Bug Summary

File:utils/TableGen/CodeGenDAGPatterns.cpp
Warning:line 3089, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenDAGPatterns.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn325118/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/utils/TableGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-14-150435-17243-1 -x c++ /build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp

/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp

1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/StringMap.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/TableGen/Error.h"
26#include "llvm/TableGen/Record.h"
27#include <algorithm>
28#include <cstdio>
29#include <set>
30using namespace llvm;
31
32#define DEBUG_TYPE"dag-patterns" "dag-patterns"
33
34static inline bool isIntegerOrPtr(MVT VT) {
35 return VT.isInteger() || VT == MVT::iPTR;
36}
37static inline bool isFloatingPoint(MVT VT) {
38 return VT.isFloatingPoint();
39}
40static inline bool isVector(MVT VT) {
41 return VT.isVector();
42}
43static inline bool isScalar(MVT VT) {
44 return !VT.isVector();
45}
46
47template <typename Predicate>
48static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49 bool Erased = false;
50 // It is ok to iterate over MachineValueTypeSet and remove elements from it
51 // at the same time.
52 for (MVT T : S) {
53 if (!P(T))
54 continue;
55 Erased = true;
56 S.erase(T);
57 }
58 return Erased;
59}
60
61// --- TypeSetByHwMode
62
63// This is a parameterized type-set class. For each mode there is a list
64// of types that are currently possible for a given tree node. Type
65// inference will apply to each mode separately.
66
67TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68 for (const ValueTypeByHwMode &VVT : VTList)
69 insert(VVT);
70}
71
72bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73 for (const auto &I : *this) {
74 if (I.second.size() > 1)
75 return false;
76 if (!AllowEmpty && I.second.empty())
77 return false;
78 }
79 return true;
80}
81
82ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83 assert(isValueTypeByHwMode(true) &&(static_cast <bool> (isValueTypeByHwMode(true) &&
"The type set has multiple types for at least one HW mode") ?
void (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 84, __extension__ __PRETTY_FUNCTION__))
84 "The type set has multiple types for at least one HW mode")(static_cast <bool> (isValueTypeByHwMode(true) &&
"The type set has multiple types for at least one HW mode") ?
void (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 84, __extension__ __PRETTY_FUNCTION__))
;
85 ValueTypeByHwMode VVT;
86 for (const auto &I : *this) {
87 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88 VVT.getOrCreateTypeForMode(I.first, T);
89 }
90 return VVT;
91}
92
93bool TypeSetByHwMode::isPossible() const {
94 for (const auto &I : *this)
95 if (!I.second.empty())
96 return true;
97 return false;
98}
99
100bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101 bool Changed = false;
102 SmallDenseSet<unsigned, 4> Modes;
103 for (const auto &P : VVT) {
104 unsigned M = P.first;
105 Modes.insert(M);
106 // Make sure there exists a set for each specific mode from VVT.
107 Changed |= getOrCreate(M).insert(P.second).second;
108 }
109
110 // If VVT has a default mode, add the corresponding type to all
111 // modes in "this" that do not exist in VVT.
112 if (Modes.count(DefaultMode)) {
113 MVT DT = VVT.getType(DefaultMode);
114 for (auto &I : *this)
115 if (!Modes.count(I.first))
116 Changed |= I.second.insert(DT).second;
117 }
118 return Changed;
119}
120
121// Constrain the type set to be the intersection with VTS.
122bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123 bool Changed = false;
124 if (hasDefault()) {
125 for (const auto &I : VTS) {
126 unsigned M = I.first;
127 if (M == DefaultMode || hasMode(M))
128 continue;
129 Map.insert({M, Map.at(DefaultMode)});
130 Changed = true;
131 }
132 }
133
134 for (auto &I : *this) {
135 unsigned M = I.first;
136 SetType &S = I.second;
137 if (VTS.hasMode(M) || VTS.hasDefault()) {
138 Changed |= intersect(I.second, VTS.get(M));
139 } else if (!S.empty()) {
140 S.clear();
141 Changed = true;
142 }
143 }
144 return Changed;
145}
146
147template <typename Predicate>
148bool TypeSetByHwMode::constrain(Predicate P) {
149 bool Changed = false;
150 for (auto &I : *this)
151 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152 return Changed;
153}
154
155template <typename Predicate>
156bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157 assert(empty())(static_cast <bool> (empty()) ? void (0) : __assert_fail
("empty()", "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 157, __extension__ __PRETTY_FUNCTION__))
;
158 for (const auto &I : VTS) {
159 SetType &S = getOrCreate(I.first);
160 for (auto J : I.second)
161 if (P(J))
162 S.insert(J);
163 }
164 return !empty();
165}
166
167void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168 SmallVector<unsigned, 4> Modes;
169 Modes.reserve(Map.size());
170
171 for (const auto &I : *this)
172 Modes.push_back(I.first);
173 if (Modes.empty()) {
174 OS << "{}";
175 return;
176 }
177 array_pod_sort(Modes.begin(), Modes.end());
178
179 OS << '{';
180 for (unsigned M : Modes) {
181 OS << ' ' << getModeName(M) << ':';
182 writeToStream(get(M), OS);
183 }
184 OS << " }";
185}
186
187void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188 SmallVector<MVT, 4> Types(S.begin(), S.end());
189 array_pod_sort(Types.begin(), Types.end());
190
191 OS << '[';
192 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193 OS << ValueTypeByHwMode::getMVTName(Types[i]);
194 if (i != e-1)
195 OS << ' ';
196 }
197 OS << ']';
198}
199
200bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201 bool HaveDefault = hasDefault();
202 if (HaveDefault != VTS.hasDefault())
203 return false;
204
205 if (isSimple()) {
206 if (VTS.isSimple())
207 return *begin() == *VTS.begin();
208 return false;
209 }
210
211 SmallDenseSet<unsigned, 4> Modes;
212 for (auto &I : *this)
213 Modes.insert(I.first);
214 for (const auto &I : VTS)
215 Modes.insert(I.first);
216
217 if (HaveDefault) {
218 // Both sets have default mode.
219 for (unsigned M : Modes) {
220 if (get(M) != VTS.get(M))
221 return false;
222 }
223 } else {
224 // Neither set has default mode.
225 for (unsigned M : Modes) {
226 // If there is no default mode, an empty set is equivalent to not having
227 // the corresponding mode.
228 bool NoModeThis = !hasMode(M) || get(M).empty();
229 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230 if (NoModeThis != NoModeVTS)
231 return false;
232 if (!NoModeThis)
233 if (get(M) != VTS.get(M))
234 return false;
235 }
236 }
237
238 return true;
239}
240
241namespace llvm {
242 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243 T.writeToStream(OS);
244 return OS;
245 }
246}
247
248LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
249void TypeSetByHwMode::dump() const {
250 dbgs() << *this << '\n';
251}
252
253bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256
257 if (OutP == InP)
258 return berase_if(Out, Int);
259
260 // Compute the intersection of scalars separately to account for only
261 // one set containing iPTR.
262 // The itersection of iPTR with a set of integer scalar types that does not
263 // include iPTR will result in the most specific scalar type:
264 // - iPTR is more specific than any set with two elements or more
265 // - iPTR is less specific than any single integer scalar type.
266 // For example
267 // { iPTR } * { i32 } -> { i32 }
268 // { iPTR } * { i32 i64 } -> { iPTR }
269 // and
270 // { iPTR i32 } * { i32 } -> { i32 }
271 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
272 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273
274 // Compute the difference between the two sets in such a way that the
275 // iPTR is in the set that is being subtracted. This is to see if there
276 // are any extra scalars in the set without iPTR that are not in the
277 // set containing iPTR. Then the iPTR could be considered a "wildcard"
278 // matching these scalars. If there is only one such scalar, it would
279 // replace the iPTR, if there are more, the iPTR would be retained.
280 SetType Diff;
281 if (InP) {
282 Diff = Out;
283 berase_if(Diff, [&In](MVT T) { return In.count(T); });
284 // Pre-remove these elements and rely only on InP/OutP to determine
285 // whether a change has been made.
286 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287 } else {
288 Diff = In;
289 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290 Out.erase(MVT::iPTR);
291 }
292
293 // The actual intersection.
294 bool Changed = berase_if(Out, Int);
295 unsigned NumD = Diff.size();
296 if (NumD == 0)
297 return Changed;
298
299 if (NumD == 1) {
300 Out.insert(*Diff.begin());
301 // This is a change only if Out was the one with iPTR (which is now
302 // being replaced).
303 Changed |= OutP;
304 } else {
305 // Multiple elements from Out are now replaced with iPTR.
306 Out.insert(MVT::iPTR);
307 Changed |= !OutP;
308 }
309 return Changed;
310}
311
312bool TypeSetByHwMode::validate() const {
313#ifndef NDEBUG
314 if (empty())
315 return true;
316 bool AllEmpty = true;
317 for (const auto &I : *this)
318 AllEmpty &= I.second.empty();
319 return !AllEmpty;
320#endif
321 return true;
322}
323
324// --- TypeInfer
325
326bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327 const TypeSetByHwMode &In) {
328 ValidateOnExit _1(Out, *this);
329 In.validate();
330 if (In.empty() || Out == In || TP.hasError())
331 return false;
332 if (Out.empty()) {
333 Out = In;
334 return true;
335 }
336
337 bool Changed = Out.constrain(In);
338 if (Changed && Out.empty())
339 TP.error("Type contradiction");
340
341 return Changed;
342}
343
344bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345 ValidateOnExit _1(Out, *this);
346 if (TP.hasError())
347 return false;
348 assert(!Out.empty() && "cannot pick from an empty set")(static_cast <bool> (!Out.empty() && "cannot pick from an empty set"
) ? void (0) : __assert_fail ("!Out.empty() && \"cannot pick from an empty set\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 348, __extension__ __PRETTY_FUNCTION__))
;
349
350 bool Changed = false;
351 for (auto &I : Out) {
352 TypeSetByHwMode::SetType &S = I.second;
353 if (S.size() <= 1)
354 continue;
355 MVT T = *S.begin(); // Pick the first element.
356 S.clear();
357 S.insert(T);
358 Changed = true;
359 }
360 return Changed;
361}
362
363bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364 ValidateOnExit _1(Out, *this);
365 if (TP.hasError())
366 return false;
367 if (!Out.empty())
368 return Out.constrain(isIntegerOrPtr);
369
370 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371}
372
373bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374 ValidateOnExit _1(Out, *this);
375 if (TP.hasError())
376 return false;
377 if (!Out.empty())
378 return Out.constrain(isFloatingPoint);
379
380 return Out.assign_if(getLegalTypes(), isFloatingPoint);
381}
382
383bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384 ValidateOnExit _1(Out, *this);
385 if (TP.hasError())
386 return false;
387 if (!Out.empty())
388 return Out.constrain(isScalar);
389
390 return Out.assign_if(getLegalTypes(), isScalar);
391}
392
393bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394 ValidateOnExit _1(Out, *this);
395 if (TP.hasError())
396 return false;
397 if (!Out.empty())
398 return Out.constrain(isVector);
399
400 return Out.assign_if(getLegalTypes(), isVector);
401}
402
403bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404 ValidateOnExit _1(Out, *this);
405 if (TP.hasError() || !Out.empty())
406 return false;
407
408 Out = getLegalTypes();
409 return true;
410}
411
412template <typename Iter, typename Pred, typename Less>
413static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414 if (B == E)
415 return E;
416 Iter Min = E;
417 for (Iter I = B; I != E; ++I) {
418 if (!P(*I))
419 continue;
420 if (Min == E || L(*I, *Min))
421 Min = I;
422 }
423 return Min;
424}
425
426template <typename Iter, typename Pred, typename Less>
427static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428 if (B == E)
429 return E;
430 Iter Max = E;
431 for (Iter I = B; I != E; ++I) {
432 if (!P(*I))
433 continue;
434 if (Max == E || L(*Max, *I))
435 Max = I;
436 }
437 return Max;
438}
439
440/// Make sure that for each type in Small, there exists a larger type in Big.
441bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442 TypeSetByHwMode &Big) {
443 ValidateOnExit _1(Small, *this), _2(Big, *this);
444 if (TP.hasError())
445 return false;
446 bool Changed = false;
447
448 if (Small.empty())
449 Changed |= EnforceAny(Small);
450 if (Big.empty())
451 Changed |= EnforceAny(Big);
452
453 assert(Small.hasDefault() && Big.hasDefault())(static_cast <bool> (Small.hasDefault() && Big.
hasDefault()) ? void (0) : __assert_fail ("Small.hasDefault() && Big.hasDefault()"
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 453, __extension__ __PRETTY_FUNCTION__))
;
454
455 std::vector<unsigned> Modes = union_modes(Small, Big);
456
457 // 1. Only allow integer or floating point types and make sure that
458 // both sides are both integer or both floating point.
459 // 2. Make sure that either both sides have vector types, or neither
460 // of them does.
461 for (unsigned M : Modes) {
462 TypeSetByHwMode::SetType &S = Small.get(M);
463 TypeSetByHwMode::SetType &B = Big.get(M);
464
465 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467 Changed |= berase_if(S, NotInt) |
468 berase_if(B, NotInt);
469 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471 Changed |= berase_if(S, NotFP) |
472 berase_if(B, NotFP);
473 } else if (S.empty() || B.empty()) {
474 Changed = !S.empty() || !B.empty();
475 S.clear();
476 B.clear();
477 } else {
478 TP.error("Incompatible types");
479 return Changed;
480 }
481
482 if (none_of(S, isVector) || none_of(B, isVector)) {
483 Changed |= berase_if(S, isVector) |
484 berase_if(B, isVector);
485 }
486 }
487
488 auto LT = [](MVT A, MVT B) -> bool {
489 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491 A.getSizeInBits() < B.getSizeInBits());
492 };
493 auto LE = [](MVT A, MVT B) -> bool {
494 // This function is used when removing elements: when a vector is compared
495 // to a non-vector, it should return false (to avoid removal).
496 if (A.isVector() != B.isVector())
497 return false;
498
499 // Note on the < comparison below:
500 // X86 has patterns like
501 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502 // where the truncated vector is given a type v16i8, while the source
503 // vector has type v4i32. They both have the same size in bits.
504 // The minimal type in the result is obviously v16i8, and when we remove
505 // all types from the source that are smaller-or-equal than v8i16, the
506 // only source type would also be removed (since it's equal in size).
507 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508 A.getSizeInBits() < B.getSizeInBits();
509 };
510
511 for (unsigned M : Modes) {
512 TypeSetByHwMode::SetType &S = Small.get(M);
513 TypeSetByHwMode::SetType &B = Big.get(M);
514 // MinS = min scalar in Small, remove all scalars from Big that are
515 // smaller-or-equal than MinS.
516 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517 if (MinS != S.end())
518 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519
520 // MaxS = max scalar in Big, remove all scalars from Small that are
521 // larger than MaxS.
522 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523 if (MaxS != B.end())
524 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525
526 // MinV = min vector in Small, remove all vectors from Big that are
527 // smaller-or-equal than MinV.
528 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529 if (MinV != S.end())
530 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531
532 // MaxV = max vector in Big, remove all vectors from Small that are
533 // larger than MaxV.
534 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535 if (MaxV != B.end())
536 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537 }
538
539 return Changed;
540}
541
542/// 1. Ensure that for each type T in Vec, T is a vector type, and that
543/// for each type U in Elem, U is a scalar type.
544/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545/// type T in Vec, such that U is the element type of T.
546bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547 TypeSetByHwMode &Elem) {
548 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
549 if (TP.hasError())
550 return false;
551 bool Changed = false;
552
553 if (Vec.empty())
554 Changed |= EnforceVector(Vec);
555 if (Elem.empty())
556 Changed |= EnforceScalar(Elem);
557
558 for (unsigned M : union_modes(Vec, Elem)) {
559 TypeSetByHwMode::SetType &V = Vec.get(M);
560 TypeSetByHwMode::SetType &E = Elem.get(M);
561
562 Changed |= berase_if(V, isScalar); // Scalar = !vector
563 Changed |= berase_if(E, isVector); // Vector = !scalar
564 assert(!V.empty() && !E.empty())(static_cast <bool> (!V.empty() && !E.empty()) ?
void (0) : __assert_fail ("!V.empty() && !E.empty()"
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 564, __extension__ __PRETTY_FUNCTION__))
;
565
566 SmallSet<MVT,4> VT, ST;
567 // Collect element types from the "vector" set.
568 for (MVT T : V)
569 VT.insert(T.getVectorElementType());
570 // Collect scalar types from the "element" set.
571 for (MVT T : E)
572 ST.insert(T);
573
574 // Remove from V all (vector) types whose element type is not in S.
575 Changed |= berase_if(V, [&ST](MVT T) -> bool {
576 return !ST.count(T.getVectorElementType());
577 });
578 // Remove from E all (scalar) types, for which there is no corresponding
579 // type in V.
580 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581 }
582
583 return Changed;
584}
585
586bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587 const ValueTypeByHwMode &VVT) {
588 TypeSetByHwMode Tmp(VVT);
589 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
590 return EnforceVectorEltTypeIs(Vec, Tmp);
591}
592
593/// Ensure that for each type T in Sub, T is a vector type, and there
594/// exists a type U in Vec such that U is a vector type with the same
595/// element type as T and at least as many elements as T.
596bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597 TypeSetByHwMode &Sub) {
598 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
599 if (TP.hasError())
600 return false;
601
602 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603 auto IsSubVec = [](MVT B, MVT P) -> bool {
604 if (!B.isVector() || !P.isVector())
605 return false;
606 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607 // but until there are obvious use-cases for this, keep the
608 // types separate.
609 if (B.isScalableVector() != P.isScalableVector())
610 return false;
611 if (B.getVectorElementType() != P.getVectorElementType())
612 return false;
613 return B.getVectorNumElements() < P.getVectorNumElements();
614 };
615
616 /// Return true if S has no element (vector type) that T is a sub-vector of,
617 /// i.e. has the same element type as T and more elements.
618 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619 for (const auto &I : S)
620 if (IsSubVec(T, I))
621 return false;
622 return true;
623 };
624
625 /// Return true if S has no element (vector type) that T is a super-vector
626 /// of, i.e. has the same element type as T and fewer elements.
627 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628 for (const auto &I : S)
629 if (IsSubVec(I, T))
630 return false;
631 return true;
632 };
633
634 bool Changed = false;
635
636 if (Vec.empty())
637 Changed |= EnforceVector(Vec);
638 if (Sub.empty())
639 Changed |= EnforceVector(Sub);
640
641 for (unsigned M : union_modes(Vec, Sub)) {
642 TypeSetByHwMode::SetType &S = Sub.get(M);
643 TypeSetByHwMode::SetType &V = Vec.get(M);
644
645 Changed |= berase_if(S, isScalar);
646
647 // Erase all types from S that are not sub-vectors of a type in V.
648 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649
650 // Erase all types from V that are not super-vectors of a type in S.
651 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652 }
653
654 return Changed;
655}
656
657/// 1. Ensure that V has a scalar type iff W has a scalar type.
658/// 2. Ensure that for each vector type T in V, there exists a vector
659/// type U in W, such that T and U have the same number of elements.
660/// 3. Ensure that for each vector type U in W, there exists a vector
661/// type T in V, such that T and U have the same number of elements
662/// (reverse of 2).
663bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664 ValidateOnExit _1(V, *this), _2(W, *this);
665 if (TP.hasError())
666 return false;
667
668 bool Changed = false;
669 if (V.empty())
670 Changed |= EnforceAny(V);
671 if (W.empty())
672 Changed |= EnforceAny(W);
673
674 // An actual vector type cannot have 0 elements, so we can treat scalars
675 // as zero-length vectors. This way both vectors and scalars can be
676 // processed identically.
677 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679 };
680
681 for (unsigned M : union_modes(V, W)) {
682 TypeSetByHwMode::SetType &VS = V.get(M);
683 TypeSetByHwMode::SetType &WS = W.get(M);
684
685 SmallSet<unsigned,2> VN, WN;
686 for (MVT T : VS)
687 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688 for (MVT T : WS)
689 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690
691 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693 }
694 return Changed;
695}
696
697/// 1. Ensure that for each type T in A, there exists a type U in B,
698/// such that T and U have equal size in bits.
699/// 2. Ensure that for each type U in B, there exists a type T in A
700/// such that T and U have equal size in bits (reverse of 1).
701bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702 ValidateOnExit _1(A, *this), _2(B, *this);
703 if (TP.hasError())
704 return false;
705 bool Changed = false;
706 if (A.empty())
707 Changed |= EnforceAny(A);
708 if (B.empty())
709 Changed |= EnforceAny(B);
710
711 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712 return !Sizes.count(T.getSizeInBits());
713 };
714
715 for (unsigned M : union_modes(A, B)) {
716 TypeSetByHwMode::SetType &AS = A.get(M);
717 TypeSetByHwMode::SetType &BS = B.get(M);
718 SmallSet<unsigned,2> AN, BN;
719
720 for (MVT T : AS)
721 AN.insert(T.getSizeInBits());
722 for (MVT T : BS)
723 BN.insert(T.getSizeInBits());
724
725 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727 }
728
729 return Changed;
730}
731
732void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733 ValidateOnExit _1(VTS, *this);
734 TypeSetByHwMode Legal = getLegalTypes();
735 bool HaveLegalDef = Legal.hasDefault();
736
737 for (auto &I : VTS) {
738 unsigned M = I.first;
739 if (!Legal.hasMode(M) && !HaveLegalDef) {
740 TP.error("Invalid mode " + Twine(M));
741 return;
742 }
743 expandOverloads(I.second, Legal.get(M));
744 }
745}
746
747void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748 const TypeSetByHwMode::SetType &Legal) {
749 std::set<MVT> Ovs;
750 for (MVT T : Out) {
751 if (!T.isOverloaded())
752 continue;
753
754 Ovs.insert(T);
755 // MachineValueTypeSet allows iteration and erasing.
756 Out.erase(T);
757 }
758
759 for (MVT Ov : Ovs) {
760 switch (Ov.SimpleTy) {
761 case MVT::iPTRAny:
762 Out.insert(MVT::iPTR);
763 return;
764 case MVT::iAny:
765 for (MVT T : MVT::integer_valuetypes())
766 if (Legal.count(T))
767 Out.insert(T);
768 for (MVT T : MVT::integer_vector_valuetypes())
769 if (Legal.count(T))
770 Out.insert(T);
771 return;
772 case MVT::fAny:
773 for (MVT T : MVT::fp_valuetypes())
774 if (Legal.count(T))
775 Out.insert(T);
776 for (MVT T : MVT::fp_vector_valuetypes())
777 if (Legal.count(T))
778 Out.insert(T);
779 return;
780 case MVT::vAny:
781 for (MVT T : MVT::vector_valuetypes())
782 if (Legal.count(T))
783 Out.insert(T);
784 return;
785 case MVT::Any:
786 for (MVT T : MVT::all_valuetypes())
787 if (Legal.count(T))
788 Out.insert(T);
789 return;
790 default:
791 break;
792 }
793 }
794}
795
796TypeSetByHwMode TypeInfer::getLegalTypes() {
797 if (!LegalTypesCached) {
798 // Stuff all types from all modes into the default mode.
