Bug Summary

File:tools/clang/lib/CodeGen/CGExprScalar.cpp
Warning:line 2991, column 5
Undefined or garbage value returned to caller

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprScalar.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-9~svn360825/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn360825/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn360825=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-16-032012-25149-1 -x c++ /build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp -faddrsig
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGCleanup.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/CodeGenOptions.h"
26#include "clang/Basic/FixedPoint.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GetElementPtrTypeIterator.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Module.h"
37#include <cstdarg>
38
39using namespace clang;
40using namespace CodeGen;
41using llvm::Value;
42
43//===----------------------------------------------------------------------===//
44// Scalar Expression Emitter
45//===----------------------------------------------------------------------===//
46
47namespace {
48
49/// Determine whether the given binary operation may overflow.
50/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52/// the returned overflow check is precise. The returned value is 'true' for
53/// all other opcodes, to be conservative.
54bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55 BinaryOperator::Opcode Opcode, bool Signed,
56 llvm::APInt &Result) {
57 // Assume overflow is possible, unless we can prove otherwise.
58 bool Overflow = true;
59 const auto &LHSAP = LHS->getValue();
60 const auto &RHSAP = RHS->getValue();
61 if (Opcode == BO_Add) {
62 if (Signed)
63 Result = LHSAP.sadd_ov(RHSAP, Overflow);
64 else
65 Result = LHSAP.uadd_ov(RHSAP, Overflow);
66 } else if (Opcode == BO_Sub) {
67 if (Signed)
68 Result = LHSAP.ssub_ov(RHSAP, Overflow);
69 else
70 Result = LHSAP.usub_ov(RHSAP, Overflow);
71 } else if (Opcode == BO_Mul) {
72 if (Signed)
73 Result = LHSAP.smul_ov(RHSAP, Overflow);
74 else
75 Result = LHSAP.umul_ov(RHSAP, Overflow);
76 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77 if (Signed && !RHS->isZero())
78 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79 else
80 return false;
81 }
82 return Overflow;
83}
84
85struct BinOpInfo {
86 Value *LHS;
87 Value *RHS;
88 QualType Ty; // Computation Type.
89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90 FPOptions FPFeatures;
91 const Expr *E; // Entire expr, for error unsupported. May not be binop.
92
93 /// Check if the binop can result in integer overflow.
94 bool mayHaveIntegerOverflow() const {
95 // Without constant input, we can't rule out overflow.
96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98 if (!LHSCI || !RHSCI)
99 return true;
100
101 llvm::APInt Result;
102 return ::mayHaveIntegerOverflow(
103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104 }
105
106 /// Check if the binop computes a division or a remainder.
107 bool isDivremOp() const {
108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109 Opcode == BO_RemAssign;
110 }
111
112 /// Check if the binop can result in an integer division by zero.
113 bool mayHaveIntegerDivisionByZero() const {
114 if (isDivremOp())
115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116 return CI->isZero();
117 return true;
118 }
119
120 /// Check if the binop can result in a float division by zero.
121 bool mayHaveFloatDivisionByZero() const {
122 if (isDivremOp())
123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124 return CFP->isZero();
125 return true;
126 }
127
128 /// Check if either operand is a fixed point type or integer type, with at
129 /// least one being a fixed point type. In any case, this
130 /// operation did not follow usual arithmetic conversion and both operands may
131 /// not be the same.
132 bool isFixedPointBinOp() const {
133 // We cannot simply check the result type since comparison operations return
134 // an int.
135 if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
136 QualType LHSType = BinOp->getLHS()->getType();
137 QualType RHSType = BinOp->getRHS()->getType();
138 return LHSType->isFixedPointType() || RHSType->isFixedPointType();
139 }
140 return false;
141 }
142};
143
144static bool MustVisitNullValue(const Expr *E) {
145 // If a null pointer expression's type is the C++0x nullptr_t, then
146 // it's not necessarily a simple constant and it must be evaluated
147 // for its potential side effects.
148 return E->getType()->isNullPtrType();
149}
150
151/// If \p E is a widened promoted integer, get its base (unpromoted) type.
152static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
153 const Expr *E) {
154 const Expr *Base = E->IgnoreImpCasts();
155 if (E == Base)
156 return llvm::None;
157
158 QualType BaseTy = Base->getType();
159 if (!BaseTy->isPromotableIntegerType() ||
160 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
161 return llvm::None;
162
163 return BaseTy;
164}
165
166/// Check if \p E is a widened promoted integer.
167static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
168 return getUnwidenedIntegerType(Ctx, E).hasValue();
169}
170
171/// Check if we can skip the overflow check for \p Op.
172static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
173 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 174, __PRETTY_FUNCTION__))
174 "Expected a unary or binary operator")(((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>
(Op.E)) && "Expected a unary or binary operator") ? static_cast
<void> (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 174, __PRETTY_FUNCTION__))
;
175
176 // If the binop has constant inputs and we can prove there is no overflow,
177 // we can elide the overflow check.
178 if (!Op.mayHaveIntegerOverflow())
179 return true;
180
181 // If a unary op has a widened operand, the op cannot overflow.
182 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
183 return !UO->canOverflow();
184
185 // We usually don't need overflow checks for binops with widened operands.
186 // Multiplication with promoted unsigned operands is a special case.
187 const auto *BO = cast<BinaryOperator>(Op.E);
188 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
189 if (!OptionalLHSTy)
190 return false;
191
192 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
193 if (!OptionalRHSTy)
194 return false;
195
196 QualType LHSTy = *OptionalLHSTy;
197 QualType RHSTy = *OptionalRHSTy;
198
199 // This is the simple case: binops without unsigned multiplication, and with
200 // widened operands. No overflow check is needed here.
201 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
202 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
203 return true;
204
205 // For unsigned multiplication the overflow check can be elided if either one
206 // of the unpromoted types are less than half the size of the promoted type.
207 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
208 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
209 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
210}
211
212/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
213static void updateFastMathFlags(llvm::FastMathFlags &FMF,
214 FPOptions FPFeatures) {
215 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
216}
217
218/// Propagate fast-math flags from \p Op to the instruction in \p V.
219static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
220 if (auto *I = dyn_cast<llvm::Instruction>(V)) {
221 llvm::FastMathFlags FMF = I->getFastMathFlags();
222 updateFastMathFlags(FMF, Op.FPFeatures);
223 I->setFastMathFlags(FMF);
224 }
225 return V;
226}
227
228class ScalarExprEmitter
229 : public StmtVisitor<ScalarExprEmitter, Value*> {
230 CodeGenFunction &CGF;
231 CGBuilderTy &Builder;
232 bool IgnoreResultAssign;
233 llvm::LLVMContext &VMContext;
234public:
235
236 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
237 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
238 VMContext(cgf.getLLVMContext()) {
239 }
240
241 //===--------------------------------------------------------------------===//
242 // Utilities
243 //===--------------------------------------------------------------------===//
244
245 bool TestAndClearIgnoreResultAssign() {
246 bool I = IgnoreResultAssign;
247 IgnoreResultAssign = false;
248 return I;
249 }
250
251 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
252 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
253 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
254 return CGF.EmitCheckedLValue(E, TCK);
255 }
256
257 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
258 const BinOpInfo &Info);
259
260 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
261 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
262 }
263
264 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
265 const AlignValueAttr *AVAttr = nullptr;
266 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
267 const ValueDecl *VD = DRE->getDecl();
268
269 if (VD->getType()->isReferenceType()) {
270 if (const auto *TTy =
271 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
272 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
273 } else {
274 // Assumptions for function parameters are emitted at the start of the
275 // function, so there is no need to repeat that here,
276 // unless the alignment-assumption sanitizer is enabled,
277 // then we prefer the assumption over alignment attribute
278 // on IR function param.
279 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
280 return;
281
282 AVAttr = VD->getAttr<AlignValueAttr>();
283 }
284 }
285
286 if (!AVAttr)
287 if (const auto *TTy =
288 dyn_cast<TypedefType>(E->getType()))
289 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
290
291 if (!AVAttr)
292 return;
293
294 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
295 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
296 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(),
297 AlignmentCI->getZExtValue());
298 }
299
300 /// EmitLoadOfLValue - Given an expression with complex type that represents a
301 /// value l-value, this method emits the address of the l-value, then loads
302 /// and returns the result.
303 Value *EmitLoadOfLValue(const Expr *E) {
304 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
305 E->getExprLoc());
306
307 EmitLValueAlignmentAssumption(E, V);
308 return V;
309 }
310
311 /// EmitConversionToBool - Convert the specified expression value to a
312 /// boolean (i1) truth value. This is equivalent to "Val != 0".
313 Value *EmitConversionToBool(Value *Src, QualType DstTy);
314
315 /// Emit a check that a conversion to or from a floating-point type does not
316 /// overflow.
317 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
318 Value *Src, QualType SrcType, QualType DstType,
319 llvm::Type *DstTy, SourceLocation Loc);
320
321 /// Known implicit conversion check kinds.
322 /// Keep in sync with the enum of the same name in ubsan_handlers.h
323 enum ImplicitConversionCheckKind : unsigned char {
324 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
325 ICCK_UnsignedIntegerTruncation = 1,
326 ICCK_SignedIntegerTruncation = 2,
327 ICCK_IntegerSignChange = 3,
328 ICCK_SignedIntegerTruncationOrSignChange = 4,
329 };
330
331 /// Emit a check that an [implicit] truncation of an integer does not
332 /// discard any bits. It is not UB, so we use the value after truncation.
333 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
334 QualType DstType, SourceLocation Loc);
335
336 /// Emit a check that an [implicit] conversion of an integer does not change
337 /// the sign of the value. It is not UB, so we use the value after conversion.
338 /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
339 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
340 QualType DstType, SourceLocation Loc);
341
342 /// Emit a conversion from the specified type to the specified destination
343 /// type, both of which are LLVM scalar types.
344 struct ScalarConversionOpts {
345 bool TreatBooleanAsSigned;
346 bool EmitImplicitIntegerTruncationChecks;
347 bool EmitImplicitIntegerSignChangeChecks;
348
349 ScalarConversionOpts()
350 : TreatBooleanAsSigned(false),
351 EmitImplicitIntegerTruncationChecks(false),
352 EmitImplicitIntegerSignChangeChecks(false) {}
353
354 ScalarConversionOpts(clang::SanitizerSet SanOpts)
355 : TreatBooleanAsSigned(false),
356 EmitImplicitIntegerTruncationChecks(
357 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
358 EmitImplicitIntegerSignChangeChecks(
359 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
360 };
361 Value *
362 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
363 SourceLocation Loc,
364 ScalarConversionOpts Opts = ScalarConversionOpts());
365
366 /// Convert between either a fixed point and other fixed point or fixed point
367 /// and an integer.
368 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
369 SourceLocation Loc);
370 Value *EmitFixedPointConversion(Value *Src, FixedPointSemantics &SrcFixedSema,
371 FixedPointSemantics &DstFixedSema,
372 SourceLocation Loc,
373 bool DstIsInteger = false);
374
375 /// Emit a conversion from the specified complex type to the specified
376 /// destination type, where the destination type is an LLVM scalar type.
377 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
378 QualType SrcTy, QualType DstTy,
379 SourceLocation Loc);
380
381 /// EmitNullValue - Emit a value that corresponds to null for the given type.
382 Value *EmitNullValue(QualType Ty);
383
384 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
385 Value *EmitFloatToBoolConversion(Value *V) {
386 // Compare against 0.0 for fp scalars.
387 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
388 return Builder.CreateFCmpUNE(V, Zero, "tobool");
389 }
390
391 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
392 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
393 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
394
395 return Builder.CreateICmpNE(V, Zero, "tobool");
396 }
397
398 Value *EmitIntToBoolConversion(Value *V) {
399 // Because of the type rules of C, we often end up computing a
400 // logical value, then zero extending it to int, then wanting it
401 // as a logical value again. Optimize this common case.
402 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
403 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
404 Value *Result = ZI->getOperand(0);
405 // If there aren't any more uses, zap the instruction to save space.
406 // Note that there can be more uses, for example if this
407 // is the result of an assignment.
408 if (ZI->use_empty())
409 ZI->eraseFromParent();
410 return Result;
411 }
412 }
413
414 return Builder.CreateIsNotNull(V, "tobool");
415 }
416
417 //===--------------------------------------------------------------------===//
418 // Visitor Methods
419 //===--------------------------------------------------------------------===//
420
421 Value *Visit(Expr *E) {
422 ApplyDebugLocation DL(CGF, E);
423 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
424 }
425
426 Value *VisitStmt(Stmt *S) {
427 S->dump(CGF.getContext().getSourceManager());
428 llvm_unreachable("Stmt can't have complex result type!")::llvm::llvm_unreachable_internal("Stmt can't have complex result type!"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 428)
;
429 }
430 Value *VisitExpr(Expr *S);
431
432 Value *VisitConstantExpr(ConstantExpr *E) {
433 return Visit(E->getSubExpr());
434 }
435 Value *VisitParenExpr(ParenExpr *PE) {
436 return Visit(PE->getSubExpr());
437 }
438 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
439 return Visit(E->getReplacement());
440 }
441 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
442 return Visit(GE->getResultExpr());
443 }
444 Value *VisitCoawaitExpr(CoawaitExpr *S) {
445 return CGF.EmitCoawaitExpr(*S).getScalarVal();
446 }
447 Value *VisitCoyieldExpr(CoyieldExpr *S) {
448 return CGF.EmitCoyieldExpr(*S).getScalarVal();
449 }
450 Value *VisitUnaryCoawait(const UnaryOperator *E) {
451 return Visit(E->getSubExpr());
452 }
453
454 // Leaves.
455 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
456 return Builder.getInt(E->getValue());
457 }
458 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
459 return Builder.getInt(E->getValue());
460 }
461 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
462 return llvm::ConstantFP::get(VMContext, E->getValue());
463 }
464 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
465 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
466 }
467 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
468 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
469 }
470 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
471 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
472 }
473 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
474 return EmitNullValue(E->getType());
475 }
476 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
477 return EmitNullValue(E->getType());
478 }
479 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
480 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
481 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
482 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
483 return Builder.CreateBitCast(V, ConvertType(E->getType()));
484 }
485
486 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
487 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
488 }
489
490 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
491 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
492 }
493
494 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
495 if (E->isGLValue())
496 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
497 E->getExprLoc());
498
499 // Otherwise, assume the mapping is the scalar directly.
500 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
501 }
502
503 // l-values.
504 Value *VisitDeclRefExpr(DeclRefExpr *E) {
505 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
506 return CGF.emitScalarConstant(Constant, E);
507 return EmitLoadOfLValue(E);
508 }
509
510 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
511 return CGF.EmitObjCSelectorExpr(E);
512 }
513 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
514 return CGF.EmitObjCProtocolExpr(E);
515 }
516 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
517 return EmitLoadOfLValue(E);
518 }
519 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
520 if (E->getMethodDecl() &&
521 E->getMethodDecl()->getReturnType()->isReferenceType())
522 return EmitLoadOfLValue(E);
523 return CGF.EmitObjCMessageExpr(E).getScalarVal();
524 }
525
526 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
527 LValue LV = CGF.EmitObjCIsaExpr(E);
528 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
529 return V;
530 }
531
532 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
533 VersionTuple Version = E->getVersion();
534
535 // If we're checking for a platform older than our minimum deployment
536 // target, we can fold the check away.
537 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
538 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
539
540 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
541 llvm::Value *Args[] = {
542 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
543 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
544 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
545 };
546
547 return CGF.EmitBuiltinAvailable(Args);
548 }
549
550 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
551 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
552 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
553 Value *VisitMemberExpr(MemberExpr *E);
554 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
555 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
556 return EmitLoadOfLValue(E);
557 }
558
559 Value *VisitInitListExpr(InitListExpr *E);
560
561 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
562 assert(CGF.getArrayInitIndex() &&((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 563, __PRETTY_FUNCTION__))
563 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?")((CGF.getArrayInitIndex() && "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"
) ? static_cast<void> (0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 563, __PRETTY_FUNCTION__))
;
564 return CGF.getArrayInitIndex();
565 }
566
567 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
568 return EmitNullValue(E->getType());
569 }
570 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
571 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
572 return VisitCastExpr(E);
573 }
574 Value *VisitCastExpr(CastExpr *E);
575
576 Value *VisitCallExpr(const CallExpr *E) {
577 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
578 return EmitLoadOfLValue(E);
579
580 Value *V = CGF.EmitCallExpr(E).getScalarVal();
581
582 EmitLValueAlignmentAssumption(E, V);
583 return V;
584 }
585
586 Value *VisitStmtExpr(const StmtExpr *E);
587
588 // Unary Operators.
589 Value *VisitUnaryPostDec(const UnaryOperator *E) {
590 LValue LV = EmitLValue(E->getSubExpr());
591 return EmitScalarPrePostIncDec(E, LV, false, false);
592 }
593 Value *VisitUnaryPostInc(const UnaryOperator *E) {
594 LValue LV = EmitLValue(E->getSubExpr());
595 return EmitScalarPrePostIncDec(E, LV, true, false);
596 }
597 Value *VisitUnaryPreDec(const UnaryOperator *E) {
598 LValue LV = EmitLValue(E->getSubExpr());
599 return EmitScalarPrePostIncDec(E, LV, false, true);
600 }
601 Value *VisitUnaryPreInc(const UnaryOperator *E) {
602 LValue LV = EmitLValue(E->getSubExpr());
603 return EmitScalarPrePostIncDec(E, LV, true, true);
604 }
605
606 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
607 llvm::Value *InVal,
608 bool IsInc);
609
610 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
611 bool isInc, bool isPre);
612
613
614 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
615 if (isa<MemberPointerType>(E->getType())) // never sugared
616 return CGF.CGM.getMemberPointerConstant(E);
617
618 return EmitLValue(E->getSubExpr()).getPointer();
619 }
620 Value *VisitUnaryDeref(const UnaryOperator *E) {
621 if (E->getType()->isVoidType())
622 return Visit(E->getSubExpr()); // the actual value should be unused
623 return EmitLoadOfLValue(E);
624 }
625 Value *VisitUnaryPlus(const UnaryOperator *E) {
626 // This differs from gcc, though, most likely due to a bug in gcc.
627 TestAndClearIgnoreResultAssign();
628 return Visit(E->getSubExpr());
629 }
630 Value *VisitUnaryMinus (const UnaryOperator *E);
631 Value *VisitUnaryNot (const UnaryOperator *E);
632 Value *VisitUnaryLNot (const UnaryOperator *E);
633 Value *VisitUnaryReal (const UnaryOperator *E);
634 Value *VisitUnaryImag (const UnaryOperator *E);
635 Value *VisitUnaryExtension(const UnaryOperator *E) {
636 return Visit(E->getSubExpr());
637 }
638
639 // C++
640 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
641 return EmitLoadOfLValue(E);
642 }
643
644 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
645 return Visit(DAE->getExpr());
646 }
647 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
648 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
649 return Visit(DIE->getExpr());
650 }
651 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
652 return CGF.LoadCXXThis();
653 }
654
655 Value *VisitExprWithCleanups(ExprWithCleanups *E);
656 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
657 return CGF.EmitCXXNewExpr(E);
658 }
659 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
660 CGF.EmitCXXDeleteExpr(E);
661 return nullptr;
662 }
663
664 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
665 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
666 }
667
668 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
669 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
670 }
671
672 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
673 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
674 }
675
676 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
677 // C++ [expr.pseudo]p1:
678 // The result shall only be used as the operand for the function call
679 // operator (), and the result of such a call has type void. The only
680 // effect is the evaluation of the postfix-expression before the dot or
681 // arrow.
682 CGF.EmitScalarExpr(E->getBase());
683 return nullptr;
684 }
685
686 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
687 return EmitNullValue(E->getType());
688 }
689
690 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
691 CGF.EmitCXXThrowExpr(E);
692 return nullptr;
693 }
694
695 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
696 return Builder.getInt1(E->getValue());
697 }
698
699 // Binary Operators.
