Bug Summary

File:llvm/utils/TableGen/CodeGenDAGPatterns.cpp
Warning:line 2784, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenDAGPatterns.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/utils/TableGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CodeGenDAGPatterns class, which is used to read and
10// represent the patterns present in a .td file for instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TypeSize.h"
27#include "llvm/TableGen/Error.h"
28#include "llvm/TableGen/Record.h"
29#include <algorithm>
30#include <cstdio>
31#include <iterator>
32#include <set>
33using namespace llvm;
34
35#define DEBUG_TYPE"dag-patterns" "dag-patterns"
36
37static inline bool isIntegerOrPtr(MVT VT) {
38 return VT.isInteger() || VT == MVT::iPTR;
39}
40static inline bool isFloatingPoint(MVT VT) {
41 return VT.isFloatingPoint();
42}
43static inline bool isVector(MVT VT) {
44 return VT.isVector();
45}
46static inline bool isScalar(MVT VT) {
47 return !VT.isVector();
48}
49
50template <typename Predicate>
51static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52 bool Erased = false;
53 // It is ok to iterate over MachineValueTypeSet and remove elements from it
54 // at the same time.
55 for (MVT T : S) {
56 if (!P(T))
57 continue;
58 Erased = true;
59 S.erase(T);
60 }
61 return Erased;
62}
63
64// --- TypeSetByHwMode
65
66// This is a parameterized type-set class. For each mode there is a list
67// of types that are currently possible for a given tree node. Type
68// inference will apply to each mode separately.
69
70TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71 for (const ValueTypeByHwMode &VVT : VTList) {
72 insert(VVT);
73 AddrSpaces.push_back(VVT.PtrAddrSpace);
74 }
75}
76
77bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78 for (const auto &I : *this) {
79 if (I.second.size() > 1)
80 return false;
81 if (!AllowEmpty && I.second.empty())
82 return false;
83 }
84 return true;
85}
86
87ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88 assert(isValueTypeByHwMode(true) &&((isValueTypeByHwMode(true) && "The type set has multiple types for at least one HW mode"
) ? static_cast<void> (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 89, __PRETTY_FUNCTION__))
89 "The type set has multiple types for at least one HW mode")((isValueTypeByHwMode(true) && "The type set has multiple types for at least one HW mode"
) ? static_cast<void> (0) : __assert_fail ("isValueTypeByHwMode(true) && \"The type set has multiple types for at least one HW mode\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 89, __PRETTY_FUNCTION__))
;
90 ValueTypeByHwMode VVT;
91 auto ASI = AddrSpaces.begin();
92
93 for (const auto &I : *this) {
94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95 VVT.getOrCreateTypeForMode(I.first, T);
96 if (ASI != AddrSpaces.end())
97 VVT.PtrAddrSpace = *ASI++;
98 }
99 return VVT;
100}
101
102bool TypeSetByHwMode::isPossible() const {
103 for (const auto &I : *this)
104 if (!I.second.empty())
105 return true;
106 return false;
107}
108
109bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110 bool Changed = false;
111 bool ContainsDefault = false;
112 MVT DT = MVT::Other;
113
114 SmallDenseSet<unsigned, 4> Modes;
115 for (const auto &P : VVT) {
116 unsigned M = P.first;
117 Modes.insert(M);
118 // Make sure there exists a set for each specific mode from VVT.
119 Changed |= getOrCreate(M).insert(P.second).second;
120 // Cache VVT's default mode.
121 if (DefaultMode == M) {
122 ContainsDefault = true;
123 DT = P.second;
124 }
125 }
126
127 // If VVT has a default mode, add the corresponding type to all
128 // modes in "this" that do not exist in VVT.
129 if (ContainsDefault)
130 for (auto &I : *this)
131 if (!Modes.count(I.first))
132 Changed |= I.second.insert(DT).second;
133
134 return Changed;
135}
136
137// Constrain the type set to be the intersection with VTS.
138bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
139 bool Changed = false;
140 if (hasDefault()) {
141 for (const auto &I : VTS) {
142 unsigned M = I.first;
143 if (M == DefaultMode || hasMode(M))
144 continue;
145 Map.insert({M, Map.at(DefaultMode)});
146 Changed = true;
147 }
148 }
149
150 for (auto &I : *this) {
151 unsigned M = I.first;
152 SetType &S = I.second;
153 if (VTS.hasMode(M) || VTS.hasDefault()) {
154 Changed |= intersect(I.second, VTS.get(M));
155 } else if (!S.empty()) {
156 S.clear();
157 Changed = true;
158 }
159 }
160 return Changed;
161}
162
163template <typename Predicate>
164bool TypeSetByHwMode::constrain(Predicate P) {
165 bool Changed = false;
166 for (auto &I : *this)
167 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
168 return Changed;
169}
170
171template <typename Predicate>
172bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
173 assert(empty())((empty()) ? static_cast<void> (0) : __assert_fail ("empty()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 173, __PRETTY_FUNCTION__))
;
174 for (const auto &I : VTS) {
175 SetType &S = getOrCreate(I.first);
176 for (auto J : I.second)
177 if (P(J))
178 S.insert(J);
179 }
180 return !empty();
181}
182
183void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
184 SmallVector<unsigned, 4> Modes;
185 Modes.reserve(Map.size());
186
187 for (const auto &I : *this)
188 Modes.push_back(I.first);
189 if (Modes.empty()) {
190 OS << "{}";
191 return;
192 }
193 array_pod_sort(Modes.begin(), Modes.end());
194
195 OS << '{';
196 for (unsigned M : Modes) {
197 OS << ' ' << getModeName(M) << ':';
198 writeToStream(get(M), OS);
199 }
200 OS << " }";
201}
202
203void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
204 SmallVector<MVT, 4> Types(S.begin(), S.end());
205 array_pod_sort(Types.begin(), Types.end());
206
207 OS << '[';
208 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
209 OS << ValueTypeByHwMode::getMVTName(Types[i]);
210 if (i != e-1)
211 OS << ' ';
212 }
213 OS << ']';
214}
215
216bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217 // The isSimple call is much quicker than hasDefault - check this first.
218 bool IsSimple = isSimple();
219 bool VTSIsSimple = VTS.isSimple();
220 if (IsSimple && VTSIsSimple)
221 return *begin() == *VTS.begin();
222
223 // Speedup: We have a default if the set is simple.
224 bool HaveDefault = IsSimple || hasDefault();
225 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226 if (HaveDefault != VTSHaveDefault)
227 return false;
228
229 SmallDenseSet<unsigned, 4> Modes;
230 for (auto &I : *this)
231 Modes.insert(I.first);
232 for (const auto &I : VTS)
233 Modes.insert(I.first);
234
235 if (HaveDefault) {
236 // Both sets have default mode.
237 for (unsigned M : Modes) {
238 if (get(M) != VTS.get(M))
239 return false;
240 }
241 } else {
242 // Neither set has default mode.
243 for (unsigned M : Modes) {
244 // If there is no default mode, an empty set is equivalent to not having
245 // the corresponding mode.
246 bool NoModeThis = !hasMode(M) || get(M).empty();
247 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248 if (NoModeThis != NoModeVTS)
249 return false;
250 if (!NoModeThis)
251 if (get(M) != VTS.get(M))
252 return false;
253 }
254 }
255
256 return true;
257}
258
259namespace llvm {
260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
261 T.writeToStream(OS);
262 return OS;
263 }
264}
265
266LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
267void TypeSetByHwMode::dump() const {
268 dbgs() << *this << '\n';
269}
270
271bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
272 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
273 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274
275 if (OutP == InP)
276 return berase_if(Out, Int);
277
278 // Compute the intersection of scalars separately to account for only
279 // one set containing iPTR.
280 // The itersection of iPTR with a set of integer scalar types that does not
281 // include iPTR will result in the most specific scalar type:
282 // - iPTR is more specific than any set with two elements or more
283 // - iPTR is less specific than any single integer scalar type.
284 // For example
285 // { iPTR } * { i32 } -> { i32 }
286 // { iPTR } * { i32 i64 } -> { iPTR }
287 // and
288 // { iPTR i32 } * { i32 } -> { i32 }
289 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
290 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291
292 // Compute the difference between the two sets in such a way that the
293 // iPTR is in the set that is being subtracted. This is to see if there
294 // are any extra scalars in the set without iPTR that are not in the
295 // set containing iPTR. Then the iPTR could be considered a "wildcard"
296 // matching these scalars. If there is only one such scalar, it would
297 // replace the iPTR, if there are more, the iPTR would be retained.
298 SetType Diff;
299 if (InP) {
300 Diff = Out;
301 berase_if(Diff, [&In](MVT T) { return In.count(T); });
302 // Pre-remove these elements and rely only on InP/OutP to determine
303 // whether a change has been made.
304 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
305 } else {
306 Diff = In;
307 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
308 Out.erase(MVT::iPTR);
309 }
310
311 // The actual intersection.
312 bool Changed = berase_if(Out, Int);
313 unsigned NumD = Diff.size();
314 if (NumD == 0)
315 return Changed;
316
317 if (NumD == 1) {
318 Out.insert(*Diff.begin());
319 // This is a change only if Out was the one with iPTR (which is now
320 // being replaced).
321 Changed |= OutP;
322 } else {
323 // Multiple elements from Out are now replaced with iPTR.
324 Out.insert(MVT::iPTR);
325 Changed |= !OutP;
326 }
327 return Changed;
328}
329
330bool TypeSetByHwMode::validate() const {
331#ifndef NDEBUG
332 if (empty())
333 return true;
334 bool AllEmpty = true;
335 for (const auto &I : *this)
336 AllEmpty &= I.second.empty();
337 return !AllEmpty;
338#endif
339 return true;
340}
341
342// --- TypeInfer
343
344bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
345 const TypeSetByHwMode &In) {
346 ValidateOnExit _1(Out, *this);
347 In.validate();
348 if (In.empty() || Out == In || TP.hasError())
349 return false;
350 if (Out.empty()) {
351 Out = In;
352 return true;
353 }
354
355 bool Changed = Out.constrain(In);
356 if (Changed && Out.empty())
357 TP.error("Type contradiction");
358
359 return Changed;
360}
361
362bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
363 ValidateOnExit _1(Out, *this);
364 if (TP.hasError())
365 return false;
366 assert(!Out.empty() && "cannot pick from an empty set")((!Out.empty() && "cannot pick from an empty set") ? static_cast
<void> (0) : __assert_fail ("!Out.empty() && \"cannot pick from an empty set\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 366, __PRETTY_FUNCTION__))
;
367
368 bool Changed = false;
369 for (auto &I : Out) {
370 TypeSetByHwMode::SetType &S = I.second;
371 if (S.size() <= 1)
372 continue;
373 MVT T = *S.begin(); // Pick the first element.
374 S.clear();
375 S.insert(T);
376 Changed = true;
377 }
378 return Changed;
379}
380
381bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
382 ValidateOnExit _1(Out, *this);
383 if (TP.hasError())
384 return false;
385 if (!Out.empty())
386 return Out.constrain(isIntegerOrPtr);
387
388 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
389}
390
391bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
392 ValidateOnExit _1(Out, *this);
393 if (TP.hasError())
394 return false;
395 if (!Out.empty())
396 return Out.constrain(isFloatingPoint);
397
398 return Out.assign_if(getLegalTypes(), isFloatingPoint);
399}
400
401bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
402 ValidateOnExit _1(Out, *this);
403 if (TP.hasError())
404 return false;
405 if (!Out.empty())
406 return Out.constrain(isScalar);
407
408 return Out.assign_if(getLegalTypes(), isScalar);
409}
410
411bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
412 ValidateOnExit _1(Out, *this);
413 if (TP.hasError())
414 return false;
415 if (!Out.empty())
416 return Out.constrain(isVector);
417
418 return Out.assign_if(getLegalTypes(), isVector);
419}
420
421bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
422 ValidateOnExit _1(Out, *this);
423 if (TP.hasError() || !Out.empty())
424 return false;
425
426 Out = getLegalTypes();
427 return true;
428}
429
430template <typename Iter, typename Pred, typename Less>
431static Iter min_if(Iter B, Iter E, Pred P, Less L) {
432 if (B == E)
433 return E;
434 Iter Min = E;
435 for (Iter I = B; I != E; ++I) {
436 if (!P(*I))
437 continue;
438 if (Min == E || L(*I, *Min))
439 Min = I;
440 }
441 return Min;
442}
443
444template <typename Iter, typename Pred, typename Less>
445static Iter max_if(Iter B, Iter E, Pred P, Less L) {
446 if (B == E)
447 return E;
448 Iter Max = E;
449 for (Iter I = B; I != E; ++I) {
450 if (!P(*I))
451 continue;
452 if (Max == E || L(*Max, *I))
453 Max = I;
454 }
455 return Max;
456}
457
458/// Make sure that for each type in Small, there exists a larger type in Big.
459bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
460 TypeSetByHwMode &Big) {
461 ValidateOnExit _1(Small, *this), _2(Big, *this);
462 if (TP.hasError())
463 return false;
464 bool Changed = false;
465
466 if (Small.empty())
467 Changed |= EnforceAny(Small);
468 if (Big.empty())
469 Changed |= EnforceAny(Big);
470
471 assert(Small.hasDefault() && Big.hasDefault())((Small.hasDefault() && Big.hasDefault()) ? static_cast
<void> (0) : __assert_fail ("Small.hasDefault() && Big.hasDefault()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 471, __PRETTY_FUNCTION__))
;
472
473 std::vector<unsigned> Modes = union_modes(Small, Big);
474
475 // 1. Only allow integer or floating point types and make sure that
476 // both sides are both integer or both floating point.
477 // 2. Make sure that either both sides have vector types, or neither
478 // of them does.
479 for (unsigned M : Modes) {
480 TypeSetByHwMode::SetType &S = Small.get(M);
481 TypeSetByHwMode::SetType &B = Big.get(M);
482
483 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
484 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
485 Changed |= berase_if(S, NotInt);
486 Changed |= berase_if(B, NotInt);
487 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
488 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
489 Changed |= berase_if(S, NotFP);
490 Changed |= berase_if(B, NotFP);
491 } else if (S.empty() || B.empty()) {
492 Changed = !S.empty() || !B.empty();
493 S.clear();
494 B.clear();
495 } else {
496 TP.error("Incompatible types");
497 return Changed;
498 }
499
500 if (none_of(S, isVector) || none_of(B, isVector)) {
501 Changed |= berase_if(S, isVector);
502 Changed |= berase_if(B, isVector);
503 }
504 }
505
506 auto LT = [](MVT A, MVT B) -> bool {
507 // Always treat non-scalable MVTs as smaller than scalable MVTs for the
508 // purposes of ordering.
509 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
510 A.getSizeInBits());
511 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
512 B.getSizeInBits());
513 return ASize < BSize;
514 };
515 auto SameKindLE = [](MVT A, MVT B) -> bool {
516 // This function is used when removing elements: when a vector is compared
517 // to a non-vector or a scalable vector to any non-scalable MVT, it should
518 // return false (to avoid removal).
519 if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
520 std::make_tuple(B.isVector(), B.isScalableVector()))
521 return false;
522
523 return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <=
524 std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits());
525 };
526
527 for (unsigned M : Modes) {
528 TypeSetByHwMode::SetType &S = Small.get(M);
529 TypeSetByHwMode::SetType &B = Big.get(M);
530 // MinS = min scalar in Small, remove all scalars from Big that are
531 // smaller-or-equal than MinS.
532 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
533 if (MinS != S.end())
534 Changed |= berase_if(B, std::bind(SameKindLE,
535 std::placeholders::_1, *MinS));
536
537 // MaxS = max scalar in Big, remove all scalars from Small that are
538 // larger than MaxS.
539 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
540 if (MaxS != B.end())
541 Changed |= berase_if(S, std::bind(SameKindLE,
542 *MaxS, std::placeholders::_1));
543
544 // MinV = min vector in Small, remove all vectors from Big that are
545 // smaller-or-equal than MinV.
546 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
547 if (MinV != S.end())
548 Changed |= berase_if(B, std::bind(SameKindLE,
549 std::placeholders::_1, *MinV));
550
551 // MaxV = max vector in Big, remove all vectors from Small that are
552 // larger than MaxV.
553 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
554 if (MaxV != B.end())
555 Changed |= berase_if(S, std::bind(SameKindLE,
556 *MaxV, std::placeholders::_1));
557 }
558
559 return Changed;
560}
561
562/// 1. Ensure that for each type T in Vec, T is a vector type, and that
563/// for each type U in Elem, U is a scalar type.
564/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
565/// type T in Vec, such that U is the element type of T.
566bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
567 TypeSetByHwMode &Elem) {
568 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
569 if (TP.hasError())
570 return false;
571 bool Changed = false;
572
573 if (Vec.empty())
574 Changed |= EnforceVector(Vec);
575 if (Elem.empty())
576 Changed |= EnforceScalar(Elem);
577
578 for (unsigned M : union_modes(Vec, Elem)) {
579 TypeSetByHwMode::SetType &V = Vec.get(M);
580 TypeSetByHwMode::SetType &E = Elem.get(M);
581
582 Changed |= berase_if(V, isScalar); // Scalar = !vector
583 Changed |= berase_if(E, isVector); // Vector = !scalar
584 assert(!V.empty() && !E.empty())((!V.empty() && !E.empty()) ? static_cast<void>
(0) : __assert_fail ("!V.empty() && !E.empty()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 584, __PRETTY_FUNCTION__))
;
585
586 SmallSet<MVT,4> VT, ST;
587 // Collect element types from the "vector" set.
588 for (MVT T : V)
589 VT.insert(T.getVectorElementType());
590 // Collect scalar types from the "element" set.
591 for (MVT T : E)
592 ST.insert(T);
593
594 // Remove from V all (vector) types whose element type is not in S.
595 Changed |= berase_if(V, [&ST](MVT T) -> bool {
596 return !ST.count(T.getVectorElementType());
597 });
598 // Remove from E all (scalar) types, for which there is no corresponding
599 // type in V.
600 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
601 }
602
603 return Changed;
604}
605
606bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
607 const ValueTypeByHwMode &VVT) {
608 TypeSetByHwMode Tmp(VVT);
609 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
610 return EnforceVectorEltTypeIs(Vec, Tmp);
611}
612
613/// Ensure that for each type T in Sub, T is a vector type, and there
614/// exists a type U in Vec such that U is a vector type with the same
615/// element type as T and at least as many elements as T.
616bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
617 TypeSetByHwMode &Sub) {
618 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
619 if (TP.hasError())
620 return false;
621
622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623 auto IsSubVec = [](MVT B, MVT P) -> bool {
624 if (!B.isVector() || !P.isVector())
625 return false;
626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627 // but until there are obvious use-cases for this, keep the
628 // types separate.
629 if (B.isScalableVector() != P.isScalableVector())
630 return false;
631 if (B.getVectorElementType() != P.getVectorElementType())
632 return false;
633 return B.getVectorNumElements() < P.getVectorNumElements();
634 };
635
636 /// Return true if S has no element (vector type) that T is a sub-vector of,
637 /// i.e. has the same element type as T and more elements.
638 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639 for (auto I : S)
640 if (IsSubVec(T, I))
641 return false;
642 return true;
643 };
644
645 /// Return true if S has no element (vector type) that T is a super-vector
646 /// of, i.e. has the same element type as T and fewer elements.