799 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800 for (const auto &I : LTS)
801 LegalCache.insert(I.second);
802 LegalTypesCached = true;
803 }
804 TypeSetByHwMode VTS;
805 VTS.getOrCreate(DefaultMode) = LegalCache;
806 return VTS;
807}
808
809#ifndef NDEBUG
810TypeInfer::ValidateOnExit::~ValidateOnExit() {
811 if (!VTS.validate()) {
812 dbgs() << "Type set is empty for each HW mode:\n"
813 "possible type contradiction in the pattern below "
814 "(use -print-records with llvm-tblgen to see all "
815 "expanded records).\n";
816 Infer.TP.dump();
817 llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 817)
;
818 }
819}
820#endif
821
822//===----------------------------------------------------------------------===//
823// TreePredicateFn Implementation
824//===----------------------------------------------------------------------===//
825
826/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
827TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
828 assert((static_cast <bool> ((!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? void (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 830, __extension__ __PRETTY_FUNCTION__))
829 (!hasPredCode() || !hasImmCode()) &&(static_cast <bool> ((!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? void (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 830, __extension__ __PRETTY_FUNCTION__))
830 ".td file corrupt: can't have a node predicate *and* an imm predicate")(static_cast <bool> ((!hasPredCode() || !hasImmCode()) &&
".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? void (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 830, __extension__ __PRETTY_FUNCTION__))
;
831}
832
833bool TreePredicateFn::hasPredCode() const {
834 return isLoad() || isStore() || isAtomic() ||
835 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
836}
837
838std::string TreePredicateFn::getPredCode() const {
839 std::string Code = "";
840
841 if (!isLoad() && !isStore() && !isAtomic()) {
842 Record *MemoryVT = getMemoryVT();
843
844 if (MemoryVT)
845 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
846 "MemoryVT requires IsLoad or IsStore");
847 }
848
849 if (!isLoad() && !isStore()) {
850 if (isUnindexed())
851 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
852 "IsUnindexed requires IsLoad or IsStore");
853
854 Record *ScalarMemoryVT = getScalarMemoryVT();
855
856 if (ScalarMemoryVT)
857 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
858 "ScalarMemoryVT requires IsLoad or IsStore");
859 }
860
861 if (isLoad() + isStore() + isAtomic() > 1)
862 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
863 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
864
865 if (isLoad()) {
866 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
867 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
868 getScalarMemoryVT() == nullptr)
869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870 "IsLoad cannot be used by itself");
871 } else {
872 if (isNonExtLoad())
873 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874 "IsNonExtLoad requires IsLoad");
875 if (isAnyExtLoad())
876 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877 "IsAnyExtLoad requires IsLoad");
878 if (isSignExtLoad())
879 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
880 "IsSignExtLoad requires IsLoad");
881 if (isZeroExtLoad())
882 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883 "IsZeroExtLoad requires IsLoad");
884 }
885
886 if (isStore()) {
887 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
888 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
889 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890 "IsStore cannot be used by itself");
891 } else {
892 if (isNonTruncStore())
893 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894 "IsNonTruncStore requires IsStore");
895 if (isTruncStore())
896 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897 "IsTruncStore requires IsStore");
898 }
899
900 if (isAtomic()) {
901 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
902 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
903 !isAtomicOrderingAcquireRelease() &&
904 !isAtomicOrderingSequentiallyConsistent() &&
905 !isAtomicOrderingAcquireOrStronger() &&
906 !isAtomicOrderingReleaseOrStronger() &&
907 !isAtomicOrderingWeakerThanAcquire() &&
908 !isAtomicOrderingWeakerThanRelease())
909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910 "IsAtomic cannot be used by itself");
911 } else {
912 if (isAtomicOrderingMonotonic())
913 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914 "IsAtomicOrderingMonotonic requires IsAtomic");
915 if (isAtomicOrderingAcquire())
916 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917 "IsAtomicOrderingAcquire requires IsAtomic");
918 if (isAtomicOrderingRelease())
919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920 "IsAtomicOrderingRelease requires IsAtomic");
921 if (isAtomicOrderingAcquireRelease())
922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923 "IsAtomicOrderingAcquireRelease requires IsAtomic");
924 if (isAtomicOrderingSequentiallyConsistent())
925 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
926 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
927 if (isAtomicOrderingAcquireOrStronger())
928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
930 if (isAtomicOrderingReleaseOrStronger())
931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
933 if (isAtomicOrderingWeakerThanAcquire())
934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
936 }
937
938 if (isLoad() || isStore() || isAtomic()) {
939 StringRef SDNodeName =
940 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
941
942 Record *MemoryVT = getMemoryVT();
943
944 if (MemoryVT)
945 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
946 MemoryVT->getName() + ") return false;\n")
947 .str();
948 }
949
950 if (isAtomic() && isAtomicOrderingMonotonic())
951 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
952 "AtomicOrdering::Monotonic) return false;\n";
953 if (isAtomic() && isAtomicOrderingAcquire())
954 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
955 "AtomicOrdering::Acquire) return false;\n";
956 if (isAtomic() && isAtomicOrderingRelease())
957 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
958 "AtomicOrdering::Release) return false;\n";
959 if (isAtomic() && isAtomicOrderingAcquireRelease())
960 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
961 "AtomicOrdering::AcquireRelease) return false;\n";
962 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
963 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
964 "AtomicOrdering::SequentiallyConsistent) return false;\n";
965
966 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
967 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
968 "return false;\n";
969 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
970 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
971 "return false;\n";
972
973 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
974 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975 "return false;\n";
976 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
977 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
978 "return false;\n";
979
980 if (isLoad() || isStore()) {
981 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
982
983 if (isUnindexed())
984 Code += ("if (cast<" + SDNodeName +
985 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
986 "return false;\n")
987 .str();
988
989 if (isLoad()) {
990 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
991 isZeroExtLoad()) > 1)
992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
994 "IsZeroExtLoad are mutually exclusive");
995 if (isNonExtLoad())
996 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
997 "ISD::NON_EXTLOAD) return false;\n";
998 if (isAnyExtLoad())
999 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1000 "return false;\n";
1001 if (isSignExtLoad())
1002 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1003 "return false;\n";
1004 if (isZeroExtLoad())
1005 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1006 "return false;\n";
1007 } else {
1008 if ((isNonTruncStore() + isTruncStore()) > 1)
1009 PrintFatalError(
1010 getOrigPatFragRecord()->getRecord()->getLoc(),
1011 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1012 if (isNonTruncStore())
1013 Code +=
1014 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1015 if (isTruncStore())
1016 Code +=
1017 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1018 }
1019
1020 Record *ScalarMemoryVT = getScalarMemoryVT();
1021
1022 if (ScalarMemoryVT)
1023 Code += ("if (cast<" + SDNodeName +
1024 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1025 ScalarMemoryVT->getName() + ") return false;\n")
1026 .str();
1027 }
1028
1029 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1030
1031 Code += PredicateCode;
1032
1033 if (PredicateCode.empty() && !Code.empty())
1034 Code += "return true;\n";
1035
1036 return Code;
1037}
1038
1039bool TreePredicateFn::hasImmCode() const {
1040 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1041}
1042
1043std::string TreePredicateFn::getImmCode() const {
1044 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1045}
1046
1047bool TreePredicateFn::immCodeUsesAPInt() const {
1048 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1049}
1050
1051bool TreePredicateFn::immCodeUsesAPFloat() const {
1052 bool Unset;
1053 // The return value will be false when IsAPFloat is unset.
1054 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1055 Unset);
1056}
1057
1058bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1059 bool Value) const {
1060 bool Unset;
1061 bool Result =
1062 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1063 if (Unset)
1064 return false;
1065 return Result == Value;
1066}
1067bool TreePredicateFn::isLoad() const {
1068 return isPredefinedPredicateEqualTo("IsLoad", true);
1069}
1070bool TreePredicateFn::isStore() const {
1071 return isPredefinedPredicateEqualTo("IsStore", true);
1072}
1073bool TreePredicateFn::isAtomic() const {
1074 return isPredefinedPredicateEqualTo("IsAtomic", true);
1075}
1076bool TreePredicateFn::isUnindexed() const {
1077 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1078}
1079bool TreePredicateFn::isNonExtLoad() const {
1080 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1081}
1082bool TreePredicateFn::isAnyExtLoad() const {
1083 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1084}
1085bool TreePredicateFn::isSignExtLoad() const {
1086 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1087}
1088bool TreePredicateFn::isZeroExtLoad() const {
1089 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1090}
1091bool TreePredicateFn::isNonTruncStore() const {
1092 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1093}
1094bool TreePredicateFn::isTruncStore() const {
1095 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1096}
1097bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1098 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1099}
1100bool TreePredicateFn::isAtomicOrderingAcquire() const {
1101 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1102}
1103bool TreePredicateFn::isAtomicOrderingRelease() const {
1104 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1105}
1106bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1107 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1108}
1109bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1110 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1111 true);
1112}
1113bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1114 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1115}
1116bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1117 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1118}
1119bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1120 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1121}
1122bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1123 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1124}
1125Record *TreePredicateFn::getMemoryVT() const {
1126 Record *R = getOrigPatFragRecord()->getRecord();
1127 if (R->isValueUnset("MemoryVT"))
1128 return nullptr;
1129 return R->getValueAsDef("MemoryVT");
1130}
1131Record *TreePredicateFn::getScalarMemoryVT() const {
1132 Record *R = getOrigPatFragRecord()->getRecord();
1133 if (R->isValueUnset("ScalarMemoryVT"))
1134 return nullptr;
1135 return R->getValueAsDef("ScalarMemoryVT");
1136}
1137
1138StringRef TreePredicateFn::getImmType() const {
1139 if (immCodeUsesAPInt())
1140 return "const APInt &";
1141 if (immCodeUsesAPFloat())
1142 return "const APFloat &";
1143 return "int64_t";
1144}
1145
1146StringRef TreePredicateFn::getImmTypeIdentifier() const {
1147 if (immCodeUsesAPInt())
1148 return "APInt";
1149 else if (immCodeUsesAPFloat())
1150 return "APFloat";
1151 return "I64";
1152}
1153
1154/// isAlwaysTrue - Return true if this is a noop predicate.
1155bool TreePredicateFn::isAlwaysTrue() const {
1156 return !hasPredCode() && !hasImmCode();
1157}
1158
1159/// Return the name to use in the generated code to reference this, this is
1160/// "Predicate_foo" if from a pattern fragment "foo".
1161std::string TreePredicateFn::getFnName() const {
1162 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1163}
1164
1165/// getCodeToRunOnSDNode - Return the code for the function body that
1166/// evaluates this predicate. The argument is expected to be in "Node",
1167/// not N. This handles casting and conversion to a concrete node type as
1168/// appropriate.
1169std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1170 // Handle immediate predicates first.
1171 std::string ImmCode = getImmCode();
1172 if (!ImmCode.empty()) {
1173 if (isLoad())
1174 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1175 "IsLoad cannot be used with ImmLeaf or its subclasses");
1176 if (isStore())
1177 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1178 "IsStore cannot be used with ImmLeaf or its subclasses");
1179 if (isUnindexed())
1180 PrintFatalError(
1181 getOrigPatFragRecord()->getRecord()->getLoc(),
1182 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1183 if (isNonExtLoad())
1184 PrintFatalError(
1185 getOrigPatFragRecord()->getRecord()->getLoc(),
1186 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1187 if (isAnyExtLoad())
1188 PrintFatalError(
1189 getOrigPatFragRecord()->getRecord()->getLoc(),
1190 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1191 if (isSignExtLoad())
1192 PrintFatalError(
1193 getOrigPatFragRecord()->getRecord()->getLoc(),
1194 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1195 if (isZeroExtLoad())
1196 PrintFatalError(
1197 getOrigPatFragRecord()->getRecord()->getLoc(),
1198 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1199 if (isNonTruncStore())
1200 PrintFatalError(
1201 getOrigPatFragRecord()->getRecord()->getLoc(),
1202 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1203 if (isTruncStore())
1204 PrintFatalError(
1205 getOrigPatFragRecord()->getRecord()->getLoc(),
1206 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1207 if (getMemoryVT())
1208 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1209 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1210 if (getScalarMemoryVT())
1211 PrintFatalError(
1212 getOrigPatFragRecord()->getRecord()->getLoc(),
1213 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1214
1215 std::string Result = (" " + getImmType() + " Imm = ").str();
1216 if (immCodeUsesAPFloat())
1217 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1218 else if (immCodeUsesAPInt())
1219 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1220 else
1221 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1222 return Result + ImmCode;
1223 }
1224
1225 // Handle arbitrary node predicates.
1226 assert(hasPredCode() && "Don't have any predicate code!")(static_cast <bool> (hasPredCode() && "Don't have any predicate code!"
) ? void (0) : __assert_fail ("hasPredCode() && \"Don't have any predicate code!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1226, __extension__ __PRETTY_FUNCTION__))
;
1227 StringRef ClassName;
1228 if (PatFragRec->getOnlyTree()->isLeaf())
1229 ClassName = "SDNode";
1230 else {
1231 Record *Op = PatFragRec->getOnlyTree()->getOperator();
1232 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1233 }
1234 std::string Result;
1235 if (ClassName == "SDNode")
1236 Result = " SDNode *N = Node;\n";
1237 else
1238 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1239
1240 return Result + getPredCode();
1241}
1242
1243//===----------------------------------------------------------------------===//
1244// PatternToMatch implementation
1245//
1246
1247/// getPatternSize - Return the 'size' of this pattern. We want to match large
1248/// patterns before small ones. This is used to determine the size of a
1249/// pattern.
1250static unsigned getPatternSize(const TreePatternNode *P,
1251 const CodeGenDAGPatterns &CGP) {
1252 unsigned Size = 3; // The node itself.
1253 // If the root node is a ConstantSDNode, increases its size.
1254 // e.g. (set R32:$dst, 0).
1255 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1256 Size += 2;
1257
1258 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1259 Size += AM->getComplexity();
1260 // We don't want to count any children twice, so return early.
1261 return Size;
1262 }
1263
1264 // If this node has some predicate function that must match, it adds to the
1265 // complexity of this node.
1266 if (!P->getPredicateFns().empty())
1267 ++Size;
1268
1269 // Count children in the count if they are also nodes.
1270 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1271 const TreePatternNode *Child = P->getChild(i);
1272 if (!Child->isLeaf() && Child->getNumTypes()) {
1273 const TypeSetByHwMode &T0 = Child->getType(0);
1274 // At this point, all variable type sets should be simple, i.e. only
1275 // have a default mode.
1276 if (T0.getMachineValueType() != MVT::Other) {
1277 Size += getPatternSize(Child, CGP);
1278 continue;
1279 }
1280 }
1281 if (Child->isLeaf()) {
1282 if (isa<IntInit>(Child->getLeafValue()))
1283 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1284 else if (Child->getComplexPatternInfo(CGP))
1285 Size += getPatternSize(Child, CGP);
1286 else if (!Child->getPredicateFns().empty())
1287 ++Size;
1288 }
1289 }
1290
1291 return Size;
1292}
1293
1294/// Compute the complexity metric for the input pattern. This roughly
1295/// corresponds to the number of nodes that are covered.
1296int PatternToMatch::
1297getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1298 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1299}
1300
1301/// getPredicateCheck - Return a single string containing all of this
1302/// pattern's predicates concatenated with "&&" operators.
1303///
1304std::string PatternToMatch::getPredicateCheck() const {
1305 SmallVector<const Predicate*,4> PredList;
1306 for (const Predicate &P : Predicates)
1307 PredList.push_back(&P);
1308 std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1309
1310 std::string Check;
1311 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1312 if (i != 0)
1313 Check += " && ";
1314 Check += '(' + PredList[i]->getCondString() + ')';
1315 }
1316 return Check;
1317}
1318
1319//===----------------------------------------------------------------------===//
1320// SDTypeConstraint implementation
1321//
1322
1323SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1324 OperandNo = R->getValueAsInt("OperandNum");
1325
1326 if (R->isSubClassOf("SDTCisVT")) {
1327 ConstraintType = SDTCisVT;
1328 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1329 for (const auto &P : VVT)
1330 if (P.second == MVT::isVoid)
1331 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1332 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1333 ConstraintType = SDTCisPtrTy;
1334 } else if (R->isSubClassOf("SDTCisInt")) {
1335 ConstraintType = SDTCisInt;
1336 } else if (R->isSubClassOf("SDTCisFP")) {
1337 ConstraintType = SDTCisFP;
1338 } else if (R->isSubClassOf("SDTCisVec")) {
1339 ConstraintType = SDTCisVec;
1340 } else if (R->isSubClassOf("SDTCisSameAs")) {
1341 ConstraintType = SDTCisSameAs;
1342 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1343 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1344 ConstraintType = SDTCisVTSmallerThanOp;
1345 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1346 R->getValueAsInt("OtherOperandNum");
1347 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1348 ConstraintType = SDTCisOpSmallerThanOp;
1349 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1350 R->getValueAsInt("BigOperandNum");
1351 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1352 ConstraintType = SDTCisEltOfVec;
1353 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1354 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1355 ConstraintType = SDTCisSubVecOfVec;
1356 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1357 R->getValueAsInt("OtherOpNum");
1358 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1359 ConstraintType = SDTCVecEltisVT;
1360 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1361 for (const auto &P : VVT) {
1362 MVT T = P.second;
1363 if (T.isVector())
1364 PrintFatalError(R->getLoc(),
1365 "Cannot use vector type as SDTCVecEltisVT");
1366 if (!T.isInteger() && !T.isFloatingPoint())
1367 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1368 "as SDTCVecEltisVT");
1369 }
1370 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1371 ConstraintType = SDTCisSameNumEltsAs;
1372 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1373 R->getValueAsInt("OtherOperandNum");
1374 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1375 ConstraintType = SDTCisSameSizeAs;
1376 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1377 R->getValueAsInt("OtherOperandNum");
1378 } else {
1379 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1380 }
1381}
1382
1383/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1384/// N, and the result number in ResNo.
1385static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1386 const SDNodeInfo &NodeInfo,
1387 unsigned &ResNo) {
1388 unsigned NumResults = NodeInfo.getNumResults();
1389 if (OpNo < NumResults) {
1390 ResNo = OpNo;
1391 return N;
1392 }
1393
1394 OpNo -= NumResults;
1395
1396 if (OpNo >= N->getNumChildren()) {
1397 std::string S;
1398 raw_string_ostream OS(S);
1399 OS << "Invalid operand number in type constraint "
1400 << (OpNo+NumResults) << " ";
1401 N->print(OS);
1402 PrintFatalError(OS.str());
1403 }
1404
1405 return N->getChild(OpNo);
1406}
1407
1408/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1409/// constraint to the nodes operands. This returns true if it makes a
1410/// change, false otherwise. If a type contradiction is found, flag an error.
1411bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1412 const SDNodeInfo &NodeInfo,
1413 TreePattern &TP) const {
1414 if (TP.hasError())
1415 return false;
1416
1417 unsigned ResNo = 0; // The result number being referenced.
1418 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1419 TypeInfer &TI = TP.getInfer();
1420
1421 switch (ConstraintType) {
1422 case SDTCisVT:
1423 // Operand must be a particular type.
1424 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1425 case SDTCisPtrTy:
1426 // Operand must be same as target pointer type.
1427 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1428 case SDTCisInt:
1429 // Require it to be one of the legal integer VTs.
1430 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1431 case SDTCisFP:
1432 // Require it to be one of the legal fp VTs.
1433 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1434 case SDTCisVec:
1435 // Require it to be one of the legal vector VTs.
1436 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1437 case SDTCisSameAs: {
1438 unsigned OResNo = 0;
1439 TreePatternNode *OtherNode =
1440 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1441 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1442 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1443 }
1444 case SDTCisVTSmallerThanOp: {
1445 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1446 // have an integer type that is smaller than the VT.
1447 if (!NodeToApply->isLeaf() ||
1448 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1449 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1450 ->isSubClassOf("ValueType")) {
1451 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1452 return false;
1453 }
1454 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1455 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1456 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1457 TypeSetByHwMode TypeListTmp(VVT);
1458
1459 unsigned OResNo = 0;
1460 TreePatternNode *OtherNode =
1461 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1462 OResNo);
1463
1464 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1465 }
1466 case SDTCisOpSmallerThanOp: {
1467 unsigned BResNo = 0;
1468 TreePatternNode *BigOperand =
1469 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1470 BResNo);
1471 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1472 BigOperand->getExtType(BResNo));
1473 }
1474 case SDTCisEltOfVec: {
1475 unsigned VResNo = 0;
1476 TreePatternNode *VecOperand =
1477 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1478 VResNo);
1479 // Filter vector types out of VecOperand that don't have the right element
1480 // type.
1481 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1482 NodeToApply->getExtType(ResNo));
1483 }
1484 case SDTCisSubVecOfVec: {
1485 unsigned VResNo = 0;
1486 TreePatternNode *BigVecOperand =
1487 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1488 VResNo);
1489
1490 // Filter vector types out of BigVecOperand that don't have the
1491 // right subvector type.
1492 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1493 NodeToApply->getExtType(ResNo));
1494 }
1495 case SDTCVecEltisVT: {
1496 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1497 }
1498 case SDTCisSameNumEltsAs: {
1499 unsigned OResNo = 0;
1500 TreePatternNode *OtherNode =
1501 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1502 N, NodeInfo, OResNo);
1503 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1504 NodeToApply->getExtType(ResNo));
1505 }
1506 case SDTCisSameSizeAs: {
1507 unsigned OResNo = 0;
1508 TreePatternNode *OtherNode =
1509 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1510 N, NodeInfo, OResNo);
1511 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1512 NodeToApply->getExtType(ResNo));
1513 }
1514 }
1515 llvm_unreachable("Invalid ConstraintType!")::llvm::llvm_unreachable_internal("Invalid ConstraintType!", "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1515)
;
1516}
1517
1518// Update the node type to match an instruction operand or result as specified
1519// in the ins or outs lists on the instruction definition. Return true if the
1520// type was actually changed.
1521bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1522 Record *Operand,
1523 TreePattern &TP) {
1524 // The 'unknown' operand indicates that types should be inferred from the
1525 // context.
1526 if (Operand->isSubClassOf("unknown_class"))
1527 return false;
1528
1529 // The Operand class specifies a type directly.
1530 if (Operand->isSubClassOf("Operand")) {
1531 Record *R = Operand->getValueAsDef("Type");
1532 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1533 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1534 }
1535
1536 // PointerLikeRegClass has a type that is determined at runtime.
1537 if (Operand->isSubClassOf("PointerLikeRegClass"))
1538 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1539
1540 // Both RegisterClass and RegisterOperand operands derive their types from a
1541 // register class def.
