 HANDLEBINOP(Add)
787 HANDLEBINOP(Sub)
788 HANDLEBINOP(Shl)
789 HANDLEBINOP(Shr)
790 HANDLEBINOP(And)
791 HANDLEBINOP(Xor)
792 HANDLEBINOP(Or)
793#undef HANDLEBINOP
794
795 // Comparisons.
796 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
797 llvm::CmpInst::Predicate SICmpOpc,
798 llvm::CmpInst::Predicate FCmpOpc);
799#define VISITCOMP(CODE, UI, SI, FP) \
800 Value *VisitBin##CODE(const BinaryOperator *E) { \
801 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
802 llvm::FCmpInst::FP); }
803 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
804 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
805 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
806 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
807 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
808 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
1
Calling 'ScalarExprEmitter::EmitCompare'
809#undef VISITCOMP
810
811 Value *VisitBinAssign (const BinaryOperator *E);
812
813 Value *VisitBinLAnd (const BinaryOperator *E);
814 Value *VisitBinLOr (const BinaryOperator *E);
815 Value *VisitBinComma (const BinaryOperator *E);
816
817 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
818 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
819
820 Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
821 return Visit(E->getSemanticForm());
822 }
823
824 // Other Operators.
825 Value *VisitBlockExpr(const BlockExpr *BE);
826 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
827 Value *VisitChooseExpr(ChooseExpr *CE);
828 Value *VisitVAArgExpr(VAArgExpr *VE);
829 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
830 return CGF.EmitObjCStringLiteral(E);
831 }
832 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
833 return CGF.EmitObjCBoxedExpr(E);
834 }
835 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
836 return CGF.EmitObjCArrayLiteral(E);
837 }
838 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
839 return CGF.EmitObjCDictionaryLiteral(E);
840 }
841 Value *VisitAsTypeExpr(AsTypeExpr *CE);
842 Value *VisitAtomicExpr(AtomicExpr *AE);
843};
844} // end anonymous namespace.
845
846//===----------------------------------------------------------------------===//
847// Utilities
848//===----------------------------------------------------------------------===//
849
850/// EmitConversionToBool - Convert the specified expression value to a
851/// boolean (i1) truth value. This is equivalent to "Val != 0".
852Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
853 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs")((SrcType.isCanonical() && "EmitScalarConversion strips typedefs"
) ? static_cast<void> (0) : __assert_fail ("SrcType.isCanonical() && \"EmitScalarConversion strips typedefs\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 853, __PRETTY_FUNCTION__))
;
854
855 if (SrcType->isRealFloatingType())
856 return EmitFloatToBoolConversion(Src);
857
858 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
859 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
860
861 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 862, __PRETTY_FUNCTION__))
862 "Unknown scalar type to convert")(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 862, __PRETTY_FUNCTION__))
;
863
864 if (isa<llvm::IntegerType>(Src->getType()))
865 return EmitIntToBoolConversion(Src);
866
867 assert(isa<llvm::PointerType>(Src->getType()))((isa<llvm::PointerType>(Src->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::PointerType>(Src->getType())"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 867, __PRETTY_FUNCTION__))
;
868 return EmitPointerToBoolConversion(Src, SrcType);
869}
870
871void ScalarExprEmitter::EmitFloatConversionCheck(
872 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
873 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
874 assert(SrcType->isFloatingType() && "not a conversion from floating point")((SrcType->isFloatingType() && "not a conversion from floating point"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isFloatingType() && \"not a conversion from floating point\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 874, __PRETTY_FUNCTION__))
;
875 if (!isa<llvm::IntegerType>(DstTy))
876 return;
877
878 CodeGenFunction::SanitizerScope SanScope(&CGF);
879 using llvm::APFloat;
880 using llvm::APSInt;
881
882 llvm::Value *Check = nullptr;
883 const llvm::fltSemantics &SrcSema =
884 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
885
886 // Floating-point to integer. This has undefined behavior if the source is
887 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
888 // to an integer).
889 unsigned Width = CGF.getContext().getIntWidth(DstType);
890 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
891
892 APSInt Min = APSInt::getMinValue(Width, Unsigned);
893 APFloat MinSrc(SrcSema, APFloat::uninitialized);
894 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
895 APFloat::opOverflow)
896 // Don't need an overflow check for lower bound. Just check for
897 // -Inf/NaN.
898 MinSrc = APFloat::getInf(SrcSema, true);
899 else
900 // Find the largest value which is too small to represent (before
901 // truncation toward zero).
902 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
903
904 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
905 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
906 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
907 APFloat::opOverflow)
908 // Don't need an overflow check for upper bound. Just check for
909 // +Inf/NaN.
910 MaxSrc = APFloat::getInf(SrcSema, false);
911 else
912 // Find the smallest value which is too large to represent (before
913 // truncation toward zero).
914 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
915
916 // If we're converting from __half, convert the range to float to match
917 // the type of src.
918 if (OrigSrcType->isHalfType()) {
919 const llvm::fltSemantics &Sema =
920 CGF.getContext().getFloatTypeSemantics(SrcType);
921 bool IsInexact;
922 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
923 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
924 }
925
926 llvm::Value *GE =
927 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
928 llvm::Value *LE =
929 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
930 Check = Builder.CreateAnd(GE, LE);
931
932 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
933 CGF.EmitCheckTypeDescriptor(OrigSrcType),
934 CGF.EmitCheckTypeDescriptor(DstType)};
935 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
936 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
937}
938
939// Should be called within CodeGenFunction::SanitizerScope RAII scope.
940// Returns 'i1 false' when the truncation Src -> Dst was lossy.
941static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
942 std::pair<llvm::Value *, SanitizerMask>>
943EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
944 QualType DstType, CGBuilderTy &Builder) {
945 llvm::Type *SrcTy = Src->getType();
946 llvm::Type *DstTy = Dst->getType();
947 (void)DstTy; // Only used in assert()
948
949 // This should be truncation of integral types.
950 assert(Src != Dst)((Src != Dst) ? static_cast<void> (0) : __assert_fail (
"Src != Dst", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 950, __PRETTY_FUNCTION__))
;
951 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits())((SrcTy->getScalarSizeInBits() > Dst->getType()->
getScalarSizeInBits()) ? static_cast<void> (0) : __assert_fail
("SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 951, __PRETTY_FUNCTION__))
;
952 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 953, __PRETTY_FUNCTION__))
953 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 953, __PRETTY_FUNCTION__))
;
954
955 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
956 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
957
958 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
959 // Else, it is a signed truncation.
960 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
961 SanitizerMask Mask;
962 if (!SrcSigned && !DstSigned) {
963 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
964 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
965 } else {
966 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
967 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
968 }
969
970 llvm::Value *Check = nullptr;
971 // 1. Extend the truncated value back to the same width as the Src.
972 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
973 // 2. Equality-compare with the original source value
974 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
975 // If the comparison result is 'i1 false', then the truncation was lossy.
976 return std::make_pair(Kind, std::make_pair(Check, Mask));
977}
978
979void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
980 Value *Dst, QualType DstType,
981 SourceLocation Loc) {
982 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
983 return;
984
985 // We only care about int->int conversions here.
986 // We ignore conversions to/from pointer and/or bool.
987 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
988 return;
989
990 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
991 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
992 // This must be truncation. Else we do not care.
993 if (SrcBits <= DstBits)
994 return;
995
996 assert(!DstType->isBooleanType() && "we should not get here with booleans.")((!DstType->isBooleanType() && "we should not get here with booleans."
) ? static_cast<void> (0) : __assert_fail ("!DstType->isBooleanType() && \"we should not get here with booleans.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 996, __PRETTY_FUNCTION__))
;
997
998 // If the integer sign change sanitizer is enabled,
999 // and we are truncating from larger unsigned type to smaller signed type,
1000 // let that next sanitizer deal with it.
1001 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1002 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1003 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1004 (!SrcSigned && DstSigned))
1005 return;
1006
1007 CodeGenFunction::SanitizerScope SanScope(&CGF);
1008
1009 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1010 std::pair<llvm::Value *, SanitizerMask>>
1011 Check =
1012 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1013 // If the comparison result is 'i1 false', then the truncation was lossy.
1014
1015 // Do we care about this type of truncation?
1016 if (!CGF.SanOpts.has(Check.second.second))
1017 return;
1018
1019 llvm::Constant *StaticArgs[] = {
1020 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1021 CGF.EmitCheckTypeDescriptor(DstType),
1022 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1023 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1024 {Src, Dst});
1025}
1026
1027// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1028// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1029static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1030 std::pair<llvm::Value *, SanitizerMask>>
1031EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1032 QualType DstType, CGBuilderTy &Builder) {
1033 llvm::Type *SrcTy = Src->getType();
1034 llvm::Type *DstTy = Dst->getType();
1035
1036 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1037, __PRETTY_FUNCTION__))
1037 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1037, __PRETTY_FUNCTION__))
;
1038
1039 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1040 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1041 (void)SrcSigned; // Only used in assert()
1042 (void)DstSigned; // Only used in assert()
1043 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1044 unsigned DstBits = DstTy->getScalarSizeInBits();
1045 (void)SrcBits; // Only used in assert()
1046 (void)DstBits; // Only used in assert()
1047
1048 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1049, __PRETTY_FUNCTION__))
1049 "either the widths should be different, or the signednesses.")((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1049, __PRETTY_FUNCTION__))
;
1050
1051 // NOTE: zero value is considered to be non-negative.
1052 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1053 const char *Name) -> Value * {
1054 // Is this value a signed type?
1055 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1056 llvm::Type *VTy = V->getType();
1057 if (!VSigned) {
1058 // If the value is unsigned, then it is never negative.
1059 // FIXME: can we encounter non-scalar VTy here?
1060 return llvm::ConstantInt::getFalse(VTy->getContext());
1061 }
1062 // Get the zero of the same type with which we will be comparing.
1063 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1064 // %V.isnegative = icmp slt %V, 0
1065 // I.e is %V *strictly* less than zero, does it have negative value?
1066 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1067 llvm::Twine(Name) + "." + V->getName() +
1068 ".negativitycheck");
1069 };
1070
1071 // 1. Was the old Value negative?
1072 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1073 // 2. Is the new Value negative?
1074 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1075 // 3. Now, was the 'negativity status' preserved during the conversion?
1076 // NOTE: conversion from negative to zero is considered to change the sign.
1077 // (We want to get 'false' when the conversion changed the sign)
1078 // So we should just equality-compare the negativity statuses.
1079 llvm::Value *Check = nullptr;
1080 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1081 // If the comparison result is 'false', then the conversion changed the sign.
1082 return std::make_pair(
1083 ScalarExprEmitter::ICCK_IntegerSignChange,
1084 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1085}
1086
1087void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1088 Value *Dst, QualType DstType,
1089 SourceLocation Loc) {
1090 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1091 return;
1092
1093 llvm::Type *SrcTy = Src->getType();
1094 llvm::Type *DstTy = Dst->getType();
1095
1096 // We only care about int->int conversions here.
1097 // We ignore conversions to/from pointer and/or bool.
1098 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1099 return;
1100
1101 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1102 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1103 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1104 unsigned DstBits = DstTy->getScalarSizeInBits();
1105
1106 // Now, we do not need to emit the check in *all* of the cases.
1107 // We can avoid emitting it in some obvious cases where it would have been
1108 // dropped by the opt passes (instcombine) always anyways.
1109 // If it's a cast between effectively the same type, no check.
1110 // NOTE: this is *not* equivalent to checking the canonical types.
1111 if (SrcSigned == DstSigned && SrcBits == DstBits)
1112 return;
1113 // At least one of the values needs to have signed type.
1114 // If both are unsigned, then obviously, neither of them can be negative.
1115 if (!SrcSigned && !DstSigned)
1116 return;
1117 // If the conversion is to *larger* *signed* type, then no check is needed.
1118 // Because either sign-extension happens (so the sign will remain),
1119 // or zero-extension will happen (the sign bit will be zero.)
1120 if ((DstBits > SrcBits) && DstSigned)
1121 return;
1122 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1123 (SrcBits > DstBits) && SrcSigned) {
1124 // If the signed integer truncation sanitizer is enabled,
1125 // and this is a truncation from signed type, then no check is needed.
1126 // Because here sign change check is interchangeable with truncation check.
1127 return;
1128 }
1129 // That's it. We can't rule out any more cases with the data we have.
1130
1131 CodeGenFunction::SanitizerScope SanScope(&CGF);
1132
1133 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1134 std::pair<llvm::Value *, SanitizerMask>>
1135 Check;
1136
1137 // Each of these checks needs to return 'false' when an issue was detected.
1138 ImplicitConversionCheckKind CheckKind;
1139 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1140 // So we can 'and' all the checks together, and still get 'false',
1141 // if at least one of the checks detected an issue.
1142
1143 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1144 CheckKind = Check.first;
1145 Checks.emplace_back(Check.second);
1146
1147 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1148 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1149 // If the signed integer truncation sanitizer was enabled,
1150 // and we are truncating from larger unsigned type to smaller signed type,
1151 // let's handle the case we skipped in that check.
1152 Check =
1153 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1154 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1155 Checks.emplace_back(Check.second);
1156 // If the comparison result is 'i1 false', then the truncation was lossy.
1157 }
1158
1159 llvm::Constant *StaticArgs[] = {
1160 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1161 CGF.EmitCheckTypeDescriptor(DstType),
1162 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1163 // EmitCheck() will 'and' all the checks together.
1164 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1165 {Src, Dst});
1166}
1167
1168/// Emit a conversion from the specified type to the specified destination type,
1169/// both of which are LLVM scalar types.
1170Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1171 QualType DstType,
1172 SourceLocation Loc,
1173 ScalarConversionOpts Opts) {
1174 // All conversions involving fixed point types should be handled by the
1175 // EmitFixedPoint family functions. This is done to prevent bloating up this
1176 // function more, and although fixed point numbers are represented by
1177 // integers, we do not want to follow any logic that assumes they should be
1178 // treated as integers.
1179 // TODO(leonardchan): When necessary, add another if statement checking for
1180 // conversions to fixed point types from other types.
1181 if (SrcType->isFixedPointType()) {
1182 if (DstType->isBooleanType())
1183 // It is important that we check this before checking if the dest type is
1184 // an integer because booleans are technically integer types.
1185 // We do not need to check the padding bit on unsigned types if unsigned
1186 // padding is enabled because overflow into this bit is undefined
1187 // behavior.
1188 return Builder.CreateIsNotNull(Src, "tobool");
1189 if (DstType->isFixedPointType() || DstType->isIntegerType())
1190 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1191
1192 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion from a fixed point type to another type."
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1193)
1193 "Unhandled scalar conversion from a fixed point type to another type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion from a fixed point type to another type."
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1193)
;
1194 } else if (DstType->isFixedPointType()) {
1195 if (SrcType->isIntegerType())
1196 // This also includes converting booleans and enums to fixed point types.
1197 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1198
1199 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion to a fixed point type from another type."
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1200)
1200 "Unhandled scalar conversion to a fixed point type from another type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion to a fixed point type from another type."
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1200)
;
1201 }
1202
1203 QualType NoncanonicalSrcType = SrcType;
1204 QualType NoncanonicalDstType = DstType;
1205
1206 SrcType = CGF.getContext().getCanonicalType(SrcType);
1207 DstType = CGF.getContext().getCanonicalType(DstType);
1208 if (SrcType == DstType) return Src;
1209
1210 if (DstType->isVoidType()) return nullptr;
1211
1212 llvm::Value *OrigSrc = Src;
1213 QualType OrigSrcType = SrcType;
1214 llvm::Type *SrcTy = Src->getType();
1215
1216 // Handle conversions to bool first, they are special: comparisons against 0.
1217 if (DstType->isBooleanType())
1218 return EmitConversionToBool(Src, SrcType);
1219
1220 llvm::Type *DstTy = ConvertType(DstType);
1221
1222 // Cast from half through float if half isn't a native type.
1223 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1224 // Cast to FP using the intrinsic if the half type itself isn't supported.
1225 if (DstTy->isFloatingPointTy()) {
1226 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1227 return Builder.CreateCall(
1228 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1229 Src);
1230 } else {
1231 // Cast to other types through float, using either the intrinsic or FPExt,
1232 // depending on whether the half type itself is supported
1233 // (as opposed to operations on half, available with NativeHalfType).
1234 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1235 Src = Builder.CreateCall(
1236 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1237 CGF.CGM.FloatTy),
1238 Src);
1239 } else {
1240 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1241 }
1242 SrcType = CGF.getContext().FloatTy;
1243 SrcTy = CGF.FloatTy;
1244 }
1245 }
1246
1247 // Ignore conversions like int -> uint.