647 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
648 for (auto I : S)
649 if (IsSubVec(I, T))
650 return false;
651 return true;
652 };
653
654 bool Changed = false;
655
656 if (Vec.empty())
657 Changed |= EnforceVector(Vec);
658 if (Sub.empty())
659 Changed |= EnforceVector(Sub);
660
661 for (unsigned M : union_modes(Vec, Sub)) {
662 TypeSetByHwMode::SetType &S = Sub.get(M);
663 TypeSetByHwMode::SetType &V = Vec.get(M);
664
665 Changed |= berase_if(S, isScalar);
666
667 // Erase all types from S that are not sub-vectors of a type in V.
668 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
669
670 // Erase all types from V that are not super-vectors of a type in S.
671 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
672 }
673
674 return Changed;
675}
676
677/// 1. Ensure that V has a scalar type iff W has a scalar type.
678/// 2. Ensure that for each vector type T in V, there exists a vector
679/// type U in W, such that T and U have the same number of elements.
680/// 3. Ensure that for each vector type U in W, there exists a vector
681/// type T in V, such that T and U have the same number of elements
682/// (reverse of 2).
683bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
684 ValidateOnExit _1(V, *this), _2(W, *this);
685 if (TP.hasError())
686 return false;
687
688 bool Changed = false;
689 if (V.empty())
690 Changed |= EnforceAny(V);
691 if (W.empty())
692 Changed |= EnforceAny(W);
693
694 // An actual vector type cannot have 0 elements, so we can treat scalars
695 // as zero-length vectors. This way both vectors and scalars can be
696 // processed identically.
697 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
698 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
699 };
700
701 for (unsigned M : union_modes(V, W)) {
702 TypeSetByHwMode::SetType &VS = V.get(M);
703 TypeSetByHwMode::SetType &WS = W.get(M);
704
705 SmallSet<unsigned,2> VN, WN;
706 for (MVT T : VS)
707 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
708 for (MVT T : WS)
709 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
710
711 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
712 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
713 }
714 return Changed;
715}
716
717/// 1. Ensure that for each type T in A, there exists a type U in B,
718/// such that T and U have equal size in bits.
719/// 2. Ensure that for each type U in B, there exists a type T in A
720/// such that T and U have equal size in bits (reverse of 1).
721bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
722 ValidateOnExit _1(A, *this), _2(B, *this);
723 if (TP.hasError())
724 return false;
725 bool Changed = false;
726 if (A.empty())
727 Changed |= EnforceAny(A);
728 if (B.empty())
729 Changed |= EnforceAny(B);
730
731 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
732 return !Sizes.count(T.getSizeInBits());
733 };
734
735 for (unsigned M : union_modes(A, B)) {
736 TypeSetByHwMode::SetType &AS = A.get(M);
737 TypeSetByHwMode::SetType &BS = B.get(M);
738 SmallSet<unsigned,2> AN, BN;
739
740 for (MVT T : AS)
741 AN.insert(T.getSizeInBits());
742 for (MVT T : BS)
743 BN.insert(T.getSizeInBits());
744
745 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
746 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
747 }
748
749 return Changed;
750}
751
752void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
753 ValidateOnExit _1(VTS, *this);
754 const TypeSetByHwMode &Legal = getLegalTypes();
755 assert(Legal.isDefaultOnly() && "Default-mode only expected")((Legal.isDefaultOnly() && "Default-mode only expected"
) ? static_cast<void> (0) : __assert_fail ("Legal.isDefaultOnly() && \"Default-mode only expected\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 755, __PRETTY_FUNCTION__))
;
756 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
757
758 for (auto &I : VTS)
759 expandOverloads(I.second, LegalTypes);
760}
761
762void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
763 const TypeSetByHwMode::SetType &Legal) {
764 std::set<MVT> Ovs;
765 for (MVT T : Out) {
766 if (!T.isOverloaded())
767 continue;
768
769 Ovs.insert(T);
770 // MachineValueTypeSet allows iteration and erasing.
771 Out.erase(T);
772 }
773
774 for (MVT Ov : Ovs) {
775 switch (Ov.SimpleTy) {
776 case MVT::iPTRAny:
777 Out.insert(MVT::iPTR);
778 return;
779 case MVT::iAny:
780 for (MVT T : MVT::integer_valuetypes())
781 if (Legal.count(T))
782 Out.insert(T);
783 for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
784 if (Legal.count(T))
785 Out.insert(T);
786 for (MVT T : MVT::integer_scalable_vector_valuetypes())
787 if (Legal.count(T))
788 Out.insert(T);
789 return;
790 case MVT::fAny:
791 for (MVT T : MVT::fp_valuetypes())
792 if (Legal.count(T))
793 Out.insert(T);
794 for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
795 if (Legal.count(T))
796 Out.insert(T);
797 for (MVT T : MVT::fp_scalable_vector_valuetypes())
798 if (Legal.count(T))
799 Out.insert(T);
800 return;
801 case MVT::vAny:
802 for (MVT T : MVT::vector_valuetypes())
803 if (Legal.count(T))
804 Out.insert(T);
805 return;
806 case MVT::Any:
807 for (MVT T : MVT::all_valuetypes())
808 if (Legal.count(T))
809 Out.insert(T);
810 return;
811 default:
812 break;
813 }
814 }
815}
816
817const TypeSetByHwMode &TypeInfer::getLegalTypes() {
818 if (!LegalTypesCached) {
819 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
820 // Stuff all types from all modes into the default mode.
821 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
822 for (const auto &I : LTS)
823 LegalTypes.insert(I.second);
824 LegalTypesCached = true;
825 }
826 assert(LegalCache.isDefaultOnly() && "Default-mode only expected")((LegalCache.isDefaultOnly() && "Default-mode only expected"
) ? static_cast<void> (0) : __assert_fail ("LegalCache.isDefaultOnly() && \"Default-mode only expected\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 826, __PRETTY_FUNCTION__))
;
827 return LegalCache;
828}
829
830#ifndef NDEBUG
831TypeInfer::ValidateOnExit::~ValidateOnExit() {
832 if (Infer.Validate && !VTS.validate()) {
833 dbgs() << "Type set is empty for each HW mode:\n"
834 "possible type contradiction in the pattern below "
835 "(use -print-records with llvm-tblgen to see all "
836 "expanded records).\n";
837 Infer.TP.dump();
838 llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 838)
;
839 }
840}
841#endif
842
843
844//===----------------------------------------------------------------------===//
845// ScopedName Implementation
846//===----------------------------------------------------------------------===//
847
848bool ScopedName::operator==(const ScopedName &o) const {
849 return Scope == o.Scope && Identifier == o.Identifier;
850}
851
852bool ScopedName::operator!=(const ScopedName &o) const {
853 return !(*this == o);
854}
855
856
857//===----------------------------------------------------------------------===//
858// TreePredicateFn Implementation
859//===----------------------------------------------------------------------===//
860
861/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
862TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
863 assert((((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 865, __PRETTY_FUNCTION__))
864 (!hasPredCode() || !hasImmCode()) &&(((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 865, __PRETTY_FUNCTION__))
865 ".td file corrupt: can't have a node predicate *and* an imm predicate")(((!hasPredCode() || !hasImmCode()) && ".td file corrupt: can't have a node predicate *and* an imm predicate"
) ? static_cast<void> (0) : __assert_fail ("(!hasPredCode() || !hasImmCode()) && \".td file corrupt: can't have a node predicate *and* an imm predicate\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 865, __PRETTY_FUNCTION__))
;
866}
867
868bool TreePredicateFn::hasPredCode() const {
869 return isLoad() || isStore() || isAtomic() ||
870 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
871}
872
873std::string TreePredicateFn::getPredCode() const {
874 std::string Code = "";
875
876 if (!isLoad() && !isStore() && !isAtomic()) {
877 Record *MemoryVT = getMemoryVT();
878
879 if (MemoryVT)
880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881 "MemoryVT requires IsLoad or IsStore");
882 }
883
884 if (!isLoad() && !isStore()) {
885 if (isUnindexed())
886 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887 "IsUnindexed requires IsLoad or IsStore");
888
889 Record *ScalarMemoryVT = getScalarMemoryVT();
890
891 if (ScalarMemoryVT)
892 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893 "ScalarMemoryVT requires IsLoad or IsStore");
894 }
895
896 if (isLoad() + isStore() + isAtomic() > 1)
897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
899
900 if (isLoad()) {
901 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
902 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
903 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
904 getMinAlignment() < 1)
905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906 "IsLoad cannot be used by itself");
907 } else {
908 if (isNonExtLoad())
909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910 "IsNonExtLoad requires IsLoad");
911 if (isAnyExtLoad())
912 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
913 "IsAnyExtLoad requires IsLoad");
914 if (isSignExtLoad())
915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916 "IsSignExtLoad requires IsLoad");
917 if (isZeroExtLoad())
918 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
919 "IsZeroExtLoad requires IsLoad");
920 }
921
922 if (isStore()) {
923 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
924 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
925 getAddressSpaces() == nullptr && getMinAlignment() < 1)
926 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
927 "IsStore cannot be used by itself");
928 } else {
929 if (isNonTruncStore())
930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931 "IsNonTruncStore requires IsStore");
932 if (isTruncStore())
933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934 "IsTruncStore requires IsStore");
935 }
936
937 if (isAtomic()) {
938 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
939 getAddressSpaces() == nullptr &&
940 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
941 !isAtomicOrderingAcquireRelease() &&
942 !isAtomicOrderingSequentiallyConsistent() &&
943 !isAtomicOrderingAcquireOrStronger() &&
944 !isAtomicOrderingReleaseOrStronger() &&
945 !isAtomicOrderingWeakerThanAcquire() &&
946 !isAtomicOrderingWeakerThanRelease())
947 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
948 "IsAtomic cannot be used by itself");
949 } else {
950 if (isAtomicOrderingMonotonic())
951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952 "IsAtomicOrderingMonotonic requires IsAtomic");
953 if (isAtomicOrderingAcquire())
954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955 "IsAtomicOrderingAcquire requires IsAtomic");
956 if (isAtomicOrderingRelease())
957 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
958 "IsAtomicOrderingRelease requires IsAtomic");
959 if (isAtomicOrderingAcquireRelease())
960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
961 "IsAtomicOrderingAcquireRelease requires IsAtomic");
962 if (isAtomicOrderingSequentiallyConsistent())
963 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
964 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
965 if (isAtomicOrderingAcquireOrStronger())
966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
968 if (isAtomicOrderingReleaseOrStronger())
969 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
971 if (isAtomicOrderingWeakerThanAcquire())
972 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
974 }
975
976 if (isLoad() || isStore() || isAtomic()) {
977 if (ListInit *AddressSpaces = getAddressSpaces()) {
978 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
979 " if (";
980
981 bool First = true;
982 for (Init *Val : AddressSpaces->getValues()) {
983 if (First)
984 First = false;
985 else
986 Code += " && ";
987
988 IntInit *IntVal = dyn_cast<IntInit>(Val);
989 if (!IntVal) {
990 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
991 "AddressSpaces element must be integer");
992 }
993
994 Code += "AddrSpace != " + utostr(IntVal->getValue());
995 }
996
997 Code += ")\nreturn false;\n";
998 }
999
1000 int64_t MinAlign = getMinAlignment();
1001 if (MinAlign > 0) {
1002 Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
1003 Code += utostr(MinAlign);
1004 Code += ")\nreturn false;\n";
1005 }
1006
1007 Record *MemoryVT = getMemoryVT();
1008
1009 if (MemoryVT)
1010 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1011 MemoryVT->getName() + ") return false;\n")
1012 .str();
1013 }
1014
1015 if (isAtomic() && isAtomicOrderingMonotonic())
1016 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1017 "AtomicOrdering::Monotonic) return false;\n";
1018 if (isAtomic() && isAtomicOrderingAcquire())
1019 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1020 "AtomicOrdering::Acquire) return false;\n";
1021 if (isAtomic() && isAtomicOrderingRelease())
1022 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1023 "AtomicOrdering::Release) return false;\n";
1024 if (isAtomic() && isAtomicOrderingAcquireRelease())
1025 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1026 "AtomicOrdering::AcquireRelease) return false;\n";
1027 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1028 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1029 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1030
1031 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1032 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1033 "return false;\n";
1034 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1035 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1036 "return false;\n";
1037
1038 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1039 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1040 "return false;\n";
1041 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1042 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1043 "return false;\n";
1044
1045 if (isLoad() || isStore()) {
1046 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1047
1048 if (isUnindexed())
1049 Code += ("if (cast<" + SDNodeName +
1050 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1051 "return false;\n")
1052 .str();
1053
1054 if (isLoad()) {
1055 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1056 isZeroExtLoad()) > 1)
1057 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1058 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1059 "IsZeroExtLoad are mutually exclusive");
1060 if (isNonExtLoad())
1061 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1062 "ISD::NON_EXTLOAD) return false;\n";
1063 if (isAnyExtLoad())
1064 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1065 "return false;\n";
1066 if (isSignExtLoad())
1067 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1068 "return false;\n";
1069 if (isZeroExtLoad())
1070 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1071 "return false;\n";
1072 } else {
1073 if ((isNonTruncStore() + isTruncStore()) > 1)
1074 PrintFatalError(
1075 getOrigPatFragRecord()->getRecord()->getLoc(),
1076 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1077 if (isNonTruncStore())
1078 Code +=
1079 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1080 if (isTruncStore())
1081 Code +=
1082 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1083 }
1084
1085 Record *ScalarMemoryVT = getScalarMemoryVT();
1086
1087 if (ScalarMemoryVT)
1088 Code += ("if (cast<" + SDNodeName +
1089 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1090 ScalarMemoryVT->getName() + ") return false;\n")
1091 .str();
1092 }
1093
1094 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1095
1096 Code += PredicateCode;
1097
1098 if (PredicateCode.empty() && !Code.empty())
1099 Code += "return true;\n";
1100
1101 return Code;
1102}
1103
1104bool TreePredicateFn::hasImmCode() const {
1105 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1106}
1107
1108std::string TreePredicateFn::getImmCode() const {
1109 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1110}
1111
1112bool TreePredicateFn::immCodeUsesAPInt() const {
1113 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1114}
1115
1116bool TreePredicateFn::immCodeUsesAPFloat() const {
1117 bool Unset;
1118 // The return value will be false when IsAPFloat is unset.
1119 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1120 Unset);
1121}
1122
1123bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1124 bool Value) const {
1125 bool Unset;
1126 bool Result =
1127 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1128 if (Unset)
1129 return false;
1130 return Result == Value;
1131}
1132bool TreePredicateFn::usesOperands() const {
1133 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1134}
1135bool TreePredicateFn::isLoad() const {
1136 return isPredefinedPredicateEqualTo("IsLoad", true);
1137}
1138bool TreePredicateFn::isStore() const {
1139 return isPredefinedPredicateEqualTo("IsStore", true);
1140}
1141bool TreePredicateFn::isAtomic() const {
1142 return isPredefinedPredicateEqualTo("IsAtomic", true);
1143}
1144bool TreePredicateFn::isUnindexed() const {
1145 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1146}
1147bool TreePredicateFn::isNonExtLoad() const {
1148 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1149}
1150bool TreePredicateFn::isAnyExtLoad() const {
1151 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1152}
1153bool TreePredicateFn::isSignExtLoad() const {
1154 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1155}
1156bool TreePredicateFn::isZeroExtLoad() const {
1157 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1158}
1159bool TreePredicateFn::isNonTruncStore() const {
1160 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1161}
1162bool TreePredicateFn::isTruncStore() const {
1163 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1164}
1165bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1166 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1167}
1168bool TreePredicateFn::isAtomicOrderingAcquire() const {
1169 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1170}
1171bool TreePredicateFn::isAtomicOrderingRelease() const {
1172 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1173}
1174bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1175 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1176}
1177bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1178 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1179 true);
1180}
1181bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1182 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1183}
1184bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1185 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1186}
1187bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1188 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1189}
1190bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1191 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1192}
1193Record *TreePredicateFn::getMemoryVT() const {
1194 Record *R = getOrigPatFragRecord()->getRecord();
1195 if (R->isValueUnset("MemoryVT"))
1196 return nullptr;
1197 return R->getValueAsDef("MemoryVT");
1198}
1199
1200ListInit *TreePredicateFn::getAddressSpaces() const {
1201 Record *R = getOrigPatFragRecord()->getRecord();
1202 if (R->isValueUnset("AddressSpaces"))
1203 return nullptr;
1204 return R->getValueAsListInit("AddressSpaces");
1205}
1206
1207int64_t TreePredicateFn::getMinAlignment() const {
1208 Record *R = getOrigPatFragRecord()->getRecord();
1209 if (R->isValueUnset("MinAlignment"))
1210 return 0;
1211 return R->getValueAsInt("MinAlignment");
1212}
1213
1214Record *TreePredicateFn::getScalarMemoryVT() const {
1215 Record *R = getOrigPatFragRecord()->getRecord();
1216 if (R->isValueUnset("ScalarMemoryVT"))
1217 return nullptr;
1218 return R->getValueAsDef("ScalarMemoryVT");
1219}
1220bool TreePredicateFn::hasGISelPredicateCode() const {
1221 return !PatFragRec->getRecord()
1222 ->getValueAsString("GISelPredicateCode")
1223 .empty();
1224}
1225std::string TreePredicateFn::getGISelPredicateCode() const {
1226 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1227}
1228
1229StringRef TreePredicateFn::getImmType() const {
1230 if (immCodeUsesAPInt())
1231 return "const APInt &";
1232 if (immCodeUsesAPFloat())
1233 return "const APFloat &";
1234 return "int64_t";
1235}
1236
1237StringRef TreePredicateFn::getImmTypeIdentifier() const {
1238 if (immCodeUsesAPInt())
1239 return "APInt";
1240 else if (immCodeUsesAPFloat())
1241 return "APFloat";
1242 return "I64";
1243}
1244
1245/// isAlwaysTrue - Return true if this is a noop predicate.
1246bool TreePredicateFn::isAlwaysTrue() const {
1247 return !hasPredCode() && !hasImmCode();
1248}
1249
1250/// Return the name to use in the generated code to reference this, this is
1251/// "Predicate_foo" if from a pattern fragment "foo".
1252std::string TreePredicateFn::getFnName() const {
1253 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1254}
1255
1256/// getCodeToRunOnSDNode - Return the code for the function body that
1257/// evaluates this predicate. The argument is expected to be in "Node",
1258/// not N. This handles casting and conversion to a concrete node type as
1259/// appropriate.
1260std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1261 // Handle immediate predicates first.
1262 std::string ImmCode = getImmCode();
1263 if (!ImmCode.empty()) {
1264 if (isLoad())
1265 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1266 "IsLoad cannot be used with ImmLeaf or its subclasses");
1267 if (isStore())
1268 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1269 "IsStore cannot be used with ImmLeaf or its subclasses");
1270 if (isUnindexed())
1271 PrintFatalError(
1272 getOrigPatFragRecord()->getRecord()->getLoc(),
1273 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1274 if (isNonExtLoad())
1275 PrintFatalError(
1276 getOrigPatFragRecord()->getRecord()->getLoc(),
1277 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1278 if (isAnyExtLoad())
1279 PrintFatalError(
1280 getOrigPatFragRecord()->getRecord()->getLoc(),
1281 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1282 if (isSignExtLoad())
1283 PrintFatalError(
1284 getOrigPatFragRecord()->getRecord()->getLoc(),
1285 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1286 if (isZeroExtLoad())
1287 PrintFatalError(
1288 getOrigPatFragRecord()->getRecord()->getLoc(),
1289 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1290 if (isNonTruncStore())
1291 PrintFatalError(
1292 getOrigPatFragRecord()->getRecord()->getLoc(),
1293 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1294 if (isTruncStore())
1295 PrintFatalError(
1296 getOrigPatFragRecord()->getRecord()->getLoc(),
1297 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1298 if (getMemoryVT())
1299 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1300 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1301 if (getScalarMemoryVT())
1302 PrintFatalError(
1303 getOrigPatFragRecord()->getRecord()->getLoc(),
1304 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1305
1306 std::string Result = (" " + getImmType() + " Imm = ").str();
1307 if (immCodeUsesAPFloat())
1308 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1309 else if (immCodeUsesAPInt())
1310 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1311 else
1312 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1313 return Result + ImmCode;
1314 }
1315
1316 // Handle arbitrary node predicates.