1542 Record *RC = nullptr;
1543 if (Operand->isSubClassOf("RegisterClass"))
1544 RC = Operand;
1545 else if (Operand->isSubClassOf("RegisterOperand"))
1546 RC = Operand->getValueAsDef("RegClass");
1547
1548 assert(RC && "Unknown operand type")(static_cast <bool> (RC && "Unknown operand type"
) ? void (0) : __assert_fail ("RC && \"Unknown operand type\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1548, __extension__ __PRETTY_FUNCTION__))
;
1549 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1550 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1551}
1552
1553bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1554 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1555 if (!TP.getInfer().isConcrete(Types[i], true))
1556 return true;
1557 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1558 if (getChild(i)->ContainsUnresolvedType(TP))
1559 return true;
1560 return false;
1561}
1562
1563bool TreePatternNode::hasProperTypeByHwMode() const {
1564 for (const TypeSetByHwMode &S : Types)
1565 if (!S.isDefaultOnly())
1566 return true;
1567 for (TreePatternNode *C : Children)
1568 if (C->hasProperTypeByHwMode())
1569 return true;
1570 return false;
1571}
1572
1573bool TreePatternNode::hasPossibleType() const {
1574 for (const TypeSetByHwMode &S : Types)
1575 if (!S.isPossible())
1576 return false;
1577 for (TreePatternNode *C : Children)
1578 if (!C->hasPossibleType())
1579 return false;
1580 return true;
1581}
1582
1583bool TreePatternNode::setDefaultMode(unsigned Mode) {
1584 for (TypeSetByHwMode &S : Types) {
1585 S.makeSimple(Mode);
1586 // Check if the selected mode had a type conflict.
1587 if (S.get(DefaultMode).empty())
1588 return false;
1589 }
1590 for (TreePatternNode *C : Children)
1591 if (!C->setDefaultMode(Mode))
1592 return false;
1593 return true;
1594}
1595
1596//===----------------------------------------------------------------------===//
1597// SDNodeInfo implementation
1598//
1599SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1600 EnumName = R->getValueAsString("Opcode");
1601 SDClassName = R->getValueAsString("SDClass");
1602 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1603 NumResults = TypeProfile->getValueAsInt("NumResults");
1604 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1605
1606 // Parse the properties.
1607 Properties = parseSDPatternOperatorProperties(R);
1608
1609 // Parse the type constraints.
1610 std::vector<Record*> ConstraintList =
1611 TypeProfile->getValueAsListOfDefs("Constraints");
1612 for (Record *R : ConstraintList)
1613 TypeConstraints.emplace_back(R, CGH);
1614}
1615
1616/// getKnownType - If the type constraints on this node imply a fixed type
1617/// (e.g. all stores return void, etc), then return it as an
1618/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1619MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1620 unsigned NumResults = getNumResults();
1621 assert(NumResults <= 1 &&(static_cast <bool> (NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? void (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1622, __extension__ __PRETTY_FUNCTION__))
1622 "We only work with nodes with zero or one result so far!")(static_cast <bool> (NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? void (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1622, __extension__ __PRETTY_FUNCTION__))
;
1623 assert(ResNo == 0 && "Only handles single result nodes so far")(static_cast <bool> (ResNo == 0 && "Only handles single result nodes so far"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Only handles single result nodes so far\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1623, __extension__ __PRETTY_FUNCTION__))
;
1624
1625 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1626 // Make sure that this applies to the correct node result.
1627 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1628 continue;
1629
1630 switch (Constraint.ConstraintType) {
1631 default: break;
1632 case SDTypeConstraint::SDTCisVT:
1633 if (Constraint.VVT.isSimple())
1634 return Constraint.VVT.getSimple().SimpleTy;
1635 break;
1636 case SDTypeConstraint::SDTCisPtrTy:
1637 return MVT::iPTR;
1638 }
1639 }
1640 return MVT::Other;
1641}
1642
1643//===----------------------------------------------------------------------===//
1644// TreePatternNode implementation
1645//
1646
1647TreePatternNode::~TreePatternNode() {
1648#if 0 // FIXME: implement refcounted tree nodes!
1649 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1650 delete getChild(i);
1651#endif
1652}
1653
1654static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1655 if (Operator->getName() == "set" ||
1656 Operator->getName() == "implicit")
1657 return 0; // All return nothing.
1658
1659 if (Operator->isSubClassOf("Intrinsic"))
1660 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1661
1662 if (Operator->isSubClassOf("SDNode"))
1663 return CDP.getSDNodeInfo(Operator).getNumResults();
1664
1665 if (Operator->isSubClassOf("PatFrag")) {
1666 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1667 // the forward reference case where one pattern fragment references another
1668 // before it is processed.
1669 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1670 return PFRec->getOnlyTree()->getNumTypes();
1671
1672 // Get the result tree.
1673 DagInit *Tree = Operator->getValueAsDag("Fragment");
1674 Record *Op = nullptr;
1675 if (Tree)
1676 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1677 Op = DI->getDef();
1678 assert(Op && "Invalid Fragment")(static_cast <bool> (Op && "Invalid Fragment") ?
void (0) : __assert_fail ("Op && \"Invalid Fragment\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1678, __extension__ __PRETTY_FUNCTION__))
;
1679 return GetNumNodeResults(Op, CDP);
1680 }
1681
1682 if (Operator->isSubClassOf("Instruction")) {
1683 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1684
1685 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1686
1687 // Subtract any defaulted outputs.
1688 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1689 Record *OperandNode = InstInfo.Operands[i].Rec;
1690
1691 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1692 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1693 --NumDefsToAdd;
1694 }
1695
1696 // Add on one implicit def if it has a resolvable type.
1697 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1698 ++NumDefsToAdd;
1699 return NumDefsToAdd;
1700 }
1701
1702 if (Operator->isSubClassOf("SDNodeXForm"))
1703 return 1; // FIXME: Generalize SDNodeXForm
1704
1705 if (Operator->isSubClassOf("ValueType"))
1706 return 1; // A type-cast of one result.
1707
1708 if (Operator->isSubClassOf("ComplexPattern"))
1709 return 1;
1710
1711 errs() << *Operator;
1712 PrintFatalError("Unhandled node in GetNumNodeResults");
1713}
1714
1715void TreePatternNode::print(raw_ostream &OS) const {
1716 if (isLeaf())
1717 OS << *getLeafValue();
1718 else
1719 OS << '(' << getOperator()->getName();
1720
1721 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1722 OS << ':';
1723 getExtType(i).writeToStream(OS);
1724 }
1725
1726 if (!isLeaf()) {
1727 if (getNumChildren() != 0) {
1728 OS << " ";
1729 getChild(0)->print(OS);
1730 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1731 OS << ", ";
1732 getChild(i)->print(OS);
1733 }
1734 }
1735 OS << ")";
1736 }
1737
1738 for (const TreePredicateFn &Pred : PredicateFns)
1739 OS << "<<P:" << Pred.getFnName() << ">>";
1740 if (TransformFn)
1741 OS << "<<X:" << TransformFn->getName() << ">>";
1742 if (!getName().empty())
1743 OS << ":$" << getName();
1744
1745}
1746void TreePatternNode::dump() const {
1747 print(errs());
1748}
1749
1750/// isIsomorphicTo - Return true if this node is recursively
1751/// isomorphic to the specified node. For this comparison, the node's
1752/// entire state is considered. The assigned name is ignored, since
1753/// nodes with differing names are considered isomorphic. However, if
1754/// the assigned name is present in the dependent variable set, then
1755/// the assigned name is considered significant and the node is
1756/// isomorphic if the names match.
1757bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1758 const MultipleUseVarSet &DepVars) const {
1759 if (N == this) return true;
1760 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1761 getPredicateFns() != N->getPredicateFns() ||
1762 getTransformFn() != N->getTransformFn())
1763 return false;
1764
1765 if (isLeaf()) {
1766 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1767 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1768 return ((DI->getDef() == NDI->getDef())
1769 && (DepVars.find(getName()) == DepVars.end()
1770 || getName() == N->getName()));
1771 }
1772 }
1773 return getLeafValue() == N->getLeafValue();
1774 }
1775
1776 if (N->getOperator() != getOperator() ||
1777 N->getNumChildren() != getNumChildren()) return false;
1778 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1779 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1780 return false;
1781 return true;
1782}
1783
1784/// clone - Make a copy of this tree and all of its children.
1785///
1786TreePatternNode *TreePatternNode::clone() const {
1787 TreePatternNode *New;
1788 if (isLeaf()) {
1789 New = new TreePatternNode(getLeafValue(), getNumTypes());
1790 } else {
1791 std::vector<TreePatternNode*> CChildren;
1792 CChildren.reserve(Children.size());
1793 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1794 CChildren.push_back(getChild(i)->clone());
1795 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1796 }
1797 New->setName(getName());
1798 New->Types = Types;
1799 New->setPredicateFns(getPredicateFns());
1800 New->setTransformFn(getTransformFn());
1801 return New;
1802}
1803
1804/// RemoveAllTypes - Recursively strip all the types of this tree.
1805void TreePatternNode::RemoveAllTypes() {
1806 // Reset to unknown type.
1807 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1808 if (isLeaf()) return;
1809 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1810 getChild(i)->RemoveAllTypes();
1811}
1812
1813
1814/// SubstituteFormalArguments - Replace the formal arguments in this tree
1815/// with actual values specified by ArgMap.
1816void TreePatternNode::
1817SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1818 if (isLeaf()) return;
1819
1820 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1821 TreePatternNode *Child = getChild(i);
1822 if (Child->isLeaf()) {
1823 Init *Val = Child->getLeafValue();
1824 // Note that, when substituting into an output pattern, Val might be an
1825 // UnsetInit.
1826 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1827 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1828 // We found a use of a formal argument, replace it with its value.
1829 TreePatternNode *NewChild = ArgMap[Child->getName()];
1830 assert(NewChild && "Couldn't find formal argument!")(static_cast <bool> (NewChild && "Couldn't find formal argument!"
) ? void (0) : __assert_fail ("NewChild && \"Couldn't find formal argument!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1830, __extension__ __PRETTY_FUNCTION__))
;
1831 assert((Child->getPredicateFns().empty() ||(static_cast <bool> ((Child->getPredicateFns().empty
() || NewChild->getPredicateFns() == Child->getPredicateFns
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1833, __extension__ __PRETTY_FUNCTION__))
1832 NewChild->getPredicateFns() == Child->getPredicateFns()) &&(static_cast <bool> ((Child->getPredicateFns().empty
() || NewChild->getPredicateFns() == Child->getPredicateFns
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1833, __extension__ __PRETTY_FUNCTION__))
1833 "Non-empty child predicate clobbered!")(static_cast <bool> ((Child->getPredicateFns().empty
() || NewChild->getPredicateFns() == Child->getPredicateFns
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1833, __extension__ __PRETTY_FUNCTION__))
;
1834 setChild(i, NewChild);
1835 }
1836 } else {
1837 getChild(i)->SubstituteFormalArguments(ArgMap);
1838 }
1839 }
1840}
1841
1842
1843/// InlinePatternFragments - If this pattern refers to any pattern
1844/// fragments, inline them into place, giving us a pattern without any
1845/// PatFrag references.
1846TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1847 if (TP.hasError())
1848 return nullptr;
1849
1850 if (isLeaf())
1851 return this; // nothing to do.
1852 Record *Op = getOperator();
1853
1854 if (!Op->isSubClassOf("PatFrag")) {
1855 // Just recursively inline children nodes.
1856 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1857 TreePatternNode *Child = getChild(i);
1858 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1859
1860 assert((Child->getPredicateFns().empty() ||(static_cast <bool> ((Child->getPredicateFns().empty
() || NewChild->getPredicateFns() == Child->getPredicateFns
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1862, __extension__ __PRETTY_FUNCTION__))
1861 NewChild->getPredicateFns() == Child->getPredicateFns()) &&(static_cast <bool> ((Child->getPredicateFns().empty
() || NewChild->getPredicateFns() == Child->getPredicateFns
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1862, __extension__ __PRETTY_FUNCTION__))
1862 "Non-empty child predicate clobbered!")(static_cast <bool> ((Child->getPredicateFns().empty
() || NewChild->getPredicateFns() == Child->getPredicateFns
()) && "Non-empty child predicate clobbered!") ? void
(0) : __assert_fail ("(Child->getPredicateFns().empty() || NewChild->getPredicateFns() == Child->getPredicateFns()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1862, __extension__ __PRETTY_FUNCTION__))
;
1863
1864 setChild(i, NewChild);
1865 }
1866 return this;
1867 }
1868
1869 // Otherwise, we found a reference to a fragment. First, look up its
1870 // TreePattern record.
1871 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1872
1873 // Verify that we are passing the right number of operands.
1874 if (Frag->getNumArgs() != Children.size()) {
1875 TP.error("'" + Op->getName() + "' fragment requires " +
1876 Twine(Frag->getNumArgs()) + " operands!");
1877 return nullptr;
1878 }
1879
1880 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1881
1882 TreePredicateFn PredFn(Frag);
1883 if (!PredFn.isAlwaysTrue())
1884 FragTree->addPredicateFn(PredFn);
1885
1886 // Resolve formal arguments to their actual value.
1887 if (Frag->getNumArgs()) {
1888 // Compute the map of formal to actual arguments.
1889 std::map<std::string, TreePatternNode*> ArgMap;
1890 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1891 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1892
1893 FragTree->SubstituteFormalArguments(ArgMap);
1894 }
1895
1896 FragTree->setName(getName());
1897 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1898 FragTree->UpdateNodeType(i, getExtType(i), TP);
1899
1900 // Transfer in the old predicates.
1901 for (const TreePredicateFn &Pred : getPredicateFns())
1902 FragTree->addPredicateFn(Pred);
1903
1904 // Get a new copy of this fragment to stitch into here.
1905 //delete this; // FIXME: implement refcounting!
1906
1907 // The fragment we inlined could have recursive inlining that is needed. See
1908 // if there are any pattern fragments in it and inline them as needed.
1909 return FragTree->InlinePatternFragments(TP);
1910}
1911
1912/// getImplicitType - Check to see if the specified record has an implicit
1913/// type which should be applied to it. This will infer the type of register
1914/// references from the register file information, for example.
1915///
1916/// When Unnamed is set, return the type of a DAG operand with no name, such as
1917/// the F8RC register class argument in:
1918///
1919/// (COPY_TO_REGCLASS GPR:$src, F8RC)
1920///
1921/// When Unnamed is false, return the type of a named DAG operand such as the
1922/// GPR:$src operand above.
1923///
1924static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1925 bool NotRegisters,
1926 bool Unnamed,
1927 TreePattern &TP) {
1928 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1929
1930 // Check to see if this is a register operand.
1931 if (R->isSubClassOf("RegisterOperand")) {
1932 assert(ResNo == 0 && "Regoperand ref only has one result!")(static_cast <bool> (ResNo == 0 && "Regoperand ref only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Regoperand ref only has one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1932, __extension__ __PRETTY_FUNCTION__))
;
1933 if (NotRegisters)
1934 return TypeSetByHwMode(); // Unknown.
1935 Record *RegClass = R->getValueAsDef("RegClass");
1936 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1937 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1938 }
1939
1940 // Check to see if this is a register or a register class.
1941 if (R->isSubClassOf("RegisterClass")) {
1942 assert(ResNo == 0 && "Regclass ref only has one result!")(static_cast <bool> (ResNo == 0 && "Regclass ref only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Regclass ref only has one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1942, __extension__ __PRETTY_FUNCTION__))
;
1943 // An unnamed register class represents itself as an i32 immediate, for
1944 // example on a COPY_TO_REGCLASS instruction.
1945 if (Unnamed)
1946 return TypeSetByHwMode(MVT::i32);
1947
1948 // In a named operand, the register class provides the possible set of
1949 // types.
1950 if (NotRegisters)
1951 return TypeSetByHwMode(); // Unknown.
1952 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1953 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1954 }
1955
1956 if (R->isSubClassOf("PatFrag")) {
1957 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?")(static_cast <bool> (ResNo == 0 && "FIXME: PatFrag with multiple results?"
) ? void (0) : __assert_fail ("ResNo == 0 && \"FIXME: PatFrag with multiple results?\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1957, __extension__ __PRETTY_FUNCTION__))
;
1958 // Pattern fragment types will be resolved when they are inlined.
1959 return TypeSetByHwMode(); // Unknown.
1960 }
1961
1962 if (R->isSubClassOf("Register")) {
1963 assert(ResNo == 0 && "Registers only produce one result!")(static_cast <bool> (ResNo == 0 && "Registers only produce one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Registers only produce one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1963, __extension__ __PRETTY_FUNCTION__))
;
1964 if (NotRegisters)
1965 return TypeSetByHwMode(); // Unknown.
1966 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1967 return TypeSetByHwMode(T.getRegisterVTs(R));
1968 }
1969
1970 if (R->isSubClassOf("SubRegIndex")) {
1971 assert(ResNo == 0 && "SubRegisterIndices only produce one result!")(static_cast <bool> (ResNo == 0 && "SubRegisterIndices only produce one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"SubRegisterIndices only produce one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1971, __extension__ __PRETTY_FUNCTION__))
;
1972 return TypeSetByHwMode(MVT::i32);
1973 }
1974
1975 if (R->isSubClassOf("ValueType")) {
1976 assert(ResNo == 0 && "This node only has one result!")(static_cast <bool> (ResNo == 0 && "This node only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1976, __extension__ __PRETTY_FUNCTION__))
;
1977 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1978 //
1979 // (sext_inreg GPR:$src, i16)
1980 // ~~~
1981 if (Unnamed)
1982 return TypeSetByHwMode(MVT::Other);
1983 // With a name, the ValueType simply provides the type of the named
1984 // variable.
1985 //
1986 // (sext_inreg i32:$src, i16)
1987 // ~~~~~~~~
1988 if (NotRegisters)
1989 return TypeSetByHwMode(); // Unknown.
1990 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1991 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
1992 }
1993
1994 if (R->isSubClassOf("CondCode")) {
1995 assert(ResNo == 0 && "This node only has one result!")(static_cast <bool> (ResNo == 0 && "This node only has one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1995, __extension__ __PRETTY_FUNCTION__))
;
1996 // Using a CondCodeSDNode.
1997 return TypeSetByHwMode(MVT::Other);
1998 }
1999
2000 if (R->isSubClassOf("ComplexPattern")) {
2001 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?")(static_cast <bool> (ResNo == 0 && "FIXME: ComplexPattern with multiple results?"
) ? void (0) : __assert_fail ("ResNo == 0 && \"FIXME: ComplexPattern with multiple results?\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2001, __extension__ __PRETTY_FUNCTION__))
;
2002 if (NotRegisters)
2003 return TypeSetByHwMode(); // Unknown.
2004 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2005 }
2006 if (R->isSubClassOf("PointerLikeRegClass")) {
2007 assert(ResNo == 0 && "Regclass can only have one result!")(static_cast <bool> (ResNo == 0 && "Regclass can only have one result!"
) ? void (0) : __assert_fail ("ResNo == 0 && \"Regclass can only have one result!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2007, __extension__ __PRETTY_FUNCTION__))
;
2008 TypeSetByHwMode VTS(MVT::iPTR);
2009 TP.getInfer().expandOverloads(VTS);
2010 return VTS;
2011 }
2012
2013 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2014 R->getName() == "zero_reg") {
2015 // Placeholder.
2016 return TypeSetByHwMode(); // Unknown.
2017 }
2018
2019 if (R->isSubClassOf("Operand")) {
2020 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2021 Record *T = R->getValueAsDef("Type");
2022 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2023 }
2024
2025 TP.error("Unknown node flavor used in pattern: " + R->getName());
2026 return TypeSetByHwMode(MVT::Other);
2027}
2028
2029
2030/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2031/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2032const CodeGenIntrinsic *TreePatternNode::
2033getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2034 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2035 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2036 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2037 return nullptr;
2038
2039 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2040 return &CDP.getIntrinsicInfo(IID);
2041}
2042
2043/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2044/// return the ComplexPattern information, otherwise return null.
2045const ComplexPattern *
2046TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2047 Record *Rec;
2048 if (isLeaf()) {
2049 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2050 if (!DI)
2051 return nullptr;
2052 Rec = DI->getDef();
2053 } else
2054 Rec = getOperator();
2055
2056 if (!Rec->isSubClassOf("ComplexPattern"))
2057 return nullptr;
2058 return &CGP.getComplexPattern(Rec);
2059}
2060
2061unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2062 // A ComplexPattern specifically declares how many results it fills in.
2063 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2064 return CP->getNumOperands();
2065
2066 // If MIOperandInfo is specified, that gives the count.
2067 if (isLeaf()) {
2068 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2069 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2070 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2071 if (MIOps->getNumArgs())
2072 return MIOps->getNumArgs();
2073 }
2074 }
2075
2076 // Otherwise there is just one result.
2077 return 1;
2078}
2079
2080/// NodeHasProperty - Return true if this node has the specified property.
2081bool TreePatternNode::NodeHasProperty(SDNP Property,
2082 const CodeGenDAGPatterns &CGP) const {
2083 if (isLeaf()) {
2084 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2085 return CP->hasProperty(Property);
2086
2087 return false;
2088 }
2089
2090 if (Property != SDNPHasChain) {
2091 // The chain proprety is already present on the different intrinsic node
2092 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2093 // on the intrinsic. Anything else is specific to the individual intrinsic.
2094 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2095 return Int->hasProperty(Property);
2096 }
2097
2098 if (!Operator->isSubClassOf("SDPatternOperator"))
2099 return false;
2100
2101 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2102}
2103
2104
2105
2106
2107/// TreeHasProperty - Return true if any node in this tree has the specified
2108/// property.
2109bool TreePatternNode::TreeHasProperty(SDNP Property,
2110 const CodeGenDAGPatterns &CGP) const {
2111 if (NodeHasProperty(Property, CGP))
2112 return true;
2113 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2114 if (getChild(i)->TreeHasProperty(Property, CGP))
2115 return true;
2116 return false;
2117}
2118
2119/// isCommutativeIntrinsic - Return true if the node corresponds to a
2120/// commutative intrinsic.
2121bool
2122TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2123 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2124 return Int->isCommutative;
2125 return false;
2126}
2127
2128static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2129 if (!N->isLeaf())
2130 return N->getOperator()->isSubClassOf(Class);
2131
2132 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2133 if (DI && DI->getDef()->isSubClassOf(Class))
2134 return true;
2135
2136 return false;
2137}
2138
2139static void emitTooManyOperandsError(TreePattern &TP,
2140 StringRef InstName,
2141 unsigned Expected,
2142 unsigned Actual) {
2143 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2144 " operands but expected only " + Twine(Expected) + "!");
2145}
2146
2147static void emitTooFewOperandsError(TreePattern &TP,
2148 StringRef InstName,
2149 unsigned Actual) {
2150 TP.error("Instruction '" + InstName +
2151 "' expects more than the provided " + Twine(Actual) + " operands!");
2152}
2153
2154/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2155/// this node and its children in the tree. This returns true if it makes a
2156/// change, false otherwise. If a type contradiction is found, flag an error.