700 Value *EmitMul(const BinOpInfo &Ops) {
701 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
702 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
703 case LangOptions::SOB_Defined:
704 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
705 case LangOptions::SOB_Undefined:
706 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
707 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
708 LLVM_FALLTHROUGH[[clang::fallthrough]];
709 case LangOptions::SOB_Trapping:
710 if (CanElideOverflowCheck(CGF.getContext(), Ops))
711 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
712 return EmitOverflowCheckedBinOp(Ops);
713 }
714 }
715
716 if (Ops.Ty->isUnsignedIntegerType() &&
717 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
718 !CanElideOverflowCheck(CGF.getContext(), Ops))
719 return EmitOverflowCheckedBinOp(Ops);
720
721 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
722 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
723 return propagateFMFlags(V, Ops);
724 }
725 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
726 }
727 /// Create a binary op that checks for overflow.
728 /// Currently only supports +, - and *.
729 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
730
731 // Check for undefined division and modulus behaviors.
732 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
733 llvm::Value *Zero,bool isDiv);
734 // Common helper for getting how wide LHS of shift is.
735 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
736 Value *EmitDiv(const BinOpInfo &Ops);
737 Value *EmitRem(const BinOpInfo &Ops);
738 Value *EmitAdd(const BinOpInfo &Ops);
739 Value *EmitSub(const BinOpInfo &Ops);
740 Value *EmitShl(const BinOpInfo &Ops);
741 Value *EmitShr(const BinOpInfo &Ops);
742 Value *EmitAnd(const BinOpInfo &Ops) {
743 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
744 }
745 Value *EmitXor(const BinOpInfo &Ops) {
746 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
747 }
748 Value *EmitOr (const BinOpInfo &Ops) {
749 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
750 }
751
752 // Helper functions for fixed point binary operations.
753 Value *EmitFixedPointBinOp(const BinOpInfo &Ops);
754
755 BinOpInfo EmitBinOps(const BinaryOperator *E);
756 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
757 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
758 Value *&Result);
759
760 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
761 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
762
763 // Binary operators and binary compound assignment operators.
764#define HANDLEBINOP(OP) \
765 Value *VisitBin ## OP(const BinaryOperator *E) { \
766 return Emit ## OP(EmitBinOps(E)); \
767 } \
768 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
769 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
770 }
771 HANDLEBINOP(Mul)
772 HANDLEBINOP(Div)
773 HANDLEBINOP(Rem)
774 HANDLEBINOP(Add)
775 HANDLEBINOP(Sub)
776 HANDLEBINOP(Shl)
777 HANDLEBINOP(Shr)
778 HANDLEBINOP(And)
779 HANDLEBINOP(Xor)
1
Calling 'ScalarExprEmitter::EmitCompoundAssign'
780 HANDLEBINOP(Or)
781#undef HANDLEBINOP
782
783 // Comparisons.
784 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
785 llvm::CmpInst::Predicate SICmpOpc,
786 llvm::CmpInst::Predicate FCmpOpc);
787#define VISITCOMP(CODE, UI, SI, FP) \
788 Value *VisitBin##CODE(const BinaryOperator *E) { \
789 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
790 llvm::FCmpInst::FP); }
791 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
792 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
793 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
794 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
795 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
796 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
797#undef VISITCOMP
798
799 Value *VisitBinAssign (const BinaryOperator *E);
800
801 Value *VisitBinLAnd (const BinaryOperator *E);
802 Value *VisitBinLOr (const BinaryOperator *E);
803 Value *VisitBinComma (const BinaryOperator *E);
804
805 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
806 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
807
808 // Other Operators.
809 Value *VisitBlockExpr(const BlockExpr *BE);
810 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
811 Value *VisitChooseExpr(ChooseExpr *CE);
812 Value *VisitVAArgExpr(VAArgExpr *VE);
813 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
814 return CGF.EmitObjCStringLiteral(E);
815 }
816 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
817 return CGF.EmitObjCBoxedExpr(E);
818 }
819 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
820 return CGF.EmitObjCArrayLiteral(E);
821 }
822 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
823 return CGF.EmitObjCDictionaryLiteral(E);
824 }
825 Value *VisitAsTypeExpr(AsTypeExpr *CE);
826 Value *VisitAtomicExpr(AtomicExpr *AE);
827};
828} // end anonymous namespace.
829
830//===----------------------------------------------------------------------===//
831// Utilities
832//===----------------------------------------------------------------------===//
833
834/// EmitConversionToBool - Convert the specified expression value to a
835/// boolean (i1) truth value. This is equivalent to "Val != 0".
836Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
837 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs")((SrcType.isCanonical() && "EmitScalarConversion strips typedefs"
) ? static_cast<void> (0) : __assert_fail ("SrcType.isCanonical() && \"EmitScalarConversion strips typedefs\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 837, __PRETTY_FUNCTION__))
;
838
839 if (SrcType->isRealFloatingType())
840 return EmitFloatToBoolConversion(Src);
841
842 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
843 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
844
845 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 846, __PRETTY_FUNCTION__))
846 "Unknown scalar type to convert")(((SrcType->isIntegerType() || isa<llvm::PointerType>
(Src->getType())) && "Unknown scalar type to convert"
) ? static_cast<void> (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 846, __PRETTY_FUNCTION__))
;
847
848 if (isa<llvm::IntegerType>(Src->getType()))
849 return EmitIntToBoolConversion(Src);
850
851 assert(isa<llvm::PointerType>(Src->getType()))((isa<llvm::PointerType>(Src->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<llvm::PointerType>(Src->getType())"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 851, __PRETTY_FUNCTION__))
;
852 return EmitPointerToBoolConversion(Src, SrcType);
853}
854
855void ScalarExprEmitter::EmitFloatConversionCheck(
856 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
857 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
858 CodeGenFunction::SanitizerScope SanScope(&CGF);
859 using llvm::APFloat;
860 using llvm::APSInt;
861
862 llvm::Type *SrcTy = Src->getType();
863
864 llvm::Value *Check = nullptr;
865 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
866 // Integer to floating-point. This can fail for unsigned short -> __half
867 // or unsigned __int128 -> float.
868 assert(DstType->isFloatingType())((DstType->isFloatingType()) ? static_cast<void> (0)
: __assert_fail ("DstType->isFloatingType()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 868, __PRETTY_FUNCTION__))
;
869 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
870
871 APFloat LargestFloat =
872 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
873 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
874
875 bool IsExact;
876 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
877 &IsExact) != APFloat::opOK)
878 // The range of representable values of this floating point type includes
879 // all values of this integer type. Don't need an overflow check.
880 return;
881
882 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
883 if (SrcIsUnsigned)
884 Check = Builder.CreateICmpULE(Src, Max);
885 else {
886 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
887 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
888 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
889 Check = Builder.CreateAnd(GE, LE);
890 }
891 } else {
892 const llvm::fltSemantics &SrcSema =
893 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
894 if (isa<llvm::IntegerType>(DstTy)) {
895 // Floating-point to integer. This has undefined behavior if the source is
896 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
897 // to an integer).
898 unsigned Width = CGF.getContext().getIntWidth(DstType);
899 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
900
901 APSInt Min = APSInt::getMinValue(Width, Unsigned);
902 APFloat MinSrc(SrcSema, APFloat::uninitialized);
903 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
904 APFloat::opOverflow)
905 // Don't need an overflow check for lower bound. Just check for
906 // -Inf/NaN.
907 MinSrc = APFloat::getInf(SrcSema, true);
908 else
909 // Find the largest value which is too small to represent (before
910 // truncation toward zero).
911 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
912
913 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
914 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
915 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
916 APFloat::opOverflow)
917 // Don't need an overflow check for upper bound. Just check for
918 // +Inf/NaN.
919 MaxSrc = APFloat::getInf(SrcSema, false);
920 else
921 // Find the smallest value which is too large to represent (before
922 // truncation toward zero).
923 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
924
925 // If we're converting from __half, convert the range to float to match
926 // the type of src.
927 if (OrigSrcType->isHalfType()) {
928 const llvm::fltSemantics &Sema =
929 CGF.getContext().getFloatTypeSemantics(SrcType);
930 bool IsInexact;
931 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
932 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
933 }
934
935 llvm::Value *GE =
936 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
937 llvm::Value *LE =
938 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
939 Check = Builder.CreateAnd(GE, LE);
940 } else {
941 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
942 //
943 // Floating-point to floating-point. This has undefined behavior if the
944 // source is not in the range of representable values of the destination
945 // type. The C and C++ standards are spectacularly unclear here. We
946 // diagnose finite out-of-range conversions, but allow infinities and NaNs
947 // to convert to the corresponding value in the smaller type.
948 //
949 // C11 Annex F gives all such conversions defined behavior for IEC 60559
950 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
951 // does not.
952
953 // Converting from a lower rank to a higher rank can never have
954 // undefined behavior, since higher-rank types must have a superset
955 // of values of lower-rank types.
956 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
957 return;
958
959 assert(!OrigSrcType->isHalfType() &&((!OrigSrcType->isHalfType() && "should not check conversion from __half, it has the lowest rank"
) ? static_cast<void> (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 960, __PRETTY_FUNCTION__))
960 "should not check conversion from __half, it has the lowest rank")((!OrigSrcType->isHalfType() && "should not check conversion from __half, it has the lowest rank"
) ? static_cast<void> (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 960, __PRETTY_FUNCTION__))
;
961
962 const llvm::fltSemantics &DstSema =
963 CGF.getContext().getFloatTypeSemantics(DstType);
964 APFloat MinBad = APFloat::getLargest(DstSema, false);
965 APFloat MaxBad = APFloat::getInf(DstSema, false);
966
967 bool IsInexact;
968 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
969 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
970
971 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
972 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
973 llvm::Value *GE =
974 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
975 llvm::Value *LE =
976 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
977 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
978 }
979 }
980
981 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
982 CGF.EmitCheckTypeDescriptor(OrigSrcType),
983 CGF.EmitCheckTypeDescriptor(DstType)};
984 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
985 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
986}
987
988// Should be called within CodeGenFunction::SanitizerScope RAII scope.
989// Returns 'i1 false' when the truncation Src -> Dst was lossy.
990static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
991 std::pair<llvm::Value *, SanitizerMask>>
992EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
993 QualType DstType, CGBuilderTy &Builder) {
994 llvm::Type *SrcTy = Src->getType();
995 llvm::Type *DstTy = Dst->getType();
996 (void)DstTy; // Only used in assert()
997
998 // This should be truncation of integral types.
999 assert(Src != Dst)((Src != Dst) ? static_cast<void> (0) : __assert_fail (
"Src != Dst", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 999, __PRETTY_FUNCTION__))
;
1000 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits())((SrcTy->getScalarSizeInBits() > Dst->getType()->
getScalarSizeInBits()) ? static_cast<void> (0) : __assert_fail
("SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1000, __PRETTY_FUNCTION__))
;
1001 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1002, __PRETTY_FUNCTION__))
1002 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1002, __PRETTY_FUNCTION__))
;
1003
1004 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1005 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1006
1007 // If both (src and dst) types are unsigned, then it's an unsigned truncation.
1008 // Else, it is a signed truncation.
1009 ScalarExprEmitter::ImplicitConversionCheckKind Kind;
1010 SanitizerMask Mask;
1011 if (!SrcSigned && !DstSigned) {
1012 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
1013 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
1014 } else {
1015 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
1016 Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
1017 }
1018
1019 llvm::Value *Check = nullptr;
1020 // 1. Extend the truncated value back to the same width as the Src.
1021 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
1022 // 2. Equality-compare with the original source value
1023 Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
1024 // If the comparison result is 'i1 false', then the truncation was lossy.
1025 return std::make_pair(Kind, std::make_pair(Check, Mask));
1026}
1027
1028void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
1029 Value *Dst, QualType DstType,
1030 SourceLocation Loc) {
1031 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
1032 return;
1033
1034 // We only care about int->int conversions here.
1035 // We ignore conversions to/from pointer and/or bool.
1036 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1037 return;
1038
1039 unsigned SrcBits = Src->getType()->getScalarSizeInBits();
1040 unsigned DstBits = Dst->getType()->getScalarSizeInBits();
1041 // This must be truncation. Else we do not care.
1042 if (SrcBits <= DstBits)
1043 return;
1044
1045 assert(!DstType->isBooleanType() && "we should not get here with booleans.")((!DstType->isBooleanType() && "we should not get here with booleans."
) ? static_cast<void> (0) : __assert_fail ("!DstType->isBooleanType() && \"we should not get here with booleans.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1045, __PRETTY_FUNCTION__))
;
1046
1047 // If the integer sign change sanitizer is enabled,
1048 // and we are truncating from larger unsigned type to smaller signed type,
1049 // let that next sanitizer deal with it.
1050 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1051 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1052 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
1053 (!SrcSigned && DstSigned))
1054 return;
1055
1056 CodeGenFunction::SanitizerScope SanScope(&CGF);
1057
1058 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1059 std::pair<llvm::Value *, SanitizerMask>>
1060 Check =
1061 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1062 // If the comparison result is 'i1 false', then the truncation was lossy.
1063
1064 // Do we care about this type of truncation?
1065 if (!CGF.SanOpts.has(Check.second.second))
1066 return;
1067
1068 llvm::Constant *StaticArgs[] = {
1069 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1070 CGF.EmitCheckTypeDescriptor(DstType),
1071 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
1072 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
1073 {Src, Dst});
1074}
1075
1076// Should be called within CodeGenFunction::SanitizerScope RAII scope.
1077// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
1078static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1079 std::pair<llvm::Value *, SanitizerMask>>
1080EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
1081 QualType DstType, CGBuilderTy &Builder) {
1082 llvm::Type *SrcTy = Src->getType();
1083 llvm::Type *DstTy = Dst->getType();
1084
1085 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1086, __PRETTY_FUNCTION__))
1086 "non-integer llvm type")((isa<llvm::IntegerType>(SrcTy) && isa<llvm::
IntegerType>(DstTy) && "non-integer llvm type") ? static_cast
<void> (0) : __assert_fail ("isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && \"non-integer llvm type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1086, __PRETTY_FUNCTION__))
;
1087
1088 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1089 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1090 (void)SrcSigned; // Only used in assert()
1091 (void)DstSigned; // Only used in assert()
1092 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1093 unsigned DstBits = DstTy->getScalarSizeInBits();
1094 (void)SrcBits; // Only used in assert()
1095 (void)DstBits; // Only used in assert()
1096
1097 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1098, __PRETTY_FUNCTION__))
1098 "either the widths should be different, or the signednesses.")((((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
"either the widths should be different, or the signednesses."
) ? static_cast<void> (0) : __assert_fail ("((SrcBits != DstBits) || (SrcSigned != DstSigned)) && \"either the widths should be different, or the signednesses.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1098, __PRETTY_FUNCTION__))
;
1099
1100 // NOTE: zero value is considered to be non-negative.
1101 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
1102 const char *Name) -> Value * {
1103 // Is this value a signed type?
1104 bool VSigned = VType->isSignedIntegerOrEnumerationType();
1105 llvm::Type *VTy = V->getType();
1106 if (!VSigned) {
1107 // If the value is unsigned, then it is never negative.
1108 // FIXME: can we encounter non-scalar VTy here?
1109 return llvm::ConstantInt::getFalse(VTy->getContext());
1110 }
1111 // Get the zero of the same type with which we will be comparing.
1112 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
1113 // %V.isnegative = icmp slt %V, 0
1114 // I.e is %V *strictly* less than zero, does it have negative value?
1115 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
1116 llvm::Twine(Name) + "." + V->getName() +
1117 ".negativitycheck");
1118 };
1119
1120 // 1. Was the old Value negative?
1121 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
1122 // 2. Is the new Value negative?
1123 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
1124 // 3. Now, was the 'negativity status' preserved during the conversion?
1125 // NOTE: conversion from negative to zero is considered to change the sign.
1126 // (We want to get 'false' when the conversion changed the sign)
1127 // So we should just equality-compare the negativity statuses.
1128 llvm::Value *Check = nullptr;
1129 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
1130 // If the comparison result is 'false', then the conversion changed the sign.
1131 return std::make_pair(
1132 ScalarExprEmitter::ICCK_IntegerSignChange,
1133 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
1134}
1135
1136void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
1137 Value *Dst, QualType DstType,
1138 SourceLocation Loc) {
1139 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
1140 return;
1141
1142 llvm::Type *SrcTy = Src->getType();
1143 llvm::Type *DstTy = Dst->getType();
1144
1145 // We only care about int->int conversions here.
1146 // We ignore conversions to/from pointer and/or bool.
1147 if (!(SrcType->isIntegerType() && DstType->isIntegerType()))
1148 return;
1149
1150 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
1151 bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
1152 unsigned SrcBits = SrcTy->getScalarSizeInBits();
1153 unsigned DstBits = DstTy->getScalarSizeInBits();
1154
1155 // Now, we do not need to emit the check in *all* of the cases.
1156 // We can avoid emitting it in some obvious cases where it would have been
1157 // dropped by the opt passes (instcombine) always anyways.
1158 // If it's a cast between effectively the same type, no check.
1159 // NOTE: this is *not* equivalent to checking the canonical types.
1160 if (SrcSigned == DstSigned && SrcBits == DstBits)
1161 return;
1162 // At least one of the values needs to have signed type.
1163 // If both are unsigned, then obviously, neither of them can be negative.
1164 if (!SrcSigned && !DstSigned)
1165 return;
1166 // If the conversion is to *larger* *signed* type, then no check is needed.
1167 // Because either sign-extension happens (so the sign will remain),
1168 // or zero-extension will happen (the sign bit will be zero.)
1169 if ((DstBits > SrcBits) && DstSigned)
1170 return;
1171 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1172 (SrcBits > DstBits) && SrcSigned) {
1173 // If the signed integer truncation sanitizer is enabled,
1174 // and this is a truncation from signed type, then no check is needed.
1175 // Because here sign change check is interchangeable with truncation check.
1176 return;
1177 }
1178 // That's it. We can't rule out any more cases with the data we have.
1179
1180 CodeGenFunction::SanitizerScope SanScope(&CGF);
1181
1182 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
1183 std::pair<llvm::Value *, SanitizerMask>>
1184 Check;
1185
1186 // Each of these checks needs to return 'false' when an issue was detected.
1187 ImplicitConversionCheckKind CheckKind;
1188 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
1189 // So we can 'and' all the checks together, and still get 'false',
1190 // if at least one of the checks detected an issue.
1191
1192 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
1193 CheckKind = Check.first;
1194 Checks.emplace_back(Check.second);
1195
1196 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
1197 (SrcBits > DstBits) && !SrcSigned && DstSigned) {
1198 // If the signed integer truncation sanitizer was enabled,
1199 // and we are truncating from larger unsigned type to smaller signed type,
1200 // let's handle the case we skipped in that check.
1201 Check =
1202 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
1203 CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
1204 Checks.emplace_back(Check.second);
1205 // If the comparison result is 'i1 false', then the truncation was lossy.
1206 }
1207
1208 llvm::Constant *StaticArgs[] = {
1209 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
1210 CGF.EmitCheckTypeDescriptor(DstType),
1211 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
1212 // EmitCheck() will 'and' all the checks together.
1213 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
1214 {Src, Dst});
1215}
1216
1217/// Emit a conversion from the specified type to the specified destination type,
1218/// both of which are LLVM scalar types.
1219Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
1220 QualType DstType,
1221 SourceLocation Loc,
1222 ScalarConversionOpts Opts) {
1223 // All conversions involving fixed point types should be handled by the
1224 // EmitFixedPoint family functions. This is done to prevent bloating up this
1225 // function more, and although fixed point numbers are represented by
1226 // integers, we do not want to follow any logic that assumes they should be
1227 // treated as integers.
1228 // TODO(leonardchan): When necessary, add another if statement checking for
1229 // conversions to fixed point types from other types.