1317 assert(hasPredCode() && "Don't have any predicate code!")((hasPredCode() && "Don't have any predicate code!") ?
static_cast<void> (0) : __assert_fail ("hasPredCode() && \"Don't have any predicate code!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1317, __PRETTY_FUNCTION__))
;
1318
1319 // If this is using PatFrags, there are multiple trees to search. They should
1320 // all have the same class. FIXME: Is there a way to find a common
1321 // superclass?
1322 StringRef ClassName;
1323 for (const auto &Tree : PatFragRec->getTrees()) {
1324 StringRef TreeClassName;
1325 if (Tree->isLeaf())
1326 TreeClassName = "SDNode";
1327 else {
1328 Record *Op = Tree->getOperator();
1329 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1330 TreeClassName = Info.getSDClassName();
1331 }
1332
1333 if (ClassName.empty())
1334 ClassName = TreeClassName;
1335 else if (ClassName != TreeClassName) {
1336 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1337 "PatFrags trees do not have consistent class");
1338 }
1339 }
1340
1341 std::string Result;
1342 if (ClassName == "SDNode")
1343 Result = " SDNode *N = Node;\n";
1344 else
1345 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1346
1347 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1348}
1349
1350//===----------------------------------------------------------------------===//
1351// PatternToMatch implementation
1352//
1353
1354static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1355 if (!P->isLeaf())
1356 return false;
1357 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1358 if (!DI)
1359 return false;
1360
1361 Record *R = DI->getDef();
1362 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1363}
1364
1365/// getPatternSize - Return the 'size' of this pattern. We want to match large
1366/// patterns before small ones. This is used to determine the size of a
1367/// pattern.
1368static unsigned getPatternSize(const TreePatternNode *P,
1369 const CodeGenDAGPatterns &CGP) {
1370 unsigned Size = 3; // The node itself.
1371 // If the root node is a ConstantSDNode, increases its size.
1372 // e.g. (set R32:$dst, 0).
1373 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1374 Size += 2;
1375
1376 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1377 Size += AM->getComplexity();
1378 // We don't want to count any children twice, so return early.
1379 return Size;
1380 }
1381
1382 // If this node has some predicate function that must match, it adds to the
1383 // complexity of this node.
1384 if (!P->getPredicateCalls().empty())
1385 ++Size;
1386
1387 // Count children in the count if they are also nodes.
1388 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1389 const TreePatternNode *Child = P->getChild(i);
1390 if (!Child->isLeaf() && Child->getNumTypes()) {
1391 const TypeSetByHwMode &T0 = Child->getExtType(0);
1392 // At this point, all variable type sets should be simple, i.e. only
1393 // have a default mode.
1394 if (T0.getMachineValueType() != MVT::Other) {
1395 Size += getPatternSize(Child, CGP);
1396 continue;
1397 }
1398 }
1399 if (Child->isLeaf()) {
1400 if (isa<IntInit>(Child->getLeafValue()))
1401 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1402 else if (Child->getComplexPatternInfo(CGP))
1403 Size += getPatternSize(Child, CGP);
1404 else if (isImmAllOnesAllZerosMatch(Child))
1405 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1406 else if (!Child->getPredicateCalls().empty())
1407 ++Size;
1408 }
1409 }
1410
1411 return Size;
1412}
1413
1414/// Compute the complexity metric for the input pattern. This roughly
1415/// corresponds to the number of nodes that are covered.
1416int PatternToMatch::
1417getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1418 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1419}
1420
1421/// getPredicateCheck - Return a single string containing all of this
1422/// pattern's predicates concatenated with "&&" operators.
1423///
1424std::string PatternToMatch::getPredicateCheck() const {
1425 SmallVector<const Predicate*,4> PredList;
1426 for (const Predicate &P : Predicates) {
1427 if (!P.getCondString().empty())
1428 PredList.push_back(&P);
1429 }
1430 llvm::sort(PredList, deref<std::less<>>());
1431
1432 std::string Check;
1433 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1434 if (i != 0)
1435 Check += " && ";
1436 Check += '(' + PredList[i]->getCondString() + ')';
1437 }
1438 return Check;
1439}
1440
1441//===----------------------------------------------------------------------===//
1442// SDTypeConstraint implementation
1443//
1444
1445SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1446 OperandNo = R->getValueAsInt("OperandNum");
1447
1448 if (R->isSubClassOf("SDTCisVT")) {
1449 ConstraintType = SDTCisVT;
1450 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1451 for (const auto &P : VVT)
1452 if (P.second == MVT::isVoid)
1453 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1454 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1455 ConstraintType = SDTCisPtrTy;
1456 } else if (R->isSubClassOf("SDTCisInt")) {
1457 ConstraintType = SDTCisInt;
1458 } else if (R->isSubClassOf("SDTCisFP")) {
1459 ConstraintType = SDTCisFP;
1460 } else if (R->isSubClassOf("SDTCisVec")) {
1461 ConstraintType = SDTCisVec;
1462 } else if (R->isSubClassOf("SDTCisSameAs")) {
1463 ConstraintType = SDTCisSameAs;
1464 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1465 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1466 ConstraintType = SDTCisVTSmallerThanOp;
1467 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1468 R->getValueAsInt("OtherOperandNum");
1469 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1470 ConstraintType = SDTCisOpSmallerThanOp;
1471 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1472 R->getValueAsInt("BigOperandNum");
1473 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1474 ConstraintType = SDTCisEltOfVec;
1475 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1476 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1477 ConstraintType = SDTCisSubVecOfVec;
1478 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1479 R->getValueAsInt("OtherOpNum");
1480 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1481 ConstraintType = SDTCVecEltisVT;
1482 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1483 for (const auto &P : VVT) {
1484 MVT T = P.second;
1485 if (T.isVector())
1486 PrintFatalError(R->getLoc(),
1487 "Cannot use vector type as SDTCVecEltisVT");
1488 if (!T.isInteger() && !T.isFloatingPoint())
1489 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1490 "as SDTCVecEltisVT");
1491 }
1492 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1493 ConstraintType = SDTCisSameNumEltsAs;
1494 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1495 R->getValueAsInt("OtherOperandNum");
1496 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1497 ConstraintType = SDTCisSameSizeAs;
1498 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1499 R->getValueAsInt("OtherOperandNum");
1500 } else {
1501 PrintFatalError(R->getLoc(),
1502 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1503 }
1504}
1505
1506/// getOperandNum - Return the node corresponding to operand #OpNo in tree
1507/// N, and the result number in ResNo.
1508static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1509 const SDNodeInfo &NodeInfo,
1510 unsigned &ResNo) {
1511 unsigned NumResults = NodeInfo.getNumResults();
1512 if (OpNo < NumResults) {
1513 ResNo = OpNo;
1514 return N;
1515 }
1516
1517 OpNo -= NumResults;
1518
1519 if (OpNo >= N->getNumChildren()) {
1520 std::string S;
1521 raw_string_ostream OS(S);
1522 OS << "Invalid operand number in type constraint "
1523 << (OpNo+NumResults) << " ";
1524 N->print(OS);
1525 PrintFatalError(OS.str());
1526 }
1527
1528 return N->getChild(OpNo);
1529}
1530
1531/// ApplyTypeConstraint - Given a node in a pattern, apply this type
1532/// constraint to the nodes operands. This returns true if it makes a
1533/// change, false otherwise. If a type contradiction is found, flag an error.
1534bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1535 const SDNodeInfo &NodeInfo,
1536 TreePattern &TP) const {
1537 if (TP.hasError())
1538 return false;
1539
1540 unsigned ResNo = 0; // The result number being referenced.
1541 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1542 TypeInfer &TI = TP.getInfer();
1543
1544 switch (ConstraintType) {
1545 case SDTCisVT:
1546 // Operand must be a particular type.
1547 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1548 case SDTCisPtrTy:
1549 // Operand must be same as target pointer type.
1550 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1551 case SDTCisInt:
1552 // Require it to be one of the legal integer VTs.
1553 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1554 case SDTCisFP:
1555 // Require it to be one of the legal fp VTs.
1556 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1557 case SDTCisVec:
1558 // Require it to be one of the legal vector VTs.
1559 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1560 case SDTCisSameAs: {
1561 unsigned OResNo = 0;
1562 TreePatternNode *OtherNode =
1563 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1564 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1565 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1566 }
1567 case SDTCisVTSmallerThanOp: {
1568 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1569 // have an integer type that is smaller than the VT.
1570 if (!NodeToApply->isLeaf() ||
1571 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1572 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1573 ->isSubClassOf("ValueType")) {
1574 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1575 return false;
1576 }
1577 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1578 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1579 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1580 TypeSetByHwMode TypeListTmp(VVT);
1581
1582 unsigned OResNo = 0;
1583 TreePatternNode *OtherNode =
1584 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1585 OResNo);
1586
1587 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1588 }
1589 case SDTCisOpSmallerThanOp: {
1590 unsigned BResNo = 0;
1591 TreePatternNode *BigOperand =
1592 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1593 BResNo);
1594 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1595 BigOperand->getExtType(BResNo));
1596 }
1597 case SDTCisEltOfVec: {
1598 unsigned VResNo = 0;
1599 TreePatternNode *VecOperand =
1600 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1601 VResNo);
1602 // Filter vector types out of VecOperand that don't have the right element
1603 // type.
1604 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1605 NodeToApply->getExtType(ResNo));
1606 }
1607 case SDTCisSubVecOfVec: {
1608 unsigned VResNo = 0;
1609 TreePatternNode *BigVecOperand =
1610 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1611 VResNo);
1612
1613 // Filter vector types out of BigVecOperand that don't have the
1614 // right subvector type.
1615 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1616 NodeToApply->getExtType(ResNo));
1617 }
1618 case SDTCVecEltisVT: {
1619 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1620 }
1621 case SDTCisSameNumEltsAs: {
1622 unsigned OResNo = 0;
1623 TreePatternNode *OtherNode =
1624 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1625 N, NodeInfo, OResNo);
1626 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1627 NodeToApply->getExtType(ResNo));
1628 }
1629 case SDTCisSameSizeAs: {
1630 unsigned OResNo = 0;
1631 TreePatternNode *OtherNode =
1632 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1633 N, NodeInfo, OResNo);
1634 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1635 NodeToApply->getExtType(ResNo));
1636 }
1637 }
1638 llvm_unreachable("Invalid ConstraintType!")::llvm::llvm_unreachable_internal("Invalid ConstraintType!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1638)
;
1639}
1640
1641// Update the node type to match an instruction operand or result as specified
1642// in the ins or outs lists on the instruction definition. Return true if the
1643// type was actually changed.
1644bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1645 Record *Operand,
1646 TreePattern &TP) {
1647 // The 'unknown' operand indicates that types should be inferred from the
1648 // context.
1649 if (Operand->isSubClassOf("unknown_class"))
1650 return false;
1651
1652 // The Operand class specifies a type directly.
1653 if (Operand->isSubClassOf("Operand")) {
1654 Record *R = Operand->getValueAsDef("Type");
1655 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1656 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1657 }
1658
1659 // PointerLikeRegClass has a type that is determined at runtime.
1660 if (Operand->isSubClassOf("PointerLikeRegClass"))
1661 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1662
1663 // Both RegisterClass and RegisterOperand operands derive their types from a
1664 // register class def.
1665 Record *RC = nullptr;
1666 if (Operand->isSubClassOf("RegisterClass"))
1667 RC = Operand;
1668 else if (Operand->isSubClassOf("RegisterOperand"))
1669 RC = Operand->getValueAsDef("RegClass");
1670
1671 assert(RC && "Unknown operand type")((RC && "Unknown operand type") ? static_cast<void
> (0) : __assert_fail ("RC && \"Unknown operand type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1673 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1674}
1675
1676bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1677 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1678 if (!TP.getInfer().isConcrete(Types[i], true))
1679 return true;
1680 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1681 if (getChild(i)->ContainsUnresolvedType(TP))
1682 return true;
1683 return false;
1684}
1685
1686bool TreePatternNode::hasProperTypeByHwMode() const {
1687 for (const TypeSetByHwMode &S : Types)
1688 if (!S.isDefaultOnly())
1689 return true;
1690 for (const TreePatternNodePtr &C : Children)
1691 if (C->hasProperTypeByHwMode())
1692 return true;
1693 return false;
1694}
1695
1696bool TreePatternNode::hasPossibleType() const {
1697 for (const TypeSetByHwMode &S : Types)
1698 if (!S.isPossible())
1699 return false;
1700 for (const TreePatternNodePtr &C : Children)
1701 if (!C->hasPossibleType())
1702 return false;
1703 return true;
1704}
1705
1706bool TreePatternNode::setDefaultMode(unsigned Mode) {
1707 for (TypeSetByHwMode &S : Types) {
1708 S.makeSimple(Mode);
1709 // Check if the selected mode had a type conflict.
1710 if (S.get(DefaultMode).empty())
1711 return false;
1712 }
1713 for (const TreePatternNodePtr &C : Children)
1714 if (!C->setDefaultMode(Mode))
1715 return false;
1716 return true;
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SDNodeInfo implementation
1721//
1722SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1723 EnumName = R->getValueAsString("Opcode");
1724 SDClassName = R->getValueAsString("SDClass");
1725 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1726 NumResults = TypeProfile->getValueAsInt("NumResults");
1727 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1728
1729 // Parse the properties.
1730 Properties = parseSDPatternOperatorProperties(R);
1731
1732 // Parse the type constraints.
1733 std::vector<Record*> ConstraintList =
1734 TypeProfile->getValueAsListOfDefs("Constraints");
1735 for (Record *R : ConstraintList)
1736 TypeConstraints.emplace_back(R, CGH);
1737}
1738
1739/// getKnownType - If the type constraints on this node imply a fixed type
1740/// (e.g. all stores return void, etc), then return it as an
1741/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1742MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1743 unsigned NumResults = getNumResults();
1744 assert(NumResults <= 1 &&((NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? static_cast<void> (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1745, __PRETTY_FUNCTION__))
1745 "We only work with nodes with zero or one result so far!")((NumResults <= 1 && "We only work with nodes with zero or one result so far!"
) ? static_cast<void> (0) : __assert_fail ("NumResults <= 1 && \"We only work with nodes with zero or one result so far!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1745, __PRETTY_FUNCTION__))
;
1746 assert(ResNo == 0 && "Only handles single result nodes so far")((ResNo == 0 && "Only handles single result nodes so far"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Only handles single result nodes so far\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1746, __PRETTY_FUNCTION__))
;
1747
1748 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1749 // Make sure that this applies to the correct node result.
1750 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1751 continue;
1752
1753 switch (Constraint.ConstraintType) {
1754 default: break;
1755 case SDTypeConstraint::SDTCisVT:
1756 if (Constraint.VVT.isSimple())
1757 return Constraint.VVT.getSimple().SimpleTy;
1758 break;
1759 case SDTypeConstraint::SDTCisPtrTy:
1760 return MVT::iPTR;
1761 }
1762 }
1763 return MVT::Other;
1764}
1765
1766//===----------------------------------------------------------------------===//
1767// TreePatternNode implementation
1768//
1769
1770static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1771 if (Operator->getName() == "set" ||
1772 Operator->getName() == "implicit")
1773 return 0; // All return nothing.
1774
1775 if (Operator->isSubClassOf("Intrinsic"))
1776 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1777
1778 if (Operator->isSubClassOf("SDNode"))
1779 return CDP.getSDNodeInfo(Operator).getNumResults();
1780
1781 if (Operator->isSubClassOf("PatFrags")) {
1782 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1783 // the forward reference case where one pattern fragment references another
1784 // before it is processed.
1785 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1786 // The number of results of a fragment with alternative records is the
1787 // maximum number of results across all alternatives.
1788 unsigned NumResults = 0;
1789 for (auto T : PFRec->getTrees())
1790 NumResults = std::max(NumResults, T->getNumTypes());
1791 return NumResults;
1792 }
1793
1794 ListInit *LI = Operator->getValueAsListInit("Fragments");
1795 assert(LI && "Invalid Fragment")((LI && "Invalid Fragment") ? static_cast<void>
(0) : __assert_fail ("LI && \"Invalid Fragment\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1795, __PRETTY_FUNCTION__))
;
1796 unsigned NumResults = 0;
1797 for (Init *I : LI->getValues()) {
1798 Record *Op = nullptr;
1799 if (DagInit *Dag = dyn_cast<DagInit>(I))
1800 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1801 Op = DI->getDef();
1802 assert(Op && "Invalid Fragment")((Op && "Invalid Fragment") ? static_cast<void>
(0) : __assert_fail ("Op && \"Invalid Fragment\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1802, __PRETTY_FUNCTION__))
;
1803 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1804 }
1805 return NumResults;
1806 }
1807
1808 if (Operator->isSubClassOf("Instruction")) {
1809 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1810
1811 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1812
1813 // Subtract any defaulted outputs.
1814 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1815 Record *OperandNode = InstInfo.Operands[i].Rec;
1816
1817 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1818 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1819 --NumDefsToAdd;
1820 }
1821
1822 // Add on one implicit def if it has a resolvable type.
1823 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1824 ++NumDefsToAdd;
1825 return NumDefsToAdd;
1826 }
1827
1828 if (Operator->isSubClassOf("SDNodeXForm"))
1829 return 1; // FIXME: Generalize SDNodeXForm
1830
1831 if (Operator->isSubClassOf("ValueType"))
1832 return 1; // A type-cast of one result.
1833
1834 if (Operator->isSubClassOf("ComplexPattern"))
1835 return 1;
1836
1837 errs() << *Operator;
1838 PrintFatalError("Unhandled node in GetNumNodeResults");
1839}
1840
1841void TreePatternNode::print(raw_ostream &OS) const {
1842 if (isLeaf())
1843 OS << *getLeafValue();
1844 else
1845 OS << '(' << getOperator()->getName();
1846
1847 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1848 OS << ':';
1849 getExtType(i).writeToStream(OS);
1850 }
1851
1852 if (!isLeaf()) {
1853 if (getNumChildren() != 0) {
1854 OS << " ";
1855 getChild(0)->print(OS);
1856 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1857 OS << ", ";
1858 getChild(i)->print(OS);
1859 }
1860 }
1861 OS << ")";
1862 }
1863
1864 for (const TreePredicateCall &Pred : PredicateCalls) {
1865 OS << "<<P:";
1866 if (Pred.Scope)
1867 OS << Pred.Scope << ":";
1868 OS << Pred.Fn.getFnName() << ">>";
1869 }
1870 if (TransformFn)
1871 OS << "<<X:" << TransformFn->getName() << ">>";
1872 if (!getName().empty())
1873 OS << ":$" << getName();
1874
1875 for (const ScopedName &Name : NamesAsPredicateArg)
1876 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1877}
1878void TreePatternNode::dump() const {
1879 print(errs());
1880}
1881
1882/// isIsomorphicTo - Return true if this node is recursively
1883/// isomorphic to the specified node. For this comparison, the node's
1884/// entire state is considered. The assigned name is ignored, since
1885/// nodes with differing names are considered isomorphic. However, if
1886/// the assigned name is present in the dependent variable set, then
1887/// the assigned name is considered significant and the node is
1888/// isomorphic if the names match.