1248 if (SrcTy == DstTy) {
1249 if (Opts.EmitImplicitIntegerSignChangeChecks)
1250 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1251 NoncanonicalDstType, Loc);
1252
1253 return Src;
1254 }
1255
1256 // Handle pointer conversions next: pointers can only be converted to/from
1257 // other pointers and integers. Check for pointer types in terms of LLVM, as
1258 // some native types (like Obj-C id) may map to a pointer type.
1259 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1260 // The source value may be an integer, or a pointer.
1261 if (isa<llvm::PointerType>(SrcTy))
1262 return Builder.CreateBitCast(Src, DstTy, "conv");
1263
1264 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?")((SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isIntegerType() && \"Not ptr->ptr or int->ptr conversion?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1264, __PRETTY_FUNCTION__))
;
1265 // First, convert to the correct width so that we control the kind of
1266 // extension.
1267 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1268 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1269 llvm::Value* IntResult =
1270 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1271 // Then, cast to pointer.
1272 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1273 }
1274
1275 if (isa<llvm::PointerType>(SrcTy)) {
1276 // Must be an ptr to int cast.
1277 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?")((isa<llvm::IntegerType>(DstTy) && "not ptr->int?"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::IntegerType>(DstTy) && \"not ptr->int?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1277, __PRETTY_FUNCTION__))
;
1278 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1279 }
1280
1281 // A scalar can be splatted to an extended vector of the same element type
1282 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1283 // Sema should add casts to make sure that the source expression's type is
1284 // the same as the vector's element type (sans qualifiers)
1285 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1287, __PRETTY_FUNCTION__))
1286 SrcType.getTypePtr() &&((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1287, __PRETTY_FUNCTION__))
1287 "Splatted expr doesn't match with vector element type?")((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1287, __PRETTY_FUNCTION__))
;
1288
1289 // Splat the element across to all elements
1290 unsigned NumElements = DstTy->getVectorNumElements();
1291 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1292 }
1293
1294 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1295 // Allow bitcast from vector to integer/fp of the same size.
1296 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1297 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1298 if (SrcSize == DstSize)
1299 return Builder.CreateBitCast(Src, DstTy, "conv");
1300
1301 // Conversions between vectors of different sizes are not allowed except
1302 // when vectors of half are involved. Operations on storage-only half
1303 // vectors require promoting half vector operands to float vectors and
1304 // truncating the result, which is either an int or float vector, to a
1305 // short or half vector.
1306
1307 // Source and destination are both expected to be vectors.
1308 llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1309 llvm::Type *DstElementTy = DstTy->getVectorElementType();
1310 (void)DstElementTy;
1311
1312 assert(((SrcElementTy->isIntegerTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1317, __PRETTY_FUNCTION__))
1313 DstElementTy->isIntegerTy()) ||((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1317, __PRETTY_FUNCTION__))
1314 (SrcElementTy->isFloatingPointTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1317, __PRETTY_FUNCTION__))
1315 DstElementTy->isFloatingPointTy())) &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1317, __PRETTY_FUNCTION__))
1316 "unexpected conversion between a floating-point vector and an "((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1317, __PRETTY_FUNCTION__))
1317 "integer vector")((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1317, __PRETTY_FUNCTION__))
;
1318
1319 // Truncate an i32 vector to an i16 vector.
1320 if (SrcElementTy->isIntegerTy())
1321 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1322
1323 // Truncate a float vector to a half vector.
1324 if (SrcSize > DstSize)
1325 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1326
1327 // Promote a half vector to a float vector.
1328 return Builder.CreateFPExt(Src, DstTy, "conv");
1329 }
1330
1331 // Finally, we have the arithmetic types: real int/float.
1332 Value *Res = nullptr;
1333 llvm::Type *ResTy = DstTy;
1334
1335 // An overflowing conversion has undefined behavior if either the source type
1336 // or the destination type is a floating-point type. However, we consider the
1337 // range of representable values for all floating-point types to be
1338 // [-inf,+inf], so no overflow can ever happen when the destination type is a
1339 // floating-point type.
1340 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1341 OrigSrcType->isFloatingType())
1342 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1343 Loc);
1344
1345 // Cast to half through float if half isn't a native type.
1346 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1347 // Make sure we cast in a single step if from another FP type.
1348 if (SrcTy->isFloatingPointTy()) {
1349 // Use the intrinsic if the half type itself isn't supported
1350 // (as opposed to operations on half, available with NativeHalfType).
1351 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1352 return Builder.CreateCall(
1353 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1354 // If the half type is supported, just use an fptrunc.
1355 return Builder.CreateFPTrunc(Src, DstTy);
1356 }
1357 DstTy = CGF.FloatTy;
1358 }
1359
1360 if (isa<llvm::IntegerType>(SrcTy)) {
1361 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1362 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1363 InputSigned = true;
1364 }
1365 if (isa<llvm::IntegerType>(DstTy))
1366 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1367 else if (InputSigned)
1368 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1369 else
1370 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1371 } else if (isa<llvm::IntegerType>(DstTy)) {
1372 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion")((SrcTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1372, __PRETTY_FUNCTION__))
;
1373 if (DstType->isSignedIntegerOrEnumerationType())
1374 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1375 else
1376 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1377 } else {
1378 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1379, __PRETTY_FUNCTION__))
1379 "Unknown real conversion")((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1379, __PRETTY_FUNCTION__))
;
1380 if (DstTy->getTypeID() < SrcTy->getTypeID())
1381 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1382 else
1383 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1384 }
1385
1386 if (DstTy != ResTy) {
1387 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1388 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion")((ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"
) ? static_cast<void> (0) : __assert_fail ("ResTy->isIntegerTy(16) && \"Only half FP requires extra conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1388, __PRETTY_FUNCTION__))
;
1389 Res = Builder.CreateCall(
1390 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1391 Res);
1392 } else {
1393 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1394 }
1395 }
1396
1397 if (Opts.EmitImplicitIntegerTruncationChecks)
1398 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1399 NoncanonicalDstType, Loc);
1400
1401 if (Opts.EmitImplicitIntegerSignChangeChecks)
1402 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1403 NoncanonicalDstType, Loc);
1404
1405 return Res;
1406}
1407
1408Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1409 QualType DstTy,
1410 SourceLocation Loc) {
1411 FixedPointSemantics SrcFPSema =
1412 CGF.getContext().getFixedPointSemantics(SrcTy);
1413 FixedPointSemantics DstFPSema =
1414 CGF.getContext().getFixedPointSemantics(DstTy);
1415 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1416 DstTy->isIntegerType());
1417}
1418
1419Value *ScalarExprEmitter::EmitFixedPointConversion(
1420 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1421 SourceLocation Loc, bool DstIsInteger) {
1422 using llvm::APInt;
1423 using llvm::ConstantInt;
1424 using llvm::Value;
1425
1426 unsigned SrcWidth = SrcFPSema.getWidth();
1427 unsigned DstWidth = DstFPSema.getWidth();
1428 unsigned SrcScale = SrcFPSema.getScale();
1429 unsigned DstScale = DstFPSema.getScale();
1430 bool SrcIsSigned = SrcFPSema.isSigned();
1431 bool DstIsSigned = DstFPSema.isSigned();
1432
1433 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1434
1435 Value *Result = Src;
1436 unsigned ResultWidth = SrcWidth;
1437
1438 // Downscale.
1439 if (DstScale < SrcScale) {
1440 // When converting to integers, we round towards zero. For negative numbers,
1441 // right shifting rounds towards negative infinity. In this case, we can
1442 // just round up before shifting.
1443 if (DstIsInteger && SrcIsSigned) {
1444 Value *Zero = llvm::Constant::getNullValue(Result->getType());
1445 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1446 Value *LowBits = ConstantInt::get(
1447 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1448 Value *Rounded = Builder.CreateAdd(Result, LowBits);
1449 Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1450 }
1451
1452 Result = SrcIsSigned
1453 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1454 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1455 }
1456
1457 if (!DstFPSema.isSaturated()) {
1458 // Resize.
1459 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1460
1461 // Upscale.
1462 if (DstScale > SrcScale)
1463 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1464 } else {
1465 // Adjust the number of fractional bits.
1466 if (DstScale > SrcScale) {
1467 // Compare to DstWidth to prevent resizing twice.
1468 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1469 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1470 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1471 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1472 }
1473
1474 // Handle saturation.
1475 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1476 if (LessIntBits) {
1477 Value *Max = ConstantInt::get(
1478 CGF.getLLVMContext(),
1479 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1480 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1481 : Builder.CreateICmpUGT(Result, Max);
1482 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1483 }
1484 // Cannot overflow min to dest type if src is unsigned since all fixed
1485 // point types can cover the unsigned min of 0.
1486 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1487 Value *Min = ConstantInt::get(
1488 CGF.getLLVMContext(),
1489 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1490 Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1491 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1492 }
1493
1494 // Resize the integer part to get the final destination size.
1495 if (ResultWidth != DstWidth)
1496 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1497 }
1498 return Result;
1499}
1500
1501/// Emit a conversion from the specified complex type to the specified
1502/// destination type, where the destination type is an LLVM scalar type.
1503Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1504 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1505 SourceLocation Loc) {
1506 // Get the source element type.
1507 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1508
1509 // Handle conversions to bool first, they are special: comparisons against 0.
1510 if (DstTy->isBooleanType()) {
1511 // Complex != 0 -> (Real != 0) | (Imag != 0)
1512 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1513 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1514 return Builder.CreateOr(Src.first, Src.second, "tobool");
1515 }
1516
1517 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1518 // the imaginary part of the complex value is discarded and the value of the
1519 // real part is converted according to the conversion rules for the
1520 // corresponding real type.
1521 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1522}
1523
1524Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1525 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1526}
1527
1528/// Emit a sanitization check for the given "binary" operation (which
1529/// might actually be a unary increment which has been lowered to a binary
1530/// operation). The check passes if all values in \p Checks (which are \c i1),
1531/// are \c true.
1532void ScalarExprEmitter::EmitBinOpCheck(
1533 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1534 assert(CGF.IsSanitizerScope)((CGF.IsSanitizerScope) ? static_cast<void> (0) : __assert_fail
("CGF.IsSanitizerScope", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1534, __PRETTY_FUNCTION__))
;
1535 SanitizerHandler Check;
1536 SmallVector<llvm::Constant *, 4> StaticData;
1537 SmallVector<llvm::Value *, 2> DynamicData;
1538
1539 BinaryOperatorKind Opcode = Info.Opcode;
1540 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1541 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1542
1543 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1544 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1545 if (UO && UO->getOpcode() == UO_Minus) {
1546 Check = SanitizerHandler::NegateOverflow;
1547 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1548 DynamicData.push_back(Info.RHS);
1549 } else {
1550 if (BinaryOperator::isShiftOp(Opcode)) {
1551 // Shift LHS negative or too large, or RHS out of bounds.
1552 Check = SanitizerHandler::ShiftOutOfBounds;
1553 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1554 StaticData.push_back(
1555 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1556 StaticData.push_back(
1557 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1558 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1559 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1560 Check = SanitizerHandler::DivremOverflow;
1561 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1562 } else {
1563 // Arithmetic overflow (+, -, *).
1564 switch (Opcode) {
1565 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1566 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1567 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1568 default: llvm_unreachable("unexpected opcode for bin op check")::llvm::llvm_unreachable_internal("unexpected opcode for bin op check"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1568)
;
1569 }
1570 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1571 }
1572 DynamicData.push_back(Info.LHS);
1573 DynamicData.push_back(Info.RHS);
1574 }
1575
1576 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1577}
1578
1579//===----------------------------------------------------------------------===//
1580// Visitor Methods
1581//===----------------------------------------------------------------------===//
1582
1583Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1584 CGF.ErrorUnsupported(E, "scalar expression");
1585 if (E->getType()->isVoidType())
1586 return nullptr;
1587 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1588}
1589
1590Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1591 // Vector Mask Case
1592 if (E->getNumSubExprs() == 2) {
1593 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1594 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1595 Value *Mask;
1596
1597 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1598 unsigned LHSElts = LTy->getNumElements();
1599
1600 Mask = RHS;
1601
1602 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1603
1604 // Mask off the high bits of each shuffle index.
1605 Value *MaskBits =
1606 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1607 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1608
1609 // newv = undef
1610 // mask = mask & maskbits
1611 // for each elt
1612 // n = extract mask i
1613 // x = extract val n
1614 // newv = insert newv, x, i
1615 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1616 MTy->getNumElements());
1617 Value* NewV = llvm::UndefValue::get(RTy);
1618 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1619 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1620 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1621
1622 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1623 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1624 }
1625 return NewV;
1626 }
1627
1628 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1629 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1630
1631 SmallVector<llvm::Constant*, 32> indices;
1632 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1633 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1634 // Check for -1 and output it as undef in the IR.
1635 if (Idx.isSigned() && Idx.isAllOnesValue())
1636 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1637 else
1638 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1639 }
1640
1641 Value *SV = llvm::ConstantVector::get(indices);
1642 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1643}
1644
1645Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1646 QualType SrcType = E->getSrcExpr()->getType(),
1647 DstType = E->getType();
1648
1649 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1650
1651 SrcType = CGF.getContext().getCanonicalType(SrcType);
1652 DstType = CGF.getContext().getCanonicalType(DstType);
1653 if (SrcType == DstType) return Src;
1654
1655 assert(SrcType->isVectorType() &&((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1656, __PRETTY_FUNCTION__))
1656 "ConvertVector source type must be a vector")((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1656, __PRETTY_FUNCTION__))
;
1657 assert(DstType->isVectorType() &&((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1658, __PRETTY_FUNCTION__))
1658 "ConvertVector destination type must be a vector")((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1658, __PRETTY_FUNCTION__))
;
1659
1660 llvm::Type *SrcTy = Src->getType();
1661 llvm::Type *DstTy = ConvertType(DstType);
1662
1663 // Ignore conversions like int -> uint.
1664 if (SrcTy == DstTy)
1665 return Src;
1666
1667 QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
1668 DstEltType = DstType->castAs<VectorType>()->getElementType();
1669
1670 assert(SrcTy->isVectorTy() &&((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1671, __PRETTY_FUNCTION__))
1671 "ConvertVector source IR type must be a vector")((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672 assert(DstTy->isVectorTy() &&((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1673, __PRETTY_FUNCTION__))
1673 "ConvertVector destination IR type must be a vector")((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1673, __PRETTY_FUNCTION__))
;
1674
1675 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1676 *DstEltTy = DstTy->getVectorElementType();
1677
1678 if (DstEltType->isBooleanType()) {
1679 assert((SrcEltTy->isFloatingPointTy() ||(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1680, __PRETTY_FUNCTION__))
1680 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion")(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1680, __PRETTY_FUNCTION__))
;
1681
1682 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1683 if (SrcEltTy->isFloatingPointTy()) {
1684 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1685 } else {
1686 return Builder.CreateICmpNE(Src, Zero, "tobool");
1687 }
1688 }
1689
1690 // We have the arithmetic types: real int/float.
1691 Value *Res = nullptr;
1692
1693 if (isa<llvm::IntegerType>(SrcEltTy)) {
1694 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1695 if (isa<llvm::IntegerType>(DstEltTy))
1696 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1697 else if (InputSigned)
1698 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1699 else
1700 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1701 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1702 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1702, __PRETTY_FUNCTION__))
;
1703 if (DstEltType->isSignedIntegerOrEnumerationType())
1704 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1705 else
1706 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1707 } else {
1708 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1709, __PRETTY_FUNCTION__))
1709 "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1709, __PRETTY_FUNCTION__))
;
1710 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1711 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1712 else
1713 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1714 }
1715
1716 return Res;
1717}
1718
1719Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1720 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1721 CGF.EmitIgnoredExpr(E->getBase());
1722 return CGF.emitScalarConstant(Constant, E);
1723 } else {
1724 Expr::EvalResult Result;
1725 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1726 llvm::APSInt Value = Result.Val.getInt();
1727 CGF.EmitIgnoredExpr(E->getBase());
1728 return Builder.getInt(Value);
1729 }
1730 }
1731
1732 return EmitLoadOfLValue(E);
1733}
1734
1735Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1736 TestAndClearIgnoreResultAssign();
1737
1738 // Emit subscript expressions in rvalue context's. For most cases, this just
1739 // loads the lvalue formed by the subscript expr. However, we have to be
1740 // careful, because the base of a vector subscript is occasionally an rvalue,
1741 // so we can't get it as an lvalue.
1742 if (!E->getBase()->getType()->isVectorType())
1743 return EmitLoadOfLValue(E);
1744
1745 // Handle the vector case. The base must be a vector, the index must be an
1746 // integer value.