2157bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2158 if (TP.hasError())
2159 return false;
2160
2161 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2162 if (isLeaf()) {
2163 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2164 // If it's a regclass or something else known, include the type.
2165 bool MadeChange = false;
2166 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2167 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2168 NotRegisters,
2169 !hasName(), TP), TP);
2170 return MadeChange;
2171 }
2172
2173 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2174 assert(Types.size() == 1 && "Invalid IntInit")(static_cast <bool> (Types.size() == 1 && "Invalid IntInit"
) ? void (0) : __assert_fail ("Types.size() == 1 && \"Invalid IntInit\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2174, __extension__ __PRETTY_FUNCTION__))
;
2175
2176 // Int inits are always integers. :)
2177 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2178
2179 if (!TP.getInfer().isConcrete(Types[0], false))
2180 return MadeChange;
2181
2182 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2183 for (auto &P : VVT) {
2184 MVT::SimpleValueType VT = P.second.SimpleTy;
2185 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2186 continue;
2187 unsigned Size = MVT(VT).getSizeInBits();
2188 // Make sure that the value is representable for this type.
2189 if (Size >= 32)
2190 continue;
2191 // Check that the value doesn't use more bits than we have. It must
2192 // either be a sign- or zero-extended equivalent of the original.
2193 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2194 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2195 SignBitAndAbove == 1)
2196 continue;
2197
2198 TP.error("Integer value '" + Twine(II->getValue()) +
2199 "' is out of range for type '" + getEnumName(VT) + "'!");
2200 break;
2201 }
2202 return MadeChange;
2203 }
2204
2205 return false;
2206 }
2207
2208 // special handling for set, which isn't really an SDNode.
2209 if (getOperator()->getName() == "set") {
2210 assert(getNumTypes() == 0 && "Set doesn't produce a value")(static_cast <bool> (getNumTypes() == 0 && "Set doesn't produce a value"
) ? void (0) : __assert_fail ("getNumTypes() == 0 && \"Set doesn't produce a value\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2210, __extension__ __PRETTY_FUNCTION__))
;
2211 assert(getNumChildren() >= 2 && "Missing RHS of a set?")(static_cast <bool> (getNumChildren() >= 2 &&
"Missing RHS of a set?") ? void (0) : __assert_fail ("getNumChildren() >= 2 && \"Missing RHS of a set?\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2211, __extension__ __PRETTY_FUNCTION__))
;
2212 unsigned NC = getNumChildren();
2213
2214 TreePatternNode *SetVal = getChild(NC-1);
2215 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
2216
2217 for (unsigned i = 0; i < NC-1; ++i) {
2218 TreePatternNode *Child = getChild(i);
2219 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
2220
2221 // Types of operands must match.
2222 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
2223 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
2224 }
2225 return MadeChange;
2226 }
2227
2228 if (getOperator()->getName() == "implicit") {
2229 assert(getNumTypes() == 0 && "Node doesn't produce a value")(static_cast <bool> (getNumTypes() == 0 && "Node doesn't produce a value"
) ? void (0) : __assert_fail ("getNumTypes() == 0 && \"Node doesn't produce a value\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2229, __extension__ __PRETTY_FUNCTION__))
;
2230
2231 bool MadeChange = false;
2232 for (unsigned i = 0; i < getNumChildren(); ++i)
2233 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2234 return MadeChange;
2235 }
2236
2237 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2238 bool MadeChange = false;
2239
2240 // Apply the result type to the node.
2241 unsigned NumRetVTs = Int->IS.RetVTs.size();
2242 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2243
2244 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2245 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2246
2247 if (getNumChildren() != NumParamVTs + 1) {
2248 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2249 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2250 return false;
2251 }
2252
2253 // Apply type info to the intrinsic ID.
2254 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2255
2256 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2257 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2258
2259 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2260 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case")(static_cast <bool> (getChild(i+1)->getNumTypes() ==
1 && "Unhandled case") ? void (0) : __assert_fail ("getChild(i+1)->getNumTypes() == 1 && \"Unhandled case\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2260, __extension__ __PRETTY_FUNCTION__))
;
2261 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2262 }
2263 return MadeChange;
2264 }
2265
2266 if (getOperator()->isSubClassOf("SDNode")) {
2267 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2268
2269 // Check that the number of operands is sane. Negative operands -> varargs.
2270 if (NI.getNumOperands() >= 0 &&
2271 getNumChildren() != (unsigned)NI.getNumOperands()) {
2272 TP.error(getOperator()->getName() + " node requires exactly " +
2273 Twine(NI.getNumOperands()) + " operands!");
2274 return false;
2275 }
2276
2277 bool MadeChange = false;
2278 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2279 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2280 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2281 return MadeChange;
2282 }
2283
2284 if (getOperator()->isSubClassOf("Instruction")) {
2285 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2286 CodeGenInstruction &InstInfo =
2287 CDP.getTargetInfo().getInstruction(getOperator());
2288
2289 bool MadeChange = false;
2290
2291 // Apply the result types to the node, these come from the things in the
2292 // (outs) list of the instruction.
2293 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2294 Inst.getNumResults());
2295 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2296 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2297
2298 // If the instruction has implicit defs, we apply the first one as a result.
2299 // FIXME: This sucks, it should apply all implicit defs.
2300 if (!InstInfo.ImplicitDefs.empty()) {
2301 unsigned ResNo = NumResultsToAdd;
2302
2303 // FIXME: Generalize to multiple possible types and multiple possible
2304 // ImplicitDefs.
2305 MVT::SimpleValueType VT =
2306 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2307
2308 if (VT != MVT::Other)
2309 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2310 }
2311
2312 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2313 // be the same.
2314 if (getOperator()->getName() == "INSERT_SUBREG") {
2315 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled")(static_cast <bool> (getChild(0)->getNumTypes() == 1
&& "FIXME: Unhandled") ? void (0) : __assert_fail ("getChild(0)->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2315, __extension__ __PRETTY_FUNCTION__))
;
2316 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2317 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2318 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2319 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2320 // variadic.
2321
2322 unsigned NChild = getNumChildren();
2323 if (NChild < 3) {
2324 TP.error("REG_SEQUENCE requires at least 3 operands!");
2325 return false;
2326 }
2327
2328 if (NChild % 2 == 0) {
2329 TP.error("REG_SEQUENCE requires an odd number of operands!");
2330 return false;
2331 }
2332
2333 if (!isOperandClass(getChild(0), "RegisterClass")) {
2334 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2335 return false;
2336 }
2337
2338 for (unsigned I = 1; I < NChild; I += 2) {
2339 TreePatternNode *SubIdxChild = getChild(I + 1);
2340 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2341 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2342 Twine(I + 1) + "!");
2343 return false;
2344 }
2345 }
2346 }
2347
2348 unsigned ChildNo = 0;
2349 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2350 Record *OperandNode = Inst.getOperand(i);
2351
2352 // If the instruction expects a predicate or optional def operand, we
2353 // codegen this by setting the operand to it's default value if it has a
2354 // non-empty DefaultOps field.
2355 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2356 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2357 continue;
2358
2359 // Verify that we didn't run out of provided operands.
2360 if (ChildNo >= getNumChildren()) {
2361 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2362 return false;
2363 }
2364
2365 TreePatternNode *Child = getChild(ChildNo++);
2366 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2367
2368 // If the operand has sub-operands, they may be provided by distinct
2369 // child patterns, so attempt to match each sub-operand separately.
2370 if (OperandNode->isSubClassOf("Operand")) {
2371 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2372 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2373 // But don't do that if the whole operand is being provided by
2374 // a single ComplexPattern-related Operand.
2375
2376 if (Child->getNumMIResults(CDP) < NumArgs) {
2377 // Match first sub-operand against the child we already have.
2378 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2379 MadeChange |=
2380 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2381
2382 // And the remaining sub-operands against subsequent children.
2383 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2384 if (ChildNo >= getNumChildren()) {
2385 emitTooFewOperandsError(TP, getOperator()->getName(),
2386 getNumChildren());
2387 return false;
2388 }
2389 Child = getChild(ChildNo++);
2390
2391 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2392 MadeChange |=
2393 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2394 }
2395 continue;
2396 }
2397 }
2398 }
2399
2400 // If we didn't match by pieces above, attempt to match the whole
2401 // operand now.
2402 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2403 }
2404
2405 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2406 emitTooManyOperandsError(TP, getOperator()->getName(),
2407 ChildNo, getNumChildren());
2408 return false;
2409 }
2410
2411 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2412 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2413 return MadeChange;
2414 }
2415
2416 if (getOperator()->isSubClassOf("ComplexPattern")) {
2417 bool MadeChange = false;
2418
2419 for (unsigned i = 0; i < getNumChildren(); ++i)
2420 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2421
2422 return MadeChange;
2423 }
2424
2425 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!")(static_cast <bool> (getOperator()->isSubClassOf("SDNodeXForm"
) && "Unknown node type!") ? void (0) : __assert_fail
("getOperator()->isSubClassOf(\"SDNodeXForm\") && \"Unknown node type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2425, __extension__ __PRETTY_FUNCTION__))
;
2426
2427 // Node transforms always take one operand.
2428 if (getNumChildren() != 1) {
2429 TP.error("Node transform '" + getOperator()->getName() +
2430 "' requires one operand!");
2431 return false;
2432 }
2433
2434 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2435 return MadeChange;
2436}
2437
2438/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2439/// RHS of a commutative operation, not the on LHS.
2440static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2441 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2442 return true;
2443 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2444 return true;
2445 return false;
2446}
2447
2448
2449/// canPatternMatch - If it is impossible for this pattern to match on this
2450/// target, fill in Reason and return false. Otherwise, return true. This is
2451/// used as a sanity check for .td files (to prevent people from writing stuff
2452/// that can never possibly work), and to prevent the pattern permuter from
2453/// generating stuff that is useless.
2454bool TreePatternNode::canPatternMatch(std::string &Reason,
2455 const CodeGenDAGPatterns &CDP) {
2456 if (isLeaf()) return true;
2457
2458 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2459 if (!getChild(i)->canPatternMatch(Reason, CDP))
2460 return false;
2461
2462 // If this is an intrinsic, handle cases that would make it not match. For
2463 // example, if an operand is required to be an immediate.
2464 if (getOperator()->isSubClassOf("Intrinsic")) {
2465 // TODO:
2466 return true;
2467 }
2468
2469 if (getOperator()->isSubClassOf("ComplexPattern"))
2470 return true;
2471
2472 // If this node is a commutative operator, check that the LHS isn't an
2473 // immediate.
2474 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2475 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2476 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2477 // Scan all of the operands of the node and make sure that only the last one
2478 // is a constant node, unless the RHS also is.
2479 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2480 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2481 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2482 if (OnlyOnRHSOfCommutative(getChild(i))) {
2483 Reason="Immediate value must be on the RHS of commutative operators!";
2484 return false;
2485 }
2486 }
2487 }
2488
2489 return true;
2490}
2491
2492//===----------------------------------------------------------------------===//
2493// TreePattern implementation
2494//
2495
2496TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2497 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2498 isInputPattern(isInput), HasError(false),
2499 Infer(*this) {
2500 for (Init *I : RawPat->getValues())
2501 Trees.push_back(ParseTreePattern(I, ""));
2502}
2503
2504TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2505 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2506 isInputPattern(isInput), HasError(false),
2507 Infer(*this) {
2508 Trees.push_back(ParseTreePattern(Pat, ""));
2509}
2510
2511TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2512 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2513 isInputPattern(isInput), HasError(false),
2514 Infer(*this) {
2515 Trees.push_back(Pat);
2516}
2517
2518void TreePattern::error(const Twine &Msg) {
2519 if (HasError)
2520 return;
2521 dump();
2522 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2523 HasError = true;
2524}
2525
2526void TreePattern::ComputeNamedNodes() {
2527 for (TreePatternNode *Tree : Trees)
2528 ComputeNamedNodes(Tree);
2529}
2530
2531void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2532 if (!N->getName().empty())
2533 NamedNodes[N->getName()].push_back(N);
2534
2535 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2536 ComputeNamedNodes(N->getChild(i));
2537}
2538
2539
2540TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2541 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2542 Record *R = DI->getDef();
2543
2544 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2545 // TreePatternNode of its own. For example:
2546 /// (foo GPR, imm) -> (foo GPR, (imm))
2547 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2548 return ParseTreePattern(
2549 DagInit::get(DI, nullptr,
2550 std::vector<std::pair<Init*, StringInit*> >()),
2551 OpName);
2552
2553 // Input argument?
2554 TreePatternNode *Res = new TreePatternNode(DI, 1);
2555 if (R->getName() == "node" && !OpName.empty()) {
2556 if (OpName.empty())
2557 error("'node' argument requires a name to match with operand list");
2558 Args.push_back(OpName);
2559 }
2560
2561 Res->setName(OpName);
2562 return Res;
2563 }
2564
2565 // ?:$name or just $name.
2566 if (isa<UnsetInit>(TheInit)) {
2567 if (OpName.empty())
2568 error("'?' argument requires a name to match with operand list");
2569 TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2570 Args.push_back(OpName);
2571 Res->setName(OpName);
2572 return Res;
2573 }
2574
2575 if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2576 if (!OpName.empty())
2577 error("Constant int argument should not have a name!");
2578 return new TreePatternNode(II, 1);
2579 }
2580
2581 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2582 // Turn this into an IntInit.
2583 Init *II = BI->convertInitializerTo(IntRecTy::get());
2584 if (!II || !isa<IntInit>(II))
2585 error("Bits value must be constants!");
2586 return ParseTreePattern(II, OpName);
2587 }
2588
2589 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2590 if (!Dag) {
2591 TheInit->print(errs());
2592 error("Pattern has unexpected init kind!");
2593 }
2594 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2595 if (!OpDef) error("Pattern has unexpected operator type!");
2596 Record *Operator = OpDef->getDef();
2597
2598 if (Operator->isSubClassOf("ValueType")) {
2599 // If the operator is a ValueType, then this must be "type cast" of a leaf
2600 // node.
2601 if (Dag->getNumArgs() != 1)
2602 error("Type cast only takes one operand!");
2603
2604 TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2605 Dag->getArgNameStr(0));
2606
2607 // Apply the type cast.
2608 assert(New->getNumTypes() == 1 && "FIXME: Unhandled")(static_cast <bool> (New->getNumTypes() == 1 &&
"FIXME: Unhandled") ? void (0) : __assert_fail ("New->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2608, __extension__ __PRETTY_FUNCTION__))
;
2609 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2610 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2611
2612 if (!OpName.empty())
2613 error("ValueType cast should not have a name!");
2614 return New;
2615 }
2616
2617 // Verify that this is something that makes sense for an operator.
2618 if (!Operator->isSubClassOf("PatFrag") &&
2619 !Operator->isSubClassOf("SDNode") &&
2620 !Operator->isSubClassOf("Instruction") &&
2621 !Operator->isSubClassOf("SDNodeXForm") &&
2622 !Operator->isSubClassOf("Intrinsic") &&
2623 !Operator->isSubClassOf("ComplexPattern") &&
2624 Operator->getName() != "set" &&
2625 Operator->getName() != "implicit")
2626 error("Unrecognized node '" + Operator->getName() + "'!");
2627
2628 // Check to see if this is something that is illegal in an input pattern.
2629 if (isInputPattern) {
2630 if (Operator->isSubClassOf("Instruction") ||
2631 Operator->isSubClassOf("SDNodeXForm"))
2632 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2633 } else {
2634 if (Operator->isSubClassOf("Intrinsic"))
2635 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2636
2637 if (Operator->isSubClassOf("SDNode") &&
2638 Operator->getName() != "imm" &&
2639 Operator->getName() != "fpimm" &&
2640 Operator->getName() != "tglobaltlsaddr" &&
2641 Operator->getName() != "tconstpool" &&
2642 Operator->getName() != "tjumptable" &&
2643 Operator->getName() != "tframeindex" &&
2644 Operator->getName() != "texternalsym" &&
2645 Operator->getName() != "tblockaddress" &&
2646 Operator->getName() != "tglobaladdr" &&
2647 Operator->getName() != "bb" &&
2648 Operator->getName() != "vt" &&
2649 Operator->getName() != "mcsym")
2650 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2651 }
2652
2653 std::vector<TreePatternNode*> Children;
2654
2655 // Parse all the operands.
2656 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2657 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2658
2659 // Get the actual number of results before Operator is converted to an intrinsic
2660 // node (which is hard-coded to have either zero or one result).
2661 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2662
2663 // If the operator is an intrinsic, then this is just syntactic sugar for for
2664 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2665 // convert the intrinsic name to a number.
2666 if (Operator->isSubClassOf("Intrinsic")) {
2667 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2668 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2669
2670 // If this intrinsic returns void, it must have side-effects and thus a
2671 // chain.
2672 if (Int.IS.RetVTs.empty())
2673 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2674 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2675 // Has side-effects, requires chain.
2676 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2677 else // Otherwise, no chain.
2678 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2679
2680 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2681 Children.insert(Children.begin(), IIDNode);
2682 }
2683
2684 if (Operator->isSubClassOf("ComplexPattern")) {
2685 for (unsigned i = 0; i < Children.size(); ++i) {
2686 TreePatternNode *Child = Children[i];
2687
2688 if (Child->getName().empty())
2689 error("All arguments to a ComplexPattern must be named");
2690
2691 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2692 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2693 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2694 auto OperandId = std::make_pair(Operator, i);
2695 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2696 if (PrevOp != ComplexPatternOperands.end()) {
2697 if (PrevOp->getValue() != OperandId)
2698 error("All ComplexPattern operands must appear consistently: "
2699 "in the same order in just one ComplexPattern instance.");
2700 } else
2701 ComplexPatternOperands[Child->getName()] = OperandId;
2702 }
2703 }
2704
2705 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2706 Result->setName(OpName);
2707
2708 if (Dag->getName()) {
2709 assert(Result->getName().empty())(static_cast <bool> (Result->getName().empty()) ? void
(0) : __assert_fail ("Result->getName().empty()", "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2709, __extension__ __PRETTY_FUNCTION__))
;
2710 Result->setName(Dag->getNameStr());
2711 }
2712 return Result;
2713}
2714
2715/// SimplifyTree - See if we can simplify this tree to eliminate something that
2716/// will never match in favor of something obvious that will. This is here
2717/// strictly as a convenience to target authors because it allows them to write
2718/// more type generic things and have useless type casts fold away.
2719///
2720/// This returns true if any change is made.
2721static bool SimplifyTree(TreePatternNode *&N) {
2722 if (N->isLeaf())
2723 return false;
2724
2725 // If we have a bitconvert with a resolved type and if the source and
2726 // destination types are the same, then the bitconvert is useless, remove it.
2727 if (N->getOperator()->getName() == "bitconvert" &&
2728 N->getExtType(0).isValueTypeByHwMode(false) &&
2729 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2730 N->getName().empty()) {
2731 N = N->getChild(0);
2732 SimplifyTree(N);
2733 return true;
2734 }
2735
2736 // Walk all children.
2737 bool MadeChange = false;
2738 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2739 TreePatternNode *Child = N->getChild(i);
2740 MadeChange |= SimplifyTree(Child);
2741 N->setChild(i, Child);
2742 }
2743 return MadeChange;
2744}
2745
2746
2747
2748/// InferAllTypes - Infer/propagate as many types throughout the expression
2749/// patterns as possible. Return true if all types are inferred, false
2750/// otherwise. Flags an error if a type contradiction is found.
2751bool TreePattern::
2752InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2753 if (NamedNodes.empty())
2754 ComputeNamedNodes();
2755
2756 bool MadeChange = true;
2757 while (MadeChange) {
2758 MadeChange = false;
2759 for (TreePatternNode *&Tree : Trees) {
2760 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2761 MadeChange |= SimplifyTree(Tree);
2762 }
2763
2764 // If there are constraints on our named nodes, apply them.
2765 for (auto &Entry : NamedNodes) {
2766 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2767
2768 // If we have input named node types, propagate their types to the named
2769 // values here.
2770 if (InNamedTypes) {
2771 if (!InNamedTypes->count(Entry.getKey())) {
2772 error("Node '" + std::string(Entry.getKey()) +
2773 "' in output pattern but not input pattern");
2774 return true;
2775 }
2776
2777 const SmallVectorImpl<TreePatternNode*> &InNodes =
2778 InNamedTypes->find(Entry.getKey())->second;
2779
2780 // The input types should be fully resolved by now.
2781 for (TreePatternNode *Node : Nodes) {
2782 // If this node is a register class, and it is the root of the pattern
2783 // then we're mapping something onto an input register. We allow
2784 // changing the type of the input register in this case. This allows
2785 // us to match things like:
2786 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2787 if (Node == Trees[0] && Node->isLeaf()) {
2788 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2789 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2790 DI->getDef()->isSubClassOf("RegisterOperand")))
2791 continue;
2792 }
2793
2794 assert(Node->getNumTypes() == 1 &&(static_cast <bool> (Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2796, __extension__ __PRETTY_FUNCTION__))
2795 InNodes[0]->getNumTypes() == 1 &&(static_cast <bool> (Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2796, __extension__ __PRETTY_FUNCTION__))
2796 "FIXME: cannot name multiple result nodes yet")(static_cast <bool> (Node->getNumTypes() == 1 &&
InNodes[0]->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2796, __extension__ __PRETTY_FUNCTION__))
;
2797 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2798 *this);
2799 }
2800 }
2801
2802 // If there are multiple nodes with the same name, they must all have the
2803 // same type.
2804 if (Entry.second.size() > 1) {
2805 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2806 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2807 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&(static_cast <bool> (N1->getNumTypes() == 1 &&
N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2808, __extension__ __PRETTY_FUNCTION__))
2808 "FIXME: cannot name multiple result nodes yet")(static_cast <bool> (N1->getNumTypes() == 1 &&
N2->getNumTypes() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? void (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2808, __extension__ __PRETTY_FUNCTION__))
;
2809
2810 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2811 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2812 }
2813 }
2814 }
2815 }
2816
2817 bool HasUnresolvedTypes = false;
2818 for (const TreePatternNode *Tree : Trees)
2819 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2820 return !HasUnresolvedTypes;
2821}
2822
2823void TreePattern::print(raw_ostream &OS) const {
2824 OS << getRecord()->getName();
2825 if (!Args.empty()) {
2826 OS << "(" << Args[0];
2827 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2828 OS << ", " << Args[i];
2829 OS << ")";
2830 }
2831 OS << ": ";
2832
2833 if (Trees.size() > 1)
2834 OS << "[\n";
2835 for (const TreePatternNode *Tree : Trees) {
2836 OS << "\t";
2837 Tree->print(OS);
2838 OS << "\n";
2839 }
2840
2841 if (Trees.size() > 1)
2842 OS << "]\n";
2843}
2844
2845void TreePattern::dump() const { print(errs()); }
2846
2847//===----------------------------------------------------------------------===//
2848// CodeGenDAGPatterns implementation
2849//
2850
2851CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2852 PatternRewriterFn PatternRewriter)
2853 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2854 PatternRewriter(PatternRewriter) {
2855
2856 Intrinsics = CodeGenIntrinsicTable(Records, false);
2857 TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2858 ParseNodeInfo();
2859 ParseNodeTransforms();
2860 ParseComplexPatterns();
2861 ParsePatternFragments();
2862 ParseDefaultOperands();
2863 ParseInstructions();
2864 ParsePatternFragments(/*OutFrags*/true);
2865 ParsePatterns();
2866
2867 // Break patterns with parameterized types into a series of patterns,
2868 // where each one has a fixed type and is predicated on the conditions
2869 // of the associated HW mode.