1889bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1890 const MultipleUseVarSet &DepVars) const {
1891 if (N == this) return true;
1892 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1893 getPredicateCalls() != N->getPredicateCalls() ||
1894 getTransformFn() != N->getTransformFn())
1895 return false;
1896
1897 if (isLeaf()) {
1898 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1899 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1900 return ((DI->getDef() == NDI->getDef())
1901 && (DepVars.find(getName()) == DepVars.end()
1902 || getName() == N->getName()));
1903 }
1904 }
1905 return getLeafValue() == N->getLeafValue();
1906 }
1907
1908 if (N->getOperator() != getOperator() ||
1909 N->getNumChildren() != getNumChildren()) return false;
1910 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1911 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1912 return false;
1913 return true;
1914}
1915
1916/// clone - Make a copy of this tree and all of its children.
1917///
1918TreePatternNodePtr TreePatternNode::clone() const {
1919 TreePatternNodePtr New;
1920 if (isLeaf()) {
1921 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1922 } else {
1923 std::vector<TreePatternNodePtr> CChildren;
1924 CChildren.reserve(Children.size());
1925 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1926 CChildren.push_back(getChild(i)->clone());
1927 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1928 getNumTypes());
1929 }
1930 New->setName(getName());
1931 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1932 New->Types = Types;
1933 New->setPredicateCalls(getPredicateCalls());
1934 New->setTransformFn(getTransformFn());
1935 return New;
1936}
1937
1938/// RemoveAllTypes - Recursively strip all the types of this tree.
1939void TreePatternNode::RemoveAllTypes() {
1940 // Reset to unknown type.
1941 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1942 if (isLeaf()) return;
1943 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1944 getChild(i)->RemoveAllTypes();
1945}
1946
1947
1948/// SubstituteFormalArguments - Replace the formal arguments in this tree
1949/// with actual values specified by ArgMap.
1950void TreePatternNode::SubstituteFormalArguments(
1951 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1952 if (isLeaf()) return;
1953
1954 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1955 TreePatternNode *Child = getChild(i);
1956 if (Child->isLeaf()) {
1957 Init *Val = Child->getLeafValue();
1958 // Note that, when substituting into an output pattern, Val might be an
1959 // UnsetInit.
1960 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1961 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1962 // We found a use of a formal argument, replace it with its value.
1963 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1964 assert(NewChild && "Couldn't find formal argument!")((NewChild && "Couldn't find formal argument!") ? static_cast
<void> (0) : __assert_fail ("NewChild && \"Couldn't find formal argument!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1964, __PRETTY_FUNCTION__))
;
1965 assert((Child->getPredicateCalls().empty() ||(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1967, __PRETTY_FUNCTION__))
1966 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1967, __PRETTY_FUNCTION__))
1967 "Non-empty child predicate clobbered!")(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 1967, __PRETTY_FUNCTION__))
;
1968 setChild(i, std::move(NewChild));
1969 }
1970 } else {
1971 getChild(i)->SubstituteFormalArguments(ArgMap);
1972 }
1973 }
1974}
1975
1976
1977/// InlinePatternFragments - If this pattern refers to any pattern
1978/// fragments, return the set of inlined versions (this can be more than
1979/// one if a PatFrags record has multiple alternatives).
1980void TreePatternNode::InlinePatternFragments(
1981 TreePatternNodePtr T, TreePattern &TP,
1982 std::vector<TreePatternNodePtr> &OutAlternatives) {
1983
1984 if (TP.hasError())
1985 return;
1986
1987 if (isLeaf()) {
1988 OutAlternatives.push_back(T); // nothing to do.
1989 return;
1990 }
1991
1992 Record *Op = getOperator();
1993
1994 if (!Op->isSubClassOf("PatFrags")) {
1995 if (getNumChildren() == 0) {
1996 OutAlternatives.push_back(T);
1997 return;
1998 }
1999
2000 // Recursively inline children nodes.
2001 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2002 ChildAlternatives.resize(getNumChildren());
2003 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2004 TreePatternNodePtr Child = getChildShared(i);
2005 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2006 // If there are no alternatives for any child, there are no
2007 // alternatives for this expression as whole.
2008 if (ChildAlternatives[i].empty())
2009 return;
2010
2011 for (auto NewChild : ChildAlternatives[i])
2012 assert((Child->getPredicateCalls().empty() ||(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2014, __PRETTY_FUNCTION__))
2013 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2014, __PRETTY_FUNCTION__))
2014 "Non-empty child predicate clobbered!")(((Child->getPredicateCalls().empty() || NewChild->getPredicateCalls
() == Child->getPredicateCalls()) && "Non-empty child predicate clobbered!"
) ? static_cast<void> (0) : __assert_fail ("(Child->getPredicateCalls().empty() || NewChild->getPredicateCalls() == Child->getPredicateCalls()) && \"Non-empty child predicate clobbered!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2014, __PRETTY_FUNCTION__))
;
2015 }
2016
2017 // The end result is an all-pairs construction of the resultant pattern.
2018 std::vector<unsigned> Idxs;
2019 Idxs.resize(ChildAlternatives.size());
2020 bool NotDone;
2021 do {
2022 // Create the variant and add it to the output list.
2023 std::vector<TreePatternNodePtr> NewChildren;
2024 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2025 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2026 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2027 getOperator(), std::move(NewChildren), getNumTypes());
2028
2029 // Copy over properties.
2030 R->setName(getName());
2031 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2032 R->setPredicateCalls(getPredicateCalls());
2033 R->setTransformFn(getTransformFn());
2034 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2035 R->setType(i, getExtType(i));
2036 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2037 R->setResultIndex(i, getResultIndex(i));
2038
2039 // Register alternative.
2040 OutAlternatives.push_back(R);
2041
2042 // Increment indices to the next permutation by incrementing the
2043 // indices from last index backward, e.g., generate the sequence
2044 // [0, 0], [0, 1], [1, 0], [1, 1].
2045 int IdxsIdx;
2046 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2047 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2048 Idxs[IdxsIdx] = 0;
2049 else
2050 break;
2051 }
2052 NotDone = (IdxsIdx >= 0);
2053 } while (NotDone);
2054
2055 return;
2056 }
2057
2058 // Otherwise, we found a reference to a fragment. First, look up its
2059 // TreePattern record.
2060 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2061
2062 // Verify that we are passing the right number of operands.
2063 if (Frag->getNumArgs() != Children.size()) {
2064 TP.error("'" + Op->getName() + "' fragment requires " +
2065 Twine(Frag->getNumArgs()) + " operands!");
2066 return;
2067 }
2068
2069 TreePredicateFn PredFn(Frag);
2070 unsigned Scope = 0;
2071 if (TreePredicateFn(Frag).usesOperands())
2072 Scope = TP.getDAGPatterns().allocateScope();
2073
2074 // Compute the map of formal to actual arguments.
2075 std::map<std::string, TreePatternNodePtr> ArgMap;
2076 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2077 TreePatternNodePtr Child = getChildShared(i);
2078 if (Scope != 0) {
2079 Child = Child->clone();
2080 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2081 }
2082 ArgMap[Frag->getArgName(i)] = Child;
2083 }
2084
2085 // Loop over all fragment alternatives.
2086 for (auto Alternative : Frag->getTrees()) {
2087 TreePatternNodePtr FragTree = Alternative->clone();
2088
2089 if (!PredFn.isAlwaysTrue())
2090 FragTree->addPredicateCall(PredFn, Scope);
2091
2092 // Resolve formal arguments to their actual value.
2093 if (Frag->getNumArgs())
2094 FragTree->SubstituteFormalArguments(ArgMap);
2095
2096 // Transfer types. Note that the resolved alternative may have fewer
2097 // (but not more) results than the PatFrags node.
2098 FragTree->setName(getName());
2099 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2100 FragTree->UpdateNodeType(i, getExtType(i), TP);
2101
2102 // Transfer in the old predicates.
2103 for (const TreePredicateCall &Pred : getPredicateCalls())
2104 FragTree->addPredicateCall(Pred);
2105
2106 // The fragment we inlined could have recursive inlining that is needed. See
2107 // if there are any pattern fragments in it and inline them as needed.
2108 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2109 }
2110}
2111
2112/// getImplicitType - Check to see if the specified record has an implicit
2113/// type which should be applied to it. This will infer the type of register
2114/// references from the register file information, for example.
2115///
2116/// When Unnamed is set, return the type of a DAG operand with no name, such as
2117/// the F8RC register class argument in:
2118///
2119/// (COPY_TO_REGCLASS GPR:$src, F8RC)
2120///
2121/// When Unnamed is false, return the type of a named DAG operand such as the
2122/// GPR:$src operand above.
2123///
2124static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2125 bool NotRegisters,
2126 bool Unnamed,
2127 TreePattern &TP) {
2128 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2129
2130 // Check to see if this is a register operand.
2131 if (R->isSubClassOf("RegisterOperand")) {
2132 assert(ResNo == 0 && "Regoperand ref only has one result!")((ResNo == 0 && "Regoperand ref only has one result!"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regoperand ref only has one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2132, __PRETTY_FUNCTION__))
;
2133 if (NotRegisters)
2134 return TypeSetByHwMode(); // Unknown.
2135 Record *RegClass = R->getValueAsDef("RegClass");
2136 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2137 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2138 }
2139
2140 // Check to see if this is a register or a register class.
2141 if (R->isSubClassOf("RegisterClass")) {
2142 assert(ResNo == 0 && "Regclass ref only has one result!")((ResNo == 0 && "Regclass ref only has one result!") ?
static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regclass ref only has one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2142, __PRETTY_FUNCTION__))
;
2143 // An unnamed register class represents itself as an i32 immediate, for
2144 // example on a COPY_TO_REGCLASS instruction.
2145 if (Unnamed)
2146 return TypeSetByHwMode(MVT::i32);
2147
2148 // In a named operand, the register class provides the possible set of
2149 // types.
2150 if (NotRegisters)
2151 return TypeSetByHwMode(); // Unknown.
2152 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2153 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2154 }
2155
2156 if (R->isSubClassOf("PatFrags")) {
2157 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?")((ResNo == 0 && "FIXME: PatFrag with multiple results?"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"FIXME: PatFrag with multiple results?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2157, __PRETTY_FUNCTION__))
;
2158 // Pattern fragment types will be resolved when they are inlined.
2159 return TypeSetByHwMode(); // Unknown.
2160 }
2161
2162 if (R->isSubClassOf("Register")) {
2163 assert(ResNo == 0 && "Registers only produce one result!")((ResNo == 0 && "Registers only produce one result!")
? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Registers only produce one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2163, __PRETTY_FUNCTION__))
;
2164 if (NotRegisters)
2165 return TypeSetByHwMode(); // Unknown.
2166 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2167 return TypeSetByHwMode(T.getRegisterVTs(R));
2168 }
2169
2170 if (R->isSubClassOf("SubRegIndex")) {
2171 assert(ResNo == 0 && "SubRegisterIndices only produce one result!")((ResNo == 0 && "SubRegisterIndices only produce one result!"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"SubRegisterIndices only produce one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2171, __PRETTY_FUNCTION__))
;
2172 return TypeSetByHwMode(MVT::i32);
2173 }
2174
2175 if (R->isSubClassOf("ValueType")) {
2176 assert(ResNo == 0 && "This node only has one result!")((ResNo == 0 && "This node only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2176, __PRETTY_FUNCTION__))
;
2177 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2178 //
2179 // (sext_inreg GPR:$src, i16)
2180 // ~~~
2181 if (Unnamed)
2182 return TypeSetByHwMode(MVT::Other);
2183 // With a name, the ValueType simply provides the type of the named
2184 // variable.
2185 //
2186 // (sext_inreg i32:$src, i16)
2187 // ~~~~~~~~
2188 if (NotRegisters)
2189 return TypeSetByHwMode(); // Unknown.
2190 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2191 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2192 }
2193
2194 if (R->isSubClassOf("CondCode")) {
2195 assert(ResNo == 0 && "This node only has one result!")((ResNo == 0 && "This node only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"This node only has one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196 // Using a CondCodeSDNode.
2197 return TypeSetByHwMode(MVT::Other);
2198 }
2199
2200 if (R->isSubClassOf("ComplexPattern")) {
2201 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?")((ResNo == 0 && "FIXME: ComplexPattern with multiple results?"
) ? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"FIXME: ComplexPattern with multiple results?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2201, __PRETTY_FUNCTION__))
;
2202 if (NotRegisters)
2203 return TypeSetByHwMode(); // Unknown.
2204 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2205 }
2206 if (R->isSubClassOf("PointerLikeRegClass")) {
2207 assert(ResNo == 0 && "Regclass can only have one result!")((ResNo == 0 && "Regclass can only have one result!")
? static_cast<void> (0) : __assert_fail ("ResNo == 0 && \"Regclass can only have one result!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2207, __PRETTY_FUNCTION__))
;
2208 TypeSetByHwMode VTS(MVT::iPTR);
2209 TP.getInfer().expandOverloads(VTS);
2210 return VTS;
2211 }
2212
2213 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2214 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2215 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2216 // Placeholder.
2217 return TypeSetByHwMode(); // Unknown.
2218 }
2219
2220 if (R->isSubClassOf("Operand")) {
2221 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2222 Record *T = R->getValueAsDef("Type");
2223 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2224 }
2225
2226 TP.error("Unknown node flavor used in pattern: " + R->getName());
2227 return TypeSetByHwMode(MVT::Other);
2228}
2229
2230
2231/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2232/// CodeGenIntrinsic information for it, otherwise return a null pointer.
2233const CodeGenIntrinsic *TreePatternNode::
2234getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2235 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2236 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2237 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2238 return nullptr;
2239
2240 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2241 return &CDP.getIntrinsicInfo(IID);
2242}
2243
2244/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2245/// return the ComplexPattern information, otherwise return null.
2246const ComplexPattern *
2247TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2248 Record *Rec;
2249 if (isLeaf()) {
2250 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2251 if (!DI)
2252 return nullptr;
2253 Rec = DI->getDef();
2254 } else
2255 Rec = getOperator();
2256
2257 if (!Rec->isSubClassOf("ComplexPattern"))
2258 return nullptr;
2259 return &CGP.getComplexPattern(Rec);
2260}
2261
2262unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2263 // A ComplexPattern specifically declares how many results it fills in.
2264 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2265 return CP->getNumOperands();
2266
2267 // If MIOperandInfo is specified, that gives the count.
2268 if (isLeaf()) {
2269 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2270 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2271 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2272 if (MIOps->getNumArgs())
2273 return MIOps->getNumArgs();
2274 }
2275 }
2276
2277 // Otherwise there is just one result.
2278 return 1;
2279}
2280
2281/// NodeHasProperty - Return true if this node has the specified property.
2282bool TreePatternNode::NodeHasProperty(SDNP Property,
2283 const CodeGenDAGPatterns &CGP) const {
2284 if (isLeaf()) {
2285 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2286 return CP->hasProperty(Property);
2287
2288 return false;
2289 }
2290
2291 if (Property != SDNPHasChain) {
2292 // The chain proprety is already present on the different intrinsic node
2293 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2294 // on the intrinsic. Anything else is specific to the individual intrinsic.
2295 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2296 return Int->hasProperty(Property);
2297 }
2298
2299 if (!Operator->isSubClassOf("SDPatternOperator"))
2300 return false;
2301
2302 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2303}
2304
2305
2306
2307
2308/// TreeHasProperty - Return true if any node in this tree has the specified
2309/// property.
2310bool TreePatternNode::TreeHasProperty(SDNP Property,
2311 const CodeGenDAGPatterns &CGP) const {
2312 if (NodeHasProperty(Property, CGP))
2313 return true;
2314 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2315 if (getChild(i)->TreeHasProperty(Property, CGP))
2316 return true;
2317 return false;
2318}
2319
2320/// isCommutativeIntrinsic - Return true if the node corresponds to a
2321/// commutative intrinsic.
2322bool
2323TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2324 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2325 return Int->isCommutative;
2326 return false;
2327}
2328
2329static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2330 if (!N->isLeaf())
2331 return N->getOperator()->isSubClassOf(Class);
2332
2333 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2334 if (DI && DI->getDef()->isSubClassOf(Class))
2335 return true;
2336
2337 return false;
2338}
2339
2340static void emitTooManyOperandsError(TreePattern &TP,
2341 StringRef InstName,
2342 unsigned Expected,
2343 unsigned Actual) {
2344 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2345 " operands but expected only " + Twine(Expected) + "!");
2346}
2347
2348static void emitTooFewOperandsError(TreePattern &TP,
2349 StringRef InstName,
2350 unsigned Actual) {
2351 TP.error("Instruction '" + InstName +
2352 "' expects more than the provided " + Twine(Actual) + " operands!");
2353}
2354
2355/// ApplyTypeConstraints - Apply all of the type constraints relevant to
2356/// this node and its children in the tree. This returns true if it makes a
2357/// change, false otherwise. If a type contradiction is found, flag an error.
2358bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2359 if (TP.hasError())
2360 return false;
2361
2362 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2363 if (isLeaf()) {
2364 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2365 // If it's a regclass or something else known, include the type.
2366 bool MadeChange = false;
2367 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2368 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2369 NotRegisters,
2370 !hasName(), TP), TP);
2371 return MadeChange;
2372 }
2373
2374 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2375 assert(Types.size() == 1 && "Invalid IntInit")((Types.size() == 1 && "Invalid IntInit") ? static_cast
<void> (0) : __assert_fail ("Types.size() == 1 && \"Invalid IntInit\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2375, __PRETTY_FUNCTION__))
;
2376
2377 // Int inits are always integers. :)
2378 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2379
2380 if (!TP.getInfer().isConcrete(Types[0], false))
2381 return MadeChange;
2382
2383 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2384 for (auto &P : VVT) {
2385 MVT::SimpleValueType VT = P.second.SimpleTy;
2386 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2387 continue;
2388 unsigned Size = MVT(VT).getSizeInBits();
2389 // Make sure that the value is representable for this type.
2390 if (Size >= 32)
2391 continue;
2392 // Check that the value doesn't use more bits than we have. It must
2393 // either be a sign- or zero-extended equivalent of the original.
2394 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2395 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2396 SignBitAndAbove == 1)
2397 continue;
2398
2399 TP.error("Integer value '" + Twine(II->getValue()) +
2400 "' is out of range for type '" + getEnumName(VT) + "'!");
2401 break;
2402 }
2403 return MadeChange;
2404 }
2405
2406 return false;
2407 }
2408
2409 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2410 bool MadeChange = false;
2411
2412 // Apply the result type to the node.
2413 unsigned NumRetVTs = Int->IS.RetVTs.size();
2414 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2415
2416 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2417 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2418
2419 if (getNumChildren() != NumParamVTs + 1) {
2420 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2421 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2422 return false;
2423 }
2424
2425 // Apply type info to the intrinsic ID.
2426 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2427
2428 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2429 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2430
2431 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2432 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case")((getChild(i+1)->getNumTypes() == 1 && "Unhandled case"
) ? static_cast<void> (0) : __assert_fail ("getChild(i+1)->getNumTypes() == 1 && \"Unhandled case\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2432, __PRETTY_FUNCTION__))
;
2433 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2434 }
2435 return MadeChange;
2436 }
2437
2438 if (getOperator()->isSubClassOf("SDNode")) {
2439 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2440
2441 // Check that the number of operands is sane. Negative operands -> varargs.