1747 Value *Base = Visit(E->getBase());
1748 Value *Idx = Visit(E->getIdx());
1749 QualType IdxTy = E->getIdx()->getType();
1750
1751 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1752 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1753
1754 return Builder.CreateExtractElement(Base, Idx, "vecext");
1755}
1756
1757static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1758 unsigned Off, llvm::Type *I32Ty) {
1759 int MV = SVI->getMaskValue(Idx);
1760 if (MV == -1)
1761 return llvm::UndefValue::get(I32Ty);
1762 return llvm::ConstantInt::get(I32Ty, Off+MV);
1763}
1764
1765static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1766 if (C->getBitWidth() != 32) {
1767 assert(llvm::ConstantInt::isValueValidForType(I32Ty,((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1769, __PRETTY_FUNCTION__))
1768 C->getZExtValue()) &&((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1769, __PRETTY_FUNCTION__))
1769 "Index operand too large for shufflevector mask!")((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1769, __PRETTY_FUNCTION__))
;
1770 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1771 }
1772 return C;
1773}
1774
1775Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1776 bool Ignore = TestAndClearIgnoreResultAssign();
1777 (void)Ignore;
1778 assert (Ignore == false && "init list ignored")((Ignore == false && "init list ignored") ? static_cast
<void> (0) : __assert_fail ("Ignore == false && \"init list ignored\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1778, __PRETTY_FUNCTION__))
;
1779 unsigned NumInitElements = E->getNumInits();
1780
1781 if (E->hadArrayRangeDesignator())
1782 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1783
1784 llvm::VectorType *VType =
1785 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1786
1787 if (!VType) {
1788 if (NumInitElements == 0) {
1789 // C++11 value-initialization for the scalar.
1790 return EmitNullValue(E->getType());
1791 }
1792 // We have a scalar in braces. Just use the first element.
1793 return Visit(E->getInit(0));
1794 }
1795
1796 unsigned ResElts = VType->getNumElements();
1797
1798 // Loop over initializers collecting the Value for each, and remembering
1799 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1800 // us to fold the shuffle for the swizzle into the shuffle for the vector
1801 // initializer, since LLVM optimizers generally do not want to touch
1802 // shuffles.
1803 unsigned CurIdx = 0;
1804 bool VIsUndefShuffle = false;
1805 llvm::Value *V = llvm::UndefValue::get(VType);
1806 for (unsigned i = 0; i != NumInitElements; ++i) {
1807 Expr *IE = E->getInit(i);
1808 Value *Init = Visit(IE);
1809 SmallVector<llvm::Constant*, 16> Args;
1810
1811 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1812
1813 // Handle scalar elements. If the scalar initializer is actually one
1814 // element of a different vector of the same width, use shuffle instead of
1815 // extract+insert.
1816 if (!VVT) {
1817 if (isa<ExtVectorElementExpr>(IE)) {
1818 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1819
1820 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1821 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1822 Value *LHS = nullptr, *RHS = nullptr;
1823 if (CurIdx == 0) {
1824 // insert into undef -> shuffle (src, undef)
1825 // shufflemask must use an i32
1826 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1827 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1828
1829 LHS = EI->getVectorOperand();
1830 RHS = V;
1831 VIsUndefShuffle = true;
1832 } else if (VIsUndefShuffle) {
1833 // insert into undefshuffle && size match -> shuffle (v, src)
1834 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1835 for (unsigned j = 0; j != CurIdx; ++j)
1836 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1837 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1838 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1839
1840 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1841 RHS = EI->getVectorOperand();
1842 VIsUndefShuffle = false;
1843 }
1844 if (!Args.empty()) {
1845 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1846 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1847 ++CurIdx;
1848 continue;
1849 }
1850 }
1851 }
1852 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1853 "vecinit");
1854 VIsUndefShuffle = false;
1855 ++CurIdx;
1856 continue;
1857 }
1858
1859 unsigned InitElts = VVT->getNumElements();
1860
1861 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1862 // input is the same width as the vector being constructed, generate an
1863 // optimized shuffle of the swizzle input into the result.
1864 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1865 if (isa<ExtVectorElementExpr>(IE)) {
1866 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1867 Value *SVOp = SVI->getOperand(0);
1868 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1869
1870 if (OpTy->getNumElements() == ResElts) {
1871 for (unsigned j = 0; j != CurIdx; ++j) {
1872 // If the current vector initializer is a shuffle with undef, merge
1873 // this shuffle directly into it.
1874 if (VIsUndefShuffle) {
1875 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1876 CGF.Int32Ty));
1877 } else {
1878 Args.push_back(Builder.getInt32(j));
1879 }
1880 }
1881 for (unsigned j = 0, je = InitElts; j != je; ++j)
1882 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1883 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1884
1885 if (VIsUndefShuffle)
1886 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1887
1888 Init = SVOp;
1889 }
1890 }
1891
1892 // Extend init to result vector length, and then shuffle its contribution
1893 // to the vector initializer into V.
1894 if (Args.empty()) {
1895 for (unsigned j = 0; j != InitElts; ++j)
1896 Args.push_back(Builder.getInt32(j));
1897 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1898 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1899 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1900 Mask, "vext");
1901
1902 Args.clear();
1903 for (unsigned j = 0; j != CurIdx; ++j)
1904 Args.push_back(Builder.getInt32(j));
1905 for (unsigned j = 0; j != InitElts; ++j)
1906 Args.push_back(Builder.getInt32(j+Offset));
1907 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1908 }
1909
1910 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1911 // merging subsequent shuffles into this one.
1912 if (CurIdx == 0)
1913 std::swap(V, Init);
1914 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1915 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1916 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1917 CurIdx += InitElts;
1918 }
1919
1920 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1921 // Emit remaining default initializers.
1922 llvm::Type *EltTy = VType->getElementType();
1923
1924 // Emit remaining default initializers
1925 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1926 Value *Idx = Builder.getInt32(CurIdx);
1927 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1928 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1929 }
1930 return V;
1931}
1932
1933bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1934 const Expr *E = CE->getSubExpr();
1935
1936 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1937 return false;
1938
1939 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1940 // We always assume that 'this' is never null.
1941 return false;
1942 }
1943
1944 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1945 // And that glvalue casts are never null.
1946 if (ICE->getValueKind() != VK_RValue)
1947 return false;
1948 }
1949
1950 return true;
1951}
1952
1953// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1954// have to handle a more broad range of conversions than explicit casts, as they
1955// handle things like function to ptr-to-function decay etc.
1956Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1957 Expr *E = CE->getSubExpr();
1958 QualType DestTy = CE->getType();
1959 CastKind Kind = CE->getCastKind();
1960
1961 // These cases are generally not written to ignore the result of
1962 // evaluating their sub-expressions, so we clear this now.
1963 bool Ignored = TestAndClearIgnoreResultAssign();
1964
1965 // Since almost all cast kinds apply to scalars, this switch doesn't have
1966 // a default case, so the compiler will warn on a missing case. The cases
1967 // are in the same order as in the CastKind enum.
1968 switch (Kind) {
1969 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!")::llvm::llvm_unreachable_internal("dependent cast kind in IR gen!"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1969)
;
1970 case CK_BuiltinFnToFnPtr:
1971 llvm_unreachable("builtin functions are handled elsewhere")::llvm::llvm_unreachable_internal("builtin functions are handled elsewhere"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 1971)
;
1972
1973 case CK_LValueBitCast:
1974 case CK_ObjCObjectLValueCast: {
1975 Address Addr = EmitLValue(E).getAddress();
1976 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1977 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1978 return EmitLoadOfLValue(LV, CE->getExprLoc());
1979 }
1980
1981 case CK_LValueToRValueBitCast: {
1982 LValue SourceLVal = CGF.EmitLValue(E);
1983 Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(),
1984 CGF.ConvertTypeForMem(DestTy));
1985 LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
1986 DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
1987 return EmitLoadOfLValue(DestLV, CE->getExprLoc());
1988 }
1989
1990 case CK_CPointerToObjCPointerCast:
1991 case CK_BlockPointerToObjCPointerCast:
1992 case CK_AnyPointerToBlockPointerCast:
1993 case CK_BitCast: {
1994 Value *Src = Visit(const_cast<Expr*>(E));
1995 llvm::Type *SrcTy = Src->getType();
1996 llvm::Type *DstTy = ConvertType(DestTy);
1997 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1998 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1999 llvm_unreachable("wrong cast for pointers in different address spaces"::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2000)
2000 "(must be an address space cast)!")::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2000)
;
2001 }
2002
2003 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2004 if (auto PT = DestTy->getAs<PointerType>())
2005 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2006 /*MayBeNull=*/true,
2007 CodeGenFunction::CFITCK_UnrelatedCast,
2008 CE->getBeginLoc());
2009 }
2010
2011 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2012 const QualType SrcType = E->getType();
2013
2014 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2015 // Casting to pointer that could carry dynamic information (provided by
2016 // invariant.group) requires launder.
2017 Src = Builder.CreateLaunderInvariantGroup(Src);
2018 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2019 // Casting to pointer that does not carry dynamic information (provided
2020 // by invariant.group) requires stripping it. Note that we don't do it
2021 // if the source could not be dynamic type and destination could be
2022 // dynamic because dynamic information is already laundered. It is
2023 // because launder(strip(src)) == launder(src), so there is no need to
2024 // add extra strip before launder.
2025 Src = Builder.CreateStripInvariantGroup(Src);
2026 }
2027 }
2028
2029 // Update heapallocsite metadata when there is an explicit cast.
2030 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2031 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2032 CGF.getDebugInfo()->
2033 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2034
2035 return Builder.CreateBitCast(Src, DstTy);
2036 }
2037 case CK_AddressSpaceConversion: {
2038 Expr::EvalResult Result;
2039 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2040 Result.Val.isNullPointer()) {
2041 // If E has side effect, it is emitted even if its final result is a
2042 // null pointer. In that case, a DCE pass should be able to
2043 // eliminate the useless instructions emitted during translating E.
2044 if (Result.HasSideEffects)
2045 Visit(E);
2046 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2047 ConvertType(DestTy)), DestTy);
2048 }
2049 // Since target may map different address spaces in AST to the same address
2050 // space, an address space conversion may end up as a bitcast.
2051 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2052 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2053 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2054 }
2055 case CK_AtomicToNonAtomic:
2056 case CK_NonAtomicToAtomic:
2057 case CK_NoOp:
2058 case CK_UserDefinedConversion:
2059 return Visit(const_cast<Expr*>(E));
2060
2061 case CK_BaseToDerived: {
2062 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2063 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!")((DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"
) ? static_cast<void> (0) : __assert_fail ("DerivedClassDecl && \"BaseToDerived arg isn't a C++ object pointer!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2063, __PRETTY_FUNCTION__))
;
2064
2065 Address Base = CGF.EmitPointerWithAlignment(E);
2066 Address Derived =
2067 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2068 CE->path_begin(), CE->path_end(),
2069 CGF.ShouldNullCheckClassCastValue(CE));
2070
2071 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2072 // performed and the object is not of the derived type.
2073 if (CGF.sanitizePerformTypeCheck())
2074 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2075 Derived.getPointer(), DestTy->getPointeeType());
2076
2077 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2078 CGF.EmitVTablePtrCheckForCast(
2079 DestTy->getPointeeType(), Derived.getPointer(),
2080 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2081 CE->getBeginLoc());
2082
2083 return Derived.getPointer();
2084 }
2085 case CK_UncheckedDerivedToBase:
2086 case CK_DerivedToBase: {
2087 // The EmitPointerWithAlignment path does this fine; just discard
2088 // the alignment.
2089 return CGF.EmitPointerWithAlignment(CE).getPointer();
2090 }
2091
2092 case CK_Dynamic: {
2093 Address V = CGF.EmitPointerWithAlignment(E);
2094 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2095 return CGF.EmitDynamicCast(V, DCE);
2096 }
2097
2098 case CK_ArrayToPointerDecay:
2099 return CGF.EmitArrayToPointerDecay(E).getPointer();
2100 case CK_FunctionToPointerDecay:
2101 return EmitLValue(E).getPointer();
2102
2103 case CK_NullToPointer:
2104 if (MustVisitNullValue(E))
2105 CGF.EmitIgnoredExpr(E);
2106
2107 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2108 DestTy);
2109
2110 case CK_NullToMemberPointer: {
2111 if (MustVisitNullValue(E))
2112 CGF.EmitIgnoredExpr(E);
2113
2114 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2115 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2116 }
2117
2118 case CK_ReinterpretMemberPointer:
2119 case CK_BaseToDerivedMemberPointer:
2120 case CK_DerivedToBaseMemberPointer: {
2121 Value *Src = Visit(E);
2122
2123 // Note that the AST doesn't distinguish between checked and
2124 // unchecked member pointer conversions, so we always have to
2125 // implement checked conversions here. This is inefficient when
2126 // actual control flow may be required in order to perform the
2127 // check, which it is for data member pointers (but not member
2128 // function pointers on Itanium and ARM).
2129 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2130 }
2131
2132 case CK_ARCProduceObject:
2133 return CGF.EmitARCRetainScalarExpr(E);
2134 case CK_ARCConsumeObject:
2135 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2136 case CK_ARCReclaimReturnedObject:
2137 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2138 case CK_ARCExtendBlockObject:
2139 return CGF.EmitARCExtendBlockObject(E);
2140
2141 case CK_CopyAndAutoreleaseBlockObject:
2142 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2143
2144 case CK_FloatingRealToComplex:
2145 case CK_FloatingComplexCast:
2146 case CK_IntegralRealToComplex:
2147 case CK_IntegralComplexCast:
2148 case CK_IntegralComplexToFloatingComplex:
2149 case CK_FloatingComplexToIntegralComplex:
2150 case CK_ConstructorConversion:
2151 case CK_ToUnion:
2152 llvm_unreachable("scalar cast to non-scalar value")::llvm::llvm_unreachable_internal("scalar cast to non-scalar value"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2152)
;
2153
2154 case CK_LValueToRValue:
2155 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy))((CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy
)) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2155, __PRETTY_FUNCTION__))
;
2156 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!")((E->isGLValue() && "lvalue-to-rvalue applied to r-value!"
) ? static_cast<void> (0) : __assert_fail ("E->isGLValue() && \"lvalue-to-rvalue applied to r-value!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2156, __PRETTY_FUNCTION__))
;
2157 return Visit(const_cast<Expr*>(E));
2158
2159 case CK_IntegralToPointer: {
2160 Value *Src = Visit(const_cast<Expr*>(E));
2161
2162 // First, convert to the correct width so that we control the kind of
2163 // extension.
2164 auto DestLLVMTy = ConvertType(DestTy);
2165 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2166 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2167 llvm::Value* IntResult =
2168 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2169
2170 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2171
2172 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2173 // Going from integer to pointer that could be dynamic requires reloading
2174 // dynamic information from invariant.group.
2175 if (DestTy.mayBeDynamicClass())
2176 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2177 }
2178 return IntToPtr;
2179 }
2180 case CK_PointerToIntegral: {
2181 assert(!DestTy->isBooleanType() && "bool should use PointerToBool")((!DestTy->isBooleanType() && "bool should use PointerToBool"
) ? static_cast<void> (0) : __assert_fail ("!DestTy->isBooleanType() && \"bool should use PointerToBool\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2181, __PRETTY_FUNCTION__))
;
2182 auto *PtrExpr = Visit(E);
2183
2184 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2185 const QualType SrcType = E->getType();
2186
2187 // Casting to integer requires stripping dynamic information as it does
2188 // not carries it.
