Bug Summary

File:clang/lib/CodeGen/CGObjC.cpp
Warning:line 492, column 35
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp

1//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Objective-C code as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGDebugInfo.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Basic/Diagnostic.h"
24#include "clang/CodeGen/CGFunctionInfo.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/InlineAsm.h"
28using namespace clang;
29using namespace CodeGen;
30
31typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32static TryEmitResult
33tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
34static RValue AdjustObjCObjectType(CodeGenFunction &CGF,
35 QualType ET,
36 RValue Result);
37
38/// Given the address of a variable of pointer type, find the correct
39/// null to store into it.
40static llvm::Constant *getNullForVariable(Address addr) {
41 llvm::Type *type = addr.getElementType();
42 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43}
44
45/// Emits an instance of NSConstantString representing the object.
46llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
47{
48 llvm::Constant *C =
49 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer();
50 // FIXME: This bitcast should just be made an invariant on the Runtime.
51 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52}
53
54/// EmitObjCBoxedExpr - This routine generates code to call
55/// the appropriate expression boxing method. This will either be
56/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57/// or [NSValue valueWithBytes:objCType:].
58///
59llvm::Value *
60CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61 // Generate the correct selector for this literal's concrete type.
62 // Get the method.
63 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64 const Expr *SubExpr = E->getSubExpr();
65
66 if (E->isExpressibleAsConstantInitializer()) {
67 ConstantEmitter ConstEmitter(CGM);
68 return ConstEmitter.tryEmitAbstract(E, E->getType());
69 }
70
71 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method")((BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"
) ? static_cast<void> (0) : __assert_fail ("BoxingMethod->isClassMethod() && \"BoxingMethod must be a class method\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 71, __PRETTY_FUNCTION__))
;
72 Selector Sel = BoxingMethod->getSelector();
73
74 // Generate a reference to the class pointer, which will be the receiver.
75 // Assumes that the method was introduced in the class that should be
76 // messaged (avoids pulling it out of the result type).
77 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
78 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
79 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
80
81 CallArgList Args;
82 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
83 QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
84
85 // ObjCBoxedExpr supports boxing of structs and unions
86 // via [NSValue valueWithBytes:objCType:]
87 const QualType ValueType(SubExpr->getType().getCanonicalType());
88 if (ValueType->isObjCBoxableRecordType()) {
89 // Emit CodeGen for first parameter
90 // and cast value to correct type
91 Address Temporary = CreateMemTemp(SubExpr->getType());
92 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
93 Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
94 Args.add(RValue::get(BitCast.getPointer()), ArgQT);
95
96 // Create char array to store type encoding
97 std::string Str;
98 getContext().getObjCEncodingForType(ValueType, Str);
99 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
100
101 // Cast type encoding to correct type
102 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
103 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
104 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
105
106 Args.add(RValue::get(Cast), EncodingQT);
107 } else {
108 Args.add(EmitAnyExpr(SubExpr), ArgQT);
109 }
110
111 RValue result = Runtime.GenerateMessageSend(
112 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
113 Args, ClassDecl, BoxingMethod);
114 return Builder.CreateBitCast(result.getScalarVal(),
115 ConvertType(E->getType()));
116}
117
118llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
119 const ObjCMethodDecl *MethodWithObjects) {
120 ASTContext &Context = CGM.getContext();
121 const ObjCDictionaryLiteral *DLE = nullptr;
122 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
123 if (!ALE)
124 DLE = cast<ObjCDictionaryLiteral>(E);
125
126 // Optimize empty collections by referencing constants, when available.
127 uint64_t NumElements =
128 ALE ? ALE->getNumElements() : DLE->getNumElements();
129 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
130 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131 QualType IdTy(CGM.getContext().getObjCIdType());
132 llvm::Constant *Constant =
133 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
134 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
135 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
136 cast<llvm::LoadInst>(Ptr)->setMetadata(
137 CGM.getModule().getMDKindID("invariant.load"),
138 llvm::MDNode::get(getLLVMContext(), None));
139 return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
140 }
141
142 // Compute the type of the array we're initializing.
143 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
144 NumElements);
145 QualType ElementType = Context.getObjCIdType().withConst();
146 QualType ElementArrayType
147 = Context.getConstantArrayType(ElementType, APNumElements, nullptr,
148 ArrayType::Normal, /*IndexTypeQuals=*/0);
149
150 // Allocate the temporary array(s).
151 Address Objects = CreateMemTemp(ElementArrayType, "objects");
152 Address Keys = Address::invalid();
153 if (DLE)
154 Keys = CreateMemTemp(ElementArrayType, "keys");
155
156 // In ARC, we may need to do extra work to keep all the keys and
157 // values alive until after the call.
158 SmallVector<llvm::Value *, 16> NeededObjects;
159 bool TrackNeededObjects =
160 (getLangOpts().ObjCAutoRefCount &&
161 CGM.getCodeGenOpts().OptimizationLevel != 0);
162
163 // Perform the actual initialialization of the array(s).
164 for (uint64_t i = 0; i < NumElements; i++) {
165 if (ALE) {
166 // Emit the element and store it to the appropriate array slot.
167 const Expr *Rhs = ALE->getElement(i);
168 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
169 ElementType, AlignmentSource::Decl);
170
171 llvm::Value *value = EmitScalarExpr(Rhs);
172 EmitStoreThroughLValue(RValue::get(value), LV, true);
173 if (TrackNeededObjects) {
174 NeededObjects.push_back(value);
175 }
176 } else {
177 // Emit the key and store it to the appropriate array slot.
178 const Expr *Key = DLE->getKeyValueElement(i).Key;
179 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i),
180 ElementType, AlignmentSource::Decl);
181 llvm::Value *keyValue = EmitScalarExpr(Key);
182 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
183
184 // Emit the value and store it to the appropriate array slot.
185 const Expr *Value = DLE->getKeyValueElement(i).Value;
186 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
187 ElementType, AlignmentSource::Decl);
188 llvm::Value *valueValue = EmitScalarExpr(Value);
189 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
190 if (TrackNeededObjects) {
191 NeededObjects.push_back(keyValue);
192 NeededObjects.push_back(valueValue);
193 }
194 }
195 }
196
197 // Generate the argument list.
198 CallArgList Args;
199 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
200 const ParmVarDecl *argDecl = *PI++;
201 QualType ArgQT = argDecl->getType().getUnqualifiedType();
202 Args.add(RValue::get(Objects.getPointer()), ArgQT);
203 if (DLE) {
204 argDecl = *PI++;
205 ArgQT = argDecl->getType().getUnqualifiedType();
206 Args.add(RValue::get(Keys.getPointer()), ArgQT);
207 }
208 argDecl = *PI;
209 ArgQT = argDecl->getType().getUnqualifiedType();
210 llvm::Value *Count =
211 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
212 Args.add(RValue::get(Count), ArgQT);
213
214 // Generate a reference to the class pointer, which will be the receiver.
215 Selector Sel = MethodWithObjects->getSelector();
216 QualType ResultType = E->getType();
217 const ObjCObjectPointerType *InterfacePointerType
218 = ResultType->getAsObjCInterfacePointerType();
219 ObjCInterfaceDecl *Class
220 = InterfacePointerType->getObjectType()->getInterface();
221 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
222 llvm::Value *Receiver = Runtime.GetClass(*this, Class);
223
224 // Generate the message send.
225 RValue result = Runtime.GenerateMessageSend(
226 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
227 Receiver, Args, Class, MethodWithObjects);
228
229 // The above message send needs these objects, but in ARC they are
230 // passed in a buffer that is essentially __unsafe_unretained.
231 // Therefore we must prevent the optimizer from releasing them until
232 // after the call.
233 if (TrackNeededObjects) {
234 EmitARCIntrinsicUse(NeededObjects);
235 }
236
237 return Builder.CreateBitCast(result.getScalarVal(),
238 ConvertType(E->getType()));
239}
240
241llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
242 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
243}
244
245llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
246 const ObjCDictionaryLiteral *E) {
247 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
248}
249
250/// Emit a selector.
251llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
252 // Untyped selector.
253 // Note that this implementation allows for non-constant strings to be passed
254 // as arguments to @selector(). Currently, the only thing preventing this
255 // behaviour is the type checking in the front end.
256 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
257}
258
259llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
260 // FIXME: This should pass the Decl not the name.
261 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
262}
263
264/// Adjust the type of an Objective-C object that doesn't match up due
265/// to type erasure at various points, e.g., related result types or the use
266/// of parameterized classes.
267static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT,
268 RValue Result) {
269 if (!ExpT->isObjCRetainableType())
270 return Result;
271
272 // If the converted types are the same, we're done.
273 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
274 if (ExpLLVMTy == Result.getScalarVal()->getType())
275 return Result;
276
277 // We have applied a substitution. Cast the rvalue appropriately.
278 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
279 ExpLLVMTy));
280}
281
282/// Decide whether to extend the lifetime of the receiver of a
283/// returns-inner-pointer message.
284static bool
285shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
286 switch (message->getReceiverKind()) {
287
288 // For a normal instance message, we should extend unless the
289 // receiver is loaded from a variable with precise lifetime.
290 case ObjCMessageExpr::Instance: {
291 const Expr *receiver = message->getInstanceReceiver();
292
293 // Look through OVEs.
294 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
295 if (opaque->getSourceExpr())
296 receiver = opaque->getSourceExpr()->IgnoreParens();
297 }
298
299 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
300 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
301 receiver = ice->getSubExpr()->IgnoreParens();
302
303 // Look through OVEs.
304 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
305 if (opaque->getSourceExpr())
306 receiver = opaque->getSourceExpr()->IgnoreParens();
307 }
308
309 // Only __strong variables.
310 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
311 return true;
312
313 // All ivars and fields have precise lifetime.
314 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
315 return false;
316
317 // Otherwise, check for variables.
318 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
319 if (!declRef) return true;
320 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
321 if (!var) return true;
322
323 // All variables have precise lifetime except local variables with
324 // automatic storage duration that aren't specially marked.
325 return (var->hasLocalStorage() &&
326 !var->hasAttr<ObjCPreciseLifetimeAttr>());
327 }
328
329 case ObjCMessageExpr::Class:
330 case ObjCMessageExpr::SuperClass:
331 // It's never necessary for class objects.
332 return false;
333
334 case ObjCMessageExpr::SuperInstance:
335 // We generally assume that 'self' lives throughout a method call.
336 return false;
337 }
338
339 llvm_unreachable("invalid receiver kind")::llvm::llvm_unreachable_internal("invalid receiver kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 339)
;
340}
341
342/// Given an expression of ObjC pointer type, check whether it was
343/// immediately loaded from an ARC __weak l-value.
344static const Expr *findWeakLValue(const Expr *E) {
345 assert(E->getType()->isObjCRetainableType())((E->getType()->isObjCRetainableType()) ? static_cast<
void> (0) : __assert_fail ("E->getType()->isObjCRetainableType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 345, __PRETTY_FUNCTION__))
;
346 E = E->IgnoreParens();
347 if (auto CE = dyn_cast<CastExpr>(E)) {
348 if (CE->getCastKind() == CK_LValueToRValue) {
349 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
350 return CE->getSubExpr();
351 }
352 }
353
354 return nullptr;
355}
356
357/// The ObjC runtime may provide entrypoints that are likely to be faster
358/// than an ordinary message send of the appropriate selector.
359///
360/// The entrypoints are guaranteed to be equivalent to just sending the
361/// corresponding message. If the entrypoint is implemented naively as just a
362/// message send, using it is a trade-off: it sacrifices a few cycles of
363/// overhead to save a small amount of code. However, it's possible for
364/// runtimes to detect and special-case classes that use "standard"
365/// behavior; if that's dynamically a large proportion of all objects, using
366/// the entrypoint will also be faster than using a message send.
367///
368/// If the runtime does support a required entrypoint, then this method will
369/// generate a call and return the resulting value. Otherwise it will return
370/// None and the caller can generate a msgSend instead.
371static Optional<llvm::Value *>
372tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType,
373 llvm::Value *Receiver,
374 const CallArgList& Args, Selector Sel,
375 const ObjCMethodDecl *method,
376 bool isClassMessage) {
377 auto &CGM = CGF.CGM;
378 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
379 return None;
380
381 auto &Runtime = CGM.getLangOpts().ObjCRuntime;
382 switch (Sel.getMethodFamily()) {
383 case OMF_alloc:
384 if (isClassMessage &&
385 Runtime.shouldUseRuntimeFunctionsForAlloc() &&
386 ResultType->isObjCObjectPointerType()) {
387 // [Foo alloc] -> objc_alloc(Foo) or
388 // [self alloc] -> objc_alloc(self)
389 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
390 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
391 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
392 // [self allocWithZone:nil] -> objc_allocWithZone(self)
393 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
394 Args.size() == 1 && Args.front().getType()->isPointerType() &&
395 Sel.getNameForSlot(0) == "allocWithZone") {
396 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
397 if (isa<llvm::ConstantPointerNull>(arg))
398 return CGF.EmitObjCAllocWithZone(Receiver,
399 CGF.ConvertType(ResultType));
400 return None;
401 }
402 }
403 break;
404
405 case OMF_autorelease:
406 if (ResultType->isObjCObjectPointerType() &&
407 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
408 Runtime.shouldUseARCFunctionsForRetainRelease())
409 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
410 break;
411
412 case OMF_retain:
413 if (ResultType->isObjCObjectPointerType() &&
414 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
415 Runtime.shouldUseARCFunctionsForRetainRelease())
416 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
417 break;
418
419 case OMF_release:
420 if (ResultType->isVoidType() &&
421 CGM.getLangOpts().getGC() == LangOptions::NonGC &&
422 Runtime.shouldUseARCFunctionsForRetainRelease()) {
423 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
424 return nullptr;
425 }
426 break;
427
428 default:
429 break;
430 }
431 return None;
432}
433
434CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
435 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType,
436 Selector Sel, llvm::Value *Receiver, const CallArgList &Args,
437 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method,
438 bool isClassMessage) {
439 if (Optional<llvm::Value *> SpecializedResult =
440 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args,
441 Sel, Method, isClassMessage)) {
442 return RValue::get(SpecializedResult.getValue());
443 }
444 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID,
445 Method);
446}
447
448/// Instead of '[[MyClass alloc] init]', try to generate
449/// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
450/// caller side, as well as the optimized objc_alloc.
451static Optional<llvm::Value *>
452tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) {
453 auto &Runtime = CGF.getLangOpts().ObjCRuntime;
454 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
2
Calling 'ObjCRuntime::shouldUseRuntimeFunctionForCombinedAllocInit'
20
Returning from 'ObjCRuntime::shouldUseRuntimeFunctionForCombinedAllocInit'
21
Taking false branch
455 return None;
456
457 // Match the exact pattern '[[MyClass alloc] init]'.
458 Selector Sel = OME->getSelector();
459 if (OME->getReceiverKind() != ObjCMessageExpr::Instance ||
22
Assuming the condition is false
23
Taking false branch
460 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
461 Sel.getNameForSlot(0) != "init")
462 return None;
463
464 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' or
465 // we are in an ObjC class method and 'receiver' is '[self alloc]'.
466 auto *SubOME =
467 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts());
24
Assuming the object is a 'ObjCMessageExpr'
468 if (!SubOME
24.1
'SubOME' is non-null
24.1
'SubOME' is non-null
24.1
'SubOME' is non-null
24.1
'SubOME' is non-null
)
25
Taking false branch
469 return None;
470 Selector SubSel = SubOME->getSelector();
471
472 // Check if we are in an ObjC class method and the receiver expression is
473 // 'self'.
474 const Expr *SelfInClassMethod = nullptr;
475 if (const auto *CurMD
26.1
'CurMD' is null
26.1
'CurMD' is null
26.1
'CurMD' is null
26.1
'CurMD' is null
= dyn_cast_or_null<ObjCMethodDecl>(CGF.CurFuncDecl))
26
Assuming null pointer is passed into cast
27
Taking false branch
476 if (CurMD->isClassMethod())
477 if ((SelfInClassMethod = SubOME->getInstanceReceiver()))
478 if (!SelfInClassMethod->isObjCSelfExpr())
479 SelfInClassMethod = nullptr;
480
481 if ((SubOME->getReceiverKind() != ObjCMessageExpr::Class &&
28
Assuming the condition is false
29
Taking false branch
482 !SelfInClassMethod) || !SubOME->getType()->isObjCObjectPointerType() ||
483 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
484 return None;
485
486 llvm::Value *Receiver;
487 if (SelfInClassMethod
29.1
'SelfInClassMethod' is null
29.1
'SelfInClassMethod' is null
29.1
'SelfInClassMethod' is null
29.1
'SelfInClassMethod' is null
) {
30
Taking false branch
488 Receiver = CGF.EmitScalarExpr(SelfInClassMethod);
489 } else {
490 QualType ReceiverType = SubOME->getClassReceiver();
491 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
31
Assuming the object is not a 'ObjCObjectType'
32
'ObjTy' initialized to a null pointer value
492 const ObjCInterfaceDecl *ID = ObjTy->getInterface();
33
Called C++ object pointer is null
493 assert(ID && "null interface should be impossible here")((ID && "null interface should be impossible here") ?
static_cast<void> (0) : __assert_fail ("ID && \"null interface should be impossible here\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 493, __PRETTY_FUNCTION__))
;
494 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
495 }
496 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
497}
498
499RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
500 ReturnValueSlot Return) {
501 // Only the lookup mechanism and first two arguments of the method
502 // implementation vary between runtimes. We can get the receiver and
503 // arguments in generic code.
504
505 bool isDelegateInit = E->isDelegateInitCall();
506
507 const ObjCMethodDecl *method = E->getMethodDecl();
508
509 // If the method is -retain, and the receiver's being loaded from
510 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
511 if (method
0.1
'method' is null
0.1
'method' is null
0.1
'method' is null
0.1
'method' is null
&& E->getReceiverKind() == ObjCMessageExpr::Instance &&
512 method->getMethodFamily() == OMF_retain) {
513 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
514 LValue lvalue = EmitLValue(lvalueExpr);
515 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this));
516 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
517 }
518 }
519
520 if (Optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E))
1
Calling 'tryEmitSpecializedAllocInit'
521 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
522
523 // We don't retain the receiver in delegate init calls, and this is
524 // safe because the receiver value is always loaded from 'self',
525 // which we zero out. We don't want to Block_copy block receivers,
526 // though.
527 bool retainSelf =
528 (!isDelegateInit &&
529 CGM.getLangOpts().ObjCAutoRefCount &&
530 method &&
531 method->hasAttr<NSConsumesSelfAttr>());
532
533 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
534 bool isSuperMessage = false;
535 bool isClassMessage = false;
536 ObjCInterfaceDecl *OID = nullptr;
537 // Find the receiver
538 QualType ReceiverType;
539 llvm::Value *Receiver = nullptr;
540 switch (E->getReceiverKind()) {
541 case ObjCMessageExpr::Instance:
542 ReceiverType = E->getInstanceReceiver()->getType();
543 if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(CurFuncDecl))
544 if (OMD->isClassMethod())
545 if (E->getInstanceReceiver()->isObjCSelfExpr())
546 isClassMessage = true;
547 if (retainSelf) {
548 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
549 E->getInstanceReceiver());
550 Receiver = ter.getPointer();
551 if (ter.getInt()) retainSelf = false;
552 } else
553 Receiver = EmitScalarExpr(E->getInstanceReceiver());
554 break;
555
556 case ObjCMessageExpr::Class: {
557 ReceiverType = E->getClassReceiver();
558 const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
559 assert(ObjTy && "Invalid Objective-C class message send")((ObjTy && "Invalid Objective-C class message send") ?
static_cast<void> (0) : __assert_fail ("ObjTy && \"Invalid Objective-C class message send\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 559, __PRETTY_FUNCTION__))
;
560 OID = ObjTy->getInterface();
561 assert(OID && "Invalid Objective-C class message send")((OID && "Invalid Objective-C class message send") ? static_cast
<void> (0) : __assert_fail ("OID && \"Invalid Objective-C class message send\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 561, __PRETTY_FUNCTION__))
;
562 Receiver = Runtime.GetClass(*this, OID);
563 isClassMessage = true;
564 break;
565 }
566
567 case ObjCMessageExpr::SuperInstance:
568 ReceiverType = E->getSuperType();
569 Receiver = LoadObjCSelf();
570 isSuperMessage = true;
571 break;
572
573 case ObjCMessageExpr::SuperClass:
574 ReceiverType = E->getSuperType();
575 Receiver = LoadObjCSelf();
576 isSuperMessage = true;
577 isClassMessage = true;
578 break;
579 }
580
581 if (retainSelf)
582 Receiver = EmitARCRetainNonBlock(Receiver);
583
584 // In ARC, we sometimes want to "extend the lifetime"
585 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
586 // messages.
587 if (getLangOpts().ObjCAutoRefCount && method &&
588 method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
589 shouldExtendReceiverForInnerPointerMessage(E))
590 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
591
592 QualType ResultType = method ? method->getReturnType() : E->getType();
593
594 CallArgList Args;
595 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
596
597 // For delegate init calls in ARC, do an unsafe store of null into
598 // self. This represents the call taking direct ownership of that
599 // value. We have to do this after emitting the other call
600 // arguments because they might also reference self, but we don't
601 // have to worry about any of them modifying self because that would
602 // be an undefined read and write of an object in unordered
603 // expressions.
604 if (isDelegateInit) {
605 assert(getLangOpts().ObjCAutoRefCount &&((getLangOpts().ObjCAutoRefCount && "delegate init calls should only be marked in ARC"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().ObjCAutoRefCount && \"delegate init calls should only be marked in ARC\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 606, __PRETTY_FUNCTION__))
606 "delegate init calls should only be marked in ARC")((getLangOpts().ObjCAutoRefCount && "delegate init calls should only be marked in ARC"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().ObjCAutoRefCount && \"delegate init calls should only be marked in ARC\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 606, __PRETTY_FUNCTION__))
;
607
608 // Do an unsafe store of null into self.
609 Address selfAddr =
610 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
611 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
612 }
613
614 RValue result;
615 if (isSuperMessage) {
616 // super is only valid in an Objective-C method
617 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
618 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
619 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
620 E->getSelector(),
621 OMD->getClassInterface(),
622 isCategoryImpl,
623 Receiver,
624 isClassMessage,
625 Args,
626 method);
627 } else {
628 // Call runtime methods directly if we can.
629 result = Runtime.GeneratePossiblySpecializedMessageSend(
630 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID,
631 method, isClassMessage);
632 }
633
634 // For delegate init calls in ARC, implicitly store the result of
635 // the call back into self. This takes ownership of the value.
636 if (isDelegateInit) {
637 Address selfAddr =
638 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
639 llvm::Value *newSelf = result.getScalarVal();
640
641 // The delegate return type isn't necessarily a matching type; in
642 // fact, it's quite likely to be 'id'.
643 llvm::Type *selfTy = selfAddr.getElementType();
644 newSelf = Builder.CreateBitCast(newSelf, selfTy);
645
646 Builder.CreateStore(newSelf, selfAddr);
647 }
648
649 return AdjustObjCObjectType(*this, E->getType(), result);
650}
651
652namespace {
653struct FinishARCDealloc final : EHScopeStack::Cleanup {
654 void Emit(CodeGenFunction &CGF, Flags flags) override {
655 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
656
657 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
658 const ObjCInterfaceDecl *iface = impl->getClassInterface();
659 if (!iface->getSuperClass()) return;
660
661 bool isCategory = isa<ObjCCategoryImplDecl>(impl);
662
663 // Call [super dealloc] if we have a superclass.
664 llvm::Value *self = CGF.LoadObjCSelf();
665
666 CallArgList args;
667 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
668 CGF.getContext().VoidTy,
669 method->getSelector(),
670 iface,
671 isCategory,
672 self,
673 /*is class msg*/ false,
674 args,
675 method);
676 }
677};
678}
679
680/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
681/// the LLVM function and sets the other context used by
682/// CodeGenFunction.
683void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
684 const ObjCContainerDecl *CD) {
685 SourceLocation StartLoc = OMD->getBeginLoc();
686 FunctionArgList args;
687 // Check if we should generate debug info for this method.
688 if (OMD->hasAttr<NoDebugAttr>())
689 DebugInfo = nullptr; // disable debug info indefinitely for this function
690
691 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
692
693 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
694 if (OMD->isDirectMethod()) {
695 Fn->setVisibility(llvm::Function::HiddenVisibility);
696 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn);
697 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn);
698 } else {
699 CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
700 }
701
702 args.push_back(OMD->getSelfDecl());
703 args.push_back(OMD->getCmdDecl());
704
705 args.append(OMD->param_begin(), OMD->param_end());
706
707 CurGD = OMD;
708 CurEHLocation = OMD->getEndLoc();
709
710 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
711 OMD->getLocation(), StartLoc);
712
713 if (OMD->isDirectMethod()) {
714 // This function is a direct call, it has to implement a nil check
715 // on entry.
716 //
717 // TODO: possibly have several entry points to elide the check
718 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD);
719 }
720
721 // In ARC, certain methods get an extra cleanup.
722 if (CGM.getLangOpts().ObjCAutoRefCount &&
723 OMD->isInstanceMethod() &&
724 OMD->getSelector().isUnarySelector()) {
725 const IdentifierInfo *ident =
726 OMD->getSelector().getIdentifierInfoForSlot(0);
727 if (ident->isStr("dealloc"))
728 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
729 }
730}
731
732static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
733 LValue lvalue, QualType type);
734
735/// Generate an Objective-C method. An Objective-C method is a C function with
736/// its pointer, name, and types registered in the class structure.