2442 if (NI.getNumOperands() >= 0 &&
2443 getNumChildren() != (unsigned)NI.getNumOperands()) {
2444 TP.error(getOperator()->getName() + " node requires exactly " +
2445 Twine(NI.getNumOperands()) + " operands!");
2446 return false;
2447 }
2448
2449 bool MadeChange = false;
2450 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2451 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2452 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2453 return MadeChange;
2454 }
2455
2456 if (getOperator()->isSubClassOf("Instruction")) {
2457 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2458 CodeGenInstruction &InstInfo =
2459 CDP.getTargetInfo().getInstruction(getOperator());
2460
2461 bool MadeChange = false;
2462
2463 // Apply the result types to the node, these come from the things in the
2464 // (outs) list of the instruction.
2465 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2466 Inst.getNumResults());
2467 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2468 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2469
2470 // If the instruction has implicit defs, we apply the first one as a result.
2471 // FIXME: This sucks, it should apply all implicit defs.
2472 if (!InstInfo.ImplicitDefs.empty()) {
2473 unsigned ResNo = NumResultsToAdd;
2474
2475 // FIXME: Generalize to multiple possible types and multiple possible
2476 // ImplicitDefs.
2477 MVT::SimpleValueType VT =
2478 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2479
2480 if (VT != MVT::Other)
2481 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2482 }
2483
2484 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2485 // be the same.
2486 if (getOperator()->getName() == "INSERT_SUBREG") {
2487 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled")((getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"
) ? static_cast<void> (0) : __assert_fail ("getChild(0)->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2487, __PRETTY_FUNCTION__))
;
2488 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2489 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2490 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2491 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2492 // variadic.
2493
2494 unsigned NChild = getNumChildren();
2495 if (NChild < 3) {
2496 TP.error("REG_SEQUENCE requires at least 3 operands!");
2497 return false;
2498 }
2499
2500 if (NChild % 2 == 0) {
2501 TP.error("REG_SEQUENCE requires an odd number of operands!");
2502 return false;
2503 }
2504
2505 if (!isOperandClass(getChild(0), "RegisterClass")) {
2506 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2507 return false;
2508 }
2509
2510 for (unsigned I = 1; I < NChild; I += 2) {
2511 TreePatternNode *SubIdxChild = getChild(I + 1);
2512 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2513 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2514 Twine(I + 1) + "!");
2515 return false;
2516 }
2517 }
2518 }
2519
2520 // If one or more operands with a default value appear at the end of the
2521 // formal operand list for an instruction, we allow them to be overridden
2522 // by optional operands provided in the pattern.
2523 //
2524 // But if an operand B without a default appears at any point after an
2525 // operand A with a default, then we don't allow A to be overridden,
2526 // because there would be no way to specify whether the next operand in
2527 // the pattern was intended to override A or skip it.
2528 unsigned NonOverridableOperands = Inst.getNumOperands();
2529 while (NonOverridableOperands > 0 &&
2530 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2531 --NonOverridableOperands;
2532
2533 unsigned ChildNo = 0;
2534 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2535 Record *OperandNode = Inst.getOperand(i);
2536
2537 // If the operand has a default value, do we use it? We must use the
2538 // default if we've run out of children of the pattern DAG to consume,
2539 // or if the operand is followed by a non-defaulted one.
2540 if (CDP.operandHasDefault(OperandNode) &&
2541 (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2542 continue;
2543
2544 // If we have run out of child nodes and there _isn't_ a default
2545 // value we can use for the next operand, give an error.
2546 if (ChildNo >= getNumChildren()) {
2547 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2548 return false;
2549 }
2550
2551 TreePatternNode *Child = getChild(ChildNo++);
2552 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2553
2554 // If the operand has sub-operands, they may be provided by distinct
2555 // child patterns, so attempt to match each sub-operand separately.
2556 if (OperandNode->isSubClassOf("Operand")) {
2557 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2558 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2559 // But don't do that if the whole operand is being provided by
2560 // a single ComplexPattern-related Operand.
2561
2562 if (Child->getNumMIResults(CDP) < NumArgs) {
2563 // Match first sub-operand against the child we already have.
2564 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2565 MadeChange |=
2566 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2567
2568 // And the remaining sub-operands against subsequent children.
2569 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2570 if (ChildNo >= getNumChildren()) {
2571 emitTooFewOperandsError(TP, getOperator()->getName(),
2572 getNumChildren());
2573 return false;
2574 }
2575 Child = getChild(ChildNo++);
2576
2577 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2578 MadeChange |=
2579 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2580 }
2581 continue;
2582 }
2583 }
2584 }
2585
2586 // If we didn't match by pieces above, attempt to match the whole
2587 // operand now.
2588 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2589 }
2590
2591 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2592 emitTooManyOperandsError(TP, getOperator()->getName(),
2593 ChildNo, getNumChildren());
2594 return false;
2595 }
2596
2597 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2598 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2599 return MadeChange;
2600 }
2601
2602 if (getOperator()->isSubClassOf("ComplexPattern")) {
2603 bool MadeChange = false;
2604
2605 for (unsigned i = 0; i < getNumChildren(); ++i)
2606 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2607
2608 return MadeChange;
2609 }
2610
2611 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!")((getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"
) ? static_cast<void> (0) : __assert_fail ("getOperator()->isSubClassOf(\"SDNodeXForm\") && \"Unknown node type!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2611, __PRETTY_FUNCTION__))
;
2612
2613 // Node transforms always take one operand.
2614 if (getNumChildren() != 1) {
2615 TP.error("Node transform '" + getOperator()->getName() +
2616 "' requires one operand!");
2617 return false;
2618 }
2619
2620 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2621 return MadeChange;
2622}
2623
2624/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2625/// RHS of a commutative operation, not the on LHS.
2626static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2627 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2628 return true;
2629 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2630 return true;
2631 return false;
2632}
2633
2634
2635/// canPatternMatch - If it is impossible for this pattern to match on this
2636/// target, fill in Reason and return false. Otherwise, return true. This is
2637/// used as a sanity check for .td files (to prevent people from writing stuff
2638/// that can never possibly work), and to prevent the pattern permuter from
2639/// generating stuff that is useless.
2640bool TreePatternNode::canPatternMatch(std::string &Reason,
2641 const CodeGenDAGPatterns &CDP) {
2642 if (isLeaf()) return true;
2643
2644 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2645 if (!getChild(i)->canPatternMatch(Reason, CDP))
2646 return false;
2647
2648 // If this is an intrinsic, handle cases that would make it not match. For
2649 // example, if an operand is required to be an immediate.
2650 if (getOperator()->isSubClassOf("Intrinsic")) {
2651 // TODO:
2652 return true;
2653 }
2654
2655 if (getOperator()->isSubClassOf("ComplexPattern"))
2656 return true;
2657
2658 // If this node is a commutative operator, check that the LHS isn't an
2659 // immediate.
2660 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2661 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2662 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2663 // Scan all of the operands of the node and make sure that only the last one
2664 // is a constant node, unless the RHS also is.
2665 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2666 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2667 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2668 if (OnlyOnRHSOfCommutative(getChild(i))) {
2669 Reason="Immediate value must be on the RHS of commutative operators!";
2670 return false;
2671 }
2672 }
2673 }
2674
2675 return true;
2676}
2677
2678//===----------------------------------------------------------------------===//
2679// TreePattern implementation
2680//
2681
2682TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2683 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2684 isInputPattern(isInput), HasError(false),
2685 Infer(*this) {
2686 for (Init *I : RawPat->getValues())
2687 Trees.push_back(ParseTreePattern(I, ""));
2688}
2689
2690TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2691 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2692 isInputPattern(isInput), HasError(false),
2693 Infer(*this) {
2694 Trees.push_back(ParseTreePattern(Pat, ""));
2695}
2696
2697TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2698 CodeGenDAGPatterns &cdp)
2699 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2700 Infer(*this) {
2701 Trees.push_back(Pat);
2702}
2703
2704void TreePattern::error(const Twine &Msg) {
2705 if (HasError)
2706 return;
2707 dump();
2708 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2709 HasError = true;
2710}
2711
2712void TreePattern::ComputeNamedNodes() {
2713 for (TreePatternNodePtr &Tree : Trees)
2714 ComputeNamedNodes(Tree.get());
2715}
2716
2717void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2718 if (!N->getName().empty())
2719 NamedNodes[N->getName()].push_back(N);
2720
2721 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2722 ComputeNamedNodes(N->getChild(i));
2723}
2724
2725TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2726 StringRef OpName) {
2727 if (DefInit *DI
1.1
'DI' is null
= dyn_cast<DefInit>(TheInit)) {
1
Assuming 'TheInit' is not a 'DefInit'
2
Taking false branch
2728 Record *R = DI->getDef();
2729
2730 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2731 // TreePatternNode of its own. For example:
2732 /// (foo GPR, imm) -> (foo GPR, (imm))
2733 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2734 return ParseTreePattern(
2735 DagInit::get(DI, nullptr,
2736 std::vector<std::pair<Init*, StringInit*> >()),
2737 OpName);
2738
2739 // Input argument?
2740 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2741 if (R->getName() == "node" && !OpName.empty()) {
2742 if (OpName.empty())
2743 error("'node' argument requires a name to match with operand list");
2744 Args.push_back(OpName);
2745 }
2746
2747 Res->setName(OpName);
2748 return Res;
2749 }
2750
2751 // ?:$name or just $name.
2752 if (isa<UnsetInit>(TheInit)) {
3
Assuming 'TheInit' is not a 'UnsetInit'
4
Taking false branch
2753 if (OpName.empty())
2754 error("'?' argument requires a name to match with operand list");
2755 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2756 Args.push_back(OpName);
2757 Res->setName(OpName);
2758 return Res;
2759 }
2760
2761 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
5
Assuming 'TheInit' is not a 'IntInit'
6
Assuming 'TheInit' is not a 'BitInit'
7
Taking false branch
2762 if (!OpName.empty())
2763 error("Constant int or bit argument should not have a name!");
2764 if (isa<BitInit>(TheInit))
2765 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2766 return std::make_shared<TreePatternNode>(TheInit, 1);
2767 }
2768
2769 if (BitsInit *BI
8.1
'BI' is null
= dyn_cast<BitsInit>(TheInit)) {
8
Assuming 'TheInit' is not a 'BitsInit'
9
Taking false branch
2770 // Turn this into an IntInit.
2771 Init *II = BI->convertInitializerTo(IntRecTy::get());
2772 if (!II || !isa<IntInit>(II))
2773 error("Bits value must be constants!");
2774 return ParseTreePattern(II, OpName);
2775 }
2776
2777 DagInit *Dag = dyn_cast<DagInit>(TheInit);
10
Assuming 'TheInit' is a 'DagInit'
2778 if (!Dag
10.1
'Dag' is non-null
) {
11
Taking false branch
2779 TheInit->print(errs());
2780 error("Pattern has unexpected init kind!");
2781 }
2782 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
12
Assuming the object is not a 'DefInit'
13
'OpDef' initialized to a null pointer value
2783 if (!OpDef
13.1
'OpDef' is null
) error("Pattern has unexpected operator type!");
14
Taking true branch
2784 Record *Operator = OpDef->getDef();
15
Called C++ object pointer is null
2785
2786 if (Operator->isSubClassOf("ValueType")) {
2787 // If the operator is a ValueType, then this must be "type cast" of a leaf
2788 // node.
2789 if (Dag->getNumArgs() != 1)
2790 error("Type cast only takes one operand!");
2791
2792 TreePatternNodePtr New =
2793 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2794
2795 // Apply the type cast.
2796 assert(New->getNumTypes() == 1 && "FIXME: Unhandled")((New->getNumTypes() == 1 && "FIXME: Unhandled") ?
static_cast<void> (0) : __assert_fail ("New->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2796, __PRETTY_FUNCTION__))
;
2797 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2798 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2799
2800 if (!OpName.empty())
2801 error("ValueType cast should not have a name!");
2802 return New;
2803 }
2804
2805 // Verify that this is something that makes sense for an operator.
2806 if (!Operator->isSubClassOf("PatFrags") &&
2807 !Operator->isSubClassOf("SDNode") &&
2808 !Operator->isSubClassOf("Instruction") &&
2809 !Operator->isSubClassOf("SDNodeXForm") &&
2810 !Operator->isSubClassOf("Intrinsic") &&
2811 !Operator->isSubClassOf("ComplexPattern") &&
2812 Operator->getName() != "set" &&
2813 Operator->getName() != "implicit")
2814 error("Unrecognized node '" + Operator->getName() + "'!");
2815
2816 // Check to see if this is something that is illegal in an input pattern.
2817 if (isInputPattern) {
2818 if (Operator->isSubClassOf("Instruction") ||
2819 Operator->isSubClassOf("SDNodeXForm"))
2820 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2821 } else {
2822 if (Operator->isSubClassOf("Intrinsic"))
2823 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2824
2825 if (Operator->isSubClassOf("SDNode") &&
2826 Operator->getName() != "imm" &&
2827 Operator->getName() != "timm" &&
2828 Operator->getName() != "fpimm" &&
2829 Operator->getName() != "tglobaltlsaddr" &&
2830 Operator->getName() != "tconstpool" &&
2831 Operator->getName() != "tjumptable" &&
2832 Operator->getName() != "tframeindex" &&
2833 Operator->getName() != "texternalsym" &&
2834 Operator->getName() != "tblockaddress" &&
2835 Operator->getName() != "tglobaladdr" &&
2836 Operator->getName() != "bb" &&
2837 Operator->getName() != "vt" &&
2838 Operator->getName() != "mcsym")
2839 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2840 }
2841
2842 std::vector<TreePatternNodePtr> Children;
2843
2844 // Parse all the operands.
2845 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2846 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2847
2848 // Get the actual number of results before Operator is converted to an intrinsic
2849 // node (which is hard-coded to have either zero or one result).
2850 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2851
2852 // If the operator is an intrinsic, then this is just syntactic sugar for
2853 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2854 // convert the intrinsic name to a number.
2855 if (Operator->isSubClassOf("Intrinsic")) {
2856 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2857 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2858
2859 // If this intrinsic returns void, it must have side-effects and thus a
2860 // chain.
2861 if (Int.IS.RetVTs.empty())
2862 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2863 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2864 // Has side-effects, requires chain.
2865 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2866 else // Otherwise, no chain.
2867 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2868
2869 Children.insert(Children.begin(),
2870 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2871 }
2872
2873 if (Operator->isSubClassOf("ComplexPattern")) {
2874 for (unsigned i = 0; i < Children.size(); ++i) {
2875 TreePatternNodePtr Child = Children[i];
2876
2877 if (Child->getName().empty())
2878 error("All arguments to a ComplexPattern must be named");
2879
2880 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2881 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2882 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2883 auto OperandId = std::make_pair(Operator, i);
2884 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2885 if (PrevOp != ComplexPatternOperands.end()) {
2886 if (PrevOp->getValue() != OperandId)
2887 error("All ComplexPattern operands must appear consistently: "
2888 "in the same order in just one ComplexPattern instance.");
2889 } else
2890 ComplexPatternOperands[Child->getName()] = OperandId;
2891 }
2892 }
2893
2894 TreePatternNodePtr Result =
2895 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2896 NumResults);
2897 Result->setName(OpName);
2898
2899 if (Dag->getName()) {
2900 assert(Result->getName().empty())((Result->getName().empty()) ? static_cast<void> (0)
: __assert_fail ("Result->getName().empty()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2900, __PRETTY_FUNCTION__))
;
2901 Result->setName(Dag->getNameStr());
2902 }
2903 return Result;
2904}
2905
2906/// SimplifyTree - See if we can simplify this tree to eliminate something that
2907/// will never match in favor of something obvious that will. This is here
2908/// strictly as a convenience to target authors because it allows them to write
2909/// more type generic things and have useless type casts fold away.
2910///
2911/// This returns true if any change is made.
2912static bool SimplifyTree(TreePatternNodePtr &N) {
2913 if (N->isLeaf())
2914 return false;
2915
2916 // If we have a bitconvert with a resolved type and if the source and
2917 // destination types are the same, then the bitconvert is useless, remove it.
2918 if (N->getOperator()->getName() == "bitconvert" &&
2919 N->getExtType(0).isValueTypeByHwMode(false) &&
2920 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2921 N->getName().empty()) {
2922 N = N->getChildShared(0);
2923 SimplifyTree(N);
2924 return true;
2925 }
2926
2927 // Walk all children.
2928 bool MadeChange = false;
2929 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2930 TreePatternNodePtr Child = N->getChildShared(i);
2931 MadeChange |= SimplifyTree(Child);
2932 N->setChild(i, std::move(Child));
2933 }
2934 return MadeChange;
2935}
2936
2937
2938
2939/// InferAllTypes - Infer/propagate as many types throughout the expression
2940/// patterns as possible. Return true if all types are inferred, false
2941/// otherwise. Flags an error if a type contradiction is found.
2942bool TreePattern::
2943InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2944 if (NamedNodes.empty())
2945 ComputeNamedNodes();
2946
2947 bool MadeChange = true;
2948 while (MadeChange) {
2949 MadeChange = false;
2950 for (TreePatternNodePtr &Tree : Trees) {
2951 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2952 MadeChange |= SimplifyTree(Tree);
2953 }
2954
2955 // If there are constraints on our named nodes, apply them.
2956 for (auto &Entry : NamedNodes) {
2957 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2958
2959 // If we have input named node types, propagate their types to the named
2960 // values here.
2961 if (InNamedTypes) {
2962 if (!InNamedTypes->count(Entry.getKey())) {
2963 error("Node '" + std::string(Entry.getKey()) +
2964 "' in output pattern but not input pattern");
2965 return true;
2966 }
2967
2968 const SmallVectorImpl<TreePatternNode*> &InNodes =
2969 InNamedTypes->find(Entry.getKey())->second;
2970
2971 // The input types should be fully resolved by now.
2972 for (TreePatternNode *Node : Nodes) {
2973 // If this node is a register class, and it is the root of the pattern
2974 // then we're mapping something onto an input register. We allow
2975 // changing the type of the input register in this case. This allows
2976 // us to match things like:
2977 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2978 if (Node == Trees[0].get() && Node->isLeaf()) {
2979 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2980 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2981 DI->getDef()->isSubClassOf("RegisterOperand")))
2982 continue;
2983 }
2984
2985 assert(Node->getNumTypes() == 1 &&((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2987, __PRETTY_FUNCTION__))
2986 InNodes[0]->getNumTypes() == 1 &&((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2987, __PRETTY_FUNCTION__))
2987 "FIXME: cannot name multiple result nodes yet")((Node->getNumTypes() == 1 && InNodes[0]->getNumTypes
() == 1 && "FIXME: cannot name multiple result nodes yet"
) ? static_cast<void> (0) : __assert_fail ("Node->getNumTypes() == 1 && InNodes[0]->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2987, __PRETTY_FUNCTION__))
;
2988 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2989 *this);
2990 }
2991 }
2992
2993 // If there are multiple nodes with the same name, they must all have the
2994 // same type.
2995 if (Entry.second.size() > 1) {
2996 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2997 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2998 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&((N1->getNumTypes() == 1 && N2->getNumTypes() ==
1 && "FIXME: cannot name multiple result nodes yet")
? static_cast<void> (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2999, __PRETTY_FUNCTION__))
2999 "FIXME: cannot name multiple result nodes yet")((N1->getNumTypes() == 1 && N2->getNumTypes() ==
1 && "FIXME: cannot name multiple result nodes yet")
? static_cast<void> (0) : __assert_fail ("N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && \"FIXME: cannot name multiple result nodes yet\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 2999, __PRETTY_FUNCTION__))
;
3000
3001 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3002 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3003 }
3004 }
3005 }
3006 }
3007
3008 bool HasUnresolvedTypes = false;
3009 for (const TreePatternNodePtr &Tree : Trees)
3010 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3011 return !HasUnresolvedTypes;
3012}
3013
3014void TreePattern::print(raw_ostream &OS) const {
3015 OS << getRecord()->getName();
3016 if (!Args.empty()) {
3017 OS << "(" << Args[0];
3018 for (unsigned i = 1, e = Args.size(); i != e; ++i)
3019 OS << ", " << Args[i];
3020 OS << ")";
3021 }
3022 OS << ": ";
3023
3024 if (Trees.size() > 1)
3025 OS << "[\n";
3026 for (const TreePatternNodePtr &Tree : Trees) {
3027 OS << "\t";
3028 Tree->print(OS);
3029 OS << "\n";
3030 }
3031
3032 if (Trees.size() > 1)
3033 OS << "]\n";
3034}
3035
3036void TreePattern::dump() const { print(errs()); }
3037
3038//===----------------------------------------------------------------------===//
3039// CodeGenDAGPatterns implementation
3040//
3041
3042CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3043 PatternRewriterFn PatternRewriter)
3044 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3045 PatternRewriter(PatternRewriter) {
3046
3047 Intrinsics = CodeGenIntrinsicTable(Records);
3048 ParseNodeInfo();
3049 ParseNodeTransforms();
3050 ParseComplexPatterns();
3051 ParsePatternFragments();
3052 ParseDefaultOperands();
3053 ParseInstructions();
3054 ParsePatternFragments(/*OutFrags*/true);
3055 ParsePatterns();
3056
3057 // Break patterns with parameterized types into a series of patterns,
3058 // where each one has a fixed type and is predicated on the conditions
3059 // of the associated HW mode.
3060 ExpandHwModeBasedTypes();
3061
3062 // Generate variants. For example, commutative patterns can match
3063 // multiple ways. Add them to PatternsToMatch as well.
3064 GenerateVariants();
3065
3066 // Infer instruction flags. For example, we can detect loads,
3067 // stores, and side effects in many cases by examining an
3068 // instruction's pattern.
3069 InferInstructionFlags();
3070
3071 // Verify that instruction flags match the patterns.
3072 VerifyInstructionFlags();
3073}
3074
3075Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3076 Record *N = Records.getDef(Name);
3077 if (!N || !N->isSubClassOf("SDNode"))
3078 PrintFatalError("Error getting SDNode '" + Name + "'!");
3079
3080 return N;
3081}
3082
3083// Parse all of the SDNode definitions for the target, populating SDNodes.
3084void CodeGenDAGPatterns::ParseNodeInfo() {
3085 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3086 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3087
3088 while (!Nodes.empty()) {
3089 Record *R = Nodes.back();
3090 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3091 Nodes.pop_back();
3092 }
3093
3094 // Get the builtin intrinsic nodes.
3095 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3096 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3097 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3098}
3099
3100/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3101/// map, and emit them to the file as functions.
3102void CodeGenDAGPatterns::ParseNodeTransforms() {
3103 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3104 while (!Xforms.empty()) {
3105 Record *XFormNode = Xforms.back();
3106 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3107 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3108 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3109
3110 Xforms.pop_back();
3111 }
3112}
3113
3114void CodeGenDAGPatterns::ParseComplexPatterns() {
3115 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3116 while (!AMs.empty()) {
3117 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3118 AMs.pop_back();
3119 }
3120}
3121
3122
3123/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3124/// file, building up the PatternFragments map. After we've collected them all,
3125/// inline fragments together as necessary, so that there are no references left
3126/// inside a pattern fragment to a pattern fragment.
3127///
3128void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3129 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3130
3131 // First step, parse all of the fragments.
3132 for (Record *Frag : Fragments) {
3133 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3134 continue;
3135
3136 ListInit *LI = Frag->getValueAsListInit("Fragments");
3137 TreePattern *P =
3138 (PatternFragments[Frag] = std::make_unique<TreePattern>(
3139 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3140 *this)).get();
3141
3142 // Validate the argument list, converting it to set, to discard duplicates.
3143 std::vector<std::string> &Args = P->getArgList();
3144 // Copy the args so we can take StringRefs to them.
3145 auto ArgsCopy = Args;
3146 SmallDenseSet<StringRef, 4> OperandsSet;
3147 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3148
3149 if (OperandsSet.count(""))
3150 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3151
3152 // Parse the operands list.
3153 DagInit *OpsList = Frag->getValueAsDag("Operands");
3154 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3155 // Special cases: ops == outs == ins. Different names are used to
3156 // improve readability.
3157 if (!OpsOp ||
3158 (OpsOp->getDef()->getName() != "ops" &&
3159 OpsOp->getDef()->getName() != "outs" &&
3160 OpsOp->getDef()->getName() != "ins"))
3161 P->error("Operands list should start with '(ops ... '!");
3162
3163 // Copy over the arguments.
3164 Args.clear();
3165 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3166 if (!isa<DefInit>(OpsList->getArg(j)) ||
3167 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3168 P->error("Operands list should all be 'node' values.");
3169 if (!OpsList->getArgName(j))
3170 P->error("Operands list should have names for each operand!");
3171 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3172 if (!OperandsSet.count(ArgNameStr))
3173 P->error("'" + ArgNameStr +
3174 "' does not occur in pattern or was multiply specified!");
3175 OperandsSet.erase(ArgNameStr);
3176 Args.push_back(ArgNameStr);
3177 }
3178
3179 if (!OperandsSet.empty())
3180 P->error("Operands list does not contain an entry for operand '" +
3181 *OperandsSet.begin() + "'!");
3182
3183 // If there is a node transformation corresponding to this, keep track of
3184 // it.
3185 Record *Transform = Frag->getValueAsDef("OperandTransform");
3186 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3187 for (auto T : P->getTrees())
3188 T->setTransformFn(Transform);
3189 }
3190
3191 // Now that we've parsed all of the tree fragments, do a closure on them so
3192 // that there are not references to PatFrags left inside of them.
3193 for (Record *Frag : Fragments) {
3194 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3195 continue;
3196
3197 TreePattern &ThePat = *PatternFragments[Frag];
3198 ThePat.InlinePatternFragments();
3199
3200 // Infer as many types as possible. Don't worry about it if we don't infer
3201 // all of them, some may depend on the inputs of the pattern. Also, don't
3202 // validate type sets; validation may cause spurious failures e.g. if a
3203 // fragment needs floating-point types but the current target does not have
3204 // any (this is only an error if that fragment is ever used!).
3205 {
3206 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3207 ThePat.InferAllTypes();
3208 ThePat.resetError();
3209 }
3210
3211 // If debugging, print out the pattern fragment result.
3212 LLVM_DEBUG(ThePat.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { ThePat.dump(); } } while (false)
;
3213 }
3214}
3215
3216void CodeGenDAGPatterns::ParseDefaultOperands() {
3217 std::vector<Record*> DefaultOps;
3218 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3219
3220 // Find some SDNode.
3221 assert(!SDNodes.empty() && "No SDNodes parsed?")((!SDNodes.empty() && "No SDNodes parsed?") ? static_cast
<void> (0) : __assert_fail ("!SDNodes.empty() && \"No SDNodes parsed?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3221, __PRETTY_FUNCTION__))
;
3222 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3223
3224 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3225 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3226
3227 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3228 // SomeSDnode so that we can parse this.
3229 std::vector<std::pair<Init*, StringInit*> > Ops;
3230 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3231 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3232 DefaultInfo->getArgName(op)));
3233 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3234
3235 // Create a TreePattern to parse this.
3236 TreePattern P(DefaultOps[i], DI, false, *this);
3237 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!")((P.getNumTrees() == 1 && "This ctor can only produce one tree!"
) ? static_cast<void> (0) : __assert_fail ("P.getNumTrees() == 1 && \"This ctor can only produce one tree!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3237, __PRETTY_FUNCTION__))
;
3238
3239 // Copy the operands over into a DAGDefaultOperand.
3240 DAGDefaultOperand DefaultOpInfo;
3241
3242 const TreePatternNodePtr &T = P.getTree(0);
3243 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3244 TreePatternNodePtr TPN = T->getChildShared(op);
3245 while (TPN->ApplyTypeConstraints(P, false))
3246 /* Resolve all types */;
3247
3248 if (TPN->ContainsUnresolvedType(P)) {
3249 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3250 DefaultOps[i]->getName() +
3251 "' doesn't have a concrete type!");
3252 }
3253 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3254 }
3255
3256 // Insert it into the DefaultOperands map so we can find it later.
3257 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3258 }
3259}
3260
3261/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3262/// instruction input. Return true if this is a real use.
3263static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3264 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3265 // No name -> not interesting.
3266 if (Pat->getName().empty()) {
3267 if (Pat->isLeaf()) {
3268 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3269 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3270 DI->getDef()->isSubClassOf("RegisterOperand")))
3271 I.error("Input " + DI->getDef()->getName() + " must be named!");
3272 }
3273 return false;
3274 }
3275
3276 Record *Rec;
3277 if (Pat->isLeaf()) {
3278 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3279 if (!DI)
3280 I.error("Input $" + Pat->getName() + " must be an identifier!");
3281 Rec = DI->getDef();
3282 } else {
3283 Rec = Pat->getOperator();
3284 }
3285
3286 // SRCVALUE nodes are ignored.
3287 if (Rec->getName() == "srcvalue")
3288 return false;
3289
3290 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3291 if (!Slot) {
3292 Slot = Pat;
3293 return true;
3294 }
3295 Record *SlotRec;
3296 if (Slot->isLeaf()) {
3297 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3298 } else {
3299 assert(Slot->getNumChildren() == 0 && "can't be a use with children!")((Slot->getNumChildren() == 0 && "can't be a use with children!"
) ? static_cast<void> (0) : __assert_fail ("Slot->getNumChildren() == 0 && \"can't be a use with children!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3299, __PRETTY_FUNCTION__))
;
3300 SlotRec = Slot->getOperator();
3301 }
3302
3303 // Ensure that the inputs agree if we've already seen this input.
3304 if (Rec != SlotRec)
3305 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3306 // Ensure that the types can agree as well.
3307 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3308 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3309 if (Slot->getExtTypes() != Pat->getExtTypes())
3310 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3311 return true;
3312}
3313
3314/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3315/// part of "I", the instruction), computing the set of inputs and outputs of
3316/// the pattern. Report errors if we see anything naughty.
3317void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3318 TreePattern &I, TreePatternNodePtr Pat,
3319 std::map<std::string, TreePatternNodePtr> &InstInputs,
3320 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3321 &InstResults,
3322 std::vector<Record *> &InstImpResults) {
3323
3324 // The instruction pattern still has unresolved fragments. For *named*
3325 // nodes we must resolve those here. This may not result in multiple
3326 // alternatives.
3327 if (!Pat->getName().empty()) {
3328 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3329 SrcPattern.InlinePatternFragments();
3330 SrcPattern.InferAllTypes();
3331 Pat = SrcPattern.getOnlyTree();
3332 }
3333
3334 if (Pat->isLeaf()) {
3335 bool isUse = HandleUse(I, Pat, InstInputs);
3336 if (!isUse && Pat->getTransformFn())
3337 I.error("Cannot specify a transform function for a non-input value!");
3338 return;
3339 }
3340
3341 if (Pat->getOperator()->getName() == "implicit") {
3342 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3343 TreePatternNode *Dest = Pat->getChild(i);
3344 if (!Dest->isLeaf())
3345 I.error("implicitly defined value should be a register!");
3346
3347 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3348 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3349 I.error("implicitly defined value should be a register!");
3350 InstImpResults.push_back(Val->getDef());
3351 }
3352 return;
3353 }
3354
3355 if (Pat->getOperator()->getName() != "set") {
3356 // If this is not a set, verify that the children nodes are not void typed,
3357 // and recurse.
3358 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3359 if (Pat->getChild(i)->getNumTypes() == 0)
3360 I.error("Cannot have void nodes inside of patterns!");
3361 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3362 InstResults, InstImpResults);
3363 }
3364
3365 // If this is a non-leaf node with no children, treat it basically as if
3366 // it were a leaf. This handles nodes like (imm).
3367 bool isUse = HandleUse(I, Pat, InstInputs);
3368
3369 if (!isUse && Pat->getTransformFn())
3370 I.error("Cannot specify a transform function for a non-input value!");
3371 return;
3372 }
3373
3374 // Otherwise, this is a set, validate and collect instruction results.
3375 if (Pat->getNumChildren() == 0)
3376 I.error("set requires operands!");
3377
3378 if (Pat->getTransformFn())
3379 I.error("Cannot specify a transform function on a set node!");
3380
3381 // Check the set destinations.
3382 unsigned NumDests = Pat->getNumChildren()-1;
3383 for (unsigned i = 0; i != NumDests; ++i) {
3384 TreePatternNodePtr Dest = Pat->getChildShared(i);
3385 // For set destinations we also must resolve fragments here.
3386 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3387 DestPattern.InlinePatternFragments();
3388 DestPattern.InferAllTypes();
3389 Dest = DestPattern.getOnlyTree();
3390
3391 if (!Dest->isLeaf())
3392 I.error("set destination should be a register!");
3393
3394 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3395 if (!Val) {
3396 I.error("set destination should be a register!");
3397 continue;
3398 }
3399
3400 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3401 Val->getDef()->isSubClassOf("ValueType") ||
3402 Val->getDef()->isSubClassOf("RegisterOperand") ||
3403 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3404 if (Dest->getName().empty())
3405 I.error("set destination must have a name!");
3406 if (InstResults.count(Dest->getName()))
3407 I.error("cannot set '" + Dest->getName() + "' multiple times");
3408 InstResults[Dest->getName()] = Dest;
3409 } else if (Val->getDef()->isSubClassOf("Register")) {
3410 InstImpResults.push_back(Val->getDef());
3411 } else {
3412 I.error("set destination should be a register!");
3413 }
3414 }
3415
3416 // Verify and collect info from the computation.
3417 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3418 InstResults, InstImpResults);
3419}
3420
3421//===----------------------------------------------------------------------===//
3422// Instruction Analysis
3423//===----------------------------------------------------------------------===//
3424
3425class InstAnalyzer {
3426 const CodeGenDAGPatterns &CDP;
3427public:
3428 bool hasSideEffects;
3429 bool mayStore;
3430 bool mayLoad;
3431 bool isBitcast;
3432 bool isVariadic;
3433 bool hasChain;
3434
3435 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3436 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3437 isBitcast(false), isVariadic(false), hasChain(false) {}
3438
3439 void Analyze(const PatternToMatch &Pat) {
3440 const TreePatternNode *N = Pat.getSrcPattern();
3441 AnalyzeNode(N);
3442 // These properties are detected only on the root node.
3443 isBitcast = IsNodeBitcast(N);
3444 }
3445
3446private:
3447 bool IsNodeBitcast(const TreePatternNode *N) const {
3448 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3449 return false;
3450
3451 if (N->isLeaf())
3452 return false;
3453 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3454 return false;
3455
3456 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3457 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3458 return false;
3459 return OpInfo.getEnumName() == "ISD::BITCAST";
3460 }
3461
3462public:
3463 void AnalyzeNode(const TreePatternNode *N) {
3464 if (N->isLeaf()) {
3465 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3466 Record *LeafRec = DI->getDef();
3467 // Handle ComplexPattern leaves.
3468 if (LeafRec->isSubClassOf("ComplexPattern")) {
3469 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3470 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3471 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3472 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3473 }
3474 }
3475 return;
3476 }
3477
3478 // Analyze children.
3479 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3480 AnalyzeNode(N->getChild(i));
3481
3482 // Notice properties of the node.
3483 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3484 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3485 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3486 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3487 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3488
3489 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3490 // If this is an intrinsic, analyze it.
3491 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3492 mayLoad = true;// These may load memory.
3493
3494 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3495 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3496
3497 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3498 IntInfo->hasSideEffects)
3499 // ReadWriteMem intrinsics can have other strange effects.
3500 hasSideEffects = true;
3501 }
3502 }
3503
3504};
3505
3506static bool InferFromPattern(CodeGenInstruction &InstInfo,
3507 const InstAnalyzer &PatInfo,
3508 Record *PatDef) {
3509 bool Error = false;
3510
3511 // Remember where InstInfo got its flags.
3512 if (InstInfo.hasUndefFlags())
3513 InstInfo.InferredFrom = PatDef;
3514
3515 // Check explicitly set flags for consistency.
3516 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3517 !InstInfo.hasSideEffects_Unset) {
3518 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3519 // the pattern has no side effects. That could be useful for div/rem
3520 // instructions that may trap.
3521 if (!InstInfo.hasSideEffects) {
3522 Error = true;
3523 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3524 Twine(InstInfo.hasSideEffects));
3525 }
3526 }
3527
3528 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3529 Error = true;
3530 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3531 Twine(InstInfo.mayStore));
3532 }
3533
3534 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3535 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3536 // Some targets translate immediates to loads.
3537 if (!InstInfo.mayLoad) {
3538 Error = true;
3539 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3540 Twine(InstInfo.mayLoad));
3541 }
3542 }
3543
3544 // Transfer inferred flags.
3545 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3546 InstInfo.mayStore |= PatInfo.mayStore;
3547 InstInfo.mayLoad |= PatInfo.mayLoad;
3548
3549 // These flags are silently added without any verification.
3550 // FIXME: To match historical behavior of TableGen, for now add those flags
3551 // only when we're inferring from the primary instruction pattern.
3552 if (PatDef->isSubClassOf("Instruction")) {
3553 InstInfo.isBitcast |= PatInfo.isBitcast;
3554 InstInfo.hasChain |= PatInfo.hasChain;
3555 InstInfo.hasChain_Inferred = true;
3556 }
3557
3558 // Don't infer isVariadic. This flag means something different on SDNodes and
3559 // instructions. For example, a CALL SDNode is variadic because it has the
3560 // call arguments as operands, but a CALL instruction is not variadic - it
3561 // has argument registers as implicit, not explicit uses.
3562
3563 return Error;
3564}
3565
3566/// hasNullFragReference - Return true if the DAG has any reference to the
3567/// null_frag operator.
3568static bool hasNullFragReference(DagInit *DI) {
3569 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3570 if (!OpDef) return false;
3571 Record *Operator = OpDef->getDef();
3572
3573 // If this is the null fragment, return true.
3574 if (Operator->getName() == "null_frag") return true;
3575 // If any of the arguments reference the null fragment, return true.
3576 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3577 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3578 if (Arg && hasNullFragReference(Arg))
3579 return true;
3580 }
3581
3582 return false;
3583}
3584
3585/// hasNullFragReference - Return true if any DAG in the list references
3586/// the null_frag operator.
3587static bool hasNullFragReference(ListInit *LI) {
3588 for (Init *I : LI->getValues()) {
3589 DagInit *DI = dyn_cast<DagInit>(I);
3590 assert(DI && "non-dag in an instruction Pattern list?!")((DI && "non-dag in an instruction Pattern list?!") ?
static_cast<void> (0) : __assert_fail ("DI && \"non-dag in an instruction Pattern list?!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3590, __PRETTY_FUNCTION__))
;
3591 if (hasNullFragReference(DI))
3592 return true;
3593 }
3594 return false;
3595}
3596
3597/// Get all the instructions in a tree.
3598static void
3599getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3600 if (Tree->isLeaf())
3601 return;
3602 if (Tree->getOperator()->isSubClassOf("Instruction"))
3603 Instrs.push_back(Tree->getOperator());
3604 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3605 getInstructionsInTree(Tree->getChild(i), Instrs);
3606}
3607
3608/// Check the class of a pattern leaf node against the instruction operand it
3609/// represents.
3610static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3611 Record *Leaf) {
3612 if (OI.Rec == Leaf)
3613 return true;
3614
3615 // Allow direct value types to be used in instruction set patterns.
3616 // The type will be checked later.
3617 if (Leaf->isSubClassOf("ValueType"))
3618 return true;
3619
3620 // Patterns can also be ComplexPattern instances.
3621 if (Leaf->isSubClassOf("ComplexPattern"))
3622 return true;
3623
3624 return false;
3625}
3626
3627void CodeGenDAGPatterns::parseInstructionPattern(
3628 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3629
3630 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!")((!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"
) ? static_cast<void> (0) : __assert_fail ("!DAGInsts.count(CGI.TheDef) && \"Instruction already parsed!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3630, __PRETTY_FUNCTION__))
;
3631
3632 // Parse the instruction.
3633 TreePattern I(CGI.TheDef, Pat, true, *this);
3634
3635 // InstInputs - Keep track of all of the inputs of the instruction, along
3636 // with the record they are declared as.
3637 std::map<std::string, TreePatternNodePtr> InstInputs;
3638
3639 // InstResults - Keep track of all the virtual registers that are 'set'
3640 // in the instruction, including what reg class they are.
3641 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3642 InstResults;
3643
3644 std::vector<Record*> InstImpResults;
3645
3646 // Verify that the top-level forms in the instruction are of void type, and
3647 // fill in the InstResults map.
3648 SmallString<32> TypesString;
3649 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3650 TypesString.clear();
3651 TreePatternNodePtr Pat = I.getTree(j);
3652 if (Pat->getNumTypes() != 0) {
3653 raw_svector_ostream OS(TypesString);
3654 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3655 if (k > 0)
3656 OS << ", ";
3657 Pat->getExtType(k).writeToStream(OS);
3658 }
3659 I.error("Top-level forms in instruction pattern should have"
3660 " void types, has types " +
3661 OS.str());
3662 }
3663
3664 // Find inputs and outputs, and verify the structure of the uses/defs.
3665 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3666 InstImpResults);
3667 }
3668
3669 // Now that we have inputs and outputs of the pattern, inspect the operands
3670 // list for the instruction. This determines the order that operands are
3671 // added to the machine instruction the node corresponds to.
3672 unsigned NumResults = InstResults.size();
3673
3674 // Parse the operands list from the (ops) list, validating it.
3675 assert(I.getArgList().empty() && "Args list should still be empty here!")((I.getArgList().empty() && "Args list should still be empty here!"
) ? static_cast<void> (0) : __assert_fail ("I.getArgList().empty() && \"Args list should still be empty here!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3675, __PRETTY_FUNCTION__))
;
3676
3677 // Check that all of the results occur first in the list.
3678 std::vector<Record*> Results;
3679 std::vector<unsigned> ResultIndices;
3680 SmallVector<TreePatternNodePtr, 2> ResNodes;
3681 for (unsigned i = 0; i != NumResults; ++i) {
3682 if (i == CGI.Operands.size()) {
3683 const std::string &OpName =
3684 std::find_if(InstResults.begin(), InstResults.end(),
3685 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3686 return P.second;
3687 })
3688 ->first;
3689
3690 I.error("'" + OpName + "' set but does not appear in operand list!");
3691 }
3692
3693 const std::string &OpName = CGI.Operands[i].Name;
3694
3695 // Check that it exists in InstResults.
3696 auto InstResultIter = InstResults.find(OpName);
3697 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3698 I.error("Operand $" + OpName + " does not exist in operand list!");
3699
3700 TreePatternNodePtr RNode = InstResultIter->second;
3701 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3702 ResNodes.push_back(std::move(RNode));
3703 if (!R)
3704 I.error("Operand $" + OpName + " should be a set destination: all "
3705 "outputs must occur before inputs in operand list!");
3706
3707 if (!checkOperandClass(CGI.Operands[i], R))
3708 I.error("Operand $" + OpName + " class mismatch!");
3709
3710 // Remember the return type.
3711 Results.push_back(CGI.Operands[i].Rec);
3712
3713 // Remember the result index.
3714 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3715
3716 // Okay, this one checks out.
3717 InstResultIter->second = nullptr;
3718 }
3719
3720 // Loop over the inputs next.
3721 std::vector<TreePatternNodePtr> ResultNodeOperands;
3722 std::vector<Record*> Operands;
3723 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3724 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3725 const std::string &OpName = Op.Name;
3726 if (OpName.empty())
3727 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3728
3729 if (!InstInputs.count(OpName)) {
3730 // If this is an operand with a DefaultOps set filled in, we can ignore
3731 // this. When we codegen it, we will do so as always executed.
3732 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3733 // Does it have a non-empty DefaultOps field? If so, ignore this
3734 // operand.
3735 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3736 continue;
3737 }
3738 I.error("Operand $" + OpName +
3739 " does not appear in the instruction pattern");
3740 }
3741 TreePatternNodePtr InVal = InstInputs[OpName];
3742 InstInputs.erase(OpName); // It occurred, remove from map.
3743
3744 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3745 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3746 if (!checkOperandClass(Op, InRec))
3747 I.error("Operand $" + OpName + "'s register class disagrees"
3748 " between the operand and pattern");
3749 }
3750 Operands.push_back(Op.Rec);
3751
3752 // Construct the result for the dest-pattern operand list.
3753 TreePatternNodePtr OpNode = InVal->clone();
3754
3755 // No predicate is useful on the result.
3756 OpNode->clearPredicateCalls();
3757
3758 // Promote the xform function to be an explicit node if set.
3759 if (Record *Xform = OpNode->getTransformFn()) {
3760 OpNode->setTransformFn(nullptr);
3761 std::vector<TreePatternNodePtr> Children;
3762 Children.push_back(OpNode);
3763 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3764 OpNode->getNumTypes());
3765 }
3766
3767 ResultNodeOperands.push_back(std::move(OpNode));
3768 }
3769
3770 if (!InstInputs.empty())
3771 I.error("Input operand $" + InstInputs.begin()->first +
3772 " occurs in pattern but not in operands list!");
3773
3774 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3775 I.getRecord(), std::move(ResultNodeOperands),
3776 GetNumNodeResults(I.getRecord(), *this));
3777 // Copy fully inferred output node types to instruction result pattern.
3778 for (unsigned i = 0; i != NumResults; ++i) {
3779 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled")((ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"
) ? static_cast<void> (0) : __assert_fail ("ResNodes[i]->getNumTypes() == 1 && \"FIXME: Unhandled\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3779, __PRETTY_FUNCTION__))
;
3780 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3781 ResultPattern->setResultIndex(i, ResultIndices[i]);
3782 }
3783
3784 // FIXME: Assume only the first tree is the pattern. The others are clobber
3785 // nodes.
3786 TreePatternNodePtr Pattern = I.getTree(0);
3787 TreePatternNodePtr SrcPattern;
3788 if (Pattern->getOperator()->getName() == "set") {
3789 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3790 } else{
3791 // Not a set (store or something?)
3792 SrcPattern = Pattern;
3793 }
3794
3795 // Create and insert the instruction.
3796 // FIXME: InstImpResults should not be part of DAGInstruction.
3797 Record *R = I.getRecord();
3798 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3799 std::forward_as_tuple(Results, Operands, InstImpResults,
3800 SrcPattern, ResultPattern));
3801
3802 LLVM_DEBUG(I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { I.dump(); } } while (false)
;
3803}
3804
3805/// ParseInstructions - Parse all of the instructions, inlining and resolving
3806/// any fragments involved. This populates the Instructions list with fully
3807/// resolved instructions.
3808void CodeGenDAGPatterns::ParseInstructions() {
3809 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3810
3811 for (Record *Instr : Instrs) {
3812 ListInit *LI = nullptr;
3813
3814 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3815 LI = Instr->getValueAsListInit("Pattern");
3816
3817 // If there is no pattern, only collect minimal information about the
3818 // instruction for its operand list. We have to assume that there is one
3819 // result, as we have no detailed info. A pattern which references the
3820 // null_frag operator is as-if no pattern were specified. Normally this
3821 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3822 // null_frag.
3823 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3824 std::vector<Record*> Results;
3825 std::vector<Record*> Operands;
3826
3827 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3828
3829 if (InstInfo.Operands.size() != 0) {
3830 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3831 Results.push_back(InstInfo.Operands[j].Rec);
3832
3833 // The rest are inputs.
3834 for (unsigned j = InstInfo.Operands.NumDefs,
3835 e = InstInfo.Operands.size(); j < e; ++j)
3836 Operands.push_back(InstInfo.Operands[j].Rec);
3837 }
3838
3839 // Create and insert the instruction.
3840 std::vector<Record*> ImpResults;
3841 Instructions.insert(std::make_pair(Instr,
3842 DAGInstruction(Results, Operands, ImpResults)));
3843 continue; // no pattern.
3844 }
3845
3846 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3847 parseInstructionPattern(CGI, LI, Instructions);
3848 }
3849
3850 // If we can, convert the instructions to be patterns that are matched!
3851 for (auto &Entry : Instructions) {
3852 Record *Instr = Entry.first;
3853 DAGInstruction &TheInst = Entry.second;
3854 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3855 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3856
3857 if (SrcPattern && ResultPattern) {
3858 TreePattern Pattern(Instr, SrcPattern, true, *this);
3859 TreePattern Result(Instr, ResultPattern, false, *this);
3860 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3861 }
3862 }
3863}
3864
3865typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3866
3867static void FindNames(TreePatternNode *P,
3868 std::map<std::string, NameRecord> &Names,
3869 TreePattern *PatternTop) {
3870 if (!P->getName().empty()) {
3871 NameRecord &Rec = Names[P->getName()];
3872 // If this is the first instance of the name, remember the node.
3873 if (Rec.second++ == 0)
3874 Rec.first = P;
3875 else if (Rec.first->getExtTypes() != P->getExtTypes())
3876 PatternTop->error("repetition of value: $" + P->getName() +
3877 " where different uses have different types!");
3878 }
3879
3880 if (!P->isLeaf()) {
3881 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3882 FindNames(P->getChild(i), Names, PatternTop);
3883 }
3884}
3885
3886std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3887 std::vector<Predicate> Preds;
3888 for (Init *I : L->getValues()) {
3889 if (DefInit *Pred = dyn_cast<DefInit>(I))
3890 Preds.push_back(Pred->getDef());
3891 else
3892 llvm_unreachable("Non-def on the list")::llvm::llvm_unreachable_internal("Non-def on the list", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 3892)
;
3893 }
3894
3895 // Sort so that different orders get canonicalized to the same string.
3896 llvm::sort(Preds);
3897 return Preds;
3898}
3899
3900void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3901 PatternToMatch &&PTM) {
3902 // Do some sanity checking on the pattern we're about to match.
3903 std::string Reason;
3904 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3905 PrintWarning(Pattern->getRecord()->getLoc(),
3906 Twine("Pattern can never match: ") + Reason);
3907 return;
3908 }
3909
3910 // If the source pattern's root is a complex pattern, that complex pattern
3911 // must specify the nodes it can potentially match.
3912 if (const ComplexPattern *CP =
3913 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3914 if (CP->getRootNodes().empty())
3915 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3916 " could match");
3917
3918
3919 // Find all of the named values in the input and output, ensure they have the
3920 // same type.
3921 std::map<std::string, NameRecord> SrcNames, DstNames;
3922 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3923 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3924
3925 // Scan all of the named values in the destination pattern, rejecting them if
3926 // they don't exist in the input pattern.
3927 for (const auto &Entry : DstNames) {
3928 if (SrcNames[Entry.first].first == nullptr)
3929 Pattern->error("Pattern has input without matching name in output: $" +
3930 Entry.first);
3931 }
3932
3933 // Scan all of the named values in the source pattern, rejecting them if the
3934 // name isn't used in the dest, and isn't used to tie two values together.
3935 for (const auto &Entry : SrcNames)
3936 if (DstNames[Entry.first].first == nullptr &&
3937 SrcNames[Entry.first].second == 1)
3938 Pattern->error("Pattern has dead named input: $" + Entry.first);
3939
3940 PatternsToMatch.push_back(PTM);
3941}
3942
3943void CodeGenDAGPatterns::InferInstructionFlags() {
3944 ArrayRef<const CodeGenInstruction*> Instructions =
3945 Target.getInstructionsByEnumValue();
3946
3947 unsigned Errors = 0;
3948
3949 // Try to infer flags from all patterns in PatternToMatch. These include
3950 // both the primary instruction patterns (which always come first) and
3951 // patterns defined outside the instruction.
3952 for (const PatternToMatch &PTM : ptms()) {
3953 // We can only infer from single-instruction patterns, otherwise we won't
3954 // know which instruction should get the flags.
3955 SmallVector<Record*, 8> PatInstrs;
3956 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3957 if (PatInstrs.size() != 1)
3958 continue;
3959
3960 // Get the single instruction.
3961 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3962
3963 // Only infer properties from the first pattern. We'll verify the others.
3964 if (InstInfo.InferredFrom)
3965 continue;
3966
3967 InstAnalyzer PatInfo(*this);
3968 PatInfo.Analyze(PTM);
3969 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3970 }
3971
3972 if (Errors)
3973 PrintFatalError("pattern conflicts");
3974
3975 // If requested by the target, guess any undefined properties.
3976 if (Target.guessInstructionProperties()) {
3977 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3978 CodeGenInstruction *InstInfo =
3979 const_cast<CodeGenInstruction *>(Instructions[i]);
3980 if (InstInfo->InferredFrom)
3981 continue;
3982 // The mayLoad and mayStore flags default to false.
3983 // Conservatively assume hasSideEffects if it wasn't explicit.
3984 if (InstInfo->hasSideEffects_Unset)
3985 InstInfo->hasSideEffects = true;
3986 }
3987 return;
3988 }
3989
3990 // Complain about any flags that are still undefined.
3991 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3992 CodeGenInstruction *InstInfo =
3993 const_cast<CodeGenInstruction *>(Instructions[i]);
3994 if (InstInfo->InferredFrom)
3995 continue;
3996 if (InstInfo->hasSideEffects_Unset)
3997 PrintError(InstInfo->TheDef->getLoc(),
3998 "Can't infer hasSideEffects from patterns");
3999 if (InstInfo->mayStore_Unset)
4000 PrintError(InstInfo->TheDef->getLoc(),
4001 "Can't infer mayStore from patterns");
4002 if (InstInfo->mayLoad_Unset)
4003 PrintError(InstInfo->TheDef->getLoc(),
4004 "Can't infer mayLoad from patterns");
4005 }
4006}
4007
4008
4009/// Verify instruction flags against pattern node properties.
4010void CodeGenDAGPatterns::VerifyInstructionFlags() {
4011 unsigned Errors = 0;
4012 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
4013 const PatternToMatch &PTM = *I;
4014 SmallVector<Record*, 8> Instrs;
4015 getInstructionsInTree(PTM.getDstPattern(), Instrs);
4016 if (Instrs.empty())
4017 continue;
4018
4019 // Count the number of instructions with each flag set.
4020 unsigned NumSideEffects = 0;
4021 unsigned NumStores = 0;
4022 unsigned NumLoads = 0;
4023 for (const Record *Instr : Instrs) {
4024 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4025 NumSideEffects += InstInfo.hasSideEffects;
4026 NumStores += InstInfo.mayStore;
4027 NumLoads += InstInfo.mayLoad;
4028 }
4029
4030 // Analyze the source pattern.
4031 InstAnalyzer PatInfo(*this);
4032 PatInfo.Analyze(PTM);
4033
4034 // Collect error messages.
4035 SmallVector<std::string, 4> Msgs;
4036
4037 // Check for missing flags in the output.
4038 // Permit extra flags for now at least.
4039 if (PatInfo.hasSideEffects && !NumSideEffects)
4040 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4041
4042 // Don't verify store flags on instructions with side effects. At least for
4043 // intrinsics, side effects implies mayStore.
4044 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4045 Msgs.push_back("pattern may store, but mayStore isn't set");
4046
4047 // Similarly, mayStore implies mayLoad on intrinsics.
4048 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4049 Msgs.push_back("pattern may load, but mayLoad isn't set");
4050
4051 // Print error messages.
4052 if (Msgs.empty())
4053 continue;
4054 ++Errors;
4055
4056 for (const std::string &Msg : Msgs)
4057 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4058 (Instrs.size() == 1 ?
4059 "instruction" : "output instructions"));
4060 // Provide the location of the relevant instruction definitions.
4061 for (const Record *Instr : Instrs) {
4062 if (Instr != PTM.getSrcRecord())
4063 PrintError(Instr->getLoc(), "defined here");
4064 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4065 if (InstInfo.InferredFrom &&
4066 InstInfo.InferredFrom != InstInfo.TheDef &&
4067 InstInfo.InferredFrom != PTM.getSrcRecord())
4068 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4069 }
4070 }
4071 if (Errors)
4072 PrintFatalError("Errors in DAG patterns");
4073}
4074
4075/// Given a pattern result with an unresolved type, see if we can find one
4076/// instruction with an unresolved result type. Force this result type to an
4077/// arbitrary element if it's possible types to converge results.
4078static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4079 if (N->isLeaf())
4080 return false;
4081
4082 // Analyze children.
4083 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4084 if (ForceArbitraryInstResultType(N->getChild(i), TP))
4085 return true;
4086
4087 if (!N->getOperator()->isSubClassOf("Instruction"))
4088 return false;
4089
4090 // If this type is already concrete or completely unknown we can't do
4091 // anything.
4092 TypeInfer &TI = TP.getInfer();
4093 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4094 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4095 continue;
4096
4097 // Otherwise, force its type to an arbitrary choice.
4098 if (TI.forceArbitrary(N->getExtType(i)))
4099 return true;
4100 }
4101
4102 return false;
4103}
4104
4105// Promote xform function to be an explicit node wherever set.
4106static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4107 if (Record *Xform = N->getTransformFn()) {
4108 N->setTransformFn(nullptr);
4109 std::vector<TreePatternNodePtr> Children;
4110 Children.push_back(PromoteXForms(N));
4111 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4112 N->getNumTypes());
4113 }
4114
4115 if (!N->isLeaf())
4116 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4117 TreePatternNodePtr Child = N->getChildShared(i);
4118 N->setChild(i, PromoteXForms(Child));
4119 }
4120 return N;
4121}
4122
4123void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4124 TreePattern &Pattern, TreePattern &Result,
4125 const std::vector<Record *> &InstImpResults) {
4126
4127 // Inline pattern fragments and expand multiple alternatives.
4128 Pattern.InlinePatternFragments();
4129 Result.InlinePatternFragments();
4130
4131 if (Result.getNumTrees() != 1)
4132 Result.error("Cannot use multi-alternative fragments in result pattern!");
4133
4134 // Infer types.
4135 bool IterateInference;
4136 bool InferredAllPatternTypes, InferredAllResultTypes;
4137 do {
4138 // Infer as many types as possible. If we cannot infer all of them, we
4139 // can never do anything with this pattern: report it to the user.
4140 InferredAllPatternTypes =
4141 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4142
4143 // Infer as many types as possible. If we cannot infer all of them, we
4144 // can never do anything with this pattern: report it to the user.
4145 InferredAllResultTypes =
4146 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4147
4148 IterateInference = false;
4149
4150 // Apply the type of the result to the source pattern. This helps us
4151 // resolve cases where the input type is known to be a pointer type (which
4152 // is considered resolved), but the result knows it needs to be 32- or
4153 // 64-bits. Infer the other way for good measure.
4154 for (auto T : Pattern.getTrees())
4155 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4156 T->getNumTypes());
4157 i != e; ++i) {
4158 IterateInference |= T->UpdateNodeType(
4159 i, Result.getOnlyTree()->getExtType(i), Result);
4160 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4161 i, T->getExtType(i), Result);
4162 }
4163
4164 // If our iteration has converged and the input pattern's types are fully
4165 // resolved but the result pattern is not fully resolved, we may have a
4166 // situation where we have two instructions in the result pattern and
4167 // the instructions require a common register class, but don't care about
4168 // what actual MVT is used. This is actually a bug in our modelling:
4169 // output patterns should have register classes, not MVTs.
4170 //
4171 // In any case, to handle this, we just go through and disambiguate some
4172 // arbitrary types to the result pattern's nodes.
4173 if (!IterateInference && InferredAllPatternTypes &&
4174 !InferredAllResultTypes)
4175 IterateInference =
4176 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4177 } while (IterateInference);
4178
4179 // Verify that we inferred enough types that we can do something with the
4180 // pattern and result. If these fire the user has to add type casts.
4181 if (!InferredAllPatternTypes)
4182 Pattern.error("Could not infer all types in pattern!");
4183 if (!InferredAllResultTypes) {
4184 Pattern.dump();
4185 Result.error("Could not infer all types in pattern result!");
4186 }
4187
4188 // Promote xform function to be an explicit node wherever set.
4189 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4190
4191 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4192 Temp.InferAllTypes();
4193
4194 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4195 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4196
4197 if (PatternRewriter)
4198 PatternRewriter(&Pattern);
4199
4200 // A pattern may end up with an "impossible" type, i.e. a situation
4201 // where all types have been eliminated for some node in this pattern.
4202 // This could occur for intrinsics that only make sense for a specific
4203 // value type, and use a specific register class. If, for some mode,
4204 // that register class does not accept that type, the type inference
4205 // will lead to a contradiction, which is not an error however, but
4206 // a sign that this pattern will simply never match.
4207 if (Temp.getOnlyTree()->hasPossibleType())
4208 for (auto T : Pattern.getTrees())
4209 if (T->hasPossibleType())
4210 AddPatternToMatch(&Pattern,
4211 PatternToMatch(TheDef, makePredList(Preds),
4212 T, Temp.getOnlyTree(),
4213 InstImpResults, Complexity,
4214 TheDef->getID()));
4215}
4216
4217void CodeGenDAGPatterns::ParsePatterns() {
4218 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4219
4220 for (Record *CurPattern : Patterns) {
4221 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4222
4223 // If the pattern references the null_frag, there's nothing to do.
4224 if (hasNullFragReference(Tree))
4225 continue;
4226
4227 TreePattern Pattern(CurPattern, Tree, true, *this);
4228
4229 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4230 if (LI->empty()) continue; // no pattern.
4231
4232 // Parse the instruction.
4233 TreePattern Result(CurPattern, LI, false, *this);
4234
4235 if (Result.getNumTrees() != 1)
4236 Result.error("Cannot handle instructions producing instructions "
4237 "with temporaries yet!");
4238
4239 // Validate that the input pattern is correct.
4240 std::map<std::string, TreePatternNodePtr> InstInputs;
4241 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4242 InstResults;
4243 std::vector<Record*> InstImpResults;
4244 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4245 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4246 InstResults, InstImpResults);
4247
4248 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4249 }
4250}
4251
4252static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4253 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4254 for (const auto &I : VTS)
4255 Modes.insert(I.first);
4256
4257 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4258 collectModes(Modes, N->getChild(i));
4259}
4260
4261void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4262 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4263 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4264 std::vector<PatternToMatch> Copy = PatternsToMatch;
4265 PatternsToMatch.clear();
4266
4267 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4268 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4269 TreePatternNodePtr NewDst = P.DstPattern->clone();
4270 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4271 return;
4272 }
4273
4274 std::vector<Predicate> Preds = P.Predicates;
4275 const std::vector<Predicate> &MC = ModeChecks[Mode];
4276 Preds.insert(Preds.end(), MC.begin(), MC.end());
4277 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4278 std::move(NewDst), P.getDstRegs(),
4279 P.getAddedComplexity(), Record::getNewUID(),
4280 Mode);
4281 };
4282
4283 for (PatternToMatch &P : Copy) {
4284 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4285 if (P.SrcPattern->hasProperTypeByHwMode())
4286 SrcP = P.SrcPattern;
4287 if (P.DstPattern->hasProperTypeByHwMode())
4288 DstP = P.DstPattern;
4289 if (!SrcP && !DstP) {
4290 PatternsToMatch.push_back(P);
4291 continue;
4292 }
4293
4294 std::set<unsigned> Modes;
4295 if (SrcP)
4296 collectModes(Modes, SrcP.get());
4297 if (DstP)
4298 collectModes(Modes, DstP.get());
4299
4300 // The predicate for the default mode needs to be constructed for each
4301 // pattern separately.
4302 // Since not all modes must be present in each pattern, if a mode m is
4303 // absent, then there is no point in constructing a check for m. If such
4304 // a check was created, it would be equivalent to checking the default
4305 // mode, except not all modes' predicates would be a part of the checking
4306 // code. The subsequently generated check for the default mode would then
4307 // have the exact same patterns, but a different predicate code. To avoid
4308 // duplicated patterns with different predicate checks, construct the
4309 // default check as a negation of all predicates that are actually present
4310 // in the source/destination patterns.
4311 std::vector<Predicate> DefaultPred;
4312
4313 for (unsigned M : Modes) {
4314 if (M == DefaultMode)
4315 continue;
4316 if (ModeChecks.find(M) != ModeChecks.end())
4317 continue;
4318
4319 // Fill the map entry for this mode.
4320 const HwMode &HM = CGH.getMode(M);
4321 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4322
4323 // Add negations of the HM's predicates to the default predicate.
4324 DefaultPred.emplace_back(Predicate(HM.Features, false));
4325 }
4326
4327 for (unsigned M : Modes) {
4328 if (M == DefaultMode)
4329 continue;
4330 AppendPattern(P, M);
4331 }
4332
4333 bool HasDefault = Modes.count(DefaultMode);
4334 if (HasDefault)
4335 AppendPattern(P, DefaultMode);
4336 }
4337}
4338
4339/// Dependent variable map for CodeGenDAGPattern variant generation
4340typedef StringMap<int> DepVarMap;
4341
4342static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4343 if (N->isLeaf()) {
4344 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4345 DepMap[N->getName()]++;
4346 } else {
4347 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4348 FindDepVarsOf(N->getChild(i), DepMap);
4349 }
4350}
4351
4352/// Find dependent variables within child patterns
4353static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4354 DepVarMap depcounts;
4355 FindDepVarsOf(N, depcounts);
4356 for (const auto &Pair : depcounts) {
4357 if (Pair.getValue() > 1)
4358 DepVars.insert(Pair.getKey());
4359 }
4360}
4361
4362#ifndef NDEBUG
4363/// Dump the dependent variable set:
4364static void DumpDepVars(MultipleUseVarSet &DepVars) {
4365 if (DepVars.empty()) {
4366 LLVM_DEBUG(errs() << "<empty set>")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "<empty set>"; } } while
(false)
;
4367 } else {
4368 LLVM_DEBUG(errs() << "[ ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "[ "; } } while (false)
;
4369 for (const auto &DepVar : DepVars) {
4370 LLVM_DEBUG(errs() << DepVar.getKey() << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << DepVar.getKey() << " "
; } } while (false)
;
4371 }
4372 LLVM_DEBUG(errs() << "]")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "]"; } } while (false)
;
4373 }
4374}
4375#endif
4376
4377
4378/// CombineChildVariants - Given a bunch of permutations of each child of the
4379/// 'operator' node, put them together in all possible ways.
4380static void CombineChildVariants(
4381 TreePatternNodePtr Orig,
4382 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4383 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4384 const MultipleUseVarSet &DepVars) {
4385 // Make sure that each operand has at least one variant to choose from.
4386 for (const auto &Variants : ChildVariants)
4387 if (Variants.empty())
4388 return;
4389
4390 // The end result is an all-pairs construction of the resultant pattern.
4391 std::vector<unsigned> Idxs;
4392 Idxs.resize(ChildVariants.size());
4393 bool NotDone;
4394 do {
4395#ifndef NDEBUG
4396 LLVM_DEBUG(if (!Idxs.empty()) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4397 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4398 for (unsigned Idx : Idxs) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4399 errs() << Idx << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4400 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4401 errs() << "]\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
4402 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { if (!Idxs.empty()) { errs() << Orig
->getOperator()->getName() << ": Idxs = [ "; for (
unsigned Idx : Idxs) { errs() << Idx << " "; } errs
() << "]\n"; }; } } while (false)
;
4403#endif
4404 // Create the variant and add it to the output list.
4405 std::vector<TreePatternNodePtr> NewChildren;
4406 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4407 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4408 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4409 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4410
4411 // Copy over properties.
4412 R->setName(Orig->getName());
4413 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4414 R->setPredicateCalls(Orig->getPredicateCalls());
4415 R->setTransformFn(Orig->getTransformFn());
4416 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4417 R->setType(i, Orig->getExtType(i));
4418
4419 // If this pattern cannot match, do not include it as a variant.
4420 std::string ErrString;
4421 // Scan to see if this pattern has already been emitted. We can get
4422 // duplication due to things like commuting:
4423 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4424 // which are the same pattern. Ignore the dups.
4425 if (R->canPatternMatch(ErrString, CDP) &&
4426 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4427 return R->isIsomorphicTo(Variant.get(), DepVars);
4428 }))
4429 OutVariants.push_back(R);
4430
4431 // Increment indices to the next permutation by incrementing the
4432 // indices from last index backward, e.g., generate the sequence
4433 // [0, 0], [0, 1], [1, 0], [1, 1].
4434 int IdxsIdx;
4435 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4436 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4437 Idxs[IdxsIdx] = 0;
4438 else
4439 break;
4440 }
4441 NotDone = (IdxsIdx >= 0);
4442 } while (NotDone);
4443}
4444
4445/// CombineChildVariants - A helper function for binary operators.
4446///
4447static void CombineChildVariants(TreePatternNodePtr Orig,
4448 const std::vector<TreePatternNodePtr> &LHS,
4449 const std::vector<TreePatternNodePtr> &RHS,
4450 std::vector<TreePatternNodePtr> &OutVariants,
4451 CodeGenDAGPatterns &CDP,
4452 const MultipleUseVarSet &DepVars) {
4453 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4454 ChildVariants.push_back(LHS);
4455 ChildVariants.push_back(RHS);
4456 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4457}
4458
4459static void
4460GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4461 std::vector<TreePatternNodePtr> &Children) {
4462 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!")((N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"
) ? static_cast<void> (0) : __assert_fail ("N->getNumChildren()==2 &&\"Associative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4462, __PRETTY_FUNCTION__))
;
4463 Record *Operator = N->getOperator();
4464
4465 // Only permit raw nodes.
4466 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4467 N->getTransformFn()) {
4468 Children.push_back(N);
4469 return;
4470 }
4471
4472 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4473 Children.push_back(N->getChildShared(0));
4474 else
4475 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4476
4477 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4478 Children.push_back(N->getChildShared(1));
4479 else
4480 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4481}
4482
4483/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4484/// the (potentially recursive) pattern by using algebraic laws.
4485///
4486static void GenerateVariantsOf(TreePatternNodePtr N,
4487 std::vector<TreePatternNodePtr> &OutVariants,
4488 CodeGenDAGPatterns &CDP,
4489 const MultipleUseVarSet &DepVars) {
4490 // We cannot permute leaves or ComplexPattern uses.
4491 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4492 OutVariants.push_back(N);
4493 return;
4494 }
4495
4496 // Look up interesting info about the node.
4497 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4498
4499 // If this node is associative, re-associate.
4500 if (NodeInfo.hasProperty(SDNPAssociative)) {
4501 // Re-associate by pulling together all of the linked operators
4502 std::vector<TreePatternNodePtr> MaximalChildren;
4503 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4504
4505 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4506 // permutations.
4507 if (MaximalChildren.size() == 3) {
4508 // Find the variants of all of our maximal children.
4509 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4510 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4511 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4512 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4513
4514 // There are only two ways we can permute the tree:
4515 // (A op B) op C and A op (B op C)
4516 // Within these forms, we can also permute A/B/C.
4517
4518 // Generate legal pair permutations of A/B/C.
4519 std::vector<TreePatternNodePtr> ABVariants;
4520 std::vector<TreePatternNodePtr> BAVariants;
4521 std::vector<TreePatternNodePtr> ACVariants;
4522 std::vector<TreePatternNodePtr> CAVariants;
4523 std::vector<TreePatternNodePtr> BCVariants;
4524 std::vector<TreePatternNodePtr> CBVariants;
4525 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4526 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4527 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4528 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4529 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4530 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4531
4532 // Combine those into the result: (x op x) op x
4533 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4534 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4535 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4536 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4537 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4538 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4539
4540 // Combine those into the result: x op (x op x)
4541 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4542 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4543 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4544 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4545 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4546 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4547 return;
4548 }
4549 }
4550
4551 // Compute permutations of all children.
4552 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4553 ChildVariants.resize(N->getNumChildren());
4554 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4555 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4556
4557 // Build all permutations based on how the children were formed.
4558 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4559
4560 // If this node is commutative, consider the commuted order.
4561 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4562 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4563 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&(((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!") ? static_cast<
void> (0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4564, __PRETTY_FUNCTION__))
4564 "Commutative but doesn't have 2 children!")(((N->getNumChildren()>=2 || isCommIntrinsic) &&
"Commutative but doesn't have 2 children!") ? static_cast<
void> (0) : __assert_fail ("(N->getNumChildren()>=2 || isCommIntrinsic) && \"Commutative but doesn't have 2 children!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4564, __PRETTY_FUNCTION__))
;
4565 // Don't count children which are actually register references.
4566 unsigned NC = 0;
4567 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4568 TreePatternNode *Child = N->getChild(i);
4569 if (Child->isLeaf())
4570 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4571 Record *RR = DI->getDef();
4572 if (RR->isSubClassOf("Register"))
4573 continue;
4574 }
4575 NC++;
4576 }
4577 // Consider the commuted order.
4578 if (isCommIntrinsic) {
4579 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4580 // operands are the commutative operands, and there might be more operands
4581 // after those.
4582 assert(NC >= 3 &&((NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? static_cast<void> (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4583, __PRETTY_FUNCTION__))
4583 "Commutative intrinsic should have at least 3 children!")((NC >= 3 && "Commutative intrinsic should have at least 3 children!"
) ? static_cast<void> (0) : __assert_fail ("NC >= 3 && \"Commutative intrinsic should have at least 3 children!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4583, __PRETTY_FUNCTION__))
;
4584 std::vector<std::vector<TreePatternNodePtr>> Variants;
4585 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4586 Variants.push_back(std::move(ChildVariants[2]));
4587 Variants.push_back(std::move(ChildVariants[1]));
4588 for (unsigned i = 3; i != NC; ++i)
4589 Variants.push_back(std::move(ChildVariants[i]));
4590 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4591 } else if (NC == N->getNumChildren()) {
4592 std::vector<std::vector<TreePatternNodePtr>> Variants;
4593 Variants.push_back(std::move(ChildVariants[1]));
4594 Variants.push_back(std::move(ChildVariants[0]));
4595 for (unsigned i = 2; i != NC; ++i)
4596 Variants.push_back(std::move(ChildVariants[i]));
4597 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4598 }
4599 }
4600}
4601
4602
4603// GenerateVariants - Generate variants. For example, commutative patterns can
4604// match multiple ways. Add them to PatternsToMatch as well.
4605void CodeGenDAGPatterns::GenerateVariants() {
4606 LLVM_DEBUG(errs() << "Generating instruction variants.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Generating instruction variants.\n"
; } } while (false)
;
4607
4608 // Loop over all of the patterns we've collected, checking to see if we can
4609 // generate variants of the instruction, through the exploitation of
4610 // identities. This permits the target to provide aggressive matching without
4611 // the .td file having to contain tons of variants of instructions.
4612 //
4613 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4614 // intentionally do not reconsider these. Any variants of added patterns have
4615 // already been added.
4616 //
4617 const unsigned NumOriginalPatterns = PatternsToMatch.size();
4618 BitVector MatchedPatterns(NumOriginalPatterns);
4619 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4620 BitVector(NumOriginalPatterns));
4621
4622 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4623 DepsAndVariants;
4624 std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4625
4626 // Collect patterns with more than one variant.
4627 for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4628 MultipleUseVarSet DepVars;
4629 std::vector<TreePatternNodePtr> Variants;
4630 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4631 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "Dependent/multiply used variables: "
; } } while (false)
;
4632 LLVM_DEBUG(DumpDepVars(DepVars))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { DumpDepVars(DepVars); } } while (false)
;
4633 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4634 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4635 *this, DepVars);
4636
4637 assert(!Variants.empty() && "Must create at least original variant!")((!Variants.empty() && "Must create at least original variant!"
) ? static_cast<void> (0) : __assert_fail ("!Variants.empty() && \"Must create at least original variant!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/utils/TableGen/CodeGenDAGPatterns.cpp"
, 4637, __PRETTY_FUNCTION__))
;
4638 if (Variants.size() == 1) // No additional variants for this pattern.
4639 continue;
4640
4641 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
4642 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "FOUND VARIANTS OF: "; PatternsToMatch
[i].getSrcPattern()->dump(); errs() << "\n"; } } while
(false)
;
4643
4644 PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4645
4646 // Cache matching predicates.
4647 if (MatchedPatterns[i])
4648 continue;
4649
4650 const std::vector<Predicate> &Predicates =
4651 PatternsToMatch[i].getPredicates();
4652
4653 BitVector &Matches = MatchedPredicates[i];
4654 MatchedPatterns.set(i);
4655 Matches.set(i);
4656
4657 // Don't test patterns that have already been cached - it won't match.
4658 for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4659 if (!MatchedPatterns[p])
4660 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4661
4662 // Copy this to all the matching patterns.
4663 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4664 if (p != (int)i) {
4665 MatchedPatterns.set(p);
4666 MatchedPredicates[p] = Matches;
4667 }
4668 }
4669
4670 for (auto it : PatternsWithVariants) {
4671 unsigned i = it.first;
4672 const MultipleUseVarSet &DepVars = it.second.first;
4673 const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4674
4675 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4676 TreePatternNodePtr Variant = Variants[v];
4677 BitVector &Matches = MatchedPredicates[i];
4678
4679 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
4680 errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " VAR#" << v <<
": "; Variant->dump(); errs() << "\n"; } } while (false
)
;
4681
4682 // Scan to see if an instruction or explicit pattern already matches this.
4683 bool AlreadyExists = false;
4684 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4685 // Skip if the top level predicates do not match.
4686 if (!Matches[p])
4687 continue;
4688 // Check to see if this variant already exists.
4689 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4690 DepVars)) {
4691 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << " *** ALREADY EXISTS, ignoring variant.\n"
; } } while (false)
;
4692 AlreadyExists = true;
4693 break;
4694 }
4695 }
4696 // If we already have it, ignore the variant.
4697 if (AlreadyExists) continue;
4698
4699 // Otherwise, add it to the list of patterns we have.
4700 PatternsToMatch.push_back(PatternToMatch(
4701 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4702 Variant, PatternsToMatch[i].getDstPatternShared(),
4703 PatternsToMatch[i].getDstRegs(),
4704 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4705 MatchedPredicates.push_back(Matches);
4706
4707 // Add a new match the same as this pattern.
4708 for (auto &P : MatchedPredicates)
4709 P.push_back(P[i]);
4710 }
4711
4712 LLVM_DEBUG(errs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("dag-patterns")) { errs() << "\n"; } } while (false)
;
4713 }
4714}