2189 if (SrcType.mayBeDynamicClass())
2190 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2191 }
2192
2193 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2194 }
2195 case CK_ToVoid: {
2196 CGF.EmitIgnoredExpr(E);
2197 return nullptr;
2198 }
2199 case CK_VectorSplat: {
2200 llvm::Type *DstTy = ConvertType(DestTy);
2201 Value *Elt = Visit(const_cast<Expr*>(E));
2202 // Splat the element across to all elements
2203 unsigned NumElements = DstTy->getVectorNumElements();
2204 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2205 }
2206
2207 case CK_FixedPointCast:
2208 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2209 CE->getExprLoc());
2210
2211 case CK_FixedPointToBoolean:
2212 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2213, __PRETTY_FUNCTION__))
2213 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2213, __PRETTY_FUNCTION__))
;
2214 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type")((DestTy->isBooleanType() && "Expected dest type to be boolean type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isBooleanType() && \"Expected dest type to be boolean type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2214, __PRETTY_FUNCTION__))
;
2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2216 CE->getExprLoc());
2217
2218 case CK_FixedPointToIntegral:
2219 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2220, __PRETTY_FUNCTION__))
2220 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2220, __PRETTY_FUNCTION__))
;
2221 assert(DestTy->isIntegerType() && "Expected dest type to be an integer")((DestTy->isIntegerType() && "Expected dest type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isIntegerType() && \"Expected dest type to be an integer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2221, __PRETTY_FUNCTION__))
;
2222 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2223 CE->getExprLoc());
2224
2225 case CK_IntegralToFixedPoint:
2226 assert(E->getType()->isIntegerType() &&((E->getType()->isIntegerType() && "Expected src type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isIntegerType() && \"Expected src type to be an integer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2227, __PRETTY_FUNCTION__))
2227 "Expected src type to be an integer")((E->getType()->isIntegerType() && "Expected src type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isIntegerType() && \"Expected src type to be an integer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2227, __PRETTY_FUNCTION__))
;
2228 assert(DestTy->isFixedPointType() &&((DestTy->isFixedPointType() && "Expected dest type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isFixedPointType() && \"Expected dest type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2229, __PRETTY_FUNCTION__))
2229 "Expected dest type to be fixed point type")((DestTy->isFixedPointType() && "Expected dest type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isFixedPointType() && \"Expected dest type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2229, __PRETTY_FUNCTION__))
;
2230 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2231 CE->getExprLoc());
2232
2233 case CK_IntegralCast: {
2234 ScalarConversionOpts Opts;
2235 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2236 if (!ICE->isPartOfExplicitCast())
2237 Opts = ScalarConversionOpts(CGF.SanOpts);
2238 }
2239 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2240 CE->getExprLoc(), Opts);
2241 }
2242 case CK_IntegralToFloating:
2243 case CK_FloatingToIntegral:
2244 case CK_FloatingCast:
2245 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2246 CE->getExprLoc());
2247 case CK_BooleanToSignedIntegral: {
2248 ScalarConversionOpts Opts;
2249 Opts.TreatBooleanAsSigned = true;
2250 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2251 CE->getExprLoc(), Opts);
2252 }
2253 case CK_IntegralToBoolean:
2254 return EmitIntToBoolConversion(Visit(E));
2255 case CK_PointerToBoolean:
2256 return EmitPointerToBoolConversion(Visit(E), E->getType());
2257 case CK_FloatingToBoolean:
2258 return EmitFloatToBoolConversion(Visit(E));
2259 case CK_MemberPointerToBoolean: {
2260 llvm::Value *MemPtr = Visit(E);
2261 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2262 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2263 }
2264
2265 case CK_FloatingComplexToReal:
2266 case CK_IntegralComplexToReal:
2267 return CGF.EmitComplexExpr(E, false, true).first;
2268
2269 case CK_FloatingComplexToBoolean:
2270 case CK_IntegralComplexToBoolean: {
2271 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2272
2273 // TODO: kill this function off, inline appropriate case here
2274 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2275 CE->getExprLoc());
2276 }
2277
2278 case CK_ZeroToOCLOpaqueType: {
2279 assert((DestTy->isEventT() || DestTy->isQueueT() ||(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2281, __PRETTY_FUNCTION__))
2280 DestTy->isOCLIntelSubgroupAVCType()) &&(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2281, __PRETTY_FUNCTION__))
2281 "CK_ZeroToOCLEvent cast on non-event type")(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2281, __PRETTY_FUNCTION__))
;
2282 return llvm::Constant::getNullValue(ConvertType(DestTy));
2283 }
2284
2285 case CK_IntToOCLSampler:
2286 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2287
2288 } // end of switch
2289
2290 llvm_unreachable("unknown scalar cast")::llvm::llvm_unreachable_internal("unknown scalar cast", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2290)
;
2291}
2292
2293Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2294 CodeGenFunction::StmtExprEvaluation eval(CGF);
2295 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2296 !E->getType()->isVoidType());
2297 if (!RetAlloca.isValid())
2298 return nullptr;
2299 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2300 E->getExprLoc());
2301}
2302
2303Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2304 CGF.enterFullExpression(E);
2305 CodeGenFunction::RunCleanupsScope Scope(CGF);
2306 Value *V = Visit(E->getSubExpr());
2307 // Defend against dominance problems caused by jumps out of expression
2308 // evaluation through the shared cleanup block.
2309 Scope.ForceCleanup({&V});
2310 return V;
2311}
2312
2313//===----------------------------------------------------------------------===//
2314// Unary Operators
2315//===----------------------------------------------------------------------===//
2316
2317static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2318 llvm::Value *InVal, bool IsInc) {
2319 BinOpInfo BinOp;
2320 BinOp.LHS = InVal;
2321 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2322 BinOp.Ty = E->getType();
2323 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2324 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2325 BinOp.E = E;
2326 return BinOp;
2327}
2328
2329llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2330 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2331 llvm::Value *Amount =
2332 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2333 StringRef Name = IsInc ? "inc" : "dec";
2334 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2335 case LangOptions::SOB_Defined:
2336 return Builder.CreateAdd(InVal, Amount, Name);
2337 case LangOptions::SOB_Undefined:
2338 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2339 return Builder.CreateNSWAdd(InVal, Amount, Name);
2340 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2341 case LangOptions::SOB_Trapping:
2342 if (!E->canOverflow())
2343 return Builder.CreateNSWAdd(InVal, Amount, Name);
2344 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2345 }
2346 llvm_unreachable("Unknown SignedOverflowBehaviorTy")::llvm::llvm_unreachable_internal("Unknown SignedOverflowBehaviorTy"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2346)
;
2347}
2348
2349llvm::Value *
2350ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2351 bool isInc, bool isPre) {
2352
2353 QualType type = E->getSubExpr()->getType();
2354 llvm::PHINode *atomicPHI = nullptr;
2355 llvm::Value *value;
2356 llvm::Value *input;
2357
2358 int amount = (isInc ? 1 : -1);
2359 bool isSubtraction = !isInc;
2360
2361 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2362 type = atomicTy->getValueType();
2363 if (isInc && type->isBooleanType()) {
2364 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2365 if (isPre) {
2366 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2367 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2368 return Builder.getTrue();
2369 }
2370 // For atomic bool increment, we just store true and return it for
2371 // preincrement, do an atomic swap with true for postincrement
2372 return Builder.CreateAtomicRMW(
2373 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2374 llvm::AtomicOrdering::SequentiallyConsistent);
2375 }
2376 // Special case for atomic increment / decrement on integers, emit
2377 // atomicrmw instructions. We skip this if we want to be doing overflow
2378 // checking, and fall into the slow path with the atomic cmpxchg loop.
2379 if (!type->isBooleanType() && type->isIntegerType() &&
2380 !(type->isUnsignedIntegerType() &&
2381 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2382 CGF.getLangOpts().getSignedOverflowBehavior() !=
2383 LangOptions::SOB_Trapping) {
2384 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2385 llvm::AtomicRMWInst::Sub;
2386 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2387 llvm::Instruction::Sub;
2388 llvm::Value *amt = CGF.EmitToMemory(
2389 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2390 llvm::Value *old = Builder.CreateAtomicRMW(aop,
2391 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2392 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2393 }
2394 value = EmitLoadOfLValue(LV, E->getExprLoc());
2395 input = value;
2396 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2397 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2398 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2399 value = CGF.EmitToMemory(value, type);
2400 Builder.CreateBr(opBB);
2401 Builder.SetInsertPoint(opBB);
2402 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2403 atomicPHI->addIncoming(value, startBB);
2404 value = atomicPHI;
2405 } else {
2406 value = EmitLoadOfLValue(LV, E->getExprLoc());
2407 input = value;
2408 }
2409
2410 // Special case of integer increment that we have to check first: bool++.
2411 // Due to promotion rules, we get:
2412 // bool++ -> bool = bool + 1
2413 // -> bool = (int)bool + 1
2414 // -> bool = ((int)bool + 1 != 0)
2415 // An interesting aspect of this is that increment is always true.
2416 // Decrement does not have this property.
2417 if (isInc && type->isBooleanType()) {
2418 value = Builder.getTrue();
2419
2420 // Most common case by far: integer increment.
2421 } else if (type->isIntegerType()) {
2422 // Note that signed integer inc/dec with width less than int can't
2423 // overflow because of promotion rules; we're just eliding a few steps here.
2424 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2425 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2426 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2427 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2428 value =
2429 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2430 } else {
2431 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2432 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2433 }
2434
2435 // Next most common: pointer increment.
2436 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2437 QualType type = ptr->getPointeeType();
2438
2439 // VLA types don't have constant size.
2440 if (const VariableArrayType *vla
2441 = CGF.getContext().getAsVariableArrayType(type)) {
2442 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2443 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2444 if (CGF.getLangOpts().isSignedOverflowDefined())
2445 value = Builder.CreateGEP(value, numElts, "vla.inc");
2446 else
2447 value = CGF.EmitCheckedInBoundsGEP(
2448 value, numElts, /*SignedIndices=*/false, isSubtraction,
2449 E->getExprLoc(), "vla.inc");
2450
2451 // Arithmetic on function pointers (!) is just +-1.
2452 } else if (type->isFunctionType()) {
2453 llvm::Value *amt = Builder.getInt32(amount);
2454
2455 value = CGF.EmitCastToVoidPtr(value);
2456 if (CGF.getLangOpts().isSignedOverflowDefined())
2457 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2458 else
2459 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2460 isSubtraction, E->getExprLoc(),
2461 "incdec.funcptr");
2462 value = Builder.CreateBitCast(value, input->getType());
2463
2464 // For everything else, we can just do a simple increment.
2465 } else {
2466 llvm::Value *amt = Builder.getInt32(amount);
2467 if (CGF.getLangOpts().isSignedOverflowDefined())
2468 value = Builder.CreateGEP(value, amt, "incdec.ptr");
2469 else
2470 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2471 isSubtraction, E->getExprLoc(),
2472 "incdec.ptr");
2473 }
2474
2475 // Vector increment/decrement.
2476 } else if (type->isVectorType()) {
2477 if (type->hasIntegerRepresentation()) {
2478 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2479
2480 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2481 } else {
2482 value = Builder.CreateFAdd(
2483 value,
2484 llvm::ConstantFP::get(value->getType(), amount),
2485 isInc ? "inc" : "dec");
2486 }
2487
2488 // Floating point.
2489 } else if (type->isRealFloatingType()) {
2490 // Add the inc/dec to the real part.
2491 llvm::Value *amt;
2492
2493 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2494 // Another special case: half FP increment should be done via float
2495 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2496 value = Builder.CreateCall(
2497 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2498 CGF.CGM.FloatTy),
2499 input, "incdec.conv");
2500 } else {
2501 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2502 }
2503 }
2504
2505 if (value->getType()->isFloatTy())
2506 amt = llvm::ConstantFP::get(VMContext,
2507 llvm::APFloat(static_cast<float>(amount)));
2508 else if (value->getType()->isDoubleTy())
2509 amt = llvm::ConstantFP::get(VMContext,
2510 llvm::APFloat(static_cast<double>(amount)));
2511 else {
2512 // Remaining types are Half, LongDouble or __float128. Convert from float.
2513 llvm::APFloat F(static_cast<float>(amount));
2514 bool ignored;
2515 const llvm::fltSemantics *FS;
2516 // Don't use getFloatTypeSemantics because Half isn't
2517 // necessarily represented using the "half" LLVM type.
2518 if (value->getType()->isFP128Ty())
2519 FS = &CGF.getTarget().getFloat128Format();
2520 else if (value->getType()->isHalfTy())
2521 FS = &CGF.getTarget().getHalfFormat();
2522 else
2523 FS = &CGF.getTarget().getLongDoubleFormat();
2524 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2525 amt = llvm::ConstantFP::get(VMContext, F);
2526 }
2527 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2528
2529 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2530 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2531 value = Builder.CreateCall(
2532 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2533 CGF.CGM.FloatTy),
2534 value, "incdec.conv");
2535 } else {
2536 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2537 }
2538 }
2539
2540 // Objective-C pointer types.
2541 } else {
2542 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2543 value = CGF.EmitCastToVoidPtr(value);
2544
2545 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2546 if (!isInc) size = -size;
2547 llvm::Value *sizeValue =
2548 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2549
2550 if (CGF.getLangOpts().isSignedOverflowDefined())
2551 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2552 else
2553 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2554 /*SignedIndices=*/false, isSubtraction,
2555 E->getExprLoc(), "incdec.objptr");
2556 value = Builder.CreateBitCast(value, input->getType());
2557 }
2558
2559 if (atomicPHI) {
2560 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2561 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2562 auto Pair = CGF.EmitAtomicCompareExchange(
2563 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2564 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2565 llvm::Value *success = Pair.second;
2566 atomicPHI->addIncoming(old, curBlock);
2567 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2568 Builder.SetInsertPoint(contBB);
2569 return isPre ? value : input;
2570 }
2571
2572 // Store the updated result through the lvalue.
2573 if (LV.isBitField())
2574 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2575 else
2576 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2577
2578 // If this is a postinc, return the value read from memory, otherwise use the
2579 // updated value.
2580 return isPre ? value : input;
2581}
2582
2583
2584
2585Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2586 TestAndClearIgnoreResultAssign();
2587 Value *Op = Visit(E->getSubExpr());
2588
2589 // Generate a unary FNeg for FP ops.
2590 if (Op->getType()->isFPOrFPVectorTy())
2591 return Builder.CreateFNeg(Op, "fneg");
2592
2593 // Emit unary minus with EmitSub so we handle overflow cases etc.
2594 BinOpInfo BinOp;
2595 BinOp.RHS = Op;
2596 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2597 BinOp.Ty = E->getType();
2598 BinOp.Opcode = BO_Sub;
2599 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2600 BinOp.E = E;
2601 return EmitSub(BinOp);
2602}
2603
2604Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2605 TestAndClearIgnoreResultAssign();
2606 Value *Op = Visit(E->getSubExpr());
2607 return Builder.CreateNot(Op, "neg");
2608}
2609
2610Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2611 // Perform vector logical not on comparison with zero vector.
2612 if (E->getType()->isExtVectorType()) {
2613 Value *Oper = Visit(E->getSubExpr());
2614 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2615 Value *Result;
2616 if (Oper->getType()->isFPOrFPVectorTy())
2617 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2618 else
2619 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2620 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2621 }
2622
2623 // Compare operand to zero.
2624 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2625
2626 // Invert value.
2627 // TODO: Could dynamically modify easy computations here. For example, if
2628 // the operand is an icmp ne, turn into icmp eq.
2629 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2630
2631 // ZExt result to the expr type.
2632 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2633}
2634
2635Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2636 // Try folding the offsetof to a constant.
2637 Expr::EvalResult EVResult;
2638 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2639 llvm::APSInt Value = EVResult.Val.getInt();
2640 return Builder.getInt(Value);
2641 }
2642
2643 // Loop over the components of the offsetof to compute the value.
2644 unsigned n = E->getNumComponents();
2645 llvm::Type* ResultType = ConvertType(E->getType());
2646 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2647 QualType CurrentType = E->getTypeSourceInfo()->getType();
2648 for (unsigned i = 0; i != n; ++i) {
2649 OffsetOfNode ON = E->getComponent(i);
2650 llvm::Value *Offset = nullptr;
2651 switch (ON.getKind()) {
2652 case OffsetOfNode::Array: {
2653 // Compute the index
2654 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2655 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2656 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2657 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2658
2659 // Save the element type
2660 CurrentType =
2661 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2662
2663 // Compute the element size
2664 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2665 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2666
2667 // Multiply out to compute the result
2668 Offset = Builder.CreateMul(Idx, ElemSize);
2669 break;
2670 }
2671
2672 case OffsetOfNode::Field: {
2673 FieldDecl *MemberDecl = ON.getField();
2674 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2675 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2676
2677 // Compute the index of the field in its parent.
2678 unsigned i = 0;
2679 // FIXME: It would be nice if we didn't have to loop here!
2680 for (RecordDecl::field_iterator Field = RD->field_begin(),
2681 FieldEnd = RD->field_end();
2682 Field != FieldEnd; ++Field, ++i) {
2683 if (*Field == MemberDecl)
2684 break;
2685 }
2686 assert(i < RL.getFieldCount() && "offsetof field in wrong type")((i < RL.getFieldCount() && "offsetof field in wrong type"
) ? static_cast<void> (0) : __assert_fail ("i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2686, __PRETTY_FUNCTION__))
;
2687
2688 // Compute the offset to the field
2689 int64_t OffsetInt = RL.getFieldOffset(i) /
2690 CGF.getContext().getCharWidth();
2691 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2692
2693 // Save the element type.
2694 CurrentType = MemberDecl->getType();
2695 break;
2696 }
2697
2698 case OffsetOfNode::Identifier:
2699 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2699)
;
2700
2701 case OffsetOfNode::Base: {
2702 if (ON.getBase()->isVirtual()) {
2703 CGF.ErrorUnsupported(E, "virtual base in offsetof");
2704 continue;
2705 }
2706
2707 RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
2708 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2709
2710 // Save the element type.
2711 CurrentType = ON.getBase()->getType();
2712
2713 // Compute the offset to the base.
2714 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2715 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2716 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2717 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2718 break;
2719 }
2720 }
2721 Result = Builder.CreateAdd(Result, Offset);
2722 }
2723 return Result;
2724}
2725
2726/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2727/// argument of the sizeof expression as an integer.