1230 if (SrcType->isFixedPointType()) {
1231 if (DstType->isBooleanType())
1232 // It is important that we check this before checking if the dest type is
1233 // an integer because booleans are technically integer types.
1234 // We do not need to check the padding bit on unsigned types if unsigned
1235 // padding is enabled because overflow into this bit is undefined
1236 // behavior.
1237 return Builder.CreateIsNotNull(Src, "tobool");
1238 if (DstType->isFixedPointType() || DstType->isIntegerType())
1239 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1240
1241 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion from a fixed point type to another type."
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1242)
1242 "Unhandled scalar conversion from a fixed point type to another type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion from a fixed point type to another type."
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1242)
;
1243 } else if (DstType->isFixedPointType()) {
1244 if (SrcType->isIntegerType())
1245 // This also includes converting booleans and enums to fixed point types.
1246 return EmitFixedPointConversion(Src, SrcType, DstType, Loc);
1247
1248 llvm_unreachable(::llvm::llvm_unreachable_internal("Unhandled scalar conversion to a fixed point type from another type."
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1249)
1249 "Unhandled scalar conversion to a fixed point type from another type.")::llvm::llvm_unreachable_internal("Unhandled scalar conversion to a fixed point type from another type."
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1249)
;
1250 }
1251
1252 QualType NoncanonicalSrcType = SrcType;
1253 QualType NoncanonicalDstType = DstType;
1254
1255 SrcType = CGF.getContext().getCanonicalType(SrcType);
1256 DstType = CGF.getContext().getCanonicalType(DstType);
1257 if (SrcType == DstType) return Src;
1258
1259 if (DstType->isVoidType()) return nullptr;
1260
1261 llvm::Value *OrigSrc = Src;
1262 QualType OrigSrcType = SrcType;
1263 llvm::Type *SrcTy = Src->getType();
1264
1265 // Handle conversions to bool first, they are special: comparisons against 0.
1266 if (DstType->isBooleanType())
1267 return EmitConversionToBool(Src, SrcType);
1268
1269 llvm::Type *DstTy = ConvertType(DstType);
1270
1271 // Cast from half through float if half isn't a native type.
1272 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1273 // Cast to FP using the intrinsic if the half type itself isn't supported.
1274 if (DstTy->isFloatingPointTy()) {
1275 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1276 return Builder.CreateCall(
1277 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
1278 Src);
1279 } else {
1280 // Cast to other types through float, using either the intrinsic or FPExt,
1281 // depending on whether the half type itself is supported
1282 // (as opposed to operations on half, available with NativeHalfType).
1283 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1284 Src = Builder.CreateCall(
1285 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1286 CGF.CGM.FloatTy),
1287 Src);
1288 } else {
1289 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
1290 }
1291 SrcType = CGF.getContext().FloatTy;
1292 SrcTy = CGF.FloatTy;
1293 }
1294 }
1295
1296 // Ignore conversions like int -> uint.
1297 if (SrcTy == DstTy) {
1298 if (Opts.EmitImplicitIntegerSignChangeChecks)
1299 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
1300 NoncanonicalDstType, Loc);
1301
1302 return Src;
1303 }
1304
1305 // Handle pointer conversions next: pointers can only be converted to/from
1306 // other pointers and integers. Check for pointer types in terms of LLVM, as
1307 // some native types (like Obj-C id) may map to a pointer type.
1308 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
1309 // The source value may be an integer, or a pointer.
1310 if (isa<llvm::PointerType>(SrcTy))
1311 return Builder.CreateBitCast(Src, DstTy, "conv");
1312
1313 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?")((SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isIntegerType() && \"Not ptr->ptr or int->ptr conversion?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 // First, convert to the correct width so that we control the kind of
1315 // extension.
1316 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
1317 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1318 llvm::Value* IntResult =
1319 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1320 // Then, cast to pointer.
1321 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1322 }
1323
1324 if (isa<llvm::PointerType>(SrcTy)) {
1325 // Must be an ptr to int cast.
1326 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?")((isa<llvm::IntegerType>(DstTy) && "not ptr->int?"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::IntegerType>(DstTy) && \"not ptr->int?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1326, __PRETTY_FUNCTION__))
;
1327 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1328 }
1329
1330 // A scalar can be splatted to an extended vector of the same element type
1331 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1332 // Sema should add casts to make sure that the source expression's type is
1333 // the same as the vector's element type (sans qualifiers)
1334 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1336, __PRETTY_FUNCTION__))
1335 SrcType.getTypePtr() &&((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1336, __PRETTY_FUNCTION__))
1336 "Splatted expr doesn't match with vector element type?")((DstType->castAs<ExtVectorType>()->getElementType
().getTypePtr() == SrcType.getTypePtr() && "Splatted expr doesn't match with vector element type?"
) ? static_cast<void> (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1336, __PRETTY_FUNCTION__))
;
1337
1338 // Splat the element across to all elements
1339 unsigned NumElements = DstTy->getVectorNumElements();
1340 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1341 }
1342
1343 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1344 // Allow bitcast from vector to integer/fp of the same size.
1345 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1346 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1347 if (SrcSize == DstSize)
1348 return Builder.CreateBitCast(Src, DstTy, "conv");
1349
1350 // Conversions between vectors of different sizes are not allowed except
1351 // when vectors of half are involved. Operations on storage-only half
1352 // vectors require promoting half vector operands to float vectors and
1353 // truncating the result, which is either an int or float vector, to a
1354 // short or half vector.
1355
1356 // Source and destination are both expected to be vectors.
1357 llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1358 llvm::Type *DstElementTy = DstTy->getVectorElementType();
1359 (void)DstElementTy;
1360
1361 assert(((SrcElementTy->isIntegerTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1366, __PRETTY_FUNCTION__))
1362 DstElementTy->isIntegerTy()) ||((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1366, __PRETTY_FUNCTION__))
1363 (SrcElementTy->isFloatingPointTy() &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1366, __PRETTY_FUNCTION__))
1364 DstElementTy->isFloatingPointTy())) &&((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1366, __PRETTY_FUNCTION__))
1365 "unexpected conversion between a floating-point vector and an "((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1366, __PRETTY_FUNCTION__))
1366 "integer vector")((((SrcElementTy->isIntegerTy() && DstElementTy->
isIntegerTy()) || (SrcElementTy->isFloatingPointTy() &&
DstElementTy->isFloatingPointTy())) && "unexpected conversion between a floating-point vector and an "
"integer vector") ? static_cast<void> (0) : __assert_fail
("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1366, __PRETTY_FUNCTION__))
;
1367
1368 // Truncate an i32 vector to an i16 vector.
1369 if (SrcElementTy->isIntegerTy())
1370 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1371
1372 // Truncate a float vector to a half vector.
1373 if (SrcSize > DstSize)
1374 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1375
1376 // Promote a half vector to a float vector.
1377 return Builder.CreateFPExt(Src, DstTy, "conv");
1378 }
1379
1380 // Finally, we have the arithmetic types: real int/float.
1381 Value *Res = nullptr;
1382 llvm::Type *ResTy = DstTy;
1383
1384 // An overflowing conversion has undefined behavior if either the source type
1385 // or the destination type is a floating-point type.
1386 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1387 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1388 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1389 Loc);
1390
1391 // Cast to half through float if half isn't a native type.
1392 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1393 // Make sure we cast in a single step if from another FP type.
1394 if (SrcTy->isFloatingPointTy()) {
1395 // Use the intrinsic if the half type itself isn't supported
1396 // (as opposed to operations on half, available with NativeHalfType).
1397 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1398 return Builder.CreateCall(
1399 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1400 // If the half type is supported, just use an fptrunc.
1401 return Builder.CreateFPTrunc(Src, DstTy);
1402 }
1403 DstTy = CGF.FloatTy;
1404 }
1405
1406 if (isa<llvm::IntegerType>(SrcTy)) {
1407 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1408 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
1409 InputSigned = true;
1410 }
1411 if (isa<llvm::IntegerType>(DstTy))
1412 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1413 else if (InputSigned)
1414 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1415 else
1416 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1417 } else if (isa<llvm::IntegerType>(DstTy)) {
1418 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion")((SrcTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1418, __PRETTY_FUNCTION__))
;
1419 if (DstType->isSignedIntegerOrEnumerationType())
1420 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1421 else
1422 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1423 } else {
1424 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1425, __PRETTY_FUNCTION__))
1425 "Unknown real conversion")((SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1425, __PRETTY_FUNCTION__))
;
1426 if (DstTy->getTypeID() < SrcTy->getTypeID())
1427 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1428 else
1429 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1430 }
1431
1432 if (DstTy != ResTy) {
1433 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1434 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion")((ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"
) ? static_cast<void> (0) : __assert_fail ("ResTy->isIntegerTy(16) && \"Only half FP requires extra conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1434, __PRETTY_FUNCTION__))
;
1435 Res = Builder.CreateCall(
1436 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1437 Res);
1438 } else {
1439 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1440 }
1441 }
1442
1443 if (Opts.EmitImplicitIntegerTruncationChecks)
1444 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
1445 NoncanonicalDstType, Loc);
1446
1447 if (Opts.EmitImplicitIntegerSignChangeChecks)
1448 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
1449 NoncanonicalDstType, Loc);
1450
1451 return Res;
1452}
1453
1454Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
1455 QualType DstTy,
1456 SourceLocation Loc) {
1457 FixedPointSemantics SrcFPSema =
1458 CGF.getContext().getFixedPointSemantics(SrcTy);
1459 FixedPointSemantics DstFPSema =
1460 CGF.getContext().getFixedPointSemantics(DstTy);
1461 return EmitFixedPointConversion(Src, SrcFPSema, DstFPSema, Loc,
1462 DstTy->isIntegerType());
1463}
1464
1465Value *ScalarExprEmitter::EmitFixedPointConversion(
1466 Value *Src, FixedPointSemantics &SrcFPSema, FixedPointSemantics &DstFPSema,
1467 SourceLocation Loc, bool DstIsInteger) {
1468 using llvm::APInt;
1469 using llvm::ConstantInt;
1470 using llvm::Value;
1471
1472 unsigned SrcWidth = SrcFPSema.getWidth();
1473 unsigned DstWidth = DstFPSema.getWidth();
1474 unsigned SrcScale = SrcFPSema.getScale();
1475 unsigned DstScale = DstFPSema.getScale();
1476 bool SrcIsSigned = SrcFPSema.isSigned();
1477 bool DstIsSigned = DstFPSema.isSigned();
1478
1479 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth);
1480
1481 Value *Result = Src;
1482 unsigned ResultWidth = SrcWidth;
1483
1484 // Downscale.
1485 if (DstScale < SrcScale) {
1486 // When converting to integers, we round towards zero. For negative numbers,
1487 // right shifting rounds towards negative infinity. In this case, we can
1488 // just round up before shifting.
1489 if (DstIsInteger && SrcIsSigned) {
1490 Value *Zero = llvm::Constant::getNullValue(Result->getType());
1491 Value *IsNegative = Builder.CreateICmpSLT(Result, Zero);
1492 Value *LowBits = ConstantInt::get(
1493 CGF.getLLVMContext(), APInt::getLowBitsSet(ResultWidth, SrcScale));
1494 Value *Rounded = Builder.CreateAdd(Result, LowBits);
1495 Result = Builder.CreateSelect(IsNegative, Rounded, Result);
1496 }
1497
1498 Result = SrcIsSigned
1499 ? Builder.CreateAShr(Result, SrcScale - DstScale, "downscale")
1500 : Builder.CreateLShr(Result, SrcScale - DstScale, "downscale");
1501 }
1502
1503 if (!DstFPSema.isSaturated()) {
1504 // Resize.
1505 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1506
1507 // Upscale.
1508 if (DstScale > SrcScale)
1509 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1510 } else {
1511 // Adjust the number of fractional bits.
1512 if (DstScale > SrcScale) {
1513 // Compare to DstWidth to prevent resizing twice.
1514 ResultWidth = std::max(SrcWidth + DstScale - SrcScale, DstWidth);
1515 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth);
1516 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize");
1517 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale");
1518 }
1519
1520 // Handle saturation.
1521 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits();
1522 if (LessIntBits) {
1523 Value *Max = ConstantInt::get(
1524 CGF.getLLVMContext(),
1525 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth));
1526 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max)
1527 : Builder.CreateICmpUGT(Result, Max);
1528 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax");
1529 }
1530 // Cannot overflow min to dest type if src is unsigned since all fixed
1531 // point types can cover the unsigned min of 0.
1532 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) {
1533 Value *Min = ConstantInt::get(
1534 CGF.getLLVMContext(),
1535 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth));
1536 Value *TooLow = Builder.CreateICmpSLT(Result, Min);
1537 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin");
1538 }
1539
1540 // Resize the integer part to get the final destination size.
1541 if (ResultWidth != DstWidth)
1542 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize");
1543 }
1544 return Result;
1545}
1546
1547/// Emit a conversion from the specified complex type to the specified
1548/// destination type, where the destination type is an LLVM scalar type.
1549Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1550 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1551 SourceLocation Loc) {
1552 // Get the source element type.
1553 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1554
1555 // Handle conversions to bool first, they are special: comparisons against 0.
1556 if (DstTy->isBooleanType()) {
1557 // Complex != 0 -> (Real != 0) | (Imag != 0)
1558 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1559 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1560 return Builder.CreateOr(Src.first, Src.second, "tobool");
1561 }
1562
1563 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1564 // the imaginary part of the complex value is discarded and the value of the
1565 // real part is converted according to the conversion rules for the
1566 // corresponding real type.
1567 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1568}
1569
1570Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1571 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1572}
1573
1574/// Emit a sanitization check for the given "binary" operation (which
1575/// might actually be a unary increment which has been lowered to a binary
1576/// operation). The check passes if all values in \p Checks (which are \c i1),
1577/// are \c true.
1578void ScalarExprEmitter::EmitBinOpCheck(
1579 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1580 assert(CGF.IsSanitizerScope)((CGF.IsSanitizerScope) ? static_cast<void> (0) : __assert_fail
("CGF.IsSanitizerScope", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1580, __PRETTY_FUNCTION__))
;
1581 SanitizerHandler Check;
1582 SmallVector<llvm::Constant *, 4> StaticData;
1583 SmallVector<llvm::Value *, 2> DynamicData;
1584
1585 BinaryOperatorKind Opcode = Info.Opcode;
1586 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1587 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1588
1589 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1590 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1591 if (UO && UO->getOpcode() == UO_Minus) {
1592 Check = SanitizerHandler::NegateOverflow;
1593 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1594 DynamicData.push_back(Info.RHS);
1595 } else {
1596 if (BinaryOperator::isShiftOp(Opcode)) {
1597 // Shift LHS negative or too large, or RHS out of bounds.
1598 Check = SanitizerHandler::ShiftOutOfBounds;
1599 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1600 StaticData.push_back(
1601 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1602 StaticData.push_back(
1603 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1604 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1605 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1606 Check = SanitizerHandler::DivremOverflow;
1607 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1608 } else {
1609 // Arithmetic overflow (+, -, *).
1610 switch (Opcode) {
1611 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1612 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1613 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1614 default: llvm_unreachable("unexpected opcode for bin op check")::llvm::llvm_unreachable_internal("unexpected opcode for bin op check"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1614)
;
1615 }
1616 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1617 }
1618 DynamicData.push_back(Info.LHS);
1619 DynamicData.push_back(Info.RHS);
1620 }
1621
1622 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1623}
1624
1625//===----------------------------------------------------------------------===//
1626// Visitor Methods
1627//===----------------------------------------------------------------------===//
1628
1629Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1630 CGF.ErrorUnsupported(E, "scalar expression");
1631 if (E->getType()->isVoidType())
1632 return nullptr;
1633 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1634}
1635
1636Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1637 // Vector Mask Case
1638 if (E->getNumSubExprs() == 2) {
1639 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1640 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1641 Value *Mask;
1642
1643 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1644 unsigned LHSElts = LTy->getNumElements();
1645
1646 Mask = RHS;
1647
1648 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1649
1650 // Mask off the high bits of each shuffle index.
1651 Value *MaskBits =
1652 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1653 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1654
1655 // newv = undef
1656 // mask = mask & maskbits
1657 // for each elt
1658 // n = extract mask i
1659 // x = extract val n
1660 // newv = insert newv, x, i
1661 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1662 MTy->getNumElements());
1663 Value* NewV = llvm::UndefValue::get(RTy);
1664 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1665 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1666 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1667
1668 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1669 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1670 }
1671 return NewV;
1672 }
1673
1674 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1675 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1676
1677 SmallVector<llvm::Constant*, 32> indices;
1678 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1679 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1680 // Check for -1 and output it as undef in the IR.
1681 if (Idx.isSigned() && Idx.isAllOnesValue())
1682 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1683 else
1684 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1685 }
1686
1687 Value *SV = llvm::ConstantVector::get(indices);
1688 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1689}
1690
1691Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1692 QualType SrcType = E->getSrcExpr()->getType(),
1693 DstType = E->getType();
1694
1695 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1696
1697 SrcType = CGF.getContext().getCanonicalType(SrcType);
1698 DstType = CGF.getContext().getCanonicalType(DstType);
1699 if (SrcType == DstType) return Src;
1700
1701 assert(SrcType->isVectorType() &&((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1702, __PRETTY_FUNCTION__))
1702 "ConvertVector source type must be a vector")((SrcType->isVectorType() && "ConvertVector source type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1702, __PRETTY_FUNCTION__))
;
1703 assert(DstType->isVectorType() &&((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1704, __PRETTY_FUNCTION__))
1704 "ConvertVector destination type must be a vector")((DstType->isVectorType() && "ConvertVector destination type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1704, __PRETTY_FUNCTION__))
;
1705
1706 llvm::Type *SrcTy = Src->getType();
1707 llvm::Type *DstTy = ConvertType(DstType);
1708
1709 // Ignore conversions like int -> uint.
1710 if (SrcTy == DstTy)
1711 return Src;
1712
1713 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1714 DstEltType = DstType->getAs<VectorType>()->getElementType();
1715
1716 assert(SrcTy->isVectorTy() &&((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1717, __PRETTY_FUNCTION__))
1717 "ConvertVector source IR type must be a vector")((SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1717, __PRETTY_FUNCTION__))
;
1718 assert(DstTy->isVectorTy() &&((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1719, __PRETTY_FUNCTION__))
1719 "ConvertVector destination IR type must be a vector")((DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? static_cast<void> (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1719, __PRETTY_FUNCTION__))
;
1720
1721 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1722 *DstEltTy = DstTy->getVectorElementType();
1723
1724 if (DstEltType->isBooleanType()) {
1725 assert((SrcEltTy->isFloatingPointTy() ||(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1726, __PRETTY_FUNCTION__))
1726 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion")(((SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType
>(SrcEltTy)) && "Unknown boolean conversion") ? static_cast
<void> (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1726, __PRETTY_FUNCTION__))
;
1727
1728 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1729 if (SrcEltTy->isFloatingPointTy()) {
1730 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1731 } else {
1732 return Builder.CreateICmpNE(Src, Zero, "tobool");
1733 }
1734 }
1735
1736 // We have the arithmetic types: real int/float.