2870 ExpandHwModeBasedTypes();
2871
2872 // Generate variants. For example, commutative patterns can match
2873 // multiple ways. Add them to PatternsToMatch as well.
2874 GenerateVariants();
2875
2876 // Infer instruction flags. For example, we can detect loads,
2877 // stores, and side effects in many cases by examining an
2878 // instruction's pattern.
2879 InferInstructionFlags();
2880
2881 // Verify that instruction flags match the patterns.
2882 VerifyInstructionFlags();
2883}
2884
2885Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2886 Record *N = Records.getDef(Name);
2887 if (!N || !N->isSubClassOf("SDNode"))
2888 PrintFatalError("Error getting SDNode '" + Name + "'!");
2889
2890 return N;
2891}
2892
2893// Parse all of the SDNode definitions for the target, populating SDNodes.
2894void CodeGenDAGPatterns::ParseNodeInfo() {
2895 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2896 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2897
2898 while (!Nodes.empty()) {
2899 Record *R = Nodes.back();
2900 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2901 Nodes.pop_back();
2902 }
2903
2904 // Get the builtin intrinsic nodes.
2905 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2906 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2907 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2908}
2909
2910/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2911/// map, and emit them to the file as functions.
2912void CodeGenDAGPatterns::ParseNodeTransforms() {
2913 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2914 while (!Xforms.empty()) {
2915 Record *XFormNode = Xforms.back();
2916 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2917 StringRef Code = XFormNode->getValueAsString("XFormFunction");
2918 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2919
2920 Xforms.pop_back();
2921 }
2922}
2923
2924void CodeGenDAGPatterns::ParseComplexPatterns() {
2925 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2926 while (!AMs.empty()) {
2927 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2928 AMs.pop_back();
2929 }
2930}
2931
2932
2933/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2934/// file, building up the PatternFragments map. After we've collected them all,
2935/// inline fragments together as necessary, so that there are no references left
2936/// inside a pattern fragment to a pattern fragment.
2937///
2938void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2939 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2940
2941 // First step, parse all of the fragments.
2942 for (Record *Frag : Fragments) {
2943 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2944 continue;
2945
2946 DagInit *Tree = Frag->getValueAsDag("Fragment");
2947 TreePattern *P =
2948 (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2949 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2950 *this)).get();
2951
2952 // Validate the argument list, converting it to set, to discard duplicates.
2953 std::vector<std::string> &Args = P->getArgList();
2954 // Copy the args so we can take StringRefs to them.
2955 auto ArgsCopy = Args;
2956 SmallDenseSet<StringRef, 4> OperandsSet;
2957 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2958
2959 if (OperandsSet.count(""))
2960 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2961
2962 // Parse the operands list.
2963 DagInit *OpsList = Frag->getValueAsDag("Operands");
2964 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2965 // Special cases: ops == outs == ins. Different names are used to
2966 // improve readability.
2967 if (!OpsOp ||
2968 (OpsOp->getDef()->getName() != "ops" &&
2969 OpsOp->getDef()->getName() != "outs" &&
2970 OpsOp->getDef()->getName() != "ins"))
2971 P->error("Operands list should start with '(ops ... '!");
2972
2973 // Copy over the arguments.
2974 Args.clear();
2975 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2976 if (!isa<DefInit>(OpsList->getArg(j)) ||
2977 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2978 P->error("Operands list should all be 'node' values.");
2979 if (!OpsList->getArgName(j))
2980 P->error("Operands list should have names for each operand!");
2981 StringRef ArgNameStr = OpsList->getArgNameStr(j);
2982 if (!OperandsSet.count(ArgNameStr))
2983 P->error("'" + ArgNameStr +
2984 "' does not occur in pattern or was multiply specified!");
2985 OperandsSet.erase(ArgNameStr);
2986 Args.push_back(ArgNameStr);
2987 }
2988
2989 if (!OperandsSet.empty())
2990 P->error("Operands list does not contain an entry for operand '" +
2991 *OperandsSet.begin() + "'!");
2992
2993 // If there is a code init for this fragment, keep track of the fact that
2994 // this fragment uses it.
2995 TreePredicateFn PredFn(P);
2996 if (!PredFn.isAlwaysTrue())
2997 P->getOnlyTree()->addPredicateFn(PredFn);
2998
2999 // If there is a node transformation corresponding to this, keep track of
3000 // it.
3001 Record *Transform = Frag->getValueAsDef("OperandTransform");
3002 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3003 P->getOnlyTree()->setTransformFn(Transform);
3004 }
3005
3006 // Now that we've parsed all of the tree fragments, do a closure on them so
3007 // that there are not references to PatFrags left inside of them.
3008 for (Record *Frag : Fragments) {
3009 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3010 continue;
3011
3012 TreePattern &ThePat = *PatternFragments[Frag];
3013 ThePat.InlinePatternFragments();
3014
3015 // Infer as many types as possible. Don't worry about it if we don't infer
3016 // all of them, some may depend on the inputs of the pattern.
3017 ThePat.InferAllTypes();
3018 ThePat.resetError();
3019
3020 // If debugging, print out the pattern fragment result.
3021 DEBUG(ThePat.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { ThePat.dump(); } } while (false)
;
3022 }
3023}
3024
3025void CodeGenDAGPatterns::ParseDefaultOperands() {
3026 std::vector<Record*> DefaultOps;
3027 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3028
3029 // Find some SDNode.
3030 assert(!SDNodes.empty() && "No SDNodes parsed?")(static_cast <bool> (!SDNodes.empty() && "No SDNodes parsed?"
) ? void (0) : __assert_fail ("!SDNodes.empty() && \"No SDNodes parsed?\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3030, __extension__ __PRETTY_FUNCTION__))
;
3031 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3032
3033 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3034 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3035
3036 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3037 // SomeSDnode so that we can parse this.
3038 std::vector<std::pair<Init*, StringInit*> > Ops;
3039 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3040 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3041 DefaultInfo->getArgName(op)));
3042 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3043
3044 // Create a TreePattern to parse this.
3045 TreePattern P(DefaultOps[i], DI, false, *this);
3046 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!")(static_cast <bool> (P.getNumTrees() == 1 && "This ctor can only produce one tree!"
) ? void (0) : __assert_fail ("P.getNumTrees() == 1 && \"This ctor can only produce one tree!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3046, __extension__ __PRETTY_FUNCTION__))
;
3047
3048 // Copy the operands over into a DAGDefaultOperand.
3049 DAGDefaultOperand DefaultOpInfo;
3050
3051 TreePatternNode *T = P.getTree(0);
3052 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3053 TreePatternNode *TPN = T->getChild(op);
3054 while (TPN->ApplyTypeConstraints(P, false))
3055 /* Resolve all types */;
3056
3057 if (TPN->ContainsUnresolvedType(P)) {
3058 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3059 DefaultOps[i]->getName() +
3060 "' doesn't have a concrete type!");
3061 }
3062 DefaultOpInfo.DefaultOps.push_back(TPN);
3063 }
3064
3065 // Insert it into the DefaultOperands map so we can find it later.
3066 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3067 }
3068}
3069
3070/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3071/// instruction input. Return true if this is a real use.
3072static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
3073 std::map<std::string, TreePatternNode*> &InstInputs) {
3074 // No name -> not interesting.
3075 if (Pat->getName().empty()) {
1
Assuming the condition is false
2
Taking false branch
3076 if (Pat->isLeaf()) {
3077 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3078 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3079 DI->getDef()->isSubClassOf("RegisterOperand")))
3080 I->error("Input " + DI->getDef()->getName() + " must be named!");
3081 }
3082 return false;
3083 }
3084
3085 Record *Rec;
3086 if (Pat->isLeaf()) {
3
Taking true branch
3087 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
4
Calling 'dyn_cast'
48
Returning from 'dyn_cast'
49
'DI' initialized here
3088 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
50
Assuming 'DI' is null
51
Taking true branch
3089 Rec = DI->getDef();
52
Called C++ object pointer is null
3090 } else {
3091 Rec = Pat->getOperator();
3092 }
3093
3094 // SRCVALUE nodes are ignored.
3095 if (Rec->getName() == "srcvalue")
3096 return false;
3097
3098 TreePatternNode *&Slot = InstInputs[Pat->getName()];
3099 if (!Slot) {
3100 Slot = Pat;
3101 return true;
3102 }
3103 Record *SlotRec;
3104 if (Slot->isLeaf()) {
3105 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3106 } else {
3107 assert(Slot->getNumChildren() == 0 && "can't be a use with children!")(static_cast <bool> (Slot->getNumChildren() == 0 &&
"can't be a use with children!") ? void (0) : __assert_fail (
"Slot->getNumChildren() == 0 && \"can't be a use with children!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3107, __extension__ __PRETTY_FUNCTION__))
;
3108 SlotRec = Slot->getOperator();
3109 }
3110
3111 // Ensure that the inputs agree if we've already seen this input.
3112 if (Rec != SlotRec)
3113 I->error("All $" + Pat->getName() + " inputs must agree with each other");
3114 if (Slot->getExtTypes() != Pat->getExtTypes())
3115 I->error("All $" + Pat->getName() + " inputs must agree with each other");
3116 return true;
3117}
3118
3119/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3120/// part of "I", the instruction), computing the set of inputs and outputs of
3121/// the pattern. Report errors if we see anything naughty.
3122void CodeGenDAGPatterns::
3123FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
3124 std::map<std::string, TreePatternNode*> &InstInputs,
3125 std::map<std::string, TreePatternNode*>&InstResults,
3126 std::vector<Record*> &InstImpResults) {
3127 if (Pat->isLeaf()) {
3128 bool isUse = HandleUse(I, Pat, InstInputs);
3129 if (!isUse && Pat->getTransformFn())
3130 I->error("Cannot specify a transform function for a non-input value!");
3131 return;
3132 }
3133
3134 if (Pat->getOperator()->getName() == "implicit") {
3135 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3136 TreePatternNode *Dest = Pat->getChild(i);
3137 if (!Dest->isLeaf())
3138 I->error("implicitly defined value should be a register!");
3139
3140 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3141 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3142 I->error("implicitly defined value should be a register!");
3143 InstImpResults.push_back(Val->getDef());
3144 }
3145 return;
3146 }
3147
3148 if (Pat->getOperator()->getName() != "set") {
3149 // If this is not a set, verify that the children nodes are not void typed,
3150 // and recurse.
3151 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3152 if (Pat->getChild(i)->getNumTypes() == 0)
3153 I->error("Cannot have void nodes inside of patterns!");
3154 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
3155 InstImpResults);
3156 }
3157
3158 // If this is a non-leaf node with no children, treat it basically as if
3159 // it were a leaf. This handles nodes like (imm).
3160 bool isUse = HandleUse(I, Pat, InstInputs);
3161
3162 if (!isUse && Pat->getTransformFn())
3163 I->error("Cannot specify a transform function for a non-input value!");
3164 return;
3165 }
3166
3167 // Otherwise, this is a set, validate and collect instruction results.
3168 if (Pat->getNumChildren() == 0)
3169 I->error("set requires operands!");
3170
3171 if (Pat->getTransformFn())
3172 I->error("Cannot specify a transform function on a set node!");
3173
3174 // Check the set destinations.
3175 unsigned NumDests = Pat->getNumChildren()-1;
3176 for (unsigned i = 0; i != NumDests; ++i) {
3177 TreePatternNode *Dest = Pat->getChild(i);
3178 if (!Dest->isLeaf())
3179 I->error("set destination should be a register!");
3180
3181 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3182 if (!Val) {
3183 I->error("set destination should be a register!");
3184 continue;
3185 }
3186
3187 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3188 Val->getDef()->isSubClassOf("ValueType") ||
3189 Val->getDef()->isSubClassOf("RegisterOperand") ||
3190 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3191 if (Dest->getName().empty())
3192 I->error("set destination must have a name!");
3193 if (InstResults.count(Dest->getName()))
3194 I->error("cannot set '" + Dest->getName() +"' multiple times");
3195 InstResults[Dest->getName()] = Dest;
3196 } else if (Val->getDef()->isSubClassOf("Register")) {
3197 InstImpResults.push_back(Val->getDef());
3198 } else {
3199 I->error("set destination should be a register!");
3200 }
3201 }
3202
3203 // Verify and collect info from the computation.
3204 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
3205 InstInputs, InstResults, InstImpResults);
3206}
3207
3208//===----------------------------------------------------------------------===//
3209// Instruction Analysis
3210//===----------------------------------------------------------------------===//
3211
3212class InstAnalyzer {
3213 const CodeGenDAGPatterns &CDP;
3214public:
3215 bool hasSideEffects;
3216 bool mayStore;
3217 bool mayLoad;
3218 bool isBitcast;
3219 bool isVariadic;
3220
3221 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3222 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3223 isBitcast(false), isVariadic(false) {}
3224
3225 void Analyze(const TreePattern *Pat) {
3226 // Assume only the first tree is the pattern. The others are clobber nodes.
3227 AnalyzeNode(Pat->getTree(0));
3228 }
3229
3230 void Analyze(const PatternToMatch &Pat) {
3231 AnalyzeNode(Pat.getSrcPattern());
3232 }
3233
3234private:
3235 bool IsNodeBitcast(const TreePatternNode *N) const {
3236 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3237 return false;
3238
3239 if (N->getNumChildren() != 2)
3240 return false;
3241
3242 const TreePatternNode *N0 = N->getChild(0);
3243 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
3244 return false;
3245
3246 const TreePatternNode *N1 = N->getChild(1);
3247 if (N1->isLeaf())
3248 return false;
3249 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
3250 return false;
3251
3252 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
3253 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3254 return false;
3255 return OpInfo.getEnumName() == "ISD::BITCAST";
3256 }
3257
3258public:
3259 void AnalyzeNode(const TreePatternNode *N) {
3260 if (N->isLeaf()) {
3261 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3262 Record *LeafRec = DI->getDef();
3263 // Handle ComplexPattern leaves.
3264 if (LeafRec->isSubClassOf("ComplexPattern")) {
3265 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3266 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3267 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3268 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3269 }
3270 }
3271 return;
3272 }
3273
3274 // Analyze children.
3275 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3276 AnalyzeNode(N->getChild(i));
3277
3278 // Ignore set nodes, which are not SDNodes.
3279 if (N->getOperator()->getName() == "set") {
3280 isBitcast = IsNodeBitcast(N);
3281 return;
3282 }
3283
3284 // Notice properties of the node.
3285 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3286 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3287 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3288 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3289
3290 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3291 // If this is an intrinsic, analyze it.
3292 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3293 mayLoad = true;// These may load memory.
3294
3295 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3296 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3297
3298 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3299 IntInfo->hasSideEffects)
3300 // ReadWriteMem intrinsics can have other strange effects.
3301 hasSideEffects = true;
3302 }
3303 }
3304
3305};
3306
3307static bool InferFromPattern(CodeGenInstruction &InstInfo,
3308 const InstAnalyzer &PatInfo,
3309 Record *PatDef) {
3310 bool Error = false;
3311
3312 // Remember where InstInfo got its flags.
3313 if (InstInfo.hasUndefFlags())
3314 InstInfo.InferredFrom = PatDef;
3315
3316 // Check explicitly set flags for consistency.
3317 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3318 !InstInfo.hasSideEffects_Unset) {
3319 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3320 // the pattern has no side effects. That could be useful for div/rem
3321 // instructions that may trap.
3322 if (!InstInfo.hasSideEffects) {
3323 Error = true;
3324 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3325 Twine(InstInfo.hasSideEffects));
3326 }
3327 }
3328
3329 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3330 Error = true;
3331 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3332 Twine(InstInfo.mayStore));
3333 }
3334
3335 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3336 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3337 // Some targets translate immediates to loads.
3338 if (!InstInfo.mayLoad) {
3339 Error = true;
3340 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3341 Twine(InstInfo.mayLoad));
3342 }
3343 }
3344
3345 // Transfer inferred flags.
3346 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3347 InstInfo.mayStore |= PatInfo.mayStore;
3348 InstInfo.mayLoad |= PatInfo.mayLoad;
3349
3350 // These flags are silently added without any verification.
3351 InstInfo.isBitcast |= PatInfo.isBitcast;
3352
3353 // Don't infer isVariadic. This flag means something different on SDNodes and
3354 // instructions. For example, a CALL SDNode is variadic because it has the
3355 // call arguments as operands, but a CALL instruction is not variadic - it
3356 // has argument registers as implicit, not explicit uses.
3357
3358 return Error;
3359}
3360
3361/// hasNullFragReference - Return true if the DAG has any reference to the
3362/// null_frag operator.
3363static bool hasNullFragReference(DagInit *DI) {
3364 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3365 if (!OpDef) return false;
3366 Record *Operator = OpDef->getDef();
3367
3368 // If this is the null fragment, return true.
3369 if (Operator->getName() == "null_frag") return true;
3370 // If any of the arguments reference the null fragment, return true.
3371 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3372 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3373 if (Arg && hasNullFragReference(Arg))
3374 return true;
3375 }
3376
3377 return false;
3378}
3379
3380/// hasNullFragReference - Return true if any DAG in the list references
3381/// the null_frag operator.
3382static bool hasNullFragReference(ListInit *LI) {
3383 for (Init *I : LI->getValues()) {
3384 DagInit *DI = dyn_cast<DagInit>(I);
3385 assert(DI && "non-dag in an instruction Pattern list?!")(static_cast <bool> (DI && "non-dag in an instruction Pattern list?!"
) ? void (0) : __assert_fail ("DI && \"non-dag in an instruction Pattern list?!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3385, __extension__ __PRETTY_FUNCTION__))
;
3386 if (hasNullFragReference(DI))
3387 return true;
3388 }
3389 return false;
3390}
3391
3392/// Get all the instructions in a tree.
3393static void
3394getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3395 if (Tree->isLeaf())
3396 return;
3397 if (Tree->getOperator()->isSubClassOf("Instruction"))
3398 Instrs.push_back(Tree->getOperator());
3399 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3400 getInstructionsInTree(Tree->getChild(i), Instrs);
3401}
3402
3403/// Check the class of a pattern leaf node against the instruction operand it
3404/// represents.
3405static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3406 Record *Leaf) {
3407 if (OI.Rec == Leaf)
3408 return true;
3409
3410 // Allow direct value types to be used in instruction set patterns.
3411 // The type will be checked later.
3412 if (Leaf->isSubClassOf("ValueType"))
3413 return true;
3414
3415 // Patterns can also be ComplexPattern instances.
3416 if (Leaf->isSubClassOf("ComplexPattern"))
3417 return true;
3418
3419 return false;
3420}
3421
3422const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3423 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3424
3425 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!")(static_cast <bool> (!DAGInsts.count(CGI.TheDef) &&
"Instruction already parsed!") ? void (0) : __assert_fail ("!DAGInsts.count(CGI.TheDef) && \"Instruction already parsed!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3425, __extension__ __PRETTY_FUNCTION__))
;
3426
3427 // Parse the instruction.
3428 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
3429 // Inline pattern fragments into it.
3430 I->InlinePatternFragments();
3431
3432 // Infer as many types as possible. If we cannot infer all of them, we can
3433 // never do anything with this instruction pattern: report it to the user.
3434 if (!I->InferAllTypes())
3435 I->error("Could not infer all types in pattern!");
3436
3437 // InstInputs - Keep track of all of the inputs of the instruction, along
3438 // with the record they are declared as.
3439 std::map<std::string, TreePatternNode*> InstInputs;
3440
3441 // InstResults - Keep track of all the virtual registers that are 'set'
3442 // in the instruction, including what reg class they are.
3443 std::map<std::string, TreePatternNode*> InstResults;
3444
3445 std::vector<Record*> InstImpResults;
3446
3447 // Verify that the top-level forms in the instruction are of void type, and
3448 // fill in the InstResults map.
3449 SmallString<32> TypesString;
3450 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3451 TypesString.clear();
3452 TreePatternNode *Pat = I->getTree(j);
3453 if (Pat->getNumTypes() != 0) {
3454 raw_svector_ostream OS(TypesString);
3455 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3456 if (k > 0)
3457 OS << ", ";
3458 Pat->getExtType(k).writeToStream(OS);
3459 }
3460 I->error("Top-level forms in instruction pattern should have"
3461 " void types, has types " +
3462 OS.str());
3463 }
3464
3465 // Find inputs and outputs, and verify the structure of the uses/defs.
3466 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3467 InstImpResults);
3468 }
3469
3470 // Now that we have inputs and outputs of the pattern, inspect the operands
3471 // list for the instruction. This determines the order that operands are
3472 // added to the machine instruction the node corresponds to.
3473 unsigned NumResults = InstResults.size();
3474
3475 // Parse the operands list from the (ops) list, validating it.
3476 assert(I->getArgList().empty() && "Args list should still be empty here!")(static_cast <bool> (I->getArgList().empty() &&
"Args list should still be empty here!") ? void (0) : __assert_fail
("I->getArgList().empty() && \"Args list should still be empty here!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3476, __extension__ __PRETTY_FUNCTION__))
;
3477
3478 // Check that all of the results occur first in the list.
3479 std::vector<Record*> Results;
3480 SmallVector<TreePatternNode *, 2> ResNodes;
3481 for (unsigned i = 0; i != NumResults; ++i) {
3482 if (i == CGI.Operands.size())
3483 I->error("'" + InstResults.begin()->first +
3484 "' set but does not appear in operand list!");
3485 const std::string &OpName = CGI.Operands[i].Name;
3486
3487 // Check that it exists in InstResults.
3488 TreePatternNode *RNode = InstResults[OpName];
3489 if (!RNode)
3490 I->error("Operand $" + OpName + " does not exist in operand list!");
3491
3492 ResNodes.push_back(RNode);
3493
3494 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3495 if (!R)
3496 I->error("Operand $" + OpName + " should be a set destination: all "
3497 "outputs must occur before inputs in operand list!");
3498
3499 if (!checkOperandClass(CGI.Operands[i], R))
3500 I->error("Operand $" + OpName + " class mismatch!");
3501
3502 // Remember the return type.
3503 Results.push_back(CGI.Operands[i].Rec);
3504
3505 // Okay, this one checks out.
3506 InstResults.erase(OpName);
3507 }
3508
3509 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
3510 // the copy while we're checking the inputs.