2728Value *
2729ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2730 const UnaryExprOrTypeTraitExpr *E) {
2731 QualType TypeToSize = E->getTypeOfArgument();
2732 if (E->getKind() == UETT_SizeOf) {
2733 if (const VariableArrayType *VAT =
2734 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2735 if (E->isArgumentType()) {
2736 // sizeof(type) - make sure to emit the VLA size.
2737 CGF.EmitVariablyModifiedType(TypeToSize);
2738 } else {
2739 // C99 6.5.3.4p2: If the argument is an expression of type
2740 // VLA, it is evaluated.
2741 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2742 }
2743
2744 auto VlaSize = CGF.getVLASize(VAT);
2745 llvm::Value *size = VlaSize.NumElts;
2746
2747 // Scale the number of non-VLA elements by the non-VLA element size.
2748 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2749 if (!eltSize.isOne())
2750 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2751
2752 return size;
2753 }
2754 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2755 auto Alignment =
2756 CGF.getContext()
2757 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2758 E->getTypeOfArgument()->getPointeeType()))
2759 .getQuantity();
2760 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2761 }
2762
2763 // If this isn't sizeof(vla), the result must be constant; use the constant
2764 // folding logic so we don't have to duplicate it here.
2765 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2766}
2767
2768Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2769 Expr *Op = E->getSubExpr();
2770 if (Op->getType()->isAnyComplexType()) {
2771 // If it's an l-value, load through the appropriate subobject l-value.
2772 // Note that we have to ask E because Op might be an l-value that
2773 // this won't work for, e.g. an Obj-C property.
2774 if (E->isGLValue())
2775 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2776 E->getExprLoc()).getScalarVal();
2777
2778 // Otherwise, calculate and project.
2779 return CGF.EmitComplexExpr(Op, false, true).first;
2780 }
2781
2782 return Visit(Op);
2783}
2784
2785Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2786 Expr *Op = E->getSubExpr();
2787 if (Op->getType()->isAnyComplexType()) {
2788 // If it's an l-value, load through the appropriate subobject l-value.
2789 // Note that we have to ask E because Op might be an l-value that
2790 // this won't work for, e.g. an Obj-C property.
2791 if (Op->isGLValue())
2792 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2793 E->getExprLoc()).getScalarVal();
2794
2795 // Otherwise, calculate and project.
2796 return CGF.EmitComplexExpr(Op, true, false).second;
2797 }
2798
2799 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2800 // effects are evaluated, but not the actual value.
2801 if (Op->isGLValue())
2802 CGF.EmitLValue(Op);
2803 else
2804 CGF.EmitScalarExpr(Op, true);
2805 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2806}
2807
2808//===----------------------------------------------------------------------===//
2809// Binary Operators
2810//===----------------------------------------------------------------------===//
2811
2812BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2813 TestAndClearIgnoreResultAssign();
2814 BinOpInfo Result;
2815 Result.LHS = Visit(E->getLHS());
2816 Result.RHS = Visit(E->getRHS());
2817 Result.Ty = E->getType();
2818 Result.Opcode = E->getOpcode();
2819 Result.FPFeatures = E->getFPFeatures();
2820 Result.E = E;
2821 return Result;
2822}
2823
2824LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2825 const CompoundAssignOperator *E,
2826 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2827 Value *&Result) {
2828 QualType LHSTy = E->getLHS()->getType();
2829 BinOpInfo OpInfo;
2830
2831 if (E->getComputationResultType()->isAnyComplexType())
2832 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2833
2834 // Emit the RHS first. __block variables need to have the rhs evaluated
2835 // first, plus this should improve codegen a little.
2836 OpInfo.RHS = Visit(E->getRHS());
2837 OpInfo.Ty = E->getComputationResultType();
2838 OpInfo.Opcode = E->getOpcode();
2839 OpInfo.FPFeatures = E->getFPFeatures();
2840 OpInfo.E = E;
2841 // Load/convert the LHS.
2842 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2843
2844 llvm::PHINode *atomicPHI = nullptr;
2845 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2846 QualType type = atomicTy->getValueType();
2847 if (!type->isBooleanType() && type->isIntegerType() &&
2848 !(type->isUnsignedIntegerType() &&
2849 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2850 CGF.getLangOpts().getSignedOverflowBehavior() !=
2851 LangOptions::SOB_Trapping) {
2852 llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
2853 llvm::Instruction::BinaryOps Op;
2854 switch (OpInfo.Opcode) {
2855 // We don't have atomicrmw operands for *, %, /, <<, >>
2856 case BO_MulAssign: case BO_DivAssign:
2857 case BO_RemAssign:
2858 case BO_ShlAssign:
2859 case BO_ShrAssign:
2860 break;
2861 case BO_AddAssign:
2862 AtomicOp = llvm::AtomicRMWInst::Add;
2863 Op = llvm::Instruction::Add;
2864 break;
2865 case BO_SubAssign:
2866 AtomicOp = llvm::AtomicRMWInst::Sub;
2867 Op = llvm::Instruction::Sub;
2868 break;
2869 case BO_AndAssign:
2870 AtomicOp = llvm::AtomicRMWInst::And;
2871 Op = llvm::Instruction::And;
2872 break;
2873 case BO_XorAssign:
2874 AtomicOp = llvm::AtomicRMWInst::Xor;
2875 Op = llvm::Instruction::Xor;
2876 break;
2877 case BO_OrAssign:
2878 AtomicOp = llvm::AtomicRMWInst::Or;
2879 Op = llvm::Instruction::Or;
2880 break;
2881 default:
2882 llvm_unreachable("Invalid compound assignment type")::llvm::llvm_unreachable_internal("Invalid compound assignment type"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 2882)
;
2883 }
2884 if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
2885 llvm::Value *Amt = CGF.EmitToMemory(
2886 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2887 E->getExprLoc()),
2888 LHSTy);
2889 Value *OldVal = Builder.CreateAtomicRMW(
2890 AtomicOp, LHSLV.getPointer(), Amt,
2891 llvm::AtomicOrdering::SequentiallyConsistent);
2892
2893 // Since operation is atomic, the result type is guaranteed to be the
2894 // same as the input in LLVM terms.
2895 Result = Builder.CreateBinOp(Op, OldVal, Amt);
2896 return LHSLV;
2897 }
2898 }
2899 // FIXME: For floating point types, we should be saving and restoring the
2900 // floating point environment in the loop.
2901 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2902 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2903 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2904 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2905 Builder.CreateBr(opBB);
2906 Builder.SetInsertPoint(opBB);
2907 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2908 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2909 OpInfo.LHS = atomicPHI;
2910 }
2911 else
2912 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2913
2914 SourceLocation Loc = E->getExprLoc();
2915 OpInfo.LHS =
2916 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2917
2918 // Expand the binary operator.
2919 Result = (this->*Func)(OpInfo);
2920
2921 // Convert the result back to the LHS type,
2922 // potentially with Implicit Conversion sanitizer check.
2923 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2924 Loc, ScalarConversionOpts(CGF.SanOpts));
2925
2926 if (atomicPHI) {
2927 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2928 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2929 auto Pair = CGF.EmitAtomicCompareExchange(
2930 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2931 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2932 llvm::Value *success = Pair.second;
2933 atomicPHI->addIncoming(old, curBlock);
2934 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2935 Builder.SetInsertPoint(contBB);
2936 return LHSLV;
2937 }
2938
2939 // Store the result value into the LHS lvalue. Bit-fields are handled
2940 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2941 // 'An assignment expression has the value of the left operand after the
2942 // assignment...'.
2943 if (LHSLV.isBitField())
2944 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2945 else
2946 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2947
2948 return LHSLV;
2949}
2950
2951Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2952 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2953 bool Ignore = TestAndClearIgnoreResultAssign();
2954 Value *RHS = nullptr;
2955 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2956
2957 // If the result is clearly ignored, return now.
2958 if (Ignore)
2959 return nullptr;
2960
2961 // The result of an assignment in C is the assigned r-value.
2962 if (!CGF.getLangOpts().CPlusPlus)
2963 return RHS;
2964
2965 // If the lvalue is non-volatile, return the computed value of the assignment.
2966 if (!LHS.isVolatileQualified())
2967 return RHS;
2968
2969 // Otherwise, reload the value.
2970 return EmitLoadOfLValue(LHS, E->getExprLoc());
2971}
2972
2973void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2974 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2975 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2976
2977 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2978 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2979 SanitizerKind::IntegerDivideByZero));
2980 }
2981
2982 const auto *BO = cast<BinaryOperator>(Ops.E);
2983 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2984 Ops.Ty->hasSignedIntegerRepresentation() &&
2985 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2986 Ops.mayHaveIntegerOverflow()) {
2987 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2988
2989 llvm::Value *IntMin =
2990 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2991 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2992
2993 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2994 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2995 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2996 Checks.push_back(
2997 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2998 }
2999
3000 if (Checks.size() > 0)
3001 EmitBinOpCheck(Checks, Ops);
3002}
3003
3004Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3005 {
3006 CodeGenFunction::SanitizerScope SanScope(&CGF);
3007 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3008 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3009 Ops.Ty->isIntegerType() &&
3010 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3011 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3012 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3013 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3014 Ops.Ty->isRealFloatingType() &&
3015 Ops.mayHaveFloatDivisionByZero()) {
3016 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3017 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3018 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3019 Ops);
3020 }
3021 }
3022
3023 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3024 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3025 if (CGF.getLangOpts().OpenCL &&
3026 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3027 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3028 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3029 // build option allows an application to specify that single precision
3030 // floating-point divide (x/y and 1/x) and sqrt used in the program
3031 // source are correctly rounded.
3032 llvm::Type *ValTy = Val->getType();
3033 if (ValTy->isFloatTy() ||
3034 (isa<llvm::VectorType>(ValTy) &&
3035 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3036 CGF.SetFPAccuracy(Val, 2.5);
3037 }
3038 return Val;
3039 }
3040 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3041 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3042 else
3043 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3044}
3045
3046Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3047 // Rem in C can't be a floating point type: C99 6.5.5p2.
3048 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3049 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3050 Ops.Ty->isIntegerType() &&
3051 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3052 CodeGenFunction::SanitizerScope SanScope(&CGF);
3053 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3054 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3055 }
3056
3057 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3058 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3059 else
3060 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3061}
3062
3063Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3064 unsigned IID;
3065 unsigned OpID = 0;
3066
3067 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3068 switch (Ops.Opcode) {
3069 case BO_Add:
3070 case BO_AddAssign:
3071 OpID = 1;
3072 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3073 llvm::Intrinsic::uadd_with_overflow;
3074 break;
3075 case BO_Sub:
3076 case BO_SubAssign:
3077 OpID = 2;
3078 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3079 llvm::Intrinsic::usub_with_overflow;
3080 break;
3081 case BO_Mul:
3082 case BO_MulAssign:
3083 OpID = 3;
3084 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3085 llvm::Intrinsic::umul_with_overflow;
3086 break;
3087 default:
3088 llvm_unreachable("Unsupported operation for overflow detection")::llvm::llvm_unreachable_internal("Unsupported operation for overflow detection"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3088)
;
3089 }
3090 OpID <<= 1;
3091 if (isSigned)
3092 OpID |= 1;
3093
3094 CodeGenFunction::SanitizerScope SanScope(&CGF);
3095 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3096
3097 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3098
3099 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3100 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3101 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3102
3103 // Handle overflow with llvm.trap if no custom handler has been specified.
3104 const std::string *handlerName =
3105 &CGF.getLangOpts().OverflowHandler;
3106 if (handlerName->empty()) {
3107 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3108 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3109 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3110 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3111 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3112 : SanitizerKind::UnsignedIntegerOverflow;
3113 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3114 } else
3115 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3116 return result;
3117 }
3118
3119 // Branch in case of overflow.
3120 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3121 llvm::BasicBlock *continueBB =
3122 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3123 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3124
3125 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3126
3127 // If an overflow handler is set, then we want to call it and then use its
3128 // result, if it returns.
3129 Builder.SetInsertPoint(overflowBB);
3130
3131 // Get the overflow handler.
3132 llvm::Type *Int8Ty = CGF.Int8Ty;
3133 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3134 llvm::FunctionType *handlerTy =
3135 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3136 llvm::FunctionCallee handler =
3137 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3138
3139 // Sign extend the args to 64-bit, so that we can use the same handler for
3140 // all types of overflow.
3141 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3142 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3143
3144 // Call the handler with the two arguments, the operation, and the size of
3145 // the result.
3146 llvm::Value *handlerArgs[] = {
3147 lhs,
3148 rhs,
3149 Builder.getInt8(OpID),
3150 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3151 };
3152 llvm::Value *handlerResult =
3153 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3154
3155 // Truncate the result back to the desired size.
3156 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3157 Builder.CreateBr(continueBB);
3158
3159 Builder.SetInsertPoint(continueBB);
3160 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3161 phi->addIncoming(result, initialBB);
3162 phi->addIncoming(handlerResult, overflowBB);
3163
3164 return phi;
3165}
3166
3167/// Emit pointer + index arithmetic.
3168static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3169 const BinOpInfo &op,
3170 bool isSubtraction) {
3171 // Must have binary (not unary) expr here. Unary pointer
3172 // increment/decrement doesn't use this path.
3173 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3174
3175 Value *pointer = op.LHS;
3176 Expr *pointerOperand = expr->getLHS();
3177 Value *index = op.RHS;
3178 Expr *indexOperand = expr->getRHS();
3179
3180 // In a subtraction, the LHS is always the pointer.
3181 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3182 std::swap(pointer, index);
3183 std::swap(pointerOperand, indexOperand);
3184 }
3185
3186 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3187
3188 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3189 auto &DL = CGF.CGM.getDataLayout();
3190 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3191
3192 // Some versions of glibc and gcc use idioms (particularly in their malloc
3193 // routines) that add a pointer-sized integer (known to be a pointer value)
3194 // to a null pointer in order to cast the value back to an integer or as
3195 // part of a pointer alignment algorithm. This is undefined behavior, but
3196 // we'd like to be able to compile programs that use it.
3197 //
3198 // Normally, we'd generate a GEP with a null-pointer base here in response
3199 // to that code, but it's also UB to dereference a pointer created that
3200 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3201 // generate a direct cast of the integer value to a pointer.
3202 //
3203 // The idiom (p = nullptr + N) is not met if any of the following are true:
3204 //
3205 // The operation is subtraction.
3206 // The index is not pointer-sized.
3207 // The pointer type is not byte-sized.
3208 //
3209 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3210 op.Opcode,
3211 expr->getLHS(),
3212 expr->getRHS()))
3213 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3214
3215 if (width != DL.getTypeSizeInBits(PtrTy)) {
3216 // Zero-extend or sign-extend the pointer value according to
3217 // whether the index is signed or not.
3218 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3219 "idx.ext");
3220 }
3221
3222 // If this is subtraction, negate the index.
3223 if (isSubtraction)
3224 index = CGF.Builder.CreateNeg(index, "idx.neg");
3225
3226 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3227 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3228 /*Accessed*/ false);
3229
3230 const PointerType *pointerType
3231 = pointerOperand->getType()->getAs<PointerType>();
3232 if (!pointerType) {
3233 QualType objectType = pointerOperand->getType()
3234 ->castAs<ObjCObjectPointerType>()
3235 ->getPointeeType();
3236 llvm::Value *objectSize
3237 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3238
3239 index = CGF.Builder.CreateMul(index, objectSize);
3240
3241 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3242 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3243 return CGF.Builder.CreateBitCast(result, pointer->getType());
3244 }
3245
3246 QualType elementType = pointerType->getPointeeType();
3247 if (const VariableArrayType *vla
3248 = CGF.getContext().getAsVariableArrayType(elementType)) {
3249 // The element count here is the total number of non-VLA elements.
3250 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3251
3252 // Effectively, the multiply by the VLA size is part of the GEP.
3253 // GEP indexes are signed, and scaling an index isn't permitted to
3254 // signed-overflow, so we use the same semantics for our explicit
3255 // multiply. We suppress this if overflow is not undefined behavior.
3256 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3257 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3258 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3259 } else {
3260 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3261 pointer =
3262 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3263 op.E->getExprLoc(), "add.ptr");
3264 }
3265 return pointer;
3266 }
3267
3268 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3269 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3270 // future proof.
3271 if (elementType->isVoidType() || elementType->isFunctionType()) {
3272 Value *result = CGF.EmitCastToVoidPtr(pointer);
3273 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3274 return CGF.Builder.CreateBitCast(result, pointer->getType());
3275 }
3276
3277 if (CGF.getLangOpts().isSignedOverflowDefined())
3278 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3279
3280 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3281 op.E->getExprLoc(), "add.ptr");
3282}
3283
3284// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3285// Addend. Use negMul and negAdd to negate the first operand of the Mul or
3286// the add operand respectively. This allows fmuladd to represent a*b-c, or
3287// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3288// efficient operations.