737void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
738 StartObjCMethod(OMD, OMD->getClassInterface());
739 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
740 assert(isa<CompoundStmt>(OMD->getBody()))((isa<CompoundStmt>(OMD->getBody())) ? static_cast<
void> (0) : __assert_fail ("isa<CompoundStmt>(OMD->getBody())"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 740, __PRETTY_FUNCTION__))
;
741 incrementProfileCounter(OMD->getBody());
742 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
743 FinishFunction(OMD->getBodyRBrace());
744}
745
746/// emitStructGetterCall - Call the runtime function to load a property
747/// into the return value slot.
748static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
749 bool isAtomic, bool hasStrong) {
750 ASTContext &Context = CGF.getContext();
751
752 Address src =
753 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
754 .getAddress(CGF);
755
756 // objc_copyStruct (ReturnValue, &structIvar,
757 // sizeof (Type of Ivar), isAtomic, false);
758 CallArgList args;
759
760 Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
761 args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
762
763 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
764 args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
765
766 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
767 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
768 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
769 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
770
771 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
772 CGCallee callee = CGCallee::forDirect(fn);
773 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
774 callee, ReturnValueSlot(), args);
775}
776
777/// Determine whether the given architecture supports unaligned atomic
778/// accesses. They don't have to be fast, just faster than a function
779/// call and a mutex.
780static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
781 // FIXME: Allow unaligned atomic load/store on x86. (It is not
782 // currently supported by the backend.)
783 return 0;
784}
785
786/// Return the maximum size that permits atomic accesses for the given
787/// architecture.
788static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
789 llvm::Triple::ArchType arch) {
790 // ARM has 8-byte atomic accesses, but it's not clear whether we
791 // want to rely on them here.
792
793 // In the default case, just assume that any size up to a pointer is
794 // fine given adequate alignment.
795 return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
796}
797
798namespace {
799 class PropertyImplStrategy {
800 public:
801 enum StrategyKind {
802 /// The 'native' strategy is to use the architecture's provided
803 /// reads and writes.
804 Native,
805
806 /// Use objc_setProperty and objc_getProperty.
807 GetSetProperty,
808
809 /// Use objc_setProperty for the setter, but use expression
810 /// evaluation for the getter.
811 SetPropertyAndExpressionGet,
812
813 /// Use objc_copyStruct.
814 CopyStruct,
815
816 /// The 'expression' strategy is to emit normal assignment or
817 /// lvalue-to-rvalue expressions.
818 Expression
819 };
820
821 StrategyKind getKind() const { return StrategyKind(Kind); }
822
823 bool hasStrongMember() const { return HasStrong; }
824 bool isAtomic() const { return IsAtomic; }
825 bool isCopy() const { return IsCopy; }
826
827 CharUnits getIvarSize() const { return IvarSize; }
828 CharUnits getIvarAlignment() const { return IvarAlignment; }
829
830 PropertyImplStrategy(CodeGenModule &CGM,
831 const ObjCPropertyImplDecl *propImpl);
832
833 private:
834 unsigned Kind : 8;
835 unsigned IsAtomic : 1;
836 unsigned IsCopy : 1;
837 unsigned HasStrong : 1;
838
839 CharUnits IvarSize;
840 CharUnits IvarAlignment;
841 };
842}
843
844/// Pick an implementation strategy for the given property synthesis.
845PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
846 const ObjCPropertyImplDecl *propImpl) {
847 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
848 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
849
850 IsCopy = (setterKind == ObjCPropertyDecl::Copy);
851 IsAtomic = prop->isAtomic();
852 HasStrong = false; // doesn't matter here.
853
854 // Evaluate the ivar's size and alignment.
855 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
856 QualType ivarType = ivar->getType();
857 std::tie(IvarSize, IvarAlignment) =
858 CGM.getContext().getTypeInfoInChars(ivarType);
859
860 // If we have a copy property, we always have to use getProperty/setProperty.
861 // TODO: we could actually use setProperty and an expression for non-atomics.
862 if (IsCopy) {
863 Kind = GetSetProperty;
864 return;
865 }
866
867 // Handle retain.
868 if (setterKind == ObjCPropertyDecl::Retain) {
869 // In GC-only, there's nothing special that needs to be done.
870 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
871 // fallthrough
872
873 // In ARC, if the property is non-atomic, use expression emission,
874 // which translates to objc_storeStrong. This isn't required, but
875 // it's slightly nicer.
876 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
877 // Using standard expression emission for the setter is only
878 // acceptable if the ivar is __strong, which won't be true if
879 // the property is annotated with __attribute__((NSObject)).
880 // TODO: falling all the way back to objc_setProperty here is
881 // just laziness, though; we could still use objc_storeStrong
882 // if we hacked it right.
883 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
884 Kind = Expression;
885 else
886 Kind = SetPropertyAndExpressionGet;
887 return;
888
889 // Otherwise, we need to at least use setProperty. However, if
890 // the property isn't atomic, we can use normal expression
891 // emission for the getter.
892 } else if (!IsAtomic) {
893 Kind = SetPropertyAndExpressionGet;
894 return;
895
896 // Otherwise, we have to use both setProperty and getProperty.
897 } else {
898 Kind = GetSetProperty;
899 return;
900 }
901 }
902
903 // If we're not atomic, just use expression accesses.
904 if (!IsAtomic) {
905 Kind = Expression;
906 return;
907 }
908
909 // Properties on bitfield ivars need to be emitted using expression
910 // accesses even if they're nominally atomic.
911 if (ivar->isBitField()) {
912 Kind = Expression;
913 return;
914 }
915
916 // GC-qualified or ARC-qualified ivars need to be emitted as
917 // expressions. This actually works out to being atomic anyway,
918 // except for ARC __strong, but that should trigger the above code.
919 if (ivarType.hasNonTrivialObjCLifetime() ||
920 (CGM.getLangOpts().getGC() &&
921 CGM.getContext().getObjCGCAttrKind(ivarType))) {
922 Kind = Expression;
923 return;
924 }
925
926 // Compute whether the ivar has strong members.
927 if (CGM.getLangOpts().getGC())
928 if (const RecordType *recordType = ivarType->getAs<RecordType>())
929 HasStrong = recordType->getDecl()->hasObjectMember();
930
931 // We can never access structs with object members with a native
932 // access, because we need to use write barriers. This is what
933 // objc_copyStruct is for.
934 if (HasStrong) {
935 Kind = CopyStruct;
936 return;
937 }
938
939 // Otherwise, this is target-dependent and based on the size and
940 // alignment of the ivar.
941
942 // If the size of the ivar is not a power of two, give up. We don't
943 // want to get into the business of doing compare-and-swaps.
944 if (!IvarSize.isPowerOfTwo()) {
945 Kind = CopyStruct;
946 return;
947 }
948
949 llvm::Triple::ArchType arch =
950 CGM.getTarget().getTriple().getArch();
951
952 // Most architectures require memory to fit within a single cache
953 // line, so the alignment has to be at least the size of the access.
954 // Otherwise we have to grab a lock.
955 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
956 Kind = CopyStruct;
957 return;
958 }
959
960 // If the ivar's size exceeds the architecture's maximum atomic
961 // access size, we have to use CopyStruct.
962 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
963 Kind = CopyStruct;
964 return;
965 }
966
967 // Otherwise, we can use native loads and stores.
968 Kind = Native;
969}
970
971/// Generate an Objective-C property getter function.
972///
973/// The given Decl must be an ObjCImplementationDecl. \@synthesize
974/// is illegal within a category.
975void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
976 const ObjCPropertyImplDecl *PID) {
977 llvm::Constant *AtomicHelperFn =
978 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID);
979 ObjCMethodDecl *OMD = PID->getGetterMethodDecl();
980 assert(OMD && "Invalid call to generate getter (empty method)")((OMD && "Invalid call to generate getter (empty method)"
) ? static_cast<void> (0) : __assert_fail ("OMD && \"Invalid call to generate getter (empty method)\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 980, __PRETTY_FUNCTION__))
;
981 StartObjCMethod(OMD, IMP->getClassInterface());
982
983 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
984
985 FinishFunction(OMD->getEndLoc());
986}
987
988static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
989 const Expr *getter = propImpl->getGetterCXXConstructor();
990 if (!getter) return true;
991
992 // Sema only makes only of these when the ivar has a C++ class type,
993 // so the form is pretty constrained.
994
995 // If the property has a reference type, we might just be binding a
996 // reference, in which case the result will be a gl-value. We should
997 // treat this as a non-trivial operation.
998 if (getter->isGLValue())
999 return false;
1000
1001 // If we selected a trivial copy-constructor, we're okay.
1002 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
1003 return (construct->getConstructor()->isTrivial());
1004
1005 // The constructor might require cleanups (in which case it's never
1006 // trivial).
1007 assert(isa<ExprWithCleanups>(getter))((isa<ExprWithCleanups>(getter)) ? static_cast<void>
(0) : __assert_fail ("isa<ExprWithCleanups>(getter)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 1007, __PRETTY_FUNCTION__))
;
1008 return false;
1009}
1010
1011/// emitCPPObjectAtomicGetterCall - Call the runtime function to
1012/// copy the ivar into the resturn slot.
1013static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
1014 llvm::Value *returnAddr,
1015 ObjCIvarDecl *ivar,
1016 llvm::Constant *AtomicHelperFn) {
1017 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1018 // AtomicHelperFn);
1019 CallArgList args;
1020
1021 // The 1st argument is the return Slot.
1022 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
1023
1024 // The 2nd argument is the address of the ivar.
1025 llvm::Value *ivarAddr =
1026 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1027 .getPointer(CGF);
1028 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1029 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1030
1031 // Third argument is the helper function.
1032 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1033
1034 llvm::FunctionCallee copyCppAtomicObjectFn =
1035 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
1036 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
1037 CGF.EmitCall(
1038 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1039 callee, ReturnValueSlot(), args);
1040}
1041
1042void
1043CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1044 const ObjCPropertyImplDecl *propImpl,
1045 const ObjCMethodDecl *GetterMethodDecl,
1046 llvm::Constant *AtomicHelperFn) {
1047 // If there's a non-trivial 'get' expression, we just have to emit that.
1048 if (!hasTrivialGetExpr(propImpl)) {
1049 if (!AtomicHelperFn) {
1050 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1051 propImpl->getGetterCXXConstructor(),
1052 /* NRVOCandidate=*/nullptr);
1053 EmitReturnStmt(*ret);
1054 }
1055 else {
1056 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1057 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),
1058 ivar, AtomicHelperFn);
1059 }
1060 return;
1061 }
1062
1063 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1064 QualType propType = prop->getType();
1065 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl();
1066
1067 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1068
1069 // Pick an implementation strategy.
1070 PropertyImplStrategy strategy(CGM, propImpl);
1071 switch (strategy.getKind()) {
1072 case PropertyImplStrategy::Native: {
1073 // We don't need to do anything for a zero-size struct.
1074 if (strategy.getIvarSize().isZero())
1075 return;
1076
1077 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1078
1079 // Currently, all atomic accesses have to be through integer
1080 // types, so there's no point in trying to pick a prettier type.
1081 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1082 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1083 bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1084
1085 // Perform an atomic load. This does not impose ordering constraints.
1086 Address ivarAddr = LV.getAddress(*this);
1087 ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1088 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1089 load->setAtomic(llvm::AtomicOrdering::Unordered);
1090
1091 // Store that value into the return address. Doing this with a
1092 // bitcast is likely to produce some pretty ugly IR, but it's not
1093 // the *most* terrible thing in the world.
1094 llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1095 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1096 llvm::Value *ivarVal = load;
1097 if (ivarSize > retTySize) {
1098 llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1099 ivarVal = Builder.CreateTrunc(load, newTy);
1100 bitcastType = newTy->getPointerTo();
1101 }
1102 Builder.CreateStore(ivarVal,
1103 Builder.CreateBitCast(ReturnValue, bitcastType));
1104
1105 // Make sure we don't do an autorelease.
1106 AutoreleaseResult = false;
1107 return;
1108 }
1109
1110 case PropertyImplStrategy::GetSetProperty: {
1111 llvm::FunctionCallee getPropertyFn =
1112 CGM.getObjCRuntime().GetPropertyGetFunction();
1113 if (!getPropertyFn) {
1114 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1115 return;
1116 }
1117 CGCallee callee = CGCallee::forDirect(getPropertyFn);
1118
1119 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1120 // FIXME: Can't this be simpler? This might even be worse than the
1121 // corresponding gcc code.
1122 llvm::Value *cmd =
1123 Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1124 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1125 llvm::Value *ivarOffset =
1126 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1127
1128 CallArgList args;
1129 args.add(RValue::get(self), getContext().getObjCIdType());
1130 args.add(RValue::get(cmd), getContext().getObjCSelType());
1131 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1132 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1133 getContext().BoolTy);
1134
1135 // FIXME: We shouldn't need to get the function info here, the
1136 // runtime already should have computed it to build the function.
1137 llvm::CallBase *CallInstruction;
1138 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1139 getContext().getObjCIdType(), args),
1140 callee, ReturnValueSlot(), args, &CallInstruction);
1141 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1142 call->setTailCall();
1143
1144 // We need to fix the type here. Ivars with copy & retain are
1145 // always objects so we don't need to worry about complex or
1146 // aggregates.
1147 RV = RValue::get(Builder.CreateBitCast(
1148 RV.getScalarVal(),
1149 getTypes().ConvertType(getterMethod->getReturnType())));
1150
1151 EmitReturnOfRValue(RV, propType);
1152
1153 // objc_getProperty does an autorelease, so we should suppress ours.
1154 AutoreleaseResult = false;
1155
1156 return;
1157 }
1158
1159 case PropertyImplStrategy::CopyStruct:
1160 emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1161 strategy.hasStrongMember());
1162 return;
1163
1164 case PropertyImplStrategy::Expression:
1165 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1166 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
1167
1168 QualType ivarType = ivar->getType();
1169 switch (getEvaluationKind(ivarType)) {
1170 case TEK_Complex: {
1171 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation());
1172 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType),
1173 /*init*/ true);
1174 return;
1175 }
1176 case TEK_Aggregate: {
1177 // The return value slot is guaranteed to not be aliased, but
1178 // that's not necessarily the same as "on the stack", so
1179 // we still potentially need objc_memmove_collectable.
1180 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1181 /* Src= */ LV, ivarType, getOverlapForReturnValue());
1182 return;
1183 }
1184 case TEK_Scalar: {
1185 llvm::Value *value;
1186 if (propType->isReferenceType()) {
1187 value = LV.getAddress(*this).getPointer();
1188 } else {
1189 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1190 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1191 if (getLangOpts().ObjCAutoRefCount) {
1192 value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1193 } else {
1194 value = EmitARCLoadWeak(LV.getAddress(*this));
1195 }
1196
1197 // Otherwise we want to do a simple load, suppressing the
1198 // final autorelease.
1199 } else {
1200 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1201 AutoreleaseResult = false;
1202 }
1203
1204 value = Builder.CreateBitCast(
1205 value, ConvertType(GetterMethodDecl->getReturnType()));
1206 }
1207
1208 EmitReturnOfRValue(RValue::get(value), propType);
1209 return;
1210 }
1211 }
1212 llvm_unreachable("bad evaluation kind")::llvm::llvm_unreachable_internal("bad evaluation kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 1212)
;
1213 }
1214
1215 }
1216 llvm_unreachable("bad @property implementation strategy!")::llvm::llvm_unreachable_internal("bad @property implementation strategy!"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 1216)
;
1217}
1218
1219/// emitStructSetterCall - Call the runtime function to store the value
1220/// from the first formal parameter into the given ivar.
1221static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
1222 ObjCIvarDecl *ivar) {
1223 // objc_copyStruct (&structIvar, &Arg,
1224 // sizeof (struct something), true, false);
1225 CallArgList args;
1226
1227 // The first argument is the address of the ivar.
1228 llvm::Value *ivarAddr =
1229 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1230 .getPointer(CGF);
1231 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1232 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1233
1234 // The second argument is the address of the parameter variable.
1235 ParmVarDecl *argVar = *OMD->param_begin();
1236 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1237 argVar->getType().getNonReferenceType(), VK_LValue,
1238 SourceLocation());
1239 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1240 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1241 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1242
1243 // The third argument is the sizeof the type.
1244 llvm::Value *size =
1245 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1246 args.add(RValue::get(size), CGF.getContext().getSizeType());
1247
1248 // The fourth argument is the 'isAtomic' flag.
1249 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1250
1251 // The fifth argument is the 'hasStrong' flag.
1252 // FIXME: should this really always be false?
1253 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1254
1255 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1256 CGCallee callee = CGCallee::forDirect(fn);
1257 CGF.EmitCall(
1258 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1259 callee, ReturnValueSlot(), args);
1260}
1261
1262/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1263/// the value from the first formal parameter into the given ivar, using
1264/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1265static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1266 ObjCMethodDecl *OMD,
1267 ObjCIvarDecl *ivar,
1268 llvm::Constant *AtomicHelperFn) {
1269 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1270 // AtomicHelperFn);
1271 CallArgList args;
1272
1273 // The first argument is the address of the ivar.
1274 llvm::Value *ivarAddr =
1275 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
1276 .getPointer(CGF);
1277 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1278 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1279
1280 // The second argument is the address of the parameter variable.
1281 ParmVarDecl *argVar = *OMD->param_begin();
1282 DeclRefExpr argRef(CGF.getContext(), argVar, false,
1283 argVar->getType().getNonReferenceType(), VK_LValue,
1284 SourceLocation());
1285 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF);
1286 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1287 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1288
1289 // Third argument is the helper function.
1290 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1291
1292 llvm::FunctionCallee fn =
1293 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1294 CGCallee callee = CGCallee::forDirect(fn);
1295 CGF.EmitCall(
1296 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args),
1297 callee, ReturnValueSlot(), args);
1298}
1299
1300
1301static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1302 Expr *setter = PID->getSetterCXXAssignment();
1303 if (!setter) return true;
1304
1305 // Sema only makes only of these when the ivar has a C++ class type,
1306 // so the form is pretty constrained.
1307
1308 // An operator call is trivial if the function it calls is trivial.
1309 // This also implies that there's nothing non-trivial going on with
1310 // the arguments, because operator= can only be trivial if it's a
1311 // synthesized assignment operator and therefore both parameters are
1312 // references.
1313 if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1314 if (const FunctionDecl *callee
1315 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1316 if (callee->isTrivial())
1317 return true;
1318 return false;
1319 }
1320
1321 assert(isa<ExprWithCleanups>(setter))((isa<ExprWithCleanups>(setter)) ? static_cast<void>
(0) : __assert_fail ("isa<ExprWithCleanups>(setter)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 1321, __PRETTY_FUNCTION__))
;
1322 return false;
1323}
1324
1325static bool UseOptimizedSetter(CodeGenModule &CGM) {
1326 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1327 return false;
1328 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1329}
1330
1331void
1332CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1333 const ObjCPropertyImplDecl *propImpl,
1334 llvm::Constant *AtomicHelperFn) {
1335 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1336 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl();
1337
1338 // Just use the setter expression if Sema gave us one and it's
1339 // non-trivial.
1340 if (!hasTrivialSetExpr(propImpl)) {
1341 if (!AtomicHelperFn)
1342 // If non-atomic, assignment is called directly.
1343 EmitStmt(propImpl->getSetterCXXAssignment());
1344 else
1345 // If atomic, assignment is called via a locking api.
1346 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1347 AtomicHelperFn);
1348 return;
1349 }
1350
1351 PropertyImplStrategy strategy(CGM, propImpl);
1352 switch (strategy.getKind()) {
1353 case PropertyImplStrategy::Native: {
1354 // We don't need to do anything for a zero-size struct.
1355 if (strategy.getIvarSize().isZero())
1356 return;
1357
1358 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1359
1360 LValue ivarLValue =
1361 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1362 Address ivarAddr = ivarLValue.getAddress(*this);
1363
1364 // Currently, all atomic accesses have to be through integer
1365 // types, so there's no point in trying to pick a prettier type.
1366 llvm::Type *bitcastType =
1367 llvm::Type::getIntNTy(getLLVMContext(),
1368 getContext().toBits(strategy.getIvarSize()));
1369
1370 // Cast both arguments to the chosen operation type.
1371 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1372 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1373
1374 // This bitcast load is likely to cause some nasty IR.
1375 llvm::Value *load = Builder.CreateLoad(argAddr);
1376
1377 // Perform an atomic store. There are no memory ordering requirements.
1378 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1379 store->setAtomic(llvm::AtomicOrdering::Unordered);
1380 return;
1381 }
1382
1383 case PropertyImplStrategy::GetSetProperty:
1384 case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1385
1386 llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1387 llvm::FunctionCallee setPropertyFn = nullptr;
1388 if (UseOptimizedSetter(CGM)) {
1389 // 10.8 and iOS 6.0 code and GC is off
1390 setOptimizedPropertyFn =
1391 CGM.getObjCRuntime().GetOptimizedPropertySetFunction(
1392 strategy.isAtomic(), strategy.isCopy());
1393 if (!setOptimizedPropertyFn) {
1394 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1395 return;
1396 }
1397 }
1398 else {
1399 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1400 if (!setPropertyFn) {
1401 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1402 return;
1403 }
1404 }
1405
1406 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1407 // <is-atomic>, <is-copy>).
1408 llvm::Value *cmd =
1409 Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1410 llvm::Value *self =
1411 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1412 llvm::Value *ivarOffset =
1413 EmitIvarOffset(classImpl->getClassInterface(), ivar);
1414 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1415 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1416 arg = Builder.CreateBitCast(arg, VoidPtrTy);
1417
1418 CallArgList args;
1419 args.add(RValue::get(self), getContext().getObjCIdType());
1420 args.add(RValue::get(cmd), getContext().getObjCSelType());
1421 if (setOptimizedPropertyFn) {
1422 args.add(RValue::get(arg), getContext().getObjCIdType());
1423 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1424 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1425 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1426 callee, ReturnValueSlot(), args);
1427 } else {
1428 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1429 args.add(RValue::get(arg), getContext().getObjCIdType());
1430 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1431 getContext().BoolTy);
1432 args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1433 getContext().BoolTy);
1434 // FIXME: We shouldn't need to get the function info here, the runtime
1435 // already should have computed it to build the function.
1436 CGCallee callee = CGCallee::forDirect(setPropertyFn);
1437 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1438 callee, ReturnValueSlot(), args);
1439 }
1440
1441 return;
1442 }
1443
1444 case PropertyImplStrategy::CopyStruct:
1445 emitStructSetterCall(*this, setterMethod, ivar);
1446 return;
1447
1448 case PropertyImplStrategy::Expression:
1449 break;
1450 }
1451
1452 // Otherwise, fake up some ASTs and emit a normal assignment.
1453 ValueDecl *selfDecl = setterMethod->getSelfDecl();
1454 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1455 VK_LValue, SourceLocation());
1456 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1457 selfDecl->getType(), CK_LValueToRValue, &self,
1458 VK_RValue);
1459 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1460 SourceLocation(), SourceLocation(),
1461 &selfLoad, true, true);
1462
1463 ParmVarDecl *argDecl = *setterMethod->param_begin();
1464 QualType argType = argDecl->getType().getNonReferenceType();
1465 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1466 SourceLocation());
1467 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1468 argType.getUnqualifiedType(), CK_LValueToRValue,
1469 &arg, VK_RValue);
1470
1471 // The property type can differ from the ivar type in some situations with
1472 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1473 // The following absurdity is just to ensure well-formed IR.
1474 CastKind argCK = CK_NoOp;
1475 if (ivarRef.getType()->isObjCObjectPointerType()) {
1476 if (argLoad.getType()->isObjCObjectPointerType())
1477 argCK = CK_BitCast;
1478 else if (argLoad.getType()->isBlockPointerType())
1479 argCK = CK_BlockPointerToObjCPointerCast;
1480 else
1481 argCK = CK_CPointerToObjCPointerCast;
1482 } else if (ivarRef.getType()->isBlockPointerType()) {
1483 if (argLoad.getType()->isBlockPointerType())
1484 argCK = CK_BitCast;
1485 else
1486 argCK = CK_AnyPointerToBlockPointerCast;
1487 } else if (ivarRef.getType()->isPointerType()) {
1488 argCK = CK_BitCast;
1489 }
1490 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1491 ivarRef.getType(), argCK, &argLoad,
1492 VK_RValue);
1493 Expr *finalArg = &argLoad;
1494 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1495 argLoad.getType()))
1496 finalArg = &argCast;
1497
1498
1499 BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1500 ivarRef.getType(), VK_RValue, OK_Ordinary,
1501 SourceLocation(), FPOptions());
1502 EmitStmt(&assign);
1503}
1504
1505/// Generate an Objective-C property setter function.
1506///
1507/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1508/// is illegal within a category.
1509void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1510 const ObjCPropertyImplDecl *PID) {
1511 llvm::Constant *AtomicHelperFn =
1512 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID);
1513 ObjCMethodDecl *OMD = PID->getSetterMethodDecl();
1514 assert(OMD && "Invalid call to generate setter (empty method)")((OMD && "Invalid call to generate setter (empty method)"
) ? static_cast<void> (0) : __assert_fail ("OMD && \"Invalid call to generate setter (empty method)\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 1514, __PRETTY_FUNCTION__))
;
1515 StartObjCMethod(OMD, IMP->getClassInterface());
1516
1517 generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1518
1519 FinishFunction(OMD->getEndLoc());
1520}
1521
1522namespace {
1523 struct DestroyIvar final : EHScopeStack::Cleanup {
1524 private:
1525 llvm::Value *addr;
1526 const ObjCIvarDecl *ivar;
1527 CodeGenFunction::Destroyer *destroyer;
1528 bool useEHCleanupForArray;
1529 public:
1530 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1531 CodeGenFunction::Destroyer *destroyer,
1532 bool useEHCleanupForArray)
1533 : addr(addr), ivar(ivar), destroyer(destroyer),
1534 useEHCleanupForArray(useEHCleanupForArray) {}
1535
1536 void Emit(CodeGenFunction &CGF, Flags flags) override {
1537 LValue lvalue
1538 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1539 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer,
1540 flags.isForNormalCleanup() && useEHCleanupForArray);
1541 }
1542 };
1543}
1544
1545/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1546static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1547 Address addr,
1548 QualType type) {
1549 llvm::Value *null = getNullForVariable(addr);
1550 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1551}
1552
1553static void emitCXXDestructMethod(CodeGenFunction &CGF,
1554 ObjCImplementationDecl *impl) {
1555 CodeGenFunction::RunCleanupsScope scope(CGF);
1556
1557 llvm::Value *self = CGF.LoadObjCSelf();
1558
1559 const ObjCInterfaceDecl *iface = impl->getClassInterface();
1560 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1561 ivar; ivar = ivar->getNextIvar()) {
1562 QualType type = ivar->getType();
1563
1564 // Check whether the ivar is a destructible type.