1737 Value *Res = nullptr;
1738
1739 if (isa<llvm::IntegerType>(SrcEltTy)) {
1740 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1741 if (isa<llvm::IntegerType>(DstEltTy))
1742 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1743 else if (InputSigned)
1744 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1745 else
1746 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1747 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1748 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && "Unknown real conversion"
) ? static_cast<void> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1748, __PRETTY_FUNCTION__))
;
1749 if (DstEltType->isSignedIntegerOrEnumerationType())
1750 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1751 else
1752 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1753 } else {
1754 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1755, __PRETTY_FUNCTION__))
1755 "Unknown real conversion")((SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy
() && "Unknown real conversion") ? static_cast<void
> (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1755, __PRETTY_FUNCTION__))
;
1756 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1757 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1758 else
1759 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1760 }
1761
1762 return Res;
1763}
1764
1765Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1766 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1767 CGF.EmitIgnoredExpr(E->getBase());
1768 return CGF.emitScalarConstant(Constant, E);
1769 } else {
1770 Expr::EvalResult Result;
1771 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1772 llvm::APSInt Value = Result.Val.getInt();
1773 CGF.EmitIgnoredExpr(E->getBase());
1774 return Builder.getInt(Value);
1775 }
1776 }
1777
1778 return EmitLoadOfLValue(E);
1779}
1780
1781Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1782 TestAndClearIgnoreResultAssign();
1783
1784 // Emit subscript expressions in rvalue context's. For most cases, this just
1785 // loads the lvalue formed by the subscript expr. However, we have to be
1786 // careful, because the base of a vector subscript is occasionally an rvalue,
1787 // so we can't get it as an lvalue.
1788 if (!E->getBase()->getType()->isVectorType())
1789 return EmitLoadOfLValue(E);
1790
1791 // Handle the vector case. The base must be a vector, the index must be an
1792 // integer value.
1793 Value *Base = Visit(E->getBase());
1794 Value *Idx = Visit(E->getIdx());
1795 QualType IdxTy = E->getIdx()->getType();
1796
1797 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1798 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1799
1800 return Builder.CreateExtractElement(Base, Idx, "vecext");
1801}
1802
1803static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1804 unsigned Off, llvm::Type *I32Ty) {
1805 int MV = SVI->getMaskValue(Idx);
1806 if (MV == -1)
1807 return llvm::UndefValue::get(I32Ty);
1808 return llvm::ConstantInt::get(I32Ty, Off+MV);
1809}
1810
1811static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1812 if (C->getBitWidth() != 32) {
1813 assert(llvm::ConstantInt::isValueValidForType(I32Ty,((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1815, __PRETTY_FUNCTION__))
1814 C->getZExtValue()) &&((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1815, __PRETTY_FUNCTION__))
1815 "Index operand too large for shufflevector mask!")((llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue
()) && "Index operand too large for shufflevector mask!"
) ? static_cast<void> (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1815, __PRETTY_FUNCTION__))
;
1816 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1817 }
1818 return C;
1819}
1820
1821Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1822 bool Ignore = TestAndClearIgnoreResultAssign();
1823 (void)Ignore;
1824 assert (Ignore == false && "init list ignored")((Ignore == false && "init list ignored") ? static_cast
<void> (0) : __assert_fail ("Ignore == false && \"init list ignored\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1824, __PRETTY_FUNCTION__))
;
1825 unsigned NumInitElements = E->getNumInits();
1826
1827 if (E->hadArrayRangeDesignator())
1828 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1829
1830 llvm::VectorType *VType =
1831 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1832
1833 if (!VType) {
1834 if (NumInitElements == 0) {
1835 // C++11 value-initialization for the scalar.
1836 return EmitNullValue(E->getType());
1837 }
1838 // We have a scalar in braces. Just use the first element.
1839 return Visit(E->getInit(0));
1840 }
1841
1842 unsigned ResElts = VType->getNumElements();
1843
1844 // Loop over initializers collecting the Value for each, and remembering
1845 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1846 // us to fold the shuffle for the swizzle into the shuffle for the vector
1847 // initializer, since LLVM optimizers generally do not want to touch
1848 // shuffles.
1849 unsigned CurIdx = 0;
1850 bool VIsUndefShuffle = false;
1851 llvm::Value *V = llvm::UndefValue::get(VType);
1852 for (unsigned i = 0; i != NumInitElements; ++i) {
1853 Expr *IE = E->getInit(i);
1854 Value *Init = Visit(IE);
1855 SmallVector<llvm::Constant*, 16> Args;
1856
1857 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1858
1859 // Handle scalar elements. If the scalar initializer is actually one
1860 // element of a different vector of the same width, use shuffle instead of
1861 // extract+insert.
1862 if (!VVT) {
1863 if (isa<ExtVectorElementExpr>(IE)) {
1864 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1865
1866 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1867 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1868 Value *LHS = nullptr, *RHS = nullptr;
1869 if (CurIdx == 0) {
1870 // insert into undef -> shuffle (src, undef)
1871 // shufflemask must use an i32
1872 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1873 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1874
1875 LHS = EI->getVectorOperand();
1876 RHS = V;
1877 VIsUndefShuffle = true;
1878 } else if (VIsUndefShuffle) {
1879 // insert into undefshuffle && size match -> shuffle (v, src)
1880 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1881 for (unsigned j = 0; j != CurIdx; ++j)
1882 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1883 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1884 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1885
1886 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1887 RHS = EI->getVectorOperand();
1888 VIsUndefShuffle = false;
1889 }
1890 if (!Args.empty()) {
1891 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1892 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1893 ++CurIdx;
1894 continue;
1895 }
1896 }
1897 }
1898 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1899 "vecinit");
1900 VIsUndefShuffle = false;
1901 ++CurIdx;
1902 continue;
1903 }
1904
1905 unsigned InitElts = VVT->getNumElements();
1906
1907 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1908 // input is the same width as the vector being constructed, generate an
1909 // optimized shuffle of the swizzle input into the result.
1910 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1911 if (isa<ExtVectorElementExpr>(IE)) {
1912 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1913 Value *SVOp = SVI->getOperand(0);
1914 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1915
1916 if (OpTy->getNumElements() == ResElts) {
1917 for (unsigned j = 0; j != CurIdx; ++j) {
1918 // If the current vector initializer is a shuffle with undef, merge
1919 // this shuffle directly into it.
1920 if (VIsUndefShuffle) {
1921 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1922 CGF.Int32Ty));
1923 } else {
1924 Args.push_back(Builder.getInt32(j));
1925 }
1926 }
1927 for (unsigned j = 0, je = InitElts; j != je; ++j)
1928 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1929 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1930
1931 if (VIsUndefShuffle)
1932 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1933
1934 Init = SVOp;
1935 }
1936 }
1937
1938 // Extend init to result vector length, and then shuffle its contribution
1939 // to the vector initializer into V.
1940 if (Args.empty()) {
1941 for (unsigned j = 0; j != InitElts; ++j)
1942 Args.push_back(Builder.getInt32(j));
1943 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1944 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1945 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1946 Mask, "vext");
1947
1948 Args.clear();
1949 for (unsigned j = 0; j != CurIdx; ++j)
1950 Args.push_back(Builder.getInt32(j));
1951 for (unsigned j = 0; j != InitElts; ++j)
1952 Args.push_back(Builder.getInt32(j+Offset));
1953 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1954 }
1955
1956 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1957 // merging subsequent shuffles into this one.
1958 if (CurIdx == 0)
1959 std::swap(V, Init);
1960 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1961 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1962 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1963 CurIdx += InitElts;
1964 }
1965
1966 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1967 // Emit remaining default initializers.
1968 llvm::Type *EltTy = VType->getElementType();
1969
1970 // Emit remaining default initializers
1971 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1972 Value *Idx = Builder.getInt32(CurIdx);
1973 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1974 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1975 }
1976 return V;
1977}
1978
1979bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1980 const Expr *E = CE->getSubExpr();
1981
1982 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1983 return false;
1984
1985 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1986 // We always assume that 'this' is never null.
1987 return false;
1988 }
1989
1990 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1991 // And that glvalue casts are never null.
1992 if (ICE->getValueKind() != VK_RValue)
1993 return false;
1994 }
1995
1996 return true;
1997}
1998
1999// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
2000// have to handle a more broad range of conversions than explicit casts, as they
2001// handle things like function to ptr-to-function decay etc.
2002Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
2003 Expr *E = CE->getSubExpr();
2004 QualType DestTy = CE->getType();
2005 CastKind Kind = CE->getCastKind();
2006
2007 // These cases are generally not written to ignore the result of
2008 // evaluating their sub-expressions, so we clear this now.
2009 bool Ignored = TestAndClearIgnoreResultAssign();
2010
2011 // Since almost all cast kinds apply to scalars, this switch doesn't have
2012 // a default case, so the compiler will warn on a missing case. The cases
2013 // are in the same order as in the CastKind enum.
2014 switch (Kind) {
2015 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!")::llvm::llvm_unreachable_internal("dependent cast kind in IR gen!"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2015)
;
2016 case CK_BuiltinFnToFnPtr:
2017 llvm_unreachable("builtin functions are handled elsewhere")::llvm::llvm_unreachable_internal("builtin functions are handled elsewhere"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2017)
;
2018
2019 case CK_LValueBitCast:
2020 case CK_ObjCObjectLValueCast: {
2021 Address Addr = EmitLValue(E).getAddress();
2022 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
2023 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
2024 return EmitLoadOfLValue(LV, CE->getExprLoc());
2025 }
2026
2027 case CK_CPointerToObjCPointerCast:
2028 case CK_BlockPointerToObjCPointerCast:
2029 case CK_AnyPointerToBlockPointerCast:
2030 case CK_BitCast: {
2031 Value *Src = Visit(const_cast<Expr*>(E));
2032 llvm::Type *SrcTy = Src->getType();
2033 llvm::Type *DstTy = ConvertType(DestTy);
2034 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
2035 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
2036 llvm_unreachable("wrong cast for pointers in different address spaces"::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2037)
2037 "(must be an address space cast)!")::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2037)
;
2038 }
2039
2040 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
2041 if (auto PT = DestTy->getAs<PointerType>())
2042 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
2043 /*MayBeNull=*/true,
2044 CodeGenFunction::CFITCK_UnrelatedCast,
2045 CE->getBeginLoc());
2046 }
2047
2048 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2049 const QualType SrcType = E->getType();
2050
2051 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
2052 // Casting to pointer that could carry dynamic information (provided by
2053 // invariant.group) requires launder.
2054 Src = Builder.CreateLaunderInvariantGroup(Src);
2055 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
2056 // Casting to pointer that does not carry dynamic information (provided
2057 // by invariant.group) requires stripping it. Note that we don't do it
2058 // if the source could not be dynamic type and destination could be
2059 // dynamic because dynamic information is already laundered. It is
2060 // because launder(strip(src)) == launder(src), so there is no need to
2061 // add extra strip before launder.
2062 Src = Builder.CreateStripInvariantGroup(Src);
2063 }
2064 }
2065
2066 // Update heapallocsite metadata when there is an explicit cast.
2067 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(Src))
2068 if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE))
2069 CGF.getDebugInfo()->
2070 addHeapAllocSiteMetadata(CI, CE->getType(), CE->getExprLoc());
2071
2072 return Builder.CreateBitCast(Src, DstTy);
2073 }
2074 case CK_AddressSpaceConversion: {
2075 Expr::EvalResult Result;
2076 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
2077 Result.Val.isNullPointer()) {
2078 // If E has side effect, it is emitted even if its final result is a
2079 // null pointer. In that case, a DCE pass should be able to
2080 // eliminate the useless instructions emitted during translating E.
2081 if (Result.HasSideEffects)
2082 Visit(E);
2083 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
2084 ConvertType(DestTy)), DestTy);
2085 }
2086 // Since target may map different address spaces in AST to the same address
2087 // space, an address space conversion may end up as a bitcast.
2088 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
2089 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
2090 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
2091 }
2092 case CK_AtomicToNonAtomic:
2093 case CK_NonAtomicToAtomic:
2094 case CK_NoOp:
2095 case CK_UserDefinedConversion:
2096 return Visit(const_cast<Expr*>(E));
2097
2098 case CK_BaseToDerived: {
2099 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
2100 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!")((DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"
) ? static_cast<void> (0) : __assert_fail ("DerivedClassDecl && \"BaseToDerived arg isn't a C++ object pointer!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2100, __PRETTY_FUNCTION__))
;
2101
2102 Address Base = CGF.EmitPointerWithAlignment(E);
2103 Address Derived =
2104 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
2105 CE->path_begin(), CE->path_end(),
2106 CGF.ShouldNullCheckClassCastValue(CE));
2107
2108 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
2109 // performed and the object is not of the derived type.
2110 if (CGF.sanitizePerformTypeCheck())
2111 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
2112 Derived.getPointer(), DestTy->getPointeeType());
2113
2114 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
2115 CGF.EmitVTablePtrCheckForCast(
2116 DestTy->getPointeeType(), Derived.getPointer(),
2117 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
2118 CE->getBeginLoc());
2119
2120 return Derived.getPointer();
2121 }
2122 case CK_UncheckedDerivedToBase:
2123 case CK_DerivedToBase: {
2124 // The EmitPointerWithAlignment path does this fine; just discard
2125 // the alignment.
2126 return CGF.EmitPointerWithAlignment(CE).getPointer();
2127 }
2128
2129 case CK_Dynamic: {
2130 Address V = CGF.EmitPointerWithAlignment(E);
2131 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
2132 return CGF.EmitDynamicCast(V, DCE);
2133 }
2134
2135 case CK_ArrayToPointerDecay:
2136 return CGF.EmitArrayToPointerDecay(E).getPointer();
2137 case CK_FunctionToPointerDecay:
2138 return EmitLValue(E).getPointer();
2139
2140 case CK_NullToPointer:
2141 if (MustVisitNullValue(E))
2142 (void) Visit(E);
2143
2144 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
2145 DestTy);
2146
2147 case CK_NullToMemberPointer: {
2148 if (MustVisitNullValue(E))
2149 (void) Visit(E);
2150
2151 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
2152 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
2153 }
2154
2155 case CK_ReinterpretMemberPointer:
2156 case CK_BaseToDerivedMemberPointer:
2157 case CK_DerivedToBaseMemberPointer: {
2158 Value *Src = Visit(E);
2159
2160 // Note that the AST doesn't distinguish between checked and
2161 // unchecked member pointer conversions, so we always have to
2162 // implement checked conversions here. This is inefficient when
2163 // actual control flow may be required in order to perform the
2164 // check, which it is for data member pointers (but not member
2165 // function pointers on Itanium and ARM).
2166 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
2167 }
2168
2169 case CK_ARCProduceObject:
2170 return CGF.EmitARCRetainScalarExpr(E);
2171 case CK_ARCConsumeObject:
2172 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
2173 case CK_ARCReclaimReturnedObject:
2174 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
2175 case CK_ARCExtendBlockObject:
2176 return CGF.EmitARCExtendBlockObject(E);
2177
2178 case CK_CopyAndAutoreleaseBlockObject:
2179 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
2180
2181 case CK_FloatingRealToComplex:
2182 case CK_FloatingComplexCast:
2183 case CK_IntegralRealToComplex:
2184 case CK_IntegralComplexCast:
2185 case CK_IntegralComplexToFloatingComplex:
2186 case CK_FloatingComplexToIntegralComplex:
2187 case CK_ConstructorConversion:
2188 case CK_ToUnion:
2189 llvm_unreachable("scalar cast to non-scalar value")::llvm::llvm_unreachable_internal("scalar cast to non-scalar value"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2189)
;
2190
2191 case CK_LValueToRValue:
2192 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy))((CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy
)) ? static_cast<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2192, __PRETTY_FUNCTION__))
;
2193 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!")((E->isGLValue() && "lvalue-to-rvalue applied to r-value!"
) ? static_cast<void> (0) : __assert_fail ("E->isGLValue() && \"lvalue-to-rvalue applied to r-value!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2193, __PRETTY_FUNCTION__))
;
2194 return Visit(const_cast<Expr*>(E));
2195
2196 case CK_IntegralToPointer: {
2197 Value *Src = Visit(const_cast<Expr*>(E));
2198
2199 // First, convert to the correct width so that we control the kind of
2200 // extension.
2201 auto DestLLVMTy = ConvertType(DestTy);
2202 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
2203 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
2204 llvm::Value* IntResult =
2205 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
2206
2207 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
2208
2209 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2210 // Going from integer to pointer that could be dynamic requires reloading
2211 // dynamic information from invariant.group.
2212 if (DestTy.mayBeDynamicClass())
2213 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
2214 }
2215 return IntToPtr;
2216 }
2217 case CK_PointerToIntegral: {
2218 assert(!DestTy->isBooleanType() && "bool should use PointerToBool")((!DestTy->isBooleanType() && "bool should use PointerToBool"
) ? static_cast<void> (0) : __assert_fail ("!DestTy->isBooleanType() && \"bool should use PointerToBool\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2218, __PRETTY_FUNCTION__))
;
2219 auto *PtrExpr = Visit(E);
2220
2221 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
2222 const QualType SrcType = E->getType();
2223
2224 // Casting to integer requires stripping dynamic information as it does
2225 // not carries it.
2226 if (SrcType.mayBeDynamicClass())
2227 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
2228 }
2229
2230 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
2231 }
2232 case CK_ToVoid: {
2233 CGF.EmitIgnoredExpr(E);
2234 return nullptr;
2235 }
2236 case CK_VectorSplat: {
2237 llvm::Type *DstTy = ConvertType(DestTy);
2238 Value *Elt = Visit(const_cast<Expr*>(E));
2239 // Splat the element across to all elements
2240 unsigned NumElements = DstTy->getVectorNumElements();
2241 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
2242 }
2243
2244 case CK_FixedPointCast:
2245 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2246 CE->getExprLoc());
2247
2248 case CK_FixedPointToBoolean:
2249 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2250, __PRETTY_FUNCTION__))
2250 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2250, __PRETTY_FUNCTION__))
;
2251 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type")((DestTy->isBooleanType() && "Expected dest type to be boolean type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isBooleanType() && \"Expected dest type to be boolean type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2251, __PRETTY_FUNCTION__))
;
2252 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2253 CE->getExprLoc());
2254
2255 case CK_FixedPointToIntegral:
2256 assert(E->getType()->isFixedPointType() &&((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2257, __PRETTY_FUNCTION__))
2257 "Expected src type to be fixed point type")((E->getType()->isFixedPointType() && "Expected src type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Expected src type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2257, __PRETTY_FUNCTION__))
;
2258 assert(DestTy->isIntegerType() && "Expected dest type to be an integer")((DestTy->isIntegerType() && "Expected dest type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isIntegerType() && \"Expected dest type to be an integer\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2258, __PRETTY_FUNCTION__))
;
2259 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2260 CE->getExprLoc());
2261
2262 case CK_IntegralToFixedPoint:
2263 assert(E->getType()->isIntegerType() &&((E->getType()->isIntegerType() && "Expected src type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isIntegerType() && \"Expected src type to be an integer\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2264, __PRETTY_FUNCTION__))
2264 "Expected src type to be an integer")((E->getType()->isIntegerType() && "Expected src type to be an integer"
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isIntegerType() && \"Expected src type to be an integer\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2264, __PRETTY_FUNCTION__))
;
2265 assert(DestTy->isFixedPointType() &&((DestTy->isFixedPointType() && "Expected dest type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isFixedPointType() && \"Expected dest type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2266, __PRETTY_FUNCTION__))
2266 "Expected dest type to be fixed point type")((DestTy->isFixedPointType() && "Expected dest type to be fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isFixedPointType() && \"Expected dest type to be fixed point type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2266, __PRETTY_FUNCTION__))
;
2267 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2268 CE->getExprLoc());
2269
2270 case CK_IntegralCast: {
2271 ScalarConversionOpts Opts;
2272 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
2273 if (!ICE->isPartOfExplicitCast())
2274 Opts = ScalarConversionOpts(CGF.SanOpts);
2275 }
2276 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2277 CE->getExprLoc(), Opts);
2278 }
2279 case CK_IntegralToFloating:
2280 case CK_FloatingToIntegral:
2281 case CK_FloatingCast:
2282 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2283 CE->getExprLoc());
2284 case CK_BooleanToSignedIntegral: {
2285 ScalarConversionOpts Opts;
2286 Opts.TreatBooleanAsSigned = true;
2287 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
2288 CE->getExprLoc(), Opts);
2289 }
2290 case CK_IntegralToBoolean:
2291 return EmitIntToBoolConversion(Visit(E));
2292 case CK_PointerToBoolean:
2293 return EmitPointerToBoolConversion(Visit(E), E->getType());
2294 case CK_FloatingToBoolean:
2295 return EmitFloatToBoolConversion(Visit(E));
2296 case CK_MemberPointerToBoolean: {
2297 llvm::Value *MemPtr = Visit(E);
2298 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
2299 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
2300 }
2301
2302 case CK_FloatingComplexToReal:
2303 case CK_IntegralComplexToReal:
2304 return CGF.EmitComplexExpr(E, false, true).first;
2305
2306 case CK_FloatingComplexToBoolean:
2307 case CK_IntegralComplexToBoolean: {
2308 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
2309
2310 // TODO: kill this function off, inline appropriate case here
2311 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
2312 CE->getExprLoc());
2313 }
2314
2315 case CK_ZeroToOCLOpaqueType: {
2316 assert((DestTy->isEventT() || DestTy->isQueueT() ||(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2318, __PRETTY_FUNCTION__))
2317 DestTy->isOCLIntelSubgroupAVCType()) &&(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2318, __PRETTY_FUNCTION__))
2318 "CK_ZeroToOCLEvent cast on non-event type")(((DestTy->isEventT() || DestTy->isQueueT() || DestTy->
isOCLIntelSubgroupAVCType()) && "CK_ZeroToOCLEvent cast on non-event type"
) ? static_cast<void> (0) : __assert_fail ("(DestTy->isEventT() || DestTy->isQueueT() || DestTy->isOCLIntelSubgroupAVCType()) && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2318, __PRETTY_FUNCTION__))
;
2319 return llvm::Constant::getNullValue(ConvertType(DestTy));
2320 }
2321
2322 case CK_IntToOCLSampler:
2323 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
2324
2325 } // end of switch
2326
2327 llvm_unreachable("unknown scalar cast")::llvm::llvm_unreachable_internal("unknown scalar cast", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2327)
;
2328}
2329
2330Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
2331 CodeGenFunction::StmtExprEvaluation eval(CGF);
2332 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
2333 !E->getType()->isVoidType());
2334 if (!RetAlloca.isValid())
2335 return nullptr;
2336 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
2337 E->getExprLoc());
2338}
2339
2340Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
2341 CGF.enterFullExpression(E);
2342 CodeGenFunction::RunCleanupsScope Scope(CGF);
2343 Value *V = Visit(E->getSubExpr());
2344 // Defend against dominance problems caused by jumps out of expression
2345 // evaluation through the shared cleanup block.