3511 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3512
3513 std::vector<TreePatternNode*> ResultNodeOperands;
3514 std::vector<Record*> Operands;
3515 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3516 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3517 const std::string &OpName = Op.Name;
3518 if (OpName.empty())
3519 I->error("Operand #" + Twine(i) + " in operands list has no name!");
3520
3521 if (!InstInputsCheck.count(OpName)) {
3522 // If this is an operand with a DefaultOps set filled in, we can ignore
3523 // this. When we codegen it, we will do so as always executed.
3524 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3525 // Does it have a non-empty DefaultOps field? If so, ignore this
3526 // operand.
3527 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3528 continue;
3529 }
3530 I->error("Operand $" + OpName +
3531 " does not appear in the instruction pattern");
3532 }
3533 TreePatternNode *InVal = InstInputsCheck[OpName];
3534 InstInputsCheck.erase(OpName); // It occurred, remove from map.
3535
3536 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3537 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3538 if (!checkOperandClass(Op, InRec))
3539 I->error("Operand $" + OpName + "'s register class disagrees"
3540 " between the operand and pattern");
3541 }
3542 Operands.push_back(Op.Rec);
3543
3544 // Construct the result for the dest-pattern operand list.
3545 TreePatternNode *OpNode = InVal->clone();
3546
3547 // No predicate is useful on the result.
3548 OpNode->clearPredicateFns();
3549
3550 // Promote the xform function to be an explicit node if set.
3551 if (Record *Xform = OpNode->getTransformFn()) {
3552 OpNode->setTransformFn(nullptr);
3553 std::vector<TreePatternNode*> Children;
3554 Children.push_back(OpNode);
3555 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3556 }
3557
3558 ResultNodeOperands.push_back(OpNode);
3559 }
3560
3561 if (!InstInputsCheck.empty())
3562 I->error("Input operand $" + InstInputsCheck.begin()->first +
3563 " occurs in pattern but not in operands list!");
3564
3565 TreePatternNode *ResultPattern =
3566 new TreePatternNode(I->getRecord(), ResultNodeOperands,
3567 GetNumNodeResults(I->getRecord(), *this));
3568 // Copy fully inferred output node types to instruction result pattern.
3569 for (unsigned i = 0; i != NumResults; ++i) {
3570 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled")(static_cast <bool> (ResNodes[i]->getNumTypes() == 1
&& "FIXME: Unhandled") ? void (0) : __assert_fail ("ResNodes[i]->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3570, __extension__ __PRETTY_FUNCTION__))
;
3571 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3572 }
3573
3574 // Create and insert the instruction.
3575 // FIXME: InstImpResults should not be part of DAGInstruction.
3576 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3577 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3578
3579 // Use a temporary tree pattern to infer all types and make sure that the
3580 // constructed result is correct. This depends on the instruction already
3581 // being inserted into the DAGInsts map.
3582 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3583 Temp.InferAllTypes(&I->getNamedNodesMap());
3584
3585 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3586 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3587
3588 return TheInsertedInst;
3589}
3590
3591/// ParseInstructions - Parse all of the instructions, inlining and resolving
3592/// any fragments involved. This populates the Instructions list with fully
3593/// resolved instructions.
3594void CodeGenDAGPatterns::ParseInstructions() {
3595 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3596
3597 for (Record *Instr : Instrs) {
3598 ListInit *LI = nullptr;
3599
3600 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3601 LI = Instr->getValueAsListInit("Pattern");
3602
3603 // If there is no pattern, only collect minimal information about the
3604 // instruction for its operand list. We have to assume that there is one
3605 // result, as we have no detailed info. A pattern which references the
3606 // null_frag operator is as-if no pattern were specified. Normally this
3607 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3608 // null_frag.
3609 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3610 std::vector<Record*> Results;
3611 std::vector<Record*> Operands;
3612
3613 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3614
3615 if (InstInfo.Operands.size() != 0) {
3616 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3617 Results.push_back(InstInfo.Operands[j].Rec);
3618
3619 // The rest are inputs.
3620 for (unsigned j = InstInfo.Operands.NumDefs,
3621 e = InstInfo.Operands.size(); j < e; ++j)
3622 Operands.push_back(InstInfo.Operands[j].Rec);
3623 }
3624
3625 // Create and insert the instruction.
3626 std::vector<Record*> ImpResults;
3627 Instructions.insert(std::make_pair(Instr,
3628 DAGInstruction(nullptr, Results, Operands, ImpResults)));
3629 continue; // no pattern.
3630 }
3631
3632 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3633 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3634
3635 (void)DI;
3636 DEBUG(DI.getPattern()->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { DI.getPattern()->dump(); } } while (false
)
;
3637 }
3638
3639 // If we can, convert the instructions to be patterns that are matched!
3640 for (auto &Entry : Instructions) {
3641 DAGInstruction &TheInst = Entry.second;
3642 TreePattern *I = TheInst.getPattern();
3643 if (!I) continue; // No pattern.
3644
3645 if (PatternRewriter)
3646 PatternRewriter(I);
3647 // FIXME: Assume only the first tree is the pattern. The others are clobber
3648 // nodes.
3649 TreePatternNode *Pattern = I->getTree(0);
3650 TreePatternNode *SrcPattern;
3651 if (Pattern->getOperator()->getName() == "set") {
3652 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3653 } else{
3654 // Not a set (store or something?)
3655 SrcPattern = Pattern;
3656 }
3657
3658 Record *Instr = Entry.first;
3659 ListInit *Preds = Instr->getValueAsListInit("Predicates");
3660 int Complexity = Instr->getValueAsInt("AddedComplexity");
3661 AddPatternToMatch(
3662 I,
3663 PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3664 TheInst.getResultPattern(), TheInst.getImpResults(),
3665 Complexity, Instr->getID()));
3666 }
3667}
3668
3669
3670typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3671
3672static void FindNames(const TreePatternNode *P,
3673 std::map<std::string, NameRecord> &Names,
3674 TreePattern *PatternTop) {
3675 if (!P->getName().empty()) {
3676 NameRecord &Rec = Names[P->getName()];
3677 // If this is the first instance of the name, remember the node.
3678 if (Rec.second++ == 0)
3679 Rec.first = P;
3680 else if (Rec.first->getExtTypes() != P->getExtTypes())
3681 PatternTop->error("repetition of value: $" + P->getName() +
3682 " where different uses have different types!");
3683 }
3684
3685 if (!P->isLeaf()) {
3686 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3687 FindNames(P->getChild(i), Names, PatternTop);
3688 }
3689}
3690
3691std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3692 std::vector<Predicate> Preds;
3693 for (Init *I : L->getValues()) {
3694 if (DefInit *Pred = dyn_cast<DefInit>(I))
3695 Preds.push_back(Pred->getDef());
3696 else
3697 llvm_unreachable("Non-def on the list")::llvm::llvm_unreachable_internal("Non-def on the list", "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3697)
;
3698 }
3699
3700 // Sort so that different orders get canonicalized to the same string.
3701 std::sort(Preds.begin(), Preds.end());
3702 return Preds;
3703}
3704
3705void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3706 PatternToMatch &&PTM) {
3707 // Do some sanity checking on the pattern we're about to match.
3708 std::string Reason;
3709 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3710 PrintWarning(Pattern->getRecord()->getLoc(),
3711 Twine("Pattern can never match: ") + Reason);
3712 return;
3713 }
3714
3715 // If the source pattern's root is a complex pattern, that complex pattern
3716 // must specify the nodes it can potentially match.
3717 if (const ComplexPattern *CP =
3718 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3719 if (CP->getRootNodes().empty())
3720 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3721 " could match");
3722
3723
3724 // Find all of the named values in the input and output, ensure they have the
3725 // same type.
3726 std::map<std::string, NameRecord> SrcNames, DstNames;
3727 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3728 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3729
3730 // Scan all of the named values in the destination pattern, rejecting them if
3731 // they don't exist in the input pattern.
3732 for (const auto &Entry : DstNames) {
3733 if (SrcNames[Entry.first].first == nullptr)
3734 Pattern->error("Pattern has input without matching name in output: $" +
3735 Entry.first);
3736 }
3737
3738 // Scan all of the named values in the source pattern, rejecting them if the
3739 // name isn't used in the dest, and isn't used to tie two values together.
3740 for (const auto &Entry : SrcNames)
3741 if (DstNames[Entry.first].first == nullptr &&
3742 SrcNames[Entry.first].second == 1)
3743 Pattern->error("Pattern has dead named input: $" + Entry.first);
3744
3745 PatternsToMatch.push_back(std::move(PTM));
3746}
3747
3748void CodeGenDAGPatterns::InferInstructionFlags() {
3749 ArrayRef<const CodeGenInstruction*> Instructions =
3750 Target.getInstructionsByEnumValue();
3751
3752 // First try to infer flags from the primary instruction pattern, if any.
3753 SmallVector<CodeGenInstruction*, 8> Revisit;
3754 unsigned Errors = 0;
3755 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3756 CodeGenInstruction &InstInfo =
3757 const_cast<CodeGenInstruction &>(*Instructions[i]);
3758
3759 // Get the primary instruction pattern.
3760 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3761 if (!Pattern) {
3762 if (InstInfo.hasUndefFlags())
3763 Revisit.push_back(&InstInfo);
3764 continue;
3765 }
3766 InstAnalyzer PatInfo(*this);
3767 PatInfo.Analyze(Pattern);
3768 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3769 }
3770
3771 // Second, look for single-instruction patterns defined outside the
3772 // instruction.
3773 for (const PatternToMatch &PTM : ptms()) {
3774 // We can only infer from single-instruction patterns, otherwise we won't
3775 // know which instruction should get the flags.
3776 SmallVector<Record*, 8> PatInstrs;
3777 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3778 if (PatInstrs.size() != 1)
3779 continue;
3780
3781 // Get the single instruction.
3782 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3783
3784 // Only infer properties from the first pattern. We'll verify the others.
3785 if (InstInfo.InferredFrom)
3786 continue;
3787
3788 InstAnalyzer PatInfo(*this);
3789 PatInfo.Analyze(PTM);
3790 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3791 }
3792
3793 if (Errors)
3794 PrintFatalError("pattern conflicts");
3795
3796 // Revisit instructions with undefined flags and no pattern.
3797 if (Target.guessInstructionProperties()) {
3798 for (CodeGenInstruction *InstInfo : Revisit) {
3799 if (InstInfo->InferredFrom)
3800 continue;
3801 // The mayLoad and mayStore flags default to false.
3802 // Conservatively assume hasSideEffects if it wasn't explicit.
3803 if (InstInfo->hasSideEffects_Unset)
3804 InstInfo->hasSideEffects = true;
3805 }
3806 return;
3807 }
3808
3809 // Complain about any flags that are still undefined.
3810 for (CodeGenInstruction *InstInfo : Revisit) {
3811 if (InstInfo->InferredFrom)
3812 continue;
3813 if (InstInfo->hasSideEffects_Unset)
3814 PrintError(InstInfo->TheDef->getLoc(),
3815 "Can't infer hasSideEffects from patterns");
3816 if (InstInfo->mayStore_Unset)
3817 PrintError(InstInfo->TheDef->getLoc(),
3818 "Can't infer mayStore from patterns");
3819 if (InstInfo->mayLoad_Unset)
3820 PrintError(InstInfo->TheDef->getLoc(),
3821 "Can't infer mayLoad from patterns");
3822 }
3823}
3824
3825
3826/// Verify instruction flags against pattern node properties.
3827void CodeGenDAGPatterns::VerifyInstructionFlags() {
3828 unsigned Errors = 0;
3829 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3830 const PatternToMatch &PTM = *I;
3831 SmallVector<Record*, 8> Instrs;
3832 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3833 if (Instrs.empty())
3834 continue;
3835
3836 // Count the number of instructions with each flag set.
3837 unsigned NumSideEffects = 0;
3838 unsigned NumStores = 0;
3839 unsigned NumLoads = 0;
3840 for (const Record *Instr : Instrs) {
3841 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3842 NumSideEffects += InstInfo.hasSideEffects;
3843 NumStores += InstInfo.mayStore;
3844 NumLoads += InstInfo.mayLoad;
3845 }
3846
3847 // Analyze the source pattern.
3848 InstAnalyzer PatInfo(*this);
3849 PatInfo.Analyze(PTM);
3850
3851 // Collect error messages.
3852 SmallVector<std::string, 4> Msgs;
3853
3854 // Check for missing flags in the output.
3855 // Permit extra flags for now at least.
3856 if (PatInfo.hasSideEffects && !NumSideEffects)
3857 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3858
3859 // Don't verify store flags on instructions with side effects. At least for
3860 // intrinsics, side effects implies mayStore.
3861 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3862 Msgs.push_back("pattern may store, but mayStore isn't set");
3863
3864 // Similarly, mayStore implies mayLoad on intrinsics.
3865 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3866 Msgs.push_back("pattern may load, but mayLoad isn't set");
3867
3868 // Print error messages.
3869 if (Msgs.empty())
3870 continue;
3871 ++Errors;
3872
3873 for (const std::string &Msg : Msgs)
3874 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3875 (Instrs.size() == 1 ?
3876 "instruction" : "output instructions"));
3877 // Provide the location of the relevant instruction definitions.
3878 for (const Record *Instr : Instrs) {
3879 if (Instr != PTM.getSrcRecord())
3880 PrintError(Instr->getLoc(), "defined here");
3881 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3882 if (InstInfo.InferredFrom &&
3883 InstInfo.InferredFrom != InstInfo.TheDef &&
3884 InstInfo.InferredFrom != PTM.getSrcRecord())
3885 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3886 }
3887 }
3888 if (Errors)
3889 PrintFatalError("Errors in DAG patterns");
3890}
3891
3892/// Given a pattern result with an unresolved type, see if we can find one
3893/// instruction with an unresolved result type. Force this result type to an
3894/// arbitrary element if it's possible types to converge results.
3895static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3896 if (N->isLeaf())
3897 return false;
3898
3899 // Analyze children.
3900 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3901 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3902 return true;
3903
3904 if (!N->getOperator()->isSubClassOf("Instruction"))
3905 return false;
3906
3907 // If this type is already concrete or completely unknown we can't do
3908 // anything.
3909 TypeInfer &TI = TP.getInfer();
3910 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3911 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3912 continue;
3913
3914 // Otherwise, force its type to an arbitrary choice.
3915 if (TI.forceArbitrary(N->getExtType(i)))
3916 return true;
3917 }
3918
3919 return false;
3920}
3921
3922void CodeGenDAGPatterns::ParsePatterns() {
3923 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3924
3925 for (Record *CurPattern : Patterns) {
3926 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3927
3928 // If the pattern references the null_frag, there's nothing to do.
3929 if (hasNullFragReference(Tree))
3930 continue;
3931
3932 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3933
3934 // Inline pattern fragments into it.
3935 Pattern->InlinePatternFragments();
3936
3937 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3938 if (LI->empty()) continue; // no pattern.
3939
3940 // Parse the instruction.
3941 TreePattern Result(CurPattern, LI, false, *this);
3942
3943 // Inline pattern fragments into it.
3944 Result.InlinePatternFragments();
3945
3946 if (Result.getNumTrees() != 1)
3947 Result.error("Cannot handle instructions producing instructions "
3948 "with temporaries yet!");
3949
3950 bool IterateInference;
3951 bool InferredAllPatternTypes, InferredAllResultTypes;
3952 do {
3953 // Infer as many types as possible. If we cannot infer all of them, we
3954 // can never do anything with this pattern: report it to the user.
3955 InferredAllPatternTypes =
3956 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3957
3958 // Infer as many types as possible. If we cannot infer all of them, we
3959 // can never do anything with this pattern: report it to the user.
3960 InferredAllResultTypes =
3961 Result.InferAllTypes(&Pattern->getNamedNodesMap());
3962
3963 IterateInference = false;
3964
3965 // Apply the type of the result to the source pattern. This helps us
3966 // resolve cases where the input type is known to be a pointer type (which
3967 // is considered resolved), but the result knows it needs to be 32- or
3968 // 64-bits. Infer the other way for good measure.
3969 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3970 Pattern->getTree(0)->getNumTypes());
3971 i != e; ++i) {
3972 IterateInference = Pattern->getTree(0)->UpdateNodeType(
3973 i, Result.getTree(0)->getExtType(i), Result);
3974 IterateInference |= Result.getTree(0)->UpdateNodeType(
3975 i, Pattern->getTree(0)->getExtType(i), Result);
3976 }
3977
3978 // If our iteration has converged and the input pattern's types are fully
3979 // resolved but the result pattern is not fully resolved, we may have a
3980 // situation where we have two instructions in the result pattern and
3981 // the instructions require a common register class, but don't care about
3982 // what actual MVT is used. This is actually a bug in our modelling:
3983 // output patterns should have register classes, not MVTs.
3984 //
3985 // In any case, to handle this, we just go through and disambiguate some
3986 // arbitrary types to the result pattern's nodes.
3987 if (!IterateInference && InferredAllPatternTypes &&
3988 !InferredAllResultTypes)
3989 IterateInference =
3990 ForceArbitraryInstResultType(Result.getTree(0), Result);
3991 } while (IterateInference);
3992
3993 // Verify that we inferred enough types that we can do something with the
3994 // pattern and result. If these fire the user has to add type casts.
3995 if (!InferredAllPatternTypes)
3996 Pattern->error("Could not infer all types in pattern!");
3997 if (!InferredAllResultTypes) {
3998 Pattern->dump();
3999 Result.error("Could not infer all types in pattern result!");
4000 }
4001
4002 // Validate that the input pattern is correct.
4003 std::map<std::string, TreePatternNode*> InstInputs;
4004 std::map<std::string, TreePatternNode*> InstResults;
4005 std::vector<Record*> InstImpResults;
4006 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
4007 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
4008 InstInputs, InstResults,
4009 InstImpResults);
4010
4011 // Promote the xform function to be an explicit node if set.
4012 TreePatternNode *DstPattern = Result.getOnlyTree();
4013 std::vector<TreePatternNode*> ResultNodeOperands;
4014 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
4015 TreePatternNode *OpNode = DstPattern->getChild(ii);
4016 if (Record *Xform = OpNode->getTransformFn()) {
4017 OpNode->setTransformFn(nullptr);
4018 std::vector<TreePatternNode*> Children;
4019 Children.push_back(OpNode);
4020 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
4021 }
4022 ResultNodeOperands.push_back(OpNode);
4023 }
4024 DstPattern = Result.getOnlyTree();
4025 if (!DstPattern->isLeaf())
4026 DstPattern = new TreePatternNode(DstPattern->getOperator(),
4027 ResultNodeOperands,
4028 DstPattern->getNumTypes());
4029
4030 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
4031 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
4032
4033 TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
4034 Temp.InferAllTypes();
4035
4036 // A pattern may end up with an "impossible" type, i.e. a situation
4037 // where all types have been eliminated for some node in this pattern.
4038 // This could occur for intrinsics that only make sense for a specific
4039 // value type, and use a specific register class. If, for some mode,
4040 // that register class does not accept that type, the type inference
4041 // will lead to a contradiction, which is not an error however, but
4042 // a sign that this pattern will simply never match.
4043 if (Pattern->getTree(0)->hasPossibleType() &&
4044 Temp.getOnlyTree()->hasPossibleType()) {
4045 ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
4046 int Complexity = CurPattern->getValueAsInt("AddedComplexity");
4047 if (PatternRewriter)
4048 PatternRewriter(Pattern);
4049 AddPatternToMatch(
4050 Pattern,
4051 PatternToMatch(
4052 CurPattern, makePredList(Preds), Pattern->getTree(0),
4053 Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
4054 CurPattern->getID()));
4055 }
4056 }
4057}
4058
4059static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4060 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4061 for (const auto &I : VTS)
4062 Modes.insert(I.first);
4063
4064 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4065 collectModes(Modes, N->getChild(i));
4066}
4067
4068void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4069 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4070 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4071 std::vector<PatternToMatch> Copy = PatternsToMatch;
4072 PatternsToMatch.clear();
4073
4074 auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
4075 TreePatternNode *NewSrc = P.SrcPattern->clone();
4076 TreePatternNode *NewDst = P.DstPattern->clone();
4077 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4078 delete NewSrc;
4079 delete NewDst;
4080 return;
4081 }
4082
4083 std::vector<Predicate> Preds = P.Predicates;
4084 const std::vector<Predicate> &MC = ModeChecks[Mode];
4085 Preds.insert(Preds.end(), MC.begin(), MC.end());
4086 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
4087 P.getDstRegs(), P.getAddedComplexity(),
4088 Record::getNewUID(), Mode);
4089 };
4090
4091 for (PatternToMatch &P : Copy) {
4092 TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4093 if (P.SrcPattern->hasProperTypeByHwMode())
4094 SrcP = P.SrcPattern;
4095 if (P.DstPattern->hasProperTypeByHwMode())
4096 DstP = P.DstPattern;
4097 if (!SrcP && !DstP) {
4098 PatternsToMatch.push_back(P);
4099 continue;
4100 }
4101
4102 std::set<unsigned> Modes;
4103 if (SrcP)
4104 collectModes(Modes, SrcP);
4105 if (DstP)
4106 collectModes(Modes, DstP);
4107
4108 // The predicate for the default mode needs to be constructed for each
4109 // pattern separately.
4110 // Since not all modes must be present in each pattern, if a mode m is
4111 // absent, then there is no point in constructing a check for m. If such
4112 // a check was created, it would be equivalent to checking the default
4113 // mode, except not all modes' predicates would be a part of the checking
4114 // code. The subsequently generated check for the default mode would then
4115 // have the exact same patterns, but a different predicate code. To avoid
4116 // duplicated patterns with different predicate checks, construct the
4117 // default check as a negation of all predicates that are actually present
4118 // in the source/destination patterns.
4119 std::vector<Predicate> DefaultPred;
4120
4121 for (unsigned M : Modes) {
4122 if (M == DefaultMode)
4123 continue;
4124 if (ModeChecks.find(M) != ModeChecks.end())
4125 continue;
4126
4127 // Fill the map entry for this mode.
4128 const HwMode &HM = CGH.getMode(M);
4129 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4130
4131 // Add negations of the HM's predicates to the default predicate.