1565 QualType::DestructionKind dtorKind = type.isDestructedType();
1566 if (!dtorKind) continue;
1567
1568 CodeGenFunction::Destroyer *destroyer = nullptr;
1569
1570 // Use a call to objc_storeStrong to destroy strong ivars, for the
1571 // general benefit of the tools.
1572 if (dtorKind == QualType::DK_objc_strong_lifetime) {
1573 destroyer = destroyARCStrongWithStore;
1574
1575 // Otherwise use the default for the destruction kind.
1576 } else {
1577 destroyer = CGF.getDestroyer(dtorKind);
1578 }
1579
1580 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1581
1582 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1583 cleanupKind & EHCleanup);
1584 }
1585
1586 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?")((scope.requiresCleanups() && "nothing to do in .cxx_destruct?"
) ? static_cast<void> (0) : __assert_fail ("scope.requiresCleanups() && \"nothing to do in .cxx_destruct?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 1586, __PRETTY_FUNCTION__))
;
1587}
1588
1589void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1590 ObjCMethodDecl *MD,
1591 bool ctor) {
1592 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1593 StartObjCMethod(MD, IMP->getClassInterface());
1594
1595 // Emit .cxx_construct.
1596 if (ctor) {
1597 // Suppress the final autorelease in ARC.
1598 AutoreleaseResult = false;
1599
1600 for (const auto *IvarInit : IMP->inits()) {
1601 FieldDecl *Field = IvarInit->getAnyMember();
1602 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1603 LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1604 LoadObjCSelf(), Ivar, 0);
1605 EmitAggExpr(IvarInit->getInit(),
1606 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed,
1607 AggValueSlot::DoesNotNeedGCBarriers,
1608 AggValueSlot::IsNotAliased,
1609 AggValueSlot::DoesNotOverlap));
1610 }
1611 // constructor returns 'self'.
1612 CodeGenTypes &Types = CGM.getTypes();
1613 QualType IdTy(CGM.getContext().getObjCIdType());
1614 llvm::Value *SelfAsId =
1615 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1616 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1617
1618 // Emit .cxx_destruct.
1619 } else {
1620 emitCXXDestructMethod(*this, IMP);
1621 }
1622 FinishFunction();
1623}
1624
1625llvm::Value *CodeGenFunction::LoadObjCSelf() {
1626 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1627 DeclRefExpr DRE(getContext(), Self,
1628 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1629 Self->getType(), VK_LValue, SourceLocation());
1630 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation());
1631}
1632
1633QualType CodeGenFunction::TypeOfSelfObject() {
1634 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1635 ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1636 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1637 getContext().getCanonicalType(selfDecl->getType()));
1638 return PTy->getPointeeType();
1639}
1640
1641void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1642 llvm::FunctionCallee EnumerationMutationFnPtr =
1643 CGM.getObjCRuntime().EnumerationMutationFunction();
1644 if (!EnumerationMutationFnPtr) {
1645 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1646 return;
1647 }
1648 CGCallee EnumerationMutationFn =
1649 CGCallee::forDirect(EnumerationMutationFnPtr);
1650
1651 CGDebugInfo *DI = getDebugInfo();
1652 if (DI)
1653 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1654
1655 RunCleanupsScope ForScope(*this);
1656
1657 // The local variable comes into scope immediately.
1658 AutoVarEmission variable = AutoVarEmission::invalid();
1659 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1660 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1661
1662 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1663
1664 // Fast enumeration state.
1665 QualType StateTy = CGM.getObjCFastEnumerationStateType();
1666 Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1667 EmitNullInitialization(StatePtr, StateTy);
1668
1669 // Number of elements in the items array.
1670 static const unsigned NumItems = 16;
1671
1672 // Fetch the countByEnumeratingWithState:objects:count: selector.
1673 IdentifierInfo *II[] = {
1674 &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1675 &CGM.getContext().Idents.get("objects"),
1676 &CGM.getContext().Idents.get("count")
1677 };
1678 Selector FastEnumSel =
1679 CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1680
1681 QualType ItemsTy =
1682 getContext().getConstantArrayType(getContext().getObjCIdType(),
1683 llvm::APInt(32, NumItems), nullptr,
1684 ArrayType::Normal, 0);
1685 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1686
1687 // Emit the collection pointer. In ARC, we do a retain.
1688 llvm::Value *Collection;
1689 if (getLangOpts().ObjCAutoRefCount) {
1690 Collection = EmitARCRetainScalarExpr(S.getCollection());
1691
1692 // Enter a cleanup to do the release.
1693 EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1694 } else {
1695 Collection = EmitScalarExpr(S.getCollection());
1696 }
1697
1698 // The 'continue' label needs to appear within the cleanup for the
1699 // collection object.
1700 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1701
1702 // Send it our message:
1703 CallArgList Args;
1704
1705 // The first argument is a temporary of the enumeration-state type.
1706 Args.add(RValue::get(StatePtr.getPointer()),
1707 getContext().getPointerType(StateTy));
1708
1709 // The second argument is a temporary array with space for NumItems
1710 // pointers. We'll actually be loading elements from the array
1711 // pointer written into the control state; this buffer is so that
1712 // collections that *aren't* backed by arrays can still queue up
1713 // batches of elements.
1714 Args.add(RValue::get(ItemsPtr.getPointer()),
1715 getContext().getPointerType(ItemsTy));
1716
1717 // The third argument is the capacity of that temporary array.
1718 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1719 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1720 Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1721
1722 // Start the enumeration.
1723 RValue CountRV =
1724 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1725 getContext().getNSUIntegerType(),
1726 FastEnumSel, Collection, Args);
1727
1728 // The initial number of objects that were returned in the buffer.
1729 llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1730
1731 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1732 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1733
1734 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1735
1736 // If the limit pointer was zero to begin with, the collection is
1737 // empty; skip all this. Set the branch weight assuming this has the same
1738 // probability of exiting the loop as any other loop exit.
1739 uint64_t EntryCount = getCurrentProfileCount();
1740 Builder.CreateCondBr(
1741 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1742 LoopInitBB,
1743 createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1744
1745 // Otherwise, initialize the loop.
1746 EmitBlock(LoopInitBB);
1747
1748 // Save the initial mutations value. This is the value at an
1749 // address that was written into the state object by
1750 // countByEnumeratingWithState:objects:count:.
1751 Address StateMutationsPtrPtr =
1752 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1753 llvm::Value *StateMutationsPtr
1754 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1755
1756 llvm::Value *initialMutations =
1757 Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1758 "forcoll.initial-mutations");
1759
1760 // Start looping. This is the point we return to whenever we have a
1761 // fresh, non-empty batch of objects.
1762 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1763 EmitBlock(LoopBodyBB);
1764
1765 // The current index into the buffer.
1766 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1767 index->addIncoming(zero, LoopInitBB);
1768
1769 // The current buffer size.
1770 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1771 count->addIncoming(initialBufferLimit, LoopInitBB);
1772
1773 incrementProfileCounter(&S);
1774
1775 // Check whether the mutations value has changed from where it was
1776 // at start. StateMutationsPtr should actually be invariant between
1777 // refreshes.
1778 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1779 llvm::Value *currentMutations
1780 = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1781 "statemutations");
1782
1783 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1784 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1785
1786 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1787 WasNotMutatedBB, WasMutatedBB);
1788
1789 // If so, call the enumeration-mutation function.
1790 EmitBlock(WasMutatedBB);
1791 llvm::Value *V =
1792 Builder.CreateBitCast(Collection,
1793 ConvertType(getContext().getObjCIdType()));
1794 CallArgList Args2;
1795 Args2.add(RValue::get(V), getContext().getObjCIdType());
1796 // FIXME: We shouldn't need to get the function info here, the runtime already
1797 // should have computed it to build the function.
1798 EmitCall(
1799 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2),
1800 EnumerationMutationFn, ReturnValueSlot(), Args2);
1801
1802 // Otherwise, or if the mutation function returns, just continue.
1803 EmitBlock(WasNotMutatedBB);
1804
1805 // Initialize the element variable.
1806 RunCleanupsScope elementVariableScope(*this);
1807 bool elementIsVariable;
1808 LValue elementLValue;
1809 QualType elementType;
1810 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1811 // Initialize the variable, in case it's a __block variable or something.
1812 EmitAutoVarInit(variable);
1813
1814 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1815 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1816 D->getType(), VK_LValue, SourceLocation());
1817 elementLValue = EmitLValue(&tempDRE);
1818 elementType = D->getType();
1819 elementIsVariable = true;
1820
1821 if (D->isARCPseudoStrong())
1822 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1823 } else {
1824 elementLValue = LValue(); // suppress warning
1825 elementType = cast<Expr>(S.getElement())->getType();
1826 elementIsVariable = false;
1827 }
1828 llvm::Type *convertedElementType = ConvertType(elementType);
1829
1830 // Fetch the buffer out of the enumeration state.
1831 // TODO: this pointer should actually be invariant between
1832 // refreshes, which would help us do certain loop optimizations.
1833 Address StateItemsPtr =
1834 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1835 llvm::Value *EnumStateItems =
1836 Builder.CreateLoad(StateItemsPtr, "stateitems");
1837
1838 // Fetch the value at the current index from the buffer.
1839 llvm::Value *CurrentItemPtr =
1840 Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1841 llvm::Value *CurrentItem =
1842 Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1843
1844 // Cast that value to the right type.
1845 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1846 "currentitem");
1847
1848 // Make sure we have an l-value. Yes, this gets evaluated every
1849 // time through the loop.
1850 if (!elementIsVariable) {
1851 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1852 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1853 } else {
1854 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1855 /*isInit*/ true);
1856 }
1857
1858 // If we do have an element variable, this assignment is the end of
1859 // its initialization.
1860 if (elementIsVariable)
1861 EmitAutoVarCleanups(variable);
1862
1863 // Perform the loop body, setting up break and continue labels.
1864 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1865 {
1866 RunCleanupsScope Scope(*this);
1867 EmitStmt(S.getBody());
1868 }
1869 BreakContinueStack.pop_back();
1870
1871 // Destroy the element variable now.
1872 elementVariableScope.ForceCleanup();
1873
1874 // Check whether there are more elements.
1875 EmitBlock(AfterBody.getBlock());
1876
1877 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1878
1879 // First we check in the local buffer.
1880 llvm::Value *indexPlusOne =
1881 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1882
1883 // If we haven't overrun the buffer yet, we can continue.
1884 // Set the branch weights based on the simplifying assumption that this is
1885 // like a while-loop, i.e., ignoring that the false branch fetches more
1886 // elements and then returns to the loop.
1887 Builder.CreateCondBr(
1888 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1889 createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1890
1891 index->addIncoming(indexPlusOne, AfterBody.getBlock());
1892 count->addIncoming(count, AfterBody.getBlock());
1893
1894 // Otherwise, we have to fetch more elements.
1895 EmitBlock(FetchMoreBB);
1896
1897 CountRV =
1898 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1899 getContext().getNSUIntegerType(),
1900 FastEnumSel, Collection, Args);
1901
1902 // If we got a zero count, we're done.
1903 llvm::Value *refetchCount = CountRV.getScalarVal();
1904
1905 // (note that the message send might split FetchMoreBB)
1906 index->addIncoming(zero, Builder.GetInsertBlock());
1907 count->addIncoming(refetchCount, Builder.GetInsertBlock());
1908
1909 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1910 EmptyBB, LoopBodyBB);
1911
1912 // No more elements.
1913 EmitBlock(EmptyBB);
1914
1915 if (!elementIsVariable) {
1916 // If the element was not a declaration, set it to be null.
1917
1918 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1919 elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1920 EmitStoreThroughLValue(RValue::get(null), elementLValue);
1921 }
1922
1923 if (DI)
1924 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1925
1926 ForScope.ForceCleanup();
1927 EmitBlock(LoopEnd.getBlock());
1928}
1929
1930void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1931 CGM.getObjCRuntime().EmitTryStmt(*this, S);
1932}
1933
1934void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1935 CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1936}
1937
1938void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1939 const ObjCAtSynchronizedStmt &S) {
1940 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1941}
1942
1943namespace {
1944 struct CallObjCRelease final : EHScopeStack::Cleanup {
1945 CallObjCRelease(llvm::Value *object) : object(object) {}
1946 llvm::Value *object;
1947
1948 void Emit(CodeGenFunction &CGF, Flags flags) override {
1949 // Releases at the end of the full-expression are imprecise.
1950 CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1951 }
1952 };
1953}
1954
1955/// Produce the code for a CK_ARCConsumeObject. Does a primitive
1956/// release at the end of the full-expression.
1957llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1958 llvm::Value *object) {
1959 // If we're in a conditional branch, we need to make the cleanup
1960 // conditional.
1961 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1962 return object;
1963}
1964
1965llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1966 llvm::Value *value) {
1967 return EmitARCRetainAutorelease(type, value);
1968}
1969
1970/// Given a number of pointers, inform the optimizer that they're
1971/// being intrinsically used up until this point in the program.
1972void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1973 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1974 if (!fn)
1975 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1976
1977 // This isn't really a "runtime" function, but as an intrinsic it
1978 // doesn't really matter as long as we align things up.
1979 EmitNounwindRuntimeCall(fn, values);
1980}
1981
1982static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) {
1983 if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1984 // If the target runtime doesn't naturally support ARC, emit weak
1985 // references to the runtime support library. We don't really
1986 // permit this to fail, but we need a particular relocation style.
1987 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1988 !CGM.getTriple().isOSBinFormatCOFF()) {
1989 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1990 }
1991 }
1992}
1993
1994static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM,
1995 llvm::FunctionCallee RTF) {
1996 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1997}
1998
1999/// Perform an operation having the signature
2000/// i8* (i8*)
2001/// where a null input causes a no-op and returns null.
2002static llvm::Value *emitARCValueOperation(
2003 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
2004 llvm::Function *&fn, llvm::Intrinsic::ID IntID,
2005 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
2006 if (isa<llvm::ConstantPointerNull>(value))
2007 return value;
2008
2009 if (!fn) {
2010 fn = CGF.CGM.getIntrinsic(IntID);
2011 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2012 }
2013
2014 // Cast the argument to 'id'.
2015 llvm::Type *origType = returnType ? returnType : value->getType();
2016 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2017
2018 // Call the function.
2019 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
2020 call->setTailCallKind(tailKind);
2021
2022 // Cast the result back to the original type.
2023 return CGF.Builder.CreateBitCast(call, origType);
2024}
2025
2026/// Perform an operation having the following signature:
2027/// i8* (i8**)
2028static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr,
2029 llvm::Function *&fn,
2030 llvm::Intrinsic::ID IntID) {
2031 if (!fn) {
2032 fn = CGF.CGM.getIntrinsic(IntID);
2033 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2034 }
2035
2036 // Cast the argument to 'id*'.
2037 llvm::Type *origType = addr.getElementType();
2038 addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
2039
2040 // Call the function.
2041 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2042
2043 // Cast the result back to a dereference of the original type.
2044 if (origType != CGF.Int8PtrTy)
2045 result = CGF.Builder.CreateBitCast(result, origType);
2046
2047 return result;
2048}
2049
2050/// Perform an operation having the following signature:
2051/// i8* (i8**, i8*)
2052static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr,
2053 llvm::Value *value,
2054 llvm::Function *&fn,
2055 llvm::Intrinsic::ID IntID,
2056 bool ignored) {
2057 assert(addr.getElementType() == value->getType())((addr.getElementType() == value->getType()) ? static_cast
<void> (0) : __assert_fail ("addr.getElementType() == value->getType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2057, __PRETTY_FUNCTION__))
;
2058
2059 if (!fn) {
2060 fn = CGF.CGM.getIntrinsic(IntID);
2061 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2062 }
2063
2064 llvm::Type *origType = value->getType();
2065
2066 llvm::Value *args[] = {
2067 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2068 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2069 };
2070 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2071
2072 if (ignored) return nullptr;
2073
2074 return CGF.Builder.CreateBitCast(result, origType);
2075}
2076
2077/// Perform an operation having the following signature:
2078/// void (i8**, i8**)
2079static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src,
2080 llvm::Function *&fn,
2081 llvm::Intrinsic::ID IntID) {
2082 assert(dst.getType() == src.getType())((dst.getType() == src.getType()) ? static_cast<void> (
0) : __assert_fail ("dst.getType() == src.getType()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2082, __PRETTY_FUNCTION__))
;
2083
2084 if (!fn) {
2085 fn = CGF.CGM.getIntrinsic(IntID);
2086 setARCRuntimeFunctionLinkage(CGF.CGM, fn);
2087 }
2088
2089 llvm::Value *args[] = {
2090 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2091 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy)
2092 };
2093 CGF.EmitNounwindRuntimeCall(fn, args);
2094}
2095
2096/// Perform an operation having the signature
2097/// i8* (i8*)
2098/// where a null input causes a no-op and returns null.
2099static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF,
2100 llvm::Value *value,
2101 llvm::Type *returnType,
2102 llvm::FunctionCallee &fn,
2103 StringRef fnName) {
2104 if (isa<llvm::ConstantPointerNull>(value))
2105 return value;
2106
2107 if (!fn) {
2108 llvm::FunctionType *fnType =
2109 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2110 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2111
2112 // We have Native ARC, so set nonlazybind attribute for performance
2113 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2114 if (fnName == "objc_retain")
2115 f->addFnAttr(llvm::Attribute::NonLazyBind);
2116 }
2117
2118 // Cast the argument to 'id'.
2119 llvm::Type *origType = returnType ? returnType : value->getType();
2120 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2121
2122 // Call the function.
2123 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value);
2124
2125 // Cast the result back to the original type.
2126 return CGF.Builder.CreateBitCast(Inst, origType);
2127}
2128
2129/// Produce the code to do a retain. Based on the type, calls one of:
2130/// call i8* \@objc_retain(i8* %value)
2131/// call i8* \@objc_retainBlock(i8* %value)
2132llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
2133 if (type->isBlockPointerType())
2134 return EmitARCRetainBlock(value, /*mandatory*/ false);
2135 else
2136 return EmitARCRetainNonBlock(value);
2137}
2138
2139/// Retain the given object, with normal retain semantics.
2140/// call i8* \@objc_retain(i8* %value)
2141llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
2142 return emitARCValueOperation(*this, value, nullptr,
2143 CGM.getObjCEntrypoints().objc_retain,
2144 llvm::Intrinsic::objc_retain);
2145}
2146
2147/// Retain the given block, with _Block_copy semantics.
2148/// call i8* \@objc_retainBlock(i8* %value)
2149///
2150/// \param mandatory - If false, emit the call with metadata
2151/// indicating that it's okay for the optimizer to eliminate this call
2152/// if it can prove that the block never escapes except down the stack.
2153llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
2154 bool mandatory) {
2155 llvm::Value *result
2156 = emitARCValueOperation(*this, value, nullptr,
2157 CGM.getObjCEntrypoints().objc_retainBlock,
2158 llvm::Intrinsic::objc_retainBlock);
2159
2160 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2161 // tell the optimizer that it doesn't need to do this copy if the
2162 // block doesn't escape, where being passed as an argument doesn't
2163 // count as escaping.
2164 if (!mandatory && isa<llvm::Instruction>(result)) {
2165 llvm::CallInst *call
2166 = cast<llvm::CallInst>(result->stripPointerCasts());
2167 assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock)((call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock
) ? static_cast<void> (0) : __assert_fail ("call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2167, __PRETTY_FUNCTION__))
;
2168
2169 call->setMetadata("clang.arc.copy_on_escape",
2170 llvm::MDNode::get(Builder.getContext(), None));
2171 }
2172
2173 return result;
2174}
2175
2176static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) {
2177 // Fetch the void(void) inline asm which marks that we're going to
2178 // do something with the autoreleased return value.
2179 llvm::InlineAsm *&marker
2180 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker;
2181 if (!marker) {
2182 StringRef assembly
2183 = CGF.CGM.getTargetCodeGenInfo()
2184 .getARCRetainAutoreleasedReturnValueMarker();
2185
2186 // If we have an empty assembly string, there's nothing to do.
2187 if (assembly.empty()) {
2188
2189 // Otherwise, at -O0, build an inline asm that we're going to call
2190 // in a moment.
2191 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2192 llvm::FunctionType *type =
2193 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2194
2195 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2196
2197 // If we're at -O1 and above, we don't want to litter the code
2198 // with this marker yet, so leave a breadcrumb for the ARC
2199 // optimizer to pick up.
2200 } else {
2201 const char *markerKey = "clang.arc.retainAutoreleasedReturnValueMarker";
2202 if (!CGF.CGM.getModule().getModuleFlag(markerKey)) {
2203 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly);
2204 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, markerKey, str);
2205 }
2206 }
2207 }
2208
2209 // Call the marker asm if we made one, which we do only at -O0.
2210 if (marker)
2211 CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2212}
2213
2214/// Retain the given object which is the result of a function call.
2215/// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2216///
2217/// Yes, this function name is one character away from a different
2218/// call with completely different semantics.
2219llvm::Value *
2220CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
2221 emitAutoreleasedReturnValueMarker(*this);
2222 llvm::CallInst::TailCallKind tailKind =
2223 CGM.getTargetCodeGenInfo()
2224 .shouldSuppressTailCallsOfRetainAutoreleasedReturnValue()
2225 ? llvm::CallInst::TCK_NoTail
2226 : llvm::CallInst::TCK_None;
2227 return emitARCValueOperation(
2228 *this, value, nullptr,
2229 CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue,
2230 llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2231}
2232
2233/// Claim a possibly-autoreleased return value at +0. This is only
2234/// valid to do in contexts which do not rely on the retain to keep
2235/// the object valid for all of its uses; for example, when
2236/// the value is ignored, or when it is being assigned to an
2237/// __unsafe_unretained variable.
2238///
2239/// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2240llvm::Value *
2241CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) {
2242 emitAutoreleasedReturnValueMarker(*this);
2243 return emitARCValueOperation(*this, value, nullptr,
2244 CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue,
2245 llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2246}
2247
2248/// Release the given object.
2249/// call void \@objc_release(i8* %value)
2250void CodeGenFunction::EmitARCRelease(llvm::Value *value,
2251 ARCPreciseLifetime_t precise) {
2252 if (isa<llvm::ConstantPointerNull>(value)) return;
2253
2254 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2255 if (!fn) {
2256 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2257 setARCRuntimeFunctionLinkage(CGM, fn);
2258 }
2259
2260 // Cast the argument to 'id'.
2261 value = Builder.CreateBitCast(value, Int8PtrTy);
2262
2263 // Call objc_release.
2264 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2265
2266 if (precise == ARCImpreciseLifetime) {
2267 call->setMetadata("clang.imprecise_release",
2268 llvm::MDNode::get(Builder.getContext(), None));
2269 }
2270}
2271
2272/// Destroy a __strong variable.
2273///
2274/// At -O0, emit a call to store 'null' into the address;
2275/// instrumenting tools prefer this because the address is exposed,
2276/// but it's relatively cumbersome to optimize.
2277///
2278/// At -O1 and above, just load and call objc_release.
2279///
2280/// call void \@objc_storeStrong(i8** %addr, i8* null)
2281void CodeGenFunction::EmitARCDestroyStrong(Address addr,
2282 ARCPreciseLifetime_t precise) {
2283 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2284 llvm::Value *null = getNullForVariable(addr);
2285 EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2286 return;
2287 }
2288
2289 llvm::Value *value = Builder.CreateLoad(addr);
2290 EmitARCRelease(value, precise);
2291}
2292
2293/// Store into a strong object. Always calls this:
2294/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2295llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr,
2296 llvm::Value *value,
2297 bool ignored) {
2298 assert(addr.getElementType() == value->getType())((addr.getElementType() == value->getType()) ? static_cast
<void> (0) : __assert_fail ("addr.getElementType() == value->getType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2298, __PRETTY_FUNCTION__))
;
2299
2300 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2301 if (!fn) {
2302 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2303 setARCRuntimeFunctionLinkage(CGM, fn);
2304 }
2305
2306 llvm::Value *args[] = {
2307 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy),
2308 Builder.CreateBitCast(value, Int8PtrTy)
2309 };
2310 EmitNounwindRuntimeCall(fn, args);
2311
2312 if (ignored) return nullptr;
2313 return value;
2314}
2315
2316/// Store into a strong object. Sometimes calls this:
2317/// call void \@objc_storeStrong(i8** %addr, i8* %value)
2318/// Other times, breaks it down into components.
2319llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2320 llvm::Value *newValue,
2321 bool ignored) {
2322 QualType type = dst.getType();
2323 bool isBlock = type->isBlockPointerType();
2324
2325 // Use a store barrier at -O0 unless this is a block type or the
2326 // lvalue is inadequately aligned.
2327 if (shouldUseFusedARCCalls() &&
2328 !isBlock &&
2329 (dst.getAlignment().isZero() ||
2330 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2331 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored);
2332 }
2333
2334 // Otherwise, split it out.
2335
2336 // Retain the new value.
2337 newValue = EmitARCRetain(type, newValue);
2338
2339 // Read the old value.
2340 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2341
2342 // Store. We do this before the release so that any deallocs won't
2343 // see the old value.