2346 Scope.ForceCleanup({&V});
2347 return V;
2348}
2349
2350//===----------------------------------------------------------------------===//
2351// Unary Operators
2352//===----------------------------------------------------------------------===//
2353
2354static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
2355 llvm::Value *InVal, bool IsInc) {
2356 BinOpInfo BinOp;
2357 BinOp.LHS = InVal;
2358 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
2359 BinOp.Ty = E->getType();
2360 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
2361 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2362 BinOp.E = E;
2363 return BinOp;
2364}
2365
2366llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
2367 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
2368 llvm::Value *Amount =
2369 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
2370 StringRef Name = IsInc ? "inc" : "dec";
2371 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2372 case LangOptions::SOB_Defined:
2373 return Builder.CreateAdd(InVal, Amount, Name);
2374 case LangOptions::SOB_Undefined:
2375 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2376 return Builder.CreateNSWAdd(InVal, Amount, Name);
2377 LLVM_FALLTHROUGH[[clang::fallthrough]];
2378 case LangOptions::SOB_Trapping:
2379 if (!E->canOverflow())
2380 return Builder.CreateNSWAdd(InVal, Amount, Name);
2381 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
2382 }
2383 llvm_unreachable("Unknown SignedOverflowBehaviorTy")::llvm::llvm_unreachable_internal("Unknown SignedOverflowBehaviorTy"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2383)
;
2384}
2385
2386llvm::Value *
2387ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2388 bool isInc, bool isPre) {
2389
2390 QualType type = E->getSubExpr()->getType();
2391 llvm::PHINode *atomicPHI = nullptr;
2392 llvm::Value *value;
2393 llvm::Value *input;
2394
2395 int amount = (isInc ? 1 : -1);
2396 bool isSubtraction = !isInc;
2397
2398 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
2399 type = atomicTy->getValueType();
2400 if (isInc && type->isBooleanType()) {
2401 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
2402 if (isPre) {
2403 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
2404 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
2405 return Builder.getTrue();
2406 }
2407 // For atomic bool increment, we just store true and return it for
2408 // preincrement, do an atomic swap with true for postincrement
2409 return Builder.CreateAtomicRMW(
2410 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
2411 llvm::AtomicOrdering::SequentiallyConsistent);
2412 }
2413 // Special case for atomic increment / decrement on integers, emit
2414 // atomicrmw instructions. We skip this if we want to be doing overflow
2415 // checking, and fall into the slow path with the atomic cmpxchg loop.
2416 if (!type->isBooleanType() && type->isIntegerType() &&
2417 !(type->isUnsignedIntegerType() &&
2418 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2419 CGF.getLangOpts().getSignedOverflowBehavior() !=
2420 LangOptions::SOB_Trapping) {
2421 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
2422 llvm::AtomicRMWInst::Sub;
2423 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
2424 llvm::Instruction::Sub;
2425 llvm::Value *amt = CGF.EmitToMemory(
2426 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
2427 llvm::Value *old = Builder.CreateAtomicRMW(aop,
2428 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
2429 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
2430 }
2431 value = EmitLoadOfLValue(LV, E->getExprLoc());
2432 input = value;
2433 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
2434 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2435 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2436 value = CGF.EmitToMemory(value, type);
2437 Builder.CreateBr(opBB);
2438 Builder.SetInsertPoint(opBB);
2439 atomicPHI = Builder.CreatePHI(value->getType(), 2);
2440 atomicPHI->addIncoming(value, startBB);
2441 value = atomicPHI;
2442 } else {
2443 value = EmitLoadOfLValue(LV, E->getExprLoc());
2444 input = value;
2445 }
2446
2447 // Special case of integer increment that we have to check first: bool++.
2448 // Due to promotion rules, we get:
2449 // bool++ -> bool = bool + 1
2450 // -> bool = (int)bool + 1
2451 // -> bool = ((int)bool + 1 != 0)
2452 // An interesting aspect of this is that increment is always true.
2453 // Decrement does not have this property.
2454 if (isInc && type->isBooleanType()) {
2455 value = Builder.getTrue();
2456
2457 // Most common case by far: integer increment.
2458 } else if (type->isIntegerType()) {
2459 // Note that signed integer inc/dec with width less than int can't
2460 // overflow because of promotion rules; we're just eliding a few steps here.
2461 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2462 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2463 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2464 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2465 value =
2466 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2467 } else {
2468 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2469 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2470 }
2471
2472 // Next most common: pointer increment.
2473 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2474 QualType type = ptr->getPointeeType();
2475
2476 // VLA types don't have constant size.
2477 if (const VariableArrayType *vla
2478 = CGF.getContext().getAsVariableArrayType(type)) {
2479 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2480 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2481 if (CGF.getLangOpts().isSignedOverflowDefined())
2482 value = Builder.CreateGEP(value, numElts, "vla.inc");
2483 else
2484 value = CGF.EmitCheckedInBoundsGEP(
2485 value, numElts, /*SignedIndices=*/false, isSubtraction,
2486 E->getExprLoc(), "vla.inc");
2487
2488 // Arithmetic on function pointers (!) is just +-1.
2489 } else if (type->isFunctionType()) {
2490 llvm::Value *amt = Builder.getInt32(amount);
2491
2492 value = CGF.EmitCastToVoidPtr(value);
2493 if (CGF.getLangOpts().isSignedOverflowDefined())
2494 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2495 else
2496 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2497 isSubtraction, E->getExprLoc(),
2498 "incdec.funcptr");
2499 value = Builder.CreateBitCast(value, input->getType());
2500
2501 // For everything else, we can just do a simple increment.
2502 } else {
2503 llvm::Value *amt = Builder.getInt32(amount);
2504 if (CGF.getLangOpts().isSignedOverflowDefined())
2505 value = Builder.CreateGEP(value, amt, "incdec.ptr");
2506 else
2507 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2508 isSubtraction, E->getExprLoc(),
2509 "incdec.ptr");
2510 }
2511
2512 // Vector increment/decrement.
2513 } else if (type->isVectorType()) {
2514 if (type->hasIntegerRepresentation()) {
2515 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2516
2517 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2518 } else {
2519 value = Builder.CreateFAdd(
2520 value,
2521 llvm::ConstantFP::get(value->getType(), amount),
2522 isInc ? "inc" : "dec");
2523 }
2524
2525 // Floating point.
2526 } else if (type->isRealFloatingType()) {
2527 // Add the inc/dec to the real part.
2528 llvm::Value *amt;
2529
2530 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2531 // Another special case: half FP increment should be done via float
2532 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2533 value = Builder.CreateCall(
2534 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2535 CGF.CGM.FloatTy),
2536 input, "incdec.conv");
2537 } else {
2538 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2539 }
2540 }
2541
2542 if (value->getType()->isFloatTy())
2543 amt = llvm::ConstantFP::get(VMContext,
2544 llvm::APFloat(static_cast<float>(amount)));
2545 else if (value->getType()->isDoubleTy())
2546 amt = llvm::ConstantFP::get(VMContext,
2547 llvm::APFloat(static_cast<double>(amount)));
2548 else {
2549 // Remaining types are Half, LongDouble or __float128. Convert from float.
2550 llvm::APFloat F(static_cast<float>(amount));
2551 bool ignored;
2552 const llvm::fltSemantics *FS;
2553 // Don't use getFloatTypeSemantics because Half isn't
2554 // necessarily represented using the "half" LLVM type.
2555 if (value->getType()->isFP128Ty())
2556 FS = &CGF.getTarget().getFloat128Format();
2557 else if (value->getType()->isHalfTy())
2558 FS = &CGF.getTarget().getHalfFormat();
2559 else
2560 FS = &CGF.getTarget().getLongDoubleFormat();
2561 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2562 amt = llvm::ConstantFP::get(VMContext, F);
2563 }
2564 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2565
2566 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2567 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2568 value = Builder.CreateCall(
2569 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2570 CGF.CGM.FloatTy),
2571 value, "incdec.conv");
2572 } else {
2573 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2574 }
2575 }
2576
2577 // Objective-C pointer types.
2578 } else {
2579 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2580 value = CGF.EmitCastToVoidPtr(value);
2581
2582 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2583 if (!isInc) size = -size;
2584 llvm::Value *sizeValue =
2585 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2586
2587 if (CGF.getLangOpts().isSignedOverflowDefined())
2588 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2589 else
2590 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2591 /*SignedIndices=*/false, isSubtraction,
2592 E->getExprLoc(), "incdec.objptr");
2593 value = Builder.CreateBitCast(value, input->getType());
2594 }
2595
2596 if (atomicPHI) {
2597 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2598 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2599 auto Pair = CGF.EmitAtomicCompareExchange(
2600 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2601 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2602 llvm::Value *success = Pair.second;
2603 atomicPHI->addIncoming(old, curBlock);
2604 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2605 Builder.SetInsertPoint(contBB);
2606 return isPre ? value : input;
2607 }
2608
2609 // Store the updated result through the lvalue.
2610 if (LV.isBitField())
2611 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2612 else
2613 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2614
2615 // If this is a postinc, return the value read from memory, otherwise use the
2616 // updated value.
2617 return isPre ? value : input;
2618}
2619
2620
2621
2622Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2623 TestAndClearIgnoreResultAssign();
2624 // Emit unary minus with EmitSub so we handle overflow cases etc.
2625 BinOpInfo BinOp;
2626 BinOp.RHS = Visit(E->getSubExpr());
2627
2628 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
2629 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2630 else
2631 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2632 BinOp.Ty = E->getType();
2633 BinOp.Opcode = BO_Sub;
2634 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2635 BinOp.E = E;
2636 return EmitSub(BinOp);
2637}
2638
2639Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2640 TestAndClearIgnoreResultAssign();
2641 Value *Op = Visit(E->getSubExpr());
2642 return Builder.CreateNot(Op, "neg");
2643}
2644
2645Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2646 // Perform vector logical not on comparison with zero vector.
2647 if (E->getType()->isExtVectorType()) {
2648 Value *Oper = Visit(E->getSubExpr());
2649 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2650 Value *Result;
2651 if (Oper->getType()->isFPOrFPVectorTy())
2652 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2653 else
2654 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2655 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2656 }
2657
2658 // Compare operand to zero.
2659 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2660
2661 // Invert value.
2662 // TODO: Could dynamically modify easy computations here. For example, if
2663 // the operand is an icmp ne, turn into icmp eq.
2664 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2665
2666 // ZExt result to the expr type.
2667 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2668}
2669
2670Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2671 // Try folding the offsetof to a constant.
2672 Expr::EvalResult EVResult;
2673 if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
2674 llvm::APSInt Value = EVResult.Val.getInt();
2675 return Builder.getInt(Value);
2676 }
2677
2678 // Loop over the components of the offsetof to compute the value.
2679 unsigned n = E->getNumComponents();
2680 llvm::Type* ResultType = ConvertType(E->getType());
2681 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2682 QualType CurrentType = E->getTypeSourceInfo()->getType();
2683 for (unsigned i = 0; i != n; ++i) {
2684 OffsetOfNode ON = E->getComponent(i);
2685 llvm::Value *Offset = nullptr;
2686 switch (ON.getKind()) {
2687 case OffsetOfNode::Array: {
2688 // Compute the index
2689 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2690 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2691 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2692 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2693
2694 // Save the element type
2695 CurrentType =
2696 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2697
2698 // Compute the element size
2699 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2700 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2701
2702 // Multiply out to compute the result
2703 Offset = Builder.CreateMul(Idx, ElemSize);
2704 break;
2705 }
2706
2707 case OffsetOfNode::Field: {
2708 FieldDecl *MemberDecl = ON.getField();
2709 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2710 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2711
2712 // Compute the index of the field in its parent.
2713 unsigned i = 0;
2714 // FIXME: It would be nice if we didn't have to loop here!
2715 for (RecordDecl::field_iterator Field = RD->field_begin(),
2716 FieldEnd = RD->field_end();
2717 Field != FieldEnd; ++Field, ++i) {
2718 if (*Field == MemberDecl)
2719 break;
2720 }
2721 assert(i < RL.getFieldCount() && "offsetof field in wrong type")((i < RL.getFieldCount() && "offsetof field in wrong type"
) ? static_cast<void> (0) : __assert_fail ("i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2721, __PRETTY_FUNCTION__))
;
2722
2723 // Compute the offset to the field
2724 int64_t OffsetInt = RL.getFieldOffset(i) /
2725 CGF.getContext().getCharWidth();
2726 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2727
2728 // Save the element type.
2729 CurrentType = MemberDecl->getType();
2730 break;
2731 }
2732
2733 case OffsetOfNode::Identifier:
2734 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2734)
;
2735
2736 case OffsetOfNode::Base: {
2737 if (ON.getBase()->isVirtual()) {
2738 CGF.ErrorUnsupported(E, "virtual base in offsetof");
2739 continue;
2740 }
2741
2742 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2743 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2744
2745 // Save the element type.
2746 CurrentType = ON.getBase()->getType();
2747
2748 // Compute the offset to the base.
2749 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2750 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2751 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2752 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2753 break;
2754 }
2755 }
2756 Result = Builder.CreateAdd(Result, Offset);
2757 }
2758 return Result;
2759}
2760
2761/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2762/// argument of the sizeof expression as an integer.
2763Value *
2764ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2765 const UnaryExprOrTypeTraitExpr *E) {
2766 QualType TypeToSize = E->getTypeOfArgument();
2767 if (E->getKind() == UETT_SizeOf) {
2768 if (const VariableArrayType *VAT =
2769 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2770 if (E->isArgumentType()) {
2771 // sizeof(type) - make sure to emit the VLA size.
2772 CGF.EmitVariablyModifiedType(TypeToSize);
2773 } else {
2774 // C99 6.5.3.4p2: If the argument is an expression of type
2775 // VLA, it is evaluated.
2776 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2777 }
2778
2779 auto VlaSize = CGF.getVLASize(VAT);
2780 llvm::Value *size = VlaSize.NumElts;
2781
2782 // Scale the number of non-VLA elements by the non-VLA element size.
2783 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2784 if (!eltSize.isOne())
2785 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2786
2787 return size;
2788 }
2789 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2790 auto Alignment =
2791 CGF.getContext()
2792 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2793 E->getTypeOfArgument()->getPointeeType()))
2794 .getQuantity();
2795 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2796 }
2797
2798 // If this isn't sizeof(vla), the result must be constant; use the constant
2799 // folding logic so we don't have to duplicate it here.
2800 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2801}
2802
2803Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2804 Expr *Op = E->getSubExpr();
2805 if (Op->getType()->isAnyComplexType()) {
2806 // If it's an l-value, load through the appropriate subobject l-value.
2807 // Note that we have to ask E because Op might be an l-value that
2808 // this won't work for, e.g. an Obj-C property.
2809 if (E->isGLValue())
2810 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2811 E->getExprLoc()).getScalarVal();
2812
2813 // Otherwise, calculate and project.
2814 return CGF.EmitComplexExpr(Op, false, true).first;
2815 }
2816
2817 return Visit(Op);
2818}
2819
2820Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2821 Expr *Op = E->getSubExpr();
2822 if (Op->getType()->isAnyComplexType()) {
2823 // If it's an l-value, load through the appropriate subobject l-value.
2824 // Note that we have to ask E because Op might be an l-value that
2825 // this won't work for, e.g. an Obj-C property.
2826 if (Op->isGLValue())
2827 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2828 E->getExprLoc()).getScalarVal();
2829
2830 // Otherwise, calculate and project.
2831 return CGF.EmitComplexExpr(Op, true, false).second;
2832 }
2833
2834 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2835 // effects are evaluated, but not the actual value.
2836 if (Op->isGLValue())
2837 CGF.EmitLValue(Op);
2838 else
2839 CGF.EmitScalarExpr(Op, true);
2840 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2841}
2842
2843//===----------------------------------------------------------------------===//
2844// Binary Operators
2845//===----------------------------------------------------------------------===//
2846
2847BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2848 TestAndClearIgnoreResultAssign();
2849 BinOpInfo Result;
2850 Result.LHS = Visit(E->getLHS());
2851 Result.RHS = Visit(E->getRHS());
2852 Result.Ty = E->getType();
2853 Result.Opcode = E->getOpcode();
2854 Result.FPFeatures = E->getFPFeatures();
2855 Result.E = E;
2856 return Result;
2857}
2858
2859LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2860 const CompoundAssignOperator *E,
2861 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2862 Value *&Result) {
2863 QualType LHSTy = E->getLHS()->getType();
2864 BinOpInfo OpInfo;
2865
2866 if (E->getComputationResultType()->isAnyComplexType())
4
Taking false branch
2867 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2868
2869 // Emit the RHS first. __block variables need to have the rhs evaluated
2870 // first, plus this should improve codegen a little.
2871 OpInfo.RHS = Visit(E->getRHS());
2872 OpInfo.Ty = E->getComputationResultType();
2873 OpInfo.Opcode = E->getOpcode();
2874 OpInfo.FPFeatures = E->getFPFeatures();
2875 OpInfo.E = E;
2876 // Load/convert the LHS.