3289static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3290 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3291 bool negMul, bool negAdd) {
3292 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.")((!(negMul && negAdd) && "Only one of negMul and negAdd should be set."
) ? static_cast<void> (0) : __assert_fail ("!(negMul && negAdd) && \"Only one of negMul and negAdd should be set.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3292, __PRETTY_FUNCTION__))
;
3293
3294 Value *MulOp0 = MulOp->getOperand(0);
3295 Value *MulOp1 = MulOp->getOperand(1);
3296 if (negMul) {
3297 MulOp0 =
3298 Builder.CreateFSub(
3299 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3300 "neg");
3301 } else if (negAdd) {
3302 Addend =
3303 Builder.CreateFSub(
3304 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3305 "neg");
3306 }
3307
3308 Value *FMulAdd = Builder.CreateCall(
3309 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3310 {MulOp0, MulOp1, Addend});
3311 MulOp->eraseFromParent();
3312
3313 return FMulAdd;
3314}
3315
3316// Check whether it would be legal to emit an fmuladd intrinsic call to
3317// represent op and if so, build the fmuladd.
3318//
3319// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3320// Does NOT check the type of the operation - it's assumed that this function
3321// will be called from contexts where it's known that the type is contractable.
3322static Value* tryEmitFMulAdd(const BinOpInfo &op,
3323 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3324 bool isSub=false) {
3325
3326 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3328, __PRETTY_FUNCTION__))
3327 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3328, __PRETTY_FUNCTION__))
3328 "Only fadd/fsub can be the root of an fmuladd.")(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3328, __PRETTY_FUNCTION__))
;
3329
3330 // Check whether this op is marked as fusable.
3331 if (!op.FPFeatures.allowFPContractWithinStatement())
3332 return nullptr;
3333
3334 // We have a potentially fusable op. Look for a mul on one of the operands.
3335 // Also, make sure that the mul result isn't used directly. In that case,
3336 // there's no point creating a muladd operation.
3337 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3338 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3339 LHSBinOp->use_empty())
3340 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3341 }
3342 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3343 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3344 RHSBinOp->use_empty())
3345 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3346 }
3347
3348 return nullptr;
3349}
3350
3351Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3352 if (op.LHS->getType()->isPointerTy() ||
3353 op.RHS->getType()->isPointerTy())
3354 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3355
3356 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3357 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3358 case LangOptions::SOB_Defined:
3359 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3360 case LangOptions::SOB_Undefined:
3361 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3362 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3363 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3364 case LangOptions::SOB_Trapping:
3365 if (CanElideOverflowCheck(CGF.getContext(), op))
3366 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3367 return EmitOverflowCheckedBinOp(op);
3368 }
3369 }
3370
3371 if (op.Ty->isUnsignedIntegerType() &&
3372 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3373 !CanElideOverflowCheck(CGF.getContext(), op))
3374 return EmitOverflowCheckedBinOp(op);
3375
3376 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3377 // Try to form an fmuladd.
3378 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3379 return FMulAdd;
3380
3381 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3382 return propagateFMFlags(V, op);
3383 }
3384
3385 if (op.isFixedPointBinOp())
3386 return EmitFixedPointBinOp(op);
3387
3388 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3389}
3390
3391/// The resulting value must be calculated with exact precision, so the operands
3392/// may not be the same type.
3393Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3394 using llvm::APSInt;
3395 using llvm::ConstantInt;
3396
3397 const auto *BinOp = cast<BinaryOperator>(op.E);
3398
3399 // The result is a fixed point type and at least one of the operands is fixed
3400 // point while the other is either fixed point or an int. This resulting type
3401 // should be determined by Sema::handleFixedPointConversions().
3402 QualType ResultTy = op.Ty;
3403 QualType LHSTy = BinOp->getLHS()->getType();
3404 QualType RHSTy = BinOp->getRHS()->getType();
3405 ASTContext &Ctx = CGF.getContext();
3406 Value *LHS = op.LHS;
3407 Value *RHS = op.RHS;
3408
3409 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3410 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3411 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3412 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3413
3414 // Convert the operands to the full precision type.
3415 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3416 BinOp->getExprLoc());
3417 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3418 BinOp->getExprLoc());
3419
3420 // Perform the actual addition.
3421 Value *Result;
3422 switch (BinOp->getOpcode()) {
3423 case BO_Add: {
3424 if (ResultFixedSema.isSaturated()) {
3425 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3426 ? llvm::Intrinsic::sadd_sat
3427 : llvm::Intrinsic::uadd_sat;
3428 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3429 } else {
3430 Result = Builder.CreateAdd(FullLHS, FullRHS);
3431 }
3432 break;
3433 }
3434 case BO_Sub: {
3435 if (ResultFixedSema.isSaturated()) {
3436 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3437 ? llvm::Intrinsic::ssub_sat
3438 : llvm::Intrinsic::usub_sat;
3439 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3440 } else {
3441 Result = Builder.CreateSub(FullLHS, FullRHS);
3442 }
3443 break;
3444 }
3445 case BO_LT:
3446 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3447 : Builder.CreateICmpULT(FullLHS, FullRHS);
3448 case BO_GT:
3449 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3450 : Builder.CreateICmpUGT(FullLHS, FullRHS);
3451 case BO_LE:
3452 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3453 : Builder.CreateICmpULE(FullLHS, FullRHS);
3454 case BO_GE:
3455 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3456 : Builder.CreateICmpUGE(FullLHS, FullRHS);
3457 case BO_EQ:
3458 // For equality operations, we assume any padding bits on unsigned types are
3459 // zero'd out. They could be overwritten through non-saturating operations
3460 // that cause overflow, but this leads to undefined behavior.
3461 return Builder.CreateICmpEQ(FullLHS, FullRHS);
3462 case BO_NE:
3463 return Builder.CreateICmpNE(FullLHS, FullRHS);
3464 case BO_Mul:
3465 case BO_Div:
3466 case BO_Shl:
3467 case BO_Shr:
3468 case BO_Cmp:
3469 case BO_LAnd:
3470 case BO_LOr:
3471 case BO_MulAssign:
3472 case BO_DivAssign:
3473 case BO_AddAssign:
3474 case BO_SubAssign:
3475 case BO_ShlAssign:
3476 case BO_ShrAssign:
3477 llvm_unreachable("Found unimplemented fixed point binary operation")::llvm::llvm_unreachable_internal("Found unimplemented fixed point binary operation"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3477)
;
3478 case BO_PtrMemD:
3479 case BO_PtrMemI:
3480 case BO_Rem:
3481 case BO_Xor:
3482 case BO_And:
3483 case BO_Or:
3484 case BO_Assign:
3485 case BO_RemAssign:
3486 case BO_AndAssign:
3487 case BO_XorAssign:
3488 case BO_OrAssign:
3489 case BO_Comma:
3490 llvm_unreachable("Found unsupported binary operation for fixed point types.")::llvm::llvm_unreachable_internal("Found unsupported binary operation for fixed point types."
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3490)
;
3491 }
3492
3493 // Convert to the result type.
3494 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3495 BinOp->getExprLoc());
3496}
3497
3498Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3499 // The LHS is always a pointer if either side is.
3500 if (!op.LHS->getType()->isPointerTy()) {
3501 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3502 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3503 case LangOptions::SOB_Defined:
3504 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3505 case LangOptions::SOB_Undefined:
3506 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3507 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3508 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3509 case LangOptions::SOB_Trapping:
3510 if (CanElideOverflowCheck(CGF.getContext(), op))
3511 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3512 return EmitOverflowCheckedBinOp(op);
3513 }
3514 }
3515
3516 if (op.Ty->isUnsignedIntegerType() &&
3517 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3518 !CanElideOverflowCheck(CGF.getContext(), op))
3519 return EmitOverflowCheckedBinOp(op);
3520
3521 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3522 // Try to form an fmuladd.
3523 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3524 return FMulAdd;
3525 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3526 return propagateFMFlags(V, op);
3527 }
3528
3529 if (op.isFixedPointBinOp())
3530 return EmitFixedPointBinOp(op);
3531
3532 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3533 }
3534
3535 // If the RHS is not a pointer, then we have normal pointer
3536 // arithmetic.
3537 if (!op.RHS->getType()->isPointerTy())
3538 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3539
3540 // Otherwise, this is a pointer subtraction.
3541
3542 // Do the raw subtraction part.
3543 llvm::Value *LHS
3544 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3545 llvm::Value *RHS
3546 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3547 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3548
3549 // Okay, figure out the element size.
3550 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3551 QualType elementType = expr->getLHS()->getType()->getPointeeType();
3552
3553 llvm::Value *divisor = nullptr;
3554
3555 // For a variable-length array, this is going to be non-constant.
3556 if (const VariableArrayType *vla
3557 = CGF.getContext().getAsVariableArrayType(elementType)) {
3558 auto VlaSize = CGF.getVLASize(vla);
3559 elementType = VlaSize.Type;
3560 divisor = VlaSize.NumElts;
3561
3562 // Scale the number of non-VLA elements by the non-VLA element size.
3563 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3564 if (!eltSize.isOne())
3565 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3566
3567 // For everything elese, we can just compute it, safe in the
3568 // assumption that Sema won't let anything through that we can't
3569 // safely compute the size of.
3570 } else {
3571 CharUnits elementSize;
3572 // Handle GCC extension for pointer arithmetic on void* and
3573 // function pointer types.
3574 if (elementType->isVoidType() || elementType->isFunctionType())
3575 elementSize = CharUnits::One();
3576 else
3577 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3578
3579 // Don't even emit the divide for element size of 1.
3580 if (elementSize.isOne())
3581 return diffInChars;
3582
3583 divisor = CGF.CGM.getSize(elementSize);
3584 }
3585
3586 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3587 // pointer difference in C is only defined in the case where both operands
3588 // are pointing to elements of an array.
3589 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3590}
3591
3592Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3593 llvm::IntegerType *Ty;
3594 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3595 Ty = cast<llvm::IntegerType>(VT->getElementType());
3596 else
3597 Ty = cast<llvm::IntegerType>(LHS->getType());
3598 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3599}
3600
3601Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3602 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3603 // RHS to the same size as the LHS.
3604 Value *RHS = Ops.RHS;
3605 if (Ops.LHS->getType() != RHS->getType())
3606 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3607
3608 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3609 Ops.Ty->hasSignedIntegerRepresentation() &&
3610 !CGF.getLangOpts().isSignedOverflowDefined() &&
3611 !CGF.getLangOpts().CPlusPlus2a;
3612 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3613 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3614 if (CGF.getLangOpts().OpenCL)
3615 RHS =
3616 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3617 else if ((SanitizeBase || SanitizeExponent) &&
3618 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3619 CodeGenFunction::SanitizerScope SanScope(&CGF);
3620 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3621 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3622 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3623
3624 if (SanitizeExponent) {
3625 Checks.push_back(
3626 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3627 }
3628
3629 if (SanitizeBase) {
3630 // Check whether we are shifting any non-zero bits off the top of the
3631 // integer. We only emit this check if exponent is valid - otherwise
3632 // instructions below will have undefined behavior themselves.
3633 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3634 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3635 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3636 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3637 llvm::Value *PromotedWidthMinusOne =
3638 (RHS == Ops.RHS) ? WidthMinusOne
3639 : GetWidthMinusOneValue(Ops.LHS, RHS);
3640 CGF.EmitBlock(CheckShiftBase);
3641 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3642 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3643 /*NUW*/ true, /*NSW*/ true),
3644 "shl.check");
3645 if (CGF.getLangOpts().CPlusPlus) {
3646 // In C99, we are not permitted to shift a 1 bit into the sign bit.
3647 // Under C++11's rules, shifting a 1 bit into the sign bit is
3648 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3649 // define signed left shifts, so we use the C99 and C++11 rules there).
3650 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3651 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3652 }
3653 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3654 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3655 CGF.EmitBlock(Cont);
3656 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3657 BaseCheck->addIncoming(Builder.getTrue(), Orig);
3658 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3659 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3660 }
3661
3662 assert(!Checks.empty())((!Checks.empty()) ? static_cast<void> (0) : __assert_fail
("!Checks.empty()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3662, __PRETTY_FUNCTION__))
;
3663 EmitBinOpCheck(Checks, Ops);
3664 }
3665
3666 return Builder.CreateShl(Ops.LHS, RHS, "shl");
3667}
3668
3669Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3670 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3671 // RHS to the same size as the LHS.
3672 Value *RHS = Ops.RHS;
3673 if (Ops.LHS->getType() != RHS->getType())
3674 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3675
3676 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3677 if (CGF.getLangOpts().OpenCL)
3678 RHS =
3679 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3680 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3681 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3682 CodeGenFunction::SanitizerScope SanScope(&CGF);
3683 llvm::Value *Valid =
3684 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3685 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3686 }
3687
3688 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3689 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3690 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3691}
3692
3693enum IntrinsicType { VCMPEQ, VCMPGT };
3694// return corresponding comparison intrinsic for given vector type
3695static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3696 BuiltinType::Kind ElemKind) {
3697 switch (ElemKind) {
3698 default: llvm_unreachable("unexpected element type")::llvm::llvm_unreachable_internal("unexpected element type", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3698)
;
3699 case BuiltinType::Char_U:
3700 case BuiltinType::UChar:
3701 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3702 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3703 case BuiltinType::Char_S:
3704 case BuiltinType::SChar:
3705 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3706 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3707 case BuiltinType::UShort:
3708 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3709 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3710 case BuiltinType::Short:
3711 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3712 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3713 case BuiltinType::UInt:
3714 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3715 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3716 case BuiltinType::Int:
3717 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3718 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3719 case BuiltinType::ULong:
3720 case BuiltinType::ULongLong:
3721 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3722 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3723 case BuiltinType::Long:
3724 case BuiltinType::LongLong:
3725 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3726 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3727 case BuiltinType::Float:
3728 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3729 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3730 case BuiltinType::Double:
3731 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3732 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3733 }
3734}
3735
3736Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3737 llvm::CmpInst::Predicate UICmpOpc,
3738 llvm::CmpInst::Predicate SICmpOpc,
3739 llvm::CmpInst::Predicate FCmpOpc) {
3740 TestAndClearIgnoreResultAssign();
3741 Value *Result;
3742 QualType LHSTy = E->getLHS()->getType();
3743 QualType RHSTy = E->getRHS()->getType();
3744 if (const MemberPointerType *MPT
2.1
'MPT' is null
2.1
'MPT' is null
= LHSTy->getAs<MemberPointerType>()) {
2
Assuming the object is not a 'MemberPointerType'
3
Taking false branch
3745 assert(E->getOpcode() == BO_EQ ||((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3746, __PRETTY_FUNCTION__))
3746 E->getOpcode() == BO_NE)((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3746, __PRETTY_FUNCTION__))
;
3747 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3748 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3749 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3750 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3751 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
4
Calling 'Type::isAnyComplexType'
7
Returning from 'Type::isAnyComplexType'
8
Calling 'Type::isAnyComplexType'
11
Returning from 'Type::isAnyComplexType'
12
Taking true branch
3752 BinOpInfo BOInfo = EmitBinOps(E);
3753 Value *LHS = BOInfo.LHS;
3754 Value *RHS = BOInfo.RHS;
3755
3756 // If AltiVec, the comparison results in a numeric type, so we use
3757 // intrinsics comparing vectors and giving 0 or 1 as a result
3758 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
13
Taking true branch
3759 // constants for mapping CR6 register bits to predicate result
3760 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3761
3762 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3763
3764 // in several cases vector arguments order will be reversed
3765 Value *FirstVecArg = LHS,
3766 *SecondVecArg = RHS;
3767
3768 QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
14
The object is a 'VectorType'
3769 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
15
Assuming the object is not a 'BuiltinType'
16
'BTy' initialized to a null pointer value
3770 BuiltinType::Kind ElementKind = BTy->getKind();
17
Called C++ object pointer is null
3771
3772 switch(E->getOpcode()) {
3773 default: llvm_unreachable("is not a comparison operation")::llvm::llvm_unreachable_internal("is not a comparison operation"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3773)
;
3774 case BO_EQ:
3775 CR6 = CR6_LT;
3776 ID = GetIntrinsic(VCMPEQ, ElementKind);
3777 break;
3778 case BO_NE:
3779 CR6 = CR6_EQ;
3780 ID = GetIntrinsic(VCMPEQ, ElementKind);
3781 break;
3782 case BO_LT:
3783 CR6 = CR6_LT;
3784 ID = GetIntrinsic(VCMPGT, ElementKind);
3785 std::swap(FirstVecArg, SecondVecArg);
3786 break;
3787 case BO_GT:
3788 CR6 = CR6_LT;
3789 ID = GetIntrinsic(VCMPGT, ElementKind);
3790 break;
3791 case BO_LE:
3792 if (ElementKind == BuiltinType::Float) {
3793 CR6 = CR6_LT;
3794 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3795 std::swap(FirstVecArg, SecondVecArg);
3796 }
3797 else {
3798 CR6 = CR6_EQ;
3799 ID = GetIntrinsic(VCMPGT, ElementKind);
3800 }
3801 break;
3802 case BO_GE:
3803 if (ElementKind == BuiltinType::Float) {
3804 CR6 = CR6_LT;
3805 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3806 }
3807 else {
3808 CR6 = CR6_EQ;
3809 ID = GetIntrinsic(VCMPGT, ElementKind);
3810 std::swap(FirstVecArg, SecondVecArg);
3811 }
3812 break;
3813 }
3814
3815 Value *CR6Param = Builder.getInt32(CR6);
3816 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3817 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3818
3819 // The result type of intrinsic may not be same as E->getType().