2344 EmitStoreOfScalar(newValue, dst);
2345
2346 // Finally, release the old value.
2347 EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2348
2349 return newValue;
2350}
2351
2352/// Autorelease the given object.
2353/// call i8* \@objc_autorelease(i8* %value)
2354llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2355 return emitARCValueOperation(*this, value, nullptr,
2356 CGM.getObjCEntrypoints().objc_autorelease,
2357 llvm::Intrinsic::objc_autorelease);
2358}
2359
2360/// Autorelease the given object.
2361/// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2362llvm::Value *
2363CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2364 return emitARCValueOperation(*this, value, nullptr,
2365 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue,
2366 llvm::Intrinsic::objc_autoreleaseReturnValue,
2367 llvm::CallInst::TCK_Tail);
2368}
2369
2370/// Do a fused retain/autorelease of the given object.
2371/// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2372llvm::Value *
2373CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2374 return emitARCValueOperation(*this, value, nullptr,
2375 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue,
2376 llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2377 llvm::CallInst::TCK_Tail);
2378}
2379
2380/// Do a fused retain/autorelease of the given object.
2381/// call i8* \@objc_retainAutorelease(i8* %value)
2382/// or
2383/// %retain = call i8* \@objc_retainBlock(i8* %value)
2384/// call i8* \@objc_autorelease(i8* %retain)
2385llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2386 llvm::Value *value) {
2387 if (!type->isBlockPointerType())
2388 return EmitARCRetainAutoreleaseNonBlock(value);
2389
2390 if (isa<llvm::ConstantPointerNull>(value)) return value;
2391
2392 llvm::Type *origType = value->getType();
2393 value = Builder.CreateBitCast(value, Int8PtrTy);
2394 value = EmitARCRetainBlock(value, /*mandatory*/ true);
2395 value = EmitARCAutorelease(value);
2396 return Builder.CreateBitCast(value, origType);
2397}
2398
2399/// Do a fused retain/autorelease of the given object.
2400/// call i8* \@objc_retainAutorelease(i8* %value)
2401llvm::Value *
2402CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2403 return emitARCValueOperation(*this, value, nullptr,
2404 CGM.getObjCEntrypoints().objc_retainAutorelease,
2405 llvm::Intrinsic::objc_retainAutorelease);
2406}
2407
2408/// i8* \@objc_loadWeak(i8** %addr)
2409/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2410llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) {
2411 return emitARCLoadOperation(*this, addr,
2412 CGM.getObjCEntrypoints().objc_loadWeak,
2413 llvm::Intrinsic::objc_loadWeak);
2414}
2415
2416/// i8* \@objc_loadWeakRetained(i8** %addr)
2417llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) {
2418 return emitARCLoadOperation(*this, addr,
2419 CGM.getObjCEntrypoints().objc_loadWeakRetained,
2420 llvm::Intrinsic::objc_loadWeakRetained);
2421}
2422
2423/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2424/// Returns %value.
2425llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr,
2426 llvm::Value *value,
2427 bool ignored) {
2428 return emitARCStoreOperation(*this, addr, value,
2429 CGM.getObjCEntrypoints().objc_storeWeak,
2430 llvm::Intrinsic::objc_storeWeak, ignored);
2431}
2432
2433/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2434/// Returns %value. %addr is known to not have a current weak entry.
2435/// Essentially equivalent to:
2436/// *addr = nil; objc_storeWeak(addr, value);
2437void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) {
2438 // If we're initializing to null, just write null to memory; no need
2439 // to get the runtime involved. But don't do this if optimization
2440 // is enabled, because accounting for this would make the optimizer
2441 // much more complicated.
2442 if (isa<llvm::ConstantPointerNull>(value) &&
2443 CGM.getCodeGenOpts().OptimizationLevel == 0) {
2444 Builder.CreateStore(value, addr);
2445 return;
2446 }
2447
2448 emitARCStoreOperation(*this, addr, value,
2449 CGM.getObjCEntrypoints().objc_initWeak,
2450 llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2451}
2452
2453/// void \@objc_destroyWeak(i8** %addr)
2454/// Essentially objc_storeWeak(addr, nil).
2455void CodeGenFunction::EmitARCDestroyWeak(Address addr) {
2456 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2457 if (!fn) {
2458 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2459 setARCRuntimeFunctionLinkage(CGM, fn);
2460 }
2461
2462 // Cast the argument to 'id*'.
2463 addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2464
2465 EmitNounwindRuntimeCall(fn, addr.getPointer());
2466}
2467
2468/// void \@objc_moveWeak(i8** %dest, i8** %src)
2469/// Disregards the current value in %dest. Leaves %src pointing to nothing.
2470/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2471void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) {
2472 emitARCCopyOperation(*this, dst, src,
2473 CGM.getObjCEntrypoints().objc_moveWeak,
2474 llvm::Intrinsic::objc_moveWeak);
2475}
2476
2477/// void \@objc_copyWeak(i8** %dest, i8** %src)
2478/// Disregards the current value in %dest. Essentially
2479/// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2480void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) {
2481 emitARCCopyOperation(*this, dst, src,
2482 CGM.getObjCEntrypoints().objc_copyWeak,
2483 llvm::Intrinsic::objc_copyWeak);
2484}
2485
2486void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr,
2487 Address SrcAddr) {
2488 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2489 Object = EmitObjCConsumeObject(Ty, Object);
2490 EmitARCStoreWeak(DstAddr, Object, false);
2491}
2492
2493void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr,
2494 Address SrcAddr) {
2495 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2496 Object = EmitObjCConsumeObject(Ty, Object);
2497 EmitARCStoreWeak(DstAddr, Object, false);
2498 EmitARCDestroyWeak(SrcAddr);
2499}
2500
2501/// Produce the code to do a objc_autoreleasepool_push.
2502/// call i8* \@objc_autoreleasePoolPush(void)
2503llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2504 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2505 if (!fn) {
2506 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2507 setARCRuntimeFunctionLinkage(CGM, fn);
2508 }
2509
2510 return EmitNounwindRuntimeCall(fn);
2511}
2512
2513/// Produce the code to do a primitive release.
2514/// call void \@objc_autoreleasePoolPop(i8* %ptr)
2515void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2516 assert(value->getType() == Int8PtrTy)((value->getType() == Int8PtrTy) ? static_cast<void>
(0) : __assert_fail ("value->getType() == Int8PtrTy", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2516, __PRETTY_FUNCTION__))
;
2517
2518 if (getInvokeDest()) {
2519 // Call the runtime method not the intrinsic if we are handling exceptions
2520 llvm::FunctionCallee &fn =
2521 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke;
2522 if (!fn) {
2523 llvm::FunctionType *fnType =
2524 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2525 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2526 setARCRuntimeFunctionLinkage(CGM, fn);
2527 }
2528
2529 // objc_autoreleasePoolPop can throw.
2530 EmitRuntimeCallOrInvoke(fn, value);
2531 } else {
2532 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2533 if (!fn) {
2534 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2535 setARCRuntimeFunctionLinkage(CGM, fn);
2536 }
2537
2538 EmitRuntimeCall(fn, value);
2539 }
2540}
2541
2542/// Produce the code to do an MRR version objc_autoreleasepool_push.
2543/// Which is: [[NSAutoreleasePool alloc] init];
2544/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2545/// init is declared as: - (id) init; in its NSObject super class.
2546///
2547llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2548 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2549 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2550 // [NSAutoreleasePool alloc]
2551 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2552 Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2553 CallArgList Args;
2554 RValue AllocRV =
2555 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2556 getContext().getObjCIdType(),
2557 AllocSel, Receiver, Args);
2558
2559 // [Receiver init]
2560 Receiver = AllocRV.getScalarVal();
2561 II = &CGM.getContext().Idents.get("init");
2562 Selector InitSel = getContext().Selectors.getSelector(0, &II);
2563 RValue InitRV =
2564 Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2565 getContext().getObjCIdType(),
2566 InitSel, Receiver, Args);
2567 return InitRV.getScalarVal();
2568}
2569
2570/// Allocate the given objc object.
2571/// call i8* \@objc_alloc(i8* %value)
2572llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value,
2573 llvm::Type *resultType) {
2574 return emitObjCValueOperation(*this, value, resultType,
2575 CGM.getObjCEntrypoints().objc_alloc,
2576 "objc_alloc");
2577}
2578
2579/// Allocate the given objc object.
2580/// call i8* \@objc_allocWithZone(i8* %value)
2581llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value,
2582 llvm::Type *resultType) {
2583 return emitObjCValueOperation(*this, value, resultType,
2584 CGM.getObjCEntrypoints().objc_allocWithZone,
2585 "objc_allocWithZone");
2586}
2587
2588llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value,
2589 llvm::Type *resultType) {
2590 return emitObjCValueOperation(*this, value, resultType,
2591 CGM.getObjCEntrypoints().objc_alloc_init,
2592 "objc_alloc_init");
2593}
2594
2595/// Produce the code to do a primitive release.
2596/// [tmp drain];
2597void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2598 IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2599 Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2600 CallArgList Args;
2601 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2602 getContext().VoidTy, DrainSel, Arg, Args);
2603}
2604
2605void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2606 Address addr,
2607 QualType type) {
2608 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2609}
2610
2611void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2612 Address addr,
2613 QualType type) {
2614 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2615}
2616
2617void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2618 Address addr,
2619 QualType type) {
2620 CGF.EmitARCDestroyWeak(addr);
2621}
2622
2623void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr,
2624 QualType type) {
2625 llvm::Value *value = CGF.Builder.CreateLoad(addr);
2626 CGF.EmitARCIntrinsicUse(value);
2627}
2628
2629/// Autorelease the given object.
2630/// call i8* \@objc_autorelease(i8* %value)
2631llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value,
2632 llvm::Type *returnType) {
2633 return emitObjCValueOperation(
2634 *this, value, returnType,
2635 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction,
2636 "objc_autorelease");
2637}
2638
2639/// Retain the given object, with normal retain semantics.
2640/// call i8* \@objc_retain(i8* %value)
2641llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value,
2642 llvm::Type *returnType) {
2643 return emitObjCValueOperation(
2644 *this, value, returnType,
2645 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain");
2646}
2647
2648/// Release the given object.
2649/// call void \@objc_release(i8* %value)
2650void CodeGenFunction::EmitObjCRelease(llvm::Value *value,
2651 ARCPreciseLifetime_t precise) {
2652 if (isa<llvm::ConstantPointerNull>(value)) return;
2653
2654 llvm::FunctionCallee &fn =
2655 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction;
2656 if (!fn) {
2657 llvm::FunctionType *fnType =
2658 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2659 fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2660 setARCRuntimeFunctionLinkage(CGM, fn);
2661 // We have Native ARC, so set nonlazybind attribute for performance
2662 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2663 f->addFnAttr(llvm::Attribute::NonLazyBind);
2664 }
2665
2666 // Cast the argument to 'id'.
2667 value = Builder.CreateBitCast(value, Int8PtrTy);
2668
2669 // Call objc_release.
2670 llvm::CallBase *call = EmitCallOrInvoke(fn, value);
2671
2672 if (precise == ARCImpreciseLifetime) {
2673 call->setMetadata("clang.imprecise_release",
2674 llvm::MDNode::get(Builder.getContext(), None));
2675 }
2676}
2677
2678namespace {
2679 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2680 llvm::Value *Token;
2681
2682 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2683
2684 void Emit(CodeGenFunction &CGF, Flags flags) override {
2685 CGF.EmitObjCAutoreleasePoolPop(Token);
2686 }
2687 };
2688 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2689 llvm::Value *Token;
2690
2691 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2692
2693 void Emit(CodeGenFunction &CGF, Flags flags) override {
2694 CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2695 }
2696 };
2697}
2698
2699void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2700 if (CGM.getLangOpts().ObjCAutoRefCount)
2701 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2702 else
2703 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2704}
2705
2706static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) {
2707 switch (lifetime) {
2708 case Qualifiers::OCL_None:
2709 case Qualifiers::OCL_ExplicitNone:
2710 case Qualifiers::OCL_Strong:
2711 case Qualifiers::OCL_Autoreleasing:
2712 return true;
2713
2714 case Qualifiers::OCL_Weak:
2715 return false;
2716 }
2717
2718 llvm_unreachable("impossible lifetime!")::llvm::llvm_unreachable_internal("impossible lifetime!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2718)
;
2719}
2720
2721static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2722 LValue lvalue,
2723 QualType type) {
2724 llvm::Value *result;
2725 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2726 if (shouldRetain) {
2727 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2728 } else {
2729 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak)((type.getObjCLifetime() == Qualifiers::OCL_Weak) ? static_cast
<void> (0) : __assert_fail ("type.getObjCLifetime() == Qualifiers::OCL_Weak"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2729, __PRETTY_FUNCTION__))
;
2730 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF));
2731 }
2732 return TryEmitResult(result, !shouldRetain);
2733}
2734
2735static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2736 const Expr *e) {
2737 e = e->IgnoreParens();
2738 QualType type = e->getType();
2739
2740 // If we're loading retained from a __strong xvalue, we can avoid
2741 // an extra retain/release pair by zeroing out the source of this
2742 // "move" operation.
2743 if (e->isXValue() &&
2744 !type.isConstQualified() &&
2745 type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2746 // Emit the lvalue.
2747 LValue lv = CGF.EmitLValue(e);
2748
2749 // Load the object pointer.
2750 llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2751 SourceLocation()).getScalarVal();
2752
2753 // Set the source pointer to NULL.
2754 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv);
2755
2756 return TryEmitResult(result, true);
2757 }
2758
2759 // As a very special optimization, in ARC++, if the l-value is the
2760 // result of a non-volatile assignment, do a simple retain of the
2761 // result of the call to objc_storeWeak instead of reloading.
2762 if (CGF.getLangOpts().CPlusPlus &&
2763 !type.isVolatileQualified() &&
2764 type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2765 isa<BinaryOperator>(e) &&
2766 cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2767 return TryEmitResult(CGF.EmitScalarExpr(e), false);
2768
2769 // Try to emit code for scalar constant instead of emitting LValue and
2770 // loading it because we are not guaranteed to have an l-value. One of such
2771 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2772 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2773 auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2774 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2775 return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2776 !shouldRetainObjCLifetime(type.getObjCLifetime()));
2777 }
2778
2779 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2780}
2781
2782typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2783 llvm::Value *value)>
2784 ValueTransform;
2785
2786/// Insert code immediately after a call.
2787static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF,
2788 llvm::Value *value,
2789 ValueTransform doAfterCall,
2790 ValueTransform doFallback) {
2791 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2792 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2793
2794 // Place the retain immediately following the call.
2795 CGF.Builder.SetInsertPoint(call->getParent(),
2796 ++llvm::BasicBlock::iterator(call));
2797 value = doAfterCall(CGF, value);
2798
2799 CGF.Builder.restoreIP(ip);
2800 return value;
2801 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2802 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2803
2804 // Place the retain at the beginning of the normal destination block.
2805 llvm::BasicBlock *BB = invoke->getNormalDest();
2806 CGF.Builder.SetInsertPoint(BB, BB->begin());
2807 value = doAfterCall(CGF, value);
2808
2809 CGF.Builder.restoreIP(ip);
2810 return value;
2811
2812 // Bitcasts can arise because of related-result returns. Rewrite
2813 // the operand.
2814 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2815 llvm::Value *operand = bitcast->getOperand(0);
2816 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2817 bitcast->setOperand(0, operand);
2818 return bitcast;
2819
2820 // Generic fall-back case.
2821 } else {
2822 // Retain using the non-block variant: we never need to do a copy
2823 // of a block that's been returned to us.
2824 return doFallback(CGF, value);
2825 }
2826}
2827
2828/// Given that the given expression is some sort of call (which does
2829/// not return retained), emit a retain following it.
2830static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF,
2831 const Expr *e) {
2832 llvm::Value *value = CGF.EmitScalarExpr(e);
2833 return emitARCOperationAfterCall(CGF, value,
2834 [](CodeGenFunction &CGF, llvm::Value *value) {
2835 return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2836 },
2837 [](CodeGenFunction &CGF, llvm::Value *value) {
2838 return CGF.EmitARCRetainNonBlock(value);
2839 });
2840}
2841
2842/// Given that the given expression is some sort of call (which does
2843/// not return retained), perform an unsafeClaim following it.
2844static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF,
2845 const Expr *e) {
2846 llvm::Value *value = CGF.EmitScalarExpr(e);
2847 return emitARCOperationAfterCall(CGF, value,
2848 [](CodeGenFunction &CGF, llvm::Value *value) {
2849 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value);
2850 },
2851 [](CodeGenFunction &CGF, llvm::Value *value) {
2852 return value;
2853 });
2854}
2855
2856llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E,
2857 bool allowUnsafeClaim) {
2858 if (allowUnsafeClaim &&
2859 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) {
2860 return emitARCUnsafeClaimCallResult(*this, E);
2861 } else {
2862 llvm::Value *value = emitARCRetainCallResult(*this, E);
2863 return EmitObjCConsumeObject(E->getType(), value);
2864 }
2865}
2866
2867/// Determine whether it might be important to emit a separate
2868/// objc_retain_block on the result of the given expression, or
2869/// whether it's okay to just emit it in a +1 context.
2870static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2871 assert(e->getType()->isBlockPointerType())((e->getType()->isBlockPointerType()) ? static_cast<
void> (0) : __assert_fail ("e->getType()->isBlockPointerType()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2871, __PRETTY_FUNCTION__))
;
2872 e = e->IgnoreParens();
2873
2874 // For future goodness, emit block expressions directly in +1
2875 // contexts if we can.
2876 if (isa<BlockExpr>(e))
2877 return false;
2878
2879 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2880 switch (cast->getCastKind()) {
2881 // Emitting these operations in +1 contexts is goodness.
2882 case CK_LValueToRValue:
2883 case CK_ARCReclaimReturnedObject:
2884 case CK_ARCConsumeObject:
2885 case CK_ARCProduceObject:
2886 return false;
2887
2888 // These operations preserve a block type.
2889 case CK_NoOp:
2890 case CK_BitCast:
2891 return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2892
2893 // These operations are known to be bad (or haven't been considered).
2894 case CK_AnyPointerToBlockPointerCast:
2895 default:
2896 return true;
2897 }
2898 }
2899
2900 return true;
2901}
2902
2903namespace {
2904/// A CRTP base class for emitting expressions of retainable object
2905/// pointer type in ARC.
2906template <typename Impl, typename Result> class ARCExprEmitter {
2907protected:
2908 CodeGenFunction &CGF;
2909 Impl &asImpl() { return *static_cast<Impl*>(this); }
2910
2911 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2912
2913public:
2914 Result visit(const Expr *e);
2915 Result visitCastExpr(const CastExpr *e);
2916 Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2917 Result visitBlockExpr(const BlockExpr *e);
2918 Result visitBinaryOperator(const BinaryOperator *e);
2919 Result visitBinAssign(const BinaryOperator *e);
2920 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2921 Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2922 Result visitBinAssignWeak(const BinaryOperator *e);
2923 Result visitBinAssignStrong(const BinaryOperator *e);
2924
2925 // Minimal implementation:
2926 // Result visitLValueToRValue(const Expr *e)
2927 // Result visitConsumeObject(const Expr *e)
2928 // Result visitExtendBlockObject(const Expr *e)
2929 // Result visitReclaimReturnedObject(const Expr *e)
2930 // Result visitCall(const Expr *e)
2931 // Result visitExpr(const Expr *e)
2932 //
2933 // Result emitBitCast(Result result, llvm::Type *resultType)
2934 // llvm::Value *getValueOfResult(Result result)
2935};
2936}
2937
2938/// Try to emit a PseudoObjectExpr under special ARC rules.
2939///
2940/// This massively duplicates emitPseudoObjectRValue.
2941template <typename Impl, typename Result>
2942Result
2943ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2944 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2945
2946 // Find the result expression.
2947 const Expr *resultExpr = E->getResultExpr();
2948 assert(resultExpr)((resultExpr) ? static_cast<void> (0) : __assert_fail (
"resultExpr", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2948, __PRETTY_FUNCTION__))
;
2949 Result result;
2950
2951 for (PseudoObjectExpr::const_semantics_iterator
2952 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2953 const Expr *semantic = *i;
2954
2955 // If this semantic expression is an opaque value, bind it
2956 // to the result of its source expression.
2957 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2958 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2959 OVMA opaqueData;
2960
2961 // If this semantic is the result of the pseudo-object
2962 // expression, try to evaluate the source as +1.
2963 if (ov == resultExpr) {
2964 assert(!OVMA::shouldBindAsLValue(ov))((!OVMA::shouldBindAsLValue(ov)) ? static_cast<void> (0
) : __assert_fail ("!OVMA::shouldBindAsLValue(ov)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 2964, __PRETTY_FUNCTION__))
;
2965 result = asImpl().visit(ov->getSourceExpr());
2966 opaqueData = OVMA::bind(CGF, ov,
2967 RValue::get(asImpl().getValueOfResult(result)));
2968
2969 // Otherwise, just bind it.
2970 } else {
2971 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2972 }
2973 opaques.push_back(opaqueData);
2974
2975 // Otherwise, if the expression is the result, evaluate it
2976 // and remember the result.
2977 } else if (semantic == resultExpr) {
2978 result = asImpl().visit(semantic);
2979
2980 // Otherwise, evaluate the expression in an ignored context.
2981 } else {
2982 CGF.EmitIgnoredExpr(semantic);
2983 }
2984 }
2985
2986 // Unbind all the opaques now.
2987 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2988 opaques[i].unbind(CGF);
2989
2990 return result;
2991}
2992
2993template <typename Impl, typename Result>
2994Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2995 // The default implementation just forwards the expression to visitExpr.
2996 return asImpl().visitExpr(e);
2997}
2998
2999template <typename Impl, typename Result>
3000Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
3001 switch (e->getCastKind()) {
3002
3003 // No-op casts don't change the type, so we just ignore them.
3004 case CK_NoOp:
3005 return asImpl().visit(e->getSubExpr());
3006
3007 // These casts can change the type.
3008 case CK_CPointerToObjCPointerCast:
3009 case CK_BlockPointerToObjCPointerCast:
3010 case CK_AnyPointerToBlockPointerCast:
3011 case CK_BitCast: {
3012 llvm::Type *resultType = CGF.ConvertType(e->getType());
3013 assert(e->getSubExpr()->getType()->hasPointerRepresentation())((e->getSubExpr()->getType()->hasPointerRepresentation
()) ? static_cast<void> (0) : __assert_fail ("e->getSubExpr()->getType()->hasPointerRepresentation()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 3013, __PRETTY_FUNCTION__))
;
3014 Result result = asImpl().visit(e->getSubExpr());
3015 return asImpl().emitBitCast(result, resultType);
3016 }
3017
3018 // Handle some casts specially.
3019 case CK_LValueToRValue:
3020 return asImpl().visitLValueToRValue(e->getSubExpr());
3021 case CK_ARCConsumeObject:
3022 return asImpl().visitConsumeObject(e->getSubExpr());
3023 case CK_ARCExtendBlockObject:
3024 return asImpl().visitExtendBlockObject(e->getSubExpr());
3025 case CK_ARCReclaimReturnedObject:
3026 return asImpl().visitReclaimReturnedObject(e->getSubExpr());
3027
3028 // Otherwise, use the default logic.
3029 default:
3030 return asImpl().visitExpr(e);
3031 }
3032}
3033
3034template <typename Impl, typename Result>
3035Result
3036ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3037 switch (e->getOpcode()) {
3038 case BO_Comma:
3039 CGF.EmitIgnoredExpr(e->getLHS());
3040 CGF.EnsureInsertPoint();
3041 return asImpl().visit(e->getRHS());
3042
3043 case BO_Assign:
3044 return asImpl().visitBinAssign(e);
3045
3046 default:
3047 return asImpl().visitExpr(e);
3048 }
3049}
3050
3051template <typename Impl, typename Result>
3052Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3053 switch (e->getLHS()->getType().getObjCLifetime()) {
3054 case Qualifiers::OCL_ExplicitNone:
3055 return asImpl().visitBinAssignUnsafeUnretained(e);
3056
3057 case Qualifiers::OCL_Weak:
3058 return asImpl().visitBinAssignWeak(e);
3059
3060 case Qualifiers::OCL_Autoreleasing:
3061 return asImpl().visitBinAssignAutoreleasing(e);
3062
3063 case Qualifiers::OCL_Strong:
3064 return asImpl().visitBinAssignStrong(e);
3065
3066 case Qualifiers::OCL_None:
3067 return asImpl().visitExpr(e);
3068 }
3069 llvm_unreachable("bad ObjC ownership qualifier")::llvm::llvm_unreachable_internal("bad ObjC ownership qualifier"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 3069)
;
3070}
3071
3072/// The default rule for __unsafe_unretained emits the RHS recursively,
3073/// stores into the unsafe variable, and propagates the result outward.
3074template <typename Impl, typename Result>
3075Result ARCExprEmitter<Impl,Result>::
3076 visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3077 // Recursively emit the RHS.
3078 // For __block safety, do this before emitting the LHS.
3079 Result result = asImpl().visit(e->getRHS());
3080
3081 // Perform the store.
3082 LValue lvalue =
3083 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store);
3084 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3085 lvalue);
3086
3087 return result;
3088}
3089
3090template <typename Impl, typename Result>
3091Result
3092ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3093 return asImpl().visitExpr(e);
3094}
3095
3096template <typename Impl, typename Result>
3097Result
3098ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3099 return asImpl().visitExpr(e);
3100}
3101
3102template <typename Impl, typename Result>
3103Result
3104ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3105 return asImpl().visitExpr(e);
3106}
3107
3108/// The general expression-emission logic.
3109template <typename Impl, typename Result>
3110Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3111 // We should *never* see a nested full-expression here, because if
3112 // we fail to emit at +1, our caller must not retain after we close
3113 // out the full-expression. This isn't as important in the unsafe
3114 // emitter.