2877 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2878
2879 llvm::PHINode *atomicPHI = nullptr;
2880 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
5
Taking true branch
2881 QualType type = atomicTy->getValueType();
2882 if (!type->isBooleanType() && type->isIntegerType() &&
8
Taking true branch
2883 !(type->isUnsignedIntegerType() &&
6
Assuming the condition is false
2884 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2885 CGF.getLangOpts().getSignedOverflowBehavior() !=
7
Assuming the condition is true
2886 LangOptions::SOB_Trapping) {
2887 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2888 switch (OpInfo.Opcode) {
9
Control jumps to 'case BO_OrAssign:' at line 2907
2889 // We don't have atomicrmw operands for *, %, /, <<, >>
2890 case BO_MulAssign: case BO_DivAssign:
2891 case BO_RemAssign:
2892 case BO_ShlAssign:
2893 case BO_ShrAssign:
2894 break;
2895 case BO_AddAssign:
2896 aop = llvm::AtomicRMWInst::Add;
2897 break;
2898 case BO_SubAssign:
2899 aop = llvm::AtomicRMWInst::Sub;
2900 break;
2901 case BO_AndAssign:
2902 aop = llvm::AtomicRMWInst::And;
2903 break;
2904 case BO_XorAssign:
2905 aop = llvm::AtomicRMWInst::Xor;
2906 break;
2907 case BO_OrAssign:
2908 aop = llvm::AtomicRMWInst::Or;
2909 break;
10
Execution continues on line 2913
2910 default:
2911 llvm_unreachable("Invalid compound assignment type")::llvm::llvm_unreachable_internal("Invalid compound assignment type"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2911)
;
2912 }
2913 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
11
Taking true branch
2914 llvm::Value *amt = CGF.EmitToMemory(
2915 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2916 E->getExprLoc()),
2917 LHSTy);
2918 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2919 llvm::AtomicOrdering::SequentiallyConsistent);
2920 return LHSLV;
12
Returning without writing to 'Result'
2921 }
2922 }
2923 // FIXME: For floating point types, we should be saving and restoring the
2924 // floating point environment in the loop.
2925 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2926 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2927 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2928 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2929 Builder.CreateBr(opBB);
2930 Builder.SetInsertPoint(opBB);
2931 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2932 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2933 OpInfo.LHS = atomicPHI;
2934 }
2935 else
2936 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2937
2938 SourceLocation Loc = E->getExprLoc();
2939 OpInfo.LHS =
2940 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2941
2942 // Expand the binary operator.
2943 Result = (this->*Func)(OpInfo);
2944
2945 // Convert the result back to the LHS type,
2946 // potentially with Implicit Conversion sanitizer check.
2947 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
2948 Loc, ScalarConversionOpts(CGF.SanOpts));
2949
2950 if (atomicPHI) {
2951 llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
2952 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2953 auto Pair = CGF.EmitAtomicCompareExchange(
2954 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2955 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2956 llvm::Value *success = Pair.second;
2957 atomicPHI->addIncoming(old, curBlock);
2958 Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
2959 Builder.SetInsertPoint(contBB);
2960 return LHSLV;
2961 }
2962
2963 // Store the result value into the LHS lvalue. Bit-fields are handled
2964 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2965 // 'An assignment expression has the value of the left operand after the
2966 // assignment...'.
2967 if (LHSLV.isBitField())
2968 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2969 else
2970 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2971
2972 return LHSLV;
2973}
2974
2975Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2976 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2977 bool Ignore = TestAndClearIgnoreResultAssign();
2978 Value *RHS;
2
'RHS' declared without an initial value
2979 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
3
Calling 'ScalarExprEmitter::EmitCompoundAssignLValue'
13
Returning from 'ScalarExprEmitter::EmitCompoundAssignLValue'
2980
2981 // If the result is clearly ignored, return now.
2982 if (Ignore)
14
Assuming 'Ignore' is 0
15
Taking false branch
2983 return nullptr;
2984
2985 // The result of an assignment in C is the assigned r-value.
2986 if (!CGF.getLangOpts().CPlusPlus)
16
Assuming the condition is false
17
Taking false branch
2987 return RHS;
2988
2989 // If the lvalue is non-volatile, return the computed value of the assignment.
2990 if (!LHS.isVolatileQualified())
18
Assuming the condition is true
19
Taking true branch
2991 return RHS;
20
Undefined or garbage value returned to caller
2992
2993 // Otherwise, reload the value.
2994 return EmitLoadOfLValue(LHS, E->getExprLoc());
2995}
2996
2997void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2998 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2999 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
3000
3001 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
3002 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
3003 SanitizerKind::IntegerDivideByZero));
3004 }
3005
3006 const auto *BO = cast<BinaryOperator>(Ops.E);
3007 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
3008 Ops.Ty->hasSignedIntegerRepresentation() &&
3009 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
3010 Ops.mayHaveIntegerOverflow()) {
3011 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
3012
3013 llvm::Value *IntMin =
3014 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
3015 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
3016
3017 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
3018 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
3019 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
3020 Checks.push_back(
3021 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
3022 }
3023
3024 if (Checks.size() > 0)
3025 EmitBinOpCheck(Checks, Ops);
3026}
3027
3028Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
3029 {
3030 CodeGenFunction::SanitizerScope SanScope(&CGF);
3031 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3032 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3033 Ops.Ty->isIntegerType() &&
3034 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3035 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3036 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
3037 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
3038 Ops.Ty->isRealFloatingType() &&
3039 Ops.mayHaveFloatDivisionByZero()) {
3040 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3041 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
3042 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
3043 Ops);
3044 }
3045 }
3046
3047 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
3048 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
3049 if (CGF.getLangOpts().OpenCL &&
3050 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
3051 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
3052 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
3053 // build option allows an application to specify that single precision
3054 // floating-point divide (x/y and 1/x) and sqrt used in the program
3055 // source are correctly rounded.
3056 llvm::Type *ValTy = Val->getType();
3057 if (ValTy->isFloatTy() ||
3058 (isa<llvm::VectorType>(ValTy) &&
3059 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
3060 CGF.SetFPAccuracy(Val, 2.5);
3061 }
3062 return Val;
3063 }
3064 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
3065 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
3066 else
3067 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
3068}
3069
3070Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
3071 // Rem in C can't be a floating point type: C99 6.5.5p2.
3072 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
3073 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
3074 Ops.Ty->isIntegerType() &&
3075 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
3076 CodeGenFunction::SanitizerScope SanScope(&CGF);
3077 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
3078 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
3079 }
3080
3081 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3082 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
3083 else
3084 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
3085}
3086
3087Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
3088 unsigned IID;
3089 unsigned OpID = 0;
3090
3091 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
3092 switch (Ops.Opcode) {
3093 case BO_Add:
3094 case BO_AddAssign:
3095 OpID = 1;
3096 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
3097 llvm::Intrinsic::uadd_with_overflow;
3098 break;
3099 case BO_Sub:
3100 case BO_SubAssign:
3101 OpID = 2;
3102 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
3103 llvm::Intrinsic::usub_with_overflow;
3104 break;
3105 case BO_Mul:
3106 case BO_MulAssign:
3107 OpID = 3;
3108 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
3109 llvm::Intrinsic::umul_with_overflow;
3110 break;
3111 default:
3112 llvm_unreachable("Unsupported operation for overflow detection")::llvm::llvm_unreachable_internal("Unsupported operation for overflow detection"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3112)
;
3113 }
3114 OpID <<= 1;
3115 if (isSigned)
3116 OpID |= 1;
3117
3118 CodeGenFunction::SanitizerScope SanScope(&CGF);
3119 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
3120
3121 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
3122
3123 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
3124 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
3125 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
3126
3127 // Handle overflow with llvm.trap if no custom handler has been specified.
3128 const std::string *handlerName =
3129 &CGF.getLangOpts().OverflowHandler;
3130 if (handlerName->empty()) {
3131 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
3132 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
3133 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
3134 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
3135 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
3136 : SanitizerKind::UnsignedIntegerOverflow;
3137 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
3138 } else
3139 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
3140 return result;
3141 }
3142
3143 // Branch in case of overflow.
3144 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
3145 llvm::BasicBlock *continueBB =
3146 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
3147 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
3148
3149 Builder.CreateCondBr(overflow, overflowBB, continueBB);
3150
3151 // If an overflow handler is set, then we want to call it and then use its
3152 // result, if it returns.
3153 Builder.SetInsertPoint(overflowBB);
3154
3155 // Get the overflow handler.
3156 llvm::Type *Int8Ty = CGF.Int8Ty;
3157 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
3158 llvm::FunctionType *handlerTy =
3159 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
3160 llvm::FunctionCallee handler =
3161 CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
3162
3163 // Sign extend the args to 64-bit, so that we can use the same handler for
3164 // all types of overflow.
3165 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
3166 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
3167
3168 // Call the handler with the two arguments, the operation, and the size of
3169 // the result.
3170 llvm::Value *handlerArgs[] = {
3171 lhs,
3172 rhs,
3173 Builder.getInt8(OpID),
3174 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
3175 };
3176 llvm::Value *handlerResult =
3177 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
3178
3179 // Truncate the result back to the desired size.
3180 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
3181 Builder.CreateBr(continueBB);
3182
3183 Builder.SetInsertPoint(continueBB);
3184 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
3185 phi->addIncoming(result, initialBB);
3186 phi->addIncoming(handlerResult, overflowBB);
3187
3188 return phi;
3189}
3190
3191/// Emit pointer + index arithmetic.
3192static Value *emitPointerArithmetic(CodeGenFunction &CGF,
3193 const BinOpInfo &op,
3194 bool isSubtraction) {
3195 // Must have binary (not unary) expr here. Unary pointer
3196 // increment/decrement doesn't use this path.
3197 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3198
3199 Value *pointer = op.LHS;
3200 Expr *pointerOperand = expr->getLHS();
3201 Value *index = op.RHS;
3202 Expr *indexOperand = expr->getRHS();
3203
3204 // In a subtraction, the LHS is always the pointer.
3205 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
3206 std::swap(pointer, index);
3207 std::swap(pointerOperand, indexOperand);
3208 }
3209
3210 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
3211
3212 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
3213 auto &DL = CGF.CGM.getDataLayout();
3214 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
3215
3216 // Some versions of glibc and gcc use idioms (particularly in their malloc
3217 // routines) that add a pointer-sized integer (known to be a pointer value)
3218 // to a null pointer in order to cast the value back to an integer or as
3219 // part of a pointer alignment algorithm. This is undefined behavior, but
3220 // we'd like to be able to compile programs that use it.
3221 //
3222 // Normally, we'd generate a GEP with a null-pointer base here in response
3223 // to that code, but it's also UB to dereference a pointer created that
3224 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
3225 // generate a direct cast of the integer value to a pointer.
3226 //
3227 // The idiom (p = nullptr + N) is not met if any of the following are true:
3228 //
3229 // The operation is subtraction.
3230 // The index is not pointer-sized.
3231 // The pointer type is not byte-sized.
3232 //
3233 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
3234 op.Opcode,
3235 expr->getLHS(),
3236 expr->getRHS()))
3237 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
3238
3239 if (width != DL.getTypeSizeInBits(PtrTy)) {
3240 // Zero-extend or sign-extend the pointer value according to
3241 // whether the index is signed or not.
3242 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
3243 "idx.ext");
3244 }
3245
3246 // If this is subtraction, negate the index.
3247 if (isSubtraction)
3248 index = CGF.Builder.CreateNeg(index, "idx.neg");
3249
3250 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
3251 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
3252 /*Accessed*/ false);
3253
3254 const PointerType *pointerType
3255 = pointerOperand->getType()->getAs<PointerType>();
3256 if (!pointerType) {
3257 QualType objectType = pointerOperand->getType()
3258 ->castAs<ObjCObjectPointerType>()
3259 ->getPointeeType();
3260 llvm::Value *objectSize
3261 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
3262
3263 index = CGF.Builder.CreateMul(index, objectSize);
3264
3265 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3266 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3267 return CGF.Builder.CreateBitCast(result, pointer->getType());
3268 }
3269
3270 QualType elementType = pointerType->getPointeeType();
3271 if (const VariableArrayType *vla
3272 = CGF.getContext().getAsVariableArrayType(elementType)) {
3273 // The element count here is the total number of non-VLA elements.
3274 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
3275
3276 // Effectively, the multiply by the VLA size is part of the GEP.
3277 // GEP indexes are signed, and scaling an index isn't permitted to
3278 // signed-overflow, so we use the same semantics for our explicit
3279 // multiply. We suppress this if overflow is not undefined behavior.
3280 if (CGF.getLangOpts().isSignedOverflowDefined()) {
3281 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
3282 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3283 } else {
3284 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
3285 pointer =
3286 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3287 op.E->getExprLoc(), "add.ptr");
3288 }
3289 return pointer;
3290 }
3291
3292 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
3293 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
3294 // future proof.
3295 if (elementType->isVoidType() || elementType->isFunctionType()) {
3296 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
3297 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
3298 return CGF.Builder.CreateBitCast(result, pointer->getType());
3299 }
3300
3301 if (CGF.getLangOpts().isSignedOverflowDefined())
3302 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
3303
3304 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
3305 op.E->getExprLoc(), "add.ptr");
3306}
3307
3308// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
3309// Addend. Use negMul and negAdd to negate the first operand of the Mul or
3310// the add operand respectively. This allows fmuladd to represent a*b-c, or
3311// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
3312// efficient operations.
3313static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
3314 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3315 bool negMul, bool negAdd) {
3316 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.")((!(negMul && negAdd) && "Only one of negMul and negAdd should be set."
) ? static_cast<void> (0) : __assert_fail ("!(negMul && negAdd) && \"Only one of negMul and negAdd should be set.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3316, __PRETTY_FUNCTION__))
;
3317
3318 Value *MulOp0 = MulOp->getOperand(0);
3319 Value *MulOp1 = MulOp->getOperand(1);
3320 if (negMul) {
3321 MulOp0 =
3322 Builder.CreateFSub(
3323 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
3324 "neg");
3325 } else if (negAdd) {
3326 Addend =
3327 Builder.CreateFSub(
3328 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
3329 "neg");
3330 }
3331
3332 Value *FMulAdd = Builder.CreateCall(
3333 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
3334 {MulOp0, MulOp1, Addend});
3335 MulOp->eraseFromParent();
3336
3337 return FMulAdd;
3338}
3339
3340// Check whether it would be legal to emit an fmuladd intrinsic call to
3341// represent op and if so, build the fmuladd.
3342//
3343// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
3344// Does NOT check the type of the operation - it's assumed that this function
3345// will be called from contexts where it's known that the type is contractable.
3346static Value* tryEmitFMulAdd(const BinOpInfo &op,
3347 const CodeGenFunction &CGF, CGBuilderTy &Builder,
3348 bool isSub=false) {
3349
3350 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3352, __PRETTY_FUNCTION__))
3351 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3352, __PRETTY_FUNCTION__))
3352 "Only fadd/fsub can be the root of an fmuladd.")(((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode
== BO_Sub || op.Opcode == BO_SubAssign) && "Only fadd/fsub can be the root of an fmuladd."
) ? static_cast<void> (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3352, __PRETTY_FUNCTION__))
;
3353
3354 // Check whether this op is marked as fusable.
3355 if (!op.FPFeatures.allowFPContractWithinStatement())
3356 return nullptr;
3357
3358 // We have a potentially fusable op. Look for a mul on one of the operands.
3359 // Also, make sure that the mul result isn't used directly. In that case,
3360 // there's no point creating a muladd operation.
3361 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
3362 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3363 LHSBinOp->use_empty())
3364 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
3365 }
3366 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
3367 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
3368 RHSBinOp->use_empty())
3369 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
3370 }
3371
3372 return nullptr;
3373}
3374
3375Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
3376 if (op.LHS->getType()->isPointerTy() ||
3377 op.RHS->getType()->isPointerTy())
3378 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
3379
3380 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3381 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3382 case LangOptions::SOB_Defined:
3383 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3384 case LangOptions::SOB_Undefined:
3385 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3386 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3387 LLVM_FALLTHROUGH[[clang::fallthrough]];
3388 case LangOptions::SOB_Trapping:
3389 if (CanElideOverflowCheck(CGF.getContext(), op))
3390 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
3391 return EmitOverflowCheckedBinOp(op);
3392 }
3393 }
3394
3395 if (op.Ty->isUnsignedIntegerType() &&
3396 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3397 !CanElideOverflowCheck(CGF.getContext(), op))
3398 return EmitOverflowCheckedBinOp(op);
3399
3400 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3401 // Try to form an fmuladd.
3402 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
3403 return FMulAdd;
3404
3405 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
3406 return propagateFMFlags(V, op);
3407 }
3408
3409 if (op.isFixedPointBinOp())
3410 return EmitFixedPointBinOp(op);
3411
3412 return Builder.CreateAdd(op.LHS, op.RHS, "add");
3413}
3414
3415/// The resulting value must be calculated with exact precision, so the operands
3416/// may not be the same type.
3417Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
3418 using llvm::APSInt;
3419 using llvm::ConstantInt;
3420
3421 const auto *BinOp = cast<BinaryOperator>(op.E);
3422
3423 // The result is a fixed point type and at least one of the operands is fixed
3424 // point while the other is either fixed point or an int. This resulting type
3425 // should be determined by Sema::handleFixedPointConversions().
3426 QualType ResultTy = op.Ty;
3427 QualType LHSTy = BinOp->getLHS()->getType();
3428 QualType RHSTy = BinOp->getRHS()->getType();
3429 ASTContext &Ctx = CGF.getContext();
3430 Value *LHS = op.LHS;
3431 Value *RHS = op.RHS;
3432
3433 auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
3434 auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
3435 auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
3436 auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);
3437
3438 // Convert the operands to the full precision type.
3439 Value *FullLHS = EmitFixedPointConversion(LHS, LHSFixedSema, CommonFixedSema,
3440 BinOp->getExprLoc());
3441 Value *FullRHS = EmitFixedPointConversion(RHS, RHSFixedSema, CommonFixedSema,
3442 BinOp->getExprLoc());
3443
3444 // Perform the actual addition.
3445 Value *Result;
3446 switch (BinOp->getOpcode()) {
3447 case BO_Add: {
3448 if (ResultFixedSema.isSaturated()) {
3449 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3450 ? llvm::Intrinsic::sadd_sat
3451 : llvm::Intrinsic::uadd_sat;
3452 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3453 } else {
3454 Result = Builder.CreateAdd(FullLHS, FullRHS);
3455 }
3456 break;
3457 }
3458 case BO_Sub: {
3459 if (ResultFixedSema.isSaturated()) {
3460 llvm::Intrinsic::ID IID = ResultFixedSema.isSigned()
3461 ? llvm::Intrinsic::ssub_sat
3462 : llvm::Intrinsic::usub_sat;
3463 Result = Builder.CreateBinaryIntrinsic(IID, FullLHS, FullRHS);
3464 } else {
3465 Result = Builder.CreateSub(FullLHS, FullRHS);
3466 }
3467 break;
3468 }
3469 case BO_LT:
3470 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
3471 : Builder.CreateICmpULT(FullLHS, FullRHS);
3472 case BO_GT:
3473 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
3474 : Builder.CreateICmpUGT(FullLHS, FullRHS);
3475 case BO_LE:
3476 return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
3477 : Builder.CreateICmpULE(FullLHS, FullRHS);
3478 case BO_GE:
3479 return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
3480 : Builder.CreateICmpUGE(FullLHS, FullRHS);
3481 case BO_EQ:
3482 // For equality operations, we assume any padding bits on unsigned types are
3483 // zero'd out. They could be overwritten through non-saturating operations
3484 // that cause overflow, but this leads to undefined behavior.
3485 return Builder.CreateICmpEQ(FullLHS, FullRHS);
3486 case BO_NE:
3487 return Builder.CreateICmpNE(FullLHS, FullRHS);
3488 case BO_Mul:
3489 case BO_Div:
3490 case BO_Shl:
3491 case BO_Shr:
3492 case BO_Cmp:
3493 case BO_LAnd:
3494 case BO_LOr:
3495 case BO_MulAssign:
3496 case BO_DivAssign:
3497 case BO_AddAssign:
3498 case BO_SubAssign:
3499 case BO_ShlAssign:
3500 case BO_ShrAssign:
3501 llvm_unreachable("Found unimplemented fixed point binary operation")::llvm::llvm_unreachable_internal("Found unimplemented fixed point binary operation"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3501)
;
3502 case BO_PtrMemD:
3503 case BO_PtrMemI:
3504 case BO_Rem:
3505 case BO_Xor:
3506 case BO_And:
3507 case BO_Or:
3508 case BO_Assign:
3509 case BO_RemAssign:
3510 case BO_AndAssign:
3511 case BO_XorAssign:
3512 case BO_OrAssign:
3513 case BO_Comma:
3514 llvm_unreachable("Found unsupported binary operation for fixed point types.")::llvm::llvm_unreachable_internal("Found unsupported binary operation for fixed point types."
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3514)
;
3515 }
3516
3517 // Convert to the result type.
3518 return EmitFixedPointConversion(Result, CommonFixedSema, ResultFixedSema,
3519 BinOp->getExprLoc());
3520}
3521
3522Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
3523 // The LHS is always a pointer if either side is.
3524 if (!op.LHS->getType()->isPointerTy()) {
3525 if (op.Ty->isSignedIntegerOrEnumerationType()) {
3526 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
3527 case LangOptions::SOB_Defined:
3528 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3529 case LangOptions::SOB_Undefined:
3530 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
3531 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3532 LLVM_FALLTHROUGH[[clang::fallthrough]];
3533 case LangOptions::SOB_Trapping:
3534 if (CanElideOverflowCheck(CGF.getContext(), op))
3535 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
3536 return EmitOverflowCheckedBinOp(op);
3537 }
3538 }
3539
3540 if (op.Ty->isUnsignedIntegerType() &&
3541 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
3542 !CanElideOverflowCheck(CGF.getContext(), op))
3543 return EmitOverflowCheckedBinOp(op);
3544
3545 if (op.LHS->getType()->isFPOrFPVectorTy()) {
3546 // Try to form an fmuladd.
3547 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
3548 return FMulAdd;
3549 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
3550 return propagateFMFlags(V, op);
3551 }
3552
3553 if (op.isFixedPointBinOp())
3554 return EmitFixedPointBinOp(op);
3555
3556 return Builder.CreateSub(op.LHS, op.RHS, "sub");
3557 }
3558
3559 // If the RHS is not a pointer, then we have normal pointer
3560 // arithmetic.
3561 if (!op.RHS->getType()->isPointerTy())
3562 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
3563
3564 // Otherwise, this is a pointer subtraction.
3565
3566 // Do the raw subtraction part.
3567 llvm::Value *LHS
3568 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
3569 llvm::Value *RHS
3570 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
3571 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
3572
3573 // Okay, figure out the element size.
3574 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
3575 QualType elementType = expr->getLHS()->getType()->getPointeeType();
3576
3577 llvm::Value *divisor = nullptr;
3578
3579 // For a variable-length array, this is going to be non-constant.
3580 if (const VariableArrayType *vla
3581 = CGF.getContext().getAsVariableArrayType(elementType)) {
3582 auto VlaSize = CGF.getVLASize(vla);
3583 elementType = VlaSize.Type;
3584 divisor = VlaSize.NumElts;
3585
3586 // Scale the number of non-VLA elements by the non-VLA element size.
3587 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3588 if (!eltSize.isOne())
3589 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3590
3591 // For everything elese, we can just compute it, safe in the
3592 // assumption that Sema won't let anything through that we can't
3593 // safely compute the size of.
3594 } else {
3595 CharUnits elementSize;
3596 // Handle GCC extension for pointer arithmetic on void* and
3597 // function pointer types.
3598 if (elementType->isVoidType() || elementType->isFunctionType())
3599 elementSize = CharUnits::One();
3600 else
3601 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3602
3603 // Don't even emit the divide for element size of 1.
3604 if (elementSize.isOne())
3605 return diffInChars;
3606
3607 divisor = CGF.CGM.getSize(elementSize);
3608 }
3609
3610 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3611 // pointer difference in C is only defined in the case where both operands
3612 // are pointing to elements of an array.
3613 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3614}
3615
3616Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3617 llvm::IntegerType *Ty;
3618 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3619 Ty = cast<llvm::IntegerType>(VT->getElementType());
3620 else
3621 Ty = cast<llvm::IntegerType>(LHS->getType());
3622 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3623}
3624
3625Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3626 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3627 // RHS to the same size as the LHS.
3628 Value *RHS = Ops.RHS;
3629 if (Ops.LHS->getType() != RHS->getType())
3630 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3631
3632 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3633 Ops.Ty->hasSignedIntegerRepresentation() &&
3634 !CGF.getLangOpts().isSignedOverflowDefined();
3635 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3636 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3637 if (CGF.getLangOpts().OpenCL)
3638 RHS =
3639 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3640 else if ((SanitizeBase || SanitizeExponent) &&
3641 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3642 CodeGenFunction::SanitizerScope SanScope(&CGF);
3643 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3644 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3645 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3646
3647 if (SanitizeExponent) {
3648 Checks.push_back(
3649 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3650 }
3651
3652 if (SanitizeBase) {
3653 // Check whether we are shifting any non-zero bits off the top of the
3654 // integer. We only emit this check if exponent is valid - otherwise
3655 // instructions below will have undefined behavior themselves.
3656 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3657 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3658 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3659 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3660 llvm::Value *PromotedWidthMinusOne =
3661 (RHS == Ops.RHS) ? WidthMinusOne
3662 : GetWidthMinusOneValue(Ops.LHS, RHS);
3663 CGF.EmitBlock(CheckShiftBase);
3664 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3665 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3666 /*NUW*/ true, /*NSW*/ true),
3667 "shl.check");
3668 if (CGF.getLangOpts().CPlusPlus) {
3669 // In C99, we are not permitted to shift a 1 bit into the sign bit.
3670 // Under C++11's rules, shifting a 1 bit into the sign bit is
3671 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3672 // define signed left shifts, so we use the C99 and C++11 rules there).
3673 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3674 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3675 }
3676 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3677 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3678 CGF.EmitBlock(Cont);
3679 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3680 BaseCheck->addIncoming(Builder.getTrue(), Orig);
3681 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3682 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3683 }
3684
3685 assert(!Checks.empty())((!Checks.empty()) ? static_cast<void> (0) : __assert_fail
("!Checks.empty()", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3685, __PRETTY_FUNCTION__))
;
3686 EmitBinOpCheck(Checks, Ops);
3687 }
3688
3689 return Builder.CreateShl(Ops.LHS, RHS, "shl");
3690}
3691
3692Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3693 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3694 // RHS to the same size as the LHS.
3695 Value *RHS = Ops.RHS;
3696 if (Ops.LHS->getType() != RHS->getType())
3697 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3698
3699 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3700 if (CGF.getLangOpts().OpenCL)
3701 RHS =
3702 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3703 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3704 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3705 CodeGenFunction::SanitizerScope SanScope(&CGF);
3706 llvm::Value *Valid =
3707 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3708 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3709 }
3710
3711 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3712 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3713 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3714}
3715
3716enum IntrinsicType { VCMPEQ, VCMPGT };
3717// return corresponding comparison intrinsic for given vector type
3718static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3719 BuiltinType::Kind ElemKind) {
3720 switch (ElemKind) {
3721 default: llvm_unreachable("unexpected element type")::llvm::llvm_unreachable_internal("unexpected element type", "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3721)
;
3722 case BuiltinType::Char_U:
3723 case BuiltinType::UChar:
3724 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3725 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3726 case BuiltinType::Char_S:
3727 case BuiltinType::SChar:
3728 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3729 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3730 case BuiltinType::UShort:
3731 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3732 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3733 case BuiltinType::Short:
3734 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3735 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3736 case BuiltinType::UInt:
3737 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3738 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3739 case BuiltinType::Int:
3740 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3741 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3742 case BuiltinType::ULong:
3743 case BuiltinType::ULongLong:
3744 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3745 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3746 case BuiltinType::Long:
3747 case BuiltinType::LongLong:
3748 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3749 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3750 case BuiltinType::Float:
3751 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3752 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3753 case BuiltinType::Double:
3754 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3755 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3756 }
3757}
3758
3759Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3760 llvm::CmpInst::Predicate UICmpOpc,
3761 llvm::CmpInst::Predicate SICmpOpc,
3762 llvm::CmpInst::Predicate FCmpOpc) {
3763 TestAndClearIgnoreResultAssign();
3764 Value *Result;
3765 QualType LHSTy = E->getLHS()->getType();
3766 QualType RHSTy = E->getRHS()->getType();
3767 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3768 assert(E->getOpcode() == BO_EQ ||((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3769, __PRETTY_FUNCTION__))
3769 E->getOpcode() == BO_NE)((E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE) ?
static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3769, __PRETTY_FUNCTION__))
;
3770 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3771 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3772 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3773 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3774 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3775 BinOpInfo BOInfo = EmitBinOps(E);
3776 Value *LHS = BOInfo.LHS;
3777 Value *RHS = BOInfo.RHS;
3778
3779 // If AltiVec, the comparison results in a numeric type, so we use
3780 // intrinsics comparing vectors and giving 0 or 1 as a result
3781 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3782 // constants for mapping CR6 register bits to predicate result
3783 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3784
3785 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3786
3787 // in several cases vector arguments order will be reversed
3788 Value *FirstVecArg = LHS,
3789 *SecondVecArg = RHS;
3790
3791 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3792 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3793 BuiltinType::Kind ElementKind = BTy->getKind();
3794
3795 switch(E->getOpcode()) {
3796 default: llvm_unreachable("is not a comparison operation")::llvm::llvm_unreachable_internal("is not a comparison operation"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3796)
;
3797 case BO_EQ:
3798 CR6 = CR6_LT;
3799 ID = GetIntrinsic(VCMPEQ, ElementKind);
3800 break;
3801 case BO_NE:
3802 CR6 = CR6_EQ;
3803 ID = GetIntrinsic(VCMPEQ, ElementKind);
3804 break;
3805 case BO_LT:
3806 CR6 = CR6_LT;
3807 ID = GetIntrinsic(VCMPGT, ElementKind);
3808 std::swap(FirstVecArg, SecondVecArg);
3809 break;
3810 case BO_GT:
3811 CR6 = CR6_LT;
3812 ID = GetIntrinsic(VCMPGT, ElementKind);
3813 break;
3814 case BO_LE:
3815 if (ElementKind == BuiltinType::Float) {
3816 CR6 = CR6_LT;
3817 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3818 std::swap(FirstVecArg, SecondVecArg);
3819 }
3820 else {
3821 CR6 = CR6_EQ;
3822 ID = GetIntrinsic(VCMPGT, ElementKind);
3823 }
3824 break;
3825 case BO_GE:
3826 if (ElementKind == BuiltinType::Float) {
3827 CR6 = CR6_LT;
3828 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3829 }
3830 else {
3831 CR6 = CR6_EQ;
3832 ID = GetIntrinsic(VCMPGT, ElementKind);
3833 std::swap(FirstVecArg, SecondVecArg);
3834 }
3835 break;
3836 }
3837
3838 Value *CR6Param = Builder.getInt32(CR6);
3839 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3840 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3841
3842 // The result type of intrinsic may not be same as E->getType().
3843 // If E->getType() is not BoolTy, EmitScalarConversion will do the
3844 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3845 // do nothing, if ResultTy is not i1 at the same time, it will cause
3846 // crash later.
3847 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3848 if (ResultTy->getBitWidth() > 1 &&
3849 E->getType() == CGF.getContext().BoolTy)
3850 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3851 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3852 E->getExprLoc());
3853 }
3854
3855 if (BOInfo.isFixedPointBinOp()) {
3856 Result = EmitFixedPointBinOp(BOInfo);
3857 } else if (LHS->getType()->isFPOrFPVectorTy()) {
3858 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3859 } else if (LHSTy->hasSignedIntegerRepresentation()) {
3860 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3861 } else {
3862 // Unsigned integers and pointers.
3863
3864 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3865 !isa<llvm::ConstantPointerNull>(LHS) &&
3866 !isa<llvm::ConstantPointerNull>(RHS)) {
3867
3868 // Dynamic information is required to be stripped for comparisons,
3869 // because it could leak the dynamic information. Based on comparisons
3870 // of pointers to dynamic objects, the optimizer can replace one pointer
3871 // with another, which might be incorrect in presence of invariant
3872 // groups. Comparison with null is safe because null does not carry any
3873 // dynamic information.
3874 if (LHSTy.mayBeDynamicClass())
3875 LHS = Builder.CreateStripInvariantGroup(LHS);
3876 if (RHSTy.mayBeDynamicClass())
3877 RHS = Builder.CreateStripInvariantGroup(RHS);
3878 }
3879
3880 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3881 }
3882
3883 // If this is a vector comparison, sign extend the result to the appropriate
3884 // vector integer type and return it (don't convert to bool).
3885 if (LHSTy->isVectorType())
3886 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3887
3888 } else {
3889 // Complex Comparison: can only be an equality comparison.
3890 CodeGenFunction::ComplexPairTy LHS, RHS;
3891 QualType CETy;
3892 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3893 LHS = CGF.EmitComplexExpr(E->getLHS());
3894 CETy = CTy->getElementType();
3895 } else {
3896 LHS.first = Visit(E->getLHS());
3897 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3898 CETy = LHSTy;
3899 }
3900 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3901 RHS = CGF.EmitComplexExpr(E->getRHS());
3902 assert(CGF.getContext().hasSameUnqualifiedType(CETy,((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3904, __PRETTY_FUNCTION__))
3903 CTy->getElementType()) &&((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3904, __PRETTY_FUNCTION__))
3904 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType
()) && "The element types must always match.") ? static_cast
<void> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3904, __PRETTY_FUNCTION__))
;
3905 (void)CTy;
3906 } else {
3907 RHS.first = Visit(E->getRHS());
3908 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3909 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3910, __PRETTY_FUNCTION__))
3910 "The element types must always match.")((CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
"The element types must always match.") ? static_cast<void
> (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3910, __PRETTY_FUNCTION__))
;
3911 }
3912
3913 Value *ResultR, *ResultI;
3914 if (CETy->isRealFloatingType()) {
3915 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3916 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3917 } else {
3918 // Complex comparisons can only be equality comparisons. As such, signed
3919 // and unsigned opcodes are the same.
3920 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3921 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3922 }
3923
3924 if (E->getOpcode() == BO_EQ) {
3925 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3926 } else {
3927 assert(E->getOpcode() == BO_NE &&((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3928, __PRETTY_FUNCTION__))
3928 "Complex comparison other than == or != ?")((E->getOpcode() == BO_NE && "Complex comparison other than == or != ?"
) ? static_cast<void> (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3928, __PRETTY_FUNCTION__))
;
3929 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3930 }
3931 }
3932
3933 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3934 E->getExprLoc());
3935}
3936
3937Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3938 bool Ignore = TestAndClearIgnoreResultAssign();
3939
3940 Value *RHS;
3941 LValue LHS;
3942
3943 switch (E->getLHS()->getType().getObjCLifetime()) {
3944 case Qualifiers::OCL_Strong:
3945 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3946 break;
3947
3948 case Qualifiers::OCL_Autoreleasing:
3949 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3950 break;
3951
3952 case Qualifiers::OCL_ExplicitNone:
3953 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3954 break;
3955
3956 case Qualifiers::OCL_Weak:
3957 RHS = Visit(E->getRHS());
3958 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3959 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3960 break;
3961
3962 case Qualifiers::OCL_None:
3963 // __block variables need to have the rhs evaluated first, plus
3964 // this should improve codegen just a little.
3965 RHS = Visit(E->getRHS());
3966 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3967
3968 // Store the value into the LHS. Bit-fields are handled specially
3969 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3970 // 'An assignment expression has the value of the left operand after
3971 // the assignment...'.
3972 if (LHS.isBitField()) {
3973 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3974 } else {
3975 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3976 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3977 }
3978 }
3979
3980 // If the result is clearly ignored, return now.
3981 if (Ignore)
3982 return nullptr;
3983
3984 // The result of an assignment in C is the assigned r-value.
3985 if (!CGF.getLangOpts().CPlusPlus)
3986 return RHS;
3987
3988 // If the lvalue is non-volatile, return the computed value of the assignment.
3989 if (!LHS.isVolatileQualified())
3990 return RHS;
3991
3992 // Otherwise, reload the value.
3993 return EmitLoadOfLValue(LHS, E->getExprLoc());
3994}
3995
3996Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3997 // Perform vector logical and on comparisons with zero vectors.
3998 if (E->getType()->isVectorType()) {
3999 CGF.incrementProfileCounter(E);
4000
4001 Value *LHS = Visit(E->getLHS());
4002 Value *RHS = Visit(E->getRHS());
4003 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4004 if (LHS->getType()->isFPOrFPVectorTy()) {
4005 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4006 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4007 } else {
4008 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4009 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4010 }
4011 Value *And = Builder.CreateAnd(LHS, RHS);
4012 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
4013 }
4014
4015 llvm::Type *ResTy = ConvertType(E->getType());
4016
4017 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
4018 // If we have 1 && X, just emit X without inserting the control flow.
4019 bool LHSCondVal;
4020 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4021 if (LHSCondVal) { // If we have 1 && X, just emit X.
4022 CGF.incrementProfileCounter(E);
4023
4024 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4025 // ZExt result to int or bool.
4026 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
4027 }
4028
4029 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
4030 if (!CGF.ContainsLabel(E->getRHS()))
4031 return llvm::Constant::getNullValue(ResTy);
4032 }
4033
4034 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
4035 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
4036
4037 CodeGenFunction::ConditionalEvaluation eval(CGF);
4038
4039 // Branch on the LHS first. If it is false, go to the failure (cont) block.
4040 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
4041 CGF.getProfileCount(E->getRHS()));
4042
4043 // Any edges into the ContBlock are now from an (indeterminate number of)
4044 // edges from this first condition. All of these values will be false. Start
4045 // setting up the PHI node in the Cont Block for this.
4046 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4047 "", ContBlock);
4048 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4049 PI != PE; ++PI)
4050 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
4051
4052 eval.begin(CGF);
4053 CGF.EmitBlock(RHSBlock);
4054 CGF.incrementProfileCounter(E);
4055 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4056 eval.end(CGF);
4057
4058 // Reaquire the RHS block, as there may be subblocks inserted.
4059 RHSBlock = Builder.GetInsertBlock();
4060
4061 // Emit an unconditional branch from this block to ContBlock.
4062 {
4063 // There is no need to emit line number for unconditional branch.
4064 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4065 CGF.EmitBlock(ContBlock);
4066 }
4067 // Insert an entry into the phi node for the edge with the value of RHSCond.
4068 PN->addIncoming(RHSCond, RHSBlock);
4069
4070 // Artificial location to preserve the scope information
4071 {
4072 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
4073 PN->setDebugLoc(Builder.getCurrentDebugLocation());
4074 }
4075
4076 // ZExt result to int.
4077 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
4078}
4079
4080Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
4081 // Perform vector logical or on comparisons with zero vectors.
4082 if (E->getType()->isVectorType()) {
4083 CGF.incrementProfileCounter(E);
4084
4085 Value *LHS = Visit(E->getLHS());
4086 Value *RHS = Visit(E->getRHS());
4087 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
4088 if (LHS->getType()->isFPOrFPVectorTy()) {
4089 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
4090 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
4091 } else {
4092 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
4093 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
4094 }
4095 Value *Or = Builder.CreateOr(LHS, RHS);
4096 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
4097 }
4098
4099 llvm::Type *ResTy = ConvertType(E->getType());
4100
4101 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
4102 // If we have 0 || X, just emit X without inserting the control flow.
4103 bool LHSCondVal;
4104 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
4105 if (!LHSCondVal) { // If we have 0 || X, just emit X.
4106 CGF.incrementProfileCounter(E);
4107
4108 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4109 // ZExt result to int or bool.
4110 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
4111 }
4112
4113 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
4114 if (!CGF.ContainsLabel(E->getRHS()))
4115 return llvm::ConstantInt::get(ResTy, 1);
4116 }
4117
4118 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
4119 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
4120
4121 CodeGenFunction::ConditionalEvaluation eval(CGF);
4122
4123 // Branch on the LHS first. If it is true, go to the success (cont) block.
4124 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
4125 CGF.getCurrentProfileCount() -
4126 CGF.getProfileCount(E->getRHS()));
4127
4128 // Any edges into the ContBlock are now from an (indeterminate number of)
4129 // edges from this first condition. All of these values will be true. Start
4130 // setting up the PHI node in the Cont Block for this.
4131 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
4132 "", ContBlock);
4133 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
4134 PI != PE; ++PI)
4135 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
4136
4137 eval.begin(CGF);
4138
4139 // Emit the RHS condition as a bool value.
4140 CGF.EmitBlock(RHSBlock);
4141 CGF.incrementProfileCounter(E);
4142 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
4143
4144 eval.end(CGF);
4145
4146 // Reaquire the RHS block, as there may be subblocks inserted.
4147 RHSBlock = Builder.GetInsertBlock();
4148
4149 // Emit an unconditional branch from this block to ContBlock. Insert an entry
4150 // into the phi node for the edge with the value of RHSCond.
4151 CGF.EmitBlock(ContBlock);
4152 PN->addIncoming(RHSCond, RHSBlock);
4153
4154 // ZExt result to int.
4155 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
4156}
4157
4158Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
4159 CGF.EmitIgnoredExpr(E->getLHS());
4160 CGF.EnsureInsertPoint();
4161 return Visit(E->getRHS());
4162}
4163
4164//===----------------------------------------------------------------------===//
4165// Other Operators
4166//===----------------------------------------------------------------------===//
4167
4168/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
4169/// expression is cheap enough and side-effect-free enough to evaluate
4170/// unconditionally instead of conditionally. This is used to convert control
4171/// flow into selects in some cases.
4172static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
4173 CodeGenFunction &CGF) {
4174 // Anything that is an integer or floating point constant is fine.
4175 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
4176
4177 // Even non-volatile automatic variables can't be evaluated unconditionally.
4178 // Referencing a thread_local may cause non-trivial initialization work to
4179 // occur. If we're inside a lambda and one of the variables is from the scope
4180 // outside the lambda, that function may have returned already. Reading its
4181 // locals is a bad idea. Also, these reads may introduce races there didn't
4182 // exist in the source-level program.
4183}
4184
4185
4186Value *ScalarExprEmitter::
4187VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
4188 TestAndClearIgnoreResultAssign();
4189
4190 // Bind the common expression if necessary.
4191 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
4192
4193 Expr *condExpr = E->getCond();
4194 Expr *lhsExpr = E->getTrueExpr();
4195 Expr *rhsExpr = E->getFalseExpr();
4196
4197 // If the condition constant folds and can be elided, try to avoid emitting
4198 // the condition and the dead arm.
4199 bool CondExprBool;
4200 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4201 Expr *live = lhsExpr, *dead = rhsExpr;
4202 if (!CondExprBool) std::swap(live, dead);
4203
4204 // If the dead side doesn't have labels we need, just emit the Live part.
4205 if (!CGF.ContainsLabel(dead)) {
4206 if (CondExprBool)
4207 CGF.incrementProfileCounter(E);
4208 Value *Result = Visit(live);
4209
4210 // If the live part is a throw expression, it acts like it has a void
4211 // type, so evaluating it returns a null Value*. However, a conditional
4212 // with non-void type must return a non-null Value*.
4213 if (!Result && !E->getType()->isVoidType())
4214 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
4215
4216 return Result;
4217 }
4218 }
4219
4220 // OpenCL: If the condition is a vector, we can treat this condition like
4221 // the select function.
4222 if (CGF.getLangOpts().OpenCL
4223 && condExpr->getType()->isVectorType()) {
4224 CGF.incrementProfileCounter(E);
4225
4226 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
4227 llvm::Value *LHS = Visit(lhsExpr);
4228 llvm::Value *RHS = Visit(rhsExpr);
4229
4230 llvm::Type *condType = ConvertType(condExpr->getType());
4231 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
4232
4233 unsigned numElem = vecTy->getNumElements();
4234 llvm::Type *elemType = vecTy->getElementType();
4235
4236 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
4237 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
4238 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
4239 llvm::VectorType::get(elemType,
4240 numElem),
4241 "sext");
4242 llvm::Value *tmp2 = Builder.CreateNot(tmp);
4243
4244 // Cast float to int to perform ANDs if necessary.
4245 llvm::Value *RHSTmp = RHS;
4246 llvm::Value *LHSTmp = LHS;
4247 bool wasCast = false;
4248 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
4249 if (rhsVTy->getElementType()->isFloatingPointTy()) {
4250 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
4251 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
4252 wasCast = true;
4253 }
4254
4255 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
4256 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
4257 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
4258 if (wasCast)
4259 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
4260
4261 return tmp5;
4262 }
4263
4264 // If this is a really simple expression (like x ? 4 : 5), emit this as a
4265 // select instead of as control flow. We can only do this if it is cheap and
4266 // safe to evaluate the LHS and RHS unconditionally.
4267 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
4268 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
4269 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
4270 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
4271
4272 CGF.incrementProfileCounter(E, StepV);
4273
4274 llvm::Value *LHS = Visit(lhsExpr);
4275 llvm::Value *RHS = Visit(rhsExpr);
4276 if (!LHS) {
4277 // If the conditional has void type, make sure we return a null Value*.
4278 assert(!RHS && "LHS and RHS types must match")((!RHS && "LHS and RHS types must match") ? static_cast
<void> (0) : __assert_fail ("!RHS && \"LHS and RHS types must match\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4278, __PRETTY_FUNCTION__))
;
4279 return nullptr;
4280 }
4281 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
4282 }
4283
4284 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
4285 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
4286 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
4287
4288 CodeGenFunction::ConditionalEvaluation eval(CGF);
4289 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
4290 CGF.getProfileCount(lhsExpr));
4291
4292 CGF.EmitBlock(LHSBlock);
4293 CGF.incrementProfileCounter(E);
4294 eval.begin(CGF);
4295 Value *LHS = Visit(lhsExpr);
4296 eval.end(CGF);
4297
4298 LHSBlock = Builder.GetInsertBlock();
4299 Builder.CreateBr(ContBlock);
4300
4301 CGF.EmitBlock(RHSBlock);
4302 eval.begin(CGF);
4303 Value *RHS = Visit(rhsExpr);
4304 eval.end(CGF);
4305
4306 RHSBlock = Builder.GetInsertBlock();
4307 CGF.EmitBlock(ContBlock);
4308
4309 // If the LHS or RHS is a throw expression, it will be legitimately null.
4310 if (!LHS)
4311 return RHS;
4312 if (!RHS)
4313 return LHS;
4314
4315 // Create a PHI node for the real part.
4316 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
4317 PN->addIncoming(LHS, LHSBlock);
4318 PN->addIncoming(RHS, RHSBlock);
4319 return PN;
4320}
4321
4322Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
4323 return Visit(E->getChosenSubExpr());
4324}
4325
4326Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
4327 QualType Ty = VE->getType();
4328
4329 if (Ty->isVariablyModifiedType())
4330 CGF.EmitVariablyModifiedType(Ty);
4331
4332 Address ArgValue = Address::invalid();
4333 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
4334
4335 llvm::Type *ArgTy = ConvertType(VE->getType());
4336
4337 // If EmitVAArg fails, emit an error.
4338 if (!ArgPtr.isValid()) {
4339 CGF.ErrorUnsupported(VE, "va_arg expression");
4340 return llvm::UndefValue::get(ArgTy);
4341 }
4342
4343 // FIXME Volatility.
4344 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
4345
4346 // If EmitVAArg promoted the type, we must truncate it.
4347 if (ArgTy != Val->getType()) {
4348 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
4349 Val = Builder.CreateIntToPtr(Val, ArgTy);
4350 else
4351 Val = Builder.CreateTrunc(Val, ArgTy);
4352 }
4353
4354 return Val;
4355}
4356
4357Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
4358 return CGF.EmitBlockLiteral(block);
4359}
4360
4361// Convert a vec3 to vec4, or vice versa.
4362static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
4363 Value *Src, unsigned NumElementsDst) {
4364 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
4365 SmallVector<llvm::Constant*, 4> Args;
4366 Args.push_back(Builder.getInt32(0));
4367 Args.push_back(Builder.getInt32(1));
4368 Args.push_back(Builder.getInt32(2));
4369 if (NumElementsDst == 4)
4370 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
4371 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
4372 return Builder.CreateShuffleVector(Src, UnV, Mask);
4373}
4374
4375// Create cast instructions for converting LLVM value \p Src to LLVM type \p
4376// DstTy. \p Src has the same size as \p DstTy. Both are single value types
4377// but could be scalar or vectors of different lengths, and either can be
4378// pointer.
4379// There are 4 cases:
4380// 1. non-pointer -> non-pointer : needs 1 bitcast
4381// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
4382// 3. pointer -> non-pointer
4383// a) pointer -> intptr_t : needs 1 ptrtoint
4384// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
4385// 4. non-pointer -> pointer
4386// a) intptr_t -> pointer : needs 1 inttoptr
4387// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
4388// Note: for cases 3b and 4b two casts are required since LLVM casts do not
4389// allow casting directly between pointer types and non-integer non-pointer
4390// types.
4391static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
4392 const llvm::DataLayout &DL,
4393 Value *Src, llvm::Type *DstTy,
4394 StringRef Name = "") {
4395 auto SrcTy = Src->getType();
4396
4397 // Case 1.
4398 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
4399 return Builder.CreateBitCast(Src, DstTy, Name);
4400
4401 // Case 2.
4402 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
4403 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
4404
4405 // Case 3.
4406 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
4407 // Case 3b.
4408 if (!DstTy->isIntegerTy())
4409 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
4410 // Cases 3a and 3b.
4411 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
4412 }
4413
4414 // Case 4b.
4415 if (!SrcTy->isIntegerTy())
4416 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
4417 // Cases 4a and 4b.
4418 return Builder.CreateIntToPtr(Src, DstTy, Name);
4419}
4420
4421Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
4422 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
4423 llvm::Type *DstTy = ConvertType(E->getType());
4424
4425 llvm::Type *SrcTy = Src->getType();
4426 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
4427 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
4428 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
4429 cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
4430
4431 // Going from vec3 to non-vec3 is a special case and requires a shuffle
4432 // vector to get a vec4, then a bitcast if the target type is different.
4433 if (NumElementsSrc == 3 && NumElementsDst != 3) {
4434 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
4435
4436 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4437 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4438 DstTy);
4439 }
4440
4441 Src->setName("astype");
4442 return Src;
4443 }
4444
4445 // Going from non-vec3 to vec3 is a special case and requires a bitcast
4446 // to vec4 if the original type is not vec4, then a shuffle vector to
4447 // get a vec3.
4448 if (NumElementsSrc != 3 && NumElementsDst == 3) {
4449 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
4450 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
4451 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
4452 Vec4Ty);
4453 }
4454
4455 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
4456 Src->setName("astype");
4457 return Src;
4458 }
4459
4460 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
4461 Src, DstTy, "astype");
4462}
4463
4464Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
4465 return CGF.EmitAtomicExpr(E).getScalarVal();
4466}
4467
4468//===----------------------------------------------------------------------===//
4469// Entry Point into this File
4470//===----------------------------------------------------------------------===//
4471
4472/// Emit the computation of the specified expression of scalar type, ignoring
4473/// the result.
4474Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
4475 assert(E && hasScalarEvaluationKind(E->getType()) &&((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4476, __PRETTY_FUNCTION__))
4476 "Invalid scalar expression to emit")((E && hasScalarEvaluationKind(E->getType()) &&
"Invalid scalar expression to emit") ? static_cast<void>
(0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4476, __PRETTY_FUNCTION__))
;
4477
4478 return ScalarExprEmitter(*this, IgnoreResultAssign)
4479 .Visit(const_cast<Expr *>(E));
4480}
4481
4482/// Emit a conversion from the specified type to the specified destination type,
4483/// both of which are LLVM scalar types.
4484Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
4485 QualType DstTy,
4486 SourceLocation Loc) {
4487 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4488, __PRETTY_FUNCTION__))
4488 "Invalid scalar expression to emit")((hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind
(DstTy) && "Invalid scalar expression to emit") ? static_cast
<void> (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4488, __PRETTY_FUNCTION__))
;
4489 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
4490}
4491
4492/// Emit a conversion from the specified complex type to the specified
4493/// destination type, where the destination type is an LLVM scalar type.
4494Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
4495 QualType SrcTy,
4496 QualType DstTy,
4497 SourceLocation Loc) {
4498 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4499, __PRETTY_FUNCTION__))
4499 "Invalid complex -> scalar conversion")((SrcTy->isAnyComplexType() && hasScalarEvaluationKind
(DstTy) && "Invalid complex -> scalar conversion")
? static_cast<void> (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4499, __PRETTY_FUNCTION__))
;
4500 return ScalarExprEmitter(*this)
4501 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
4502}
4503
4504
4505llvm::Value *CodeGenFunction::
4506EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
4507 bool isInc, bool isPre) {
4508 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
4509}
4510
4511LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
4512 // object->isa or (*object).isa
4513 // Generate code as for: *(Class*)object
4514
4515 Expr *BaseExpr = E->getBase();
4516 Address Addr = Address::invalid();
4517 if (BaseExpr->isRValue()) {
4518 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
4519 } else {
4520 Addr = EmitLValue(BaseExpr).getAddress();
4521 }
4522
4523 // Cast the address to Class*.
4524 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
4525 return MakeAddrLValue(Addr, E->getType());
4526}
4527
4528
4529LValue CodeGenFunction::EmitCompoundAssignmentLValue(
4530 const CompoundAssignOperator *E) {
4531 ScalarExprEmitter Scalar(*this);
4532 Value *Result = nullptr;
4533 switch (E->getOpcode()) {
4534#define COMPOUND_OP(Op) \
4535 case BO_##Op##Assign: \
4536 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
4537 Result)
4538 COMPOUND_OP(Mul);
4539 COMPOUND_OP(Div);
4540 COMPOUND_OP(Rem);
4541 COMPOUND_OP(Add);
4542 COMPOUND_OP(Sub);
4543 COMPOUND_OP(Shl);
4544 COMPOUND_OP(Shr);
4545 COMPOUND_OP(And);
4546 COMPOUND_OP(Xor);
4547 COMPOUND_OP(Or);
4548#undef COMPOUND_OP
4549
4550 case BO_PtrMemD:
4551 case BO_PtrMemI:
4552 case BO_Mul:
4553 case BO_Div:
4554 case BO_Rem:
4555 case BO_Add:
4556 case BO_Sub:
4557 case BO_Shl:
4558 case BO_Shr:
4559 case BO_LT:
4560 case BO_GT:
4561 case BO_LE:
4562 case BO_GE:
4563 case BO_EQ:
4564 case BO_NE:
4565 case BO_Cmp:
4566 case BO_And:
4567 case BO_Xor:
4568 case BO_Or:
4569 case BO_LAnd:
4570 case BO_LOr:
4571 case BO_Assign:
4572 case BO_Comma:
4573 llvm_unreachable("Not valid compound assignment operators")::llvm::llvm_unreachable_internal("Not valid compound assignment operators"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4573)
;
4574 }
4575
4576 llvm_unreachable("Unhandled compound assignment operator")::llvm::llvm_unreachable_internal("Unhandled compound assignment operator"
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4576)
;
4577}
4578
4579Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
4580 ArrayRef<Value *> IdxList,
4581 bool SignedIndices,
4582 bool IsSubtraction,
4583 SourceLocation Loc,
4584 const Twine &Name) {
4585 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4586
4587 // If the pointer overflow sanitizer isn't enabled, do nothing.
4588 if (!SanOpts.has(SanitizerKind::PointerOverflow))
4589 return GEPVal;
4590
4591 // If the GEP has already been reduced to a constant, leave it be.
4592 if (isa<llvm::Constant>(GEPVal))
4593 return GEPVal;
4594
4595 // Only check for overflows in the default address space.
4596 if (GEPVal->getType()->getPointerAddressSpace())
4597 return GEPVal;
4598
4599 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4600 assert(GEP->isInBounds() && "Expected inbounds GEP")((GEP->isInBounds() && "Expected inbounds GEP") ? static_cast
<void> (0) : __assert_fail ("GEP->isInBounds() && \"Expected inbounds GEP\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4600, __PRETTY_FUNCTION__))
;
4601
4602 SanitizerScope SanScope(this);
4603 auto &VMContext = getLLVMContext();
4604 const auto &DL = CGM.getDataLayout();
4605 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4606
4607 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4608 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4609 auto *SAddIntrinsic =
4610 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4611 auto *SMulIntrinsic =
4612 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4613
4614 // The total (signed) byte offset for the GEP.
4615 llvm::Value *TotalOffset = nullptr;
4616 // The offset overflow flag - true if the total offset overflows.
4617 llvm::Value *OffsetOverflows = Builder.getFalse();
4618
4619 /// Return the result of the given binary operation.
4620 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4621 llvm::Value *RHS) -> llvm::Value * {
4622 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop")(((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"
) ? static_cast<void> (0) : __assert_fail ("(Opcode == BO_Add || Opcode == BO_Mul) && \"Can't eval binop\""
, "/build/llvm-toolchain-snapshot-9~svn360825/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4622, __PRETTY_FUNCTION__))
;
4623
4624 // If the operands are constants, return a constant result.
4625 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4626 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4627 llvm::APInt N;
4628 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4629 /*Signed=*/true, N);
4630 if (HasOverflow)
4631 OffsetOverflows = Builder.getTrue();
4632 return llvm::ConstantInt::get(VMContext, N);
4633 }
4634 }
4635
4636 // Otherwise, compute the result with checked arithmetic.
4637 auto *ResultAndOverflow = Builder.CreateCall(
4638 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4639 OffsetOverflows = Builder.CreateOr(
4640 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4641 return Builder.CreateExtractValue(ResultAndOverflow, 0);
4642 };
4643
4644 // Determine the total byte offset by looking at each GEP operand.
4645 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
4646 GTI != GTE; ++GTI) {
4647 llvm::Value *LocalOffset;
4648 auto *Index = GTI.getOperand();
4649 // Compute the local offset contributed by this indexing step:
4650 if (auto *STy = GTI.getStructTypeOrNull()) {
4651 // For struct indexing, the local offset is the byte position of the
4652 // specified field.
4653 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4654 LocalOffset = llvm::ConstantInt::get(
4655 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4656 } else {
4657 // Otherwise this is array-like indexing. The local offset is the index
4658 // multiplied by the element size.
4659 auto *ElementSize = llvm::ConstantInt::get(
4660 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4661 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4662 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4663 }
4664
4665 // If this is the first offset, set it as the total offset. Otherwise, add
4666 // the local offset into the running total.
4667 if (!TotalOffset || TotalOffset == Zero)
4668 TotalOffset = LocalOffset;
4669 else
4670 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4671 }
4672
4673 // Common case: if the total offset is zero, don't emit a check.
4674 if (TotalOffset == Zero)
4675 return GEPVal;
4676
4677 // Now that we've computed the total offset, add it to the base pointer (with
4678 // wrapping semantics).
4679 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4680 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4681
4682 // The GEP is valid if:
4683 // 1) The total offset doesn't overflow, and
4684 // 2) The sign of the difference between the computed address and the base
4685 // pointer matches the sign of the total offset.
4686 llvm::Value *ValidGEP;
4687 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4688 if (SignedIndices) {
4689 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4690 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
4691 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4692 ValidGEP = Builder.CreateAnd(
4693 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4694 NoOffsetOverflow);
4695 } else if (!SignedIndices && !IsSubtraction) {
4696 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4697 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4698 } else {
4699 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4700 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4701 }
4702
4703 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4704 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4705 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4706 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4707 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4708
4709 return GEPVal;
4710}