3820 // If E->getType() is not BoolTy, EmitScalarConversion will do the
3821 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3822 // do nothing, if ResultTy is not i1 at the same time, it will cause
3823 // crash later.
3824 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3825 if (ResultTy->getBitWidth() > 1 &&
3826 E->getType() == CGF.getContext().BoolTy)
3827 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3828 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3829 E->getExprLoc());
3830 }
3831
3832 if (BOInfo.isFixedPointBinOp()) {
3833 Result = EmitFixedPointBinOp(BOInfo);
3834 } else if (LHS->getType()->isFPOrFPVectorTy()) {
3835 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3836 } else if (LHSTy->hasSignedIntegerRepresentation()) {
3837 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3838 } else {
3839 // Unsigned integers and pointers.
3840
3841 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3842 !isa<llvm::ConstantPointerNull>(LHS) &&
3843 !isa<llvm::ConstantPointerNull>(RHS)) {
3844
3845 // Dynamic information is required to be stripped for comparisons,
3846 // because it could leak the dynamic information. Based on comparisons
3847 // of pointers to dynamic objects, the optimizer can replace one pointer
3848 // with another, which might be incorrect in presence of invariant
3849 // groups. Comparison with null is safe because null does not carry any
3850 // dynamic information.
3851 if (LHSTy.mayBeDynamicClass())
3852 LHS = Builder.CreateStripInvariantGroup(LHS);
3853 if (RHSTy.mayBeDynamicClass())
3854 RHS = Builder.CreateStripInvariantGroup(RHS);
3855 }
3856
3857 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3858 }
3859
3860 // If this is a vector comparison, sign extend the result to the appropriate
3861 // vector integer type and return it (don't convert to bool).
3862 if (LHSTy->isVectorType())
3863 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3864
3865 } else {
3866 // Complex Comparison: can only be an equality comparison.
3867 CodeGenFunction::ComplexPairTy LHS, RHS;
3868 QualType CETy;
3869 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3870 LHS = CGF.EmitComplexExpr(E->getLHS());
3871 CETy = CTy->getElementType();
3872 } else {
3873 LHS.first = Visit(E->getLHS());
3874 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3875 CETy = LHSTy;
3876 }
3877 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3878 RHS = CGF.EmitComplexExpr(E->getRHS());
3879 assert(CGF.getContext().hasSameUnqualifiedType(CETy,((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3881, __PRETTY_FUNCTION__))
3880 CTy->getElementType()) &&((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3881, __PRETTY_FUNCTION__))
3881 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3881, __PRETTY_FUNCTION__))
;
3882 (void)CTy;
3883 } else {
3884 RHS.first = Visit(E->getRHS());
3885 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3886 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3887, __PRETTY_FUNCTION__))
3887 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3887, __PRETTY_FUNCTION__))
;
3888 }
3889
3890 Value *ResultR, *ResultI;
3891 if (CETy->isRealFloatingType()) {
3892 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3893 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3894 } else {
3895 // Complex comparisons can only be equality comparisons. As such, signed
3896 // and unsigned opcodes are the same.
3897 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3898 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3899 }
3900
3901 if (E->getOpcode() == BO_EQ) {
3902 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3903 } else {
3904 assert(E->getOpcode() == BO_NE &&((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3905, __PRETTY_FUNCTION__))
3905 "Complex comparison other than == or != ?")((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 3905, __PRETTY_FUNCTION__))
;
3906 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3907 }
3908 }
3909
3910 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3911 E->getExprLoc());
3912}
3913
3914Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3915 bool Ignore = TestAndClearIgnoreResultAssign();
3916
3917 Value *RHS;
3918 LValue LHS;
3919
3920 switch (E->getLHS()->getType().getObjCLifetime()) {
3921 case Qualifiers::OCL_Strong:
3922 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3923 break;
3924
3925 case Qualifiers::OCL_Autoreleasing:
3926 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3927 break;
3928
3929 case Qualifiers::OCL_ExplicitNone:
3930 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3931 break;
3932
3933 case Qualifiers::OCL_Weak:
3934 RHS = Visit(E->getRHS());
3935 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3936 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3937 break;
3938
3939 case Qualifiers::OCL_None:
3940 // __block variables need to have the rhs evaluated first, plus
3941 // this should improve codegen just a little.
3942 RHS = Visit(E->getRHS());
3943 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3944
3945 // Store the value into the LHS. Bit-fields are handled specially
3946 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3947 // 'An assignment expression has the value of the left operand after
3948 // the assignment...'.
3949 if (LHS.isBitField()) {
3950 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3951 } else {
3952 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3953 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3954 }
3955 }
3956
3957 // If the result is clearly ignored, return now.
3958 if (Ignore)
3959 return nullptr;
3960
3961 // The result of an assignment in C is the assigned r-value.
3962 if (!CGF.getLangOpts().CPlusPlus)
3963 return RHS;
3964
3965 // If the lvalue is non-volatile, return the computed value of the assignment.
3966 if (!LHS.isVolatileQualified())
3967 return RHS;
3968
3969 // Otherwise, reload the value.
3970 return EmitLoadOfLValue(LHS, E->getExprLoc());
3971}
3972
3973Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3974 // Perform vector logical and on comparisons with zero vectors.
3975 if (E->getType()->isVectorType()) {
3976 CGF.incrementProfileCounter(E);
3977
3978 Value *LHS = Visit(E->getLHS());
3979 Value *RHS = Visit(E->getRHS());
3980 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3981 if (LHS->getType()->isFPOrFPVectorTy()) {
3982 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3983 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3984 } else {
3985 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3986 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3987 }
3988 Value *And = Builder.CreateAnd(LHS, RHS);
3989 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3990 }
3991
3992 llvm::Type *ResTy = ConvertType(E->getType());
3993
3994 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3995 // If we have 1 && X, just emit X without inserting the control flow.
3996 bool LHSCondVal;
3997 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3998 if (LHSCondVal) { // If we have 1 && X, just emit X.
3999 CGF.incrementProfileCounter(E);
4000
4001 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4002 // ZExt result to int or bool.
4003 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4004 }
4005
4006 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4007 if (!CGF.ContainsLabel(E->getRHS()))
4008 return llvm::Constant::getNullValue(ResTy);
4009 }
4010
4011 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4012 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4013
4014 CodeGenFunction::ConditionalEvaluation eval(CGF);
4015
4016 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4017 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4018 CGF.getProfileCount(E->getRHS()));
4019
4020 // Any edges into the ContBlock are now from an (indeterminate number of)
4021 // edges from this first condition. All of these values will be false. Start
4022 // setting up the PHI node in the Cont Block for this.
4023 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4024 "", ContBlock);
4025 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4026 PI != PE; ++PI)
4027 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4028
4029 eval.begin(CGF);
4030 CGF.EmitBlock(RHSBlock);
4031 CGF.incrementProfileCounter(E);
4032 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4033 eval.end(CGF);
4034
4035 // Reaquire the RHS block, as there may be subblocks inserted.
4036 RHSBlock = Builder.GetInsertBlock();
4037
4038 // Emit an unconditional branch from this block to ContBlock.
4039 {
4040 // There is no need to emit line number for unconditional branch.
4041 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4042 CGF.EmitBlock(ContBlock);
4043 }
4044 // Insert an entry into the phi node for the edge with the value of RHSCond.
4045 PN->addIncoming(RHSCond, RHSBlock);
4046
4047 // Artificial location to preserve the scope information
4048 {
4049 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4050 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4051 }
4052
4053 // ZExt result to int.
4054 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4055}
4056
4057Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4058 // Perform vector logical or on comparisons with zero vectors.
4059 if (E->getType()->isVectorType()) {
4060 CGF.incrementProfileCounter(E);
4061
4062 Value *LHS = Visit(E->getLHS());
4063 Value *RHS = Visit(E->getRHS());
4064 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4065 if (LHS->getType()->isFPOrFPVectorTy()) {
4066 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4067 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4068 } else {
4069 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4070 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4071 }
4072 Value *Or = Builder.CreateOr(LHS, RHS);
4073 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4074 }
4075
4076 llvm::Type *ResTy = ConvertType(E->getType());
4077
4078 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4079 // If we have 0 || X, just emit X without inserting the control flow.
4080 bool LHSCondVal;
4081 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4082 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4083 CGF.incrementProfileCounter(E);
4084
4085 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4086 // ZExt result to int or bool.
4087 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4088 }
4089
4090 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4091 if (!CGF.ContainsLabel(E->getRHS()))
4092 return llvm::ConstantInt::get(ResTy, 1);
4093 }
4094
4095 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4096 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4097
4098 CodeGenFunction::ConditionalEvaluation eval(CGF);
4099
4100 // Branch on the LHS first. If it is true, go to the success (cont) block.
4101 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4102 CGF.getCurrentProfileCount() -
4103 CGF.getProfileCount(E->getRHS()));
4104
4105 // Any edges into the ContBlock are now from an (indeterminate number of)
4106 // edges from this first condition. All of these values will be true. Start
4107 // setting up the PHI node in the Cont Block for this.
4108 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4109 "", ContBlock);
4110 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4111 PI != PE; ++PI)
4112 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4113
4114 eval.begin(CGF);
4115
4116 // Emit the RHS condition as a bool value.
4117 CGF.EmitBlock(RHSBlock);
4118 CGF.incrementProfileCounter(E);
4119 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4120
4121 eval.end(CGF);
4122
4123 // Reaquire the RHS block, as there may be subblocks inserted.
4124 RHSBlock = Builder.GetInsertBlock();
4125
4126 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4127 // into the phi node for the edge with the value of RHSCond.
4128 CGF.EmitBlock(ContBlock);
4129 PN->addIncoming(RHSCond, RHSBlock);
4130
4131 // ZExt result to int.
4132 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4133}
4134
4135Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4136 CGF.EmitIgnoredExpr(E->getLHS());
4137 CGF.EnsureInsertPoint();
4138 return Visit(E->getRHS());
4139}
4140
4141//===----------------------------------------------------------------------===//
4142// Other Operators
4143//===----------------------------------------------------------------------===//
4144
4145/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4146/// expression is cheap enough and side-effect-free enough to evaluate
4147/// unconditionally instead of conditionally. This is used to convert control
4148/// flow into selects in some cases.
4149static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4150 CodeGenFunction &CGF) {
4151 // Anything that is an integer or floating point constant is fine.
4152 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4153
4154 // Even non-volatile automatic variables can't be evaluated unconditionally.
4155 // Referencing a thread_local may cause non-trivial initialization work to
4156 // occur. If we're inside a lambda and one of the variables is from the scope
4157 // outside the lambda, that function may have returned already. Reading its
4158 // locals is a bad idea. Also, these reads may introduce races there didn't
4159 // exist in the source-level program.
4160}
4161
4162
4163Value *ScalarExprEmitter::
4164VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4165 TestAndClearIgnoreResultAssign();
4166
4167 // Bind the common expression if necessary.
4168 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4169
4170 Expr *condExpr = E->getCond();
4171 Expr *lhsExpr = E->getTrueExpr();
4172 Expr *rhsExpr = E->getFalseExpr();
4173
4174 // If the condition constant folds and can be elided, try to avoid emitting
4175 // the condition and the dead arm.
4176 bool CondExprBool;
4177 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4178 Expr *live = lhsExpr, *dead = rhsExpr;
4179 if (!CondExprBool) std::swap(live, dead);
4180
4181 // If the dead side doesn't have labels we need, just emit the Live part.
4182 if (!CGF.ContainsLabel(dead)) {
4183 if (CondExprBool)
4184 CGF.incrementProfileCounter(E);
4185 Value *Result = Visit(live);
4186
4187 // If the live part is a throw expression, it acts like it has a void
4188 // type, so evaluating it returns a null Value*. However, a conditional
4189 // with non-void type must return a non-null Value*.
4190 if (!Result && !E->getType()->isVoidType())
4191 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4192
4193 return Result;
4194 }
4195 }
4196
4197 // OpenCL: If the condition is a vector, we can treat this condition like
4198 // the select function.
4199 if (CGF.getLangOpts().OpenCL
4200 && condExpr->getType()->isVectorType()) {
4201 CGF.incrementProfileCounter(E);
4202
4203 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4204 llvm::Value *LHS = Visit(lhsExpr);
4205 llvm::Value *RHS = Visit(rhsExpr);
4206
4207 llvm::Type *condType = ConvertType(condExpr->getType());
4208 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4209
4210 unsigned numElem = vecTy->getNumElements();
4211 llvm::Type *elemType = vecTy->getElementType();
4212
4213 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4214 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4215 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4216 llvm::VectorType::get(elemType,
4217 numElem),
4218 "sext");
4219 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4220
4221 // Cast float to int to perform ANDs if necessary.
4222 llvm::Value *RHSTmp = RHS;
4223 llvm::Value *LHSTmp = LHS;
4224 bool wasCast = false;
4225 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4226 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4227 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4228 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4229 wasCast = true;
4230 }
4231
4232 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4233 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4234 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4235 if (wasCast)
4236 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4237
4238 return tmp5;
4239 }
4240
4241 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4242 // select instead of as control flow. We can only do this if it is cheap and
4243 // safe to evaluate the LHS and RHS unconditionally.
4244 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4245 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4246 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4247 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4248
4249 CGF.incrementProfileCounter(E, StepV);
4250
4251 llvm::Value *LHS = Visit(lhsExpr);
4252 llvm::Value *RHS = Visit(rhsExpr);
4253 if (!LHS) {
4254 // If the conditional has void type, make sure we return a null Value*.
4255 assert(!RHS && "LHS and RHS types must match")((!RHS && "LHS and RHS types must match") ? static_cast
<void> (0) : __assert_fail ("!RHS && \"LHS and RHS types must match\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4255, __PRETTY_FUNCTION__))
;
4256 return nullptr;
4257 }
4258 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4259 }
4260
4261 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4262 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4263 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4264
4265 CodeGenFunction::ConditionalEvaluation eval(CGF);
4266 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4267 CGF.getProfileCount(lhsExpr));
4268
4269 CGF.EmitBlock(LHSBlock);
4270 CGF.incrementProfileCounter(E);
4271 eval.begin(CGF);
4272 Value *LHS = Visit(lhsExpr);
4273 eval.end(CGF);
4274
4275 LHSBlock = Builder.GetInsertBlock();
4276 Builder.CreateBr(ContBlock);
4277
4278 CGF.EmitBlock(RHSBlock);
4279 eval.begin(CGF);
4280 Value *RHS = Visit(rhsExpr);
4281 eval.end(CGF);
4282
4283 RHSBlock = Builder.GetInsertBlock();
4284 CGF.EmitBlock(ContBlock);
4285
4286 // If the LHS or RHS is a throw expression, it will be legitimately null.
4287 if (!LHS)
4288 return RHS;
4289 if (!RHS)
4290 return LHS;
4291
4292 // Create a PHI node for the real part.
4293 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4294 PN->addIncoming(LHS, LHSBlock);
4295 PN->addIncoming(RHS, RHSBlock);
4296 return PN;
4297}
4298
4299Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4300 return Visit(E->getChosenSubExpr());
4301}
4302
4303Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4304 QualType Ty = VE->getType();
4305
4306 if (Ty->isVariablyModifiedType())
4307 CGF.EmitVariablyModifiedType(Ty);
4308
4309 Address ArgValue = Address::invalid();
4310 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4311
4312 llvm::Type *ArgTy = ConvertType(VE->getType());
4313
4314 // If EmitVAArg fails, emit an error.
4315 if (!ArgPtr.isValid()) {
4316 CGF.ErrorUnsupported(VE, "va_arg expression");
4317 return llvm::UndefValue::get(ArgTy);
4318 }
4319
4320 // FIXME Volatility.
4321 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4322
4323 // If EmitVAArg promoted the type, we must truncate it.