4132 DefaultPred.emplace_back(Predicate(HM.Features, false));
4133 }
4134
4135 for (unsigned M : Modes) {
4136 if (M == DefaultMode)
4137 continue;
4138 AppendPattern(P, M);
4139 }
4140
4141 bool HasDefault = Modes.count(DefaultMode);
4142 if (HasDefault)
4143 AppendPattern(P, DefaultMode);
4144 }
4145}
4146
4147/// Dependent variable map for CodeGenDAGPattern variant generation
4148typedef StringMap<int> DepVarMap;
4149
4150static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4151 if (N->isLeaf()) {
4152 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4153 DepMap[N->getName()]++;
4154 } else {
4155 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4156 FindDepVarsOf(N->getChild(i), DepMap);
4157 }
4158}
4159
4160/// Find dependent variables within child patterns
4161static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4162 DepVarMap depcounts;
4163 FindDepVarsOf(N, depcounts);
4164 for (const auto &Pair : depcounts) {
4165 if (Pair.getValue() > 1)
4166 DepVars.insert(Pair.getKey());
4167 }
4168}
4169
4170#ifndef NDEBUG
4171/// Dump the dependent variable set:
4172static void DumpDepVars(MultipleUseVarSet &DepVars) {
4173 if (DepVars.empty()) {
4174 DEBUG(errs() << "<empty set>")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "<empty set>"; } } while
(false)
;
4175 } else {
4176 DEBUG(errs() << "[ ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "[ "; } } while (false)
;
4177 for (const auto &DepVar : DepVars) {
4178 DEBUG(errs() << DepVar.getKey() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << DepVar.getKey() << " "
; } } while (false)
;
4179 }
4180 DEBUG(errs() << "]")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "]"; } } while (false)
;
4181 }
4182}
4183#endif
4184
4185
4186/// CombineChildVariants - Given a bunch of permutations of each child of the
4187/// 'operator' node, put them together in all possible ways.
4188static void CombineChildVariants(TreePatternNode *Orig,
4189 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
4190 std::vector<TreePatternNode*> &OutVariants,
4191 CodeGenDAGPatterns &CDP,
4192 const MultipleUseVarSet &DepVars) {
4193 // Make sure that each operand has at least one variant to choose from.
4194 for (const auto &Variants : ChildVariants)
4195 if (Variants.empty())
4196 return;
4197
4198 // The end result is an all-pairs construction of the resultant pattern.
4199 std::vector<unsigned> Idxs;
4200 Idxs.resize(ChildVariants.size());
4201 bool NotDone;
4202 do {
4203#ifndef NDEBUG
4204 DEBUG(if (!Idxs.empty()) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4205 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4206 for (unsigned Idx : Idxs) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4207 errs() << Idx << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4208 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4209 errs() << "]\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4210 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
;
4211#endif
4212 // Create the variant and add it to the output list.
4213 std::vector<TreePatternNode*> NewChildren;
4214 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4215 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4216 auto R = llvm::make_unique<TreePatternNode>(
4217 Orig->getOperator(), NewChildren, Orig->getNumTypes());
4218
4219 // Copy over properties.
4220 R->setName(Orig->getName());
4221 R->setPredicateFns(Orig->getPredicateFns());
4222 R->setTransformFn(Orig->getTransformFn());
4223 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4224 R->setType(i, Orig->getExtType(i));
4225
4226 // If this pattern cannot match, do not include it as a variant.
4227 std::string ErrString;
4228 // Scan to see if this pattern has already been emitted. We can get
4229 // duplication due to things like commuting:
4230 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4231 // which are the same pattern. Ignore the dups.
4232 if (R->canPatternMatch(ErrString, CDP) &&
4233 none_of(OutVariants, [&](TreePatternNode *Variant) {
4234 return R->isIsomorphicTo(Variant, DepVars);
4235 }))
4236 OutVariants.push_back(R.release());
4237
4238 // Increment indices to the next permutation by incrementing the
4239 // indices from last index backward, e.g., generate the sequence
4240 // [0, 0], [0, 1], [1, 0], [1, 1].
4241 int IdxsIdx;
4242 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4243 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4244 Idxs[IdxsIdx] = 0;
4245 else
4246 break;
4247 }
4248 NotDone = (IdxsIdx >= 0);
4249 } while (NotDone);
4250}
4251
4252/// CombineChildVariants - A helper function for binary operators.
4253///
4254static void CombineChildVariants(TreePatternNode *Orig,
4255 const std::vector<TreePatternNode*> &LHS,
4256 const std::vector<TreePatternNode*> &RHS,
4257 std::vector<TreePatternNode*> &OutVariants,
4258 CodeGenDAGPatterns &CDP,
4259 const MultipleUseVarSet &DepVars) {
4260 std::vector<std::vector<TreePatternNode*> > ChildVariants;
4261 ChildVariants.push_back(LHS);
4262 ChildVariants.push_back(RHS);
4263 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4264}
4265
4266
4267static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
4268 std::vector<TreePatternNode *> &Children) {
4269 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!")(static_cast <bool> (N->getNumChildren()==2 &&
"Associative but doesn't have 2 children!") ? void (0) : __assert_fail
("N->getNumChildren()==2 &&\"Associative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4269, __extension__ __PRETTY_FUNCTION__))
;
4270 Record *Operator = N->getOperator();
4271
4272 // Only permit raw nodes.
4273 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4274 N->getTransformFn()) {
4275 Children.push_back(N);
4276 return;
4277 }
4278
4279 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4280 Children.push_back(N->getChild(0));
4281 else
4282 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
4283
4284 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4285 Children.push_back(N->getChild(1));
4286 else
4287 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
4288}
4289
4290/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4291/// the (potentially recursive) pattern by using algebraic laws.
4292///
4293static void GenerateVariantsOf(TreePatternNode *N,
4294 std::vector<TreePatternNode*> &OutVariants,
4295 CodeGenDAGPatterns &CDP,
4296 const MultipleUseVarSet &DepVars) {
4297 // We cannot permute leaves or ComplexPattern uses.
4298 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4299 OutVariants.push_back(N);
4300 return;
4301 }
4302
4303 // Look up interesting info about the node.
4304 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4305
4306 // If this node is associative, re-associate.
4307 if (NodeInfo.hasProperty(SDNPAssociative)) {
4308 // Re-associate by pulling together all of the linked operators
4309 std::vector<TreePatternNode*> MaximalChildren;
4310 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4311
4312 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4313 // permutations.
4314 if (MaximalChildren.size() == 3) {
4315 // Find the variants of all of our maximal children.
4316 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
4317 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4318 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4319 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4320
4321 // There are only two ways we can permute the tree:
4322 // (A op B) op C and A op (B op C)
4323 // Within these forms, we can also permute A/B/C.
4324
4325 // Generate legal pair permutations of A/B/C.
4326 std::vector<TreePatternNode*> ABVariants;
4327 std::vector<TreePatternNode*> BAVariants;
4328 std::vector<TreePatternNode*> ACVariants;
4329 std::vector<TreePatternNode*> CAVariants;
4330 std::vector<TreePatternNode*> BCVariants;
4331 std::vector<TreePatternNode*> CBVariants;
4332 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4333 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4334 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4335 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4336 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4337 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4338
4339 // Combine those into the result: (x op x) op x
4340 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4341 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4342 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4343 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4344 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4345 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4346
4347 // Combine those into the result: x op (x op x)
4348 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4349 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4350 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4351 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4352 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4353 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4354 return;
4355 }
4356 }
4357
4358 // Compute permutations of all children.
4359 std::vector<std::vector<TreePatternNode*> > ChildVariants;
4360 ChildVariants.resize(N->getNumChildren());
4361 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4362 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
4363
4364 // Build all permutations based on how the children were formed.
4365 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4366
4367 // If this node is commutative, consider the commuted order.
4368 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4369 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4370 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&(static_cast <bool> ((N->getNumChildren()>=2 || isCommIntrinsic
) && "Commutative but doesn't have 2 children!") ? void
(0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4371, __extension__ __PRETTY_FUNCTION__))
4371 "Commutative but doesn't have 2 children!")(static_cast <bool> ((N->getNumChildren()>=2 || isCommIntrinsic
) && "Commutative but doesn't have 2 children!") ? void
(0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4371, __extension__ __PRETTY_FUNCTION__))
;
4372 // Don't count children which are actually register references.
4373 unsigned NC = 0;
4374 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4375 TreePatternNode *Child = N->getChild(i);
4376 if (Child->isLeaf())
4377 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4378 Record *RR = DI->getDef();
4379 if (RR->isSubClassOf("Register"))
4380 continue;
4381 }
4382 NC++;
4383 }
4384 // Consider the commuted order.
4385 if (isCommIntrinsic) {
4386 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4387 // operands are the commutative operands, and there might be more operands
4388 // after those.
4389 assert(NC >= 3 &&(static_cast <bool> (NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? void (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4390, __extension__ __PRETTY_FUNCTION__))
4390 "Commutative intrinsic should have at least 3 children!")(static_cast <bool> (NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? void (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4390, __extension__ __PRETTY_FUNCTION__))
;
4391 std::vector<std::vector<TreePatternNode*> > Variants;
4392 Variants.push_back(ChildVariants[0]); // Intrinsic id.
4393 Variants.push_back(ChildVariants[2]);
4394 Variants.push_back(ChildVariants[1]);
4395 for (unsigned i = 3; i != NC; ++i)
4396 Variants.push_back(ChildVariants[i]);
4397 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4398 } else if (NC == N->getNumChildren()) {
4399 std::vector<std::vector<TreePatternNode*> > Variants;
4400 Variants.push_back(ChildVariants[1]);
4401 Variants.push_back(ChildVariants[0]);
4402 for (unsigned i = 2; i != NC; ++i)
4403 Variants.push_back(ChildVariants[i]);
4404 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4405 }
4406 }
4407}
4408
4409
4410// GenerateVariants - Generate variants. For example, commutative patterns can
4411// match multiple ways. Add them to PatternsToMatch as well.
4412void CodeGenDAGPatterns::GenerateVariants() {
4413 DEBUG(errs() << "Generating instruction variants.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Generating instruction variants.\n"
; } } while (false)
;
4414
4415 // Loop over all of the patterns we've collected, checking to see if we can
4416 // generate variants of the instruction, through the exploitation of
4417 // identities. This permits the target to provide aggressive matching without
4418 // the .td file having to contain tons of variants of instructions.
4419 //
4420 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4421 // intentionally do not reconsider these. Any variants of added patterns have
4422 // already been added.
4423 //
4424 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4425 MultipleUseVarSet DepVars;
4426 std::vector<TreePatternNode*> Variants;
4427 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4428 DEBUG(errs() << "Dependent/multiply used variables: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Dependent/multiply used variables: "
; } } while (false)
;
4429 DEBUG(DumpDepVars(DepVars))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { DumpDepVars(DepVars); } } while (false)
;
4430 DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4431 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
4432 DepVars);
4433
4434 assert(!Variants.empty() && "Must create at least original variant!")(static_cast <bool> (!Variants.empty() && "Must create at least original variant!"
) ? void (0) : __assert_fail ("!Variants.empty() && \"Must create at least original variant!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4434, __extension__ __PRETTY_FUNCTION__))
;
4435 if (Variants.size() == 1) // No additional variants for this pattern.
4436 continue;
4437
4438 DEBUG(errs() << "FOUND VARIANTS OF: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
4439 PatternsToMatch[i].getSrcPattern()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
4440 errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
;
4441
4442 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4443 TreePatternNode *Variant = Variants[v];
4444
4445 DEBUG(errs() << " VAR#" << v << ": ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
4446 Variant->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
4447 errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
;
4448
4449 // Scan to see if an instruction or explicit pattern already matches this.
4450 bool AlreadyExists = false;
4451 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4452 // Skip if the top level predicates do not match.
4453 if (PatternsToMatch[i].getPredicates() !=
4454 PatternsToMatch[p].getPredicates())
4455 continue;
4456 // Check to see if this variant already exists.
4457 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4458 DepVars)) {
4459 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " *** ALREADY EXISTS, ignoring variant.\n"
; } } while (false)
;
4460 AlreadyExists = true;
4461 break;
4462 }
4463 }
4464 // If we already have it, ignore the variant.
4465 if (AlreadyExists) continue;
4466
4467 // Otherwise, add it to the list of patterns we have.
4468 PatternsToMatch.push_back(PatternToMatch(
4469 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4470 Variant, PatternsToMatch[i].getDstPattern(),
4471 PatternsToMatch[i].getDstRegs(),
4472 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4473 }
4474
4475 DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4476 }
4477}

/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
8
Calling 'simplify_type::getSimplifiedValue'
9
Returning from 'simplify_type::getSimplifiedValue'
30
Calling 'simplify_type::getSimplifiedValue'
31
Returning from 'simplify_type::getSimplifiedValue'
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
15
Calling 'DefInit::classof'
19
Returning from 'DefInit::classof'
37
Calling 'DefInit::classof'
40
Returning from 'DefInit::classof'
60 }
61};
62
63/// \brief Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
13
Within the expansion of the macro 'assert':
35
Within the expansion of the macro 'assert':
107 return isa_impl<To, From>::doit(*Val);
14
Calling 'isa_impl::doit'
20
Returning from 'isa_impl::doit'
36
Calling 'isa_impl::doit'
41
Returning from 'isa_impl::doit'
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
11
Calling 'isa_impl_wrap::doit'
22
Returning from 'isa_impl_wrap::doit'
33
Calling 'isa_impl_wrap::doit'
43
Returning from 'isa_impl_wrap::doit'
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
7
Calling 'simplify_type::getSimplifiedValue'
10
Returning from 'simplify_type::getSimplifiedValue'
29
Calling 'simplify_type::getSimplifiedValue'
32
Returning from 'simplify_type::getSimplifiedValue'
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
12
Calling 'isa_impl_cl::doit'
21
Returning from 'isa_impl_cl::doit'
34
Calling 'isa_impl_cl::doit'
42
Returning from 'isa_impl_cl::doit'
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
6
Calling 'isa_impl_wrap::doit'
23
Returning from 'isa_impl_wrap::doit'
28
Calling 'isa_impl_wrap::doit'
44
Returning from 'isa_impl_wrap::doit'
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
27
Within the expansion of the macro 'assert':
a
Calling 'isa'
b
Returning from 'isa'
256 return cast_convert_val<X, Y*,
45
Calling 'cast_convert_val::doit'
46
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
5
Calling 'isa'
24
Returning from 'isa'
25
'?' condition is true
26
Calling 'cast'
47
Returning from 'cast'
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H

/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h

1//===- llvm/TableGen/Record.h - Classes for Table Records -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the main TableGen data structures, including the TableGen
11// types, values, and high-level data structures.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TABLEGEN_RECORD_H
16#define LLVM_TABLEGEN_RECORD_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/FoldingSet.h"
20#include "llvm/ADT/PointerIntPair.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/SMLoc.h"
26#include "llvm/Support/TrailingObjects.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <map>
33#include <memory>
34#include <string>
35#include <utility>
36#include <vector>
37
38namespace llvm {
39
40class ListRecTy;
41struct MultiClass;
42class Record;
43class RecordKeeper;
44class RecordVal;
45class StringInit;
46
47//===----------------------------------------------------------------------===//
48// Type Classes
49//===----------------------------------------------------------------------===//
50
51class RecTy {
52public:
53 /// \brief Subclass discriminator (for dyn_cast<> et al.)
54 enum RecTyKind {
55 BitRecTyKind,
56 BitsRecTyKind,
57 CodeRecTyKind,
58 IntRecTyKind,
59 StringRecTyKind,
60 ListRecTyKind,
61 DagRecTyKind,
62 RecordRecTyKind
63 };
64
65private:
66 RecTyKind Kind;
67 ListRecTy *ListTy = nullptr;
68
69public:
70 RecTy(RecTyKind K) : Kind(K) {}
71 virtual ~RecTy() = default;
72
73 RecTyKind getRecTyKind() const { return Kind; }
74
75 virtual std::string getAsString() const = 0;
76 void print(raw_ostream &OS) const { OS << getAsString(); }
77 void dump() const;
78
79 /// Return true if all values of 'this' type can be converted to the specified
80 /// type.
81 virtual bool typeIsConvertibleTo(const RecTy *RHS) const;
82
83 /// Returns the type representing list<this>.
84 ListRecTy *getListTy();
85};
86
87inline raw_ostream &operator<<(raw_ostream &OS, const RecTy &Ty) {
88 Ty.print(OS);
89 return OS;
90}
91
92/// 'bit' - Represent a single bit
93class BitRecTy : public RecTy {
94 static BitRecTy Shared;
95
96 BitRecTy() : RecTy(BitRecTyKind) {}
97
98public:
99 static bool classof(const RecTy *RT) {
100 return RT->getRecTyKind() == BitRecTyKind;
101 }
102
103 static BitRecTy *get() { return &Shared; }
104
105 std::string getAsString() const override { return "bit"; }
106
107 bool typeIsConvertibleTo(const RecTy *RHS) const override;
108};
109
110/// 'bits<n>' - Represent a fixed number of bits
111class BitsRecTy : public RecTy {
112 unsigned Size;
113
114 explicit BitsRecTy(unsigned Sz) : RecTy(BitsRecTyKind), Size(Sz) {}
115
116public:
117 static bool classof(const RecTy *RT) {
118 return RT->getRecTyKind() == BitsRecTyKind;
119 }
120
121 static BitsRecTy *get(unsigned Sz);
122
123 unsigned getNumBits() const { return Size; }
124
125 std::string getAsString() const override;
126
127 bool typeIsConvertibleTo(const RecTy *RHS) const override;
128};
129
130/// 'code' - Represent a code fragment
131class CodeRecTy : public RecTy {
132 static CodeRecTy Shared;
133
134 CodeRecTy() : RecTy(CodeRecTyKind) {}
135
136public:
137 static bool classof(const RecTy *RT) {
138 return RT->getRecTyKind() == CodeRecTyKind;
139 }
140
141 static CodeRecTy *get() { return &Shared; }
142
143 std::string getAsString() const override { return "code"; }
144};
145
146/// 'int' - Represent an integer value of no particular size
147class IntRecTy : public RecTy {
148 static IntRecTy Shared;
149
150 IntRecTy() : RecTy(IntRecTyKind) {}
151
152public:
153 static bool classof(const RecTy *RT) {
154 return RT->getRecTyKind() == IntRecTyKind;
155 }
156
157 static IntRecTy *get() { return &Shared; }
158
159 std::string getAsString() const override { return "int"; }
160
161 bool typeIsConvertibleTo(const RecTy *RHS) const override;
162};
163
164/// 'string' - Represent an string value
165class StringRecTy : public RecTy {
166 static StringRecTy Shared;
167
168 StringRecTy() : RecTy(StringRecTyKind) {}
169
170public:
171 static bool classof(const RecTy *RT) {
172 return RT->getRecTyKind() == StringRecTyKind ||
173 RT->getRecTyKind() == CodeRecTyKind;
174 }
175
176 static StringRecTy *get() { return &Shared; }
177
178 std::string getAsString() const override;
179};
180
181/// 'list<Ty>' - Represent a list of values, all of which must be of
182/// the specified type.
183class ListRecTy : public RecTy {
184 friend ListRecTy *RecTy::getListTy();
185
186 RecTy *Ty;
187
188 explicit ListRecTy(RecTy *T) : RecTy(ListRecTyKind), Ty(T) {}
189
190public:
191 static bool classof(const RecTy *RT) {
192 return RT->getRecTyKind() == ListRecTyKind;
193 }
194
195 static ListRecTy *get(RecTy *T) { return T->getListTy(); }
196 RecTy *getElementType() const { return Ty; }
197
198 std::string getAsString() const override;
199
200 bool typeIsConvertibleTo(const RecTy *RHS) const override;
201};
202
203/// 'dag' - Represent a dag fragment
204class DagRecTy : public RecTy {
205 static DagRecTy Shared;
206
207 DagRecTy() : RecTy(DagRecTyKind) {}
208
209public:
210 static bool classof(const RecTy *RT) {
211 return RT->getRecTyKind() == DagRecTyKind;
212 }
213
214 static DagRecTy *get() { return &Shared; }
215
216 std::string getAsString() const override;
217};
218
219/// '[classname]' - Represent an instance of a class, such as:
220/// (R32 X = EAX).
221class RecordRecTy : public RecTy {
222 friend class Record;
223
224 Record *Rec;
225
226 explicit RecordRecTy(Record *R) : RecTy(RecordRecTyKind), Rec(R) {}
227
228public:
229 static bool classof(const RecTy *RT) {
230 return RT->getRecTyKind() == RecordRecTyKind;
231 }
232
233 static RecordRecTy *get(Record *R);
234
235 Record *getRecord() const { return Rec; }
236
237 std::string getAsString() const override;
238
239 bool typeIsConvertibleTo(const RecTy *RHS) const override;
240};
241
242/// Find a common type that T1 and T2 convert to.
243/// Return 0 if no such type exists.
244RecTy *resolveTypes(RecTy *T1, RecTy *T2);
245
246//===----------------------------------------------------------------------===//
247// Initializer Classes
248//===----------------------------------------------------------------------===//
249
250class Init {
251protected:
252 /// \brief Discriminator enum (for isa<>, dyn_cast<>, et al.)
253 ///
254 /// This enum is laid out by a preorder traversal of the inheritance
255 /// hierarchy, and does not contain an entry for abstract classes, as per
256 /// the recommendation in docs/HowToSetUpLLVMStyleRTTI.rst.
257 ///
258 /// We also explicitly include "first" and "last" values for each
259 /// interior node of the inheritance tree, to make it easier to read the
260 /// corresponding classof().
261 ///
262 /// We could pack these a bit tighter by not having the IK_FirstXXXInit
263 /// and IK_LastXXXInit be their own values, but that would degrade
264 /// readability for really no benefit.
265 enum InitKind : uint8_t {
266 IK_BitInit,
267 IK_FirstTypedInit,
268 IK_BitsInit,
269 IK_CodeInit,
270 IK_DagInit,
271 IK_DefInit,
272 IK_FieldInit,
273 IK_IntInit,
274 IK_ListInit,
275 IK_FirstOpInit,
276 IK_BinOpInit,
277 IK_TernOpInit,
278 IK_UnOpInit,
279 IK_LastOpInit,
280 IK_StringInit,
281 IK_VarInit,
282 IK_VarListElementInit,
283 IK_LastTypedInit,
284 IK_UnsetInit,
285 IK_VarBitInit
286 };
287
288private:
289 const InitKind Kind;
290
291protected:
292 uint8_t Opc; // Used by UnOpInit, BinOpInit, and TernOpInit
293
294private:
295 virtual void anchor();
296
297public:
298 InitKind getKind() const { return Kind; }
299
300protected:
301 explicit Init(InitKind K, uint8_t Opc = 0) : Kind(K), Opc(Opc) {}
302
303public:
304 Init(const Init &) = delete;
305 Init &operator=(const Init &) = delete;
306 virtual ~Init() = default;
307
308 /// This virtual method should be overridden by values that may
309 /// not be completely specified yet.
310 virtual bool isComplete() const { return true; }
311
312 /// Print out this value.
313 void print(raw_ostream &OS) const { OS << getAsString(); }
314
315 /// Convert this value to a string form.
316 virtual std::string getAsString() const = 0;
317 /// Convert this value to a string form,
318 /// without adding quote markers. This primaruly affects
319 /// StringInits where we will not surround the string value with
320 /// quotes.
321 virtual std::string getAsUnquotedString() const { return getAsString(); }
322
323 /// Debugging method that may be called through a debugger, just
324 /// invokes print on stderr.
325 void dump() const;
326
327 /// This virtual function converts to the appropriate
328 /// Init based on the passed in type.
329 virtual Init *convertInitializerTo(RecTy *Ty) const = 0;
330
331 /// This method is used to implement the bitrange
332 /// selection operator. Given an initializer, it selects the specified bits
333 /// out, returning them as a new init of bits type. If it is not legal to use
334 /// the bit subscript operator on this initializer, return null.
335 virtual Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const {
336 return nullptr;
337 }
338
339 /// This method is used to implement the list slice
340 /// selection operator. Given an initializer, it selects the specified list
341 /// elements, returning them as a new init of list type. If it is not legal
342 /// to take a slice of this, return null.
343 virtual Init *convertInitListSlice(ArrayRef<unsigned> Elements) const {
344 return nullptr;
345 }
346
347 /// This method is used to implement the FieldInit class.
348 /// Implementors of this method should return the type of the named field if
349 /// they are of record type.
350 virtual RecTy *getFieldType(StringInit *FieldName) const {
351 return nullptr;
352 }
353
354 /// This method complements getFieldType to return the
355 /// initializer for the specified field. If getFieldType returns non-null
356 /// this method should return non-null, otherwise it returns null.
357 virtual Init *getFieldInit(Record &R, const RecordVal *RV,
358 StringInit *FieldName) const {
359 return nullptr;
360 }
361
362 /// This method is used by classes that refer to other
363 /// variables which may not be defined at the time the expression is formed.
364 /// If a value is set for the variable later, this method will be called on
365 /// users of the value to allow the value to propagate out.
366 virtual Init *resolveReferences(Record &R, const RecordVal *RV) const {
367 return const_cast<Init *>(this);
368 }
369
370 /// This method is used to return the initializer for the specified
371 /// bit.
372 virtual Init *getBit(unsigned Bit) const = 0;
373
374 /// This method is used to retrieve the initializer for bit
375 /// reference. For non-VarBitInit, it simply returns itself.
376 virtual Init *getBitVar() const { return const_cast<Init*>(this); }
377
378 /// This method is used to retrieve the bit number of a bit
379 /// reference. For non-VarBitInit, it simply returns 0.
380 virtual unsigned getBitNum() const { return 0; }
381};
382
383inline raw_ostream &operator<<(raw_ostream &OS, const Init &I) {
384 I.print(OS); return OS;
385}
386
387/// This is the common super-class of types that have a specific,
388/// explicit, type.
389class TypedInit : public Init {
390 RecTy *Ty;
391
392protected:
393 explicit TypedInit(InitKind K, RecTy *T, uint8_t Opc = 0)
394 : Init(K, Opc), Ty(T) {}
395
396public:
397 TypedInit(const TypedInit &) = delete;
398 TypedInit &operator=(const TypedInit &) = delete;
399
400 static bool classof(const Init *I) {
401 return I->getKind() >= IK_FirstTypedInit &&
402 I->getKind() <= IK_LastTypedInit;
403 }
404
405 RecTy *getType() const { return Ty; }
406
407 Init *convertInitializerTo(RecTy *Ty) const override;
408
409 Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
410 Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
411
412 /// This method is used to implement the FieldInit class.
413 /// Implementors of this method should return the type of the named field if
414 /// they are of record type.
415 ///
416 RecTy *getFieldType(StringInit *FieldName) const override;
417
418 /// This method is used to implement
419 /// VarListElementInit::resolveReferences. If the list element is resolvable
420 /// now, we return the resolved value, otherwise we return null.
421 virtual Init *resolveListElementReference(Record &R, const RecordVal *RV,
422 unsigned Elt) const = 0;
423};
424
425/// '?' - Represents an uninitialized value
426class UnsetInit : public Init {
427 UnsetInit() : Init(IK_UnsetInit) {}
428
429public:
430 UnsetInit(const UnsetInit &) = delete;
431 UnsetInit &operator=(const UnsetInit &) = delete;
432
433 static bool classof(const Init *I) {
434 return I->getKind() == IK_UnsetInit;
435 }
436
437 static UnsetInit *get();
438
439 Init *convertInitializerTo(RecTy *Ty) const override;
440
441 Init *getBit(unsigned Bit) const override {
442 return const_cast<UnsetInit*>(this);
443 }
444
445 bool isComplete() const override { return false; }
446 std::string getAsString() const override { return "?"; }
447};
448
449/// 'true'/'false' - Represent a concrete initializer for a bit.
450class BitInit : public Init {
451 bool Value;
452
453 explicit BitInit(bool V) : Init(IK_BitInit), Value(V) {}
454
455public:
456 BitInit(const BitInit &) = delete;
457 BitInit &operator=(BitInit &) = delete;
458
459 static bool classof(const Init *I) {
460 return I->getKind() == IK_BitInit;
461 }
462
463 static BitInit *get(bool V);
464
465 bool getValue() const { return Value; }
466
467 Init *convertInitializerTo(RecTy *Ty) const override;
468
469 Init *getBit(unsigned Bit) const override {
470 assert(Bit < 1 && "Bit index out of range!")(static_cast <bool> (Bit < 1 && "Bit index out of range!"
) ? void (0) : __assert_fail ("Bit < 1 && \"Bit index out of range!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 470, __extension__ __PRETTY_FUNCTION__))
;
471 return const_cast<BitInit*>(this);
472 }
473
474 std::string getAsString() const override { return Value ? "1" : "0"; }
475};
476
477/// '{ a, b, c }' - Represents an initializer for a BitsRecTy value.
478/// It contains a vector of bits, whose size is determined by the type.
479class BitsInit final : public TypedInit, public FoldingSetNode,
480 public TrailingObjects<BitsInit, Init *> {
481 unsigned NumBits;
482
483 BitsInit(unsigned N)
484 : TypedInit(IK_BitsInit, BitsRecTy::get(N)), NumBits(N) {}
485
486public:
487 BitsInit(const BitsInit &) = delete;
488 BitsInit &operator=(const BitsInit &) = delete;
489
490 // Do not use sized deallocation due to trailing objects.
491 void operator delete(void *p) { ::operator delete(p); }
492
493 static bool classof(const Init *I) {
494 return I->getKind() == IK_BitsInit;
495 }
496
497 static BitsInit *get(ArrayRef<Init *> Range);
498
499 void Profile(FoldingSetNodeID &ID) const;
500
501 unsigned getNumBits() const { return NumBits; }
502
503 Init *convertInitializerTo(RecTy *Ty) const override;
504 Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
505
506 bool isComplete() const override {
507 for (unsigned i = 0; i != getNumBits(); ++i)
508 if (!getBit(i)->isComplete()) return false;
509 return true;
510 }
511
512 bool allInComplete() const {
513 for (unsigned i = 0; i != getNumBits(); ++i)
514 if (getBit(i)->isComplete()) return false;
515 return true;
516 }
517
518 std::string getAsString() const override;
519
520 /// This method is used to implement
521 /// VarListElementInit::resolveReferences. If the list element is resolvable
522 /// now, we return the resolved value, otherwise we return null.
523 Init *resolveListElementReference(Record &R, const RecordVal *RV,
524 unsigned Elt) const override {
525 llvm_unreachable("Illegal element reference off bits<n>")::llvm::llvm_unreachable_internal("Illegal element reference off bits<n>"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 525)
;
526 }
527
528 Init *resolveReferences(Record &R, const RecordVal *RV) const override;
529
530 Init *getBit(unsigned Bit) const override {
531 assert(Bit < NumBits && "Bit index out of range!")(static_cast <bool> (Bit < NumBits && "Bit index out of range!"
) ? void (0) : __assert_fail ("Bit < NumBits && \"Bit index out of range!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 531, __extension__ __PRETTY_FUNCTION__))
;
532 return getTrailingObjects<Init *>()[Bit];
533 }
534};
535
536/// '7' - Represent an initialization by a literal integer value.
537class IntInit : public TypedInit {
538 int64_t Value;
539
540 explicit IntInit(int64_t V)
541 : TypedInit(IK_IntInit, IntRecTy::get()), Value(V) {}
542
543public:
544 IntInit(const IntInit &) = delete;
545 IntInit &operator=(const IntInit &) = delete;
546
547 static bool classof(const Init *I) {
548 return I->getKind() == IK_IntInit;
549 }
550
551 static IntInit *get(int64_t V);
552
553 int64_t getValue() const { return Value; }
554
555 Init *convertInitializerTo(RecTy *Ty) const override;
556 Init *convertInitializerBitRange(ArrayRef<unsigned> Bits) const override;
557
558 std::string getAsString() const override;
559
560 /// This method is used to implement
561 /// VarListElementInit::resolveReferences. If the list element is resolvable
562 /// now, we return the resolved value, otherwise we return null.
563 Init *resolveListElementReference(Record &R, const RecordVal *RV,
564 unsigned Elt) const override {
565 llvm_unreachable("Illegal element reference off int")::llvm::llvm_unreachable_internal("Illegal element reference off int"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 565)
;
566 }
567
568 Init *getBit(unsigned Bit) const override {
569 return BitInit::get((Value & (1ULL << Bit)) != 0);
570 }
571};
572
573/// "foo" - Represent an initialization by a string value.
574class StringInit : public TypedInit {
575 StringRef Value;
576
577 explicit StringInit(StringRef V)
578 : TypedInit(IK_StringInit, StringRecTy::get()), Value(V) {}
579
580public:
581 StringInit(const StringInit &) = delete;
582 StringInit &operator=(const StringInit &) = delete;
583
584 static bool classof(const Init *I) {
585 return I->getKind() == IK_StringInit;
586 }
587
588 static StringInit *get(StringRef);
589
590 StringRef getValue() const { return Value; }
591
592 Init *convertInitializerTo(RecTy *Ty) const override;
593
594 std::string getAsString() const override { return "\"" + Value.str() + "\""; }
595
596 std::string getAsUnquotedString() const override { return Value; }
597
598 /// resolveListElementReference - This method is used to implement
599 /// VarListElementInit::resolveReferences. If the list element is resolvable
600 /// now, we return the resolved value, otherwise we return null.
601 Init *resolveListElementReference(Record &R, const RecordVal *RV,
602 unsigned Elt) const override {
603 llvm_unreachable("Illegal element reference off string")::llvm::llvm_unreachable_internal("Illegal element reference off string"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 603)
;
604 }
605
606 Init *getBit(unsigned Bit) const override {
607 llvm_unreachable("Illegal bit reference off string")::llvm::llvm_unreachable_internal("Illegal bit reference off string"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 607)
;
608 }
609};
610
611class CodeInit : public TypedInit {
612 StringRef Value;
613
614 explicit CodeInit(StringRef V)
615 : TypedInit(IK_CodeInit, static_cast<RecTy *>(CodeRecTy::get())),
616 Value(V) {}
617
618public:
619 CodeInit(const StringInit &) = delete;
620 CodeInit &operator=(const StringInit &) = delete;
621
622 static bool classof(const Init *I) {
623 return I->getKind() == IK_CodeInit;
624 }
625
626 static CodeInit *get(StringRef);
627
628 StringRef getValue() const { return Value; }
629
630 Init *convertInitializerTo(RecTy *Ty) const override;
631
632 std::string getAsString() const override {
633 return "[{" + Value.str() + "}]";
634 }
635
636 std::string getAsUnquotedString() const override { return Value; }
637
638 /// This method is used to implement
639 /// VarListElementInit::resolveReferences. If the list element is resolvable
640 /// now, we return the resolved value, otherwise we return null.
641 Init *resolveListElementReference(Record &R, const RecordVal *RV,
642 unsigned Elt) const override {
643 llvm_unreachable("Illegal element reference off string")::llvm::llvm_unreachable_internal("Illegal element reference off string"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 643)
;
644 }
645
646 Init *getBit(unsigned Bit) const override {
647 llvm_unreachable("Illegal bit reference off string")::llvm::llvm_unreachable_internal("Illegal bit reference off string"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 647)
;
648 }
649};
650
651/// [AL, AH, CL] - Represent a list of defs
652///
653class ListInit final : public TypedInit, public FoldingSetNode,
654 public TrailingObjects<ListInit, Init *> {
655 unsigned NumValues;
656
657public:
658 using const_iterator = Init *const *;
659
660private:
661 explicit ListInit(unsigned N, RecTy *EltTy)
662 : TypedInit(IK_ListInit, ListRecTy::get(EltTy)), NumValues(N) {}
663
664public:
665 ListInit(const ListInit &) = delete;
666 ListInit &operator=(const ListInit &) = delete;
667
668 // Do not use sized deallocation due to trailing objects.
669 void operator delete(void *p) { ::operator delete(p); }
670
671 static bool classof(const Init *I) {
672 return I->getKind() == IK_ListInit;
673 }
674 static ListInit *get(ArrayRef<Init *> Range, RecTy *EltTy);
675
676 void Profile(FoldingSetNodeID &ID) const;
677
678 Init *getElement(unsigned i) const {
679 assert(i < NumValues && "List element index out of range!")(static_cast <bool> (i < NumValues && "List element index out of range!"
) ? void (0) : __assert_fail ("i < NumValues && \"List element index out of range!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 679, __extension__ __PRETTY_FUNCTION__))
;
680 return getTrailingObjects<Init *>()[i];
681 }
682
683 Record *getElementAsRecord(unsigned i) const;
684
685 Init *convertInitListSlice(ArrayRef<unsigned> Elements) const override;
686
687 Init *convertInitializerTo(RecTy *Ty) const override;
688
689 /// This method is used by classes that refer to other
690 /// variables which may not be defined at the time they expression is formed.
691 /// If a value is set for the variable later, this method will be called on
692 /// users of the value to allow the value to propagate out.
693 ///
694 Init *resolveReferences(Record &R, const RecordVal *RV) const override;
695
696 std::string getAsString() const override;
697
698 ArrayRef<Init*> getValues() const {
699 return makeArrayRef(getTrailingObjects<Init *>(), NumValues);
700 }
701
702 const_iterator begin() const { return getTrailingObjects<Init *>(); }
703 const_iterator end () const { return begin() + NumValues; }
704
705 size_t size () const { return NumValues; }
706 bool empty() const { return NumValues == 0; }
707
708 /// This method is used to implement
709 /// VarListElementInit::resolveReferences. If the list element is resolvable
710 /// now, we return the resolved value, otherwise we return null.
711 Init *resolveListElementReference(Record &R, const RecordVal *RV,
712 unsigned Elt) const override;
713
714 Init *getBit(unsigned Bit) const override {
715 llvm_unreachable("Illegal bit reference off list")::llvm::llvm_unreachable_internal("Illegal bit reference off list"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 715)
;
716 }
717};
718
719/// Base class for operators
720///
721class OpInit : public TypedInit {
722protected:
723 explicit OpInit(InitKind K, RecTy *Type, uint8_t Opc)
724 : TypedInit(K, Type, Opc) {}
725
726public:
727 OpInit(const OpInit &) = delete;
728 OpInit &operator=(OpInit &) = delete;
729
730 static bool classof(const Init *I) {
731 return I->getKind() >= IK_FirstOpInit &&
732 I->getKind() <= IK_LastOpInit;
733 }
734
735 // Clone - Clone this operator, replacing arguments with the new list
736 virtual OpInit *clone(ArrayRef<Init *> Operands) const = 0;
737
738 virtual unsigned getNumOperands() const = 0;
739 virtual Init *getOperand(unsigned i) const = 0;
740
741 // Fold - If possible, fold this to a simpler init. Return this if not
742 // possible to fold.
743 virtual Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const = 0;
744
745 Init *resolveListElementReference(Record &R, const RecordVal *RV,
746 unsigned Elt) const override;
747
748 Init *getBit(unsigned Bit) const override;
749};
750
751/// !op (X) - Transform an init.
752///
753class UnOpInit : public OpInit, public FoldingSetNode {
754public:
755 enum UnaryOp : uint8_t { CAST, HEAD, TAIL, EMPTY };
756
757private:
758 Init *LHS;
759
760 UnOpInit(UnaryOp opc, Init *lhs, RecTy *Type)
761 : OpInit(IK_UnOpInit, Type, opc), LHS(lhs) {}
762
763public:
764 UnOpInit(const UnOpInit &) = delete;
765 UnOpInit &operator=(const UnOpInit &) = delete;
766
767 static bool classof(const Init *I) {
768 return I->getKind() == IK_UnOpInit;
769 }
770
771 static UnOpInit *get(UnaryOp opc, Init *lhs, RecTy *Type);
772
773 void Profile(FoldingSetNodeID &ID) const;
774
775 // Clone - Clone this operator, replacing arguments with the new list
776 OpInit *clone(ArrayRef<Init *> Operands) const override {
777 assert(Operands.size() == 1 &&(static_cast <bool> (Operands.size() == 1 && "Wrong number of operands for unary operation"
) ? void (0) : __assert_fail ("Operands.size() == 1 && \"Wrong number of operands for unary operation\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 778, __extension__ __PRETTY_FUNCTION__))
778 "Wrong number of operands for unary operation")(static_cast <bool> (Operands.size() == 1 && "Wrong number of operands for unary operation"
) ? void (0) : __assert_fail ("Operands.size() == 1 && \"Wrong number of operands for unary operation\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779 return UnOpInit::get(getOpcode(), *Operands.begin(), getType());
780 }
781
782 unsigned getNumOperands() const override { return 1; }
783
784 Init *getOperand(unsigned i) const override {
785 assert(i == 0 && "Invalid operand id for unary operator")(static_cast <bool> (i == 0 && "Invalid operand id for unary operator"
) ? void (0) : __assert_fail ("i == 0 && \"Invalid operand id for unary operator\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 785, __extension__ __PRETTY_FUNCTION__))
;
786 return getOperand();
787 }
788
789 UnaryOp getOpcode() const { return (UnaryOp)Opc; }
790 Init *getOperand() const { return LHS; }
791
792 // Fold - If possible, fold this to a simpler init. Return this if not
793 // possible to fold.
794 Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const override;
795
796 Init *resolveReferences(Record &R, const RecordVal *RV) const override;
797
798 std::string getAsString() const override;
799};
800
801/// !op (X, Y) - Combine two inits.
802class BinOpInit : public OpInit, public FoldingSetNode {
803public:
804 enum BinaryOp : uint8_t { ADD, AND, OR, SHL, SRA, SRL, LISTCONCAT,
805 STRCONCAT, CONCAT, EQ };
806
807private:
808 Init *LHS, *RHS;
809
810 BinOpInit(BinaryOp opc, Init *lhs, Init *rhs, RecTy *Type) :
811 OpInit(IK_BinOpInit, Type, opc), LHS(lhs), RHS(rhs) {}
812
813public:
814 BinOpInit(const BinOpInit &) = delete;
815 BinOpInit &operator=(const BinOpInit &) = delete;
816
817 static bool classof(const Init *I) {
818 return I->getKind() == IK_BinOpInit;
819 }
820
821 static BinOpInit *get(BinaryOp opc, Init *lhs, Init *rhs,
822 RecTy *Type);
823
824 void Profile(FoldingSetNodeID &ID) const;
825
826 // Clone - Clone this operator, replacing arguments with the new list
827 OpInit *clone(ArrayRef<Init *> Operands) const override {
828 assert(Operands.size() == 2 &&(static_cast <bool> (Operands.size() == 2 && "Wrong number of operands for binary operation"
) ? void (0) : __assert_fail ("Operands.size() == 2 && \"Wrong number of operands for binary operation\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 829, __extension__ __PRETTY_FUNCTION__))
829 "Wrong number of operands for binary operation")(static_cast <bool> (Operands.size() == 2 && "Wrong number of operands for binary operation"
) ? void (0) : __assert_fail ("Operands.size() == 2 && \"Wrong number of operands for binary operation\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 829, __extension__ __PRETTY_FUNCTION__))
;
830 return BinOpInit::get(getOpcode(), Operands[0], Operands[1], getType());
831 }
832
833 unsigned getNumOperands() const override { return 2; }
834 Init *getOperand(unsigned i) const override {
835 switch (i) {
836 default: llvm_unreachable("Invalid operand id for binary operator")::llvm::llvm_unreachable_internal("Invalid operand id for binary operator"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 836)
;
837 case 0: return getLHS();
838 case 1: return getRHS();
839 }
840 }
841
842 BinaryOp getOpcode() const { return (BinaryOp)Opc; }
843 Init *getLHS() const { return LHS; }
844 Init *getRHS() const { return RHS; }
845
846 // Fold - If possible, fold this to a simpler init. Return this if not
847 // possible to fold.
848 Init *Fold(Record *CurRec, MultiClass *CurMultiClass) const override;
849
850 Init *resolveReferences(Record &R, const RecordVal *RV) const override;
851
852 std::string getAsString() const override;
853};
854
855/// !op (X, Y, Z) - Combine two inits.
856class TernOpInit : public OpInit, public FoldingSetNode {
857public:
858 enum TernaryOp : uint8_t { SUBST, FOREACH, IF };
859
860private:
861 Init *LHS, *MHS, *RHS;
862
863 TernOpInit(TernaryOp opc, Init *lhs, Init *mhs, Init *rhs,
864 RecTy *Type) :
865 OpInit(IK_TernOpInit, Type, opc), LHS(lhs), MHS(mhs), RHS(rhs) {}
866
867public:
868 TernOpInit(const TernOpInit &) = delete;
869 TernOpInit &operator=(const TernOpInit &) = delete;
870
871 static bool classof(const Init *I) {
872 return I->getKind() == IK_TernOpInit;
873 }
874
875 static TernOpInit *get(TernaryOp opc, Init *lhs,
876 Init *mhs, Init *rhs,
877 RecTy *Type);
878
879 void Profile(FoldingSetNodeID &ID) const;
880
881 // Clone - Clone this operator, replacing arguments with the new list
882 OpInit *clone(ArrayRef<Init *> Operands) const override {
883 assert(Operands.size() == 3 &&(static_cast <bool> (Operands.size() == 3 && "Wrong number of operands for ternary operation"
) ? void (0) : __assert_fail ("Operands.size() == 3 && \"Wrong number of operands for ternary operation\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 884, __extension__ __PRETTY_FUNCTION__))
884 "Wrong number of operands for ternary operation")(static_cast <bool> (Operands.size() == 3 && "Wrong number of operands for ternary operation"
) ? void (0) : __assert_fail ("Operands.size() == 3 && \"Wrong number of operands for ternary operation\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 884, __extension__ __PRETTY_FUNCTION__))
;
885 return TernOpInit::get(getOpcode(), Operands[0], Operands[1], Operands[2],
886 getType());
887 }
888
889 unsigned getNumOperands() const override { return 3; }
890 Init *getOperand(unsigned i) const override {
891 switch (i) {
892 default: llvm_unreachable("Invalid operand id for ternary operator")::llvm::llvm_unreachable_internal("Invalid operand id for ternary operator"
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/TableGen/Record.h"
, 892)
;
893 case 0: return getLHS();
894 case 1: return getMHS();
895 case 2: return getRHS();
896 }
897 }
898
899 TernaryOp getOpcode() const { return (TernaryOp)Opc; }
900 Init *getLHS() const