3115 assert(!isa<ExprWithCleanups>(e))((!isa<ExprWithCleanups>(e)) ? static_cast<void> (
0) : __assert_fail ("!isa<ExprWithCleanups>(e)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 3115, __PRETTY_FUNCTION__))
;
3116
3117 // Look through parens, __extension__, generic selection, etc.
3118 e = e->IgnoreParens();
3119
3120 // Handle certain kinds of casts.
3121 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3122 return asImpl().visitCastExpr(ce);
3123
3124 // Handle the comma operator.
3125 } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3126 return asImpl().visitBinaryOperator(op);
3127
3128 // TODO: handle conditional operators here
3129
3130 // For calls and message sends, use the retained-call logic.
3131 // Delegate inits are a special case in that they're the only
3132 // returns-retained expression that *isn't* surrounded by
3133 // a consume.
3134 } else if (isa<CallExpr>(e) ||
3135 (isa<ObjCMessageExpr>(e) &&
3136 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3137 return asImpl().visitCall(e);
3138
3139 // Look through pseudo-object expressions.
3140 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3141 return asImpl().visitPseudoObjectExpr(pseudo);
3142 } else if (auto *be = dyn_cast<BlockExpr>(e))
3143 return asImpl().visitBlockExpr(be);
3144
3145 return asImpl().visitExpr(e);
3146}
3147
3148namespace {
3149
3150/// An emitter for +1 results.
3151struct ARCRetainExprEmitter :
3152 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3153
3154 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3155
3156 llvm::Value *getValueOfResult(TryEmitResult result) {
3157 return result.getPointer();
3158 }
3159
3160 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3161 llvm::Value *value = result.getPointer();
3162 value = CGF.Builder.CreateBitCast(value, resultType);
3163 result.setPointer(value);
3164 return result;
3165 }
3166
3167 TryEmitResult visitLValueToRValue(const Expr *e) {
3168 return tryEmitARCRetainLoadOfScalar(CGF, e);
3169 }
3170
3171 /// For consumptions, just emit the subexpression and thus elide
3172 /// the retain/release pair.
3173 TryEmitResult visitConsumeObject(const Expr *e) {
3174 llvm::Value *result = CGF.EmitScalarExpr(e);
3175 return TryEmitResult(result, true);
3176 }
3177
3178 TryEmitResult visitBlockExpr(const BlockExpr *e) {
3179 TryEmitResult result = visitExpr(e);
3180 // Avoid the block-retain if this is a block literal that doesn't need to be
3181 // copied to the heap.
3182 if (e->getBlockDecl()->canAvoidCopyToHeap())
3183 result.setInt(true);
3184 return result;
3185 }
3186
3187 /// Block extends are net +0. Naively, we could just recurse on
3188 /// the subexpression, but actually we need to ensure that the
3189 /// value is copied as a block, so there's a little filter here.
3190 TryEmitResult visitExtendBlockObject(const Expr *e) {
3191 llvm::Value *result; // will be a +0 value
3192
3193 // If we can't safely assume the sub-expression will produce a
3194 // block-copied value, emit the sub-expression at +0.
3195 if (shouldEmitSeparateBlockRetain(e)) {
3196 result = CGF.EmitScalarExpr(e);
3197
3198 // Otherwise, try to emit the sub-expression at +1 recursively.
3199 } else {
3200 TryEmitResult subresult = asImpl().visit(e);
3201
3202 // If that produced a retained value, just use that.
3203 if (subresult.getInt()) {
3204 return subresult;
3205 }
3206
3207 // Otherwise it's +0.
3208 result = subresult.getPointer();
3209 }
3210
3211 // Retain the object as a block.
3212 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3213 return TryEmitResult(result, true);
3214 }
3215
3216 /// For reclaims, emit the subexpression as a retained call and
3217 /// skip the consumption.
3218 TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3219 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3220 return TryEmitResult(result, true);
3221 }
3222
3223 /// When we have an undecorated call, retroactively do a claim.
3224 TryEmitResult visitCall(const Expr *e) {
3225 llvm::Value *result = emitARCRetainCallResult(CGF, e);
3226 return TryEmitResult(result, true);
3227 }
3228
3229 // TODO: maybe special-case visitBinAssignWeak?
3230
3231 TryEmitResult visitExpr(const Expr *e) {
3232 // We didn't find an obvious production, so emit what we've got and
3233 // tell the caller that we didn't manage to retain.
3234 llvm::Value *result = CGF.EmitScalarExpr(e);
3235 return TryEmitResult(result, false);
3236 }
3237};
3238}
3239
3240static TryEmitResult
3241tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
3242 return ARCRetainExprEmitter(CGF).visit(e);
3243}
3244
3245static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
3246 LValue lvalue,
3247 QualType type) {
3248 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3249 llvm::Value *value = result.getPointer();
3250 if (!result.getInt())
3251 value = CGF.EmitARCRetain(type, value);
3252 return value;
3253}
3254
3255/// EmitARCRetainScalarExpr - Semantically equivalent to
3256/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3257/// best-effort attempt to peephole expressions that naturally produce
3258/// retained objects.
3259llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
3260 // The retain needs to happen within the full-expression.
3261 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3262 enterFullExpression(cleanups);
3263 RunCleanupsScope scope(*this);
3264 return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3265 }
3266
3267 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3268 llvm::Value *value = result.getPointer();
3269 if (!result.getInt())
3270 value = EmitARCRetain(e->getType(), value);
3271 return value;
3272}
3273
3274llvm::Value *
3275CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
3276 // The retain needs to happen within the full-expression.
3277 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3278 enterFullExpression(cleanups);
3279 RunCleanupsScope scope(*this);
3280 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3281 }
3282
3283 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3284 llvm::Value *value = result.getPointer();
3285 if (result.getInt())
3286 value = EmitARCAutorelease(value);
3287 else
3288 value = EmitARCRetainAutorelease(e->getType(), value);
3289 return value;
3290}
3291
3292llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
3293 llvm::Value *result;
3294 bool doRetain;
3295
3296 if (shouldEmitSeparateBlockRetain(e)) {
3297 result = EmitScalarExpr(e);
3298 doRetain = true;
3299 } else {
3300 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3301 result = subresult.getPointer();
3302 doRetain = !subresult.getInt();
3303 }
3304
3305 if (doRetain)
3306 result = EmitARCRetainBlock(result, /*mandatory*/ true);
3307 return EmitObjCConsumeObject(e->getType(), result);
3308}
3309
3310llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
3311 // In ARC, retain and autorelease the expression.
3312 if (getLangOpts().ObjCAutoRefCount) {
3313 // Do so before running any cleanups for the full-expression.
3314 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3315 return EmitARCRetainAutoreleaseScalarExpr(expr);
3316 }
3317
3318 // Otherwise, use the normal scalar-expression emission. The
3319 // exception machinery doesn't do anything special with the
3320 // exception like retaining it, so there's no safety associated with
3321 // only running cleanups after the throw has started, and when it
3322 // matters it tends to be substantially inferior code.
3323 return EmitScalarExpr(expr);
3324}
3325
3326namespace {
3327
3328/// An emitter for assigning into an __unsafe_unretained context.
3329struct ARCUnsafeUnretainedExprEmitter :
3330 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3331
3332 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3333
3334 llvm::Value *getValueOfResult(llvm::Value *value) {
3335 return value;
3336 }
3337
3338 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3339 return CGF.Builder.CreateBitCast(value, resultType);
3340 }
3341
3342 llvm::Value *visitLValueToRValue(const Expr *e) {
3343 return CGF.EmitScalarExpr(e);
3344 }
3345
3346 /// For consumptions, just emit the subexpression and perform the
3347 /// consumption like normal.
3348 llvm::Value *visitConsumeObject(const Expr *e) {
3349 llvm::Value *value = CGF.EmitScalarExpr(e);
3350 return CGF.EmitObjCConsumeObject(e->getType(), value);
3351 }
3352
3353 /// No special logic for block extensions. (This probably can't
3354 /// actually happen in this emitter, though.)
3355 llvm::Value *visitExtendBlockObject(const Expr *e) {
3356 return CGF.EmitARCExtendBlockObject(e);
3357 }
3358
3359 /// For reclaims, perform an unsafeClaim if that's enabled.
3360 llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3361 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3362 }
3363
3364 /// When we have an undecorated call, just emit it without adding
3365 /// the unsafeClaim.
3366 llvm::Value *visitCall(const Expr *e) {
3367 return CGF.EmitScalarExpr(e);
3368 }
3369
3370 /// Just do normal scalar emission in the default case.
3371 llvm::Value *visitExpr(const Expr *e) {
3372 return CGF.EmitScalarExpr(e);
3373 }
3374};
3375}
3376
3377static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF,
3378 const Expr *e) {
3379 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3380}
3381
3382/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3383/// immediately releasing the resut of EmitARCRetainScalarExpr, but
3384/// avoiding any spurious retains, including by performing reclaims
3385/// with objc_unsafeClaimAutoreleasedReturnValue.
3386llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) {
3387 // Look through full-expressions.
3388 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3389 enterFullExpression(cleanups);
3390 RunCleanupsScope scope(*this);
3391 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3392 }
3393
3394 return emitARCUnsafeUnretainedScalarExpr(*this, e);
3395}
3396
3397std::pair<LValue,llvm::Value*>
3398CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e,
3399 bool ignored) {
3400 // Evaluate the RHS first. If we're ignoring the result, assume
3401 // that we can emit at an unsafe +0.
3402 llvm::Value *value;
3403 if (ignored) {
3404 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS());
3405 } else {
3406 value = EmitScalarExpr(e->getRHS());
3407 }
3408
3409 // Emit the LHS and perform the store.
3410 LValue lvalue = EmitLValue(e->getLHS());
3411 EmitStoreOfScalar(value, lvalue);
3412
3413 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3414}
3415
3416std::pair<LValue,llvm::Value*>
3417CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
3418 bool ignored) {
3419 // Evaluate the RHS first.
3420 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3421 llvm::Value *value = result.getPointer();
3422
3423 bool hasImmediateRetain = result.getInt();
3424
3425 // If we didn't emit a retained object, and the l-value is of block
3426 // type, then we need to emit the block-retain immediately in case
3427 // it invalidates the l-value.
3428 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3429 value = EmitARCRetainBlock(value, /*mandatory*/ false);
3430 hasImmediateRetain = true;
3431 }
3432
3433 LValue lvalue = EmitLValue(e->getLHS());
3434
3435 // If the RHS was emitted retained, expand this.
3436 if (hasImmediateRetain) {
3437 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3438 EmitStoreOfScalar(value, lvalue);
3439 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3440 } else {
3441 value = EmitARCStoreStrong(lvalue, value, ignored);
3442 }
3443
3444 return std::pair<LValue,llvm::Value*>(lvalue, value);
3445}
3446
3447std::pair<LValue,llvm::Value*>
3448CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
3449 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
3450 LValue lvalue = EmitLValue(e->getLHS());
3451
3452 EmitStoreOfScalar(value, lvalue);
3453
3454 return std::pair<LValue,llvm::Value*>(lvalue, value);
3455}
3456
3457void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3458 const ObjCAutoreleasePoolStmt &ARPS) {
3459 const Stmt *subStmt = ARPS.getSubStmt();
3460 const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3461
3462 CGDebugInfo *DI = getDebugInfo();
3463 if (DI)
3464 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
3465
3466 // Keep track of the current cleanup stack depth.
3467 RunCleanupsScope Scope(*this);
3468 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3469 llvm::Value *token = EmitObjCAutoreleasePoolPush();
3470 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3471 } else {
3472 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
3473 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3474 }
3475
3476 for (const auto *I : S.body())
3477 EmitStmt(I);
3478
3479 if (DI)
3480 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
3481}
3482
3483/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3484/// make sure it survives garbage collection until this point.
3485void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
3486 // We just use an inline assembly.
3487 llvm::FunctionType *extenderType
3488 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3489 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3490 /* assembly */ "",
3491 /* constraints */ "r",
3492 /* side effects */ true);
3493
3494 object = Builder.CreateBitCast(object, VoidPtrTy);
3495 EmitNounwindRuntimeCall(extender, object);
3496}
3497
3498/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3499/// non-trivial copy assignment function, produce following helper function.
3500/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3501///
3502llvm::Constant *
3503CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3504 const ObjCPropertyImplDecl *PID) {
3505 if (!getLangOpts().CPlusPlus ||
3506 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3507 return nullptr;
3508 QualType Ty = PID->getPropertyIvarDecl()->getType();
3509 if (!Ty->isRecordType())
3510 return nullptr;
3511 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3512 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3513 return nullptr;
3514 llvm::Constant *HelperFn = nullptr;
3515 if (hasTrivialSetExpr(PID))
3516 return nullptr;
3517 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null")((PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"
) ? static_cast<void> (0) : __assert_fail ("PID->getSetterCXXAssignment() && \"SetterCXXAssignment - null\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 3517, __PRETTY_FUNCTION__))
;
3518 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3519 return HelperFn;
3520
3521 ASTContext &C = getContext();
3522 IdentifierInfo *II
3523 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3524
3525 QualType ReturnTy = C.VoidTy;
3526 QualType DestTy = C.getPointerType(Ty);
3527 QualType SrcTy = Ty;
3528 SrcTy.addConst();
3529 SrcTy = C.getPointerType(SrcTy);
3530
3531 SmallVector<QualType, 2> ArgTys;
3532 ArgTys.push_back(DestTy);
3533 ArgTys.push_back(SrcTy);
3534 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3535
3536 FunctionDecl *FD = FunctionDecl::Create(
3537 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3538 FunctionTy, nullptr, SC_Static, false, false);
3539
3540 FunctionArgList args;
3541 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3542 ImplicitParamDecl::Other);
3543 args.push_back(&DstDecl);
3544 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3545 ImplicitParamDecl::Other);
3546 args.push_back(&SrcDecl);
3547
3548 const CGFunctionInfo &FI =
3549 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3550
3551 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3552
3553 llvm::Function *Fn =
3554 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
3555 "__assign_helper_atomic_property_",
3556 &CGM.getModule());
3557
3558 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3559
3560 StartFunction(FD, ReturnTy, Fn, FI, args);
3561
3562 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3563 SourceLocation());
3564 UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3565 VK_LValue, OK_Ordinary, SourceLocation(), false);
3566
3567 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3568 SourceLocation());
3569 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3570 VK_LValue, OK_Ordinary, SourceLocation(), false);
3571
3572 Expr *Args[2] = { &DST, &SRC };
3573 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3574 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
3575 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3576 VK_LValue, SourceLocation(), FPOptions());
3577
3578 EmitStmt(TheCall);
3579
3580 FinishFunction();
3581 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3582 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3583 return HelperFn;
3584}
3585
3586llvm::Constant *
3587CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3588 const ObjCPropertyImplDecl *PID) {
3589 if (!getLangOpts().CPlusPlus ||
3590 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
3591 return nullptr;
3592 const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3593 QualType Ty = PD->getType();
3594 if (!Ty->isRecordType())
3595 return nullptr;
3596 if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
3597 return nullptr;
3598 llvm::Constant *HelperFn = nullptr;
3599 if (hasTrivialGetExpr(PID))
3600 return nullptr;
3601 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null")((PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"
) ? static_cast<void> (0) : __assert_fail ("PID->getGetterCXXConstructor() && \"getGetterCXXConstructor - null\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 3601, __PRETTY_FUNCTION__))
;
3602 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3603 return HelperFn;
3604
3605 ASTContext &C = getContext();
3606 IdentifierInfo *II =
3607 &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3608
3609 QualType ReturnTy = C.VoidTy;
3610 QualType DestTy = C.getPointerType(Ty);
3611 QualType SrcTy = Ty;
3612 SrcTy.addConst();
3613 SrcTy = C.getPointerType(SrcTy);
3614
3615 SmallVector<QualType, 2> ArgTys;
3616 ArgTys.push_back(DestTy);
3617 ArgTys.push_back(SrcTy);
3618 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3619
3620 FunctionDecl *FD = FunctionDecl::Create(
3621 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
3622 FunctionTy, nullptr, SC_Static, false, false);
3623
3624 FunctionArgList args;
3625 ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3626 ImplicitParamDecl::Other);
3627 args.push_back(&DstDecl);
3628 ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3629 ImplicitParamDecl::Other);
3630 args.push_back(&SrcDecl);
3631
3632 const CGFunctionInfo &FI =
3633 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3634
3635 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3636
3637 llvm::Function *Fn = llvm::Function::Create(
3638 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3639 &CGM.getModule());
3640
3641 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
3642
3643 StartFunction(FD, ReturnTy, Fn, FI, args);
3644
3645 DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3646 SourceLocation());
3647
3648 UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3649 VK_LValue, OK_Ordinary, SourceLocation(), false);
3650
3651 CXXConstructExpr *CXXConstExpr =
3652 cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3653
3654 SmallVector<Expr*, 4> ConstructorArgs;
3655 ConstructorArgs.push_back(&SRC);
3656 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3657 CXXConstExpr->arg_end());
3658
3659 CXXConstructExpr *TheCXXConstructExpr =
3660 CXXConstructExpr::Create(C, Ty, SourceLocation(),
3661 CXXConstExpr->getConstructor(),
3662 CXXConstExpr->isElidable(),
3663 ConstructorArgs,
3664 CXXConstExpr->hadMultipleCandidates(),
3665 CXXConstExpr->isListInitialization(),
3666 CXXConstExpr->isStdInitListInitialization(),
3667 CXXConstExpr->requiresZeroInitialization(),
3668 CXXConstExpr->getConstructionKind(),
3669 SourceRange());
3670
3671 DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3672 SourceLocation());
3673
3674 RValue DV = EmitAnyExpr(&DstExpr);
3675 CharUnits Alignment
3676 = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3677 EmitAggExpr(TheCXXConstructExpr,
3678 AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3679 Qualifiers(),
3680 AggValueSlot::IsDestructed,
3681 AggValueSlot::DoesNotNeedGCBarriers,
3682 AggValueSlot::IsNotAliased,
3683 AggValueSlot::DoesNotOverlap));
3684
3685 FinishFunction();
3686 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3687 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3688 return HelperFn;
3689}
3690
3691llvm::Value *
3692CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3693 // Get selectors for retain/autorelease.
3694 IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3695 Selector CopySelector =
3696 getContext().Selectors.getNullarySelector(CopyID);
3697 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3698 Selector AutoreleaseSelector =
3699 getContext().Selectors.getNullarySelector(AutoreleaseID);
3700
3701 // Emit calls to retain/autorelease.
3702 CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3703 llvm::Value *Val = Block;
3704 RValue Result;
3705 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3706 Ty, CopySelector,
3707 Val, CallArgList(), nullptr, nullptr);
3708 Val = Result.getScalarVal();
3709 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3710 Ty, AutoreleaseSelector,
3711 Val, CallArgList(), nullptr, nullptr);
3712 Val = Result.getScalarVal();
3713 return Val;
3714}
3715
3716llvm::Value *
3717CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) {
3718 assert(Args.size() == 3 && "Expected 3 argument here!")((Args.size() == 3 && "Expected 3 argument here!") ? static_cast
<void> (0) : __assert_fail ("Args.size() == 3 && \"Expected 3 argument here!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CGObjC.cpp"
, 3718, __PRETTY_FUNCTION__))
;
3719
3720 if (!CGM.IsOSVersionAtLeastFn) {
3721 llvm::FunctionType *FTy =
3722 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3723 CGM.IsOSVersionAtLeastFn =
3724 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3725 }
3726
3727 llvm::Value *CallRes =
3728 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args);
3729
3730 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3731}
3732
3733void CodeGenModule::emitAtAvailableLinkGuard() {
3734 if (!IsOSVersionAtLeastFn)
3735 return;
3736 // @available requires CoreFoundation only on Darwin.
3737 if (!Target.getTriple().isOSDarwin())
3738 return;
3739 // Add -framework CoreFoundation to the linker commands. We still want to
3740 // emit the core foundation reference down below because otherwise if
3741 // CoreFoundation is not used in the code, the linker won't link the
3742 // framework.
3743 auto &Context = getLLVMContext();
3744 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3745 llvm::MDString::get(Context, "CoreFoundation")};
3746 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3747 // Emit a reference to a symbol from CoreFoundation to ensure that
3748 // CoreFoundation is linked into the final binary.
3749 llvm::FunctionType *FTy =
3750 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3751 llvm::FunctionCallee CFFunc =
3752 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3753
3754 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3755 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3756 CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3757 llvm::AttributeList(), /*Local=*/true);
3758 llvm::Function *CFLinkCheckFunc =
3759 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3760 if (CFLinkCheckFunc->empty()) {
3761 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3762 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3763 CodeGenFunction CGF(*this);
3764 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3765 CGF.EmitNounwindRuntimeCall(CFFunc,
3766 llvm::Constant::getNullValue(VoidPtrTy));
3767 CGF.Builder.CreateUnreachable();
3768 addCompilerUsedGlobal(CFLinkCheckFunc);
3769 }
3770}
3771
3772CGObjCRuntime::~CGObjCRuntime() {}

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h

1//===- ObjCRuntime.h - Objective-C Runtime Configuration --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines types useful for describing an Objective-C runtime.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_BASIC_OBJCRUNTIME_H
15#define LLVM_CLANG_BASIC_OBJCRUNTIME_H
16
17#include "clang/Basic/LLVM.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/Support/VersionTuple.h"
22#include <string>
23
24namespace clang {
25
26/// The basic abstraction for the target Objective-C runtime.
27class ObjCRuntime {
28public:
29 /// The basic Objective-C runtimes that we know about.
30 enum Kind {
31 /// 'macosx' is the Apple-provided NeXT-derived runtime on Mac OS
32 /// X platforms that use the non-fragile ABI; the version is a
33 /// release of that OS.
34 MacOSX,
35
36 /// 'macosx-fragile' is the Apple-provided NeXT-derived runtime on
37 /// Mac OS X platforms that use the fragile ABI; the version is a
38 /// release of that OS.
39 FragileMacOSX,
40
41 /// 'ios' is the Apple-provided NeXT-derived runtime on iOS or the iOS
42 /// simulator; it is always non-fragile. The version is a release
43 /// version of iOS.
44 iOS,
45
46 /// 'watchos' is a variant of iOS for Apple's watchOS. The version
47 /// is a release version of watchOS.
48 WatchOS,
49
50 /// 'gcc' is the Objective-C runtime shipped with GCC, implementing a
51 /// fragile Objective-C ABI
52 GCC,
53
54 /// 'gnustep' is the modern non-fragile GNUstep runtime.
55 GNUstep,
56
57 /// 'objfw' is the Objective-C runtime included in ObjFW
58 ObjFW
59 };
60
61private:
62 Kind TheKind = MacOSX;
63 VersionTuple Version;
64
65public:
66 /// A bogus initialization of the runtime.
67 ObjCRuntime() = default;
68 ObjCRuntime(Kind kind, const VersionTuple &version)
69 : TheKind(kind), Version(version) {}
70
71 void set(Kind kind, VersionTuple version) {
72 TheKind = kind;
73 Version = version;
74 }
75
76 Kind getKind() const { return TheKind; }
77 const VersionTuple &getVersion() const { return Version; }
78
79 /// Does this runtime follow the set of implied behaviors for a
80 /// "non-fragile" ABI?
81 bool isNonFragile() const {
82 switch (getKind()) {
83 case FragileMacOSX: return false;
84 case GCC: return false;
85 case MacOSX: return true;
86 case GNUstep: return true;
87 case ObjFW: return true;
88 case iOS: return true;
89 case WatchOS: return true;
90 }
91 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 91)
;
92 }
93
94 /// The inverse of isNonFragile(): does this runtime follow the set of
95 /// implied behaviors for a "fragile" ABI?
96 bool isFragile() const { return !isNonFragile(); }
97
98 /// The default dispatch mechanism to use for the specified architecture
99 bool isLegacyDispatchDefaultForArch(llvm::Triple::ArchType Arch) {
100 // The GNUstep runtime uses a newer dispatch method by default from
101 // version 1.6 onwards
102 if (getKind() == GNUstep && getVersion() >= VersionTuple(1, 6)) {
103 if (Arch == llvm::Triple::arm ||
104 Arch == llvm::Triple::x86 ||
105 Arch == llvm::Triple::x86_64)
106 return false;
107 }
108 else if ((getKind() == MacOSX) && isNonFragile() &&
109 (getVersion() >= VersionTuple(10, 0)) &&
110 (getVersion() < VersionTuple(10, 6)))
111 return Arch != llvm::Triple::x86_64;
112 // Except for deployment target of 10.5 or less,
113 // Mac runtimes use legacy dispatch everywhere now.
114 return true;
115 }
116
117 /// Is this runtime basically of the GNU family of runtimes?
118 bool isGNUFamily() const {
119 switch (getKind()) {
120 case FragileMacOSX:
121 case MacOSX:
122 case iOS:
123 case WatchOS:
124 return false;
125 case GCC:
126 case GNUstep:
127 case ObjFW:
128 return true;
129 }
130 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 130)
;
131 }
132
133 /// Is this runtime basically of the NeXT family of runtimes?
134 bool isNeXTFamily() const {
135 // For now, this is just the inverse of isGNUFamily(), but that's
136 // not inherently true.
137 return !isGNUFamily();
138 }
139
140 /// Does this runtime allow ARC at all?
141 bool allowsARC() const {
142 switch (getKind()) {
143 case FragileMacOSX:
144 // No stub library for the fragile runtime.
145 return getVersion() >= VersionTuple(10, 7);
146 case MacOSX: return true;
147 case iOS: return true;
148 case WatchOS: return true;
149 case GCC: return false;
150 case GNUstep: return true;
151 case ObjFW: return true;
152 }
153 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 153)
;
154 }
155
156 /// Does this runtime natively provide the ARC entrypoints?
157 ///
158 /// ARC cannot be directly supported on a platform that does not provide
159 /// these entrypoints, although it may be supportable via a stub
160 /// library.
161 bool hasNativeARC() const {
162 switch (getKind()) {
163 case FragileMacOSX: return getVersion() >= VersionTuple(10, 7);
164 case MacOSX: return getVersion() >= VersionTuple(10, 7);
165 case iOS: return getVersion() >= VersionTuple(5);
166 case WatchOS: return true;
167
168 case GCC: return false;
169 case GNUstep: return getVersion() >= VersionTuple(1, 6);
170 case ObjFW: return true;
171 }
172 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 172)
;
173 }
174
175 /// Does this runtime provide ARC entrypoints that are likely to be faster
176 /// than an ordinary message send of the appropriate selector?
177 ///
178 /// The ARC entrypoints are guaranteed to be equivalent to just sending the
179 /// corresponding message. If the entrypoint is implemented naively as just a
180 /// message send, using it is a trade-off: it sacrifices a few cycles of
181 /// overhead to save a small amount of code. However, it's possible for
182 /// runtimes to detect and special-case classes that use "standard"
183 /// retain/release behavior; if that's dynamically a large proportion of all
184 /// retained objects, using the entrypoint will also be faster than using a
185 /// message send.
186 ///
187 /// When this method returns true, Clang will turn non-super message sends of
188 /// certain selectors into calls to the correspond entrypoint:
189 /// retain => objc_retain
190 /// release => objc_release
191 /// autorelease => objc_autorelease
192 bool shouldUseARCFunctionsForRetainRelease() const {
193 switch (getKind()) {
194 case FragileMacOSX:
195 return false;
196 case MacOSX:
197 return getVersion() >= VersionTuple(10, 10);
198 case iOS:
199 return getVersion() >= VersionTuple(8);
200 case WatchOS:
201 return true;
202 case GCC:
203 return false;
204 case GNUstep:
205 return false;
206 case ObjFW:
207 return false;
208 }
209 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 209)
;
210 }
211
212 /// Does this runtime provide entrypoints that are likely to be faster
213 /// than an ordinary message send of the "alloc" selector?
214 ///
215 /// The "alloc" entrypoint is guaranteed to be equivalent to just sending the
216 /// corresponding message. If the entrypoint is implemented naively as just a
217 /// message send, using it is a trade-off: it sacrifices a few cycles of
218 /// overhead to save a small amount of code. However, it's possible for
219 /// runtimes to detect and special-case classes that use "standard"
220 /// alloc behavior; if that's dynamically a large proportion of all
221 /// objects, using the entrypoint will also be faster than using a message
222 /// send.
223 ///
224 /// When this method returns true, Clang will turn non-super message sends of
225 /// certain selectors into calls to the corresponding entrypoint:
226 /// alloc => objc_alloc
227 /// allocWithZone:nil => objc_allocWithZone
228 bool shouldUseRuntimeFunctionsForAlloc() const {
229 switch (getKind()) {
230 case FragileMacOSX:
231 return false;
232 case MacOSX:
233 return getVersion() >= VersionTuple(10, 10);
234 case iOS:
235 return getVersion() >= VersionTuple(8);
236 case WatchOS:
237 return true;
238
239 case GCC:
240 return false;
241 case GNUstep:
242 return false;
243 case ObjFW:
244 return false;
245 }
246 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 246)
;
247 }
248
249 /// Does this runtime provide the objc_alloc_init entrypoint? This can apply
250 /// the same optimization as objc_alloc, but also sends an -init message,
251 /// reducing code size on the caller.
252 bool shouldUseRuntimeFunctionForCombinedAllocInit() const {
253 switch (getKind()) {
3
Control jumps to 'case WatchOS:' at line 258
254 case MacOSX:
255 return getVersion() >= VersionTuple(10, 14, 4);
256 case iOS:
257 return getVersion() >= VersionTuple(12, 2);
258 case WatchOS:
259 return getVersion() >= VersionTuple(5, 2);
4
Calling 'operator>='
18
Returning from 'operator>='
19
Returning the value 1, which participates in a condition later
260 default:
261 return false;
262 }
263 }
264
265 /// Does this runtime supports optimized setter entrypoints?
266 bool hasOptimizedSetter() const {
267 switch (getKind()) {
268 case MacOSX:
269 return getVersion() >= VersionTuple(10, 8);
270 case iOS:
271 return (getVersion() >= VersionTuple(6));
272 case WatchOS:
273 return true;
274 case GNUstep:
275 return getVersion() >= VersionTuple(1, 7);
276 default:
277 return false;
278 }
279 }
280
281 /// Does this runtime allow the use of __weak?
282 bool allowsWeak() const {
283 return hasNativeWeak();
284 }
285
286 /// Does this runtime natively provide ARC-compliant 'weak'
287 /// entrypoints?
288 bool hasNativeWeak() const {
289 // Right now, this is always equivalent to whether the runtime
290 // natively supports ARC decision.
291 return hasNativeARC();
292 }
293
294 /// Does this runtime directly support the subscripting methods?
295 ///
296 /// This is really a property of the library, not the runtime.
297 bool hasSubscripting() const {
298 switch (getKind()) {
299 case FragileMacOSX: return false;
300 case MacOSX: return getVersion() >= VersionTuple(10, 11);
301 case iOS: return getVersion() >= VersionTuple(9);
302 case WatchOS: return true;
303
304 // This is really a lie, because some implementations and versions
305 // of the runtime do not support ARC. Probably -fgnu-runtime
306 // should imply a "maximal" runtime or something?
307 case GCC: return true;
308 case GNUstep: return true;
309 case ObjFW: return true;
310 }
311 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 311)
;
312 }
313
314 /// Does this runtime allow sizeof or alignof on object types?
315 bool allowsSizeofAlignof() const {
316 return isFragile();
317 }
318
319 /// Does this runtime allow pointer arithmetic on objects?
320 ///
321 /// This covers +, -, ++, --, and (if isSubscriptPointerArithmetic()
322 /// yields true) [].
323 bool allowsPointerArithmetic() const {
324 switch (getKind()) {
325 case FragileMacOSX:
326 case GCC:
327 return true;
328 case MacOSX:
329 case iOS:
330 case WatchOS:
331 case GNUstep:
332 case ObjFW:
333 return false;
334 }
335 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 335)
;
336 }
337
338 /// Is subscripting pointer arithmetic?
339 bool isSubscriptPointerArithmetic() const {
340 return allowsPointerArithmetic();
341 }
342
343 /// Does this runtime provide an objc_terminate function?
344 ///
345 /// This is used in handlers for exceptions during the unwind process;
346 /// without it, abort() must be used in pure ObjC files.
347 bool hasTerminate() const {
348 switch (getKind()) {
349 case FragileMacOSX: return getVersion() >= VersionTuple(10, 8);
350 case MacOSX: return getVersion() >= VersionTuple(10, 8);
351 case iOS: return getVersion() >= VersionTuple(5);
352 case WatchOS: return true;
353 case GCC: return false;
354 case GNUstep: return false;
355 case ObjFW: return false;
356 }
357 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 357)
;
358 }
359
360 /// Does this runtime support weakly importing classes?
361 bool hasWeakClassImport() const {
362 switch (getKind()) {
363 case MacOSX: return true;
364 case iOS: return true;
365 case WatchOS: return true;
366 case FragileMacOSX: return false;
367 case GCC: return true;
368 case GNUstep: return true;
369 case ObjFW: return true;
370 }
371 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 371)
;
372 }
373
374 /// Does this runtime use zero-cost exceptions?
375 bool hasUnwindExceptions() const {
376 switch (getKind()) {
377 case MacOSX: return true;
378 case iOS: return true;
379 case WatchOS: return true;
380 case FragileMacOSX: return false;
381 case GCC: return true;
382 case GNUstep: return true;
383 case ObjFW: return true;
384 }
385 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 385)
;
386 }
387
388 bool hasAtomicCopyHelper() const {
389 switch (getKind()) {
390 case FragileMacOSX:
391 case MacOSX:
392 case iOS:
393 case WatchOS:
394 return true;
395 case GNUstep:
396 return getVersion() >= VersionTuple(1, 7);
397 default: return false;
398 }
399 }
400
401 /// Is objc_unsafeClaimAutoreleasedReturnValue available?
402 bool hasARCUnsafeClaimAutoreleasedReturnValue() const {
403 switch (getKind()) {
404 case MacOSX:
405 case FragileMacOSX:
406 return getVersion() >= VersionTuple(10, 11);
407 case iOS:
408 return getVersion() >= VersionTuple(9);
409 case WatchOS:
410 return getVersion() >= VersionTuple(2);
411 case GNUstep:
412 return false;
413 default:
414 return false;
415 }
416 }
417
418 /// Are the empty collection symbols available?
419 bool hasEmptyCollections() const {
420 switch (getKind()) {
421 default:
422 return false;
423 case MacOSX:
424 return getVersion() >= VersionTuple(10, 11);
425 case iOS:
426 return getVersion() >= VersionTuple(9);
427 case WatchOS:
428 return getVersion() >= VersionTuple(2);
429 }
430 }
431
432 /// Returns true if this Objective-C runtime supports Objective-C class
433 /// stubs.
434 bool allowsClassStubs() const {
435 switch (getKind()) {
436 case FragileMacOSX:
437 case GCC:
438 case GNUstep:
439 case ObjFW:
440 return false;
441 case MacOSX:
442 case iOS:
443 case WatchOS:
444 return true;
445 }
446 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 446)
;
447 }
448
449 /// Does this runtime supports direct dispatch
450 bool allowsDirectDispatch() const {
451 switch (getKind()) {
452 case FragileMacOSX: return false;
453 case MacOSX: return true;
454 case iOS: return true;
455 case WatchOS: return true;
456 case GCC: return false;
457 case GNUstep: return false;
458 case ObjFW: return false;
459 }
460 llvm_unreachable("bad kind")::llvm::llvm_unreachable_internal("bad kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include/clang/Basic/ObjCRuntime.h"
, 460)
;
461 }
462
463 /// Try to parse an Objective-C runtime specification from the given
464 /// string.
465 ///
466 /// \return true on error.
467 bool tryParse(StringRef input);
468
469 std::string getAsString() const;
470
471 friend bool operator==(const ObjCRuntime &left, const ObjCRuntime &right) {
472 return left.getKind() == right.getKind() &&
473 left.getVersion() == right.getVersion();
474 }
475
476 friend bool operator!=(const ObjCRuntime &left, const ObjCRuntime &right) {
477 return !(left == right);
478 }
479};
480
481raw_ostream &operator<<(raw_ostream &out, const ObjCRuntime &value);
482
483} // namespace clang
484
485#endif // LLVM_CLANG_BASIC_OBJCRUNTIME_H

/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include/llvm/Support/VersionTuple.h

1//===- VersionTuple.h - Version Number Handling -----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines the llvm::VersionTuple class, which represents a version in
11/// the form major[.minor[.subminor]].
12///
13//===----------------------------------------------------------------------===//
14#ifndef LLVM_SUPPORT_VERSIONTUPLE_H
15#define LLVM_SUPPORT_VERSIONTUPLE_H
16
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Support/raw_ostream.h"
20#include <string>
21#include <tuple>
22
23namespace llvm {
24
25/// Represents a version number in the form major[.minor[.subminor[.build]]].
26class VersionTuple {
27 unsigned Major : 32;
28
29 unsigned Minor : 31;
30 unsigned HasMinor : 1;
31
32 unsigned Subminor : 31;
33 unsigned HasSubminor : 1;
34
35 unsigned Build : 31;
36 unsigned HasBuild : 1;
37
38public:
39 VersionTuple()
40 : Major(0), Minor(0), HasMinor(false), Subminor(0), HasSubminor(false),
41 Build(0), HasBuild(false) {}
42
43 explicit VersionTuple(unsigned Major)
44 : Major(Major), Minor(0), HasMinor(false), Subminor(0),
45 HasSubminor(false), Build(0), HasBuild(false) {}
46
47 explicit VersionTuple(unsigned Major, unsigned Minor)
48 : Major(Major), Minor(Minor), HasMinor(true), Subminor(0),
49 HasSubminor(false), Build(0), HasBuild(false) {}
50
51 explicit VersionTuple(unsigned Major, unsigned Minor, unsigned Subminor)
52 : Major(Major), Minor(Minor), HasMinor(true), Subminor(Subminor),
53 HasSubminor(true), Build(0), HasBuild(false) {}
54
55 explicit VersionTuple(unsigned Major, unsigned Minor, unsigned Subminor,
56 unsigned Build)
57 : Major(Major), Minor(Minor), HasMinor(true), Subminor(Subminor),
58 HasSubminor(true), Build(Build), HasBuild(true) {}
59
60 /// Determine whether this version information is empty
61 /// (e.g., all version components are zero).
62 bool empty() const {
63 return Major == 0 && Minor == 0 && Subminor == 0 && Build == 0;
64 }
65
66 /// Retrieve the major version number.
67 unsigned getMajor() const { return Major; }
68
69 /// Retrieve the minor version number, if provided.
70 Optional<unsigned> getMinor() const {
71 if (!HasMinor)
72 return None;
73 return Minor;
74 }
75
76 /// Retrieve the subminor version number, if provided.
77 Optional<unsigned> getSubminor() const {
78 if (!HasSubminor)
79 return None;
80 return Subminor;
81 }
82
83 /// Retrieve the build version number, if provided.
84 Optional<unsigned> getBuild() const {
85 if (!HasBuild)
86 return None;
87 return Build;
88 }
89
90 /// Return a version tuple that contains only the first 3 version components.
91 VersionTuple withoutBuild() const {
92 if (HasBuild)
93 return VersionTuple(Major, Minor, Subminor);
94 return *this;
95 }
96
97 /// Determine if two version numbers are equivalent. If not
98 /// provided, minor and subminor version numbers are considered to be zero.
99 friend bool operator==(const VersionTuple &X, const VersionTuple &Y) {
100 return X.Major == Y.Major && X.Minor == Y.Minor &&
101 X.Subminor == Y.Subminor && X.Build == Y.Build;
102 }
103
104 /// Determine if two version numbers are not equivalent.
105 ///
106 /// If not provided, minor and subminor version numbers are considered to be
107 /// zero.
108 friend bool operator!=(const VersionTuple &X, const VersionTuple &Y) {
109 return !(X == Y);
110 }
111
112 /// Determine whether one version number precedes another.
113 ///
114 /// If not provided, minor and subminor version numbers are considered to be
115 /// zero.
116 friend bool operator<(const VersionTuple &X, const VersionTuple &Y) {
117 return std::tie(X.Major, X.Minor, X.Subminor, X.Build) <
6
Calling 'operator<<const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &>'
13
Returning from 'operator<<const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &, const unsigned int &>'
14
Returning value, which participates in a condition later
118 std::tie(Y.Major, Y.Minor, Y.Subminor, Y.Build);
119 }
120
121 /// Determine whether one version number follows another.
122 ///
123 /// If not provided, minor and subminor version numbers are considered to be
124 /// zero.
125 friend bool operator>(const VersionTuple &X, const VersionTuple &Y) {
126 return Y < X;
127 }
128
129 /// Determine whether one version number precedes or is
130 /// equivalent to another.
131 ///
132 /// If not provided, minor and subminor version numbers are considered to be
133 /// zero.
134 friend bool operator<=(const VersionTuple &X, const VersionTuple &Y) {
135 return !(Y < X);
136 }
137
138 /// Determine whether one version number follows or is
139 /// equivalent to another.
140 ///
141 /// If not provided, minor and subminor version numbers are considered to be
142 /// zero.
143 friend bool operator>=(const VersionTuple &X, const VersionTuple &Y) {
144 return !(X < Y);
5
Calling 'operator<'
15
Returning from 'operator<'
16
Assuming the condition is true
17
Returning the value 1, which participates in a condition later
145 }
146
147 /// Retrieve a string representation of the version number.
148 std::string getAsString() const;
149
150 /// Try to parse the given string as a version number.
151 /// \returns \c true if the string does not match the regular expression
152 /// [0-9]+(\.[0-9]+){0,3}
153 bool tryParse(StringRef string);
154};
155
156/// Print a version number.
157raw_ostream &operator<<(raw_ostream &Out, const VersionTuple &V);
158
159} // end namespace llvm
160#endif // LLVM_SUPPORT_VERSIONTUPLE_H

/usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/tuple

1// <tuple> -*- C++ -*-
2
3// Copyright (C) 2007-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/tuple
26 * This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_TUPLE1
30#define _GLIBCXX_TUPLE1 1
31
32#pragma GCC system_header
33
34#if __cplusplus201402L < 201103L
35# include <bits/c++0x_warning.h>
36#else
37
38#include <utility>
39#include <array>
40#include <bits/uses_allocator.h>
41
42namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
43{
44_GLIBCXX_BEGIN_NAMESPACE_VERSION
45
46 /**
47 * @addtogroup utilities
48 * @{
49 */
50
51 template<std::size_t _Idx, typename _Head, bool _IsEmptyNotFinal>
52 struct _Head_base;
53
54 template<std::size_t _Idx, typename _Head>
55 struct _Head_base<_Idx, _Head, true>
56 : public _Head
57 {
58 constexpr _Head_base()
59 : _Head() { }
60
61 constexpr _Head_base(const _Head& __h)
62 : _Head(__h) { }
63
64 constexpr _Head_base(const _Head_base&) = default;
65 constexpr _Head_base(_Head_base&&) = default;
66
67 template<typename _UHead>
68 constexpr _Head_base(_UHead&& __h)
69 : _Head(std::forward<_UHead>(__h)) { }
70
71 _Head_base(allocator_arg_t, __uses_alloc0)
72 : _Head() { }
73
74 template<typename _Alloc>
75 _Head_base(allocator_arg_t, __uses_alloc1<_Alloc> __a)
76 : _Head(allocator_arg, *__a._M_a) { }
77
78 template<typename _Alloc>
79 _Head_base(allocator_arg_t, __uses_alloc2<_Alloc> __a)
80 : _Head(*__a._M_a) { }
81
82 template<typename _UHead>
83 _Head_base(__uses_alloc0, _UHead&& __uhead)
84 : _Head(std::forward<_UHead>(__uhead)) { }
85
86 template<typename _Alloc, typename _UHead>
87 _Head_base(__uses_alloc1<_Alloc> __a, _UHead&& __uhead)
88 : _Head(allocator_arg, *__a._M_a, std::forward<_UHead>(__uhead)) { }
89
90 template<typename _Alloc, typename _UHead>
91 _Head_base(__uses_alloc2<_Alloc> __a, _UHead&& __uhead)
92 : _Head(std::forward<_UHead>(__uhead), *__a._M_a) { }
93
94 static constexpr _Head&
95 _M_head(_Head_base& __b) noexcept { return __b; }
96
97 static constexpr const _Head&
98 _M_head(const _Head_base& __b) noexcept { return __b; }
99 };
100
101 template<std::size_t _Idx, typename _Head>
102 struct _Head_base<_Idx, _Head, false>
103 {
104 constexpr _Head_base()
105 : _M_head_impl() { }
106
107 constexpr _Head_base(const _Head& __h)
108 : _M_head_impl(__h) { }
109
110 constexpr _Head_base(const _Head_base&) = default;
111 constexpr _Head_base(_Head_base&&) = default;
112
113 template<typename _UHead>
114 constexpr _Head_base(_UHead&& __h)
115 : _M_head_impl(std::forward<_UHead>(__h)) { }
116
117 _Head_base(allocator_arg_t, __uses_alloc0)
118 : _M_head_impl() { }
119
120 template<typename _Alloc>
121 _Head_base(allocator_arg_t, __uses_alloc1<_Alloc> __a)
122 : _M_head_impl(allocator_arg, *__a._M_a) { }
123
124 template<typename _Alloc>
125 _Head_base(allocator_arg_t, __uses_alloc2<_Alloc> __a)
126 : _M_head_impl(*__a._M_a) { }
127
128 template<typename _UHead>
129 _Head_base(__uses_alloc0, _UHead&& __uhead)
130 : _M_head_impl(std::forward<_UHead>(__uhead)) { }
131
132 template<typename _Alloc, typename _UHead>
133 _Head_base(__uses_alloc1<_Alloc> __a, _UHead&& __uhead)
134 : _M_head_impl(allocator_arg, *__a._M_a, std::forward<_UHead>(__uhead))
135 { }
136
137 template<typename _Alloc, typename _UHead>
138 _Head_base(__uses_alloc2<_Alloc> __a, _UHead&& __uhead)
139 : _M_head_impl(std::forward<_UHead>(__uhead), *__a._M_a) { }
140
141 static constexpr _Head&
142 _M_head(_Head_base& __b) noexcept { return __b._M_head_impl; }
143
144 static constexpr const _Head&
145 _M_head(const _Head_base& __b) noexcept { return __b._M_head_impl; }
146
147 _Head _M_head_impl;
148 };
149
150 /**
151 * Contains the actual implementation of the @c tuple template, stored
152 * as a recursive inheritance hierarchy from the first element (most
153 * derived class) to the last (least derived class). The @c Idx
154 * parameter gives the 0-based index of the element stored at this
155 * point in the hierarchy; we use it to implement a constant-time
156 * get() operation.
157 */
158 template<std::size_t _Idx, typename... _Elements>
159 struct _Tuple_impl;
160
161 template<typename _Tp>
162 struct __is_empty_non_tuple : is_empty<_Tp> { };
163
164 // Using EBO for elements that are tuples causes ambiguous base errors.
165 template<typename _El0, typename... _El>
166 struct __is_empty_non_tuple<tuple<_El0, _El...>> : false_type { };
167
168 // Use the Empty Base-class Optimization for empty, non-final types.
169 template<typename _Tp>
170 using __empty_not_final
171 = typename conditional<__is_final(_Tp), false_type,
172 __is_empty_non_tuple<_Tp>>::type;
173
174 /**
175 * Recursive tuple implementation. Here we store the @c Head element
176 * and derive from a @c Tuple_impl containing the remaining elements
177 * (which contains the @c Tail).
178 */
179 template<std::size_t _Idx, typename _Head, typename... _Tail>
180 struct _Tuple_impl<_Idx, _Head, _Tail...>
181 : public _Tuple_impl<_Idx + 1, _Tail...>,
182 private _Head_base<_Idx, _Head, __empty_not_final<_Head>::value>
183 {
184 template<std::size_t, typename...> friend class _Tuple_impl;
185
186 typedef _Tuple_impl<_Idx + 1, _Tail...> _Inherited;
187 typedef _Head_base<_Idx, _Head, __empty_not_final<_Head>::value> _Base;
188
189 static constexpr _Head&
190 _M_head(_Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
191
192 static constexpr const _Head&
193 _M_head(const _Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
194
195 static constexpr _Inherited&
196 _M_tail(_Tuple_impl& __t) noexcept { return __t; }
197
198 static constexpr const _Inherited&
199 _M_tail(const _Tuple_impl& __t) noexcept { return __t; }
200
201 constexpr _Tuple_impl()
202 : _Inherited(), _Base() { }
203
204 explicit
205 constexpr _Tuple_impl(const _Head& __head, const _Tail&... __tail)
206 : _Inherited(__tail...), _Base(__head) { }
207
208 template<typename _UHead, typename... _UTail, typename = typename
209 enable_if<sizeof...(_Tail) == sizeof...(_UTail)>::type>
210 explicit
211 constexpr _Tuple_impl(_UHead&& __head, _UTail&&... __tail)
212 : _Inherited(std::forward<_UTail>(__tail)...),
213 _Base(std::forward<_UHead>(__head)) { }
214
215 constexpr _Tuple_impl(const _Tuple_impl&) = default;
216
217 constexpr
218 _Tuple_impl(_Tuple_impl&& __in)
219 noexcept(__and_<is_nothrow_move_constructible<_Head>,
220 is_nothrow_move_constructible<_Inherited>>::value)
221 : _Inherited(std::move(_M_tail(__in))),
222 _Base(std::forward<_Head>(_M_head(__in))) { }
223
224 template<typename... _UElements>
225 constexpr _Tuple_impl(const _Tuple_impl<_Idx, _UElements...>& __in)
226 : _Inherited(_Tuple_impl<_Idx, _UElements...>::_M_tail(__in)),
227 _Base(_Tuple_impl<_Idx, _UElements...>::_M_head(__in)) { }
228
229 template<typename _UHead, typename... _UTails>
230 constexpr _Tuple_impl(_Tuple_impl<_Idx, _UHead, _UTails...>&& __in)
231 : _Inherited(std::move
232 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in))),
233 _Base(std::forward<_UHead>
234 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in))) { }
235
236 template<typename _Alloc>
237 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a)
238 : _Inherited(__tag, __a),
239 _Base(__tag, __use_alloc<_Head>(__a)) { }
240
241 template<typename _Alloc>
242 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
243 const _Head& __head, const _Tail&... __tail)
244 : _Inherited(__tag, __a, __tail...),
245 _Base(__use_alloc<_Head, _Alloc, _Head>(__a), __head) { }
246
247 template<typename _Alloc, typename _UHead, typename... _UTail,
248 typename = typename enable_if<sizeof...(_Tail)
249 == sizeof...(_UTail)>::type>
250 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
251 _UHead&& __head, _UTail&&... __tail)
252 : _Inherited(__tag, __a, std::forward<_UTail>(__tail)...),
253 _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
254 std::forward<_UHead>(__head)) { }
255
256 template<typename _Alloc>
257 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
258 const _Tuple_impl& __in)
259 : _Inherited(__tag, __a, _M_tail(__in)),
260 _Base(__use_alloc<_Head, _Alloc, _Head>(__a), _M_head(__in)) { }
261
262 template<typename _Alloc>
263 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
264 _Tuple_impl&& __in)
265 : _Inherited(__tag, __a, std::move(_M_tail(__in))),
266 _Base(__use_alloc<_Head, _Alloc, _Head>(__a),
267 std::forward<_Head>(_M_head(__in))) { }
268
269 template<typename _Alloc, typename... _UElements>
270 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
271 const _Tuple_impl<_Idx, _UElements...>& __in)
272 : _Inherited(__tag, __a,
273 _Tuple_impl<_Idx, _UElements...>::_M_tail(__in)),
274 _Base(__use_alloc<_Head, _Alloc, _Head>(__a),
275 _Tuple_impl<_Idx, _UElements...>::_M_head(__in)) { }
276
277 template<typename _Alloc, typename _UHead, typename... _UTails>
278 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
279 _Tuple_impl<_Idx, _UHead, _UTails...>&& __in)
280 : _Inherited(__tag, __a, std::move
281 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in))),
282 _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
283 std::forward<_UHead>
284 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in))) { }
285
286 _Tuple_impl&
287 operator=(const _Tuple_impl& __in)
288 {
289 _M_head(*this) = _M_head(__in);
290 _M_tail(*this) = _M_tail(__in);
291 return *this;
292 }
293
294 _Tuple_impl&
295 operator=(_Tuple_impl&& __in)
296 noexcept(__and_<is_nothrow_move_assignable<_Head>,
297 is_nothrow_move_assignable<_Inherited>>::value)
298 {
299 _M_head(*this) = std::forward<_Head>(_M_head(__in));
300 _M_tail(*this) = std::move(_M_tail(__in));
301 return *this;
302 }
303
304 template<typename... _UElements>
305 _Tuple_impl&
306 operator=(const _Tuple_impl<_Idx, _UElements...>& __in)
307 {
308 _M_head(*this) = _Tuple_impl<_Idx, _UElements...>::_M_head(__in);
309 _M_tail(*this) = _Tuple_impl<_Idx, _UElements...>::_M_tail(__in);
310 return *this;
311 }
312
313 template<typename _UHead, typename... _UTails>
314 _Tuple_impl&
315 operator=(_Tuple_impl<_Idx, _UHead, _UTails...>&& __in)
316 {
317 _M_head(*this) = std::forward<_UHead>
318 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_head(__in));
319 _M_tail(*this) = std::move
320 (_Tuple_impl<_Idx, _UHead, _UTails...>::_M_tail(__in));
321 return *this;
322 }
323
324 protected:
325 void
326 _M_swap(_Tuple_impl& __in)
327 noexcept(__is_nothrow_swappable<_Head>::value
328 && noexcept(_M_tail(__in)._M_swap(_M_tail(__in))))
329 {
330 using std::swap;
331 swap(_M_head(*this), _M_head(__in));
332 _Inherited::_M_swap(_M_tail(__in));
333 }
334 };
335
336 // Basis case of inheritance recursion.
337 template<std::size_t _Idx, typename _Head>
338 struct _Tuple_impl<_Idx, _Head>
339 : private _Head_base<_Idx, _Head, __empty_not_final<_Head>::value>
340 {
341 template<std::size_t, typename...> friend class _Tuple_impl;
342
343 typedef _Head_base<_Idx, _Head, __empty_not_final<_Head>::value> _Base;
344
345 static constexpr _Head&
346 _M_head(_Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
347
348 static constexpr const _Head&
349 _M_head(const _Tuple_impl& __t) noexcept { return _Base::_M_head(__t); }
350
351 constexpr _Tuple_impl()
352 : _Base() { }
353
354 explicit
355 constexpr _Tuple_impl(const _Head& __head)
356 : _Base(__head) { }
357
358 template<typename _UHead>
359 explicit
360 constexpr _Tuple_impl(_UHead&& __head)
361 : _Base(std::forward<_UHead>(__head)) { }
362
363 constexpr _Tuple_impl(const _Tuple_impl&) = default;
364
365 constexpr
366 _Tuple_impl(_Tuple_impl&& __in)
367 noexcept(is_nothrow_move_constructible<_Head>::value)
368 : _Base(std::forward<_Head>(_M_head(__in))) { }
369
370 template<typename _UHead>
371 constexpr _Tuple_impl(const _Tuple_impl<_Idx, _UHead>& __in)
372 : _Base(_Tuple_impl<_Idx, _UHead>::_M_head(__in)) { }
373
374 template<typename _UHead>
375 constexpr _Tuple_impl(_Tuple_impl<_Idx, _UHead>&& __in)
376 : _Base(std::forward<_UHead>(_Tuple_impl<_Idx, _UHead>::_M_head(__in)))
377 { }
378
379 template<typename _Alloc>
380 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a)
381 : _Base(__tag, __use_alloc<_Head>(__a)) { }
382
383 template<typename _Alloc>
384 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
385 const _Head& __head)
386 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a), __head) { }
387
388 template<typename _Alloc, typename _UHead>
389 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
390 _UHead&& __head)
391 : _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
392 std::forward<_UHead>(__head)) { }
393
394 template<typename _Alloc>
395 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
396 const _Tuple_impl& __in)
397 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a), _M_head(__in)) { }
398
399 template<typename _Alloc>
400 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
401 _Tuple_impl&& __in)
402 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a),
403 std::forward<_Head>(_M_head(__in))) { }
404
405 template<typename _Alloc, typename _UHead>
406 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
407 const _Tuple_impl<_Idx, _UHead>& __in)
408 : _Base(__use_alloc<_Head, _Alloc, _Head>(__a),
409 _Tuple_impl<_Idx, _UHead>::_M_head(__in)) { }
410
411 template<typename _Alloc, typename _UHead>
412 _Tuple_impl(allocator_arg_t __tag, const _Alloc& __a,
413 _Tuple_impl<_Idx, _UHead>&& __in)
414 : _Base(__use_alloc<_Head, _Alloc, _UHead>(__a),
415 std::forward<_UHead>(_Tuple_impl<_Idx, _UHead>::_M_head(__in)))
416 { }
417
418 _Tuple_impl&
419 operator=(const _Tuple_impl& __in)
420 {
421 _M_head(*this) = _M_head(__in);
422 return *this;
423 }
424
425 _Tuple_impl&
426 operator=(_Tuple_impl&& __in)
427 noexcept(is_nothrow_move_assignable<_Head>::value)
428 {
429 _M_head(*this) = std::forward<_Head>(_M_head(__in));
430 return *this;
431 }
432
433 template<typename _UHead>
434 _Tuple_impl&
435 operator=(const _Tuple_impl<_Idx, _UHead>& __in)
436 {
437 _M_head(*this) = _Tuple_impl<_Idx, _UHead>::_M_head(__in);
438 return *this;
439 }
440
441 template<typename _UHead>
442 _Tuple_impl&
443 operator=(_Tuple_impl<_Idx, _UHead>&& __in)
444 {
445 _M_head(*this)
446 = std::forward<_UHead>(_Tuple_impl<_Idx, _UHead>::_M_head(__in));
447 return *this;
448 }
449
450 protected:
451 void
452 _M_swap(_Tuple_impl& __in)
453 noexcept(__is_nothrow_swappable<_Head>::value)
454 {
455 using std::swap;
456 swap(_M_head(*this), _M_head(__in));
457 }
458 };
459
460 template<typename... _Elements>
461 class tuple;
462
463 // Concept utility functions, reused in conditionally-explicit
464 // constructors.
465 template<bool, typename... _Elements>
466 struct _TC
467 {
468 template<typename... _UElements>
469 static constexpr bool _ConstructibleTuple()
470 {
471 return __and_<is_constructible<_Elements, const _UElements&>...>::value;
472 }
473
474 template<typename... _UElements>
475 static constexpr bool _ImplicitlyConvertibleTuple()
476 {
477 return __and_<is_convertible<const _UElements&, _Elements>...>::value;
478 }
479
480 template<typename... _UElements>
481 static constexpr bool _MoveConstructibleTuple()
482 {
483 return __and_<is_constructible<_Elements, _UElements&&>...>::value;
484 }
485
486 template<typename... _UElements>
487 static constexpr bool _ImplicitlyMoveConvertibleTuple()
488 {
489 return __and_<is_convertible<_UElements&&, _Elements>...>::value;
490 }
491
492 template<typename _SrcTuple>
493 static constexpr bool _NonNestedTuple()
494 {
495 return __and_<__not_<is_same<tuple<_Elements...>,
496 typename remove_cv<
497 typename remove_reference<_SrcTuple>::type
498 >::type>>,
499 __not_<is_convertible<_SrcTuple, _Elements...>>,
500 __not_<is_constructible<_Elements..., _SrcTuple>>
501 >::value;
502 }
503 template<typename... _UElements>
504 static constexpr bool _NotSameTuple()
505 {
506 return __not_<is_same<tuple<_Elements...>,
507 typename remove_const<
508 typename remove_reference<_UElements...>::type
509 >::type>>::value;
510 }
511 };
512
513 template<typename... _Elements>
514 struct _TC<false, _Elements...>
515 {
516 template<typename... _UElements>
517 static constexpr bool _ConstructibleTuple()
518 {
519 return false;
520 }
521
522 template<typename... _UElements>
523 static constexpr bool _ImplicitlyConvertibleTuple()
524 {
525 return false;
526 }
527
528 template<typename... _UElements>
529 static constexpr bool _MoveConstructibleTuple()
530 {
531 return false;
532 }
533
534 template<typename... _UElements>
535 static constexpr bool _ImplicitlyMoveConvertibleTuple()
536 {
537 return false;
538 }
539
540 template<typename... _UElements>
541 static constexpr bool _NonNestedTuple()
542 {
543 return true;
544 }
545 template<typename... _UElements>
546 static constexpr bool _NotSameTuple()
547 {
548 return true;
549 }
550 };
551
552 /// Primary class template, tuple
553 template<typename... _Elements>
554 class tuple : public _Tuple_impl<0, _Elements...>
555 {
556 typedef _Tuple_impl<0, _Elements...> _Inherited;
557
558 // Used for constraining the default constructor so
559 // that it becomes dependent on the constraints.
560 template<typename _Dummy>
561 struct _TC2
562 {
563 static constexpr bool _DefaultConstructibleTuple()
564 {
565 return __and_<is_default_constructible<_Elements>...>::value;
566 }
567 static constexpr bool _ImplicitlyDefaultConstructibleTuple()
568 {
569 return __and_<__is_implicitly_default_constructible<_Elements>...>
570 ::value;
571 }
572 };
573
574 public:
575 template<typename _Dummy = void,
576 typename enable_if<_TC2<_Dummy>::
577 _ImplicitlyDefaultConstructibleTuple(),
578 bool>::type = true>
579 constexpr tuple()
580 : _Inherited() { }
581
582 template<typename _Dummy = void,
583 typename enable_if<_TC2<_Dummy>::
584 _DefaultConstructibleTuple()
585 &&
586 !_TC2<_Dummy>::
587 _ImplicitlyDefaultConstructibleTuple(),
588 bool>::type = false>
589 explicit constexpr tuple()
590 : _Inherited() { }
591
592 // Shortcut for the cases where constructors taking _Elements...
593 // need to be constrained.
594 template<typename _Dummy> using _TCC =
595 _TC<is_same<_Dummy, void>::value,
596 _Elements...>;
597
598 template<typename _Dummy = void,
599 typename enable_if<
600 _TCC<_Dummy>::template
601 _ConstructibleTuple<_Elements...>()
602 && _TCC<_Dummy>::template
603 _ImplicitlyConvertibleTuple<_Elements...>()
604 && (sizeof...(_Elements) >= 1),
605 bool>::type=true>
606 constexpr tuple(const _Elements&... __elements)
607 : _Inherited(__elements...) { }
608
609 template<typename _Dummy = void,
610 typename enable_if<
611 _TCC<_Dummy>::template
612 _ConstructibleTuple<_Elements...>()
613 && !_TCC<_Dummy>::template
614 _ImplicitlyConvertibleTuple<_Elements...>()
615 && (sizeof...(_Elements) >= 1),
616 bool>::type=false>
617 explicit constexpr tuple(const _Elements&... __elements)
618 : _Inherited(__elements...) { }
619
620 // Shortcut for the cases where constructors taking _UElements...
621 // need to be constrained.
622 template<typename... _UElements> using _TMC =
623 _TC<(sizeof...(_Elements) == sizeof...(_UElements)),
624 _Elements...>;
625
626 template<typename... _UElements, typename
627 enable_if<
628 _TC<sizeof...(_UElements) == 1, _Elements...>::template
629 _NotSameTuple<_UElements...>()
630 && _TMC<_UElements...>::template
631 _MoveConstructibleTuple<_UElements...>()
632 && _TMC<_UElements...>::template
633 _ImplicitlyMoveConvertibleTuple<_UElements...>()
634 && (sizeof...(_Elements) >= 1),
635 bool>::type=true>
636 constexpr tuple(_UElements&&... __elements)
637 : _Inherited(std::forward<_UElements>(__elements)...) { }
638
639 template<typename... _UElements, typename
640 enable_if<
641 _TC<sizeof...(_UElements) == 1, _Elements...>::template
642 _NotSameTuple<_UElements...>()
643 && _TMC<_UElements...>::template
644 _MoveConstructibleTuple<_UElements...>()
645 && !_TMC<_UElements...>::template
646 _ImplicitlyMoveConvertibleTuple<_UElements...>()
647 && (sizeof...(_Elements) >= 1),
648 bool>::type=false>
649 explicit constexpr tuple(_UElements&&... __elements)
650 : _Inherited(std::forward<_UElements>(__elements)...) { }
651
652 constexpr tuple(const tuple&) = default;
653
654 constexpr tuple(tuple&&) = default;
655
656 // Shortcut for the cases where constructors taking tuples
657 // must avoid creating temporaries.
658 template<typename _Dummy> using _TNTC =
659 _TC<is_same<_Dummy, void>::value && sizeof...(_Elements) == 1,
660 _Elements...>;
661
662 template<typename... _UElements, typename _Dummy = void, typename
663 enable_if<_TMC<_UElements...>::template
664 _ConstructibleTuple<_UElements...>()
665 && _TMC<_UElements...>::template
666 _ImplicitlyConvertibleTuple<_UElements...>()
667 && _TNTC<_Dummy>::template
668 _NonNestedTuple<const tuple<_UElements...>&>(),
669 bool>::type=true>
670 constexpr tuple(const tuple<_UElements...>& __in)
671 : _Inherited(static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
672 { }
673
674 template<typename... _UElements, typename _Dummy = void, typename
675 enable_if<_TMC<_UElements...>::template
676 _ConstructibleTuple<_UElements...>()
677 && !_TMC<_UElements...>::template
678 _ImplicitlyConvertibleTuple<_UElements...>()
679 && _TNTC<_Dummy>::template
680 _NonNestedTuple<const tuple<_UElements...>&>(),
681 bool>::type=false>
682 explicit constexpr tuple(const tuple<_UElements...>& __in)
683 : _Inherited(static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
684 { }
685
686 template<typename... _UElements, typename _Dummy = void, typename
687 enable_if<_TMC<_UElements...>::template
688 _MoveConstructibleTuple<_UElements...>()
689 && _TMC<_UElements...>::template
690 _ImplicitlyMoveConvertibleTuple<_UElements...>()
691 && _TNTC<_Dummy>::template
692 _NonNestedTuple<tuple<_UElements...>&&>(),
693 bool>::type=true>
694 constexpr tuple(tuple<_UElements...>&& __in)
695 : _Inherited(static_cast<_Tuple_impl<0, _UElements...>&&>(__in)) { }
696
697 template<typename... _UElements, typename _Dummy = void, typename
698 enable_if<_TMC<_UElements...>::template
699 _MoveConstructibleTuple<_UElements...>()
700 && !_TMC<_UElements...>::template
701 _ImplicitlyMoveConvertibleTuple<_UElements...>()
702 && _TNTC<_Dummy>::template
703 _NonNestedTuple<tuple<_UElements...>&&>(),
704 bool>::type=false>
705 explicit constexpr tuple(tuple<_UElements...>&& __in)
706 : _Inherited(static_cast<_Tuple_impl<0, _UElements...>&&>(__in)) { }
707
708 // Allocator-extended constructors.
709
710 template<typename _Alloc>
711 tuple(allocator_arg_t __tag, const _Alloc& __a)
712 : _Inherited(__tag, __a) { }
713
714 template<typename _Alloc, typename _Dummy = void,
715 typename enable_if<
716 _TCC<_Dummy>::template
717 _ConstructibleTuple<_Elements...>()
718 && _TCC<_Dummy>::template
719 _ImplicitlyConvertibleTuple<_Elements...>(),
720 bool>::type=true>
721 tuple(allocator_arg_t __tag, const _Alloc& __a,
722 const _Elements&... __elements)
723 : _Inherited(__tag, __a, __elements...) { }
724
725 template<typename _Alloc, typename _Dummy = void,
726 typename enable_if<
727 _TCC<_Dummy>::template
728 _ConstructibleTuple<_Elements...>()
729 && !_TCC<_Dummy>::template
730 _ImplicitlyConvertibleTuple<_Elements...>(),
731 bool>::type=false>
732 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
733 const _Elements&... __elements)
734 : _Inherited(__tag, __a, __elements...) { }
735
736 template<typename _Alloc, typename... _UElements, typename
737 enable_if<_TMC<_UElements...>::template
738 _MoveConstructibleTuple<_UElements...>()
739 && _TMC<_UElements...>::template
740 _ImplicitlyMoveConvertibleTuple<_UElements...>(),
741 bool>::type=true>
742 tuple(allocator_arg_t __tag, const _Alloc& __a,
743 _UElements&&... __elements)
744 : _Inherited(__tag, __a, std::forward<_UElements>(__elements)...)
745 { }
746
747 template<typename _Alloc, typename... _UElements, typename
748 enable_if<_TMC<_UElements...>::template
749 _MoveConstructibleTuple<_UElements...>()
750 && !_TMC<_UElements...>::template
751 _ImplicitlyMoveConvertibleTuple<_UElements...>(),
752 bool>::type=false>
753 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
754 _UElements&&... __elements)
755 : _Inherited(__tag, __a, std::forward<_UElements>(__elements)...)
756 { }
757
758 template<typename _Alloc>
759 tuple(allocator_arg_t __tag, const _Alloc& __a, const tuple& __in)
760 : _Inherited(__tag, __a, static_cast<const _Inherited&>(__in)) { }
761
762 template<typename _Alloc>
763 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple&& __in)
764 : _Inherited(__tag, __a, static_cast<_Inherited&&>(__in)) { }
765
766 template<typename _Alloc, typename... _UElements, typename
767 enable_if<_TMC<_UElements...>::template
768 _ConstructibleTuple<_UElements...>()
769 && _TMC<_UElements...>::template
770 _ImplicitlyConvertibleTuple<_UElements...>(),
771 bool>::type=true>
772 tuple(allocator_arg_t __tag, const _Alloc& __a,
773 const tuple<_UElements...>& __in)
774 : _Inherited(__tag, __a,
775 static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
776 { }
777
778 template<typename _Alloc, typename... _UElements, typename
779 enable_if<_TMC<_UElements...>::template
780 _ConstructibleTuple<_UElements...>()
781 && !_TMC<_UElements...>::template
782 _ImplicitlyConvertibleTuple<_UElements...>(),
783 bool>::type=false>
784 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
785 const tuple<_UElements...>& __in)
786 : _Inherited(__tag, __a,
787 static_cast<const _Tuple_impl<0, _UElements...>&>(__in))
788 { }
789
790 template<typename _Alloc, typename... _UElements, typename
791 enable_if<_TMC<_UElements...>::template
792 _MoveConstructibleTuple<_UElements...>()
793 && _TMC<_UElements...>::template
794 _ImplicitlyMoveConvertibleTuple<_UElements...>(),
795 bool>::type=true>
796 tuple(allocator_arg_t __tag, const _Alloc& __a,
797 tuple<_UElements...>&& __in)
798 : _Inherited(__tag, __a,
799 static_cast<_Tuple_impl<0, _UElements...>&&>(__in))
800 { }
801
802 template<typename _Alloc, typename... _UElements, typename
803 enable_if<_TMC<_UElements...>::template
804 _MoveConstructibleTuple<_UElements...>()
805 && !_TMC<_UElements...>::template
806 _ImplicitlyMoveConvertibleTuple<_UElements...>(),
807 bool>::type=false>
808 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
809 tuple<_UElements...>&& __in)
810 : _Inherited(__tag, __a,
811 static_cast<_Tuple_impl<0, _UElements...>&&>(__in))
812 { }
813
814 tuple&
815 operator=(const tuple& __in)
816 {
817 static_cast<_Inherited&>(*this) = __in;
818 return *this;
819 }
820
821 tuple&
822 operator=(tuple&& __in)
823 noexcept(is_nothrow_move_assignable<_Inherited>::value)
824 {
825 static_cast<_Inherited&>(*this) = std::move(__in);
826 return *this;
827 }
828
829 template<typename... _UElements, typename = typename
830 enable_if<sizeof...(_UElements)
831 == sizeof...(_Elements)>::type>
832 tuple&
833 operator=(const tuple<_UElements...>& __in)
834 {
835 static_cast<_Inherited&>(*this) = __in;
836 return *this;
837 }
838
839 template<typename... _UElements, typename = typename
840 enable_if<sizeof...(_UElements)
841 == sizeof...(_Elements)>::type>
842 tuple&
843 operator=(tuple<_UElements...>&& __in)
844 {
845 static_cast<_Inherited&>(*this) = std::move(__in);
846 return *this;
847 }
848
849 void
850 swap(tuple& __in)
851 noexcept(noexcept(__in._M_swap(__in)))
852 { _Inherited::_M_swap(__in); }
853 };
854
855 // Explicit specialization, zero-element tuple.
856 template<>
857 class tuple<>
858 {
859 public:
860 void swap(tuple&) noexcept { /* no-op */ }
861 };
862
863 /// Partial specialization, 2-element tuple.
864 /// Includes construction and assignment from a pair.
865 template<typename _T1, typename _T2>
866 class tuple<_T1, _T2> : public _Tuple_impl<0, _T1, _T2>
867 {
868 typedef _Tuple_impl<0, _T1, _T2> _Inherited;
869
870 public:
871 template <typename _U1 = _T1,
872 typename _U2 = _T2,
873 typename enable_if<__and_<
874 __is_implicitly_default_constructible<_U1>,
875 __is_implicitly_default_constructible<_U2>>
876 ::value, bool>::type = true>
877
878 constexpr tuple()
879 : _Inherited() { }
880
881 template <typename _U1 = _T1,
882 typename _U2 = _T2,
883 typename enable_if<
884 __and_<
885 is_default_constructible<_U1>,
886 is_default_constructible<_U2>,
887 __not_<
888 __and_<__is_implicitly_default_constructible<_U1>,
889 __is_implicitly_default_constructible<_U2>>>>
890 ::value, bool>::type = false>
891
892 explicit constexpr tuple()
893 : _Inherited() { }
894
895 // Shortcut for the cases where constructors taking _T1, _T2
896 // need to be constrained.
897 template<typename _Dummy> using _TCC =
898 _TC<is_same<_Dummy, void>::value, _T1, _T2>;
899
900 template<typename _Dummy = void, typename
901 enable_if<_TCC<_Dummy>::template
902 _ConstructibleTuple<_T1, _T2>()
903 && _TCC<_Dummy>::template
904 _ImplicitlyConvertibleTuple<_T1, _T2>(),
905 bool>::type = true>
906 constexpr tuple(const _T1& __a1, const _T2& __a2)
907 : _Inherited(__a1, __a2) { }
908
909 template<typename _Dummy = void, typename
910 enable_if<_TCC<_Dummy>::template
911 _ConstructibleTuple<_T1, _T2>()
912 && !_TCC<_Dummy>::template
913 _ImplicitlyConvertibleTuple<_T1, _T2>(),
914 bool>::type = false>
915 explicit constexpr tuple(const _T1& __a1, const _T2& __a2)
916 : _Inherited(__a1, __a2) { }
917
918 // Shortcut for the cases where constructors taking _U1, _U2
919 // need to be constrained.
920 using _TMC = _TC<true, _T1, _T2>;
921
922 template<typename _U1, typename _U2, typename
923 enable_if<_TMC::template
924 _MoveConstructibleTuple<_U1, _U2>()
925 && _TMC::template
926 _ImplicitlyMoveConvertibleTuple<_U1, _U2>()
927 && !is_same<typename decay<_U1>::type,
928 allocator_arg_t>::value,
929 bool>::type = true>
930 constexpr tuple(_U1&& __a1, _U2&& __a2)
931 : _Inherited(std::forward<_U1>(__a1), std::forward<_U2>(__a2)) { }
932
933 template<typename _U1, typename _U2, typename
934 enable_if<_TMC::template
935 _MoveConstructibleTuple<_U1, _U2>()
936 && !_TMC::template
937 _ImplicitlyMoveConvertibleTuple<_U1, _U2>()
938 && !is_same<typename decay<_U1>::type,
939 allocator_arg_t>::value,
940 bool>::type = false>
941 explicit constexpr tuple(_U1&& __a1, _U2&& __a2)
942 : _Inherited(std::forward<_U1>(__a1), std::forward<_U2>(__a2)) { }
943
944 constexpr tuple(const tuple&) = default;
945
946 constexpr tuple(tuple&&) = default;
947
948 template<typename _U1, typename _U2, typename
949 enable_if<_TMC::template
950 _ConstructibleTuple<_U1, _U2>()
951 && _TMC::template
952 _ImplicitlyConvertibleTuple<_U1, _U2>(),
953 bool>::type = true>
954 constexpr tuple(const tuple<_U1, _U2>& __in)
955 : _Inherited(static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in)) { }
956
957 template<typename _U1, typename _U2, typename
958 enable_if<_TMC::template
959 _ConstructibleTuple<_U1, _U2>()
960 && !_TMC::template
961 _ImplicitlyConvertibleTuple<_U1, _U2>(),
962 bool>::type = false>
963 explicit constexpr tuple(const tuple<_U1, _U2>& __in)
964 : _Inherited(static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in)) { }
965
966 template<typename _U1, typename _U2, typename
967 enable_if<_TMC::template
968 _MoveConstructibleTuple<_U1, _U2>()
969 && _TMC::template
970 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
971 bool>::type = true>
972 constexpr tuple(tuple<_U1, _U2>&& __in)
973 : _Inherited(static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in)) { }
974
975 template<typename _U1, typename _U2, typename
976 enable_if<_TMC::template
977 _MoveConstructibleTuple<_U1, _U2>()
978 && !_TMC::template
979 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
980 bool>::type = false>
981 explicit constexpr tuple(tuple<_U1, _U2>&& __in)
982 : _Inherited(static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in)) { }
983
984 template<typename _U1, typename _U2, typename
985 enable_if<_TMC::template
986 _ConstructibleTuple<_U1, _U2>()
987 && _TMC::template
988 _ImplicitlyConvertibleTuple<_U1, _U2>(),
989 bool>::type = true>
990 constexpr tuple(const pair<_U1, _U2>& __in)
991 : _Inherited(__in.first, __in.second) { }
992
993 template<typename _U1, typename _U2, typename
994 enable_if<_TMC::template
995 _ConstructibleTuple<_U1, _U2>()
996 && !_TMC::template
997 _ImplicitlyConvertibleTuple<_U1, _U2>(),
998 bool>::type = false>
999 explicit constexpr tuple(const pair<_U1, _U2>& __in)
1000 : _Inherited(__in.first, __in.second) { }
1001
1002 template<typename _U1, typename _U2, typename
1003 enable_if<_TMC::template
1004 _MoveConstructibleTuple<_U1, _U2>()
1005 && _TMC::template
1006 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1007 bool>::type = true>
1008 constexpr tuple(pair<_U1, _U2>&& __in)
1009 : _Inherited(std::forward<_U1>(__in.first),
1010 std::forward<_U2>(__in.second)) { }
1011
1012 template<typename _U1, typename _U2, typename
1013 enable_if<_TMC::template
1014 _MoveConstructibleTuple<_U1, _U2>()
1015 && !_TMC::template
1016 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1017 bool>::type = false>
1018 explicit constexpr tuple(pair<_U1, _U2>&& __in)
1019 : _Inherited(std::forward<_U1>(__in.first),
1020 std::forward<_U2>(__in.second)) { }
1021
1022 // Allocator-extended constructors.
1023
1024 template<typename _Alloc>
1025 tuple(allocator_arg_t __tag, const _Alloc& __a)
1026 : _Inherited(__tag, __a) { }
1027
1028 template<typename _Alloc, typename _Dummy = void,
1029 typename enable_if<
1030 _TCC<_Dummy>::template
1031 _ConstructibleTuple<_T1, _T2>()
1032 && _TCC<_Dummy>::template
1033 _ImplicitlyConvertibleTuple<_T1, _T2>(),
1034 bool>::type=true>
1035
1036 tuple(allocator_arg_t __tag, const _Alloc& __a,
1037 const _T1& __a1, const _T2& __a2)
1038 : _Inherited(__tag, __a, __a1, __a2) { }
1039
1040 template<typename _Alloc, typename _Dummy = void,
1041 typename enable_if<
1042 _TCC<_Dummy>::template
1043 _ConstructibleTuple<_T1, _T2>()
1044 && !_TCC<_Dummy>::template
1045 _ImplicitlyConvertibleTuple<_T1, _T2>(),
1046 bool>::type=false>
1047
1048 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
1049 const _T1& __a1, const _T2& __a2)
1050 : _Inherited(__tag, __a, __a1, __a2) { }
1051
1052 template<typename _Alloc, typename _U1, typename _U2, typename
1053 enable_if<_TMC::template
1054 _MoveConstructibleTuple<_U1, _U2>()
1055 && _TMC::template
1056 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1057 bool>::type = true>
1058 tuple(allocator_arg_t __tag, const _Alloc& __a, _U1&& __a1, _U2&& __a2)
1059 : _Inherited(__tag, __a, std::forward<_U1>(__a1),
1060 std::forward<_U2>(__a2)) { }
1061
1062 template<typename _Alloc, typename _U1, typename _U2, typename
1063 enable_if<_TMC::template
1064 _MoveConstructibleTuple<_U1, _U2>()
1065 && !_TMC::template
1066 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1067 bool>::type = false>
1068 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
1069 _U1&& __a1, _U2&& __a2)
1070 : _Inherited(__tag, __a, std::forward<_U1>(__a1),
1071 std::forward<_U2>(__a2)) { }
1072
1073 template<typename _Alloc>
1074 tuple(allocator_arg_t __tag, const _Alloc& __a, const tuple& __in)
1075 : _Inherited(__tag, __a, static_cast<const _Inherited&>(__in)) { }
1076
1077 template<typename _Alloc>
1078 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple&& __in)
1079 : _Inherited(__tag, __a, static_cast<_Inherited&&>(__in)) { }
1080
1081 template<typename _Alloc, typename _U1, typename _U2, typename
1082 enable_if<_TMC::template
1083 _ConstructibleTuple<_U1, _U2>()
1084 && _TMC::template
1085 _ImplicitlyConvertibleTuple<_U1, _U2>(),
1086 bool>::type = true>
1087 tuple(allocator_arg_t __tag, const _Alloc& __a,
1088 const tuple<_U1, _U2>& __in)
1089 : _Inherited(__tag, __a,
1090 static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in))
1091 { }
1092
1093 template<typename _Alloc, typename _U1, typename _U2, typename
1094 enable_if<_TMC::template
1095 _ConstructibleTuple<_U1, _U2>()
1096 && !_TMC::template
1097 _ImplicitlyConvertibleTuple<_U1, _U2>(),
1098 bool>::type = false>
1099 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
1100 const tuple<_U1, _U2>& __in)
1101 : _Inherited(__tag, __a,
1102 static_cast<const _Tuple_impl<0, _U1, _U2>&>(__in))
1103 { }
1104
1105 template<typename _Alloc, typename _U1, typename _U2, typename
1106 enable_if<_TMC::template
1107 _MoveConstructibleTuple<_U1, _U2>()
1108 && _TMC::template
1109 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1110 bool>::type = true>
1111 tuple(allocator_arg_t __tag, const _Alloc& __a, tuple<_U1, _U2>&& __in)
1112 : _Inherited(__tag, __a, static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in))
1113 { }
1114
1115 template<typename _Alloc, typename _U1, typename _U2, typename
1116 enable_if<_TMC::template
1117 _MoveConstructibleTuple<_U1, _U2>()
1118 && !_TMC::template
1119 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1120 bool>::type = false>
1121 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
1122 tuple<_U1, _U2>&& __in)
1123 : _Inherited(__tag, __a, static_cast<_Tuple_impl<0, _U1, _U2>&&>(__in))
1124 { }
1125
1126 template<typename _Alloc, typename _U1, typename _U2, typename
1127 enable_if<_TMC::template
1128 _ConstructibleTuple<_U1, _U2>()
1129 && _TMC::template
1130 _ImplicitlyConvertibleTuple<_U1, _U2>(),
1131 bool>::type = true>
1132 tuple(allocator_arg_t __tag, const _Alloc& __a,
1133 const pair<_U1, _U2>& __in)
1134 : _Inherited(__tag, __a, __in.first, __in.second) { }
1135
1136 template<typename _Alloc, typename _U1, typename _U2, typename
1137 enable_if<_TMC::template
1138 _ConstructibleTuple<_U1, _U2>()
1139 && !_TMC::template
1140 _ImplicitlyConvertibleTuple<_U1, _U2>(),
1141 bool>::type = false>
1142 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
1143 const pair<_U1, _U2>& __in)
1144 : _Inherited(__tag, __a, __in.first, __in.second) { }
1145
1146 template<typename _Alloc, typename _U1, typename _U2, typename
1147 enable_if<_TMC::template
1148 _MoveConstructibleTuple<_U1, _U2>()
1149 && _TMC::template
1150 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1151 bool>::type = true>
1152 tuple(allocator_arg_t __tag, const _Alloc& __a, pair<_U1, _U2>&& __in)
1153 : _Inherited(__tag, __a, std::forward<_U1>(__in.first),
1154 std::forward<_U2>(__in.second)) { }
1155
1156 template<typename _Alloc, typename _U1, typename _U2, typename
1157 enable_if<_TMC::template
1158 _MoveConstructibleTuple<_U1, _U2>()
1159 && !_TMC::template
1160 _ImplicitlyMoveConvertibleTuple<_U1, _U2>(),
1161 bool>::type = false>
1162 explicit tuple(allocator_arg_t __tag, const _Alloc& __a,
1163 pair<_U1, _U2>&& __in)
1164 : _Inherited(__tag, __a, std::forward<_U1>(__in.first),
1165 std::forward<_U2>(__in.second)) { }
1166
1167 tuple&
1168 operator=(const tuple& __in)
1169 {
1170 static_cast<_Inherited&>(*this) = __in;
1171 return *this;
1172 }
1173
1174 tuple&
1175 operator=(tuple&& __in)
1176 noexcept(is_nothrow_move_assignable<_Inherited>::value)
1177 {
1178 static_cast<_Inherited&>(*this) = std::move(__in);
1179 return *this;
1180 }
1181
1182 template<typename _U1, typename _U2>
1183 tuple&
1184 operator=(const tuple<_U1, _U2>& __in)
1185 {
1186 static_cast<_Inherited&>(*this) = __in;
1187 return *this;
1188 }
1189
1190 template<typename _U1, typename _U2>
1191 tuple&
1192 operator=(tuple<_U1, _U2>&& __in)
1193 {
1194 static_cast<_Inherited&>(*this) = std::move(__in);
1195 return *this;
1196 }
1197
1198 template<typename _U1, typename _U2>
1199 tuple&
1200 operator=(const pair<_U1, _U2>& __in)
1201 {
1202 this->_M_head(*this) = __in.first;
1203 this->_M_tail(*this)._M_head(*this) = __in.second;
1204 return *this;
1205 }
1206
1207 template<typename _U1, typename _U2>
1208 tuple&
1209 operator=(pair<_U1, _U2>&& __in)
1210 {
1211 this->_M_head(*this) = std::forward<_U1>(__in.first);
1212 this->_M_tail(*this)._M_head(*this) = std::forward<_U2>(__in.second);
1213 return *this;
1214 }
1215
1216 void
1217 swap(tuple& __in)
1218 noexcept(noexcept(__in._M_swap(__in)))
1219 { _Inherited::_M_swap(__in); }
1220 };
1221
1222
1223 /**
1224 * Recursive case for tuple_element: strip off the first element in
1225 * the tuple and retrieve the (i-1)th element of the remaining tuple.
1226 */
1227 template<std::size_t __i, typename _Head, typename... _Tail>
1228 struct tuple_element<__i, tuple<_Head, _Tail...> >
1229 : tuple_element<__i - 1, tuple<_Tail...> > { };
1230
1231 /**
1232 * Basis case for tuple_element: The first element is the one we're seeking.
1233 */
1234 template<typename _Head, typename... _Tail>
1235 struct tuple_element<0, tuple<_Head, _Tail...> >
1236 {
1237 typedef _Head type;
1238 };
1239
1240 /// class tuple_size
1241 template<typename... _Elements>
1242 struct tuple_size<tuple<_Elements...>>
1243 : public integral_constant<std::size_t, sizeof...(_Elements)> { };
1244
1245 template<std::size_t __i, typename _Head, typename... _Tail>
1246 constexpr _Head&
1247 __get_helper(_Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1248 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1249
1250 template<std::size_t __i, typename _Head, typename... _Tail>
1251 constexpr const _Head&
1252 __get_helper(const _Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1253 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1254
1255 /// Return a reference to the ith element of a tuple.
1256 template<std::size_t __i, typename... _Elements>
1257 constexpr __tuple_element_t<__i, tuple<_Elements...>>&
1258 get(tuple<_Elements...>& __t) noexcept
1259 { return std::__get_helper<__i>(__t); }
1260
1261 /// Return a const reference to the ith element of a const tuple.
1262 template<std::size_t __i, typename... _Elements>
1263 constexpr const __tuple_element_t<__i, tuple<_Elements...>>&
1264 get(const tuple<_Elements...>& __t) noexcept
1265 { return std::__get_helper<__i>(__t); }
1266
1267 /// Return an rvalue reference to the ith element of a tuple rvalue.
1268 template<std::size_t __i, typename... _Elements>
1269 constexpr __tuple_element_t<__i, tuple<_Elements...>>&&
1270 get(tuple<_Elements...>&& __t) noexcept
1271 {
1272 typedef __tuple_element_t<__i, tuple<_Elements...>> __element_type;
1273 return std::forward<__element_type&&>(std::get<__i>(__t));
1274 }
1275
1276#if __cplusplus201402L > 201103L
1277
1278#define __cpp_lib_tuples_by_type201304 201304
1279
1280 template<typename _Head, size_t __i, typename... _Tail>
1281 constexpr _Head&
1282 __get_helper2(_Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1283 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1284
1285 template<typename _Head, size_t __i, typename... _Tail>
1286 constexpr const _Head&
1287 __get_helper2(const _Tuple_impl<__i, _Head, _Tail...>& __t) noexcept
1288 { return _Tuple_impl<__i, _Head, _Tail...>::_M_head(__t); }
1289
1290 /// Return a reference to the unique element of type _Tp of a tuple.
1291 template <typename _Tp, typename... _Types>
1292 constexpr _Tp&
1293 get(tuple<_Types...>& __t) noexcept
1294 { return std::__get_helper2<_Tp>(__t); }
1295
1296 /// Return a reference to the unique element of type _Tp of a tuple rvalue.
1297 template <typename _Tp, typename... _Types>
1298 constexpr _Tp&&
1299 get(tuple<_Types...>&& __t) noexcept
1300 { return std::forward<_Tp&&>(std::__get_helper2<_Tp>(__t)); }
1301
1302 /// Return a const reference to the unique element of type _Tp of a tuple.
1303 template <typename _Tp, typename... _Types>
1304 constexpr const _Tp&
1305 get(const tuple<_Types...>& __t) noexcept
1306 { return std::__get_helper2<_Tp>(__t); }
1307#endif
1308
1309 // This class performs the comparison operations on tuples
1310 template<typename _Tp, typename _Up, size_t __i, size_t __size>
1311 struct __tuple_compare
1312 {
1313 static constexpr bool
1314 __eq(const _Tp& __t, const _Up& __u)
1315 {
1316 return bool(std::get<__i>(__t) == std::get<__i>(__u))
1317 && __tuple_compare<_Tp, _Up, __i + 1, __size>::__eq(__t, __u);
1318 }
1319
1320 static constexpr bool
1321 __less(const _Tp& __t, const _Up& __u)
1322 {
1323 return bool(std::get<__i>(__t) < std::get<__i>(__u))
8
Assuming the condition is false
10
Returning value, which participates in a condition later
1324 || (!bool(std::get<__i>(__u) < std::get<__i>(__t))
9
Assuming the condition is false
1325 && __tuple_compare<_Tp, _Up, __i + 1, __size>::__less(__t, __u));
1326 }
1327 };
1328
1329 template<typename _Tp, typename _Up, size_t __size>
1330 struct __tuple_compare<_Tp, _Up, __size, __size>
1331 {
1332 static constexpr bool
1333 __eq(const _Tp&, const _Up&) { return true; }
1334
1335 static constexpr bool
1336 __less(const _Tp&, const _Up&) { return false; }
1337 };
1338
1339 template<typename... _TElements, typename... _UElements>
1340 constexpr bool
1341 operator==(const tuple<_TElements...>& __t,
1342 const tuple<_UElements...>& __u)
1343 {
1344 static_assert(sizeof...(_TElements) == sizeof...(_UElements),
1345 "tuple objects can only be compared if they have equal sizes.");
1346 using __compare = __tuple_compare<tuple<_TElements...>,
1347 tuple<_UElements...>,
1348 0, sizeof...(_TElements)>;
1349 return __compare::__eq(__t, __u);
1350 }
1351
1352 template<typename... _TElements, typename... _UElements>
1353 constexpr bool
1354 operator<(const tuple<_TElements...>& __t,
1355 const tuple<_UElements...>& __u)
1356 {
1357 static_assert(sizeof...(_TElements) == sizeof...(_UElements),
1358 "tuple objects can only be compared if they have equal sizes.");
1359 using __compare = __tuple_compare<tuple<_TElements...>,
1360 tuple<_UElements...>,
1361 0, sizeof...(_TElements)>;
1362 return __compare::__less(__t, __u);
7
Calling '__tuple_compare::__less'
11
Returning from '__tuple_compare::__less'
12
Returning value, which participates in a condition later
1363 }
1364
1365 template<typename... _TElements, typename... _UElements>
1366 constexpr bool
1367 operator!=(const tuple<_TElements...>& __t,
1368 const tuple<_UElements...>& __u)
1369 { return !(__t == __u); }
1370
1371 template<typename... _TElements, typename... _UElements>
1372 constexpr bool
1373 operator>(const tuple<_TElements...>& __t,
1374 const tuple<_UElements...>& __u)
1375 { return __u < __t; }
1376
1377 template<typename... _TElements, typename... _UElements>
1378 constexpr bool
1379 operator<=(const tuple<_TElements...>& __t,
1380 const tuple<_UElements...>& __u)
1381 { return !(__u < __t); }
1382
1383 template<typename... _TElements, typename... _UElements>
1384 constexpr bool
1385 operator>=(const tuple<_TElements...>& __t,
1386 const tuple<_UElements...>& __u)
1387 { return !(__t < __u); }
1388
1389 // NB: DR 705.
1390 template<typename... _Elements>
1391 constexpr tuple<typename __decay_and_strip<_Elements>::__type...>
1392 make_tuple(_Elements&&... __args)
1393 {
1394 typedef tuple<typename __decay_and_strip<_Elements>::__type...>
1395 __result_type;
1396 return __result_type(std::forward<_Elements>(__args)...);
1397 }
1398
1399 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1400 // 2275. Why is forward_as_tuple not constexpr?
1401 template<typename... _Elements>
1402 constexpr tuple<_Elements&&...>
1403 forward_as_tuple(_Elements&&... __args) noexcept
1404 { return tuple<_Elements&&...>(std::forward<_Elements>(__args)...); }
1405
1406 template<typename... _Tps>
1407 struct __is_tuple_like_impl<tuple<_Tps...>> : true_type
1408 { };
1409
1410 // Internal type trait that allows us to sfinae-protect tuple_cat.
1411 template<typename _Tp>
1412 struct __is_tuple_like
1413 : public __is_tuple_like_impl<typename std::remove_cv
1414 <typename std::remove_reference<_Tp>::type>::type>::type
1415 { };
1416
1417 template<size_t, typename, typename, size_t>
1418 struct __make_tuple_impl;
1419
1420 template<size_t _Idx, typename _Tuple, typename... _Tp, size_t _Nm>
1421 struct __make_tuple_impl<_Idx, tuple<_Tp...>, _Tuple, _Nm>
1422 : __make_tuple_impl<_Idx + 1,
1423 tuple<_Tp..., __tuple_element_t<_Idx, _Tuple>>,
1424 _Tuple, _Nm>
1425 { };
1426
1427 template<std::size_t _Nm, typename _Tuple, typename... _Tp>
1428 struct __make_tuple_impl<_Nm, tuple<_Tp...>, _Tuple, _Nm>
1429 {
1430 typedef tuple<_Tp...> __type;
1431 };
1432
1433 template<typename _Tuple>
1434 struct __do_make_tuple
1435 : __make_tuple_impl<0, tuple<>, _Tuple, std::tuple_size<_Tuple>::value>
1436 { };
1437
1438 // Returns the std::tuple equivalent of a tuple-like type.
1439 template<typename _Tuple>
1440 struct __make_tuple
1441 : public __do_make_tuple<typename std::remove_cv
1442 <typename std::remove_reference<_Tuple>::type>::type>
1443 { };
1444
1445 // Combines several std::tuple's into a single one.
1446 template<typename...>
1447 struct __combine_tuples;
1448
1449 template<>
1450 struct __combine_tuples<>
1451 {
1452 typedef tuple<> __type;
1453 };
1454
1455 template<typename... _Ts>
1456 struct __combine_tuples<tuple<_Ts...>>
1457 {
1458 typedef tuple<_Ts...> __type;
1459 };
1460
1461 template<typename... _T1s, typename... _T2s, typename... _Rem>
1462 struct __combine_tuples<tuple<_T1s...>, tuple<_T2s...>, _Rem...>
1463 {
1464 typedef typename __combine_tuples<tuple<_T1s..., _T2s...>,
1465 _Rem...>::__type __type;
1466 };
1467
1468 // Computes the result type of tuple_cat given a set of tuple-like types.
1469 template<typename... _Tpls>
1470 struct __tuple_cat_result
1471 {
1472 typedef typename __combine_tuples
1473 <typename __make_tuple<_Tpls>::__type...>::__type __type;
1474 };
1475
1476 // Helper to determine the index set for the first tuple-like
1477 // type of a given set.
1478 template<typename...>
1479 struct __make_1st_indices;
1480
1481 template<>
1482 struct __make_1st_indices<>
1483 {
1484 typedef std::_Index_tuple<> __type;
1485 };
1486
1487 template<typename _Tp, typename... _Tpls>
1488 struct __make_1st_indices<_Tp, _Tpls...>
1489 {
1490 typedef typename std::_Build_index_tuple<std::tuple_size<
1491 typename std::remove_reference<_Tp>::type>::value>::__type __type;
1492 };
1493
1494 // Performs the actual concatenation by step-wise expanding tuple-like
1495 // objects into the elements, which are finally forwarded into the
1496 // result tuple.
1497 template<typename _Ret, typename _Indices, typename... _Tpls>
1498 struct __tuple_concater;
1499
1500 template<typename _Ret, std::size_t... _Is, typename _Tp, typename... _Tpls>
1501 struct __tuple_concater<_Ret, std::_Index_tuple<_Is...>, _Tp, _Tpls...>
1502 {
1503 template<typename... _Us>
1504 static constexpr _Ret
1505 _S_do(_Tp&& __tp, _Tpls&&... __tps, _Us&&... __us)
1506 {
1507 typedef typename __make_1st_indices<_Tpls...>::__type __idx;
1508 typedef __tuple_concater<_Ret, __idx, _Tpls...> __next;
1509 return __next::_S_do(std::forward<_Tpls>(__tps)...,
1510 std::forward<_Us>(__us)...,
1511 std::get<_Is>(std::forward<_Tp>(__tp))...);
1512 }
1513 };
1514
1515 template<typename _Ret>
1516 struct __tuple_concater<_Ret, std::_Index_tuple<>>
1517 {
1518 template<typename... _Us>
1519 static constexpr _Ret
1520 _S_do(_Us&&... __us)
1521 {
1522 return _Ret(std::forward<_Us>(__us)...);
1523 }
1524 };
1525
1526 /// tuple_cat
1527 template<typename... _Tpls, typename = typename
1528 enable_if<__and_<__is_tuple_like<_Tpls>...>::value>::type>
1529 constexpr auto
1530 tuple_cat(_Tpls&&... __tpls)
1531 -> typename __tuple_cat_result<_Tpls...>::__type
1532 {
1533 typedef typename __tuple_cat_result<_Tpls...>::__type __ret;
1534 typedef typename __make_1st_indices<_Tpls...>::__type __idx;
1535 typedef __tuple_concater<__ret, __idx, _Tpls...> __concater;
1536 return __concater::_S_do(std::forward<_Tpls>(__tpls)...);
1537 }
1538
1539 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1540 // 2301. Why is tie not constexpr?
1541 /// tie
1542 template<typename... _Elements>
1543 constexpr tuple<_Elements&...>
1544 tie(_Elements&... __args) noexcept
1545 { return tuple<_Elements&...>(__args...); }
1546
1547 /// swap
1548 template<typename... _Elements>
1549 inline void
1550 swap(tuple<_Elements...>& __x, tuple<_Elements...>& __y)
1551 noexcept(noexcept(__x.swap(__y)))
1552 { __x.swap(__y); }
1553
1554 // A class (and instance) which can be used in 'tie' when an element
1555 // of a tuple is not required
1556 struct _Swallow_assign
1557 {
1558 template<class _Tp>
1559 const _Swallow_assign&
1560 operator=(const _Tp&) const
1561 { return *this; }
1562 };
1563
1564 const _Swallow_assign ignore{};
1565
1566 /// Partial specialization for tuples
1567 template<typename... _Types, typename _Alloc>
1568 struct uses_allocator<tuple<_Types...>, _Alloc> : true_type { };
1569
1570 // See stl_pair.h...
1571 template<class _T1, class _T2>
1572 template<typename... _Args1, typename... _Args2>
1573 inline
1574 pair<_T1, _T2>::
1575 pair(piecewise_construct_t,
1576 tuple<_Args1...> __first, tuple<_Args2...> __second)
1577 : pair(__first, __second,
1578 typename _Build_index_tuple<sizeof...(_Args1)>::__type(),
1579 typename _Build_index_tuple<sizeof...(_Args2)>::__type())
1580 { }
1581
1582 template<class _T1, class _T2>
1583 template<typename... _Args1, std::size_t... _Indexes1,
1584 typename... _Args2, std::size_t... _Indexes2>
1585 inline
1586 pair<_T1, _T2>::
1587 pair(tuple<_Args1...>& __tuple1, tuple<_Args2...>& __tuple2,
1588 _Index_tuple<_Indexes1...>, _Index_tuple<_Indexes2...>)
1589 : first(std::forward<_Args1>(std::get<_Indexes1>(__tuple1))...),
1590 second(std::forward<_Args2>(std::get<_Indexes2>(__tuple2))...)
1591 { }
1592
1593 /// @}
1594
1595_GLIBCXX_END_NAMESPACE_VERSION
1596} // namespace std
1597
1598#endif // C++11
1599
1600#endif // _GLIBCXX_TUPLE