4324 if (ArgTy != Val->getType()) {
4325 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4326 Val = Builder.CreateIntToPtr(Val, ArgTy);
4327 else
4328 Val = Builder.CreateTrunc(Val, ArgTy);
4329 }
4330
4331 return Val;
4332}
4333
4334Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4335 return CGF.EmitBlockLiteral(block);
4336}
4337
4338// Convert a vec3 to vec4, or vice versa.
4339static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4340 Value *Src, unsigned NumElementsDst) {
4341 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4342 SmallVector<llvm::Constant*, 4> Args;
4343 Args.push_back(Builder.getInt32(0));
4344 Args.push_back(Builder.getInt32(1));
4345 Args.push_back(Builder.getInt32(2));
4346 if (NumElementsDst == 4)
4347 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4348 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4349 return Builder.CreateShuffleVector(Src, UnV, Mask);
4350}
4351
4352// Create cast instructions for converting LLVM value \p Src to LLVM type \p
4353// DstTy. \p Src has the same size as \p DstTy. Both are single value types
4354// but could be scalar or vectors of different lengths, and either can be
4355// pointer.
4356// There are 4 cases:
4357// 1. non-pointer -> non-pointer : needs 1 bitcast
4358// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4359// 3. pointer -> non-pointer
4360// a) pointer -> intptr_t : needs 1 ptrtoint
4361// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4362// 4. non-pointer -> pointer
4363// a) intptr_t -> pointer : needs 1 inttoptr
4364// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4365// Note: for cases 3b and 4b two casts are required since LLVM casts do not
4366// allow casting directly between pointer types and non-integer non-pointer
4367// types.
4368static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4369 const llvm::DataLayout &DL,
4370 Value *Src, llvm::Type *DstTy,
4371 StringRef Name = "") {
4372 auto SrcTy = Src->getType();
4373
4374 // Case 1.
4375 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4376 return Builder.CreateBitCast(Src, DstTy, Name);
4377
4378 // Case 2.
4379 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4380 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4381
4382 // Case 3.
4383 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4384 // Case 3b.
4385 if (!DstTy->isIntegerTy())
4386 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4387 // Cases 3a and 3b.
4388 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4389 }
4390
4391 // Case 4b.
4392 if (!SrcTy->isIntegerTy())
4393 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4394 // Cases 4a and 4b.
4395 return Builder.CreateIntToPtr(Src, DstTy, Name);
4396}
4397
4398Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4399 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4400 llvm::Type *DstTy = ConvertType(E->getType());
4401
4402 llvm::Type *SrcTy = Src->getType();
4403 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4404 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4405 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4406 cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4407
4408 // Going from vec3 to non-vec3 is a special case and requires a shuffle
4409 // vector to get a vec4, then a bitcast if the target type is different.
4410 if (NumElementsSrc == 3 && NumElementsDst != 3) {
4411 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4412
4413 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4414 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4415 DstTy);
4416 }
4417
4418 Src->setName("astype");
4419 return Src;
4420 }
4421
4422 // Going from non-vec3 to vec3 is a special case and requires a bitcast
4423 // to vec4 if the original type is not vec4, then a shuffle vector to
4424 // get a vec3.
4425 if (NumElementsSrc != 3 && NumElementsDst == 3) {
4426 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4427 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4428 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4429 Vec4Ty);
4430 }
4431
4432 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4433 Src->setName("astype");
4434 return Src;
4435 }
4436
4437 return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4438 Src, DstTy, "astype");
4439}
4440
4441Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4442 return CGF.EmitAtomicExpr(E).getScalarVal();
4443}
4444
4445//===----------------------------------------------------------------------===//
4446// Entry Point into this File
4447//===----------------------------------------------------------------------===//
4448
4449/// Emit the computation of the specified expression of scalar type, ignoring
4450/// the result.
4451Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4452 assert(E && hasScalarEvaluationKind(E->getType()) &&((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4453, __PRETTY_FUNCTION__))
4453 "Invalid scalar expression to emit")((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4453, __PRETTY_FUNCTION__))
;
4454
4455 return ScalarExprEmitter(*this, IgnoreResultAssign)
4456 .Visit(const_cast<Expr *>(E));
4457}
4458
4459/// Emit a conversion from the specified type to the specified destination type,
4460/// both of which are LLVM scalar types.
4461Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4462 QualType DstTy,
4463 SourceLocation Loc) {
4464 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4465, __PRETTY_FUNCTION__))
4465 "Invalid scalar expression to emit")((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4465, __PRETTY_FUNCTION__))
;
4466 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4467}
4468
4469/// Emit a conversion from the specified complex type to the specified
4470/// destination type, where the destination type is an LLVM scalar type.
4471Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4472 QualType SrcTy,
4473 QualType DstTy,
4474 SourceLocation Loc) {
4475 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4476, __PRETTY_FUNCTION__))
4476 "Invalid complex -> scalar conversion")((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4476, __PRETTY_FUNCTION__))
;
4477 return ScalarExprEmitter(*this)
4478 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4479}
4480
4481
4482llvm::Value *CodeGenFunction::
4483EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4484 bool isInc, bool isPre) {
4485 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4486}
4487
4488LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4489 // object->isa or (*object).isa
4490 // Generate code as for: *(Class*)object
4491
4492 Expr *BaseExpr = E->getBase();
4493 Address Addr = Address::invalid();
4494 if (BaseExpr->isRValue()) {
4495 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4496 } else {
4497 Addr = EmitLValue(BaseExpr).getAddress();
4498 }
4499
4500 // Cast the address to Class*.
4501 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4502 return MakeAddrLValue(Addr, E->getType());
4503}
4504
4505
4506LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4507 const CompoundAssignOperator *E) {
4508 ScalarExprEmitter Scalar(*this);
4509 Value *Result = nullptr;
4510 switch (E->getOpcode()) {
4511#define COMPOUND_OP(Op) \
4512 case BO_##Op##Assign: \
4513 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4514 Result)
4515 COMPOUND_OP(Mul);
4516 COMPOUND_OP(Div);
4517 COMPOUND_OP(Rem);
4518 COMPOUND_OP(Add);
4519 COMPOUND_OP(Sub);
4520 COMPOUND_OP(Shl);
4521 COMPOUND_OP(Shr);
4522 COMPOUND_OP(And);
4523 COMPOUND_OP(Xor);
4524 COMPOUND_OP(Or);
4525#undef COMPOUND_OP
4526
4527 case BO_PtrMemD:
4528 case BO_PtrMemI:
4529 case BO_Mul:
4530 case BO_Div:
4531 case BO_Rem:
4532 case BO_Add:
4533 case BO_Sub:
4534 case BO_Shl:
4535 case BO_Shr:
4536 case BO_LT:
4537 case BO_GT:
4538 case BO_LE:
4539 case BO_GE:
4540 case BO_EQ:
4541 case BO_NE:
4542 case BO_Cmp:
4543 case BO_And:
4544 case BO_Xor:
4545 case BO_Or:
4546 case BO_LAnd:
4547 case BO_LOr:
4548 case BO_Assign:
4549 case BO_Comma:
4550 llvm_unreachable("Not valid compound assignment operators")::llvm::llvm_unreachable_internal("Not valid compound assignment operators"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4550)
;
4551 }
4552
4553 llvm_unreachable("Unhandled compound assignment operator")::llvm::llvm_unreachable_internal("Unhandled compound assignment operator"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4553)
;
4554}
4555
4556struct GEPOffsetAndOverflow {
4557 // The total (signed) byte offset for the GEP.
4558 llvm::Value *TotalOffset;
4559 // The offset overflow flag - true if the total offset overflows.
4560 llvm::Value *OffsetOverflows;
4561};
4562
4563/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
4564/// and compute the total offset it applies from it's base pointer BasePtr.
4565/// Returns offset in bytes and a boolean flag whether an overflow happened
4566/// during evaluation.
4567static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
4568 llvm::LLVMContext &VMContext,
4569 CodeGenModule &CGM,
4570 CGBuilderTy Builder) {
4571 const auto &DL = CGM.getDataLayout();
4572
4573 // The total (signed) byte offset for the GEP.
4574 llvm::Value *TotalOffset = nullptr;
4575
4576 // Was the GEP already reduced to a constant?
4577 if (isa<llvm::Constant>(GEPVal)) {
4578 // Compute the offset by casting both pointers to integers and subtracting:
4579 // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
4580 Value *BasePtr_int =
4581 Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
4582 Value *GEPVal_int =
4583 Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
4584 TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
4585 return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
4586 }
4587
4588 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4589 assert(GEP->getPointerOperand() == BasePtr &&((GEP->getPointerOperand() == BasePtr && "BasePtr must be the the base of the GEP."
) ? static_cast<void> (0) : __assert_fail ("GEP->getPointerOperand() == BasePtr && \"BasePtr must be the the base of the GEP.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4590, __PRETTY_FUNCTION__))
4590 "BasePtr must be the the base of the GEP.")((GEP->getPointerOperand() == BasePtr && "BasePtr must be the the base of the GEP."
) ? static_cast<void> (0) : __assert_fail ("GEP->getPointerOperand() == BasePtr && \"BasePtr must be the the base of the GEP.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4590, __PRETTY_FUNCTION__))
;
4591 assert(GEP->isInBounds() && "Expected inbounds GEP")((GEP->isInBounds() && "Expected inbounds GEP") ? static_cast
<void> (0) : __assert_fail ("GEP->isInBounds() && \"Expected inbounds GEP\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4591, __PRETTY_FUNCTION__))
;
4592
4593 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4594
4595 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4596 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4597 auto *SAddIntrinsic =
4598 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4599 auto *SMulIntrinsic =
4600 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4601
4602 // The offset overflow flag - true if the total offset overflows.
4603 llvm::Value *OffsetOverflows = Builder.getFalse();
4604
4605 /// Return the result of the given binary operation.
4606 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4607 llvm::Value *RHS) -> llvm::Value * {
4608 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop")(((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == BO_Add || Opcode == BO_Mul) && \"Can't eval binop\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4608, __PRETTY_FUNCTION__))
;
4609
4610 // If the operands are constants, return a constant result.
4611 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4612 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4613 llvm::APInt N;
4614 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4615 /*Signed=*/true, N);
4616 if (HasOverflow)
4617 OffsetOverflows = Builder.getTrue();
4618 return llvm::ConstantInt::get(VMContext, N);
4619 }
4620 }
4621
4622 // Otherwise, compute the result with checked arithmetic.
4623 auto *ResultAndOverflow = Builder.CreateCall(
4624 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4625 OffsetOverflows = Builder.CreateOr(
4626 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4627 return Builder.CreateExtractValue(ResultAndOverflow, 0);
4628 };
4629
4630 // Determine the total byte offset by looking at each GEP operand.
4631 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4632 GTI != GTE; ++GTI) {
4633 llvm::Value *LocalOffset;
4634 auto *Index = GTI.getOperand();
4635 // Compute the local offset contributed by this indexing step:
4636 if (auto *STy = GTI.getStructTypeOrNull()) {
4637 // For struct indexing, the local offset is the byte position of the
4638 // specified field.
4639 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4640 LocalOffset = llvm::ConstantInt::get(
4641 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4642 } else {
4643 // Otherwise this is array-like indexing. The local offset is the index
4644 // multiplied by the element size.
4645 auto *ElementSize = llvm::ConstantInt::get(
4646 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4647 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4648 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4649 }
4650
4651 // If this is the first offset, set it as the total offset. Otherwise, add
4652 // the local offset into the running total.
4653 if (!TotalOffset || TotalOffset == Zero)
4654 TotalOffset = LocalOffset;
4655 else
4656 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4657 }
4658
4659 return {TotalOffset, OffsetOverflows};
4660}
4661
4662Value *
4663CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
4664 bool SignedIndices, bool IsSubtraction,
4665 SourceLocation Loc, const Twine &Name) {
4666 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4667
4668 // If the pointer overflow sanitizer isn't enabled, do nothing.
4669 if (!SanOpts.has(SanitizerKind::PointerOverflow))
4670 return GEPVal;
4671
4672 llvm::Type *PtrTy = Ptr->getType();
4673
4674 // Perform nullptr-and-offset check unless the nullptr is defined.
4675 bool PerformNullCheck = !NullPointerIsDefined(
4676 Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
4677 // Check for overflows unless the GEP got constant-folded,
4678 // and only in the default address space
4679 bool PerformOverflowCheck =
4680 !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;
4681
4682 if (!(PerformNullCheck || PerformOverflowCheck))
4683 return GEPVal;
4684
4685 const auto &DL = CGM.getDataLayout();
4686
4687 SanitizerScope SanScope(this);
4688 llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);
4689
4690 GEPOffsetAndOverflow EvaluatedGEP =
4691 EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);
4692
4693 assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||(((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP
.OffsetOverflows == Builder.getFalse()) && "If the offset got constant-folded, we don't expect that there was an "
"overflow.") ? static_cast<void> (0) : __assert_fail (
"(!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && \"If the offset got constant-folded, we don't expect that there was an \" \"overflow.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4696, __PRETTY_FUNCTION__))
4694 EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&(((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP
.OffsetOverflows == Builder.getFalse()) && "If the offset got constant-folded, we don't expect that there was an "
"overflow.") ? static_cast<void> (0) : __assert_fail (
"(!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && \"If the offset got constant-folded, we don't expect that there was an \" \"overflow.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4696, __PRETTY_FUNCTION__))
4695 "If the offset got constant-folded, we don't expect that there was an "(((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP
.OffsetOverflows == Builder.getFalse()) && "If the offset got constant-folded, we don't expect that there was an "
"overflow.") ? static_cast<void> (0) : __assert_fail (
"(!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && \"If the offset got constant-folded, we don't expect that there was an \" \"overflow.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4696, __PRETTY_FUNCTION__))
4696 "overflow.")(((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP
.OffsetOverflows == Builder.getFalse()) && "If the offset got constant-folded, we don't expect that there was an "
"overflow.") ? static_cast<void> (0) : __assert_fail (
"(!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && \"If the offset got constant-folded, we don't expect that there was an \" \"overflow.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4696, __PRETTY_FUNCTION__))
;
4697
4698 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4699
4700 // Common case: if the total offset is zero, and we are using C++ semantics,
4701 // where nullptr+0 is defined, don't emit a check.
4702 if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
4703 return GEPVal;
4704
4705 // Now that we've computed the total offset, add it to the base pointer (with
4706 // wrapping semantics).
4707 auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
4708 auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);
4709
4710 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
4711
4712 if (PerformNullCheck) {
4713 // In C++, if the base pointer evaluates to a null pointer value,
4714 // the only valid pointer this inbounds GEP can produce is also
4715 // a null pointer, so the offset must also evaluate to zero.
4716 // Likewise, if we have non-zero base pointer, we can not get null pointer
4717 // as a result, so the offset can not be -intptr_t(BasePtr).
4718 // In other words, both pointers are either null, or both are non-null,
4719 // or the behaviour is undefined.
4720 //
4721 // C, however, is more strict in this regard, and gives more
4722 // optimization opportunities: in C, additionally, nullptr+0 is undefined.
4723 // So both the input to the 'gep inbounds' AND the output must not be null.
4724 auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
4725 auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
4726 auto *Valid =
4727 CGM.getLangOpts().CPlusPlus
4728 ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
4729 : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
4730 Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
4731 }
4732
4733 if (PerformOverflowCheck) {
4734 // The GEP is valid if:
4735 // 1) The total offset doesn't overflow, and
4736 // 2) The sign of the difference between the computed address and the base
4737 // pointer matches the sign of the total offset.
4738 llvm::Value *ValidGEP;
4739 auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
4740 if (SignedIndices) {
4741 // GEP is computed as `unsigned base + signed offset`, therefore:
4742 // * If offset was positive, then the computed pointer can not be
4743 // [unsigned] less than the base pointer, unless it overflowed.
4744 // * If offset was negative, then the computed pointer can not be
4745 // [unsigned] greater than the bas pointere, unless it overflowed.
4746 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4747 auto *PosOrZeroOffset =
4748 Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
4749 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4750 ValidGEP =
4751 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
4752 } else if (!IsSubtraction) {
4753 // GEP is computed as `unsigned base + unsigned offset`, therefore the
4754 // computed pointer can not be [unsigned] less than base pointer,
4755 // unless there was an overflow.
4756 // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
4757 ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4758 } else {
4759 // GEP is computed as `unsigned base - unsigned offset`, therefore the
4760 // computed pointer can not be [unsigned] greater than base pointer,
4761 // unless there was an overflow.
4762 // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
4763 ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4764 }
4765 ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
4766 Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
4767 }
4768
4769 assert(!Checks.empty() && "Should have produced some checks.")((!Checks.empty() && "Should have produced some checks."
) ? static_cast<void> (0) : __assert_fail ("!Checks.empty() && \"Should have produced some checks.\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/CodeGen/CGExprScalar.cpp"
, 4769, __PRETTY_FUNCTION__))
;
4770
4771 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4772 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4773 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4774 EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4775
4776 return GEPVal;
4777}

/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }