Bug Summary

File:include/llvm/IR/Instructions.h
Warning:line 1168, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGExprScalar.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp

1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCleanup.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/ADT/Optional.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GetElementPtrTypeIterator.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/Module.h"
37#include <cstdarg>
38
39using namespace clang;
40using namespace CodeGen;
41using llvm::Value;
42
43//===----------------------------------------------------------------------===//
44// Scalar Expression Emitter
45//===----------------------------------------------------------------------===//
46
47namespace {
48
49/// Determine whether the given binary operation may overflow.
50/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
51/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
52/// the returned overflow check is precise. The returned value is 'true' for
53/// all other opcodes, to be conservative.
54bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
55 BinaryOperator::Opcode Opcode, bool Signed,
56 llvm::APInt &Result) {
57 // Assume overflow is possible, unless we can prove otherwise.
58 bool Overflow = true;
59 const auto &LHSAP = LHS->getValue();
60 const auto &RHSAP = RHS->getValue();
61 if (Opcode == BO_Add) {
62 if (Signed)
63 Result = LHSAP.sadd_ov(RHSAP, Overflow);
64 else
65 Result = LHSAP.uadd_ov(RHSAP, Overflow);
66 } else if (Opcode == BO_Sub) {
67 if (Signed)
68 Result = LHSAP.ssub_ov(RHSAP, Overflow);
69 else
70 Result = LHSAP.usub_ov(RHSAP, Overflow);
71 } else if (Opcode == BO_Mul) {
72 if (Signed)
73 Result = LHSAP.smul_ov(RHSAP, Overflow);
74 else
75 Result = LHSAP.umul_ov(RHSAP, Overflow);
76 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
77 if (Signed && !RHS->isZero())
78 Result = LHSAP.sdiv_ov(RHSAP, Overflow);
79 else
80 return false;
81 }
82 return Overflow;
83}
84
85struct BinOpInfo {
86 Value *LHS;
87 Value *RHS;
88 QualType Ty; // Computation Type.
89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
90 FPOptions FPFeatures;
91 const Expr *E; // Entire expr, for error unsupported. May not be binop.
92
93 /// Check if the binop can result in integer overflow.
94 bool mayHaveIntegerOverflow() const {
95 // Without constant input, we can't rule out overflow.
96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
98 if (!LHSCI || !RHSCI)
99 return true;
100
101 llvm::APInt Result;
102 return ::mayHaveIntegerOverflow(
103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
104 }
105
106 /// Check if the binop computes a division or a remainder.
107 bool isDivremOp() const {
108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
109 Opcode == BO_RemAssign;
110 }
111
112 /// Check if the binop can result in an integer division by zero.
113 bool mayHaveIntegerDivisionByZero() const {
114 if (isDivremOp())
115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
116 return CI->isZero();
117 return true;
118 }
119
120 /// Check if the binop can result in a float division by zero.
121 bool mayHaveFloatDivisionByZero() const {
122 if (isDivremOp())
123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
124 return CFP->isZero();
125 return true;
126 }
127};
128
129static bool MustVisitNullValue(const Expr *E) {
130 // If a null pointer expression's type is the C++0x nullptr_t, then
131 // it's not necessarily a simple constant and it must be evaluated
132 // for its potential side effects.
133 return E->getType()->isNullPtrType();
134}
135
136/// If \p E is a widened promoted integer, get its base (unpromoted) type.
137static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
138 const Expr *E) {
139 const Expr *Base = E->IgnoreImpCasts();
140 if (E == Base)
141 return llvm::None;
142
143 QualType BaseTy = Base->getType();
144 if (!BaseTy->isPromotableIntegerType() ||
145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
146 return llvm::None;
147
148 return BaseTy;
149}
150
151/// Check if \p E is a widened promoted integer.
152static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
153 return getUnwidenedIntegerType(Ctx, E).hasValue();
154}
155
156/// Check if we can skip the overflow check for \p Op.
157static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&(static_cast <bool> ((isa<UnaryOperator>(Op.E) ||
isa<BinaryOperator>(Op.E)) && "Expected a unary or binary operator"
) ? void (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 159, __extension__ __PRETTY_FUNCTION__))
159 "Expected a unary or binary operator")(static_cast <bool> ((isa<UnaryOperator>(Op.E) ||
isa<BinaryOperator>(Op.E)) && "Expected a unary or binary operator"
) ? void (0) : __assert_fail ("(isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && \"Expected a unary or binary operator\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 159, __extension__ __PRETTY_FUNCTION__))
;
160
161 // If the binop has constant inputs and we can prove there is no overflow,
162 // we can elide the overflow check.
163 if (!Op.mayHaveIntegerOverflow())
164 return true;
165
166 // If a unary op has a widened operand, the op cannot overflow.
167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
168 return !UO->canOverflow();
169
170 // We usually don't need overflow checks for binops with widened operands.
171 // Multiplication with promoted unsigned operands is a special case.
172 const auto *BO = cast<BinaryOperator>(Op.E);
173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
174 if (!OptionalLHSTy)
175 return false;
176
177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
178 if (!OptionalRHSTy)
179 return false;
180
181 QualType LHSTy = *OptionalLHSTy;
182 QualType RHSTy = *OptionalRHSTy;
183
184 // This is the simple case: binops without unsigned multiplication, and with
185 // widened operands. No overflow check is needed here.
186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
188 return true;
189
190 // For unsigned multiplication the overflow check can be elided if either one
191 // of the unpromoted types are less than half the size of the promoted type.
192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
195}
196
197/// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions.
198static void updateFastMathFlags(llvm::FastMathFlags &FMF,
199 FPOptions FPFeatures) {
200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
201}
202
203/// Propagate fast-math flags from \p Op to the instruction in \p V.
204static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) {
205 if (auto *I = dyn_cast<llvm::Instruction>(V)) {
206 llvm::FastMathFlags FMF = I->getFastMathFlags();
207 updateFastMathFlags(FMF, Op.FPFeatures);
208 I->setFastMathFlags(FMF);
209 }
210 return V;
211}
212
213class ScalarExprEmitter
214 : public StmtVisitor<ScalarExprEmitter, Value*> {
215 CodeGenFunction &CGF;
216 CGBuilderTy &Builder;
217 bool IgnoreResultAssign;
218 llvm::LLVMContext &VMContext;
219public:
220
221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
223 VMContext(cgf.getLLVMContext()) {
224 }
225
226 //===--------------------------------------------------------------------===//
227 // Utilities
228 //===--------------------------------------------------------------------===//
229
230 bool TestAndClearIgnoreResultAssign() {
231 bool I = IgnoreResultAssign;
232 IgnoreResultAssign = false;
233 return I;
234 }
235
236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
239 return CGF.EmitCheckedLValue(E, TCK);
240 }
241
242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
243 const BinOpInfo &Info);
244
245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
247 }
248
249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
250 const AlignValueAttr *AVAttr = nullptr;
251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
252 const ValueDecl *VD = DRE->getDecl();
253
254 if (VD->getType()->isReferenceType()) {
255 if (const auto *TTy =
256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
258 } else {
259 // Assumptions for function parameters are emitted at the start of the
260 // function, so there is no need to repeat that here.
261 if (isa<ParmVarDecl>(VD))
262 return;
263
264 AVAttr = VD->getAttr<AlignValueAttr>();
265 }
266 }
267
268 if (!AVAttr)
269 if (const auto *TTy =
270 dyn_cast<TypedefType>(E->getType()))
271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
272
273 if (!AVAttr)
274 return;
275
276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
279 }
280
281 /// EmitLoadOfLValue - Given an expression with complex type that represents a
282 /// value l-value, this method emits the address of the l-value, then loads
283 /// and returns the result.
284 Value *EmitLoadOfLValue(const Expr *E) {
285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
286 E->getExprLoc());
287
288 EmitLValueAlignmentAssumption(E, V);
289 return V;
290 }
291
292 /// EmitConversionToBool - Convert the specified expression value to a
293 /// boolean (i1) truth value. This is equivalent to "Val != 0".
294 Value *EmitConversionToBool(Value *Src, QualType DstTy);
295
296 /// Emit a check that a conversion to or from a floating-point type does not
297 /// overflow.
298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
299 Value *Src, QualType SrcType, QualType DstType,
300 llvm::Type *DstTy, SourceLocation Loc);
301
302 /// Emit a conversion from the specified type to the specified destination
303 /// type, both of which are LLVM scalar types.
304 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
305 SourceLocation Loc);
306
307 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
308 SourceLocation Loc, bool TreatBooleanAsSigned);
309
310 /// Emit a conversion from the specified complex type to the specified
311 /// destination type, where the destination type is an LLVM scalar type.
312 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
313 QualType SrcTy, QualType DstTy,
314 SourceLocation Loc);
315
316 /// EmitNullValue - Emit a value that corresponds to null for the given type.
317 Value *EmitNullValue(QualType Ty);
318
319 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
320 Value *EmitFloatToBoolConversion(Value *V) {
321 // Compare against 0.0 for fp scalars.
322 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
323 return Builder.CreateFCmpUNE(V, Zero, "tobool");
324 }
325
326 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
327 Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
328 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);
329
330 return Builder.CreateICmpNE(V, Zero, "tobool");
331 }
332
333 Value *EmitIntToBoolConversion(Value *V) {
334 // Because of the type rules of C, we often end up computing a
335 // logical value, then zero extending it to int, then wanting it
336 // as a logical value again. Optimize this common case.
337 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
338 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
339 Value *Result = ZI->getOperand(0);
340 // If there aren't any more uses, zap the instruction to save space.
341 // Note that there can be more uses, for example if this
342 // is the result of an assignment.
343 if (ZI->use_empty())
344 ZI->eraseFromParent();
345 return Result;
346 }
347 }
348
349 return Builder.CreateIsNotNull(V, "tobool");
350 }
351
352 //===--------------------------------------------------------------------===//
353 // Visitor Methods
354 //===--------------------------------------------------------------------===//
355
356 Value *Visit(Expr *E) {
357 ApplyDebugLocation DL(CGF, E);
358 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
359 }
360
361 Value *VisitStmt(Stmt *S) {
362 S->dump(CGF.getContext().getSourceManager());
363 llvm_unreachable("Stmt can't have complex result type!")::llvm::llvm_unreachable_internal("Stmt can't have complex result type!"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 363)
;
364 }
365 Value *VisitExpr(Expr *S);
366
367 Value *VisitParenExpr(ParenExpr *PE) {
368 return Visit(PE->getSubExpr());
369 }
370 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
371 return Visit(E->getReplacement());
372 }
373 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
374 return Visit(GE->getResultExpr());
375 }
376 Value *VisitCoawaitExpr(CoawaitExpr *S) {
377 return CGF.EmitCoawaitExpr(*S).getScalarVal();
378 }
379 Value *VisitCoyieldExpr(CoyieldExpr *S) {
380 return CGF.EmitCoyieldExpr(*S).getScalarVal();
381 }
382 Value *VisitUnaryCoawait(const UnaryOperator *E) {
383 return Visit(E->getSubExpr());
384 }
385
386 // Leaves.
387 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
388 return Builder.getInt(E->getValue());
389 }
390 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
391 return Builder.getInt(E->getValue());
392 }
393 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
394 return llvm::ConstantFP::get(VMContext, E->getValue());
395 }
396 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
397 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
398 }
399 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
400 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
401 }
402 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
403 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
404 }
405 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
406 return EmitNullValue(E->getType());
407 }
408 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
409 return EmitNullValue(E->getType());
410 }
411 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
412 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
413 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
414 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
415 return Builder.CreateBitCast(V, ConvertType(E->getType()));
416 }
417
418 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
419 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
420 }
421
422 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
423 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
424 }
425
426 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
427 if (E->isGLValue())
428 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
429 E->getExprLoc());
430
431 // Otherwise, assume the mapping is the scalar directly.
432 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
433 }
434
435 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant,
436 Expr *E) {
437 assert(Constant && "not a constant")(static_cast <bool> (Constant && "not a constant"
) ? void (0) : __assert_fail ("Constant && \"not a constant\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 437, __extension__ __PRETTY_FUNCTION__))
;
438 if (Constant.isReference())
439 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E),
440 E->getExprLoc());
441 return Constant.getValue();
442 }
443
444 // l-values.
445 Value *VisitDeclRefExpr(DeclRefExpr *E) {
446 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
447 return emitConstant(Constant, E);
448 return EmitLoadOfLValue(E);
449 }
450
451 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
452 return CGF.EmitObjCSelectorExpr(E);
453 }
454 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
455 return CGF.EmitObjCProtocolExpr(E);
456 }
457 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
458 return EmitLoadOfLValue(E);
459 }
460 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
461 if (E->getMethodDecl() &&
462 E->getMethodDecl()->getReturnType()->isReferenceType())
463 return EmitLoadOfLValue(E);
464 return CGF.EmitObjCMessageExpr(E).getScalarVal();
465 }
466
467 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
468 LValue LV = CGF.EmitObjCIsaExpr(E);
469 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
470 return V;
471 }
472
473 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
474 VersionTuple Version = E->getVersion();
475
476 // If we're checking for a platform older than our minimum deployment
477 // target, we can fold the check away.
478 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
479 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);
480
481 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
482 llvm::Value *Args[] = {
483 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
484 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
485 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
486 };
487
488 return CGF.EmitBuiltinAvailable(Args);
489 }
490
491 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
492 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
493 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
494 Value *VisitMemberExpr(MemberExpr *E);
495 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
496 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
497 return EmitLoadOfLValue(E);
498 }
499
500 Value *VisitInitListExpr(InitListExpr *E);
501
502 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
503 assert(CGF.getArrayInitIndex() &&(static_cast <bool> (CGF.getArrayInitIndex() &&
"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?") ? void
(0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 504, __extension__ __PRETTY_FUNCTION__))
504 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?")(static_cast <bool> (CGF.getArrayInitIndex() &&
"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?") ? void
(0) : __assert_fail ("CGF.getArrayInitIndex() && \"ArrayInitIndexExpr not inside an ArrayInitLoopExpr?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 504, __extension__ __PRETTY_FUNCTION__))
;
505 return CGF.getArrayInitIndex();
506 }
507
508 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
509 return EmitNullValue(E->getType());
510 }
511 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
512 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
513 return VisitCastExpr(E);
514 }
515 Value *VisitCastExpr(CastExpr *E);
516
517 Value *VisitCallExpr(const CallExpr *E) {
518 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
519 return EmitLoadOfLValue(E);
520
521 Value *V = CGF.EmitCallExpr(E).getScalarVal();
522
523 EmitLValueAlignmentAssumption(E, V);
524 return V;
525 }
526
527 Value *VisitStmtExpr(const StmtExpr *E);
528
529 // Unary Operators.
530 Value *VisitUnaryPostDec(const UnaryOperator *E) {
531 LValue LV = EmitLValue(E->getSubExpr());
532 return EmitScalarPrePostIncDec(E, LV, false, false);
533 }
534 Value *VisitUnaryPostInc(const UnaryOperator *E) {
535 LValue LV = EmitLValue(E->getSubExpr());
536 return EmitScalarPrePostIncDec(E, LV, true, false);
537 }
538 Value *VisitUnaryPreDec(const UnaryOperator *E) {
539 LValue LV = EmitLValue(E->getSubExpr());
540 return EmitScalarPrePostIncDec(E, LV, false, true);
541 }
542 Value *VisitUnaryPreInc(const UnaryOperator *E) {
543 LValue LV = EmitLValue(E->getSubExpr());
544 return EmitScalarPrePostIncDec(E, LV, true, true);
545 }
546
547 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
548 llvm::Value *InVal,
549 bool IsInc);
550
551 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
552 bool isInc, bool isPre);
553
554
555 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
556 if (isa<MemberPointerType>(E->getType())) // never sugared
557 return CGF.CGM.getMemberPointerConstant(E);
558
559 return EmitLValue(E->getSubExpr()).getPointer();
560 }
561 Value *VisitUnaryDeref(const UnaryOperator *E) {
562 if (E->getType()->isVoidType())
563 return Visit(E->getSubExpr()); // the actual value should be unused
564 return EmitLoadOfLValue(E);
565 }
566 Value *VisitUnaryPlus(const UnaryOperator *E) {
567 // This differs from gcc, though, most likely due to a bug in gcc.
568 TestAndClearIgnoreResultAssign();
569 return Visit(E->getSubExpr());
570 }
571 Value *VisitUnaryMinus (const UnaryOperator *E);
572 Value *VisitUnaryNot (const UnaryOperator *E);
573 Value *VisitUnaryLNot (const UnaryOperator *E);
574 Value *VisitUnaryReal (const UnaryOperator *E);
575 Value *VisitUnaryImag (const UnaryOperator *E);
576 Value *VisitUnaryExtension(const UnaryOperator *E) {
577 return Visit(E->getSubExpr());
578 }
579
580 // C++
581 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
582 return EmitLoadOfLValue(E);
583 }
584
585 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
586 return Visit(DAE->getExpr());
587 }
588 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
589 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
590 return Visit(DIE->getExpr());
591 }
592 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
593 return CGF.LoadCXXThis();
594 }
595
596 Value *VisitExprWithCleanups(ExprWithCleanups *E);
597 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
598 return CGF.EmitCXXNewExpr(E);
599 }
600 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
601 CGF.EmitCXXDeleteExpr(E);
602 return nullptr;
603 }
604
605 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
606 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
607 }
608
609 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
610 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
611 }
612
613 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
614 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
615 }
616
617 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
618 // C++ [expr.pseudo]p1:
619 // The result shall only be used as the operand for the function call
620 // operator (), and the result of such a call has type void. The only
621 // effect is the evaluation of the postfix-expression before the dot or
622 // arrow.
623 CGF.EmitScalarExpr(E->getBase());
624 return nullptr;
625 }
626
627 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
628 return EmitNullValue(E->getType());
629 }
630
631 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
632 CGF.EmitCXXThrowExpr(E);
633 return nullptr;
634 }
635
636 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
637 return Builder.getInt1(E->getValue());
638 }
639
640 // Binary Operators.
641 Value *EmitMul(const BinOpInfo &Ops) {
642 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
643 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
644 case LangOptions::SOB_Defined:
645 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
646 case LangOptions::SOB_Undefined:
647 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
648 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
649 // Fall through.
650 case LangOptions::SOB_Trapping:
651 if (CanElideOverflowCheck(CGF.getContext(), Ops))
652 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
653 return EmitOverflowCheckedBinOp(Ops);
654 }
655 }
656
657 if (Ops.Ty->isUnsignedIntegerType() &&
658 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
659 !CanElideOverflowCheck(CGF.getContext(), Ops))
660 return EmitOverflowCheckedBinOp(Ops);
661
662 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
663 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
664 return propagateFMFlags(V, Ops);
665 }
666 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
667 }
668 /// Create a binary op that checks for overflow.
669 /// Currently only supports +, - and *.
670 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
671
672 // Check for undefined division and modulus behaviors.
673 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
674 llvm::Value *Zero,bool isDiv);
675 // Common helper for getting how wide LHS of shift is.
676 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
677 Value *EmitDiv(const BinOpInfo &Ops);
678 Value *EmitRem(const BinOpInfo &Ops);
679 Value *EmitAdd(const BinOpInfo &Ops);
680 Value *EmitSub(const BinOpInfo &Ops);
681 Value *EmitShl(const BinOpInfo &Ops);
682 Value *EmitShr(const BinOpInfo &Ops);
683 Value *EmitAnd(const BinOpInfo &Ops) {
684 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
685 }
686 Value *EmitXor(const BinOpInfo &Ops) {
687 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
688 }
689 Value *EmitOr (const BinOpInfo &Ops) {
690 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
691 }
692
693 BinOpInfo EmitBinOps(const BinaryOperator *E);
694 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
695 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
696 Value *&Result);
697
698 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
699 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
700
701 // Binary operators and binary compound assignment operators.
702#define HANDLEBINOP(OP) \
703 Value *VisitBin ## OP(const BinaryOperator *E) { \
704 return Emit ## OP(EmitBinOps(E)); \
705 } \
706 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
707 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
708 }
709 HANDLEBINOP(Mul)
710 HANDLEBINOP(Div)
711 HANDLEBINOP(Rem)
712 HANDLEBINOP(Add)
713 HANDLEBINOP(Sub)
714 HANDLEBINOP(Shl)
715 HANDLEBINOP(Shr)
716 HANDLEBINOP(And)
717 HANDLEBINOP(Xor)
718 HANDLEBINOP(Or)
719#undef HANDLEBINOP
720
721 // Comparisons.
722 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
723 llvm::CmpInst::Predicate SICmpOpc,
724 llvm::CmpInst::Predicate FCmpOpc);
725#define VISITCOMP(CODE, UI, SI, FP) \
726 Value *VisitBin##CODE(const BinaryOperator *E) { \
727 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
728 llvm::FCmpInst::FP); }
729 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
730 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
731 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
732 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
733 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
734 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
735#undef VISITCOMP
736
737 Value *VisitBinAssign (const BinaryOperator *E);
738
739 Value *VisitBinLAnd (const BinaryOperator *E);
740 Value *VisitBinLOr (const BinaryOperator *E);
741 Value *VisitBinComma (const BinaryOperator *E);
742
743 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
744 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
745
746 // Other Operators.
747 Value *VisitBlockExpr(const BlockExpr *BE);
748 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
749 Value *VisitChooseExpr(ChooseExpr *CE);
750 Value *VisitVAArgExpr(VAArgExpr *VE);
751 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
752 return CGF.EmitObjCStringLiteral(E);
753 }
754 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
755 return CGF.EmitObjCBoxedExpr(E);
756 }
757 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
758 return CGF.EmitObjCArrayLiteral(E);
759 }
760 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
761 return CGF.EmitObjCDictionaryLiteral(E);
762 }
763 Value *VisitAsTypeExpr(AsTypeExpr *CE);
764 Value *VisitAtomicExpr(AtomicExpr *AE);
765};
766} // end anonymous namespace.
767
768//===----------------------------------------------------------------------===//
769// Utilities
770//===----------------------------------------------------------------------===//
771
772/// EmitConversionToBool - Convert the specified expression value to a
773/// boolean (i1) truth value. This is equivalent to "Val != 0".
774Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
775 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs")(static_cast <bool> (SrcType.isCanonical() && "EmitScalarConversion strips typedefs"
) ? void (0) : __assert_fail ("SrcType.isCanonical() && \"EmitScalarConversion strips typedefs\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 775, __extension__ __PRETTY_FUNCTION__))
;
776
777 if (SrcType->isRealFloatingType())
778 return EmitFloatToBoolConversion(Src);
779
780 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
781 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
782
783 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&(static_cast <bool> ((SrcType->isIntegerType() || isa
<llvm::PointerType>(Src->getType())) && "Unknown scalar type to convert"
) ? void (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 784, __extension__ __PRETTY_FUNCTION__))
784 "Unknown scalar type to convert")(static_cast <bool> ((SrcType->isIntegerType() || isa
<llvm::PointerType>(Src->getType())) && "Unknown scalar type to convert"
) ? void (0) : __assert_fail ("(SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && \"Unknown scalar type to convert\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 784, __extension__ __PRETTY_FUNCTION__))
;
785
786 if (isa<llvm::IntegerType>(Src->getType()))
787 return EmitIntToBoolConversion(Src);
788
789 assert(isa<llvm::PointerType>(Src->getType()))(static_cast <bool> (isa<llvm::PointerType>(Src->
getType())) ? void (0) : __assert_fail ("isa<llvm::PointerType>(Src->getType())"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 789, __extension__ __PRETTY_FUNCTION__))
;
790 return EmitPointerToBoolConversion(Src, SrcType);
791}
792
793void ScalarExprEmitter::EmitFloatConversionCheck(
794 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
795 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
796 CodeGenFunction::SanitizerScope SanScope(&CGF);
797 using llvm::APFloat;
798 using llvm::APSInt;
799
800 llvm::Type *SrcTy = Src->getType();
801
802 llvm::Value *Check = nullptr;
803 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
804 // Integer to floating-point. This can fail for unsigned short -> __half
805 // or unsigned __int128 -> float.
806 assert(DstType->isFloatingType())(static_cast <bool> (DstType->isFloatingType()) ? void
(0) : __assert_fail ("DstType->isFloatingType()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 806, __extension__ __PRETTY_FUNCTION__))
;
807 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
808
809 APFloat LargestFloat =
810 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
811 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
812
813 bool IsExact;
814 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
815 &IsExact) != APFloat::opOK)
816 // The range of representable values of this floating point type includes
817 // all values of this integer type. Don't need an overflow check.
818 return;
819
820 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
821 if (SrcIsUnsigned)
822 Check = Builder.CreateICmpULE(Src, Max);
823 else {
824 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
825 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
826 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
827 Check = Builder.CreateAnd(GE, LE);
828 }
829 } else {
830 const llvm::fltSemantics &SrcSema =
831 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
832 if (isa<llvm::IntegerType>(DstTy)) {
833 // Floating-point to integer. This has undefined behavior if the source is
834 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
835 // to an integer).
836 unsigned Width = CGF.getContext().getIntWidth(DstType);
837 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
838
839 APSInt Min = APSInt::getMinValue(Width, Unsigned);
840 APFloat MinSrc(SrcSema, APFloat::uninitialized);
841 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
842 APFloat::opOverflow)
843 // Don't need an overflow check for lower bound. Just check for
844 // -Inf/NaN.
845 MinSrc = APFloat::getInf(SrcSema, true);
846 else
847 // Find the largest value which is too small to represent (before
848 // truncation toward zero).
849 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
850
851 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
852 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
853 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
854 APFloat::opOverflow)
855 // Don't need an overflow check for upper bound. Just check for
856 // +Inf/NaN.
857 MaxSrc = APFloat::getInf(SrcSema, false);
858 else
859 // Find the smallest value which is too large to represent (before
860 // truncation toward zero).
861 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
862
863 // If we're converting from __half, convert the range to float to match
864 // the type of src.
865 if (OrigSrcType->isHalfType()) {
866 const llvm::fltSemantics &Sema =
867 CGF.getContext().getFloatTypeSemantics(SrcType);
868 bool IsInexact;
869 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
870 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
871 }
872
873 llvm::Value *GE =
874 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
875 llvm::Value *LE =
876 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
877 Check = Builder.CreateAnd(GE, LE);
878 } else {
879 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
880 //
881 // Floating-point to floating-point. This has undefined behavior if the
882 // source is not in the range of representable values of the destination
883 // type. The C and C++ standards are spectacularly unclear here. We
884 // diagnose finite out-of-range conversions, but allow infinities and NaNs
885 // to convert to the corresponding value in the smaller type.
886 //
887 // C11 Annex F gives all such conversions defined behavior for IEC 60559
888 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
889 // does not.
890
891 // Converting from a lower rank to a higher rank can never have
892 // undefined behavior, since higher-rank types must have a superset
893 // of values of lower-rank types.
894 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
895 return;
896
897 assert(!OrigSrcType->isHalfType() &&(static_cast <bool> (!OrigSrcType->isHalfType() &&
"should not check conversion from __half, it has the lowest rank"
) ? void (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 898, __extension__ __PRETTY_FUNCTION__))
898 "should not check conversion from __half, it has the lowest rank")(static_cast <bool> (!OrigSrcType->isHalfType() &&
"should not check conversion from __half, it has the lowest rank"
) ? void (0) : __assert_fail ("!OrigSrcType->isHalfType() && \"should not check conversion from __half, it has the lowest rank\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 898, __extension__ __PRETTY_FUNCTION__))
;
899
900 const llvm::fltSemantics &DstSema =
901 CGF.getContext().getFloatTypeSemantics(DstType);
902 APFloat MinBad = APFloat::getLargest(DstSema, false);
903 APFloat MaxBad = APFloat::getInf(DstSema, false);
904
905 bool IsInexact;
906 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
907 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
908
909 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
910 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
911 llvm::Value *GE =
912 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
913 llvm::Value *LE =
914 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
915 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
916 }
917 }
918
919 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
920 CGF.EmitCheckTypeDescriptor(OrigSrcType),
921 CGF.EmitCheckTypeDescriptor(DstType)};
922 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
923 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
924}
925
926/// Emit a conversion from the specified type to the specified destination type,
927/// both of which are LLVM scalar types.
928Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
929 QualType DstType,
930 SourceLocation Loc) {
931 return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
932}
933
934Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
935 QualType DstType,
936 SourceLocation Loc,
937 bool TreatBooleanAsSigned) {
938 SrcType = CGF.getContext().getCanonicalType(SrcType);
939 DstType = CGF.getContext().getCanonicalType(DstType);
940 if (SrcType == DstType) return Src;
941
942 if (DstType->isVoidType()) return nullptr;
943
944 llvm::Value *OrigSrc = Src;
945 QualType OrigSrcType = SrcType;
946 llvm::Type *SrcTy = Src->getType();
947
948 // Handle conversions to bool first, they are special: comparisons against 0.
949 if (DstType->isBooleanType())
950 return EmitConversionToBool(Src, SrcType);
951
952 llvm::Type *DstTy = ConvertType(DstType);
953
954 // Cast from half through float if half isn't a native type.
955 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
956 // Cast to FP using the intrinsic if the half type itself isn't supported.
957 if (DstTy->isFloatingPointTy()) {
958 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
959 return Builder.CreateCall(
960 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
961 Src);
962 } else {
963 // Cast to other types through float, using either the intrinsic or FPExt,
964 // depending on whether the half type itself is supported
965 // (as opposed to operations on half, available with NativeHalfType).
966 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
967 Src = Builder.CreateCall(
968 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
969 CGF.CGM.FloatTy),
970 Src);
971 } else {
972 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
973 }
974 SrcType = CGF.getContext().FloatTy;
975 SrcTy = CGF.FloatTy;
976 }
977 }
978
979 // Ignore conversions like int -> uint.
980 if (SrcTy == DstTy)
981 return Src;
982
983 // Handle pointer conversions next: pointers can only be converted to/from
984 // other pointers and integers. Check for pointer types in terms of LLVM, as
985 // some native types (like Obj-C id) may map to a pointer type.
986 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
987 // The source value may be an integer, or a pointer.
988 if (isa<llvm::PointerType>(SrcTy))
989 return Builder.CreateBitCast(Src, DstTy, "conv");
990
991 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?")(static_cast <bool> (SrcType->isIntegerType() &&
"Not ptr->ptr or int->ptr conversion?") ? void (0) : __assert_fail
("SrcType->isIntegerType() && \"Not ptr->ptr or int->ptr conversion?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 991, __extension__ __PRETTY_FUNCTION__))
;
992 // First, convert to the correct width so that we control the kind of
993 // extension.
994 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
995 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
996 llvm::Value* IntResult =
997 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
998 // Then, cast to pointer.
999 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
1000 }
1001
1002 if (isa<llvm::PointerType>(SrcTy)) {
1003 // Must be an ptr to int cast.
1004 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?")(static_cast <bool> (isa<llvm::IntegerType>(DstTy
) && "not ptr->int?") ? void (0) : __assert_fail (
"isa<llvm::IntegerType>(DstTy) && \"not ptr->int?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1004, __extension__ __PRETTY_FUNCTION__))
;
1005 return Builder.CreatePtrToInt(Src, DstTy, "conv");
1006 }
1007
1008 // A scalar can be splatted to an extended vector of the same element type
1009 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
1010 // Sema should add casts to make sure that the source expression's type is
1011 // the same as the vector's element type (sans qualifiers)
1012 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==(static_cast <bool> (DstType->castAs<ExtVectorType
>()->getElementType().getTypePtr() == SrcType.getTypePtr
() && "Splatted expr doesn't match with vector element type?"
) ? void (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
1013 SrcType.getTypePtr() &&(static_cast <bool> (DstType->castAs<ExtVectorType
>()->getElementType().getTypePtr() == SrcType.getTypePtr
() && "Splatted expr doesn't match with vector element type?"
) ? void (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
1014 "Splatted expr doesn't match with vector element type?")(static_cast <bool> (DstType->castAs<ExtVectorType
>()->getElementType().getTypePtr() == SrcType.getTypePtr
() && "Splatted expr doesn't match with vector element type?"
) ? void (0) : __assert_fail ("DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == SrcType.getTypePtr() && \"Splatted expr doesn't match with vector element type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
;
1015
1016 // Splat the element across to all elements
1017 unsigned NumElements = DstTy->getVectorNumElements();
1018 return Builder.CreateVectorSplat(NumElements, Src, "splat");
1019 }
1020
1021 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
1022 // Allow bitcast from vector to integer/fp of the same size.
1023 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1024 unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1025 if (SrcSize == DstSize)
1026 return Builder.CreateBitCast(Src, DstTy, "conv");
1027
1028 // Conversions between vectors of different sizes are not allowed except
1029 // when vectors of half are involved. Operations on storage-only half
1030 // vectors require promoting half vector operands to float vectors and
1031 // truncating the result, which is either an int or float vector, to a
1032 // short or half vector.
1033
1034 // Source and destination are both expected to be vectors.
1035 llvm::Type *SrcElementTy = SrcTy->getVectorElementType();
1036 llvm::Type *DstElementTy = DstTy->getVectorElementType();
1037 (void)DstElementTy;
1038
1039 assert(((SrcElementTy->isIntegerTy() &&(static_cast <bool> (((SrcElementTy->isIntegerTy() &&
DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy
() && DstElementTy->isFloatingPointTy())) &&
"unexpected conversion between a floating-point vector and an "
"integer vector") ? void (0) : __assert_fail ("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1044, __extension__ __PRETTY_FUNCTION__))
1040 DstElementTy->isIntegerTy()) ||(static_cast <bool> (((SrcElementTy->isIntegerTy() &&
DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy
() && DstElementTy->isFloatingPointTy())) &&
"unexpected conversion between a floating-point vector and an "
"integer vector") ? void (0) : __assert_fail ("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1044, __extension__ __PRETTY_FUNCTION__))
1041 (SrcElementTy->isFloatingPointTy() &&(static_cast <bool> (((SrcElementTy->isIntegerTy() &&
DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy
() && DstElementTy->isFloatingPointTy())) &&
"unexpected conversion between a floating-point vector and an "
"integer vector") ? void (0) : __assert_fail ("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1044, __extension__ __PRETTY_FUNCTION__))
1042 DstElementTy->isFloatingPointTy())) &&(static_cast <bool> (((SrcElementTy->isIntegerTy() &&
DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy
() && DstElementTy->isFloatingPointTy())) &&
"unexpected conversion between a floating-point vector and an "
"integer vector") ? void (0) : __assert_fail ("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1044, __extension__ __PRETTY_FUNCTION__))
1043 "unexpected conversion between a floating-point vector and an "(static_cast <bool> (((SrcElementTy->isIntegerTy() &&
DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy
() && DstElementTy->isFloatingPointTy())) &&
"unexpected conversion between a floating-point vector and an "
"integer vector") ? void (0) : __assert_fail ("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1044, __extension__ __PRETTY_FUNCTION__))
1044 "integer vector")(static_cast <bool> (((SrcElementTy->isIntegerTy() &&
DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy
() && DstElementTy->isFloatingPointTy())) &&
"unexpected conversion between a floating-point vector and an "
"integer vector") ? void (0) : __assert_fail ("((SrcElementTy->isIntegerTy() && DstElementTy->isIntegerTy()) || (SrcElementTy->isFloatingPointTy() && DstElementTy->isFloatingPointTy())) && \"unexpected conversion between a floating-point vector and an \" \"integer vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1044, __extension__ __PRETTY_FUNCTION__))
;
1045
1046 // Truncate an i32 vector to an i16 vector.
1047 if (SrcElementTy->isIntegerTy())
1048 return Builder.CreateIntCast(Src, DstTy, false, "conv");
1049
1050 // Truncate a float vector to a half vector.
1051 if (SrcSize > DstSize)
1052 return Builder.CreateFPTrunc(Src, DstTy, "conv");
1053
1054 // Promote a half vector to a float vector.
1055 return Builder.CreateFPExt(Src, DstTy, "conv");
1056 }
1057
1058 // Finally, we have the arithmetic types: real int/float.
1059 Value *Res = nullptr;
1060 llvm::Type *ResTy = DstTy;
1061
1062 // An overflowing conversion has undefined behavior if either the source type
1063 // or the destination type is a floating-point type.
1064 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
1065 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
1066 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
1067 Loc);
1068
1069 // Cast to half through float if half isn't a native type.
1070 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1071 // Make sure we cast in a single step if from another FP type.
1072 if (SrcTy->isFloatingPointTy()) {
1073 // Use the intrinsic if the half type itself isn't supported
1074 // (as opposed to operations on half, available with NativeHalfType).
1075 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
1076 return Builder.CreateCall(
1077 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
1078 // If the half type is supported, just use an fptrunc.
1079 return Builder.CreateFPTrunc(Src, DstTy);
1080 }
1081 DstTy = CGF.FloatTy;
1082 }
1083
1084 if (isa<llvm::IntegerType>(SrcTy)) {
1085 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
1086 if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
1087 InputSigned = true;
1088 }
1089 if (isa<llvm::IntegerType>(DstTy))
1090 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1091 else if (InputSigned)
1092 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1093 else
1094 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1095 } else if (isa<llvm::IntegerType>(DstTy)) {
1096 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion")(static_cast <bool> (SrcTy->isFloatingPointTy() &&
"Unknown real conversion") ? void (0) : __assert_fail ("SrcTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1096, __extension__ __PRETTY_FUNCTION__))
;
1097 if (DstType->isSignedIntegerOrEnumerationType())
1098 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1099 else
1100 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1101 } else {
1102 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&(static_cast <bool> (SrcTy->isFloatingPointTy() &&
DstTy->isFloatingPointTy() && "Unknown real conversion"
) ? void (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1103, __extension__ __PRETTY_FUNCTION__))
1103 "Unknown real conversion")(static_cast <bool> (SrcTy->isFloatingPointTy() &&
DstTy->isFloatingPointTy() && "Unknown real conversion"
) ? void (0) : __assert_fail ("SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1103, __extension__ __PRETTY_FUNCTION__))
;
1104 if (DstTy->getTypeID() < SrcTy->getTypeID())
1105 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1106 else
1107 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1108 }
1109
1110 if (DstTy != ResTy) {
1111 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
1112 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion")(static_cast <bool> (ResTy->isIntegerTy(16) &&
"Only half FP requires extra conversion") ? void (0) : __assert_fail
("ResTy->isIntegerTy(16) && \"Only half FP requires extra conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1112, __extension__ __PRETTY_FUNCTION__))
;
1113 Res = Builder.CreateCall(
1114 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
1115 Res);
1116 } else {
1117 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
1118 }
1119 }
1120
1121 return Res;
1122}
1123
1124/// Emit a conversion from the specified complex type to the specified
1125/// destination type, where the destination type is an LLVM scalar type.
1126Value *ScalarExprEmitter::EmitComplexToScalarConversion(
1127 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
1128 SourceLocation Loc) {
1129 // Get the source element type.
1130 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
1131
1132 // Handle conversions to bool first, they are special: comparisons against 0.
1133 if (DstTy->isBooleanType()) {
1134 // Complex != 0 -> (Real != 0) | (Imag != 0)
1135 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1136 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
1137 return Builder.CreateOr(Src.first, Src.second, "tobool");
1138 }
1139
1140 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
1141 // the imaginary part of the complex value is discarded and the value of the
1142 // real part is converted according to the conversion rules for the
1143 // corresponding real type.
1144 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
1145}
1146
1147Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
1148 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
1149}
1150
1151/// Emit a sanitization check for the given "binary" operation (which
1152/// might actually be a unary increment which has been lowered to a binary
1153/// operation). The check passes if all values in \p Checks (which are \c i1),
1154/// are \c true.
1155void ScalarExprEmitter::EmitBinOpCheck(
1156 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
1157 assert(CGF.IsSanitizerScope)(static_cast <bool> (CGF.IsSanitizerScope) ? void (0) :
__assert_fail ("CGF.IsSanitizerScope", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1157, __extension__ __PRETTY_FUNCTION__))
;
1158 SanitizerHandler Check;
1159 SmallVector<llvm::Constant *, 4> StaticData;
1160 SmallVector<llvm::Value *, 2> DynamicData;
1161
1162 BinaryOperatorKind Opcode = Info.Opcode;
1163 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
1164 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
1165
1166 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
1167 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
1168 if (UO && UO->getOpcode() == UO_Minus) {
1169 Check = SanitizerHandler::NegateOverflow;
1170 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
1171 DynamicData.push_back(Info.RHS);
1172 } else {
1173 if (BinaryOperator::isShiftOp(Opcode)) {
1174 // Shift LHS negative or too large, or RHS out of bounds.
1175 Check = SanitizerHandler::ShiftOutOfBounds;
1176 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
1177 StaticData.push_back(
1178 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
1179 StaticData.push_back(
1180 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
1181 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
1182 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
1183 Check = SanitizerHandler::DivremOverflow;
1184 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1185 } else {
1186 // Arithmetic overflow (+, -, *).
1187 switch (Opcode) {
1188 case BO_Add: Check = SanitizerHandler::AddOverflow; break;
1189 case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
1190 case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
1191 default: llvm_unreachable("unexpected opcode for bin op check")::llvm::llvm_unreachable_internal("unexpected opcode for bin op check"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1191)
;
1192 }
1193 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
1194 }
1195 DynamicData.push_back(Info.LHS);
1196 DynamicData.push_back(Info.RHS);
1197 }
1198
1199 CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
1200}
1201
1202//===----------------------------------------------------------------------===//
1203// Visitor Methods
1204//===----------------------------------------------------------------------===//
1205
1206Value *ScalarExprEmitter::VisitExpr(Expr *E) {
1207 CGF.ErrorUnsupported(E, "scalar expression");
1208 if (E->getType()->isVoidType())
1209 return nullptr;
1210 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1211}
1212
1213Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
1214 // Vector Mask Case
1215 if (E->getNumSubExprs() == 2) {
1216 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
1217 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
1218 Value *Mask;
1219
1220 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
1221 unsigned LHSElts = LTy->getNumElements();
1222
1223 Mask = RHS;
1224
1225 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1226
1227 // Mask off the high bits of each shuffle index.
1228 Value *MaskBits =
1229 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1230 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1231
1232 // newv = undef
1233 // mask = mask & maskbits
1234 // for each elt
1235 // n = extract mask i
1236 // x = extract val n
1237 // newv = insert newv, x, i
1238 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1239 MTy->getNumElements());
1240 Value* NewV = llvm::UndefValue::get(RTy);
1241 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1242 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1243 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1244
1245 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1246 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1247 }
1248 return NewV;
1249 }
1250
1251 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1252 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1253
1254 SmallVector<llvm::Constant*, 32> indices;
1255 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1256 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1257 // Check for -1 and output it as undef in the IR.
1258 if (Idx.isSigned() && Idx.isAllOnesValue())
1259 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1260 else
1261 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1262 }
1263
1264 Value *SV = llvm::ConstantVector::get(indices);
1265 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1266}
1267
1268Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1269 QualType SrcType = E->getSrcExpr()->getType(),
1270 DstType = E->getType();
1271
1272 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1273
1274 SrcType = CGF.getContext().getCanonicalType(SrcType);
1275 DstType = CGF.getContext().getCanonicalType(DstType);
1276 if (SrcType == DstType) return Src;
1277
1278 assert(SrcType->isVectorType() &&(static_cast <bool> (SrcType->isVectorType() &&
"ConvertVector source type must be a vector") ? void (0) : __assert_fail
("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1279, __extension__ __PRETTY_FUNCTION__))
1279 "ConvertVector source type must be a vector")(static_cast <bool> (SrcType->isVectorType() &&
"ConvertVector source type must be a vector") ? void (0) : __assert_fail
("SrcType->isVectorType() && \"ConvertVector source type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1279, __extension__ __PRETTY_FUNCTION__))
;
1280 assert(DstType->isVectorType() &&(static_cast <bool> (DstType->isVectorType() &&
"ConvertVector destination type must be a vector") ? void (0
) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1281, __extension__ __PRETTY_FUNCTION__))
1281 "ConvertVector destination type must be a vector")(static_cast <bool> (DstType->isVectorType() &&
"ConvertVector destination type must be a vector") ? void (0
) : __assert_fail ("DstType->isVectorType() && \"ConvertVector destination type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1281, __extension__ __PRETTY_FUNCTION__))
;
1282
1283 llvm::Type *SrcTy = Src->getType();
1284 llvm::Type *DstTy = ConvertType(DstType);
1285
1286 // Ignore conversions like int -> uint.
1287 if (SrcTy == DstTy)
1288 return Src;
1289
1290 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1291 DstEltType = DstType->getAs<VectorType>()->getElementType();
1292
1293 assert(SrcTy->isVectorTy() &&(static_cast <bool> (SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? void (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1294, __extension__ __PRETTY_FUNCTION__))
1294 "ConvertVector source IR type must be a vector")(static_cast <bool> (SrcTy->isVectorTy() && "ConvertVector source IR type must be a vector"
) ? void (0) : __assert_fail ("SrcTy->isVectorTy() && \"ConvertVector source IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1294, __extension__ __PRETTY_FUNCTION__))
;
1295 assert(DstTy->isVectorTy() &&(static_cast <bool> (DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? void (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1296, __extension__ __PRETTY_FUNCTION__))
1296 "ConvertVector destination IR type must be a vector")(static_cast <bool> (DstTy->isVectorTy() && "ConvertVector destination IR type must be a vector"
) ? void (0) : __assert_fail ("DstTy->isVectorTy() && \"ConvertVector destination IR type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1296, __extension__ __PRETTY_FUNCTION__))
;
1297
1298 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1299 *DstEltTy = DstTy->getVectorElementType();
1300
1301 if (DstEltType->isBooleanType()) {
1302 assert((SrcEltTy->isFloatingPointTy() ||(static_cast <bool> ((SrcEltTy->isFloatingPointTy() ||
isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"
) ? void (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1303, __extension__ __PRETTY_FUNCTION__))
1303 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion")(static_cast <bool> ((SrcEltTy->isFloatingPointTy() ||
isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"
) ? void (0) : __assert_fail ("(SrcEltTy->isFloatingPointTy() || isa<llvm::IntegerType>(SrcEltTy)) && \"Unknown boolean conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1303, __extension__ __PRETTY_FUNCTION__))
;
1304
1305 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1306 if (SrcEltTy->isFloatingPointTy()) {
1307 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1308 } else {
1309 return Builder.CreateICmpNE(Src, Zero, "tobool");
1310 }
1311 }
1312
1313 // We have the arithmetic types: real int/float.
1314 Value *Res = nullptr;
1315
1316 if (isa<llvm::IntegerType>(SrcEltTy)) {
1317 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1318 if (isa<llvm::IntegerType>(DstEltTy))
1319 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1320 else if (InputSigned)
1321 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1322 else
1323 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1324 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1325 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion")(static_cast <bool> (SrcEltTy->isFloatingPointTy() &&
"Unknown real conversion") ? void (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1325, __extension__ __PRETTY_FUNCTION__))
;
1326 if (DstEltType->isSignedIntegerOrEnumerationType())
1327 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1328 else
1329 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1330 } else {
1331 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&(static_cast <bool> (SrcEltTy->isFloatingPointTy() &&
DstEltTy->isFloatingPointTy() && "Unknown real conversion"
) ? void (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1332, __extension__ __PRETTY_FUNCTION__))
1332 "Unknown real conversion")(static_cast <bool> (SrcEltTy->isFloatingPointTy() &&
DstEltTy->isFloatingPointTy() && "Unknown real conversion"
) ? void (0) : __assert_fail ("SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && \"Unknown real conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1332, __extension__ __PRETTY_FUNCTION__))
;
1333 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1334 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1335 else
1336 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1337 }
1338
1339 return Res;
1340}
1341
1342Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1343 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
1344 CGF.EmitIgnoredExpr(E->getBase());
1345 return emitConstant(Constant, E);
1346 } else {
1347 llvm::APSInt Value;
1348 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1349 CGF.EmitIgnoredExpr(E->getBase());
1350 return Builder.getInt(Value);
1351 }
1352 }
1353
1354 return EmitLoadOfLValue(E);
1355}
1356
1357Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1358 TestAndClearIgnoreResultAssign();
1359
1360 // Emit subscript expressions in rvalue context's. For most cases, this just
1361 // loads the lvalue formed by the subscript expr. However, we have to be
1362 // careful, because the base of a vector subscript is occasionally an rvalue,
1363 // so we can't get it as an lvalue.
1364 if (!E->getBase()->getType()->isVectorType())
1365 return EmitLoadOfLValue(E);
1366
1367 // Handle the vector case. The base must be a vector, the index must be an
1368 // integer value.
1369 Value *Base = Visit(E->getBase());
1370 Value *Idx = Visit(E->getIdx());
1371 QualType IdxTy = E->getIdx()->getType();
1372
1373 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1374 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1375
1376 return Builder.CreateExtractElement(Base, Idx, "vecext");
1377}
1378
1379static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1380 unsigned Off, llvm::Type *I32Ty) {
1381 int MV = SVI->getMaskValue(Idx);
1382 if (MV == -1)
1383 return llvm::UndefValue::get(I32Ty);
1384 return llvm::ConstantInt::get(I32Ty, Off+MV);
1385}
1386
1387static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1388 if (C->getBitWidth() != 32) {
1389 assert(llvm::ConstantInt::isValueValidForType(I32Ty,(static_cast <bool> (llvm::ConstantInt::isValueValidForType
(I32Ty, C->getZExtValue()) && "Index operand too large for shufflevector mask!"
) ? void (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1391, __extension__ __PRETTY_FUNCTION__))
1390 C->getZExtValue()) &&(static_cast <bool> (llvm::ConstantInt::isValueValidForType
(I32Ty, C->getZExtValue()) && "Index operand too large for shufflevector mask!"
) ? void (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1391, __extension__ __PRETTY_FUNCTION__))
1391 "Index operand too large for shufflevector mask!")(static_cast <bool> (llvm::ConstantInt::isValueValidForType
(I32Ty, C->getZExtValue()) && "Index operand too large for shufflevector mask!"
) ? void (0) : __assert_fail ("llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && \"Index operand too large for shufflevector mask!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1391, __extension__ __PRETTY_FUNCTION__))
;
1392 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1393 }
1394 return C;
1395}
1396
1397Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1398 bool Ignore = TestAndClearIgnoreResultAssign();
1399 (void)Ignore;
1400 assert (Ignore == false && "init list ignored")(static_cast <bool> (Ignore == false && "init list ignored"
) ? void (0) : __assert_fail ("Ignore == false && \"init list ignored\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1400, __extension__ __PRETTY_FUNCTION__))
;
1401 unsigned NumInitElements = E->getNumInits();
1402
1403 if (E->hadArrayRangeDesignator())
1404 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1405
1406 llvm::VectorType *VType =
1407 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1408
1409 if (!VType) {
1410 if (NumInitElements == 0) {
1411 // C++11 value-initialization for the scalar.
1412 return EmitNullValue(E->getType());
1413 }
1414 // We have a scalar in braces. Just use the first element.
1415 return Visit(E->getInit(0));
1416 }
1417
1418 unsigned ResElts = VType->getNumElements();
1419
1420 // Loop over initializers collecting the Value for each, and remembering
1421 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1422 // us to fold the shuffle for the swizzle into the shuffle for the vector
1423 // initializer, since LLVM optimizers generally do not want to touch
1424 // shuffles.
1425 unsigned CurIdx = 0;
1426 bool VIsUndefShuffle = false;
1427 llvm::Value *V = llvm::UndefValue::get(VType);
1428 for (unsigned i = 0; i != NumInitElements; ++i) {
1429 Expr *IE = E->getInit(i);
1430 Value *Init = Visit(IE);
1431 SmallVector<llvm::Constant*, 16> Args;
1432
1433 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1434
1435 // Handle scalar elements. If the scalar initializer is actually one
1436 // element of a different vector of the same width, use shuffle instead of
1437 // extract+insert.
1438 if (!VVT) {
1439 if (isa<ExtVectorElementExpr>(IE)) {
1440 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1441
1442 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1443 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1444 Value *LHS = nullptr, *RHS = nullptr;
1445 if (CurIdx == 0) {
1446 // insert into undef -> shuffle (src, undef)
1447 // shufflemask must use an i32
1448 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1449 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1450
1451 LHS = EI->getVectorOperand();
1452 RHS = V;
1453 VIsUndefShuffle = true;
1454 } else if (VIsUndefShuffle) {
1455 // insert into undefshuffle && size match -> shuffle (v, src)
1456 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1457 for (unsigned j = 0; j != CurIdx; ++j)
1458 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1459 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1460 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1461
1462 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1463 RHS = EI->getVectorOperand();
1464 VIsUndefShuffle = false;
1465 }
1466 if (!Args.empty()) {
1467 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1468 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1469 ++CurIdx;
1470 continue;
1471 }
1472 }
1473 }
1474 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1475 "vecinit");
1476 VIsUndefShuffle = false;
1477 ++CurIdx;
1478 continue;
1479 }
1480
1481 unsigned InitElts = VVT->getNumElements();
1482
1483 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1484 // input is the same width as the vector being constructed, generate an
1485 // optimized shuffle of the swizzle input into the result.
1486 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1487 if (isa<ExtVectorElementExpr>(IE)) {
1488 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1489 Value *SVOp = SVI->getOperand(0);
1490 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1491
1492 if (OpTy->getNumElements() == ResElts) {
1493 for (unsigned j = 0; j != CurIdx; ++j) {
1494 // If the current vector initializer is a shuffle with undef, merge
1495 // this shuffle directly into it.
1496 if (VIsUndefShuffle) {
1497 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1498 CGF.Int32Ty));
1499 } else {
1500 Args.push_back(Builder.getInt32(j));
1501 }
1502 }
1503 for (unsigned j = 0, je = InitElts; j != je; ++j)
1504 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1505 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1506
1507 if (VIsUndefShuffle)
1508 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1509
1510 Init = SVOp;
1511 }
1512 }
1513
1514 // Extend init to result vector length, and then shuffle its contribution
1515 // to the vector initializer into V.
1516 if (Args.empty()) {
1517 for (unsigned j = 0; j != InitElts; ++j)
1518 Args.push_back(Builder.getInt32(j));
1519 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1520 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1521 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1522 Mask, "vext");
1523
1524 Args.clear();
1525 for (unsigned j = 0; j != CurIdx; ++j)
1526 Args.push_back(Builder.getInt32(j));
1527 for (unsigned j = 0; j != InitElts; ++j)
1528 Args.push_back(Builder.getInt32(j+Offset));
1529 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1530 }
1531
1532 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1533 // merging subsequent shuffles into this one.
1534 if (CurIdx == 0)
1535 std::swap(V, Init);
1536 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1537 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1538 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1539 CurIdx += InitElts;
1540 }
1541
1542 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1543 // Emit remaining default initializers.
1544 llvm::Type *EltTy = VType->getElementType();
1545
1546 // Emit remaining default initializers
1547 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1548 Value *Idx = Builder.getInt32(CurIdx);
1549 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1550 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1551 }
1552 return V;
1553}
1554
1555bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1556 const Expr *E = CE->getSubExpr();
1557
1558 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1559 return false;
1560
1561 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1562 // We always assume that 'this' is never null.
1563 return false;
1564 }
1565
1566 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1567 // And that glvalue casts are never null.
1568 if (ICE->getValueKind() != VK_RValue)
1569 return false;
1570 }
1571
1572 return true;
1573}
1574
1575// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1576// have to handle a more broad range of conversions than explicit casts, as they
1577// handle things like function to ptr-to-function decay etc.
1578Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1579 Expr *E = CE->getSubExpr();
1580 QualType DestTy = CE->getType();
1581 CastKind Kind = CE->getCastKind();
1582
1583 // These cases are generally not written to ignore the result of
1584 // evaluating their sub-expressions, so we clear this now.
1585 bool Ignored = TestAndClearIgnoreResultAssign();
1586
1587 // Since almost all cast kinds apply to scalars, this switch doesn't have
1588 // a default case, so the compiler will warn on a missing case. The cases
1589 // are in the same order as in the CastKind enum.
1590 switch (Kind) {
1591 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!")::llvm::llvm_unreachable_internal("dependent cast kind in IR gen!"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1591)
;
1592 case CK_BuiltinFnToFnPtr:
1593 llvm_unreachable("builtin functions are handled elsewhere")::llvm::llvm_unreachable_internal("builtin functions are handled elsewhere"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1593)
;
1594
1595 case CK_LValueBitCast:
1596 case CK_ObjCObjectLValueCast: {
1597 Address Addr = EmitLValue(E).getAddress();
1598 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1599 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1600 return EmitLoadOfLValue(LV, CE->getExprLoc());
1601 }
1602
1603 case CK_CPointerToObjCPointerCast:
1604 case CK_BlockPointerToObjCPointerCast:
1605 case CK_AnyPointerToBlockPointerCast:
1606 case CK_BitCast: {
1607 Value *Src = Visit(const_cast<Expr*>(E));
1608 llvm::Type *SrcTy = Src->getType();
1609 llvm::Type *DstTy = ConvertType(DestTy);
1610 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1611 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1612 llvm_unreachable("wrong cast for pointers in different address spaces"::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1613)
1613 "(must be an address space cast)!")::llvm::llvm_unreachable_internal("wrong cast for pointers in different address spaces"
"(must be an address space cast)!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1613)
;
1614 }
1615
1616 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1617 if (auto PT = DestTy->getAs<PointerType>())
1618 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1619 /*MayBeNull=*/true,
1620 CodeGenFunction::CFITCK_UnrelatedCast,
1621 CE->getLocStart());
1622 }
1623
1624 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1625 const QualType SrcType = E->getType();
1626
1627 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
1628 // Casting to pointer that could carry dynamic information (provided by
1629 // invariant.group) requires launder.
1630 Src = Builder.CreateLaunderInvariantGroup(Src);
1631 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
1632 // Casting to pointer that does not carry dynamic information (provided
1633 // by invariant.group) requires stripping it. Note that we don't do it
1634 // if the source could not be dynamic type and destination could be
1635 // dynamic because dynamic information is already laundered. It is
1636 // because launder(strip(src)) == launder(src), so there is no need to
1637 // add extra strip before launder.
1638 Src = Builder.CreateStripInvariantGroup(Src);
1639 }
1640 }
1641
1642 return Builder.CreateBitCast(Src, DstTy);
1643 }
1644 case CK_AddressSpaceConversion: {
1645 Expr::EvalResult Result;
1646 if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
1647 Result.Val.isNullPointer()) {
1648 // If E has side effect, it is emitted even if its final result is a
1649 // null pointer. In that case, a DCE pass should be able to
1650 // eliminate the useless instructions emitted during translating E.
1651 if (Result.HasSideEffects)
1652 Visit(E);
1653 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
1654 ConvertType(DestTy)), DestTy);
1655 }
1656 // Since target may map different address spaces in AST to the same address
1657 // space, an address space conversion may end up as a bitcast.
1658 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
1659 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
1660 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
1661 }
1662 case CK_AtomicToNonAtomic:
1663 case CK_NonAtomicToAtomic:
1664 case CK_NoOp:
1665 case CK_UserDefinedConversion:
1666 return Visit(const_cast<Expr*>(E));
1667
1668 case CK_BaseToDerived: {
1669 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1670 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!")(static_cast <bool> (DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"
) ? void (0) : __assert_fail ("DerivedClassDecl && \"BaseToDerived arg isn't a C++ object pointer!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1670, __extension__ __PRETTY_FUNCTION__))
;
1671
1672 Address Base = CGF.EmitPointerWithAlignment(E);
1673 Address Derived =
1674 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1675 CE->path_begin(), CE->path_end(),
1676 CGF.ShouldNullCheckClassCastValue(CE));
1677
1678 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1679 // performed and the object is not of the derived type.
1680 if (CGF.sanitizePerformTypeCheck())
1681 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1682 Derived.getPointer(), DestTy->getPointeeType());
1683
1684 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1685 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1686 Derived.getPointer(),
1687 /*MayBeNull=*/true,
1688 CodeGenFunction::CFITCK_DerivedCast,
1689 CE->getLocStart());
1690
1691 return Derived.getPointer();
1692 }
1693 case CK_UncheckedDerivedToBase:
1694 case CK_DerivedToBase: {
1695 // The EmitPointerWithAlignment path does this fine; just discard
1696 // the alignment.
1697 return CGF.EmitPointerWithAlignment(CE).getPointer();
1698 }
1699
1700 case CK_Dynamic: {
1701 Address V = CGF.EmitPointerWithAlignment(E);
1702 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1703 return CGF.EmitDynamicCast(V, DCE);
1704 }
1705
1706 case CK_ArrayToPointerDecay:
1707 return CGF.EmitArrayToPointerDecay(E).getPointer();
1708 case CK_FunctionToPointerDecay:
1709 return EmitLValue(E).getPointer();
1710
1711 case CK_NullToPointer:
1712 if (MustVisitNullValue(E))
1713 (void) Visit(E);
1714
1715 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
1716 DestTy);
1717
1718 case CK_NullToMemberPointer: {
1719 if (MustVisitNullValue(E))
1720 (void) Visit(E);
1721
1722 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1723 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1724 }
1725
1726 case CK_ReinterpretMemberPointer:
1727 case CK_BaseToDerivedMemberPointer:
1728 case CK_DerivedToBaseMemberPointer: {
1729 Value *Src = Visit(E);
1730
1731 // Note that the AST doesn't distinguish between checked and
1732 // unchecked member pointer conversions, so we always have to
1733 // implement checked conversions here. This is inefficient when
1734 // actual control flow may be required in order to perform the
1735 // check, which it is for data member pointers (but not member
1736 // function pointers on Itanium and ARM).
1737 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1738 }
1739
1740 case CK_ARCProduceObject:
1741 return CGF.EmitARCRetainScalarExpr(E);
1742 case CK_ARCConsumeObject:
1743 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1744 case CK_ARCReclaimReturnedObject:
1745 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
1746 case CK_ARCExtendBlockObject:
1747 return CGF.EmitARCExtendBlockObject(E);
1748
1749 case CK_CopyAndAutoreleaseBlockObject:
1750 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1751
1752 case CK_FloatingRealToComplex:
1753 case CK_FloatingComplexCast:
1754 case CK_IntegralRealToComplex:
1755 case CK_IntegralComplexCast:
1756 case CK_IntegralComplexToFloatingComplex:
1757 case CK_FloatingComplexToIntegralComplex:
1758 case CK_ConstructorConversion:
1759 case CK_ToUnion:
1760 llvm_unreachable("scalar cast to non-scalar value")::llvm::llvm_unreachable_internal("scalar cast to non-scalar value"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1760)
;
1761
1762 case CK_LValueToRValue:
1763 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), DestTy)) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1763, __extension__ __PRETTY_FUNCTION__))
;
1764 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!")(static_cast <bool> (E->isGLValue() && "lvalue-to-rvalue applied to r-value!"
) ? void (0) : __assert_fail ("E->isGLValue() && \"lvalue-to-rvalue applied to r-value!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1764, __extension__ __PRETTY_FUNCTION__))
;
1765 return Visit(const_cast<Expr*>(E));
1766
1767 case CK_IntegralToPointer: {
1768 Value *Src = Visit(const_cast<Expr*>(E));
1769
1770 // First, convert to the correct width so that we control the kind of
1771 // extension.
1772 auto DestLLVMTy = ConvertType(DestTy);
1773 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
1774 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1775 llvm::Value* IntResult =
1776 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1777
1778 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);
1779
1780 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1781 // Going from integer to pointer that could be dynamic requires reloading
1782 // dynamic information from invariant.group.
1783 if (DestTy.mayBeDynamicClass())
1784 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
1785 }
1786 return IntToPtr;
1787 }
1788 case CK_PointerToIntegral: {
1789 assert(!DestTy->isBooleanType() && "bool should use PointerToBool")(static_cast <bool> (!DestTy->isBooleanType() &&
"bool should use PointerToBool") ? void (0) : __assert_fail (
"!DestTy->isBooleanType() && \"bool should use PointerToBool\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1789, __extension__ __PRETTY_FUNCTION__))
;
1790 auto *PtrExpr = Visit(E);
1791
1792 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
1793 const QualType SrcType = E->getType();
1794
1795 // Casting to integer requires stripping dynamic information as it does
1796 // not carries it.
1797 if (SrcType.mayBeDynamicClass())
1798 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
1799 }
1800
1801 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
1802 }
1803 case CK_ToVoid: {
1804 CGF.EmitIgnoredExpr(E);
1805 return nullptr;
1806 }
1807 case CK_VectorSplat: {
1808 llvm::Type *DstTy = ConvertType(DestTy);
1809 Value *Elt = Visit(const_cast<Expr*>(E));
1810 // Splat the element across to all elements
1811 unsigned NumElements = DstTy->getVectorNumElements();
1812 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1813 }
1814
1815 case CK_IntegralCast:
1816 case CK_IntegralToFloating:
1817 case CK_FloatingToIntegral:
1818 case CK_FloatingCast:
1819 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1820 CE->getExprLoc());
1821 case CK_BooleanToSignedIntegral:
1822 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1823 CE->getExprLoc(),
1824 /*TreatBooleanAsSigned=*/true);
1825 case CK_IntegralToBoolean:
1826 return EmitIntToBoolConversion(Visit(E));
1827 case CK_PointerToBoolean:
1828 return EmitPointerToBoolConversion(Visit(E), E->getType());
1829 case CK_FloatingToBoolean:
1830 return EmitFloatToBoolConversion(Visit(E));
1831 case CK_MemberPointerToBoolean: {
1832 llvm::Value *MemPtr = Visit(E);
1833 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1834 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1835 }
1836
1837 case CK_FloatingComplexToReal:
1838 case CK_IntegralComplexToReal:
1839 return CGF.EmitComplexExpr(E, false, true).first;
1840
1841 case CK_FloatingComplexToBoolean:
1842 case CK_IntegralComplexToBoolean: {
1843 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1844
1845 // TODO: kill this function off, inline appropriate case here
1846 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1847 CE->getExprLoc());
1848 }
1849
1850 case CK_ZeroToOCLEvent: {
1851 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type")(static_cast <bool> (DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"
) ? void (0) : __assert_fail ("DestTy->isEventT() && \"CK_ZeroToOCLEvent cast on non-event type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1851, __extension__ __PRETTY_FUNCTION__))
;
1852 return llvm::Constant::getNullValue(ConvertType(DestTy));
1853 }
1854
1855 case CK_ZeroToOCLQueue: {
1856 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type")(static_cast <bool> (DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"
) ? void (0) : __assert_fail ("DestTy->isQueueT() && \"CK_ZeroToOCLQueue cast on non queue_t type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1856, __extension__ __PRETTY_FUNCTION__))
;
1857 return llvm::Constant::getNullValue(ConvertType(DestTy));
1858 }
1859
1860 case CK_IntToOCLSampler:
1861 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);
1862
1863 } // end of switch
1864
1865 llvm_unreachable("unknown scalar cast")::llvm::llvm_unreachable_internal("unknown scalar cast", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1865)
;
1866}
1867
1868Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1869 CodeGenFunction::StmtExprEvaluation eval(CGF);
1870 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1871 !E->getType()->isVoidType());
1872 if (!RetAlloca.isValid())
1873 return nullptr;
1874 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1875 E->getExprLoc());
1876}
1877
1878Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1879 CGF.enterFullExpression(E);
1880 CodeGenFunction::RunCleanupsScope Scope(CGF);
1881 Value *V = Visit(E->getSubExpr());
1882 // Defend against dominance problems caused by jumps out of expression
1883 // evaluation through the shared cleanup block.
1884 Scope.ForceCleanup({&V});
1885 return V;
1886}
1887
1888//===----------------------------------------------------------------------===//
1889// Unary Operators
1890//===----------------------------------------------------------------------===//
1891
1892static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1893 llvm::Value *InVal, bool IsInc) {
1894 BinOpInfo BinOp;
1895 BinOp.LHS = InVal;
1896 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1897 BinOp.Ty = E->getType();
1898 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1899 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
1900 BinOp.E = E;
1901 return BinOp;
1902}
1903
1904llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1905 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1906 llvm::Value *Amount =
1907 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1908 StringRef Name = IsInc ? "inc" : "dec";
1909 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1910 case LangOptions::SOB_Defined:
1911 return Builder.CreateAdd(InVal, Amount, Name);
1912 case LangOptions::SOB_Undefined:
1913 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1914 return Builder.CreateNSWAdd(InVal, Amount, Name);
1915 // Fall through.
1916 case LangOptions::SOB_Trapping:
1917 if (!E->canOverflow())
1918 return Builder.CreateNSWAdd(InVal, Amount, Name);
1919 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1920 }
1921 llvm_unreachable("Unknown SignedOverflowBehaviorTy")::llvm::llvm_unreachable_internal("Unknown SignedOverflowBehaviorTy"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 1921)
;
1922}
1923
1924llvm::Value *
1925ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1926 bool isInc, bool isPre) {
1927
1928 QualType type = E->getSubExpr()->getType();
1929 llvm::PHINode *atomicPHI = nullptr;
1930 llvm::Value *value;
1931 llvm::Value *input;
1932
1933 int amount = (isInc ? 1 : -1);
1934 bool isSubtraction = !isInc;
1935
1936 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1937 type = atomicTy->getValueType();
1938 if (isInc && type->isBooleanType()) {
1939 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1940 if (isPre) {
1941 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1942 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
1943 return Builder.getTrue();
1944 }
1945 // For atomic bool increment, we just store true and return it for
1946 // preincrement, do an atomic swap with true for postincrement
1947 return Builder.CreateAtomicRMW(
1948 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True,
1949 llvm::AtomicOrdering::SequentiallyConsistent);
1950 }
1951 // Special case for atomic increment / decrement on integers, emit
1952 // atomicrmw instructions. We skip this if we want to be doing overflow
1953 // checking, and fall into the slow path with the atomic cmpxchg loop.
1954 if (!type->isBooleanType() && type->isIntegerType() &&
1955 !(type->isUnsignedIntegerType() &&
1956 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1957 CGF.getLangOpts().getSignedOverflowBehavior() !=
1958 LangOptions::SOB_Trapping) {
1959 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1960 llvm::AtomicRMWInst::Sub;
1961 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1962 llvm::Instruction::Sub;
1963 llvm::Value *amt = CGF.EmitToMemory(
1964 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1965 llvm::Value *old = Builder.CreateAtomicRMW(aop,
1966 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent);
1967 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1968 }
1969 value = EmitLoadOfLValue(LV, E->getExprLoc());
1970 input = value;
1971 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1972 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1973 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1974 value = CGF.EmitToMemory(value, type);
1975 Builder.CreateBr(opBB);
1976 Builder.SetInsertPoint(opBB);
1977 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1978 atomicPHI->addIncoming(value, startBB);
1979 value = atomicPHI;
1980 } else {
1981 value = EmitLoadOfLValue(LV, E->getExprLoc());
1982 input = value;
1983 }
1984
1985 // Special case of integer increment that we have to check first: bool++.
1986 // Due to promotion rules, we get:
1987 // bool++ -> bool = bool + 1
1988 // -> bool = (int)bool + 1
1989 // -> bool = ((int)bool + 1 != 0)
1990 // An interesting aspect of this is that increment is always true.
1991 // Decrement does not have this property.
1992 if (isInc && type->isBooleanType()) {
1993 value = Builder.getTrue();
1994
1995 // Most common case by far: integer increment.
1996 } else if (type->isIntegerType()) {
1997 // Note that signed integer inc/dec with width less than int can't
1998 // overflow because of promotion rules; we're just eliding a few steps here.
1999 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
2000 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
2001 } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
2002 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
2003 value =
2004 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
2005 } else {
2006 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
2007 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2008 }
2009
2010 // Next most common: pointer increment.
2011 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
2012 QualType type = ptr->getPointeeType();
2013
2014 // VLA types don't have constant size.
2015 if (const VariableArrayType *vla
2016 = CGF.getContext().getAsVariableArrayType(type)) {
2017 llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
2018 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
2019 if (CGF.getLangOpts().isSignedOverflowDefined())
2020 value = Builder.CreateGEP(value, numElts, "vla.inc");
2021 else
2022 value = CGF.EmitCheckedInBoundsGEP(
2023 value, numElts, /*SignedIndices=*/false, isSubtraction,
2024 E->getExprLoc(), "vla.inc");
2025
2026 // Arithmetic on function pointers (!) is just +-1.
2027 } else if (type->isFunctionType()) {
2028 llvm::Value *amt = Builder.getInt32(amount);
2029
2030 value = CGF.EmitCastToVoidPtr(value);
2031 if (CGF.getLangOpts().isSignedOverflowDefined())
2032 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
2033 else
2034 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2035 isSubtraction, E->getExprLoc(),
2036 "incdec.funcptr");
2037 value = Builder.CreateBitCast(value, input->getType());
2038
2039 // For everything else, we can just do a simple increment.
2040 } else {
2041 llvm::Value *amt = Builder.getInt32(amount);
2042 if (CGF.getLangOpts().isSignedOverflowDefined())
2043 value = Builder.CreateGEP(value, amt, "incdec.ptr");
2044 else
2045 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
2046 isSubtraction, E->getExprLoc(),
2047 "incdec.ptr");
2048 }
2049
2050 // Vector increment/decrement.
2051 } else if (type->isVectorType()) {
2052 if (type->hasIntegerRepresentation()) {
2053 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
2054
2055 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
2056 } else {
2057 value = Builder.CreateFAdd(
2058 value,
2059 llvm::ConstantFP::get(value->getType(), amount),
2060 isInc ? "inc" : "dec");
2061 }
2062
2063 // Floating point.
2064 } else if (type->isRealFloatingType()) {
2065 // Add the inc/dec to the real part.
2066 llvm::Value *amt;
2067
2068 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2069 // Another special case: half FP increment should be done via float
2070 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2071 value = Builder.CreateCall(
2072 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
2073 CGF.CGM.FloatTy),
2074 input, "incdec.conv");
2075 } else {
2076 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
2077 }
2078 }
2079
2080 if (value->getType()->isFloatTy())
2081 amt = llvm::ConstantFP::get(VMContext,
2082 llvm::APFloat(static_cast<float>(amount)));
2083 else if (value->getType()->isDoubleTy())
2084 amt = llvm::ConstantFP::get(VMContext,
2085 llvm::APFloat(static_cast<double>(amount)));
2086 else {
2087 // Remaining types are Half, LongDouble or __float128. Convert from float.
2088 llvm::APFloat F(static_cast<float>(amount));
2089 bool ignored;
2090 const llvm::fltSemantics *FS;
2091 // Don't use getFloatTypeSemantics because Half isn't
2092 // necessarily represented using the "half" LLVM type.
2093 if (value->getType()->isFP128Ty())
2094 FS = &CGF.getTarget().getFloat128Format();
2095 else if (value->getType()->isHalfTy())
2096 FS = &CGF.getTarget().getHalfFormat();
2097 else
2098 FS = &CGF.getTarget().getLongDoubleFormat();
2099 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
2100 amt = llvm::ConstantFP::get(VMContext, F);
2101 }
2102 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
2103
2104 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
2105 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
2106 value = Builder.CreateCall(
2107 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
2108 CGF.CGM.FloatTy),
2109 value, "incdec.conv");
2110 } else {
2111 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
2112 }
2113 }
2114
2115 // Objective-C pointer types.
2116 } else {
2117 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
2118 value = CGF.EmitCastToVoidPtr(value);
2119
2120 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
2121 if (!isInc) size = -size;
2122 llvm::Value *sizeValue =
2123 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
2124
2125 if (CGF.getLangOpts().isSignedOverflowDefined())
2126 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
2127 else
2128 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
2129 /*SignedIndices=*/false, isSubtraction,
2130 E->getExprLoc(), "incdec.objptr");
2131 value = Builder.CreateBitCast(value, input->getType());
2132 }
2133
2134 if (atomicPHI) {
2135 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2136 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2137 auto Pair = CGF.EmitAtomicCompareExchange(
2138 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
2139 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
2140 llvm::Value *success = Pair.second;
2141 atomicPHI->addIncoming(old, opBB);
2142 Builder.CreateCondBr(success, contBB, opBB);
2143 Builder.SetInsertPoint(contBB);
2144 return isPre ? value : input;
2145 }
2146
2147 // Store the updated result through the lvalue.
2148 if (LV.isBitField())
2149 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
2150 else
2151 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
2152
2153 // If this is a postinc, return the value read from memory, otherwise use the
2154 // updated value.
2155 return isPre ? value : input;
2156}
2157
2158
2159
2160Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
2161 TestAndClearIgnoreResultAssign();
2162 // Emit unary minus with EmitSub so we handle overflow cases etc.
2163 BinOpInfo BinOp;
2164 BinOp.RHS = Visit(E->getSubExpr());
2165
2166 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1
Taking false branch
2167 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
2168 else
2169 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
2170 BinOp.Ty = E->getType();
2171 BinOp.Opcode = BO_Sub;
2172 // FIXME: once UnaryOperator carries FPFeatures, copy it here.
2173 BinOp.E = E;
2174 return EmitSub(BinOp);
2
Calling 'ScalarExprEmitter::EmitSub'
2175}
2176
2177Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
2178 TestAndClearIgnoreResultAssign();
2179 Value *Op = Visit(E->getSubExpr());
2180 return Builder.CreateNot(Op, "neg");
2181}
2182
2183Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
2184 // Perform vector logical not on comparison with zero vector.
2185 if (E->getType()->isExtVectorType()) {
2186 Value *Oper = Visit(E->getSubExpr());
2187 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
2188 Value *Result;
2189 if (Oper->getType()->isFPOrFPVectorTy())
2190 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
2191 else
2192 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
2193 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2194 }
2195
2196 // Compare operand to zero.
2197 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
2198
2199 // Invert value.
2200 // TODO: Could dynamically modify easy computations here. For example, if
2201 // the operand is an icmp ne, turn into icmp eq.
2202 BoolVal = Builder.CreateNot(BoolVal, "lnot");
2203
2204 // ZExt result to the expr type.
2205 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
2206}
2207
2208Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
2209 // Try folding the offsetof to a constant.
2210 llvm::APSInt Value;
2211 if (E->EvaluateAsInt(Value, CGF.getContext()))
2212 return Builder.getInt(Value);
2213
2214 // Loop over the components of the offsetof to compute the value.
2215 unsigned n = E->getNumComponents();
2216 llvm::Type* ResultType = ConvertType(E->getType());
2217 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
2218 QualType CurrentType = E->getTypeSourceInfo()->getType();
2219 for (unsigned i = 0; i != n; ++i) {
2220 OffsetOfNode ON = E->getComponent(i);
2221 llvm::Value *Offset = nullptr;
2222 switch (ON.getKind()) {
2223 case OffsetOfNode::Array: {
2224 // Compute the index
2225 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
2226 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
2227 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
2228 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
2229
2230 // Save the element type
2231 CurrentType =
2232 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
2233
2234 // Compute the element size
2235 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
2236 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
2237
2238 // Multiply out to compute the result
2239 Offset = Builder.CreateMul(Idx, ElemSize);
2240 break;
2241 }
2242
2243 case OffsetOfNode::Field: {
2244 FieldDecl *MemberDecl = ON.getField();
2245 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2246 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2247
2248 // Compute the index of the field in its parent.
2249 unsigned i = 0;
2250 // FIXME: It would be nice if we didn't have to loop here!
2251 for (RecordDecl::field_iterator Field = RD->field_begin(),
2252 FieldEnd = RD->field_end();
2253 Field != FieldEnd; ++Field, ++i) {
2254 if (*Field == MemberDecl)
2255 break;
2256 }
2257 assert(i < RL.getFieldCount() && "offsetof field in wrong type")(static_cast <bool> (i < RL.getFieldCount() &&
"offsetof field in wrong type") ? void (0) : __assert_fail (
"i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2257, __extension__ __PRETTY_FUNCTION__))
;
2258
2259 // Compute the offset to the field
2260 int64_t OffsetInt = RL.getFieldOffset(i) /
2261 CGF.getContext().getCharWidth();
2262 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
2263
2264 // Save the element type.
2265 CurrentType = MemberDecl->getType();
2266 break;
2267 }
2268
2269 case OffsetOfNode::Identifier:
2270 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2270)
;
2271
2272 case OffsetOfNode::Base: {
2273 if (ON.getBase()->isVirtual()) {
2274 CGF.ErrorUnsupported(E, "virtual base in offsetof");
2275 continue;
2276 }
2277
2278 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
2279 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
2280
2281 // Save the element type.
2282 CurrentType = ON.getBase()->getType();
2283
2284 // Compute the offset to the base.
2285 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
2286 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
2287 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2288 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2289 break;
2290 }
2291 }
2292 Result = Builder.CreateAdd(Result, Offset);
2293 }
2294 return Result;
2295}
2296
2297/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2298/// argument of the sizeof expression as an integer.
2299Value *
2300ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2301 const UnaryExprOrTypeTraitExpr *E) {
2302 QualType TypeToSize = E->getTypeOfArgument();
2303 if (E->getKind() == UETT_SizeOf) {
2304 if (const VariableArrayType *VAT =
2305 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2306 if (E->isArgumentType()) {
2307 // sizeof(type) - make sure to emit the VLA size.
2308 CGF.EmitVariablyModifiedType(TypeToSize);
2309 } else {
2310 // C99 6.5.3.4p2: If the argument is an expression of type
2311 // VLA, it is evaluated.
2312 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2313 }
2314
2315 auto VlaSize = CGF.getVLASize(VAT);
2316 llvm::Value *size = VlaSize.NumElts;
2317
2318 // Scale the number of non-VLA elements by the non-VLA element size.
2319 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
2320 if (!eltSize.isOne())
2321 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);
2322
2323 return size;
2324 }
2325 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2326 auto Alignment =
2327 CGF.getContext()
2328 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2329 E->getTypeOfArgument()->getPointeeType()))
2330 .getQuantity();
2331 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2332 }
2333
2334 // If this isn't sizeof(vla), the result must be constant; use the constant
2335 // folding logic so we don't have to duplicate it here.
2336 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2337}
2338
2339Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2340 Expr *Op = E->getSubExpr();
2341 if (Op->getType()->isAnyComplexType()) {
2342 // If it's an l-value, load through the appropriate subobject l-value.
2343 // Note that we have to ask E because Op might be an l-value that
2344 // this won't work for, e.g. an Obj-C property.
2345 if (E->isGLValue())
2346 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2347 E->getExprLoc()).getScalarVal();
2348
2349 // Otherwise, calculate and project.
2350 return CGF.EmitComplexExpr(Op, false, true).first;
2351 }
2352
2353 return Visit(Op);
2354}
2355
2356Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2357 Expr *Op = E->getSubExpr();
2358 if (Op->getType()->isAnyComplexType()) {
2359 // If it's an l-value, load through the appropriate subobject l-value.
2360 // Note that we have to ask E because Op might be an l-value that
2361 // this won't work for, e.g. an Obj-C property.
2362 if (Op->isGLValue())
2363 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2364 E->getExprLoc()).getScalarVal();
2365
2366 // Otherwise, calculate and project.
2367 return CGF.EmitComplexExpr(Op, true, false).second;
2368 }
2369
2370 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2371 // effects are evaluated, but not the actual value.
2372 if (Op->isGLValue())
2373 CGF.EmitLValue(Op);
2374 else
2375 CGF.EmitScalarExpr(Op, true);
2376 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2377}
2378
2379//===----------------------------------------------------------------------===//
2380// Binary Operators
2381//===----------------------------------------------------------------------===//
2382
2383BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2384 TestAndClearIgnoreResultAssign();
2385 BinOpInfo Result;
2386 Result.LHS = Visit(E->getLHS());
2387 Result.RHS = Visit(E->getRHS());
2388 Result.Ty = E->getType();
2389 Result.Opcode = E->getOpcode();
2390 Result.FPFeatures = E->getFPFeatures();
2391 Result.E = E;
2392 return Result;
2393}
2394
2395LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2396 const CompoundAssignOperator *E,
2397 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2398 Value *&Result) {
2399 QualType LHSTy = E->getLHS()->getType();
2400 BinOpInfo OpInfo;
2401
2402 if (E->getComputationResultType()->isAnyComplexType())
2403 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2404
2405 // Emit the RHS first. __block variables need to have the rhs evaluated
2406 // first, plus this should improve codegen a little.
2407 OpInfo.RHS = Visit(E->getRHS());
2408 OpInfo.Ty = E->getComputationResultType();
2409 OpInfo.Opcode = E->getOpcode();
2410 OpInfo.FPFeatures = E->getFPFeatures();
2411 OpInfo.E = E;
2412 // Load/convert the LHS.
2413 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2414
2415 llvm::PHINode *atomicPHI = nullptr;
2416 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2417 QualType type = atomicTy->getValueType();
2418 if (!type->isBooleanType() && type->isIntegerType() &&
2419 !(type->isUnsignedIntegerType() &&
2420 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2421 CGF.getLangOpts().getSignedOverflowBehavior() !=
2422 LangOptions::SOB_Trapping) {
2423 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2424 switch (OpInfo.Opcode) {
2425 // We don't have atomicrmw operands for *, %, /, <<, >>
2426 case BO_MulAssign: case BO_DivAssign:
2427 case BO_RemAssign:
2428 case BO_ShlAssign:
2429 case BO_ShrAssign:
2430 break;
2431 case BO_AddAssign:
2432 aop = llvm::AtomicRMWInst::Add;
2433 break;
2434 case BO_SubAssign:
2435 aop = llvm::AtomicRMWInst::Sub;
2436 break;
2437 case BO_AndAssign:
2438 aop = llvm::AtomicRMWInst::And;
2439 break;
2440 case BO_XorAssign:
2441 aop = llvm::AtomicRMWInst::Xor;
2442 break;
2443 case BO_OrAssign:
2444 aop = llvm::AtomicRMWInst::Or;
2445 break;
2446 default:
2447 llvm_unreachable("Invalid compound assignment type")::llvm::llvm_unreachable_internal("Invalid compound assignment type"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2447)
;
2448 }
2449 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2450 llvm::Value *amt = CGF.EmitToMemory(
2451 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2452 E->getExprLoc()),
2453 LHSTy);
2454 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2455 llvm::AtomicOrdering::SequentiallyConsistent);
2456 return LHSLV;
2457 }
2458 }
2459 // FIXME: For floating point types, we should be saving and restoring the
2460 // floating point environment in the loop.
2461 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2462 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2463 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2464 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2465 Builder.CreateBr(opBB);
2466 Builder.SetInsertPoint(opBB);
2467 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2468 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2469 OpInfo.LHS = atomicPHI;
2470 }
2471 else
2472 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2473
2474 SourceLocation Loc = E->getExprLoc();
2475 OpInfo.LHS =
2476 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2477
2478 // Expand the binary operator.
2479 Result = (this->*Func)(OpInfo);
2480
2481 // Convert the result back to the LHS type.
2482 Result =
2483 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2484
2485 if (atomicPHI) {
2486 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2487 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2488 auto Pair = CGF.EmitAtomicCompareExchange(
2489 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2490 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2491 llvm::Value *success = Pair.second;
2492 atomicPHI->addIncoming(old, opBB);
2493 Builder.CreateCondBr(success, contBB, opBB);
2494 Builder.SetInsertPoint(contBB);
2495 return LHSLV;
2496 }
2497
2498 // Store the result value into the LHS lvalue. Bit-fields are handled
2499 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2500 // 'An assignment expression has the value of the left operand after the
2501 // assignment...'.
2502 if (LHSLV.isBitField())
2503 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2504 else
2505 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2506
2507 return LHSLV;
2508}
2509
2510Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2511 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2512 bool Ignore = TestAndClearIgnoreResultAssign();
2513 Value *RHS;
2514 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2515
2516 // If the result is clearly ignored, return now.
2517 if (Ignore)
2518 return nullptr;
2519
2520 // The result of an assignment in C is the assigned r-value.
2521 if (!CGF.getLangOpts().CPlusPlus)
2522 return RHS;
2523
2524 // If the lvalue is non-volatile, return the computed value of the assignment.
2525 if (!LHS.isVolatileQualified())
2526 return RHS;
2527
2528 // Otherwise, reload the value.
2529 return EmitLoadOfLValue(LHS, E->getExprLoc());
2530}
2531
2532void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2533 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2534 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2535
2536 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2537 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2538 SanitizerKind::IntegerDivideByZero));
2539 }
2540
2541 const auto *BO = cast<BinaryOperator>(Ops.E);
2542 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2543 Ops.Ty->hasSignedIntegerRepresentation() &&
2544 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
2545 Ops.mayHaveIntegerOverflow()) {
2546 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2547
2548 llvm::Value *IntMin =
2549 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2550 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2551
2552 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2553 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2554 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2555 Checks.push_back(
2556 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2557 }
2558
2559 if (Checks.size() > 0)
2560 EmitBinOpCheck(Checks, Ops);
2561}
2562
2563Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2564 {
2565 CodeGenFunction::SanitizerScope SanScope(&CGF);
2566 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2567 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2568 Ops.Ty->isIntegerType() &&
2569 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2570 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2571 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2572 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2573 Ops.Ty->isRealFloatingType() &&
2574 Ops.mayHaveFloatDivisionByZero()) {
2575 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2576 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2577 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2578 Ops);
2579 }
2580 }
2581
2582 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2583 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2584 if (CGF.getLangOpts().OpenCL &&
2585 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
2586 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
2587 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
2588 // build option allows an application to specify that single precision
2589 // floating-point divide (x/y and 1/x) and sqrt used in the program
2590 // source are correctly rounded.
2591 llvm::Type *ValTy = Val->getType();
2592 if (ValTy->isFloatTy() ||
2593 (isa<llvm::VectorType>(ValTy) &&
2594 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2595 CGF.SetFPAccuracy(Val, 2.5);
2596 }
2597 return Val;
2598 }
2599 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2600 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2601 else
2602 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2603}
2604
2605Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2606 // Rem in C can't be a floating point type: C99 6.5.5p2.
2607 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2608 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2609 Ops.Ty->isIntegerType() &&
2610 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
2611 CodeGenFunction::SanitizerScope SanScope(&CGF);
2612 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2613 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2614 }
2615
2616 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2617 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2618 else
2619 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2620}
2621
2622Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2623 unsigned IID;
2624 unsigned OpID = 0;
2625
2626 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2627 switch (Ops.Opcode) {
2628 case BO_Add:
2629 case BO_AddAssign:
2630 OpID = 1;
2631 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2632 llvm::Intrinsic::uadd_with_overflow;
2633 break;
2634 case BO_Sub:
2635 case BO_SubAssign:
2636 OpID = 2;
2637 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2638 llvm::Intrinsic::usub_with_overflow;
2639 break;
2640 case BO_Mul:
2641 case BO_MulAssign:
2642 OpID = 3;
2643 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2644 llvm::Intrinsic::umul_with_overflow;
2645 break;
2646 default:
2647 llvm_unreachable("Unsupported operation for overflow detection")::llvm::llvm_unreachable_internal("Unsupported operation for overflow detection"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2647)
;
2648 }
2649 OpID <<= 1;
2650 if (isSigned)
2651 OpID |= 1;
2652
2653 CodeGenFunction::SanitizerScope SanScope(&CGF);
2654 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2655
2656 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2657
2658 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2659 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2660 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2661
2662 // Handle overflow with llvm.trap if no custom handler has been specified.
2663 const std::string *handlerName =
2664 &CGF.getLangOpts().OverflowHandler;
2665 if (handlerName->empty()) {
2666 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2667 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2668 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2669 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2670 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2671 : SanitizerKind::UnsignedIntegerOverflow;
2672 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2673 } else
2674 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2675 return result;
2676 }
2677
2678 // Branch in case of overflow.
2679 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2680 llvm::BasicBlock *continueBB =
2681 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
2682 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2683
2684 Builder.CreateCondBr(overflow, overflowBB, continueBB);
2685
2686 // If an overflow handler is set, then we want to call it and then use its
2687 // result, if it returns.
2688 Builder.SetInsertPoint(overflowBB);
2689
2690 // Get the overflow handler.
2691 llvm::Type *Int8Ty = CGF.Int8Ty;
2692 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2693 llvm::FunctionType *handlerTy =
2694 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2695 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2696
2697 // Sign extend the args to 64-bit, so that we can use the same handler for
2698 // all types of overflow.
2699 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2700 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2701
2702 // Call the handler with the two arguments, the operation, and the size of
2703 // the result.
2704 llvm::Value *handlerArgs[] = {
2705 lhs,
2706 rhs,
2707 Builder.getInt8(OpID),
2708 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2709 };
2710 llvm::Value *handlerResult =
2711 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2712
2713 // Truncate the result back to the desired size.
2714 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2715 Builder.CreateBr(continueBB);
2716
2717 Builder.SetInsertPoint(continueBB);
2718 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2719 phi->addIncoming(result, initialBB);
2720 phi->addIncoming(handlerResult, overflowBB);
2721
2722 return phi;
2723}
2724
2725/// Emit pointer + index arithmetic.
2726static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2727 const BinOpInfo &op,
2728 bool isSubtraction) {
2729 // Must have binary (not unary) expr here. Unary pointer
2730 // increment/decrement doesn't use this path.
2731 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2732
2733 Value *pointer = op.LHS;
2734 Expr *pointerOperand = expr->getLHS();
2735 Value *index = op.RHS;
2736 Expr *indexOperand = expr->getRHS();
2737
2738 // In a subtraction, the LHS is always the pointer.
2739 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2740 std::swap(pointer, index);
2741 std::swap(pointerOperand, indexOperand);
2742 }
2743
2744 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2745
2746 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2747 auto &DL = CGF.CGM.getDataLayout();
2748 auto PtrTy = cast<llvm::PointerType>(pointer->getType());
2749
2750 // Some versions of glibc and gcc use idioms (particularly in their malloc
2751 // routines) that add a pointer-sized integer (known to be a pointer value)
2752 // to a null pointer in order to cast the value back to an integer or as
2753 // part of a pointer alignment algorithm. This is undefined behavior, but
2754 // we'd like to be able to compile programs that use it.
2755 //
2756 // Normally, we'd generate a GEP with a null-pointer base here in response
2757 // to that code, but it's also UB to dereference a pointer created that
2758 // way. Instead (as an acknowledged hack to tolerate the idiom) we will
2759 // generate a direct cast of the integer value to a pointer.
2760 //
2761 // The idiom (p = nullptr + N) is not met if any of the following are true:
2762 //
2763 // The operation is subtraction.
2764 // The index is not pointer-sized.
2765 // The pointer type is not byte-sized.
2766 //
2767 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
6
Assuming the condition is false
7
Taking false branch
2768 op.Opcode,
2769 expr->getLHS(),
2770 expr->getRHS()))
2771 return CGF.Builder.CreateIntToPtr(index, pointer->getType());
2772
2773 if (width != DL.getTypeSizeInBits(PtrTy)) {
8
Assuming the condition is false
9
Taking false branch
2774 // Zero-extend or sign-extend the pointer value according to
2775 // whether the index is signed or not.
2776 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned,
2777 "idx.ext");
2778 }
2779
2780 // If this is subtraction, negate the index.
2781 if (isSubtraction)
10
Taking true branch
2782 index = CGF.Builder.CreateNeg(index, "idx.neg");
2783
2784 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
11
Assuming the condition is false
12
Taking false branch
2785 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2786 /*Accessed*/ false);
2787
2788 const PointerType *pointerType
2789 = pointerOperand->getType()->getAs<PointerType>();
2790 if (!pointerType) {
13
Taking false branch
2791 QualType objectType = pointerOperand->getType()
2792 ->castAs<ObjCObjectPointerType>()
2793 ->getPointeeType();
2794 llvm::Value *objectSize
2795 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2796
2797 index = CGF.Builder.CreateMul(index, objectSize);
2798
2799 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2800 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2801 return CGF.Builder.CreateBitCast(result, pointer->getType());
2802 }
2803
2804 QualType elementType = pointerType->getPointeeType();
2805 if (const VariableArrayType *vla
14
Assuming 'vla' is non-null
15
Taking true branch
2806 = CGF.getContext().getAsVariableArrayType(elementType)) {
2807 // The element count here is the total number of non-VLA elements.
2808 llvm::Value *numElements = CGF.getVLASize(vla).NumElts;
2809
2810 // Effectively, the multiply by the VLA size is part of the GEP.
2811 // GEP indexes are signed, and scaling an index isn't permitted to
2812 // signed-overflow, so we use the same semantics for our explicit
2813 // multiply. We suppress this if overflow is not undefined behavior.
2814 if (CGF.getLangOpts().isSignedOverflowDefined()) {
16
Taking false branch
2815 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2816 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2817 } else {
2818 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2819 pointer =
2820 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
17
Calling 'CodeGenFunction::EmitCheckedInBoundsGEP'
2821 op.E->getExprLoc(), "add.ptr");
2822 }
2823 return pointer;
2824 }
2825
2826 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2827 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2828 // future proof.
2829 if (elementType->isVoidType() || elementType->isFunctionType()) {
2830 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2831 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2832 return CGF.Builder.CreateBitCast(result, pointer->getType());
2833 }
2834
2835 if (CGF.getLangOpts().isSignedOverflowDefined())
2836 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2837
2838 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
2839 op.E->getExprLoc(), "add.ptr");
2840}
2841
2842// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2843// Addend. Use negMul and negAdd to negate the first operand of the Mul or
2844// the add operand respectively. This allows fmuladd to represent a*b-c, or
2845// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2846// efficient operations.
2847static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2848 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2849 bool negMul, bool negAdd) {
2850 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.")(static_cast <bool> (!(negMul && negAdd) &&
"Only one of negMul and negAdd should be set.") ? void (0) :
__assert_fail ("!(negMul && negAdd) && \"Only one of negMul and negAdd should be set.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2850, __extension__ __PRETTY_FUNCTION__))
;
2851
2852 Value *MulOp0 = MulOp->getOperand(0);
2853 Value *MulOp1 = MulOp->getOperand(1);
2854 if (negMul) {
2855 MulOp0 =
2856 Builder.CreateFSub(
2857 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2858 "neg");
2859 } else if (negAdd) {
2860 Addend =
2861 Builder.CreateFSub(
2862 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2863 "neg");
2864 }
2865
2866 Value *FMulAdd = Builder.CreateCall(
2867 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2868 {MulOp0, MulOp1, Addend});
2869 MulOp->eraseFromParent();
2870
2871 return FMulAdd;
2872}
2873
2874// Check whether it would be legal to emit an fmuladd intrinsic call to
2875// represent op and if so, build the fmuladd.
2876//
2877// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2878// Does NOT check the type of the operation - it's assumed that this function
2879// will be called from contexts where it's known that the type is contractable.
2880static Value* tryEmitFMulAdd(const BinOpInfo &op,
2881 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2882 bool isSub=false) {
2883
2884 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||(static_cast <bool> ((op.Opcode == BO_Add || op.Opcode ==
BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign
) && "Only fadd/fsub can be the root of an fmuladd.")
? void (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2886, __extension__ __PRETTY_FUNCTION__))
2885 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&(static_cast <bool> ((op.Opcode == BO_Add || op.Opcode ==
BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign
) && "Only fadd/fsub can be the root of an fmuladd.")
? void (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2886, __extension__ __PRETTY_FUNCTION__))
2886 "Only fadd/fsub can be the root of an fmuladd.")(static_cast <bool> ((op.Opcode == BO_Add || op.Opcode ==
BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign
) && "Only fadd/fsub can be the root of an fmuladd.")
? void (0) : __assert_fail ("(op.Opcode == BO_Add || op.Opcode == BO_AddAssign || op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && \"Only fadd/fsub can be the root of an fmuladd.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 2886, __extension__ __PRETTY_FUNCTION__))
;
2887
2888 // Check whether this op is marked as fusable.
2889 if (!op.FPFeatures.allowFPContractWithinStatement())
2890 return nullptr;
2891
2892 // We have a potentially fusable op. Look for a mul on one of the operands.
2893 // Also, make sure that the mul result isn't used directly. In that case,
2894 // there's no point creating a muladd operation.
2895 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2896 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2897 LHSBinOp->use_empty())
2898 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2899 }
2900 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2901 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2902 RHSBinOp->use_empty())
2903 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2904 }
2905
2906 return nullptr;
2907}
2908
2909Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2910 if (op.LHS->getType()->isPointerTy() ||
2911 op.RHS->getType()->isPointerTy())
2912 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);
2913
2914 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2915 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2916 case LangOptions::SOB_Defined:
2917 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2918 case LangOptions::SOB_Undefined:
2919 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2920 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2921 // Fall through.
2922 case LangOptions::SOB_Trapping:
2923 if (CanElideOverflowCheck(CGF.getContext(), op))
2924 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2925 return EmitOverflowCheckedBinOp(op);
2926 }
2927 }
2928
2929 if (op.Ty->isUnsignedIntegerType() &&
2930 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2931 !CanElideOverflowCheck(CGF.getContext(), op))
2932 return EmitOverflowCheckedBinOp(op);
2933
2934 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2935 // Try to form an fmuladd.
2936 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2937 return FMulAdd;
2938
2939 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add");
2940 return propagateFMFlags(V, op);
2941 }
2942
2943 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2944}
2945
2946Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2947 // The LHS is always a pointer if either side is.
2948 if (!op.LHS->getType()->isPointerTy()) {
3
Taking false branch
2949 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2950 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2951 case LangOptions::SOB_Defined:
2952 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2953 case LangOptions::SOB_Undefined:
2954 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2955 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2956 // Fall through.
2957 case LangOptions::SOB_Trapping:
2958 if (CanElideOverflowCheck(CGF.getContext(), op))
2959 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2960 return EmitOverflowCheckedBinOp(op);
2961 }
2962 }
2963
2964 if (op.Ty->isUnsignedIntegerType() &&
2965 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
2966 !CanElideOverflowCheck(CGF.getContext(), op))
2967 return EmitOverflowCheckedBinOp(op);
2968
2969 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2970 // Try to form an fmuladd.
2971 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2972 return FMulAdd;
2973 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub");
2974 return propagateFMFlags(V, op);
2975 }
2976
2977 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2978 }
2979
2980 // If the RHS is not a pointer, then we have normal pointer
2981 // arithmetic.
2982 if (!op.RHS->getType()->isPointerTy())
4
Taking true branch
2983 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);
5
Calling 'emitPointerArithmetic'
2984
2985 // Otherwise, this is a pointer subtraction.
2986
2987 // Do the raw subtraction part.
2988 llvm::Value *LHS
2989 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2990 llvm::Value *RHS
2991 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2992 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2993
2994 // Okay, figure out the element size.
2995 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2996 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2997
2998 llvm::Value *divisor = nullptr;
2999
3000 // For a variable-length array, this is going to be non-constant.
3001 if (const VariableArrayType *vla
3002 = CGF.getContext().getAsVariableArrayType(elementType)) {
3003 auto VlaSize = CGF.getVLASize(vla);
3004 elementType = VlaSize.Type;
3005 divisor = VlaSize.NumElts;
3006
3007 // Scale the number of non-VLA elements by the non-VLA element size.
3008 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
3009 if (!eltSize.isOne())
3010 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
3011
3012 // For everything elese, we can just compute it, safe in the
3013 // assumption that Sema won't let anything through that we can't
3014 // safely compute the size of.
3015 } else {
3016 CharUnits elementSize;
3017 // Handle GCC extension for pointer arithmetic on void* and
3018 // function pointer types.
3019 if (elementType->isVoidType() || elementType->isFunctionType())
3020 elementSize = CharUnits::One();
3021 else
3022 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
3023
3024 // Don't even emit the divide for element size of 1.
3025 if (elementSize.isOne())
3026 return diffInChars;
3027
3028 divisor = CGF.CGM.getSize(elementSize);
3029 }
3030
3031 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
3032 // pointer difference in C is only defined in the case where both operands
3033 // are pointing to elements of an array.
3034 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
3035}
3036
3037Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
3038 llvm::IntegerType *Ty;
3039 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
3040 Ty = cast<llvm::IntegerType>(VT->getElementType());
3041 else
3042 Ty = cast<llvm::IntegerType>(LHS->getType());
3043 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
3044}
3045
3046Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
3047 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3048 // RHS to the same size as the LHS.
3049 Value *RHS = Ops.RHS;
3050 if (Ops.LHS->getType() != RHS->getType())
3051 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3052
3053 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
3054 Ops.Ty->hasSignedIntegerRepresentation() &&
3055 !CGF.getLangOpts().isSignedOverflowDefined();
3056 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
3057 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3058 if (CGF.getLangOpts().OpenCL)
3059 RHS =
3060 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
3061 else if ((SanitizeBase || SanitizeExponent) &&
3062 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3063 CodeGenFunction::SanitizerScope SanScope(&CGF);
3064 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
3065 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
3066 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);
3067
3068 if (SanitizeExponent) {
3069 Checks.push_back(
3070 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
3071 }
3072
3073 if (SanitizeBase) {
3074 // Check whether we are shifting any non-zero bits off the top of the
3075 // integer. We only emit this check if exponent is valid - otherwise
3076 // instructions below will have undefined behavior themselves.
3077 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
3078 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
3079 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
3080 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
3081 llvm::Value *PromotedWidthMinusOne =
3082 (RHS == Ops.RHS) ? WidthMinusOne
3083 : GetWidthMinusOneValue(Ops.LHS, RHS);
3084 CGF.EmitBlock(CheckShiftBase);
3085 llvm::Value *BitsShiftedOff = Builder.CreateLShr(
3086 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
3087 /*NUW*/ true, /*NSW*/ true),
3088 "shl.check");
3089 if (CGF.getLangOpts().CPlusPlus) {
3090 // In C99, we are not permitted to shift a 1 bit into the sign bit.
3091 // Under C++11's rules, shifting a 1 bit into the sign bit is
3092 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
3093 // define signed left shifts, so we use the C99 and C++11 rules there).
3094 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
3095 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
3096 }
3097 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
3098 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
3099 CGF.EmitBlock(Cont);
3100 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
3101 BaseCheck->addIncoming(Builder.getTrue(), Orig);
3102 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
3103 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
3104 }
3105
3106 assert(!Checks.empty())(static_cast <bool> (!Checks.empty()) ? void (0) : __assert_fail
("!Checks.empty()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3106, __extension__ __PRETTY_FUNCTION__))
;
3107 EmitBinOpCheck(Checks, Ops);
3108 }
3109
3110 return Builder.CreateShl(Ops.LHS, RHS, "shl");
3111}
3112
3113Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
3114 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
3115 // RHS to the same size as the LHS.
3116 Value *RHS = Ops.RHS;
3117 if (Ops.LHS->getType() != RHS->getType())
3118 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
3119
3120 // OpenCL 6.3j: shift values are effectively % word size of LHS.
3121 if (CGF.getLangOpts().OpenCL)
3122 RHS =
3123 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
3124 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
3125 isa<llvm::IntegerType>(Ops.LHS->getType())) {
3126 CodeGenFunction::SanitizerScope SanScope(&CGF);
3127 llvm::Value *Valid =
3128 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
3129 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
3130 }
3131
3132 if (Ops.Ty->hasUnsignedIntegerRepresentation())
3133 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
3134 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
3135}
3136
3137enum IntrinsicType { VCMPEQ, VCMPGT };
3138// return corresponding comparison intrinsic for given vector type
3139static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
3140 BuiltinType::Kind ElemKind) {
3141 switch (ElemKind) {
3142 default: llvm_unreachable("unexpected element type")::llvm::llvm_unreachable_internal("unexpected element type", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3142)
;
3143 case BuiltinType::Char_U:
3144 case BuiltinType::UChar:
3145 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3146 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
3147 case BuiltinType::Char_S:
3148 case BuiltinType::SChar:
3149 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
3150 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
3151 case BuiltinType::UShort:
3152 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3153 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
3154 case BuiltinType::Short:
3155 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
3156 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
3157 case BuiltinType::UInt:
3158 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3159 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
3160 case BuiltinType::Int:
3161 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
3162 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
3163 case BuiltinType::ULong:
3164 case BuiltinType::ULongLong:
3165 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3166 llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
3167 case BuiltinType::Long:
3168 case BuiltinType::LongLong:
3169 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
3170 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
3171 case BuiltinType::Float:
3172 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
3173 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
3174 case BuiltinType::Double:
3175 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
3176 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
3177 }
3178}
3179
3180Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
3181 llvm::CmpInst::Predicate UICmpOpc,
3182 llvm::CmpInst::Predicate SICmpOpc,
3183 llvm::CmpInst::Predicate FCmpOpc) {
3184 TestAndClearIgnoreResultAssign();
3185 Value *Result;
3186 QualType LHSTy = E->getLHS()->getType();
3187 QualType RHSTy = E->getRHS()->getType();
3188 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
3189 assert(E->getOpcode() == BO_EQ ||(static_cast <bool> (E->getOpcode() == BO_EQ || E->
getOpcode() == BO_NE) ? void (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3190, __extension__ __PRETTY_FUNCTION__))
3190 E->getOpcode() == BO_NE)(static_cast <bool> (E->getOpcode() == BO_EQ || E->
getOpcode() == BO_NE) ? void (0) : __assert_fail ("E->getOpcode() == BO_EQ || E->getOpcode() == BO_NE"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3190, __extension__ __PRETTY_FUNCTION__))
;
3191 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
3192 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
3193 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
3194 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
3195 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
3196 Value *LHS = Visit(E->getLHS());
3197 Value *RHS = Visit(E->getRHS());
3198
3199 // If AltiVec, the comparison results in a numeric type, so we use
3200 // intrinsics comparing vectors and giving 0 or 1 as a result
3201 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
3202 // constants for mapping CR6 register bits to predicate result
3203 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
3204
3205 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
3206
3207 // in several cases vector arguments order will be reversed
3208 Value *FirstVecArg = LHS,
3209 *SecondVecArg = RHS;
3210
3211 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
3212 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
3213 BuiltinType::Kind ElementKind = BTy->getKind();
3214
3215 switch(E->getOpcode()) {
3216 default: llvm_unreachable("is not a comparison operation")::llvm::llvm_unreachable_internal("is not a comparison operation"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3216)
;
3217 case BO_EQ:
3218 CR6 = CR6_LT;
3219 ID = GetIntrinsic(VCMPEQ, ElementKind);
3220 break;
3221 case BO_NE:
3222 CR6 = CR6_EQ;
3223 ID = GetIntrinsic(VCMPEQ, ElementKind);
3224 break;
3225 case BO_LT:
3226 CR6 = CR6_LT;
3227 ID = GetIntrinsic(VCMPGT, ElementKind);
3228 std::swap(FirstVecArg, SecondVecArg);
3229 break;
3230 case BO_GT:
3231 CR6 = CR6_LT;
3232 ID = GetIntrinsic(VCMPGT, ElementKind);
3233 break;
3234 case BO_LE:
3235 if (ElementKind == BuiltinType::Float) {
3236 CR6 = CR6_LT;
3237 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3238 std::swap(FirstVecArg, SecondVecArg);
3239 }
3240 else {
3241 CR6 = CR6_EQ;
3242 ID = GetIntrinsic(VCMPGT, ElementKind);
3243 }
3244 break;
3245 case BO_GE:
3246 if (ElementKind == BuiltinType::Float) {
3247 CR6 = CR6_LT;
3248 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
3249 }
3250 else {
3251 CR6 = CR6_EQ;
3252 ID = GetIntrinsic(VCMPGT, ElementKind);
3253 std::swap(FirstVecArg, SecondVecArg);
3254 }
3255 break;
3256 }
3257
3258 Value *CR6Param = Builder.getInt32(CR6);
3259 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
3260 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
3261
3262 // The result type of intrinsic may not be same as E->getType().
3263 // If E->getType() is not BoolTy, EmitScalarConversion will do the
3264 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
3265 // do nothing, if ResultTy is not i1 at the same time, it will cause
3266 // crash later.
3267 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
3268 if (ResultTy->getBitWidth() > 1 &&
3269 E->getType() == CGF.getContext().BoolTy)
3270 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
3271 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3272 E->getExprLoc());
3273 }
3274
3275 if (LHS->getType()->isFPOrFPVectorTy()) {
3276 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
3277 } else if (LHSTy->hasSignedIntegerRepresentation()) {
3278 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
3279 } else {
3280 // Unsigned integers and pointers.
3281
3282 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
3283 !isa<llvm::ConstantPointerNull>(LHS) &&
3284 !isa<llvm::ConstantPointerNull>(RHS)) {
3285
3286 // Dynamic information is required to be stripped for comparisons,
3287 // because it could leak the dynamic information. Based on comparisons
3288 // of pointers to dynamic objects, the optimizer can replace one pointer
3289 // with another, which might be incorrect in presence of invariant
3290 // groups. Comparison with null is safe because null does not carry any
3291 // dynamic information.
3292 if (LHSTy.mayBeDynamicClass())
3293 LHS = Builder.CreateStripInvariantGroup(LHS);
3294 if (RHSTy.mayBeDynamicClass())
3295 RHS = Builder.CreateStripInvariantGroup(RHS);
3296 }
3297
3298 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
3299 }
3300
3301 // If this is a vector comparison, sign extend the result to the appropriate
3302 // vector integer type and return it (don't convert to bool).
3303 if (LHSTy->isVectorType())
3304 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
3305
3306 } else {
3307 // Complex Comparison: can only be an equality comparison.
3308 CodeGenFunction::ComplexPairTy LHS, RHS;
3309 QualType CETy;
3310 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
3311 LHS = CGF.EmitComplexExpr(E->getLHS());
3312 CETy = CTy->getElementType();
3313 } else {
3314 LHS.first = Visit(E->getLHS());
3315 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
3316 CETy = LHSTy;
3317 }
3318 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
3319 RHS = CGF.EmitComplexExpr(E->getRHS());
3320 assert(CGF.getContext().hasSameUnqualifiedType(CETy,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(CETy, CTy->getElementType()) && "The element types must always match."
) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3322, __extension__ __PRETTY_FUNCTION__))
3321 CTy->getElementType()) &&(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(CETy, CTy->getElementType()) && "The element types must always match."
) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3322, __extension__ __PRETTY_FUNCTION__))
3322 "The element types must always match.")(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(CETy, CTy->getElementType()) && "The element types must always match."
) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, CTy->getElementType()) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3322, __extension__ __PRETTY_FUNCTION__))
;
3323 (void)CTy;
3324 } else {
3325 RHS.first = Visit(E->getRHS());
3326 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
3327 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(CETy, RHSTy) && "The element types must always match."
) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3328, __extension__ __PRETTY_FUNCTION__))
3328 "The element types must always match.")(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(CETy, RHSTy) && "The element types must always match."
) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && \"The element types must always match.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3328, __extension__ __PRETTY_FUNCTION__))
;
3329 }
3330
3331 Value *ResultR, *ResultI;
3332 if (CETy->isRealFloatingType()) {
3333 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
3334 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
3335 } else {
3336 // Complex comparisons can only be equality comparisons. As such, signed
3337 // and unsigned opcodes are the same.
3338 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
3339 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
3340 }
3341
3342 if (E->getOpcode() == BO_EQ) {
3343 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
3344 } else {
3345 assert(E->getOpcode() == BO_NE &&(static_cast <bool> (E->getOpcode() == BO_NE &&
"Complex comparison other than == or != ?") ? void (0) : __assert_fail
("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3346, __extension__ __PRETTY_FUNCTION__))
3346 "Complex comparison other than == or != ?")(static_cast <bool> (E->getOpcode() == BO_NE &&
"Complex comparison other than == or != ?") ? void (0) : __assert_fail
("E->getOpcode() == BO_NE && \"Complex comparison other than == or != ?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3346, __extension__ __PRETTY_FUNCTION__))
;
3347 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
3348 }
3349 }
3350
3351 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
3352 E->getExprLoc());
3353}
3354
3355Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
3356 bool Ignore = TestAndClearIgnoreResultAssign();
3357
3358 Value *RHS;
3359 LValue LHS;
3360
3361 switch (E->getLHS()->getType().getObjCLifetime()) {
3362 case Qualifiers::OCL_Strong:
3363 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
3364 break;
3365
3366 case Qualifiers::OCL_Autoreleasing:
3367 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
3368 break;
3369
3370 case Qualifiers::OCL_ExplicitNone:
3371 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
3372 break;
3373
3374 case Qualifiers::OCL_Weak:
3375 RHS = Visit(E->getRHS());
3376 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3377 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3378 break;
3379
3380 case Qualifiers::OCL_None:
3381 // __block variables need to have the rhs evaluated first, plus
3382 // this should improve codegen just a little.
3383 RHS = Visit(E->getRHS());
3384 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3385
3386 // Store the value into the LHS. Bit-fields are handled specially
3387 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3388 // 'An assignment expression has the value of the left operand after
3389 // the assignment...'.
3390 if (LHS.isBitField()) {
3391 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3392 } else {
3393 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
3394 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3395 }
3396 }
3397
3398 // If the result is clearly ignored, return now.
3399 if (Ignore)
3400 return nullptr;
3401
3402 // The result of an assignment in C is the assigned r-value.
3403 if (!CGF.getLangOpts().CPlusPlus)
3404 return RHS;
3405
3406 // If the lvalue is non-volatile, return the computed value of the assignment.
3407 if (!LHS.isVolatileQualified())
3408 return RHS;
3409
3410 // Otherwise, reload the value.
3411 return EmitLoadOfLValue(LHS, E->getExprLoc());
3412}
3413
3414Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3415 // Perform vector logical and on comparisons with zero vectors.
3416 if (E->getType()->isVectorType()) {
3417 CGF.incrementProfileCounter(E);
3418
3419 Value *LHS = Visit(E->getLHS());
3420 Value *RHS = Visit(E->getRHS());
3421 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3422 if (LHS->getType()->isFPOrFPVectorTy()) {
3423 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3424 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3425 } else {
3426 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3427 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3428 }
3429 Value *And = Builder.CreateAnd(LHS, RHS);
3430 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3431 }
3432
3433 llvm::Type *ResTy = ConvertType(E->getType());
3434
3435 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3436 // If we have 1 && X, just emit X without inserting the control flow.
3437 bool LHSCondVal;
3438 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3439 if (LHSCondVal) { // If we have 1 && X, just emit X.
3440 CGF.incrementProfileCounter(E);
3441
3442 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3443 // ZExt result to int or bool.
3444 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3445 }
3446
3447 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3448 if (!CGF.ContainsLabel(E->getRHS()))
3449 return llvm::Constant::getNullValue(ResTy);
3450 }
3451
3452 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3453 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3454
3455 CodeGenFunction::ConditionalEvaluation eval(CGF);
3456
3457 // Branch on the LHS first. If it is false, go to the failure (cont) block.
3458 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3459 CGF.getProfileCount(E->getRHS()));
3460
3461 // Any edges into the ContBlock are now from an (indeterminate number of)
3462 // edges from this first condition. All of these values will be false. Start
3463 // setting up the PHI node in the Cont Block for this.
3464 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3465 "", ContBlock);
3466 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3467 PI != PE; ++PI)
3468 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3469
3470 eval.begin(CGF);
3471 CGF.EmitBlock(RHSBlock);
3472 CGF.incrementProfileCounter(E);
3473 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3474 eval.end(CGF);
3475
3476 // Reaquire the RHS block, as there may be subblocks inserted.
3477 RHSBlock = Builder.GetInsertBlock();
3478
3479 // Emit an unconditional branch from this block to ContBlock.
3480 {
3481 // There is no need to emit line number for unconditional branch.
3482 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3483 CGF.EmitBlock(ContBlock);
3484 }
3485 // Insert an entry into the phi node for the edge with the value of RHSCond.
3486 PN->addIncoming(RHSCond, RHSBlock);
3487
3488 // Artificial location to preserve the scope information
3489 {
3490 auto NL = ApplyDebugLocation::CreateArtificial(CGF);
3491 PN->setDebugLoc(Builder.getCurrentDebugLocation());
3492 }
3493
3494 // ZExt result to int.
3495 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3496}
3497
3498Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3499 // Perform vector logical or on comparisons with zero vectors.
3500 if (E->getType()->isVectorType()) {
3501 CGF.incrementProfileCounter(E);
3502
3503 Value *LHS = Visit(E->getLHS());
3504 Value *RHS = Visit(E->getRHS());
3505 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3506 if (LHS->getType()->isFPOrFPVectorTy()) {
3507 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3508 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3509 } else {
3510 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3511 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3512 }
3513 Value *Or = Builder.CreateOr(LHS, RHS);
3514 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3515 }
3516
3517 llvm::Type *ResTy = ConvertType(E->getType());
3518
3519 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3520 // If we have 0 || X, just emit X without inserting the control flow.
3521 bool LHSCondVal;
3522 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3523 if (!LHSCondVal) { // If we have 0 || X, just emit X.
3524 CGF.incrementProfileCounter(E);
3525
3526 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3527 // ZExt result to int or bool.
3528 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3529 }
3530
3531 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3532 if (!CGF.ContainsLabel(E->getRHS()))
3533 return llvm::ConstantInt::get(ResTy, 1);
3534 }
3535
3536 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3537 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3538
3539 CodeGenFunction::ConditionalEvaluation eval(CGF);
3540
3541 // Branch on the LHS first. If it is true, go to the success (cont) block.
3542 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3543 CGF.getCurrentProfileCount() -
3544 CGF.getProfileCount(E->getRHS()));
3545
3546 // Any edges into the ContBlock are now from an (indeterminate number of)
3547 // edges from this first condition. All of these values will be true. Start
3548 // setting up the PHI node in the Cont Block for this.
3549 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3550 "", ContBlock);
3551 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3552 PI != PE; ++PI)
3553 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3554
3555 eval.begin(CGF);
3556
3557 // Emit the RHS condition as a bool value.
3558 CGF.EmitBlock(RHSBlock);
3559 CGF.incrementProfileCounter(E);
3560 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3561
3562 eval.end(CGF);
3563
3564 // Reaquire the RHS block, as there may be subblocks inserted.
3565 RHSBlock = Builder.GetInsertBlock();
3566
3567 // Emit an unconditional branch from this block to ContBlock. Insert an entry
3568 // into the phi node for the edge with the value of RHSCond.
3569 CGF.EmitBlock(ContBlock);
3570 PN->addIncoming(RHSCond, RHSBlock);
3571
3572 // ZExt result to int.
3573 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3574}
3575
3576Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3577 CGF.EmitIgnoredExpr(E->getLHS());
3578 CGF.EnsureInsertPoint();
3579 return Visit(E->getRHS());
3580}
3581
3582//===----------------------------------------------------------------------===//
3583// Other Operators
3584//===----------------------------------------------------------------------===//
3585
3586/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3587/// expression is cheap enough and side-effect-free enough to evaluate
3588/// unconditionally instead of conditionally. This is used to convert control
3589/// flow into selects in some cases.
3590static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3591 CodeGenFunction &CGF) {
3592 // Anything that is an integer or floating point constant is fine.
3593 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3594
3595 // Even non-volatile automatic variables can't be evaluated unconditionally.
3596 // Referencing a thread_local may cause non-trivial initialization work to
3597 // occur. If we're inside a lambda and one of the variables is from the scope
3598 // outside the lambda, that function may have returned already. Reading its
3599 // locals is a bad idea. Also, these reads may introduce races there didn't
3600 // exist in the source-level program.
3601}
3602
3603
3604Value *ScalarExprEmitter::
3605VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3606 TestAndClearIgnoreResultAssign();
3607
3608 // Bind the common expression if necessary.
3609 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3610
3611 Expr *condExpr = E->getCond();
3612 Expr *lhsExpr = E->getTrueExpr();
3613 Expr *rhsExpr = E->getFalseExpr();
3614
3615 // If the condition constant folds and can be elided, try to avoid emitting
3616 // the condition and the dead arm.
3617 bool CondExprBool;
3618 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3619 Expr *live = lhsExpr, *dead = rhsExpr;
3620 if (!CondExprBool) std::swap(live, dead);
3621
3622 // If the dead side doesn't have labels we need, just emit the Live part.
3623 if (!CGF.ContainsLabel(dead)) {
3624 if (CondExprBool)
3625 CGF.incrementProfileCounter(E);
3626 Value *Result = Visit(live);
3627
3628 // If the live part is a throw expression, it acts like it has a void
3629 // type, so evaluating it returns a null Value*. However, a conditional
3630 // with non-void type must return a non-null Value*.
3631 if (!Result && !E->getType()->isVoidType())
3632 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3633
3634 return Result;
3635 }
3636 }
3637
3638 // OpenCL: If the condition is a vector, we can treat this condition like
3639 // the select function.
3640 if (CGF.getLangOpts().OpenCL
3641 && condExpr->getType()->isVectorType()) {
3642 CGF.incrementProfileCounter(E);
3643
3644 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3645 llvm::Value *LHS = Visit(lhsExpr);
3646 llvm::Value *RHS = Visit(rhsExpr);
3647
3648 llvm::Type *condType = ConvertType(condExpr->getType());
3649 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3650
3651 unsigned numElem = vecTy->getNumElements();
3652 llvm::Type *elemType = vecTy->getElementType();
3653
3654 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3655 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3656 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3657 llvm::VectorType::get(elemType,
3658 numElem),
3659 "sext");
3660 llvm::Value *tmp2 = Builder.CreateNot(tmp);
3661
3662 // Cast float to int to perform ANDs if necessary.
3663 llvm::Value *RHSTmp = RHS;
3664 llvm::Value *LHSTmp = LHS;
3665 bool wasCast = false;
3666 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3667 if (rhsVTy->getElementType()->isFloatingPointTy()) {
3668 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3669 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3670 wasCast = true;
3671 }
3672
3673 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3674 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3675 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3676 if (wasCast)
3677 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3678
3679 return tmp5;
3680 }
3681
3682 // If this is a really simple expression (like x ? 4 : 5), emit this as a
3683 // select instead of as control flow. We can only do this if it is cheap and
3684 // safe to evaluate the LHS and RHS unconditionally.
3685 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3686 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3687 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3688 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);
3689
3690 CGF.incrementProfileCounter(E, StepV);
3691
3692 llvm::Value *LHS = Visit(lhsExpr);
3693 llvm::Value *RHS = Visit(rhsExpr);
3694 if (!LHS) {
3695 // If the conditional has void type, make sure we return a null Value*.
3696 assert(!RHS && "LHS and RHS types must match")(static_cast <bool> (!RHS && "LHS and RHS types must match"
) ? void (0) : __assert_fail ("!RHS && \"LHS and RHS types must match\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3696, __extension__ __PRETTY_FUNCTION__))
;
3697 return nullptr;
3698 }
3699 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3700 }
3701
3702 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3703 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3704 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3705
3706 CodeGenFunction::ConditionalEvaluation eval(CGF);
3707 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3708 CGF.getProfileCount(lhsExpr));
3709
3710 CGF.EmitBlock(LHSBlock);
3711 CGF.incrementProfileCounter(E);
3712 eval.begin(CGF);
3713 Value *LHS = Visit(lhsExpr);
3714 eval.end(CGF);
3715
3716 LHSBlock = Builder.GetInsertBlock();
3717 Builder.CreateBr(ContBlock);
3718
3719 CGF.EmitBlock(RHSBlock);
3720 eval.begin(CGF);
3721 Value *RHS = Visit(rhsExpr);
3722 eval.end(CGF);
3723
3724 RHSBlock = Builder.GetInsertBlock();
3725 CGF.EmitBlock(ContBlock);
3726
3727 // If the LHS or RHS is a throw expression, it will be legitimately null.
3728 if (!LHS)
3729 return RHS;
3730 if (!RHS)
3731 return LHS;
3732
3733 // Create a PHI node for the real part.
3734 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3735 PN->addIncoming(LHS, LHSBlock);
3736 PN->addIncoming(RHS, RHSBlock);
3737 return PN;
3738}
3739
3740Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3741 return Visit(E->getChosenSubExpr());
3742}
3743
3744Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3745 QualType Ty = VE->getType();
3746
3747 if (Ty->isVariablyModifiedType())
3748 CGF.EmitVariablyModifiedType(Ty);
3749
3750 Address ArgValue = Address::invalid();
3751 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3752
3753 llvm::Type *ArgTy = ConvertType(VE->getType());
3754
3755 // If EmitVAArg fails, emit an error.
3756 if (!ArgPtr.isValid()) {
3757 CGF.ErrorUnsupported(VE, "va_arg expression");
3758 return llvm::UndefValue::get(ArgTy);
3759 }
3760
3761 // FIXME Volatility.
3762 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3763
3764 // If EmitVAArg promoted the type, we must truncate it.
3765 if (ArgTy != Val->getType()) {
3766 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3767 Val = Builder.CreateIntToPtr(Val, ArgTy);
3768 else
3769 Val = Builder.CreateTrunc(Val, ArgTy);
3770 }
3771
3772 return Val;
3773}
3774
3775Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3776 return CGF.EmitBlockLiteral(block);
3777}
3778
3779// Convert a vec3 to vec4, or vice versa.
3780static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
3781 Value *Src, unsigned NumElementsDst) {
3782 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3783 SmallVector<llvm::Constant*, 4> Args;
3784 Args.push_back(Builder.getInt32(0));
3785 Args.push_back(Builder.getInt32(1));
3786 Args.push_back(Builder.getInt32(2));
3787 if (NumElementsDst == 4)
3788 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3789 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3790 return Builder.CreateShuffleVector(Src, UnV, Mask);
3791}
3792
3793// Create cast instructions for converting LLVM value \p Src to LLVM type \p
3794// DstTy. \p Src has the same size as \p DstTy. Both are single value types
3795// but could be scalar or vectors of different lengths, and either can be
3796// pointer.
3797// There are 4 cases:
3798// 1. non-pointer -> non-pointer : needs 1 bitcast
3799// 2. pointer -> pointer : needs 1 bitcast or addrspacecast
3800// 3. pointer -> non-pointer
3801// a) pointer -> intptr_t : needs 1 ptrtoint
3802// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast
3803// 4. non-pointer -> pointer
3804// a) intptr_t -> pointer : needs 1 inttoptr
3805// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr
3806// Note: for cases 3b and 4b two casts are required since LLVM casts do not
3807// allow casting directly between pointer types and non-integer non-pointer
3808// types.
3809static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
3810 const llvm::DataLayout &DL,
3811 Value *Src, llvm::Type *DstTy,
3812 StringRef Name = "") {
3813 auto SrcTy = Src->getType();
3814
3815 // Case 1.
3816 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
3817 return Builder.CreateBitCast(Src, DstTy, Name);
3818
3819 // Case 2.
3820 if (SrcTy->isPointerTy() && DstTy->isPointerTy())
3821 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);
3822
3823 // Case 3.
3824 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
3825 // Case 3b.
3826 if (!DstTy->isIntegerTy())
3827 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
3828 // Cases 3a and 3b.
3829 return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
3830 }
3831
3832 // Case 4b.
3833 if (!SrcTy->isIntegerTy())
3834 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
3835 // Cases 4a and 4b.
3836 return Builder.CreateIntToPtr(Src, DstTy, Name);
3837}
3838
3839Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3840 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3841 llvm::Type *DstTy = ConvertType(E->getType());
3842
3843 llvm::Type *SrcTy = Src->getType();
3844 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ?
3845 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0;
3846 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ?
3847 cast<llvm::VectorType>(DstTy)->getNumElements() : 0;
3848
3849 // Going from vec3 to non-vec3 is a special case and requires a shuffle
3850 // vector to get a vec4, then a bitcast if the target type is different.
3851 if (NumElementsSrc == 3 && NumElementsDst != 3) {
3852 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);
3853
3854 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3855 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3856 DstTy);
3857 }
3858
3859 Src->setName("astype");
3860 return Src;
3861 }
3862
3863 // Going from non-vec3 to vec3 is a special case and requires a bitcast
3864 // to vec4 if the original type is not vec4, then a shuffle vector to
3865 // get a vec3.
3866 if (NumElementsSrc != 3 && NumElementsDst == 3) {
3867 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
3868 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4);
3869 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
3870 Vec4Ty);
3871 }
3872
3873 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
3874 Src->setName("astype");
3875 return Src;
3876 }
3877
3878 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
3879 Src, DstTy, "astype");
3880}
3881
3882Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3883 return CGF.EmitAtomicExpr(E).getScalarVal();
3884}
3885
3886//===----------------------------------------------------------------------===//
3887// Entry Point into this File
3888//===----------------------------------------------------------------------===//
3889
3890/// Emit the computation of the specified expression of scalar type, ignoring
3891/// the result.
3892Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3893 assert(E && hasScalarEvaluationKind(E->getType()) &&(static_cast <bool> (E && hasScalarEvaluationKind
(E->getType()) && "Invalid scalar expression to emit"
) ? void (0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3894, __extension__ __PRETTY_FUNCTION__))
3894 "Invalid scalar expression to emit")(static_cast <bool> (E && hasScalarEvaluationKind
(E->getType()) && "Invalid scalar expression to emit"
) ? void (0) : __assert_fail ("E && hasScalarEvaluationKind(E->getType()) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3894, __extension__ __PRETTY_FUNCTION__))
;
3895
3896 return ScalarExprEmitter(*this, IgnoreResultAssign)
3897 .Visit(const_cast<Expr *>(E));
3898}
3899
3900/// Emit a conversion from the specified type to the specified destination type,
3901/// both of which are LLVM scalar types.
3902Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3903 QualType DstTy,
3904 SourceLocation Loc) {
3905 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&(static_cast <bool> (hasScalarEvaluationKind(SrcTy) &&
hasScalarEvaluationKind(DstTy) && "Invalid scalar expression to emit"
) ? void (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3906, __extension__ __PRETTY_FUNCTION__))
3906 "Invalid scalar expression to emit")(static_cast <bool> (hasScalarEvaluationKind(SrcTy) &&
hasScalarEvaluationKind(DstTy) && "Invalid scalar expression to emit"
) ? void (0) : __assert_fail ("hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && \"Invalid scalar expression to emit\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3906, __extension__ __PRETTY_FUNCTION__))
;
3907 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3908}
3909
3910/// Emit a conversion from the specified complex type to the specified
3911/// destination type, where the destination type is an LLVM scalar type.
3912Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3913 QualType SrcTy,
3914 QualType DstTy,
3915 SourceLocation Loc) {
3916 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&(static_cast <bool> (SrcTy->isAnyComplexType() &&
hasScalarEvaluationKind(DstTy) && "Invalid complex -> scalar conversion"
) ? void (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3917, __extension__ __PRETTY_FUNCTION__))
3917 "Invalid complex -> scalar conversion")(static_cast <bool> (SrcTy->isAnyComplexType() &&
hasScalarEvaluationKind(DstTy) && "Invalid complex -> scalar conversion"
) ? void (0) : __assert_fail ("SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && \"Invalid complex -> scalar conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3917, __extension__ __PRETTY_FUNCTION__))
;
3918 return ScalarExprEmitter(*this)
3919 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3920}
3921
3922
3923llvm::Value *CodeGenFunction::
3924EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3925 bool isInc, bool isPre) {
3926 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3927}
3928
3929LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3930 // object->isa or (*object).isa
3931 // Generate code as for: *(Class*)object
3932
3933 Expr *BaseExpr = E->getBase();
3934 Address Addr = Address::invalid();
3935 if (BaseExpr->isRValue()) {
3936 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3937 } else {
3938 Addr = EmitLValue(BaseExpr).getAddress();
3939 }
3940
3941 // Cast the address to Class*.
3942 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3943 return MakeAddrLValue(Addr, E->getType());
3944}
3945
3946
3947LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3948 const CompoundAssignOperator *E) {
3949 ScalarExprEmitter Scalar(*this);
3950 Value *Result = nullptr;
3951 switch (E->getOpcode()) {
3952#define COMPOUND_OP(Op) \
3953 case BO_##Op##Assign: \
3954 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3955 Result)
3956 COMPOUND_OP(Mul);
3957 COMPOUND_OP(Div);
3958 COMPOUND_OP(Rem);
3959 COMPOUND_OP(Add);
3960 COMPOUND_OP(Sub);
3961 COMPOUND_OP(Shl);
3962 COMPOUND_OP(Shr);
3963 COMPOUND_OP(And);
3964 COMPOUND_OP(Xor);
3965 COMPOUND_OP(Or);
3966#undef COMPOUND_OP
3967
3968 case BO_PtrMemD:
3969 case BO_PtrMemI:
3970 case BO_Mul:
3971 case BO_Div:
3972 case BO_Rem:
3973 case BO_Add:
3974 case BO_Sub:
3975 case BO_Shl:
3976 case BO_Shr:
3977 case BO_LT:
3978 case BO_GT:
3979 case BO_LE:
3980 case BO_GE:
3981 case BO_EQ:
3982 case BO_NE:
3983 case BO_Cmp:
3984 case BO_And:
3985 case BO_Xor:
3986 case BO_Or:
3987 case BO_LAnd:
3988 case BO_LOr:
3989 case BO_Assign:
3990 case BO_Comma:
3991 llvm_unreachable("Not valid compound assignment operators")::llvm::llvm_unreachable_internal("Not valid compound assignment operators"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3991)
;
3992 }
3993
3994 llvm_unreachable("Unhandled compound assignment operator")::llvm::llvm_unreachable_internal("Unhandled compound assignment operator"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 3994)
;
3995}
3996
3997Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr,
3998 ArrayRef<Value *> IdxList,
3999 bool SignedIndices,
4000 bool IsSubtraction,
4001 SourceLocation Loc,
4002 const Twine &Name) {
4003 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);
4004
4005 // If the pointer overflow sanitizer isn't enabled, do nothing.
4006 if (!SanOpts.has(SanitizerKind::PointerOverflow))
18
Assuming the condition is false
19
Taking false branch
4007 return GEPVal;
4008
4009 // If the GEP has already been reduced to a constant, leave it be.
4010 if (isa<llvm::Constant>(GEPVal))
20
Taking false branch
4011 return GEPVal;
4012
4013 // Only check for overflows in the default address space.
4014 if (GEPVal->getType()->getPointerAddressSpace())
21
Assuming the condition is false
22
Taking false branch
4015 return GEPVal;
4016
4017 auto *GEP = cast<llvm::GEPOperator>(GEPVal);
4018 assert(GEP->isInBounds() && "Expected inbounds GEP")(static_cast <bool> (GEP->isInBounds() && "Expected inbounds GEP"
) ? void (0) : __assert_fail ("GEP->isInBounds() && \"Expected inbounds GEP\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4018, __extension__ __PRETTY_FUNCTION__))
;
4019
4020 SanitizerScope SanScope(this);
4021 auto &VMContext = getLLVMContext();
4022 const auto &DL = CGM.getDataLayout();
4023 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());
4024
4025 // Grab references to the signed add/mul overflow intrinsics for intptr_t.
4026 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
4027 auto *SAddIntrinsic =
4028 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
4029 auto *SMulIntrinsic =
4030 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);
4031
4032 // The total (signed) byte offset for the GEP.
4033 llvm::Value *TotalOffset = nullptr;
23
'TotalOffset' initialized to a null pointer value
4034 // The offset overflow flag - true if the total offset overflows.
4035 llvm::Value *OffsetOverflows = Builder.getFalse();
4036
4037 /// Return the result of the given binary operation.
4038 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
4039 llvm::Value *RHS) -> llvm::Value * {
4040 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop")(static_cast <bool> ((Opcode == BO_Add || Opcode == BO_Mul
) && "Can't eval binop") ? void (0) : __assert_fail (
"(Opcode == BO_Add || Opcode == BO_Mul) && \"Can't eval binop\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/CodeGen/CGExprScalar.cpp"
, 4040, __extension__ __PRETTY_FUNCTION__))
;
4041
4042 // If the operands are constants, return a constant result.
4043 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
4044 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
4045 llvm::APInt N;
4046 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
4047 /*Signed=*/true, N);
4048 if (HasOverflow)
4049 OffsetOverflows = Builder.getTrue();
4050 return llvm::ConstantInt::get(VMContext, N);
4051 }
4052 }
4053
4054 // Otherwise, compute the result with checked arithmetic.
4055 auto *ResultAndOverflow = Builder.CreateCall(
4056 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
4057 OffsetOverflows = Builder.CreateOr(
4058 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
4059 return Builder.CreateExtractValue(ResultAndOverflow, 0);
4060 };
4061
4062 // Determine the total byte offset by looking at each GEP operand.
4063 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
24
Loop condition is false. Execution continues on line 4092
4064 GTI != GTE; ++GTI) {
4065 llvm::Value *LocalOffset;
4066 auto *Index = GTI.getOperand();
4067 // Compute the local offset contributed by this indexing step:
4068 if (auto *STy = GTI.getStructTypeOrNull()) {
4069 // For struct indexing, the local offset is the byte position of the
4070 // specified field.
4071 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
4072 LocalOffset = llvm::ConstantInt::get(
4073 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
4074 } else {
4075 // Otherwise this is array-like indexing. The local offset is the index
4076 // multiplied by the element size.
4077 auto *ElementSize = llvm::ConstantInt::get(
4078 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
4079 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
4080 LocalOffset = eval(BO_Mul, ElementSize, IndexS);
4081 }
4082
4083 // If this is the first offset, set it as the total offset. Otherwise, add
4084 // the local offset into the running total.
4085 if (!TotalOffset || TotalOffset == Zero)
4086 TotalOffset = LocalOffset;
4087 else
4088 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
4089 }
4090
4091 // Common case: if the total offset is zero, don't emit a check.
4092 if (TotalOffset == Zero)
25
Assuming 'TotalOffset' is not equal to 'Zero'
26
Taking false branch
4093 return GEPVal;
4094
4095 // Now that we've computed the total offset, add it to the base pointer (with
4096 // wrapping semantics).
4097 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy);
4098 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset);
4099
4100 // The GEP is valid if:
4101 // 1) The total offset doesn't overflow, and
4102 // 2) The sign of the difference between the computed address and the base
4103 // pointer matches the sign of the total offset.
4104 llvm::Value *ValidGEP;
4105 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows);
4106 if (SignedIndices) {
27
Assuming 'SignedIndices' is not equal to 0
28
Taking true branch
4107 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4108 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero);
29
Passing null pointer value via 1st parameter 'LHS'
30
Calling 'IRBuilder::CreateICmpSGE'
4109 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
4110 ValidGEP = Builder.CreateAnd(
4111 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid),
4112 NoOffsetOverflow);
4113 } else if (!SignedIndices && !IsSubtraction) {
4114 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
4115 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow);
4116 } else {
4117 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr);
4118 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow);
4119 }
4120
4121 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
4122 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
4123 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
4124 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow),
4125 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);
4126
4127 return GEPVal;
4128}

/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the IRBuilder class, which is used as a convenient way
11// to create LLVM instructions with a consistent and simplified interface.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_IRBUILDER_H
16#define LLVM_IR_IRBUILDER_H
17
18#include "llvm-c/Types.h"
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Constant.h"
25#include "llvm/IR/ConstantFolder.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugLoc.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/IR/Type.h"
40#include "llvm/IR/Value.h"
41#include "llvm/IR/ValueHandle.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/CBindingWrapping.h"
44#include "llvm/Support/Casting.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <functional>
49#include <utility>
50
51namespace llvm {
52
53class APInt;
54class MDNode;
55class Use;
56
57/// This provides the default implementation of the IRBuilder
58/// 'InsertHelper' method that is called whenever an instruction is created by
59/// IRBuilder and needs to be inserted.
60///
61/// By default, this inserts the instruction at the insertion point.
62class IRBuilderDefaultInserter {
63protected:
64 void InsertHelper(Instruction *I, const Twine &Name,
65 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
66 if (BB) BB->getInstList().insert(InsertPt, I);
67 I->setName(Name);
68 }
69};
70
71/// Provides an 'InsertHelper' that calls a user-provided callback after
72/// performing the default insertion.
73class IRBuilderCallbackInserter : IRBuilderDefaultInserter {
74 std::function<void(Instruction *)> Callback;
75
76public:
77 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
78 : Callback(std::move(Callback)) {}
79
80protected:
81 void InsertHelper(Instruction *I, const Twine &Name,
82 BasicBlock *BB, BasicBlock::iterator InsertPt) const {
83 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
84 Callback(I);
85 }
86};
87
88/// Common base class shared among various IRBuilders.
89class IRBuilderBase {
90 DebugLoc CurDbgLocation;
91
92protected:
93 BasicBlock *BB;
94 BasicBlock::iterator InsertPt;
95 LLVMContext &Context;
96
97 MDNode *DefaultFPMathTag;
98 FastMathFlags FMF;
99
100 ArrayRef<OperandBundleDef> DefaultOperandBundles;
101
102public:
103 IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr,
104 ArrayRef<OperandBundleDef> OpBundles = None)
105 : Context(context), DefaultFPMathTag(FPMathTag),
106 DefaultOperandBundles(OpBundles) {
107 ClearInsertionPoint();
108 }
109
110 //===--------------------------------------------------------------------===//
111 // Builder configuration methods
112 //===--------------------------------------------------------------------===//
113
114 /// Clear the insertion point: created instructions will not be
115 /// inserted into a block.
116 void ClearInsertionPoint() {
117 BB = nullptr;
118 InsertPt = BasicBlock::iterator();
119 }
120
121 BasicBlock *GetInsertBlock() const { return BB; }
122 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
123 LLVMContext &getContext() const { return Context; }
124
125 /// This specifies that created instructions should be appended to the
126 /// end of the specified block.
127 void SetInsertPoint(BasicBlock *TheBB) {
128 BB = TheBB;
129 InsertPt = BB->end();
130 }
131
132 /// This specifies that created instructions should be inserted before
133 /// the specified instruction.
134 void SetInsertPoint(Instruction *I) {
135 BB = I->getParent();
136 InsertPt = I->getIterator();
137 assert(InsertPt != BB->end() && "Can't read debug loc from end()")(static_cast <bool> (InsertPt != BB->end() &&
"Can't read debug loc from end()") ? void (0) : __assert_fail
("InsertPt != BB->end() && \"Can't read debug loc from end()\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 137, __extension__ __PRETTY_FUNCTION__))
;
138 SetCurrentDebugLocation(I->getDebugLoc());
139 }
140
141 /// This specifies that created instructions should be inserted at the
142 /// specified point.
143 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
144 BB = TheBB;
145 InsertPt = IP;
146 if (IP != TheBB->end())
147 SetCurrentDebugLocation(IP->getDebugLoc());
148 }
149
150 /// Set location information used by debugging information.
151 void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); }
152
153 /// Get location information used by debugging information.
154 const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; }
155
156 /// If this builder has a current debug location, set it on the
157 /// specified instruction.
158 void SetInstDebugLocation(Instruction *I) const {
159 if (CurDbgLocation)
160 I->setDebugLoc(CurDbgLocation);
161 }
162
163 /// Get the return type of the current function that we're emitting
164 /// into.
165 Type *getCurrentFunctionReturnType() const;
166
167 /// InsertPoint - A saved insertion point.
168 class InsertPoint {
169 BasicBlock *Block = nullptr;
170 BasicBlock::iterator Point;
171
172 public:
173 /// Creates a new insertion point which doesn't point to anything.
174 InsertPoint() = default;
175
176 /// Creates a new insertion point at the given location.
177 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
178 : Block(InsertBlock), Point(InsertPoint) {}
179
180 /// Returns true if this insert point is set.
181 bool isSet() const { return (Block != nullptr); }
182
183 BasicBlock *getBlock() const { return Block; }
184 BasicBlock::iterator getPoint() const { return Point; }
185 };
186
187 /// Returns the current insert point.
188 InsertPoint saveIP() const {
189 return InsertPoint(GetInsertBlock(), GetInsertPoint());
190 }
191
192 /// Returns the current insert point, clearing it in the process.
193 InsertPoint saveAndClearIP() {
194 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
195 ClearInsertionPoint();
196 return IP;
197 }
198
199 /// Sets the current insert point to a previously-saved location.
200 void restoreIP(InsertPoint IP) {
201 if (IP.isSet())
202 SetInsertPoint(IP.getBlock(), IP.getPoint());
203 else
204 ClearInsertionPoint();
205 }
206
207 /// Get the floating point math metadata being used.
208 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
209
210 /// Get the flags to be applied to created floating point ops
211 FastMathFlags getFastMathFlags() const { return FMF; }
212
213 /// Clear the fast-math flags.
214 void clearFastMathFlags() { FMF.clear(); }
215
216 /// Set the floating point math metadata to be used.
217 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
218
219 /// Set the fast-math flags to be used with generated fp-math operators
220 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
221
222 //===--------------------------------------------------------------------===//
223 // RAII helpers.
224 //===--------------------------------------------------------------------===//
225
226 // RAII object that stores the current insertion point and restores it
227 // when the object is destroyed. This includes the debug location.
228 class InsertPointGuard {
229 IRBuilderBase &Builder;
230 AssertingVH<BasicBlock> Block;
231 BasicBlock::iterator Point;
232 DebugLoc DbgLoc;
233
234 public:
235 InsertPointGuard(IRBuilderBase &B)
236 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
237 DbgLoc(B.getCurrentDebugLocation()) {}
238
239 InsertPointGuard(const InsertPointGuard &) = delete;
240 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
241
242 ~InsertPointGuard() {
243 Builder.restoreIP(InsertPoint(Block, Point));
244 Builder.SetCurrentDebugLocation(DbgLoc);
245 }
246 };
247
248 // RAII object that stores the current fast math settings and restores
249 // them when the object is destroyed.
250 class FastMathFlagGuard {
251 IRBuilderBase &Builder;
252 FastMathFlags FMF;
253 MDNode *FPMathTag;
254
255 public:
256 FastMathFlagGuard(IRBuilderBase &B)
257 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
258
259 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
260 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
261
262 ~FastMathFlagGuard() {
263 Builder.FMF = FMF;
264 Builder.DefaultFPMathTag = FPMathTag;
265 }
266 };
267
268 //===--------------------------------------------------------------------===//
269 // Miscellaneous creation methods.
270 //===--------------------------------------------------------------------===//
271
272 /// Make a new global variable with initializer type i8*
273 ///
274 /// Make a new global variable with an initializer that has array of i8 type
275 /// filled in with the null terminated string value specified. The new global
276 /// variable will be marked mergable with any others of the same contents. If
277 /// Name is specified, it is the name of the global variable created.
278 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
279 unsigned AddressSpace = 0);
280
281 /// Get a constant value representing either true or false.
282 ConstantInt *getInt1(bool V) {
283 return ConstantInt::get(getInt1Ty(), V);
284 }
285
286 /// Get the constant value for i1 true.
287 ConstantInt *getTrue() {
288 return ConstantInt::getTrue(Context);
289 }
290
291 /// Get the constant value for i1 false.
292 ConstantInt *getFalse() {
293 return ConstantInt::getFalse(Context);
294 }
295
296 /// Get a constant 8-bit value.
297 ConstantInt *getInt8(uint8_t C) {
298 return ConstantInt::get(getInt8Ty(), C);
299 }
300
301 /// Get a constant 16-bit value.
302 ConstantInt *getInt16(uint16_t C) {
303 return ConstantInt::get(getInt16Ty(), C);
304 }
305
306 /// Get a constant 32-bit value.
307 ConstantInt *getInt32(uint32_t C) {
308 return ConstantInt::get(getInt32Ty(), C);
309 }
310
311 /// Get a constant 64-bit value.
312 ConstantInt *getInt64(uint64_t C) {
313 return ConstantInt::get(getInt64Ty(), C);
314 }
315
316 /// Get a constant N-bit value, zero extended or truncated from
317 /// a 64-bit value.
318 ConstantInt *getIntN(unsigned N, uint64_t C) {
319 return ConstantInt::get(getIntNTy(N), C);
320 }
321
322 /// Get a constant integer value.
323 ConstantInt *getInt(const APInt &AI) {
324 return ConstantInt::get(Context, AI);
325 }
326
327 //===--------------------------------------------------------------------===//
328 // Type creation methods
329 //===--------------------------------------------------------------------===//
330
331 /// Fetch the type representing a single bit
332 IntegerType *getInt1Ty() {
333 return Type::getInt1Ty(Context);
334 }
335
336 /// Fetch the type representing an 8-bit integer.
337 IntegerType *getInt8Ty() {
338 return Type::getInt8Ty(Context);
339 }
340
341 /// Fetch the type representing a 16-bit integer.
342 IntegerType *getInt16Ty() {
343 return Type::getInt16Ty(Context);
344 }
345
346 /// Fetch the type representing a 32-bit integer.
347 IntegerType *getInt32Ty() {
348 return Type::getInt32Ty(Context);
349 }
350
351 /// Fetch the type representing a 64-bit integer.
352 IntegerType *getInt64Ty() {
353 return Type::getInt64Ty(Context);
354 }
355
356 /// Fetch the type representing a 128-bit integer.
357 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
358
359 /// Fetch the type representing an N-bit integer.
360 IntegerType *getIntNTy(unsigned N) {
361 return Type::getIntNTy(Context, N);
362 }
363
364 /// Fetch the type representing a 16-bit floating point value.
365 Type *getHalfTy() {
366 return Type::getHalfTy(Context);
367 }
368
369 /// Fetch the type representing a 32-bit floating point value.
370 Type *getFloatTy() {
371 return Type::getFloatTy(Context);
372 }
373
374 /// Fetch the type representing a 64-bit floating point value.
375 Type *getDoubleTy() {
376 return Type::getDoubleTy(Context);
377 }
378
379 /// Fetch the type representing void.
380 Type *getVoidTy() {
381 return Type::getVoidTy(Context);
382 }
383
384 /// Fetch the type representing a pointer to an 8-bit integer value.
385 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
386 return Type::getInt8PtrTy(Context, AddrSpace);
387 }
388
389 /// Fetch the type representing a pointer to an integer value.
390 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
391 return DL.getIntPtrType(Context, AddrSpace);
392 }
393
394 //===--------------------------------------------------------------------===//
395 // Intrinsic creation methods
396 //===--------------------------------------------------------------------===//
397
398 /// Create and insert a memset to the specified pointer and the
399 /// specified value.
400 ///
401 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
402 /// specified, it will be added to the instruction. Likewise with alias.scope
403 /// and noalias tags.
404 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
405 bool isVolatile = false, MDNode *TBAATag = nullptr,
406 MDNode *ScopeTag = nullptr,
407 MDNode *NoAliasTag = nullptr) {
408 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
409 TBAATag, ScopeTag, NoAliasTag);
410 }
411
412 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
413 bool isVolatile = false, MDNode *TBAATag = nullptr,
414 MDNode *ScopeTag = nullptr,
415 MDNode *NoAliasTag = nullptr);
416
417 /// Create and insert an element unordered-atomic memset of the region of
418 /// memory starting at the given pointer to the given value.
419 ///
420 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
421 /// specified, it will be added to the instruction. Likewise with alias.scope
422 /// and noalias tags.
423 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
424 uint64_t Size, unsigned Align,
425 uint32_t ElementSize,
426 MDNode *TBAATag = nullptr,
427 MDNode *ScopeTag = nullptr,
428 MDNode *NoAliasTag = nullptr) {
429 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size), Align,
430 ElementSize, TBAATag, ScopeTag,
431 NoAliasTag);
432 }
433
434 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
435 Value *Size, unsigned Align,
436 uint32_t ElementSize,
437 MDNode *TBAATag = nullptr,
438 MDNode *ScopeTag = nullptr,
439 MDNode *NoAliasTag = nullptr);
440
441 /// Create and insert a memcpy between the specified pointers.
442 ///
443 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
444 /// specified, it will be added to the instruction. Likewise with alias.scope
445 /// and noalias tags.
446 CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,
447 unsigned SrcAlign, uint64_t Size,
448 bool isVolatile = false, MDNode *TBAATag = nullptr,
449 MDNode *TBAAStructTag = nullptr,
450 MDNode *ScopeTag = nullptr,
451 MDNode *NoAliasTag = nullptr) {
452 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
453 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
454 NoAliasTag);
455 }
456
457 CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,
458 unsigned SrcAlign, Value *Size,
459 bool isVolatile = false, MDNode *TBAATag = nullptr,
460 MDNode *TBAAStructTag = nullptr,
461 MDNode *ScopeTag = nullptr,
462 MDNode *NoAliasTag = nullptr);
463
464 /// Create and insert an element unordered-atomic memcpy between the
465 /// specified pointers.
466 ///
467 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
468 ///
469 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
470 /// specified, it will be added to the instruction. Likewise with alias.scope
471 /// and noalias tags.
472 CallInst *CreateElementUnorderedAtomicMemCpy(
473 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
474 uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr,
475 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
476 MDNode *NoAliasTag = nullptr) {
477 return CreateElementUnorderedAtomicMemCpy(
478 Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag,
479 TBAAStructTag, ScopeTag, NoAliasTag);
480 }
481
482 CallInst *CreateElementUnorderedAtomicMemCpy(
483 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
484 uint32_t ElementSize, MDNode *TBAATag = nullptr,
485 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
486 MDNode *NoAliasTag = nullptr);
487
488 /// Create and insert a memmove between the specified
489 /// pointers.
490 ///
491 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
492 /// specified, it will be added to the instruction. Likewise with alias.scope
493 /// and noalias tags.
494 CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
495 uint64_t Size, bool isVolatile = false,
496 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
497 MDNode *NoAliasTag = nullptr) {
498 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile,
499 TBAATag, ScopeTag, NoAliasTag);
500 }
501
502 CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
503 Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr,
504 MDNode *ScopeTag = nullptr,
505 MDNode *NoAliasTag = nullptr);
506
507 /// \brief Create and insert an element unordered-atomic memmove between the
508 /// specified pointers.
509 ///
510 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
511 /// respectively.
512 ///
513 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
514 /// specified, it will be added to the instruction. Likewise with alias.scope
515 /// and noalias tags.
516 CallInst *CreateElementUnorderedAtomicMemMove(
517 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,
518 uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr,
519 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
520 MDNode *NoAliasTag = nullptr) {
521 return CreateElementUnorderedAtomicMemMove(
522 Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag,
523 TBAAStructTag, ScopeTag, NoAliasTag);
524 }
525
526 CallInst *CreateElementUnorderedAtomicMemMove(
527 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size,
528 uint32_t ElementSize, MDNode *TBAATag = nullptr,
529 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
530 MDNode *NoAliasTag = nullptr);
531
532 /// Create a vector fadd reduction intrinsic of the source vector.
533 /// The first parameter is a scalar accumulator value for ordered reductions.
534 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
535
536 /// Create a vector fmul reduction intrinsic of the source vector.
537 /// The first parameter is a scalar accumulator value for ordered reductions.
538 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
539
540 /// Create a vector int add reduction intrinsic of the source vector.
541 CallInst *CreateAddReduce(Value *Src);
542
543 /// Create a vector int mul reduction intrinsic of the source vector.
544 CallInst *CreateMulReduce(Value *Src);
545
546 /// Create a vector int AND reduction intrinsic of the source vector.
547 CallInst *CreateAndReduce(Value *Src);
548
549 /// Create a vector int OR reduction intrinsic of the source vector.
550 CallInst *CreateOrReduce(Value *Src);
551
552 /// Create a vector int XOR reduction intrinsic of the source vector.
553 CallInst *CreateXorReduce(Value *Src);
554
555 /// Create a vector integer max reduction intrinsic of the source
556 /// vector.
557 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
558
559 /// Create a vector integer min reduction intrinsic of the source
560 /// vector.
561 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
562
563 /// Create a vector float max reduction intrinsic of the source
564 /// vector.
565 CallInst *CreateFPMaxReduce(Value *Src, bool NoNaN = false);
566
567 /// Create a vector float min reduction intrinsic of the source
568 /// vector.
569 CallInst *CreateFPMinReduce(Value *Src, bool NoNaN = false);
570
571 /// Create a lifetime.start intrinsic.
572 ///
573 /// If the pointer isn't i8* it will be converted.
574 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
575
576 /// Create a lifetime.end intrinsic.
577 ///
578 /// If the pointer isn't i8* it will be converted.
579 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
580
581 /// Create a call to invariant.start intrinsic.
582 ///
583 /// If the pointer isn't i8* it will be converted.
584 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
585
586 /// Create a call to Masked Load intrinsic
587 CallInst *CreateMaskedLoad(Value *Ptr, unsigned Align, Value *Mask,
588 Value *PassThru = nullptr, const Twine &Name = "");
589
590 /// Create a call to Masked Store intrinsic
591 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Align,
592 Value *Mask);
593
594 /// Create a call to Masked Gather intrinsic
595 CallInst *CreateMaskedGather(Value *Ptrs, unsigned Align,
596 Value *Mask = nullptr,
597 Value *PassThru = nullptr,
598 const Twine& Name = "");
599
600 /// Create a call to Masked Scatter intrinsic
601 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned Align,
602 Value *Mask = nullptr);
603
604 /// Create an assume intrinsic call that allows the optimizer to
605 /// assume that the provided condition will be true.
606 CallInst *CreateAssumption(Value *Cond);
607
608 /// Create a call to the experimental.gc.statepoint intrinsic to
609 /// start a new statepoint sequence.
610 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
611 Value *ActualCallee,
612 ArrayRef<Value *> CallArgs,
613 ArrayRef<Value *> DeoptArgs,
614 ArrayRef<Value *> GCArgs,
615 const Twine &Name = "");
616
617 /// Create a call to the experimental.gc.statepoint intrinsic to
618 /// start a new statepoint sequence.
619 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
620 Value *ActualCallee, uint32_t Flags,
621 ArrayRef<Use> CallArgs,
622 ArrayRef<Use> TransitionArgs,
623 ArrayRef<Use> DeoptArgs,
624 ArrayRef<Value *> GCArgs,
625 const Twine &Name = "");
626
627 /// Conveninence function for the common case when CallArgs are filled
628 /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
629 /// .get()'ed to get the Value pointer.
630 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
631 Value *ActualCallee, ArrayRef<Use> CallArgs,
632 ArrayRef<Value *> DeoptArgs,
633 ArrayRef<Value *> GCArgs,
634 const Twine &Name = "");
635
636 /// Create an invoke to the experimental.gc.statepoint intrinsic to
637 /// start a new statepoint sequence.
638 InvokeInst *
639 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
640 Value *ActualInvokee, BasicBlock *NormalDest,
641 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
642 ArrayRef<Value *> DeoptArgs,
643 ArrayRef<Value *> GCArgs, const Twine &Name = "");
644
645 /// Create an invoke to the experimental.gc.statepoint intrinsic to
646 /// start a new statepoint sequence.
647 InvokeInst *CreateGCStatepointInvoke(
648 uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
649 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
650 ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
651 ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs,
652 const Twine &Name = "");
653
654 // Conveninence function for the common case when CallArgs are filled in using
655 // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
656 // get the Value *.
657 InvokeInst *
658 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
659 Value *ActualInvokee, BasicBlock *NormalDest,
660 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
661 ArrayRef<Value *> DeoptArgs,
662 ArrayRef<Value *> GCArgs, const Twine &Name = "");
663
664 /// Create a call to the experimental.gc.result intrinsic to extract
665 /// the result from a call wrapped in a statepoint.
666 CallInst *CreateGCResult(Instruction *Statepoint,
667 Type *ResultType,
668 const Twine &Name = "");
669
670 /// Create a call to the experimental.gc.relocate intrinsics to
671 /// project the relocated value of one pointer from the statepoint.
672 CallInst *CreateGCRelocate(Instruction *Statepoint,
673 int BaseOffset,
674 int DerivedOffset,
675 Type *ResultType,
676 const Twine &Name = "");
677
678 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
679 /// first type.
680 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID,
681 Value *LHS, Value *RHS,
682 const Twine &Name = "");
683
684 /// Create a call to intrinsic \p ID with no operands.
685 CallInst *CreateIntrinsic(Intrinsic::ID ID,
686 Instruction *FMFSource = nullptr,
687 const Twine &Name = "");
688
689 /// Create a call to intrinsic \p ID with 1 or more operands assuming the
690 /// intrinsic and all operands have the same type. If \p FMFSource is
691 /// provided, copy fast-math-flags from that instruction to the intrinsic.
692 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Value *> Args,
693 Instruction *FMFSource = nullptr,
694 const Twine &Name = "");
695
696 /// Create call to the minnum intrinsic.
697 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
698 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, Name);
699 }
700
701 /// Create call to the maxnum intrinsic.
702 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
703 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, Name);
704 }
705
706private:
707 /// Create a call to a masked intrinsic with given Id.
708 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
709 ArrayRef<Type *> OverloadedTypes,
710 const Twine &Name = "");
711
712 Value *getCastedInt8PtrValue(Value *Ptr);
713};
714
715/// This provides a uniform API for creating instructions and inserting
716/// them into a basic block: either at the end of a BasicBlock, or at a specific
717/// iterator location in a block.
718///
719/// Note that the builder does not expose the full generality of LLVM
720/// instructions. For access to extra instruction properties, use the mutators
721/// (e.g. setVolatile) on the instructions after they have been
722/// created. Convenience state exists to specify fast-math flags and fp-math
723/// tags.
724///
725/// The first template argument specifies a class to use for creating constants.
726/// This defaults to creating minimally folded constants. The second template
727/// argument allows clients to specify custom insertion hooks that are called on
728/// every newly created insertion.
729template <typename T = ConstantFolder,
730 typename Inserter = IRBuilderDefaultInserter>
731class IRBuilder : public IRBuilderBase, public Inserter {
732 T Folder;
733
734public:
735 IRBuilder(LLVMContext &C, const T &F, Inserter I = Inserter(),
736 MDNode *FPMathTag = nullptr,
737 ArrayRef<OperandBundleDef> OpBundles = None)
738 : IRBuilderBase(C, FPMathTag, OpBundles), Inserter(std::move(I)),
739 Folder(F) {}
740
741 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
742 ArrayRef<OperandBundleDef> OpBundles = None)
743 : IRBuilderBase(C, FPMathTag, OpBundles) {}
744
745 explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr,
746 ArrayRef<OperandBundleDef> OpBundles = None)
747 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) {
748 SetInsertPoint(TheBB);
749 }
750
751 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
752 ArrayRef<OperandBundleDef> OpBundles = None)
753 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) {
754 SetInsertPoint(TheBB);
755 }
756
757 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
758 ArrayRef<OperandBundleDef> OpBundles = None)
759 : IRBuilderBase(IP->getContext(), FPMathTag, OpBundles) {
760 SetInsertPoint(IP);
761 }
762
763 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T &F,
764 MDNode *FPMathTag = nullptr,
765 ArrayRef<OperandBundleDef> OpBundles = None)
766 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) {
767 SetInsertPoint(TheBB, IP);
768 }
769
770 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
771 MDNode *FPMathTag = nullptr,
772 ArrayRef<OperandBundleDef> OpBundles = None)
773 : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) {
774 SetInsertPoint(TheBB, IP);
775 }
776
777 /// Get the constant folder being used.
778 const T &getFolder() { return Folder; }
779
780 /// Insert and return the specified instruction.
781 template<typename InstTy>
782 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
783 this->InsertHelper(I, Name, BB, InsertPt);
784 this->SetInstDebugLocation(I);
785 return I;
786 }
787
788 /// No-op overload to handle constants.
789 Constant *Insert(Constant *C, const Twine& = "") const {
790 return C;
791 }
792
793 //===--------------------------------------------------------------------===//
794 // Instruction creation methods: Terminators
795 //===--------------------------------------------------------------------===//
796
797private:
798 /// Helper to add branch weight and unpredictable metadata onto an
799 /// instruction.
800 /// \returns The annotated instruction.
801 template <typename InstTy>
802 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
803 if (Weights)
804 I->setMetadata(LLVMContext::MD_prof, Weights);
805 if (Unpredictable)
806 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
807 return I;
808 }
809
810public:
811 /// Create a 'ret void' instruction.
812 ReturnInst *CreateRetVoid() {
813 return Insert(ReturnInst::Create(Context));
814 }
815
816 /// Create a 'ret <val>' instruction.
817 ReturnInst *CreateRet(Value *V) {
818 return Insert(ReturnInst::Create(Context, V));
819 }
820
821 /// Create a sequence of N insertvalue instructions,
822 /// with one Value from the retVals array each, that build a aggregate
823 /// return value one value at a time, and a ret instruction to return
824 /// the resulting aggregate value.
825 ///
826 /// This is a convenience function for code that uses aggregate return values
827 /// as a vehicle for having multiple return values.
828 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
829 Value *V = UndefValue::get(getCurrentFunctionReturnType());
830 for (unsigned i = 0; i != N; ++i)
831 V = CreateInsertValue(V, retVals[i], i, "mrv");
832 return Insert(ReturnInst::Create(Context, V));
833 }
834
835 /// Create an unconditional 'br label X' instruction.
836 BranchInst *CreateBr(BasicBlock *Dest) {
837 return Insert(BranchInst::Create(Dest));
838 }
839
840 /// Create a conditional 'br Cond, TrueDest, FalseDest'
841 /// instruction.
842 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
843 MDNode *BranchWeights = nullptr,
844 MDNode *Unpredictable = nullptr) {
845 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
846 BranchWeights, Unpredictable));
847 }
848
849 /// Create a conditional 'br Cond, TrueDest, FalseDest'
850 /// instruction. Copy branch meta data if available.
851 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
852 Instruction *MDSrc) {
853 BranchInst *Br = BranchInst::Create(True, False, Cond);
854 if (MDSrc) {
855 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
856 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
857 Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
858 }
859 return Insert(Br);
860 }
861
862 /// Create a switch instruction with the specified value, default dest,
863 /// and with a hint for the number of cases that will be added (for efficient
864 /// allocation).
865 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
866 MDNode *BranchWeights = nullptr,
867 MDNode *Unpredictable = nullptr) {
868 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
869 BranchWeights, Unpredictable));
870 }
871
872 /// Create an indirect branch instruction with the specified address
873 /// operand, with an optional hint for the number of destinations that will be
874 /// added (for efficient allocation).
875 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
876 return Insert(IndirectBrInst::Create(Addr, NumDests));
877 }
878
879 /// Create an invoke instruction.
880 InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
881 BasicBlock *UnwindDest,
882 ArrayRef<Value *> Args = None,
883 const Twine &Name = "") {
884 return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
885 Name);
886 }
887 InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
888 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
889 ArrayRef<OperandBundleDef> OpBundles,
890 const Twine &Name = "") {
891 return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args,
892 OpBundles), Name);
893 }
894
895 ResumeInst *CreateResume(Value *Exn) {
896 return Insert(ResumeInst::Create(Exn));
897 }
898
899 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
900 BasicBlock *UnwindBB = nullptr) {
901 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
902 }
903
904 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
905 unsigned NumHandlers,
906 const Twine &Name = "") {
907 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
908 Name);
909 }
910
911 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
912 const Twine &Name = "") {
913 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
914 }
915
916 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
917 ArrayRef<Value *> Args = None,
918 const Twine &Name = "") {
919 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
920 }
921
922 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
923 return Insert(CatchReturnInst::Create(CatchPad, BB));
924 }
925
926 UnreachableInst *CreateUnreachable() {
927 return Insert(new UnreachableInst(Context));
928 }
929
930 //===--------------------------------------------------------------------===//
931 // Instruction creation methods: Binary Operators
932 //===--------------------------------------------------------------------===//
933private:
934 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
935 Value *LHS, Value *RHS,
936 const Twine &Name,
937 bool HasNUW, bool HasNSW) {
938 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
939 if (HasNUW) BO->setHasNoUnsignedWrap();
940 if (HasNSW) BO->setHasNoSignedWrap();
941 return BO;
942 }
943
944 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
945 FastMathFlags FMF) const {
946 if (!FPMD)
947 FPMD = DefaultFPMathTag;
948 if (FPMD)
949 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
950 I->setFastMathFlags(FMF);
951 return I;
952 }
953
954 Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
955 Value *R, const Twine &Name = nullptr) const {
956 auto *LC = dyn_cast<Constant>(L);
957 auto *RC = dyn_cast<Constant>(R);
958 return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
959 }
960
961public:
962 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
963 bool HasNUW = false, bool HasNSW = false) {
964 if (auto *LC = dyn_cast<Constant>(LHS))
965 if (auto *RC = dyn_cast<Constant>(RHS))
966 return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
967 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
968 HasNUW, HasNSW);
969 }
970
971 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
972 return CreateAdd(LHS, RHS, Name, false, true);
973 }
974
975 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
976 return CreateAdd(LHS, RHS, Name, true, false);
977 }
978
979 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
980 bool HasNUW = false, bool HasNSW = false) {
981 if (auto *LC = dyn_cast<Constant>(LHS))
982 if (auto *RC = dyn_cast<Constant>(RHS))
983 return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
984 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
985 HasNUW, HasNSW);
986 }
987
988 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
989 return CreateSub(LHS, RHS, Name, false, true);
990 }
991
992 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
993 return CreateSub(LHS, RHS, Name, true, false);
994 }
995
996 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
997 bool HasNUW = false, bool HasNSW = false) {
998 if (auto *LC = dyn_cast<Constant>(LHS))
999 if (auto *RC = dyn_cast<Constant>(RHS))
1000 return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
1001 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
1002 HasNUW, HasNSW);
1003 }
1004
1005 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1006 return CreateMul(LHS, RHS, Name, false, true);
1007 }
1008
1009 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1010 return CreateMul(LHS, RHS, Name, true, false);
1011 }
1012
1013 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1014 bool isExact = false) {
1015 if (auto *LC = dyn_cast<Constant>(LHS))
1016 if (auto *RC = dyn_cast<Constant>(RHS))
1017 return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
1018 if (!isExact)
1019 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1020 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1021 }
1022
1023 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1024 return CreateUDiv(LHS, RHS, Name, true);
1025 }
1026
1027 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1028 bool isExact = false) {
1029 if (auto *LC = dyn_cast<Constant>(LHS))
1030 if (auto *RC = dyn_cast<Constant>(RHS))
1031 return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
1032 if (!isExact)
1033 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1034 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1035 }
1036
1037 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1038 return CreateSDiv(LHS, RHS, Name, true);
1039 }
1040
1041 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1042 if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
1043 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1044 }
1045
1046 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1047 if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V;
1048 return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1049 }
1050
1051 Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1052 bool HasNUW = false, bool HasNSW = false) {
1053 if (auto *LC = dyn_cast<Constant>(LHS))
1054 if (auto *RC = dyn_cast<Constant>(RHS))
1055 return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
1056 return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1057 HasNUW, HasNSW);
1058 }
1059
1060 Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1061 bool HasNUW = false, bool HasNSW = false) {
1062 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1063 HasNUW, HasNSW);
1064 }
1065
1066 Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1067 bool HasNUW = false, bool HasNSW = false) {
1068 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1069 HasNUW, HasNSW);
1070 }
1071
1072 Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1073 bool isExact = false) {
1074 if (auto *LC = dyn_cast<Constant>(LHS))
1075 if (auto *RC = dyn_cast<Constant>(RHS))
1076 return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
1077 if (!isExact)
1078 return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1079 return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1080 }
1081
1082 Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1083 bool isExact = false) {
1084 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1085 }
1086
1087 Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1088 bool isExact = false) {
1089 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1090 }
1091
1092 Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1093 bool isExact = false) {
1094 if (auto *LC = dyn_cast<Constant>(LHS))
1095 if (auto *RC = dyn_cast<Constant>(RHS))
1096 return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
1097 if (!isExact)
1098 return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1099 return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1100 }
1101
1102 Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1103 bool isExact = false) {
1104 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1105 }
1106
1107 Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1108 bool isExact = false) {
1109 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1110 }
1111
1112 Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1113 if (auto *RC = dyn_cast<Constant>(RHS)) {
1114 if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne())
1115 return LHS; // LHS & -1 -> LHS
1116 if (auto *LC = dyn_cast<Constant>(LHS))
1117 return Insert(Folder.CreateAnd(LC, RC), Name);
1118 }
1119 return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1120 }
1121
1122 Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1123 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1124 }
1125
1126 Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1127 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1128 }
1129
1130 Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1131 if (auto *RC = dyn_cast<Constant>(RHS)) {
1132 if (RC->isNullValue())
1133 return LHS; // LHS | 0 -> LHS
1134 if (auto *LC = dyn_cast<Constant>(LHS))
1135 return Insert(Folder.CreateOr(LC, RC), Name);
1136 }
1137 return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1138 }
1139
1140 Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1141 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1142 }
1143
1144 Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1145 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1146 }
1147
1148 Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1149 if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V;
1150 return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1151 }
1152
1153 Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1154 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1155 }
1156
1157 Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1158 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1159 }
1160
1161 Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1162 MDNode *FPMD = nullptr) {
1163 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1164 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1165 return Insert(I, Name);
1166 }
1167
1168 /// Copy fast-math-flags from an instruction rather than using the builder's
1169 /// default FMF.
1170 Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1171 const Twine &Name = "") {
1172 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1173 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr,
1174 FMFSource->getFastMathFlags());
1175 return Insert(I, Name);
1176 }
1177
1178 Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1179 MDNode *FPMD = nullptr) {
1180 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1181 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1182 return Insert(I, Name);
1183 }
1184
1185 /// Copy fast-math-flags from an instruction rather than using the builder's
1186 /// default FMF.
1187 Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1188 const Twine &Name = "") {
1189 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1190 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr,
1191 FMFSource->getFastMathFlags());
1192 return Insert(I, Name);
1193 }
1194
1195 Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1196 MDNode *FPMD = nullptr) {
1197 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1198 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1199 return Insert(I, Name);
1200 }
1201
1202 /// Copy fast-math-flags from an instruction rather than using the builder's
1203 /// default FMF.
1204 Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1205 const Twine &Name = "") {
1206 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1207 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr,
1208 FMFSource->getFastMathFlags());
1209 return Insert(I, Name);
1210 }
1211
1212 Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1213 MDNode *FPMD = nullptr) {
1214 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1215 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1216 return Insert(I, Name);
1217 }
1218
1219 /// Copy fast-math-flags from an instruction rather than using the builder's
1220 /// default FMF.
1221 Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1222 const Twine &Name = "") {
1223 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1224 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr,
1225 FMFSource->getFastMathFlags());
1226 return Insert(I, Name);
1227 }
1228
1229 Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1230 MDNode *FPMD = nullptr) {
1231 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1232 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1233 return Insert(I, Name);
1234 }
1235
1236 /// Copy fast-math-flags from an instruction rather than using the builder's
1237 /// default FMF.
1238 Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1239 const Twine &Name = "") {
1240 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1241 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr,
1242 FMFSource->getFastMathFlags());
1243 return Insert(I, Name);
1244 }
1245
1246 Value *CreateBinOp(Instruction::BinaryOps Opc,
1247 Value *LHS, Value *RHS, const Twine &Name = "",
1248 MDNode *FPMathTag = nullptr) {
1249 if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V;
1250 Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1251 if (isa<FPMathOperator>(BinOp))
1252 BinOp = setFPAttrs(BinOp, FPMathTag, FMF);
1253 return Insert(BinOp, Name);
1254 }
1255
1256 Value *CreateNeg(Value *V, const Twine &Name = "",
1257 bool HasNUW = false, bool HasNSW = false) {
1258 if (auto *VC = dyn_cast<Constant>(V))
1259 return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
1260 BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
1261 if (HasNUW) BO->setHasNoUnsignedWrap();
1262 if (HasNSW) BO->setHasNoSignedWrap();
1263 return BO;
1264 }
1265
1266 Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1267 return CreateNeg(V, Name, false, true);
1268 }
1269
1270 Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1271 return CreateNeg(V, Name, true, false);
1272 }
1273
1274 Value *CreateFNeg(Value *V, const Twine &Name = "",
1275 MDNode *FPMathTag = nullptr) {
1276 if (auto *VC = dyn_cast<Constant>(V))
1277 return Insert(Folder.CreateFNeg(VC), Name);
1278 return Insert(setFPAttrs(BinaryOperator::CreateFNeg(V), FPMathTag, FMF),
1279 Name);
1280 }
1281
1282 Value *CreateNot(Value *V, const Twine &Name = "") {
1283 if (auto *VC = dyn_cast<Constant>(V))
1284 return Insert(Folder.CreateNot(VC), Name);
1285 return Insert(BinaryOperator::CreateNot(V), Name);
1286 }
1287
1288 //===--------------------------------------------------------------------===//
1289 // Instruction creation methods: Memory Instructions
1290 //===--------------------------------------------------------------------===//
1291
1292 AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1293 Value *ArraySize = nullptr, const Twine &Name = "") {
1294 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize), Name);
1295 }
1296
1297 AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1298 const Twine &Name = "") {
1299 const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
1300 return Insert(new AllocaInst(Ty, DL.getAllocaAddrSpace(), ArraySize), Name);
1301 }
1302
1303 /// Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
1304 /// converting the string to 'bool' for the isVolatile parameter.
1305 LoadInst *CreateLoad(Value *Ptr, const char *Name) {
1306 return Insert(new LoadInst(Ptr), Name);
1307 }
1308
1309 LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
1310 return Insert(new LoadInst(Ptr), Name);
1311 }
1312
1313 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1314 return Insert(new LoadInst(Ty, Ptr), Name);
1315 }
1316
1317 LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
1318 return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name);
1319 }
1320
1321 StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1322 return Insert(new StoreInst(Val, Ptr, isVolatile));
1323 }
1324
1325 /// Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
1326 /// correctly, instead of converting the string to 'bool' for the isVolatile
1327 /// parameter.
1328 LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) {
1329 LoadInst *LI = CreateLoad(Ptr, Name);
1330 LI->setAlignment(Align);
1331 return LI;
1332 }
1333 LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align,
1334 const Twine &Name = "") {
1335 LoadInst *LI = CreateLoad(Ptr, Name);
1336 LI->setAlignment(Align);
1337 return LI;
1338 }
1339 LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile,
1340 const Twine &Name = "") {
1341 LoadInst *LI = CreateLoad(Ptr, isVolatile, Name);
1342 LI->setAlignment(Align);
1343 return LI;
1344 }
1345
1346 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,
1347 bool isVolatile = false) {
1348 StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
1349 SI->setAlignment(Align);
1350 return SI;
1351 }
1352
1353 FenceInst *CreateFence(AtomicOrdering Ordering,
1354 SyncScope::ID SSID = SyncScope::System,
1355 const Twine &Name = "") {
1356 return Insert(new FenceInst(Context, Ordering, SSID), Name);
1357 }
1358
1359 AtomicCmpXchgInst *
1360 CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
1361 AtomicOrdering SuccessOrdering,
1362 AtomicOrdering FailureOrdering,
1363 SyncScope::ID SSID = SyncScope::System) {
1364 return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
1365 FailureOrdering, SSID));
1366 }
1367
1368 AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
1369 AtomicOrdering Ordering,
1370 SyncScope::ID SSID = SyncScope::System) {
1371 return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SSID));
1372 }
1373
1374 Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
1375 const Twine &Name = "") {
1376 return CreateGEP(nullptr, Ptr, IdxList, Name);
1377 }
1378
1379 Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1380 const Twine &Name = "") {
1381 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1382 // Every index must be constant.
1383 size_t i, e;
1384 for (i = 0, e = IdxList.size(); i != e; ++i)
1385 if (!isa<Constant>(IdxList[i]))
1386 break;
1387 if (i == e)
1388 return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name);
1389 }
1390 return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
1391 }
1392
1393 Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
1394 const Twine &Name = "") {
1395 return CreateInBoundsGEP(nullptr, Ptr, IdxList, Name);
1396 }
1397
1398 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1399 const Twine &Name = "") {
1400 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1401 // Every index must be constant.
1402 size_t i, e;
1403 for (i = 0, e = IdxList.size(); i != e; ++i)
1404 if (!isa<Constant>(IdxList[i]))
1405 break;
1406 if (i == e)
1407 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList),
1408 Name);
1409 }
1410 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
1411 }
1412
1413 Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
1414 return CreateGEP(nullptr, Ptr, Idx, Name);
1415 }
1416
1417 Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
1418 if (auto *PC = dyn_cast<Constant>(Ptr))
1419 if (auto *IC = dyn_cast<Constant>(Idx))
1420 return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name);
1421 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1422 }
1423
1424 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
1425 const Twine &Name = "") {
1426 if (auto *PC = dyn_cast<Constant>(Ptr))
1427 if (auto *IC = dyn_cast<Constant>(Idx))
1428 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name);
1429 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1430 }
1431
1432 Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
1433 return CreateConstGEP1_32(nullptr, Ptr, Idx0, Name);
1434 }
1435
1436 Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1437 const Twine &Name = "") {
1438 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1439
1440 if (auto *PC = dyn_cast<Constant>(Ptr))
1441 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1442
1443 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1444 }
1445
1446 Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1447 const Twine &Name = "") {
1448 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1449
1450 if (auto *PC = dyn_cast<Constant>(Ptr))
1451 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
1452
1453 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1454 }
1455
1456 Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1457 const Twine &Name = "") {
1458 Value *Idxs[] = {
1459 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1460 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1461 };
1462
1463 if (auto *PC = dyn_cast<Constant>(Ptr))
1464 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
1465
1466 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1467 }
1468
1469 Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1470 unsigned Idx1, const Twine &Name = "") {
1471 Value *Idxs[] = {
1472 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1473 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1474 };
1475
1476 if (auto *PC = dyn_cast<Constant>(Ptr))
1477 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
1478
1479 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1480 }
1481
1482 Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
1483 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1484
1485 if (auto *PC = dyn_cast<Constant>(Ptr))
1486 return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idx), Name);
1487
1488 return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idx), Name);
1489 }
1490
1491 Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
1492 const Twine &Name = "") {
1493 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1494
1495 if (auto *PC = dyn_cast<Constant>(Ptr))
1496 return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idx), Name);
1497
1498 return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idx), Name);
1499 }
1500
1501 Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1502 const Twine &Name = "") {
1503 Value *Idxs[] = {
1504 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1505 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1506 };
1507
1508 if (auto *PC = dyn_cast<Constant>(Ptr))
1509 return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idxs), Name);
1510
1511 return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idxs), Name);
1512 }
1513
1514 Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1515 const Twine &Name = "") {
1516 Value *Idxs[] = {
1517 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1518 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1519 };
1520
1521 if (auto *PC = dyn_cast<Constant>(Ptr))
1522 return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idxs),
1523 Name);
1524
1525 return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idxs), Name);
1526 }
1527
1528 Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
1529 const Twine &Name = "") {
1530 return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
1531 }
1532
1533 Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
1534 return CreateConstInBoundsGEP2_32(nullptr, Ptr, 0, Idx, Name);
1535 }
1536
1537 /// Same as CreateGlobalString, but return a pointer with "i8*" type
1538 /// instead of a pointer to array of i8.
1539 Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
1540 unsigned AddressSpace = 0) {
1541 GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace);
1542 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1543 Constant *Indices[] = {Zero, Zero};
1544 return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
1545 Indices);
1546 }
1547
1548 //===--------------------------------------------------------------------===//
1549 // Instruction creation methods: Cast/Conversion Operators
1550 //===--------------------------------------------------------------------===//
1551
1552 Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
1553 return CreateCast(Instruction::Trunc, V, DestTy, Name);
1554 }
1555
1556 Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
1557 return CreateCast(Instruction::ZExt, V, DestTy, Name);
1558 }
1559
1560 Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
1561 return CreateCast(Instruction::SExt, V, DestTy, Name);
1562 }
1563
1564 /// Create a ZExt or Trunc from the integer value V to DestTy. Return
1565 /// the value untouched if the type of V is already DestTy.
1566 Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
1567 const Twine &Name = "") {
1568 assert(V->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 1570, __extension__ __PRETTY_FUNCTION__))
1569 DestTy->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 1570, __extension__ __PRETTY_FUNCTION__))
1570 "Can only zero extend/truncate integers!")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 1570, __extension__ __PRETTY_FUNCTION__))
;
1571 Type *VTy = V->getType();
1572 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1573 return CreateZExt(V, DestTy, Name);
1574 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1575 return CreateTrunc(V, DestTy, Name);
1576 return V;
1577 }
1578
1579 /// Create a SExt or Trunc from the integer value V to DestTy. Return
1580 /// the value untouched if the type of V is already DestTy.
1581 Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
1582 const Twine &Name = "") {
1583 assert(V->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 1585, __extension__ __PRETTY_FUNCTION__))
1584 DestTy->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 1585, __extension__ __PRETTY_FUNCTION__))
1585 "Can only sign extend/truncate integers!")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/include/llvm/IR/IRBuilder.h"
, 1585, __extension__ __PRETTY_FUNCTION__))
;
1586 Type *VTy = V->getType();
1587 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1588 return CreateSExt(V, DestTy, Name);
1589 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1590 return CreateTrunc(V, DestTy, Name);
1591 return V;
1592 }
1593
1594 Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){
1595 return CreateCast(Instruction::FPToUI, V, DestTy, Name);
1596 }
1597
1598 Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){
1599 return CreateCast(Instruction::FPToSI, V, DestTy, Name);
1600 }
1601
1602 Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1603 return CreateCast(Instruction::UIToFP, V, DestTy, Name);
1604 }
1605
1606 Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1607 return CreateCast(Instruction::SIToFP, V, DestTy, Name);
1608 }
1609
1610 Value *CreateFPTrunc(Value *V, Type *DestTy,
1611 const Twine &Name = "") {
1612 return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
1613 }
1614
1615 Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
1616 return CreateCast(Instruction::FPExt, V, DestTy, Name);
1617 }
1618
1619 Value *CreatePtrToInt(Value *V, Type *DestTy,
1620 const Twine &Name = "") {
1621 return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
1622 }
1623
1624 Value *CreateIntToPtr(Value *V, Type *DestTy,
1625 const Twine &Name = "") {
1626 return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
1627 }
1628
1629 Value *CreateBitCast(Value *V, Type *DestTy,
1630 const Twine &Name = "") {
1631 return CreateCast(Instruction::BitCast, V, DestTy, Name);
1632 }
1633
1634 Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
1635 const Twine &Name = "") {
1636 return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
1637 }
1638
1639 Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
1640 const Twine &Name = "") {
1641 if (V->getType() == DestTy)
1642 return V;
1643 if (auto *VC = dyn_cast<Constant>(V))
1644 return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
1645 return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
1646 }
1647
1648 Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
1649 const Twine &Name = "") {
1650 if (V->getType() == DestTy)
1651 return V;
1652 if (auto *VC = dyn_cast<Constant>(V))
1653 return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
1654 return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
1655 }
1656
1657 Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
1658 const Twine &Name = "") {
1659 if (V->getType() == DestTy)
1660 return V;
1661 if (auto *VC = dyn_cast<Constant>(V))
1662 return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
1663 return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
1664 }
1665
1666 Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
1667 const Twine &Name = "") {
1668 if (V->getType() == DestTy)
1669 return V;
1670 if (auto *VC = dyn_cast<Constant>(V))
1671 return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
1672 return Insert(CastInst::Create(Op, V, DestTy), Name);
1673 }
1674
1675 Value *CreatePointerCast(Value *V, Type *DestTy,
1676 const Twine &Name = "") {
1677 if (V->getType() == DestTy)
1678 return V;
1679 if (auto *VC = dyn_cast<Constant>(V))
1680 return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
1681 return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
1682 }
1683
1684 Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
1685 const Twine &Name = "") {
1686 if (V->getType() == DestTy)
1687 return V;
1688
1689 if (auto *VC = dyn_cast<Constant>(V)) {
1690 return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
1691 Name);
1692 }
1693
1694 return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
1695 Name);
1696 }
1697
1698 Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
1699 const Twine &Name = "") {
1700 if (V->getType() == DestTy)
1701 return V;
1702 if (auto *VC = dyn_cast<Constant>(V))
1703 return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
1704 return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
1705 }
1706
1707 Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
1708 const Twine &Name = "") {
1709 if (V->getType() == DestTy)
1710 return V;
1711 if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
1712 return CreatePtrToInt(V, DestTy, Name);
1713 if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
1714 return CreateIntToPtr(V, DestTy, Name);
1715
1716 return CreateBitCast(V, DestTy, Name);
1717 }
1718
1719 Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
1720 if (V->getType() == DestTy)
1721 return V;
1722 if (auto *VC = dyn_cast<Constant>(V))
1723 return Insert(Folder.CreateFPCast(VC, DestTy), Name);
1724 return Insert(CastInst::CreateFPCast(V, DestTy), Name);
1725 }
1726
1727 // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
1728 // compile time error, instead of converting the string to bool for the
1729 // isSigned parameter.
1730 Value *CreateIntCast(Value *, Type *, const char *) = delete;
1731
1732 //===--------------------------------------------------------------------===//
1733 // Instruction creation methods: Compare Instructions
1734 //===--------------------------------------------------------------------===//
1735
1736 Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
1737 return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
1738 }
1739
1740 Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
1741 return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
1742 }
1743
1744 Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
1745 return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
1746 }
1747