Bug Summary

File:clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 4279, column 17
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/include -I /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-11-24-172238-38865-1 -x c++ /build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp

/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeAMDGCN.h"
23#include "CGOpenMPRuntimeNVPTX.h"
24#include "CodeGenFunction.h"
25#include "CodeGenPGO.h"
26#include "ConstantEmitter.h"
27#include "CoverageMappingGen.h"
28#include "TargetInfo.h"
29#include "clang/AST/ASTContext.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/AST/DeclCXX.h"
32#include "clang/AST/DeclObjC.h"
33#include "clang/AST/DeclTemplate.h"
34#include "clang/AST/Mangle.h"
35#include "clang/AST/RecordLayout.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/AST/StmtVisitor.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/CharInfo.h"
40#include "clang/Basic/CodeGenOptions.h"
41#include "clang/Basic/Diagnostic.h"
42#include "clang/Basic/FileManager.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/SourceManager.h"
45#include "clang/Basic/TargetInfo.h"
46#include "clang/Basic/Version.h"
47#include "clang/CodeGen/ConstantInitBuilder.h"
48#include "clang/Frontend/FrontendDiagnostic.h"
49#include "llvm/ADT/StringSwitch.h"
50#include "llvm/ADT/Triple.h"
51#include "llvm/Analysis/TargetLibraryInfo.h"
52#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53#include "llvm/IR/CallingConv.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/Intrinsics.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Module.h"
58#include "llvm/IR/ProfileSummary.h"
59#include "llvm/ProfileData/InstrProfReader.h"
60#include "llvm/Support/CodeGen.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/ConvertUTF.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/MD5.h"
65#include "llvm/Support/TimeProfiler.h"
66
67using namespace clang;
68using namespace CodeGen;
69
70static llvm::cl::opt<bool> LimitedCoverage(
71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73 llvm::cl::init(false));
74
75static const char AnnotationSection[] = "llvm.metadata";
76
77static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78 switch (CGM.getTarget().getCXXABI().getKind()) {
79 case TargetCXXABI::Fuchsia:
80 case TargetCXXABI::GenericAArch64:
81 case TargetCXXABI::GenericARM:
82 case TargetCXXABI::iOS:
83 case TargetCXXABI::iOS64:
84 case TargetCXXABI::WatchOS:
85 case TargetCXXABI::GenericMIPS:
86 case TargetCXXABI::GenericItanium:
87 case TargetCXXABI::WebAssembly:
88 case TargetCXXABI::XL:
89 return CreateItaniumCXXABI(CGM);
90 case TargetCXXABI::Microsoft:
91 return CreateMicrosoftCXXABI(CGM);
92 }
93
94 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 94)
;
95}
96
97CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98 const PreprocessorOptions &PPO,
99 const CodeGenOptions &CGO, llvm::Module &M,
100 DiagnosticsEngine &diags,
101 CoverageSourceInfo *CoverageInfo)
102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105 VMContext(M.getContext()), Types(*this), VTables(*this),
106 SanitizerMD(new SanitizerMetadata(*this)) {
107
108 // Initialize the type cache.
109 llvm::LLVMContext &LLVMContext = M.getContext();
110 VoidTy = llvm::Type::getVoidTy(LLVMContext);
111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115 HalfTy = llvm::Type::getHalfTy(LLVMContext);
116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117 FloatTy = llvm::Type::getFloatTy(LLVMContext);
118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120 PointerAlignInBytes =
121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122 SizeSizeInBytes =
123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124 IntAlignInBytes =
125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127 IntPtrTy = llvm::IntegerType::get(LLVMContext,
128 C.getTargetInfo().getMaxPointerWidth());
129 Int8PtrTy = Int8Ty->getPointerTo(0);
130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131 AllocaInt8PtrTy = Int8Ty->getPointerTo(
132 M.getDataLayout().getAllocaAddrSpace());
133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134
135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136
137 if (LangOpts.ObjC)
138 createObjCRuntime();
139 if (LangOpts.OpenCL)
140 createOpenCLRuntime();
141 if (LangOpts.OpenMP)
142 createOpenMPRuntime();
143 if (LangOpts.CUDA)
144 createCUDARuntime();
145
146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150 getCXXABI().getMangleContext()));
151
152 // If debug info or coverage generation is enabled, create the CGDebugInfo
153 // object.
154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156 DebugInfo.reset(new CGDebugInfo(*this));
157
158 Block.GlobalUniqueCount = 0;
159
160 if (C.getLangOpts().ObjC)
161 ObjCData.reset(new ObjCEntrypoints());
162
163 if (CodeGenOpts.hasProfileClangUse()) {
164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166 if (auto E = ReaderOrErr.takeError()) {
167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168 "Could not read profile %0: %1");
169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171 << EI.message();
172 });
173 } else
174 PGOReader = std::move(ReaderOrErr.get());
175 }
176
177 // If coverage mapping generation is enabled, create the
178 // CoverageMappingModuleGen object.
179 if (CodeGenOpts.CoverageMapping)
180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181}
182
183CodeGenModule::~CodeGenModule() {}
184
185void CodeGenModule::createObjCRuntime() {
186 // This is just isGNUFamily(), but we want to force implementors of
187 // new ABIs to decide how best to do this.
188 switch (LangOpts.ObjCRuntime.getKind()) {
189 case ObjCRuntime::GNUstep:
190 case ObjCRuntime::GCC:
191 case ObjCRuntime::ObjFW:
192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193 return;
194
195 case ObjCRuntime::FragileMacOSX:
196 case ObjCRuntime::MacOSX:
197 case ObjCRuntime::iOS:
198 case ObjCRuntime::WatchOS:
199 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200 return;
201 }
202 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 202)
;
203}
204
205void CodeGenModule::createOpenCLRuntime() {
206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207}
208
209void CodeGenModule::createOpenMPRuntime() {
210 // Select a specialized code generation class based on the target, if any.
211 // If it does not exist use the default implementation.
212 switch (getTriple().getArch()) {
213 case llvm::Triple::nvptx:
214 case llvm::Triple::nvptx64:
215 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 216, __PRETTY_FUNCTION__))
216 "OpenMP NVPTX is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 216, __PRETTY_FUNCTION__))
;
217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218 break;
219 case llvm::Triple::amdgcn:
220 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP AMDGCN is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP AMDGCN is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 221, __PRETTY_FUNCTION__))
221 "OpenMP AMDGCN is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP AMDGCN is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP AMDGCN is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 221, __PRETTY_FUNCTION__))
;
222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223 break;
224 default:
225 if (LangOpts.OpenMPSimd)
226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227 else
228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229 break;
230 }
231}
232
233void CodeGenModule::createCUDARuntime() {
234 CUDARuntime.reset(CreateNVCUDARuntime(*this));
235}
236
237void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238 Replacements[Name] = C;
239}
240
241void CodeGenModule::applyReplacements() {
242 for (auto &I : Replacements) {
243 StringRef MangledName = I.first();
244 llvm::Constant *Replacement = I.second;
245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246 if (!Entry)
247 continue;
248 auto *OldF = cast<llvm::Function>(Entry);
249 auto *NewF = dyn_cast<llvm::Function>(Replacement);
250 if (!NewF) {
251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253 } else {
254 auto *CE = cast<llvm::ConstantExpr>(Replacement);
255 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 256, __PRETTY_FUNCTION__))
256 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 256, __PRETTY_FUNCTION__))
;
257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258 }
259 }
260
261 // Replace old with new, but keep the old order.
262 OldF->replaceAllUsesWith(Replacement);
263 if (NewF) {
264 NewF->removeFromParent();
265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266 NewF);
267 }
268 OldF->eraseFromParent();
269 }
270}
271
272void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273 GlobalValReplacements.push_back(std::make_pair(GV, C));
274}
275
276void CodeGenModule::applyGlobalValReplacements() {
277 for (auto &I : GlobalValReplacements) {
278 llvm::GlobalValue *GV = I.first;
279 llvm::Constant *C = I.second;
280
281 GV->replaceAllUsesWith(C);
282 GV->eraseFromParent();
283 }
284}
285
286// This is only used in aliases that we created and we know they have a
287// linear structure.
288static const llvm::GlobalObject *getAliasedGlobal(
289 const llvm::GlobalIndirectSymbol &GIS) {
290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291 const llvm::Constant *C = &GIS;
292 for (;;) {
293 C = C->stripPointerCasts();
294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295 return GO;
296 // stripPointerCasts will not walk over weak aliases.
297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298 if (!GIS2)
299 return nullptr;
300 if (!Visited.insert(GIS2).second)
301 return nullptr;
302 C = GIS2->getIndirectSymbol();
303 }
304}
305
306void CodeGenModule::checkAliases() {
307 // Check if the constructed aliases are well formed. It is really unfortunate
308 // that we have to do this in CodeGen, but we only construct mangled names
309 // and aliases during codegen.
310 bool Error = false;
311 DiagnosticsEngine &Diags = getDiags();
312 for (const GlobalDecl &GD : Aliases) {
313 const auto *D = cast<ValueDecl>(GD.getDecl());
314 SourceLocation Location;
315 bool IsIFunc = D->hasAttr<IFuncAttr>();
316 if (const Attr *A = D->getDefiningAttr())
317 Location = A->getLocation();
318 else
319 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 319)
;
320 StringRef MangledName = getMangledName(GD);
321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324 if (!GV) {
325 Error = true;
326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327 } else if (GV->isDeclaration()) {
328 Error = true;
329 Diags.Report(Location, diag::err_alias_to_undefined)
330 << IsIFunc << IsIFunc;
331 } else if (IsIFunc) {
332 // Check resolver function type.
333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334 GV->getType()->getPointerElementType());
335 assert(FTy)((FTy) ? static_cast<void> (0) : __assert_fail ("FTy", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 335, __PRETTY_FUNCTION__))
;
336 if (!FTy->getReturnType()->isPointerTy())
337 Diags.Report(Location, diag::err_ifunc_resolver_return);
338 }
339
340 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341 llvm::GlobalValue *AliaseeGV;
342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344 else
345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346
347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348 StringRef AliasSection = SA->getName();
349 if (AliasSection != AliaseeGV->getSection())
350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351 << AliasSection << IsIFunc << IsIFunc;
352 }
353
354 // We have to handle alias to weak aliases in here. LLVM itself disallows
355 // this since the object semantics would not match the IL one. For
356 // compatibility with gcc we implement it by just pointing the alias
357 // to its aliasee's aliasee. We also warn, since the user is probably
358 // expecting the link to be weak.
359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360 if (GA->isInterposable()) {
361 Diags.Report(Location, diag::warn_alias_to_weak_alias)
362 << GV->getName() << GA->getName() << IsIFunc;
363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364 GA->getIndirectSymbol(), Alias->getType());
365 Alias->setIndirectSymbol(Aliasee);
366 }
367 }
368 }
369 if (!Error)
370 return;
371
372 for (const GlobalDecl &GD : Aliases) {
373 StringRef MangledName = getMangledName(GD);
374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377 Alias->eraseFromParent();
378 }
379}
380
381void CodeGenModule::clear() {
382 DeferredDeclsToEmit.clear();
383 if (OpenMPRuntime)
384 OpenMPRuntime->clear();
385}
386
387void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388 StringRef MainFile) {
389 if (!hasDiagnostics())
390 return;
391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392 if (MainFile.empty())
393 MainFile = "<stdin>";
394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395 } else {
396 if (Mismatched > 0)
397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398
399 if (Missing > 0)
400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401 }
402}
403
404static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405 llvm::Module &M) {
406 if (!LO.VisibilityFromDLLStorageClass)
407 return;
408
409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416 CodeGenModule::GetLLVMVisibility(
417 LO.getExternDeclNoDLLStorageClassVisibility());
418
419 for (llvm::GlobalValue &GV : M.global_values()) {
420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421 continue;
422
423 // Reset DSO locality before setting the visibility. This removes
424 // any effects that visibility options and annotations may have
425 // had on the DSO locality. Setting the visibility will implicitly set
426 // appropriate globals to DSO Local; however, this will be pessimistic
427 // w.r.t. to the normal compiler IRGen.
428 GV.setDSOLocal(false);
429
430 if (GV.isDeclarationForLinker()) {
431 GV.setVisibility(GV.getDLLStorageClass() ==
432 llvm::GlobalValue::DLLImportStorageClass
433 ? ExternDeclDLLImportVisibility
434 : ExternDeclNoDLLStorageClassVisibility);
435 } else {
436 GV.setVisibility(GV.getDLLStorageClass() ==
437 llvm::GlobalValue::DLLExportStorageClass
438 ? DLLExportVisibility
439 : NoDLLStorageClassVisibility);
440 }
441
442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443 }
444}
445
446void CodeGenModule::Release() {
447 EmitDeferred();
448 EmitVTablesOpportunistically();
449 applyGlobalValReplacements();
450 applyReplacements();
451 checkAliases();
452 emitMultiVersionFunctions();
453 EmitCXXGlobalInitFunc();
454 EmitCXXGlobalCleanUpFunc();
455 registerGlobalDtorsWithAtExit();
456 EmitCXXThreadLocalInitFunc();
457 if (ObjCRuntime)
458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459 AddGlobalCtor(ObjCInitFunction);
460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461 CUDARuntime) {
462 if (llvm::Function *CudaCtorFunction =
463 CUDARuntime->makeModuleCtorFunction())
464 AddGlobalCtor(CudaCtorFunction);
465 }
466 if (OpenMPRuntime) {
467 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470 }
471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472 OpenMPRuntime->clear();
473 }
474 if (PGOReader) {
475 getModule().setProfileSummary(
476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477 llvm::ProfileSummary::PSK_Instr);
478 if (PGOStats.hasDiagnostics())
479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480 }
481 EmitCtorList(GlobalCtors, "llvm.global_ctors");
482 EmitCtorList(GlobalDtors, "llvm.global_dtors");
483 EmitGlobalAnnotations();
484 EmitStaticExternCAliases();
485 EmitDeferredUnusedCoverageMappings();
486 if (CoverageMapping)
487 CoverageMapping->emit();
488 if (CodeGenOpts.SanitizeCfiCrossDso) {
489 CodeGenFunction(*this).EmitCfiCheckFail();
490 CodeGenFunction(*this).EmitCfiCheckStub();
491 }
492 emitAtAvailableLinkGuard();
493 if (Context.getTargetInfo().getTriple().isWasm() &&
494 !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495 EmitMainVoidAlias();
496 }
497 emitLLVMUsed();
498 if (SanStats)
499 SanStats->finish();
500
501 if (CodeGenOpts.Autolink &&
502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503 EmitModuleLinkOptions();
504 }
505
506 // On ELF we pass the dependent library specifiers directly to the linker
507 // without manipulating them. This is in contrast to other platforms where
508 // they are mapped to a specific linker option by the compiler. This
509 // difference is a result of the greater variety of ELF linkers and the fact
510 // that ELF linkers tend to handle libraries in a more complicated fashion
511 // than on other platforms. This forces us to defer handling the dependent
512 // libs to the linker.
513 //
514 // CUDA/HIP device and host libraries are different. Currently there is no
515 // way to differentiate dependent libraries for host or device. Existing
516 // usage of #pragma comment(lib, *) is intended for host libraries on
517 // Windows. Therefore emit llvm.dependent-libraries only for host.
518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520 for (auto *MD : ELFDependentLibraries)
521 NMD->addOperand(MD);
522 }
523
524 // Record mregparm value now so it is visible through rest of codegen.
525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527 CodeGenOpts.NumRegisterParameters);
528
529 if (CodeGenOpts.DwarfVersion) {
530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531 CodeGenOpts.DwarfVersion);
532 }
533
534 if (Context.getLangOpts().SemanticInterposition)
535 // Require various optimization to respect semantic interposition.
536 getModule().setSemanticInterposition(1);
537 else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538 // Allow dso_local on applicable targets.
539 getModule().setSemanticInterposition(0);
540
541 if (CodeGenOpts.EmitCodeView) {
542 // Indicate that we want CodeView in the metadata.
543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544 }
545 if (CodeGenOpts.CodeViewGHash) {
546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547 }
548 if (CodeGenOpts.ControlFlowGuard) {
549 // Function ID tables and checks for Control Flow Guard (cfguard=2).
550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552 // Function ID tables for Control Flow Guard (cfguard=1).
553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554 }
555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556 // We don't support LTO with 2 with different StrictVTablePointers
557 // FIXME: we could support it by stripping all the information introduced
558 // by StrictVTablePointers.
559
560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561
562 llvm::Metadata *Ops[2] = {
563 llvm::MDString::get(VMContext, "StrictVTablePointers"),
564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565 llvm::Type::getInt32Ty(VMContext), 1))};
566
567 getModule().addModuleFlag(llvm::Module::Require,
568 "StrictVTablePointersRequirement",
569 llvm::MDNode::get(VMContext, Ops));
570 }
571 if (getModuleDebugInfo())
572 // We support a single version in the linked module. The LLVM
573 // parser will drop debug info with a different version number
574 // (and warn about it, too).
575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576 llvm::DEBUG_METADATA_VERSION);
577
578 // We need to record the widths of enums and wchar_t, so that we can generate
579 // the correct build attributes in the ARM backend. wchar_size is also used by
580 // TargetLibraryInfo.
581 uint64_t WCharWidth =
582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584
585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586 if ( Arch == llvm::Triple::arm
587 || Arch == llvm::Triple::armeb
588 || Arch == llvm::Triple::thumb
589 || Arch == llvm::Triple::thumbeb) {
590 // The minimum width of an enum in bytes
591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593 }
594
595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596 StringRef ABIStr = Target.getABI();
597 llvm::LLVMContext &Ctx = TheModule.getContext();
598 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599 llvm::MDString::get(Ctx, ABIStr));
600 }
601
602 if (CodeGenOpts.SanitizeCfiCrossDso) {
603 // Indicate that we want cross-DSO control flow integrity checks.
604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605 }
606
607 if (CodeGenOpts.WholeProgramVTables) {
608 // Indicate whether VFE was enabled for this module, so that the
609 // vcall_visibility metadata added under whole program vtables is handled
610 // appropriately in the optimizer.
611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612 CodeGenOpts.VirtualFunctionElimination);
613 }
614
615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616 getModule().addModuleFlag(llvm::Module::Override,
617 "CFI Canonical Jump Tables",
618 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619 }
620
621 if (CodeGenOpts.CFProtectionReturn &&
622 Target.checkCFProtectionReturnSupported(getDiags())) {
623 // Indicate that we want to instrument return control flow protection.
624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625 1);
626 }
627
628 if (CodeGenOpts.CFProtectionBranch &&
629 Target.checkCFProtectionBranchSupported(getDiags())) {
630 // Indicate that we want to instrument branch control flow protection.
631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632 1);
633 }
634
635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636 Arch == llvm::Triple::aarch64_be) {
637 getModule().addModuleFlag(llvm::Module::Error,
638 "branch-target-enforcement",
639 LangOpts.BranchTargetEnforcement);
640
641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642 LangOpts.hasSignReturnAddress());
643
644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645 LangOpts.isSignReturnAddressScopeAll());
646
647 getModule().addModuleFlag(llvm::Module::Error,
648 "sign-return-address-with-bkey",
649 !LangOpts.isSignReturnAddressWithAKey());
650 }
651
652 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653 llvm::LLVMContext &Ctx = TheModule.getContext();
654 getModule().addModuleFlag(
655 llvm::Module::Error, "MemProfProfileFilename",
656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657 }
658
659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660 // Indicate whether __nvvm_reflect should be configured to flush denormal
661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
662 // property.)
663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664 CodeGenOpts.FP32DenormalMode.Output !=
665 llvm::DenormalMode::IEEE);
666 }
667
668 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669 if (LangOpts.OpenCL) {
670 EmitOpenCLMetadata();
671 // Emit SPIR version.
672 if (getTriple().isSPIR()) {
673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674 // opencl.spir.version named metadata.
675 // C++ is backwards compatible with OpenCL v2.0.
676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677 llvm::Metadata *SPIRVerElts[] = {
678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679 Int32Ty, Version / 100)),
680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682 llvm::NamedMDNode *SPIRVerMD =
683 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684 llvm::LLVMContext &Ctx = TheModule.getContext();
685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686 }
687 }
688
689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690 assert(PLevel < 3 && "Invalid PIC Level")((PLevel < 3 && "Invalid PIC Level") ? static_cast
<void> (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 690, __PRETTY_FUNCTION__))
;
691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692 if (Context.getLangOpts().PIE)
693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694 }
695
696 if (getCodeGenOpts().CodeModel.size() > 0) {
697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698 .Case("tiny", llvm::CodeModel::Tiny)
699 .Case("small", llvm::CodeModel::Small)
700 .Case("kernel", llvm::CodeModel::Kernel)
701 .Case("medium", llvm::CodeModel::Medium)
702 .Case("large", llvm::CodeModel::Large)
703 .Default(~0u);
704 if (CM != ~0u) {
705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706 getModule().setCodeModel(codeModel);
707 }
708 }
709
710 if (CodeGenOpts.NoPLT)
711 getModule().setRtLibUseGOT();
712
713 SimplifyPersonality();
714
715 if (getCodeGenOpts().EmitDeclMetadata)
716 EmitDeclMetadata();
717
718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719 EmitCoverageFile();
720
721 if (CGDebugInfo *DI = getModuleDebugInfo())
722 DI->finalize();
723
724 if (getCodeGenOpts().EmitVersionIdentMetadata)
725 EmitVersionIdentMetadata();
726
727 if (!getCodeGenOpts().RecordCommandLine.empty())
728 EmitCommandLineMetadata();
729
730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731
732 EmitBackendOptionsMetadata(getCodeGenOpts());
733
734 // Set visibility from DLL storage class
735 // We do this at the end of LLVM IR generation; after any operation
736 // that might affect the DLL storage class or the visibility, and
737 // before anything that might act on these.
738 setVisibilityFromDLLStorageClass(LangOpts, getModule());
739}
740
741void CodeGenModule::EmitOpenCLMetadata() {
742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743 // opencl.ocl.version named metadata node.
744 // C++ is backwards compatible with OpenCL v2.0.
745 // FIXME: We might need to add CXX version at some point too?
746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747 llvm::Metadata *OCLVerElts[] = {
748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749 Int32Ty, Version / 100)),
750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751 Int32Ty, (Version % 100) / 10))};
752 llvm::NamedMDNode *OCLVerMD =
753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754 llvm::LLVMContext &Ctx = TheModule.getContext();
755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756}
757
758void CodeGenModule::EmitBackendOptionsMetadata(
759 const CodeGenOptions CodeGenOpts) {
760 switch (getTriple().getArch()) {
761 default:
762 break;
763 case llvm::Triple::riscv32:
764 case llvm::Triple::riscv64:
765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766 CodeGenOpts.SmallDataLimit);
767 break;
768 }
769}
770
771void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772 // Make sure that this type is translated.
773 Types.UpdateCompletedType(TD);
774}
775
776void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777 // Make sure that this type is translated.
778 Types.RefreshTypeCacheForClass(RD);
779}
780
781llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782 if (!TBAA)
783 return nullptr;
784 return TBAA->getTypeInfo(QTy);
785}
786
787TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788 if (!TBAA)
789 return TBAAAccessInfo();
790 if (getLangOpts().CUDAIsDevice) {
791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792 // access info.
793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795 nullptr)
796 return TBAAAccessInfo();
797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799 nullptr)
800 return TBAAAccessInfo();
801 }
802 }
803 return TBAA->getAccessInfo(AccessType);
804}
805
806TBAAAccessInfo
807CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808 if (!TBAA)
809 return TBAAAccessInfo();
810 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811}
812
813llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814 if (!TBAA)
815 return nullptr;
816 return TBAA->getTBAAStructInfo(QTy);
817}
818
819llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820 if (!TBAA)
821 return nullptr;
822 return TBAA->getBaseTypeInfo(QTy);
823}
824
825llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826 if (!TBAA)
827 return nullptr;
828 return TBAA->getAccessTagInfo(Info);
829}
830
831TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832 TBAAAccessInfo TargetInfo) {
833 if (!TBAA)
834 return TBAAAccessInfo();
835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836}
837
838TBAAAccessInfo
839CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840 TBAAAccessInfo InfoB) {
841 if (!TBAA)
842 return TBAAAccessInfo();
843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844}
845
846TBAAAccessInfo
847CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848 TBAAAccessInfo SrcInfo) {
849 if (!TBAA)
850 return TBAAAccessInfo();
851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852}
853
854void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855 TBAAAccessInfo TBAAInfo) {
856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858}
859
860void CodeGenModule::DecorateInstructionWithInvariantGroup(
861 llvm::Instruction *I, const CXXRecordDecl *RD) {
862 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863 llvm::MDNode::get(getLLVMContext(), {}));
864}
865
866void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869}
870
871/// ErrorUnsupported - Print out an error that codegen doesn't support the
872/// specified stmt yet.
873void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875 "cannot compile this %0 yet");
876 std::string Msg = Type;
877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878 << Msg << S->getSourceRange();
879}
880
881/// ErrorUnsupported - Print out an error that codegen doesn't support the
882/// specified decl yet.
883void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885 "cannot compile this %0 yet");
886 std::string Msg = Type;
887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888}
889
890llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892}
893
894void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895 const NamedDecl *D) const {
896 if (GV->hasDLLImportStorageClass())
897 return;
898 // Internal definitions always have default visibility.
899 if (GV->hasLocalLinkage()) {
900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901 return;
902 }
903 if (!D)
904 return;
905 // Set visibility for definitions, and for declarations if requested globally
906 // or set explicitly.
907 LinkageInfo LV = D->getLinkageAndVisibility();
908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909 !GV->isDeclarationForLinker())
910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911}
912
913static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914 llvm::GlobalValue *GV) {
915 if (GV->hasLocalLinkage())
916 return true;
917
918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919 return true;
920
921 // DLLImport explicitly marks the GV as external.
922 if (GV->hasDLLImportStorageClass())
923 return false;
924
925 const llvm::Triple &TT = CGM.getTriple();
926 if (TT.isWindowsGNUEnvironment()) {
927 // In MinGW, variables without DLLImport can still be automatically
928 // imported from a DLL by the linker; don't mark variables that
929 // potentially could come from another DLL as DSO local.
930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931 !GV->isThreadLocal())
932 return false;
933 }
934
935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936 // remain unresolved in the link, they can be resolved to zero, which is
937 // outside the current DSO.
938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939 return false;
940
941 // Every other GV is local on COFF.
942 // Make an exception for windows OS in the triple: Some firmware builds use
943 // *-win32-macho triples. This (accidentally?) produced windows relocations
944 // without GOT tables in older clang versions; Keep this behaviour.
945 // FIXME: even thread local variables?
946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947 return true;
948
949 // Only handle COFF and ELF for now.
950 if (!TT.isOSBinFormatELF())
951 return false;
952
953 // If this is not an executable, don't assume anything is local.
954 const auto &CGOpts = CGM.getCodeGenOpts();
955 llvm::Reloc::Model RM = CGOpts.RelocationModel;
956 const auto &LOpts = CGM.getLangOpts();
957 if (RM != llvm::Reloc::Static && !LOpts.PIE)
958 return false;
959
960 // A definition cannot be preempted from an executable.
961 if (!GV->isDeclarationForLinker())
962 return true;
963
964 // Most PIC code sequences that assume that a symbol is local cannot produce a
965 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
966 // depended, it seems worth it to handle it here.
967 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
968 return false;
969
970 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
971 llvm::Triple::ArchType Arch = TT.getArch();
972 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
973 Arch == llvm::Triple::ppc64le)
974 return false;
975
976 // If we can use copy relocations we can assume it is local.
977 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
978 if (!Var->isThreadLocal() &&
979 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
980 return true;
981
982 // If we can use a plt entry as the symbol address we can assume it
983 // is local.
984 // FIXME: This should work for PIE, but the gold linker doesn't support it.
985 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
986 return true;
987
988 // Otherwise don't assume it is local.
989 return false;
990}
991
992void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
993 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
994}
995
996void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
997 GlobalDecl GD) const {
998 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
999 // C++ destructors have a few C++ ABI specific special cases.
1000 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1001 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1002 return;
1003 }
1004 setDLLImportDLLExport(GV, D);
1005}
1006
1007void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1008 const NamedDecl *D) const {
1009 if (D && D->isExternallyVisible()) {
1010 if (D->hasAttr<DLLImportAttr>())
1011 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1012 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1013 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1014 }
1015}
1016
1017void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1018 GlobalDecl GD) const {
1019 setDLLImportDLLExport(GV, GD);
1020 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1021}
1022
1023void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1024 const NamedDecl *D) const {
1025 setDLLImportDLLExport(GV, D);
1026 setGVPropertiesAux(GV, D);
1027}
1028
1029void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1030 const NamedDecl *D) const {
1031 setGlobalVisibility(GV, D);
1032 setDSOLocal(GV);
1033 GV->setPartition(CodeGenOpts.SymbolPartition);
1034}
1035
1036static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1037 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1038 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1039 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1040 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1041 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1042}
1043
1044llvm::GlobalVariable::ThreadLocalMode
1045CodeGenModule::GetDefaultLLVMTLSModel() const {
1046 switch (CodeGenOpts.getDefaultTLSModel()) {
1047 case CodeGenOptions::GeneralDynamicTLSModel:
1048 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1049 case CodeGenOptions::LocalDynamicTLSModel:
1050 return llvm::GlobalVariable::LocalDynamicTLSModel;
1051 case CodeGenOptions::InitialExecTLSModel:
1052 return llvm::GlobalVariable::InitialExecTLSModel;
1053 case CodeGenOptions::LocalExecTLSModel:
1054 return llvm::GlobalVariable::LocalExecTLSModel;
1055 }
1056 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1056)
;
1057}
1058
1059void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1060 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")((D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? static_cast<void> (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1060, __PRETTY_FUNCTION__))
;
1061
1062 llvm::GlobalValue::ThreadLocalMode TLM;
1063 TLM = GetDefaultLLVMTLSModel();
1064
1065 // Override the TLS model if it is explicitly specified.
1066 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1067 TLM = GetLLVMTLSModel(Attr->getModel());
1068 }
1069
1070 GV->setThreadLocalMode(TLM);
1071}
1072
1073static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1074 StringRef Name) {
1075 const TargetInfo &Target = CGM.getTarget();
1076 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1077}
1078
1079static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1080 const CPUSpecificAttr *Attr,
1081 unsigned CPUIndex,
1082 raw_ostream &Out) {
1083 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1084 // supported.
1085 if (Attr)
1086 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1087 else if (CGM.getTarget().supportsIFunc())
1088 Out << ".resolver";
1089}
1090
1091static void AppendTargetMangling(const CodeGenModule &CGM,
1092 const TargetAttr *Attr, raw_ostream &Out) {
1093 if (Attr->isDefaultVersion())
1094 return;
1095
1096 Out << '.';
1097 const TargetInfo &Target = CGM.getTarget();
1098 ParsedTargetAttr Info =
1099 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1100 // Multiversioning doesn't allow "no-${feature}", so we can
1101 // only have "+" prefixes here.
1102 assert(LHS.startswith("+") && RHS.startswith("+") &&((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1103, __PRETTY_FUNCTION__))
1103 "Features should always have a prefix.")((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1103, __PRETTY_FUNCTION__))
;
1104 return Target.multiVersionSortPriority(LHS.substr(1)) >
1105 Target.multiVersionSortPriority(RHS.substr(1));
1106 });
1107
1108 bool IsFirst = true;
1109
1110 if (!Info.Architecture.empty()) {
1111 IsFirst = false;
1112 Out << "arch_" << Info.Architecture;
1113 }
1114
1115 for (StringRef Feat : Info.Features) {
1116 if (!IsFirst)
1117 Out << '_';
1118 IsFirst = false;
1119 Out << Feat.substr(1);
1120 }
1121}
1122
1123static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1124 const NamedDecl *ND,
1125 bool OmitMultiVersionMangling = false) {
1126 SmallString<256> Buffer;
1127 llvm::raw_svector_ostream Out(Buffer);
1128 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1129 if (MC.shouldMangleDeclName(ND))
1130 MC.mangleName(GD.getWithDecl(ND), Out);
1131 else {
1132 IdentifierInfo *II = ND->getIdentifier();
1133 assert(II && "Attempt to mangle unnamed decl.")((II && "Attempt to mangle unnamed decl.") ? static_cast
<void> (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1133, __PRETTY_FUNCTION__))
;
1134 const auto *FD = dyn_cast<FunctionDecl>(ND);
1135
1136 if (FD &&
1137 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1138 Out << "__regcall3__" << II->getName();
1139 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1140 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1141 Out << "__device_stub__" << II->getName();
1142 } else {
1143 Out << II->getName();
1144 }
1145 }
1146
1147 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1148 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1149 switch (FD->getMultiVersionKind()) {
1150 case MultiVersionKind::CPUDispatch:
1151 case MultiVersionKind::CPUSpecific:
1152 AppendCPUSpecificCPUDispatchMangling(CGM,
1153 FD->getAttr<CPUSpecificAttr>(),
1154 GD.getMultiVersionIndex(), Out);
1155 break;
1156 case MultiVersionKind::Target:
1157 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1158 break;
1159 case MultiVersionKind::None:
1160 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1160)
;
1161 }
1162 }
1163
1164 return std::string(Out.str());
1165}
1166
1167void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1168 const FunctionDecl *FD) {
1169 if (!FD->isMultiVersion())
1170 return;
1171
1172 // Get the name of what this would be without the 'target' attribute. This
1173 // allows us to lookup the version that was emitted when this wasn't a
1174 // multiversion function.
1175 std::string NonTargetName =
1176 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1177 GlobalDecl OtherGD;
1178 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1179 assert(OtherGD.getCanonicalDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1183, __PRETTY_FUNCTION__))
1180 .getDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1183, __PRETTY_FUNCTION__))
1181 ->getAsFunction()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1183, __PRETTY_FUNCTION__))
1182 ->isMultiVersion() &&((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1183, __PRETTY_FUNCTION__))
1183 "Other GD should now be a multiversioned function")((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1183, __PRETTY_FUNCTION__))
;
1184 // OtherFD is the version of this function that was mangled BEFORE
1185 // becoming a MultiVersion function. It potentially needs to be updated.
1186 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1187 .getDecl()
1188 ->getAsFunction()
1189 ->getMostRecentDecl();
1190 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1191 // This is so that if the initial version was already the 'default'
1192 // version, we don't try to update it.
1193 if (OtherName != NonTargetName) {
1194 // Remove instead of erase, since others may have stored the StringRef
1195 // to this.
1196 const auto ExistingRecord = Manglings.find(NonTargetName);
1197 if (ExistingRecord != std::end(Manglings))
1198 Manglings.remove(&(*ExistingRecord));
1199 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1200 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1201 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1202 Entry->setName(OtherName);
1203 }
1204 }
1205}
1206
1207StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1208 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1209
1210 // Some ABIs don't have constructor variants. Make sure that base and
1211 // complete constructors get mangled the same.
1212 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1213 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1214 CXXCtorType OrigCtorType = GD.getCtorType();
1215 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)((OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)
? static_cast<void> (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1215, __PRETTY_FUNCTION__))
;
1216 if (OrigCtorType == Ctor_Base)
1217 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1218 }
1219 }
1220
1221 auto FoundName = MangledDeclNames.find(CanonicalGD);
1222 if (FoundName != MangledDeclNames.end())
1223 return FoundName->second;
1224
1225 // Keep the first result in the case of a mangling collision.
1226 const auto *ND = cast<NamedDecl>(GD.getDecl());
1227 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1228
1229 // Ensure either we have different ABIs between host and device compilations,
1230 // says host compilation following MSVC ABI but device compilation follows
1231 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1232 // mangling should be the same after name stubbing. The later checking is
1233 // very important as the device kernel name being mangled in host-compilation
1234 // is used to resolve the device binaries to be executed. Inconsistent naming
1235 // result in undefined behavior. Even though we cannot check that naming
1236 // directly between host- and device-compilations, the host- and
1237 // device-mangling in host compilation could help catching certain ones.
1238 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1239 getLangOpts().CUDAIsDevice ||((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1240 (getContext().getAuxTargetInfo() &&((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1241 (getContext().getAuxTargetInfo()->getCXXABI() !=((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1242 getContext().getTargetInfo().getCXXABI())) ||((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1243 getCUDARuntime().getDeviceSideName(ND) ==((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1244 getMangledNameImpl(((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1245 *this,((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1246 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
1247 ND))((!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr
>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo
() && (getContext().getAuxTargetInfo()->getCXXABI(
) != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime
().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind
(KernelReferenceKind::Kernel), ND)) ? static_cast<void>
(0) : __assert_fail ("!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1247, __PRETTY_FUNCTION__))
;
1248
1249 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1250 return MangledDeclNames[CanonicalGD] = Result.first->first();
1251}
1252
1253StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1254 const BlockDecl *BD) {
1255 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1256 const Decl *D = GD.getDecl();
1257
1258 SmallString<256> Buffer;
1259 llvm::raw_svector_ostream Out(Buffer);
1260 if (!D)
1261 MangleCtx.mangleGlobalBlock(BD,
1262 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1263 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1264 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1265 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1266 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1267 else
1268 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1269
1270 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1271 return Result.first->first();
1272}
1273
1274llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1275 return getModule().getNamedValue(Name);
1276}
1277
1278/// AddGlobalCtor - Add a function to the list that will be called before
1279/// main() runs.
1280void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1281 llvm::Constant *AssociatedData) {
1282 // FIXME: Type coercion of void()* types.
1283 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1284}
1285
1286/// AddGlobalDtor - Add a function to the list that will be called
1287/// when the module is unloaded.
1288void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1289 bool IsDtorAttrFunc) {
1290 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1291 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1292 DtorsUsingAtExit[Priority].push_back(Dtor);
1293 return;
1294 }
1295
1296 // FIXME: Type coercion of void()* types.
1297 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1298}
1299
1300void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1301 if (Fns.empty()) return;
1302
1303 // Ctor function type is void()*.
1304 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1305 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1306 TheModule.getDataLayout().getProgramAddressSpace());
1307
1308 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1309 llvm::StructType *CtorStructTy = llvm::StructType::get(
1310 Int32Ty, CtorPFTy, VoidPtrTy);
1311
1312 // Construct the constructor and destructor arrays.
1313 ConstantInitBuilder builder(*this);
1314 auto ctors = builder.beginArray(CtorStructTy);
1315 for (const auto &I : Fns) {
1316 auto ctor = ctors.beginStruct(CtorStructTy);
1317 ctor.addInt(Int32Ty, I.Priority);
1318 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1319 if (I.AssociatedData)
1320 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1321 else
1322 ctor.addNullPointer(VoidPtrTy);
1323 ctor.finishAndAddTo(ctors);
1324 }
1325
1326 auto list =
1327 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1328 /*constant*/ false,
1329 llvm::GlobalValue::AppendingLinkage);
1330
1331 // The LTO linker doesn't seem to like it when we set an alignment
1332 // on appending variables. Take it off as a workaround.
1333 list->setAlignment(llvm::None);
1334
1335 Fns.clear();
1336}
1337
1338llvm::GlobalValue::LinkageTypes
1339CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1340 const auto *D = cast<FunctionDecl>(GD.getDecl());
1341
1342 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1343
1344 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1345 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1346
1347 if (isa<CXXConstructorDecl>(D) &&
1348 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1349 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1350 // Our approach to inheriting constructors is fundamentally different from
1351 // that used by the MS ABI, so keep our inheriting constructor thunks
1352 // internal rather than trying to pick an unambiguous mangling for them.
1353 return llvm::GlobalValue::InternalLinkage;
1354 }
1355
1356 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1357}
1358
1359llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1360 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1361 if (!MDS) return nullptr;
1362
1363 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1364}
1365
1366void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1367 const CGFunctionInfo &Info,
1368 llvm::Function *F) {
1369 unsigned CallingConv;
1370 llvm::AttributeList PAL;
1371 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1372 F->setAttributes(PAL);
1373 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1374}
1375
1376static void removeImageAccessQualifier(std::string& TyName) {
1377 std::string ReadOnlyQual("__read_only");
1378 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1379 if (ReadOnlyPos != std::string::npos)
1380 // "+ 1" for the space after access qualifier.
1381 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1382 else {
1383 std::string WriteOnlyQual("__write_only");
1384 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1385 if (WriteOnlyPos != std::string::npos)
1386 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1387 else {
1388 std::string ReadWriteQual("__read_write");
1389 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1390 if (ReadWritePos != std::string::npos)
1391 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1392 }
1393 }
1394}
1395
1396// Returns the address space id that should be produced to the
1397// kernel_arg_addr_space metadata. This is always fixed to the ids
1398// as specified in the SPIR 2.0 specification in order to differentiate
1399// for example in clGetKernelArgInfo() implementation between the address
1400// spaces with targets without unique mapping to the OpenCL address spaces
1401// (basically all single AS CPUs).
1402static unsigned ArgInfoAddressSpace(LangAS AS) {
1403 switch (AS) {
1404 case LangAS::opencl_global:
1405 return 1;
1406 case LangAS::opencl_constant:
1407 return 2;
1408 case LangAS::opencl_local:
1409 return 3;
1410 case LangAS::opencl_generic:
1411 return 4; // Not in SPIR 2.0 specs.
1412 case LangAS::opencl_global_device:
1413 return 5;
1414 case LangAS::opencl_global_host:
1415 return 6;
1416 default:
1417 return 0; // Assume private.
1418 }
1419}
1420
1421void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1422 const FunctionDecl *FD,
1423 CodeGenFunction *CGF) {
1424 assert(((FD && CGF) || (!FD && !CGF)) &&((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1425, __PRETTY_FUNCTION__))
1425 "Incorrect use - FD and CGF should either be both null or not!")((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1425, __PRETTY_FUNCTION__))
;
1426 // Create MDNodes that represent the kernel arg metadata.
1427 // Each MDNode is a list in the form of "key", N number of values which is
1428 // the same number of values as their are kernel arguments.
1429
1430 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1431
1432 // MDNode for the kernel argument address space qualifiers.
1433 SmallVector<llvm::Metadata *, 8> addressQuals;
1434
1435 // MDNode for the kernel argument access qualifiers (images only).
1436 SmallVector<llvm::Metadata *, 8> accessQuals;
1437
1438 // MDNode for the kernel argument type names.
1439 SmallVector<llvm::Metadata *, 8> argTypeNames;
1440
1441 // MDNode for the kernel argument base type names.
1442 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1443
1444 // MDNode for the kernel argument type qualifiers.
1445 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1446
1447 // MDNode for the kernel argument names.
1448 SmallVector<llvm::Metadata *, 8> argNames;
1449
1450 if (FD && CGF)
1451 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1452 const ParmVarDecl *parm = FD->getParamDecl(i);
1453 QualType ty = parm->getType();
1454 std::string typeQuals;
1455
1456 if (ty->isPointerType()) {
1457 QualType pointeeTy = ty->getPointeeType();
1458
1459 // Get address qualifier.
1460 addressQuals.push_back(
1461 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1462 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1463
1464 // Get argument type name.
1465 std::string typeName =
1466 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1467
1468 // Turn "unsigned type" to "utype"
1469 std::string::size_type pos = typeName.find("unsigned");
1470 if (pointeeTy.isCanonical() && pos != std::string::npos)
1471 typeName.erase(pos + 1, 8);
1472
1473 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1474
1475 std::string baseTypeName =
1476 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1477 Policy) +
1478 "*";
1479
1480 // Turn "unsigned type" to "utype"
1481 pos = baseTypeName.find("unsigned");
1482 if (pos != std::string::npos)
1483 baseTypeName.erase(pos + 1, 8);
1484
1485 argBaseTypeNames.push_back(
1486 llvm::MDString::get(VMContext, baseTypeName));
1487
1488 // Get argument type qualifiers:
1489 if (ty.isRestrictQualified())
1490 typeQuals = "restrict";
1491 if (pointeeTy.isConstQualified() ||
1492 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1493 typeQuals += typeQuals.empty() ? "const" : " const";
1494 if (pointeeTy.isVolatileQualified())
1495 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1496 } else {
1497 uint32_t AddrSpc = 0;
1498 bool isPipe = ty->isPipeType();
1499 if (ty->isImageType() || isPipe)
1500 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1501
1502 addressQuals.push_back(
1503 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1504
1505 // Get argument type name.
1506 std::string typeName;
1507 if (isPipe)
1508 typeName = ty.getCanonicalType()
1509 ->castAs<PipeType>()
1510 ->getElementType()
1511 .getAsString(Policy);
1512 else
1513 typeName = ty.getUnqualifiedType().getAsString(Policy);
1514
1515 // Turn "unsigned type" to "utype"
1516 std::string::size_type pos = typeName.find("unsigned");
1517 if (ty.isCanonical() && pos != std::string::npos)
1518 typeName.erase(pos + 1, 8);
1519
1520 std::string baseTypeName;
1521 if (isPipe)
1522 baseTypeName = ty.getCanonicalType()
1523 ->castAs<PipeType>()
1524 ->getElementType()
1525 .getCanonicalType()
1526 .getAsString(Policy);
1527 else
1528 baseTypeName =
1529 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1530
1531 // Remove access qualifiers on images
1532 // (as they are inseparable from type in clang implementation,
1533 // but OpenCL spec provides a special query to get access qualifier
1534 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1535 if (ty->isImageType()) {
1536 removeImageAccessQualifier(typeName);
1537 removeImageAccessQualifier(baseTypeName);
1538 }
1539
1540 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1541
1542 // Turn "unsigned type" to "utype"
1543 pos = baseTypeName.find("unsigned");
1544 if (pos != std::string::npos)
1545 baseTypeName.erase(pos + 1, 8);
1546
1547 argBaseTypeNames.push_back(
1548 llvm::MDString::get(VMContext, baseTypeName));
1549
1550 if (isPipe)
1551 typeQuals = "pipe";
1552 }
1553
1554 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1555
1556 // Get image and pipe access qualifier:
1557 if (ty->isImageType() || ty->isPipeType()) {
1558 const Decl *PDecl = parm;
1559 if (auto *TD = dyn_cast<TypedefType>(ty))
1560 PDecl = TD->getDecl();
1561 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1562 if (A && A->isWriteOnly())
1563 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1564 else if (A && A->isReadWrite())
1565 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1566 else
1567 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1568 } else
1569 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1570
1571 // Get argument name.
1572 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1573 }
1574
1575 Fn->setMetadata("kernel_arg_addr_space",
1576 llvm::MDNode::get(VMContext, addressQuals));
1577 Fn->setMetadata("kernel_arg_access_qual",
1578 llvm::MDNode::get(VMContext, accessQuals));
1579 Fn->setMetadata("kernel_arg_type",
1580 llvm::MDNode::get(VMContext, argTypeNames));
1581 Fn->setMetadata("kernel_arg_base_type",
1582 llvm::MDNode::get(VMContext, argBaseTypeNames));
1583 Fn->setMetadata("kernel_arg_type_qual",
1584 llvm::MDNode::get(VMContext, argTypeQuals));
1585 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1586 Fn->setMetadata("kernel_arg_name",
1587 llvm::MDNode::get(VMContext, argNames));
1588}
1589
1590/// Determines whether the language options require us to model
1591/// unwind exceptions. We treat -fexceptions as mandating this
1592/// except under the fragile ObjC ABI with only ObjC exceptions
1593/// enabled. This means, for example, that C with -fexceptions
1594/// enables this.
1595static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1596 // If exceptions are completely disabled, obviously this is false.
1597 if (!LangOpts.Exceptions) return false;
1598
1599 // If C++ exceptions are enabled, this is true.
1600 if (LangOpts.CXXExceptions) return true;
1601
1602 // If ObjC exceptions are enabled, this depends on the ABI.
1603 if (LangOpts.ObjCExceptions) {
1604 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1605 }
1606
1607 return true;
1608}
1609
1610static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1611 const CXXMethodDecl *MD) {
1612 // Check that the type metadata can ever actually be used by a call.
1613 if (!CGM.getCodeGenOpts().LTOUnit ||
1614 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1615 return false;
1616
1617 // Only functions whose address can be taken with a member function pointer
1618 // need this sort of type metadata.
1619 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1620 !isa<CXXDestructorDecl>(MD);
1621}
1622
1623std::vector<const CXXRecordDecl *>
1624CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1625 llvm::SetVector<const CXXRecordDecl *> MostBases;
1626
1627 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1628 CollectMostBases = [&](const CXXRecordDecl *RD) {
1629 if (RD->getNumBases() == 0)
1630 MostBases.insert(RD);
1631 for (const CXXBaseSpecifier &B : RD->bases())
1632 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1633 };
1634 CollectMostBases(RD);
1635 return MostBases.takeVector();
1636}
1637
1638void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1639 llvm::Function *F) {
1640 llvm::AttrBuilder B;
1641
1642 if (CodeGenOpts.UnwindTables)
1643 B.addAttribute(llvm::Attribute::UWTable);
1644
1645 if (CodeGenOpts.StackClashProtector)
1646 B.addAttribute("probe-stack", "inline-asm");
1647
1648 if (!hasUnwindExceptions(LangOpts))
1649 B.addAttribute(llvm::Attribute::NoUnwind);
1650
1651 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1652 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1653 B.addAttribute(llvm::Attribute::StackProtect);
1654 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1655 B.addAttribute(llvm::Attribute::StackProtectStrong);
1656 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1657 B.addAttribute(llvm::Attribute::StackProtectReq);
1658 }
1659
1660 if (!D) {
1661 // If we don't have a declaration to control inlining, the function isn't
1662 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1663 // disabled, mark the function as noinline.
1664 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1665 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1666 B.addAttribute(llvm::Attribute::NoInline);
1667
1668 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1669 return;
1670 }
1671
1672 // Track whether we need to add the optnone LLVM attribute,
1673 // starting with the default for this optimization level.
1674 bool ShouldAddOptNone =
1675 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1676 // We can't add optnone in the following cases, it won't pass the verifier.
1677 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1678 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1679
1680 // Add optnone, but do so only if the function isn't always_inline.
1681 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1682 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1683 B.addAttribute(llvm::Attribute::OptimizeNone);
1684
1685 // OptimizeNone implies noinline; we should not be inlining such functions.
1686 B.addAttribute(llvm::Attribute::NoInline);
1687
1688 // We still need to handle naked functions even though optnone subsumes
1689 // much of their semantics.
1690 if (D->hasAttr<NakedAttr>())
1691 B.addAttribute(llvm::Attribute::Naked);
1692
1693 // OptimizeNone wins over OptimizeForSize and MinSize.
1694 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1695 F->removeFnAttr(llvm::Attribute::MinSize);
1696 } else if (D->hasAttr<NakedAttr>()) {
1697 // Naked implies noinline: we should not be inlining such functions.
1698 B.addAttribute(llvm::Attribute::Naked);
1699 B.addAttribute(llvm::Attribute::NoInline);
1700 } else if (D->hasAttr<NoDuplicateAttr>()) {
1701 B.addAttribute(llvm::Attribute::NoDuplicate);
1702 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1703 // Add noinline if the function isn't always_inline.
1704 B.addAttribute(llvm::Attribute::NoInline);
1705 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1706 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1707 // (noinline wins over always_inline, and we can't specify both in IR)
1708 B.addAttribute(llvm::Attribute::AlwaysInline);
1709 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1710 // If we're not inlining, then force everything that isn't always_inline to
1711 // carry an explicit noinline attribute.
1712 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1713 B.addAttribute(llvm::Attribute::NoInline);
1714 } else {
1715 // Otherwise, propagate the inline hint attribute and potentially use its
1716 // absence to mark things as noinline.
1717 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1718 // Search function and template pattern redeclarations for inline.
1719 auto CheckForInline = [](const FunctionDecl *FD) {
1720 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1721 return Redecl->isInlineSpecified();
1722 };
1723 if (any_of(FD->redecls(), CheckRedeclForInline))
1724 return true;
1725 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1726 if (!Pattern)
1727 return false;
1728 return any_of(Pattern->redecls(), CheckRedeclForInline);
1729 };
1730 if (CheckForInline(FD)) {
1731 B.addAttribute(llvm::Attribute::InlineHint);
1732 } else if (CodeGenOpts.getInlining() ==
1733 CodeGenOptions::OnlyHintInlining &&
1734 !FD->isInlined() &&
1735 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1736 B.addAttribute(llvm::Attribute::NoInline);
1737 }
1738 }
1739 }
1740
1741 // Add other optimization related attributes if we are optimizing this
1742 // function.
1743 if (!D->hasAttr<OptimizeNoneAttr>()) {
1744 if (D->hasAttr<ColdAttr>()) {
1745 if (!ShouldAddOptNone)
1746 B.addAttribute(llvm::Attribute::OptimizeForSize);
1747 B.addAttribute(llvm::Attribute::Cold);
1748 }
1749
1750 if (D->hasAttr<MinSizeAttr>())
1751 B.addAttribute(llvm::Attribute::MinSize);
1752 }
1753
1754 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1755
1756 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1757 if (alignment)
1758 F->setAlignment(llvm::Align(alignment));
1759
1760 if (!D->hasAttr<AlignedAttr>())
1761 if (LangOpts.FunctionAlignment)
1762 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1763
1764 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1765 // reserve a bit for differentiating between virtual and non-virtual member
1766 // functions. If the current target's C++ ABI requires this and this is a
1767 // member function, set its alignment accordingly.
1768 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1769 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1770 F->setAlignment(llvm::Align(2));
1771 }
1772
1773 // In the cross-dso CFI mode with canonical jump tables, we want !type
1774 // attributes on definitions only.
1775 if (CodeGenOpts.SanitizeCfiCrossDso &&
1776 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1777 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1778 // Skip available_externally functions. They won't be codegen'ed in the
1779 // current module anyway.
1780 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1781 CreateFunctionTypeMetadataForIcall(FD, F);
1782 }
1783 }
1784
1785 // Emit type metadata on member functions for member function pointer checks.
1786 // These are only ever necessary on definitions; we're guaranteed that the
1787 // definition will be present in the LTO unit as a result of LTO visibility.
1788 auto *MD = dyn_cast<CXXMethodDecl>(D);
1789 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1790 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1791 llvm::Metadata *Id =
1792 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1793 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1794 F->addTypeMetadata(0, Id);
1795 }
1796 }
1797}
1798
1799void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1800 llvm::Function *F) {
1801 if (D->hasAttr<StrictFPAttr>()) {
1802 llvm::AttrBuilder FuncAttrs;
1803 FuncAttrs.addAttribute("strictfp");
1804 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1805 }
1806}
1807
1808void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1809 const Decl *D = GD.getDecl();
1810 if (dyn_cast_or_null<NamedDecl>(D))
1811 setGVProperties(GV, GD);
1812 else
1813 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1814
1815 if (D && D->hasAttr<UsedAttr>())
1816 addUsedGlobal(GV);
1817
1818 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1819 const auto *VD = cast<VarDecl>(D);
1820 if (VD->getType().isConstQualified() &&
1821 VD->getStorageDuration() == SD_Static)
1822 addUsedGlobal(GV);
1823 }
1824}
1825
1826bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1827 llvm::AttrBuilder &Attrs) {
1828 // Add target-cpu and target-features attributes to functions. If
1829 // we have a decl for the function and it has a target attribute then
1830 // parse that and add it to the feature set.
1831 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1832 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1833 std::vector<std::string> Features;
1834 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1835 FD = FD ? FD->getMostRecentDecl() : FD;
1836 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1837 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1838 bool AddedAttr = false;
1839 if (TD || SD) {
1840 llvm::StringMap<bool> FeatureMap;
1841 getContext().getFunctionFeatureMap(FeatureMap, GD);
1842
1843 // Produce the canonical string for this set of features.
1844 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1845 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1846
1847 // Now add the target-cpu and target-features to the function.
1848 // While we populated the feature map above, we still need to
1849 // get and parse the target attribute so we can get the cpu for
1850 // the function.
1851 if (TD) {
1852 ParsedTargetAttr ParsedAttr = TD->parse();
1853 if (!ParsedAttr.Architecture.empty() &&
1854 getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1855 TargetCPU = ParsedAttr.Architecture;
1856 TuneCPU = ""; // Clear the tune CPU.
1857 }
1858 if (!ParsedAttr.Tune.empty() &&
1859 getTarget().isValidCPUName(ParsedAttr.Tune))
1860 TuneCPU = ParsedAttr.Tune;
1861 }
1862 } else {
1863 // Otherwise just add the existing target cpu and target features to the
1864 // function.
1865 Features = getTarget().getTargetOpts().Features;
1866 }
1867
1868 if (!TargetCPU.empty()) {
1869 Attrs.addAttribute("target-cpu", TargetCPU);
1870 AddedAttr = true;
1871 }
1872 if (!TuneCPU.empty()) {
1873 Attrs.addAttribute("tune-cpu", TuneCPU);
1874 AddedAttr = true;
1875 }
1876 if (!Features.empty()) {
1877 llvm::sort(Features);
1878 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1879 AddedAttr = true;
1880 }
1881
1882 return AddedAttr;
1883}
1884
1885void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1886 llvm::GlobalObject *GO) {
1887 const Decl *D = GD.getDecl();
1888 SetCommonAttributes(GD, GO);
1889
1890 if (D) {
1891 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1892 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1893 GV->addAttribute("bss-section", SA->getName());
1894 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1895 GV->addAttribute("data-section", SA->getName());
1896 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1897 GV->addAttribute("rodata-section", SA->getName());
1898 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1899 GV->addAttribute("relro-section", SA->getName());
1900 }
1901
1902 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1903 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1904 if (!D->getAttr<SectionAttr>())
1905 F->addFnAttr("implicit-section-name", SA->getName());
1906
1907 llvm::AttrBuilder Attrs;
1908 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1909 // We know that GetCPUAndFeaturesAttributes will always have the
1910 // newest set, since it has the newest possible FunctionDecl, so the
1911 // new ones should replace the old.
1912 llvm::AttrBuilder RemoveAttrs;
1913 RemoveAttrs.addAttribute("target-cpu");
1914 RemoveAttrs.addAttribute("target-features");
1915 RemoveAttrs.addAttribute("tune-cpu");
1916 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1917 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1918 }
1919 }
1920
1921 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1922 GO->setSection(CSA->getName());
1923 else if (const auto *SA = D->getAttr<SectionAttr>())
1924 GO->setSection(SA->getName());
1925 }
1926
1927 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1928}
1929
1930void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1931 llvm::Function *F,
1932 const CGFunctionInfo &FI) {
1933 const Decl *D = GD.getDecl();
1934 SetLLVMFunctionAttributes(GD, FI, F);
1935 SetLLVMFunctionAttributesForDefinition(D, F);
1936
1937 F->setLinkage(llvm::Function::InternalLinkage);
1938
1939 setNonAliasAttributes(GD, F);
1940}
1941
1942static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1943 // Set linkage and visibility in case we never see a definition.
1944 LinkageInfo LV = ND->getLinkageAndVisibility();
1945 // Don't set internal linkage on declarations.
1946 // "extern_weak" is overloaded in LLVM; we probably should have
1947 // separate linkage types for this.
1948 if (isExternallyVisible(LV.getLinkage()) &&
1949 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1950 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1951}
1952
1953void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1954 llvm::Function *F) {
1955 // Only if we are checking indirect calls.
1956 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1957 return;
1958
1959 // Non-static class methods are handled via vtable or member function pointer
1960 // checks elsewhere.
1961 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1962 return;
1963
1964 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1965 F->addTypeMetadata(0, MD);
1966 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1967
1968 // Emit a hash-based bit set entry for cross-DSO calls.
1969 if (CodeGenOpts.SanitizeCfiCrossDso)
1970 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1971 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1972}
1973
1974void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1975 bool IsIncompleteFunction,
1976 bool IsThunk) {
1977
1978 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1979 // If this is an intrinsic function, set the function's attributes
1980 // to the intrinsic's attributes.
1981 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1982 return;
1983 }
1984
1985 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1986
1987 if (!IsIncompleteFunction)
1988 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1989
1990 // Add the Returned attribute for "this", except for iOS 5 and earlier
1991 // where substantial code, including the libstdc++ dylib, was compiled with
1992 // GCC and does not actually return "this".
1993 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1994 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1995 assert(!F->arg_empty() &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1998, __PRETTY_FUNCTION__))
1996 F->arg_begin()->getType()((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1998, __PRETTY_FUNCTION__))
1997 ->canLosslesslyBitCastTo(F->getReturnType()) &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1998, __PRETTY_FUNCTION__))
1998 "unexpected this return")((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 1998, __PRETTY_FUNCTION__))
;
1999 F->addAttribute(1, llvm::Attribute::Returned);
2000 }
2001
2002 // Only a few attributes are set on declarations; these may later be
2003 // overridden by a definition.
2004
2005 setLinkageForGV(F, FD);
2006 setGVProperties(F, FD);
2007
2008 // Setup target-specific attributes.
2009 if (!IsIncompleteFunction && F->isDeclaration())
2010 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2011
2012 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2013 F->setSection(CSA->getName());
2014 else if (const auto *SA = FD->getAttr<SectionAttr>())
2015 F->setSection(SA->getName());
2016
2017 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2018 if (FD->isInlineBuiltinDeclaration()) {
2019 const FunctionDecl *FDBody;
2020 bool HasBody = FD->hasBody(FDBody);
2021 (void)HasBody;
2022 assert(HasBody && "Inline builtin declarations should always have an "((HasBody && "Inline builtin declarations should always have an "
"available body!") ? static_cast<void> (0) : __assert_fail
("HasBody && \"Inline builtin declarations should always have an \" \"available body!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2023, __PRETTY_FUNCTION__))
2023 "available body!")((HasBody && "Inline builtin declarations should always have an "
"available body!") ? static_cast<void> (0) : __assert_fail
("HasBody && \"Inline builtin declarations should always have an \" \"available body!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2023, __PRETTY_FUNCTION__))
;
2024 if (shouldEmitFunction(FDBody))
2025 F->addAttribute(llvm::AttributeList::FunctionIndex,
2026 llvm::Attribute::NoBuiltin);
2027 }
2028
2029 if (FD->isReplaceableGlobalAllocationFunction()) {
2030 // A replaceable global allocation function does not act like a builtin by
2031 // default, only if it is invoked by a new-expression or delete-expression.
2032 F->addAttribute(llvm::AttributeList::FunctionIndex,
2033 llvm::Attribute::NoBuiltin);
2034 }
2035
2036 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2037 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2038 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2039 if (MD->isVirtual())
2040 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2041
2042 // Don't emit entries for function declarations in the cross-DSO mode. This
2043 // is handled with better precision by the receiving DSO. But if jump tables
2044 // are non-canonical then we need type metadata in order to produce the local
2045 // jump table.
2046 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2047 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2048 CreateFunctionTypeMetadataForIcall(FD, F);
2049
2050 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2051 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2052
2053 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2054 // Annotate the callback behavior as metadata:
2055 // - The callback callee (as argument number).
2056 // - The callback payloads (as argument numbers).
2057 llvm::LLVMContext &Ctx = F->getContext();
2058 llvm::MDBuilder MDB(Ctx);
2059
2060 // The payload indices are all but the first one in the encoding. The first
2061 // identifies the callback callee.
2062 int CalleeIdx = *CB->encoding_begin();
2063 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2064 F->addMetadata(llvm::LLVMContext::MD_callback,
2065 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2066 CalleeIdx, PayloadIndices,
2067 /* VarArgsArePassed */ false)}));
2068 }
2069}
2070
2071void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2072 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&(((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
"Only globals with definition can force usage.") ? static_cast
<void> (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2073, __PRETTY_FUNCTION__))
2073 "Only globals with definition can force usage.")(((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
"Only globals with definition can force usage.") ? static_cast
<void> (0) : __assert_fail ("(isa<llvm::Function>(GV) || !GV->isDeclaration()) && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2073, __PRETTY_FUNCTION__))
;
2074 LLVMUsed.emplace_back(GV);
2075}
2076
2077void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2078 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2079, __PRETTY_FUNCTION__))
2079 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2079, __PRETTY_FUNCTION__))
;
2080 LLVMCompilerUsed.emplace_back(GV);
2081}
2082
2083static void emitUsed(CodeGenModule &CGM, StringRef Name,
2084 std::vector<llvm::WeakTrackingVH> &List) {
2085 // Don't create llvm.used if there is no need.
2086 if (List.empty())
2087 return;
2088
2089 // Convert List to what ConstantArray needs.
2090 SmallVector<llvm::Constant*, 8> UsedArray;
2091 UsedArray.resize(List.size());
2092 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2093 UsedArray[i] =
2094 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2095 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2096 }
2097
2098 if (UsedArray.empty())
2099 return;
2100 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2101
2102 auto *GV = new llvm::GlobalVariable(
2103 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2104 llvm::ConstantArray::get(ATy, UsedArray), Name);
2105
2106 GV->setSection("llvm.metadata");
2107}
2108
2109void CodeGenModule::emitLLVMUsed() {
2110 emitUsed(*this, "llvm.used", LLVMUsed);
2111 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2112}
2113
2114void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2115 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2116 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2117}
2118
2119void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2120 llvm::SmallString<32> Opt;
2121 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2122 if (Opt.empty())
2123 return;
2124 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2125 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2126}
2127
2128void CodeGenModule::AddDependentLib(StringRef Lib) {
2129 auto &C = getLLVMContext();
2130 if (getTarget().getTriple().isOSBinFormatELF()) {
2131 ELFDependentLibraries.push_back(
2132 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2133 return;
2134 }
2135
2136 llvm::SmallString<24> Opt;
2137 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2138 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2139 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2140}
2141
2142/// Add link options implied by the given module, including modules
2143/// it depends on, using a postorder walk.
2144static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2145 SmallVectorImpl<llvm::MDNode *> &Metadata,
2146 llvm::SmallPtrSet<Module *, 16> &Visited) {
2147 // Import this module's parent.
2148 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2149 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2150 }
2151
2152 // Import this module's dependencies.
2153 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2154 if (Visited.insert(Mod->Imports[I - 1]).second)
2155 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2156 }
2157
2158 // Add linker options to link against the libraries/frameworks
2159 // described by this module.
2160 llvm::LLVMContext &Context = CGM.getLLVMContext();
2161 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2162
2163 // For modules that use export_as for linking, use that module
2164 // name instead.
2165 if (Mod->UseExportAsModuleLinkName)
2166 return;
2167
2168 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2169 // Link against a framework. Frameworks are currently Darwin only, so we
2170 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2171 if (Mod->LinkLibraries[I-1].IsFramework) {
2172 llvm::Metadata *Args[2] = {
2173 llvm::MDString::get(Context, "-framework"),
2174 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2175
2176 Metadata.push_back(llvm::MDNode::get(Context, Args));
2177 continue;
2178 }
2179
2180 // Link against a library.
2181 if (IsELF) {
2182 llvm::Metadata *Args[2] = {
2183 llvm::MDString::get(Context, "lib"),
2184 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2185 };
2186 Metadata.push_back(llvm::MDNode::get(Context, Args));
2187 } else {
2188 llvm::SmallString<24> Opt;
2189 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2190 Mod->LinkLibraries[I - 1].Library, Opt);
2191 auto *OptString = llvm::MDString::get(Context, Opt);
2192 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2193 }
2194 }
2195}
2196
2197void CodeGenModule::EmitModuleLinkOptions() {
2198 // Collect the set of all of the modules we want to visit to emit link
2199 // options, which is essentially the imported modules and all of their
2200 // non-explicit child modules.
2201 llvm::SetVector<clang::Module *> LinkModules;
2202 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2203 SmallVector<clang::Module *, 16> Stack;
2204
2205 // Seed the stack with imported modules.
2206 for (Module *M : ImportedModules) {
2207 // Do not add any link flags when an implementation TU of a module imports
2208 // a header of that same module.
2209 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2210 !getLangOpts().isCompilingModule())
2211 continue;
2212 if (Visited.insert(M).second)
2213 Stack.push_back(M);
2214 }
2215
2216 // Find all of the modules to import, making a little effort to prune
2217 // non-leaf modules.
2218 while (!Stack.empty()) {
2219 clang::Module *Mod = Stack.pop_back_val();
2220
2221 bool AnyChildren = false;
2222
2223 // Visit the submodules of this module.
2224 for (const auto &SM : Mod->submodules()) {
2225 // Skip explicit children; they need to be explicitly imported to be
2226 // linked against.
2227 if (SM->IsExplicit)
2228 continue;
2229
2230 if (Visited.insert(SM).second) {
2231 Stack.push_back(SM);
2232 AnyChildren = true;
2233 }
2234 }
2235
2236 // We didn't find any children, so add this module to the list of
2237 // modules to link against.
2238 if (!AnyChildren) {
2239 LinkModules.insert(Mod);
2240 }
2241 }
2242
2243 // Add link options for all of the imported modules in reverse topological
2244 // order. We don't do anything to try to order import link flags with respect
2245 // to linker options inserted by things like #pragma comment().
2246 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2247 Visited.clear();
2248 for (Module *M : LinkModules)
2249 if (Visited.insert(M).second)
2250 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2251 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2252 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2253
2254 // Add the linker options metadata flag.
2255 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2256 for (auto *MD : LinkerOptionsMetadata)
2257 NMD->addOperand(MD);
2258}
2259
2260void CodeGenModule::EmitDeferred() {
2261 // Emit deferred declare target declarations.
2262 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2263 getOpenMPRuntime().emitDeferredTargetDecls();
2264
2265 // Emit code for any potentially referenced deferred decls. Since a
2266 // previously unused static decl may become used during the generation of code
2267 // for a static function, iterate until no changes are made.
2268
2269 if (!DeferredVTables.empty()) {
2270 EmitDeferredVTables();
2271
2272 // Emitting a vtable doesn't directly cause more vtables to
2273 // become deferred, although it can cause functions to be
2274 // emitted that then need those vtables.
2275 assert(DeferredVTables.empty())((DeferredVTables.empty()) ? static_cast<void> (0) : __assert_fail
("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2275, __PRETTY_FUNCTION__))
;
2276 }
2277
2278 // Emit CUDA/HIP static device variables referenced by host code only.
2279 if (getLangOpts().CUDA)
2280 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2281 DeferredDeclsToEmit.push_back(V);
2282
2283 // Stop if we're out of both deferred vtables and deferred declarations.
2284 if (DeferredDeclsToEmit.empty())
2285 return;
2286
2287 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2288 // work, it will not interfere with this.
2289 std::vector<GlobalDecl> CurDeclsToEmit;
2290 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2291
2292 for (GlobalDecl &D : CurDeclsToEmit) {
2293 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2294 // to get GlobalValue with exactly the type we need, not something that
2295 // might had been created for another decl with the same mangled name but
2296 // different type.
2297 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2298 GetAddrOfGlobal(D, ForDefinition));
2299
2300 // In case of different address spaces, we may still get a cast, even with
2301 // IsForDefinition equal to true. Query mangled names table to get
2302 // GlobalValue.
2303 if (!GV)
2304 GV = GetGlobalValue(getMangledName(D));
2305
2306 // Make sure GetGlobalValue returned non-null.
2307 assert(GV)((GV) ? static_cast<void> (0) : __assert_fail ("GV", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2307, __PRETTY_FUNCTION__))
;
2308
2309 // Check to see if we've already emitted this. This is necessary
2310 // for a couple of reasons: first, decls can end up in the
2311 // deferred-decls queue multiple times, and second, decls can end
2312 // up with definitions in unusual ways (e.g. by an extern inline
2313 // function acquiring a strong function redefinition). Just
2314 // ignore these cases.
2315 if (!GV->isDeclaration())
2316 continue;
2317
2318 // If this is OpenMP, check if it is legal to emit this global normally.
2319 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2320 continue;
2321
2322 // Otherwise, emit the definition and move on to the next one.
2323 EmitGlobalDefinition(D, GV);
2324
2325 // If we found out that we need to emit more decls, do that recursively.
2326 // This has the advantage that the decls are emitted in a DFS and related
2327 // ones are close together, which is convenient for testing.
2328 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2329 EmitDeferred();
2330 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())((DeferredVTables.empty() && DeferredDeclsToEmit.empty
()) ? static_cast<void> (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2330, __PRETTY_FUNCTION__))
;
2331 }
2332 }
2333}
2334
2335void CodeGenModule::EmitVTablesOpportunistically() {
2336 // Try to emit external vtables as available_externally if they have emitted
2337 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2338 // is not allowed to create new references to things that need to be emitted
2339 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2340
2341 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2342, __PRETTY_FUNCTION__))
2342 && "Only emit opportunistic vtables with optimizations")(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2342, __PRETTY_FUNCTION__))
;
2343
2344 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2345 assert(getVTables().isVTableExternal(RD) &&((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2346, __PRETTY_FUNCTION__))
2346 "This queue should only contain external vtables")((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2346, __PRETTY_FUNCTION__))
;
2347 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2348 VTables.GenerateClassData(RD);
2349 }
2350 OpportunisticVTables.clear();
2351}
2352
2353void CodeGenModule::EmitGlobalAnnotations() {
2354 if (Annotations.empty())
2355 return;
2356
2357 // Create a new global variable for the ConstantStruct in the Module.
2358 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2359 Annotations[0]->getType(), Annotations.size()), Annotations);
2360 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2361 llvm::GlobalValue::AppendingLinkage,
2362 Array, "llvm.global.annotations");
2363 gv->setSection(AnnotationSection);
2364}
2365
2366llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2367 llvm::Constant *&AStr = AnnotationStrings[Str];
2368 if (AStr)
2369 return AStr;
2370
2371 // Not found yet, create a new global.
2372 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2373 auto *gv =
2374 new llvm::GlobalVariable(getModule(), s->getType(), true,
2375 llvm::GlobalValue::PrivateLinkage, s, ".str");
2376 gv->setSection(AnnotationSection);
2377 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2378 AStr = gv;
2379 return gv;
2380}
2381
2382llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2383 SourceManager &SM = getContext().getSourceManager();
2384 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2385 if (PLoc.isValid())
2386 return EmitAnnotationString(PLoc.getFilename());
2387 return EmitAnnotationString(SM.getBufferName(Loc));
2388}
2389
2390llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2391 SourceManager &SM = getContext().getSourceManager();
2392 PresumedLoc PLoc = SM.getPresumedLoc(L);
2393 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2394 SM.getExpansionLineNumber(L);
2395 return llvm::ConstantInt::get(Int32Ty, LineNo);
2396}
2397
2398llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2399 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2400 if (Exprs.empty())
2401 return llvm::ConstantPointerNull::get(Int8PtrTy);
2402
2403 llvm::FoldingSetNodeID ID;
2404 for (Expr *E : Exprs) {
2405 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2406 }
2407 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2408 if (Lookup)
2409 return Lookup;
2410
2411 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2412 LLVMArgs.reserve(Exprs.size());
2413 ConstantEmitter ConstEmiter(*this);
2414 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2415 const auto *CE = cast<clang::ConstantExpr>(E);
2416 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2417 CE->getType());
2418 });
2419 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2420 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2421 llvm::GlobalValue::PrivateLinkage, Struct,
2422 ".args");
2423 GV->setSection(AnnotationSection);
2424 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2425 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2426
2427 Lookup = Bitcasted;
2428 return Bitcasted;
2429}
2430
2431llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2432 const AnnotateAttr *AA,
2433 SourceLocation L) {
2434 // Get the globals for file name, annotation, and the line number.
2435 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2436 *UnitGV = EmitAnnotationUnit(L),
2437 *LineNoCst = EmitAnnotationLineNo(L),
2438 *Args = EmitAnnotationArgs(AA);
2439
2440 llvm::Constant *ASZeroGV = GV;
2441 if (GV->getAddressSpace() != 0) {
2442 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2443 GV, GV->getValueType()->getPointerTo(0));
2444 }
2445
2446 // Create the ConstantStruct for the global annotation.
2447 llvm::Constant *Fields[] = {
2448 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2449 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2450 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2451 LineNoCst,
2452 Args,
2453 };
2454 return llvm::ConstantStruct::getAnon(Fields);
2455}
2456
2457void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2458 llvm::GlobalValue *GV) {
2459 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")((D->hasAttr<AnnotateAttr>() && "no annotate attribute"
) ? static_cast<void> (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2459, __PRETTY_FUNCTION__))
;
2460 // Get the struct elements for these annotations.
2461 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2462 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2463}
2464
2465bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2466 llvm::Function *Fn,
2467 SourceLocation Loc) const {
2468 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2469 // Blacklist by function name.
2470 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2471 return true;
2472 // Blacklist by location.
2473 if (Loc.isValid())
2474 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2475 // If location is unknown, this may be a compiler-generated function. Assume
2476 // it's located in the main file.
2477 auto &SM = Context.getSourceManager();
2478 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2479 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2480 }
2481 return false;
2482}
2483
2484bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2485 SourceLocation Loc, QualType Ty,
2486 StringRef Category) const {
2487 // For now globals can be blacklisted only in ASan and KASan.
2488 const SanitizerMask EnabledAsanMask =
2489 LangOpts.Sanitize.Mask &
2490 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2491 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2492 SanitizerKind::MemTag);
2493 if (!EnabledAsanMask)
2494 return false;
2495 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2496 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2497 return true;
2498 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2499 return true;
2500 // Check global type.
2501 if (!Ty.isNull()) {
2502 // Drill down the array types: if global variable of a fixed type is
2503 // blacklisted, we also don't instrument arrays of them.
2504 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2505 Ty = AT->getElementType();
2506 Ty = Ty.getCanonicalType().getUnqualifiedType();
2507 // We allow to blacklist only record types (classes, structs etc.)
2508 if (Ty->isRecordType()) {
2509 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2510 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2511 return true;
2512 }
2513 }
2514 return false;
2515}
2516
2517bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2518 StringRef Category) const {
2519 const auto &XRayFilter = getContext().getXRayFilter();
2520 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2521 auto Attr = ImbueAttr::NONE;
2522 if (Loc.isValid())
2523 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2524 if (Attr == ImbueAttr::NONE)
2525 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2526 switch (Attr) {
2527 case ImbueAttr::NONE:
2528 return false;
2529 case ImbueAttr::ALWAYS:
2530 Fn->addFnAttr("function-instrument", "xray-always");
2531 break;
2532 case ImbueAttr::ALWAYS_ARG1:
2533 Fn->addFnAttr("function-instrument", "xray-always");
2534 Fn->addFnAttr("xray-log-args", "1");
2535 break;
2536 case ImbueAttr::NEVER:
2537 Fn->addFnAttr("function-instrument", "xray-never");
2538 break;
2539 }
2540 return true;
2541}
2542
2543bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2544 // Never defer when EmitAllDecls is specified.
2545 if (LangOpts.EmitAllDecls)
2546 return true;
2547
2548 if (CodeGenOpts.KeepStaticConsts) {
2549 const auto *VD = dyn_cast<VarDecl>(Global);
2550 if (VD && VD->getType().isConstQualified() &&
2551 VD->getStorageDuration() == SD_Static)
2552 return true;
2553 }
2554
2555 return getContext().DeclMustBeEmitted(Global);
2556}
2557
2558bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2559 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2560 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2561 // Implicit template instantiations may change linkage if they are later
2562 // explicitly instantiated, so they should not be emitted eagerly.
2563 return false;
2564 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2565 // not emit them eagerly unless we sure that the function must be emitted on
2566 // the host.
2567 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2568 !LangOpts.OpenMPIsDevice &&
2569 !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2570 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2571 return false;
2572 }
2573 if (const auto *VD = dyn_cast<VarDecl>(Global))
2574 if (Context.getInlineVariableDefinitionKind(VD) ==
2575 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2576 // A definition of an inline constexpr static data member may change
2577 // linkage later if it's redeclared outside the class.
2578 return false;
2579 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2580 // codegen for global variables, because they may be marked as threadprivate.
2581 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2582 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2583 !isTypeConstant(Global->getType(), false) &&
2584 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2585 return false;
2586
2587 return true;
2588}
2589
2590ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2591 StringRef Name = getMangledName(GD);
2592
2593 // The UUID descriptor should be pointer aligned.
2594 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2595
2596 // Look for an existing global.
2597 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2598 return ConstantAddress(GV, Alignment);
2599
2600 ConstantEmitter Emitter(*this);
2601 llvm::Constant *Init;
2602
2603 APValue &V = GD->getAsAPValue();
2604 if (!V.isAbsent()) {
2605 // If possible, emit the APValue version of the initializer. In particular,
2606 // this gets the type of the constant right.
2607 Init = Emitter.emitForInitializer(
2608 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2609 } else {
2610 // As a fallback, directly construct the constant.
2611 // FIXME: This may get padding wrong under esoteric struct layout rules.
2612 // MSVC appears to create a complete type 'struct __s_GUID' that it
2613 // presumably uses to represent these constants.
2614 MSGuidDecl::Parts Parts = GD->getParts();
2615 llvm::Constant *Fields[4] = {
2616 llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2617 llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2618 llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2619 llvm::ConstantDataArray::getRaw(
2620 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2621 Int8Ty)};
2622 Init = llvm::ConstantStruct::getAnon(Fields);
2623 }
2624
2625 auto *GV = new llvm::GlobalVariable(
2626 getModule(), Init->getType(),
2627 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2628 if (supportsCOMDAT())
2629 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2630 setDSOLocal(GV);
2631
2632 llvm::Constant *Addr = GV;
2633 if (!V.isAbsent()) {
2634 Emitter.finalize(GV);
2635 } else {
2636 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2637 Addr = llvm::ConstantExpr::getBitCast(
2638 GV, Ty->getPointerTo(GV->getAddressSpace()));
2639 }
2640 return ConstantAddress(Addr, Alignment);
2641}
2642
2643ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2644 const TemplateParamObjectDecl *TPO) {
2645 StringRef Name = getMangledName(TPO);
2646 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2647
2648 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2649 return ConstantAddress(GV, Alignment);
2650
2651 ConstantEmitter Emitter(*this);
2652 llvm::Constant *Init = Emitter.emitForInitializer(
2653 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2654
2655 if (!Init) {
2656 ErrorUnsupported(TPO, "template parameter object");
2657 return ConstantAddress::invalid();
2658 }
2659
2660 auto *GV = new llvm::GlobalVariable(
2661 getModule(), Init->getType(),
2662 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2663 if (supportsCOMDAT())
2664 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2665 Emitter.finalize(GV);
2666
2667 return ConstantAddress(GV, Alignment);
2668}
2669
2670ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2671 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2672 assert(AA && "No alias?")((AA && "No alias?") ? static_cast<void> (0) : __assert_fail
("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2672, __PRETTY_FUNCTION__))
;
2673
2674 CharUnits Alignment = getContext().getDeclAlign(VD);
2675 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2676
2677 // See if there is already something with the target's name in the module.
2678 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2679 if (Entry) {
2680 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2681 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2682 return ConstantAddress(Ptr, Alignment);
2683 }
2684
2685 llvm::Constant *Aliasee;
2686 if (isa<llvm::FunctionType>(DeclTy))
2687 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2688 GlobalDecl(cast<FunctionDecl>(VD)),
2689 /*ForVTable=*/false);
2690 else
2691 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2692 llvm::PointerType::getUnqual(DeclTy),
2693 nullptr);
2694
2695 auto *F = cast<llvm::GlobalValue>(Aliasee);
2696 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2697 WeakRefReferences.insert(F);
2698
2699 return ConstantAddress(Aliasee, Alignment);
2700}
2701
2702void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2703 const auto *Global = cast<ValueDecl>(GD.getDecl());
2704
2705 // Weak references don't produce any output by themselves.
2706 if (Global->hasAttr<WeakRefAttr>())
2707 return;
2708
2709 // If this is an alias definition (which otherwise looks like a declaration)
2710 // emit it now.
2711 if (Global->hasAttr<AliasAttr>())
2712 return EmitAliasDefinition(GD);
2713
2714 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2715 if (Global->hasAttr<IFuncAttr>())
2716 return emitIFuncDefinition(GD);
2717
2718 // If this is a cpu_dispatch multiversion function, emit the resolver.
2719 if (Global->hasAttr<CPUDispatchAttr>())
2720 return emitCPUDispatchDefinition(GD);
2721
2722 // If this is CUDA, be selective about which declarations we emit.
2723 if (LangOpts.CUDA) {
2724 if (LangOpts.CUDAIsDevice) {
2725 if (!Global->hasAttr<CUDADeviceAttr>() &&
2726 !Global->hasAttr<CUDAGlobalAttr>() &&
2727 !Global->hasAttr<CUDAConstantAttr>() &&
2728 !Global->hasAttr<CUDASharedAttr>() &&
2729 !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2730 !Global->getType()->isCUDADeviceBuiltinTextureType())
2731 return;
2732 } else {
2733 // We need to emit host-side 'shadows' for all global
2734 // device-side variables because the CUDA runtime needs their
2735 // size and host-side address in order to provide access to
2736 // their device-side incarnations.
2737
2738 // So device-only functions are the only things we skip.
2739 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2740 Global->hasAttr<CUDADeviceAttr>())
2741 return;
2742
2743 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2744, __PRETTY_FUNCTION__))
2744 "Expected Variable or Function")(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2744, __PRETTY_FUNCTION__))
;
2745 }
2746 }
2747
2748 if (LangOpts.OpenMP) {
2749 // If this is OpenMP, check if it is legal to emit this global normally.
2750 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2751 return;
2752 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2753 if (MustBeEmitted(Global))
2754 EmitOMPDeclareReduction(DRD);
2755 return;
2756 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2757 if (MustBeEmitted(Global))
2758 EmitOMPDeclareMapper(DMD);
2759 return;
2760 }
2761 }
2762
2763 // Ignore declarations, they will be emitted on their first use.
2764 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2765 // Forward declarations are emitted lazily on first use.
2766 if (!FD->doesThisDeclarationHaveABody()) {
2767 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2768 return;
2769
2770 StringRef MangledName = getMangledName(GD);
2771
2772 // Compute the function info and LLVM type.
2773 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2774 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2775
2776 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2777 /*DontDefer=*/false);
2778 return;
2779 }
2780 } else {
2781 const auto *VD = cast<VarDecl>(Global);
2782 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")((VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2782, __PRETTY_FUNCTION__))
;
2783 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2784 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2785 if (LangOpts.OpenMP) {
2786 // Emit declaration of the must-be-emitted declare target variable.
2787 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2788 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2789 bool UnifiedMemoryEnabled =
2790 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2791 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2792 !UnifiedMemoryEnabled) {
2793 (void)GetAddrOfGlobalVar(VD);
2794 } else {
2795 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2798, __PRETTY_FUNCTION__))
2796 (*Res == OMPDeclareTargetDeclAttr::MT_To &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2798, __PRETTY_FUNCTION__))
2797 UnifiedMemoryEnabled)) &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2798, __PRETTY_FUNCTION__))
2798 "Link clause or to clause with unified memory expected.")((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2798, __PRETTY_FUNCTION__))
;
2799 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2800 }
2801
2802 return;
2803 }
2804 }
2805 // If this declaration may have caused an inline variable definition to
2806 // change linkage, make sure that it's emitted.
2807 if (Context.getInlineVariableDefinitionKind(VD) ==
2808 ASTContext::InlineVariableDefinitionKind::Strong)
2809 GetAddrOfGlobalVar(VD);
2810 return;
2811 }
2812 }
2813
2814 // Defer code generation to first use when possible, e.g. if this is an inline
2815 // function. If the global must always be emitted, do it eagerly if possible
2816 // to benefit from cache locality.
2817 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2818 // Emit the definition if it can't be deferred.
2819 EmitGlobalDefinition(GD);
2820 return;
2821 }
2822
2823 // If we're deferring emission of a C++ variable with an
2824 // initializer, remember the order in which it appeared in the file.
2825 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2826 cast<VarDecl>(Global)->hasInit()) {
2827 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2828 CXXGlobalInits.push_back(nullptr);
2829 }
2830
2831 StringRef MangledName = getMangledName(GD);
2832 if (GetGlobalValue(MangledName) != nullptr) {
2833 // The value has already been used and should therefore be emitted.
2834 addDeferredDeclToEmit(GD);
2835 } else if (MustBeEmitted(Global)) {
2836 // The value must be emitted, but cannot be emitted eagerly.
2837 assert(!MayBeEmittedEagerly(Global))((!MayBeEmittedEagerly(Global)) ? static_cast<void> (0)
: __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 2837, __PRETTY_FUNCTION__))
;
2838 addDeferredDeclToEmit(GD);
2839 } else {
2840 // Otherwise, remember that we saw a deferred decl with this name. The
2841 // first use of the mangled name will cause it to move into
2842 // DeferredDeclsToEmit.
2843 DeferredDecls[MangledName] = GD;
2844 }
2845}
2846
2847// Check if T is a class type with a destructor that's not dllimport.
2848static bool HasNonDllImportDtor(QualType T) {
2849 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2850 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2851 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2852 return true;
2853
2854 return false;
2855}
2856
2857namespace {
2858 struct FunctionIsDirectlyRecursive
2859 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2860 const StringRef Name;
2861 const Builtin::Context &BI;
2862 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2863 : Name(N), BI(C) {}
2864
2865 bool VisitCallExpr(const CallExpr *E) {
2866 const FunctionDecl *FD = E->getDirectCallee();
2867 if (!FD)
2868 return false;
2869 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2870 if (Attr && Name == Attr->getLabel())
2871 return true;
2872 unsigned BuiltinID = FD->getBuiltinID();
2873 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2874 return false;
2875 StringRef BuiltinName = BI.getName(BuiltinID);
2876 if (BuiltinName.startswith("__builtin_") &&
2877 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2878 return true;
2879 }
2880 return false;
2881 }
2882
2883 bool VisitStmt(const Stmt *S) {
2884 for (const Stmt *Child : S->children())
2885 if (Child && this->Visit(Child))
2886 return true;
2887 return false;
2888 }
2889 };
2890
2891 // Make sure we're not referencing non-imported vars or functions.
2892 struct DLLImportFunctionVisitor
2893 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2894 bool SafeToInline = true;
2895
2896 bool shouldVisitImplicitCode() const { return true; }
2897
2898 bool VisitVarDecl(VarDecl *VD) {
2899 if (VD->getTLSKind()) {
2900 // A thread-local variable cannot be imported.
2901 SafeToInline = false;
2902 return SafeToInline;
2903 }
2904
2905 // A variable definition might imply a destructor call.
2906 if (VD->isThisDeclarationADefinition())
2907 SafeToInline = !HasNonDllImportDtor(VD->getType());
2908
2909 return SafeToInline;
2910 }
2911
2912 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2913 if (const auto *D = E->getTemporary()->getDestructor())
2914 SafeToInline = D->hasAttr<DLLImportAttr>();
2915 return SafeToInline;
2916 }
2917
2918 bool VisitDeclRefExpr(DeclRefExpr *E) {
2919 ValueDecl *VD = E->getDecl();
2920 if (isa<FunctionDecl>(VD))
2921 SafeToInline = VD->hasAttr<DLLImportAttr>();
2922 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2923 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2924 return SafeToInline;
2925 }
2926
2927 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2928 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2929 return SafeToInline;
2930 }
2931
2932 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2933 CXXMethodDecl *M = E->getMethodDecl();
2934 if (!M) {
2935 // Call through a pointer to member function. This is safe to inline.
2936 SafeToInline = true;
2937 } else {
2938 SafeToInline = M->hasAttr<DLLImportAttr>();
2939 }
2940 return SafeToInline;
2941 }
2942
2943 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2944 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2945 return SafeToInline;
2946 }
2947
2948 bool VisitCXXNewExpr(CXXNewExpr *E) {
2949 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2950 return SafeToInline;
2951 }
2952 };
2953}
2954
2955// isTriviallyRecursive - Check if this function calls another
2956// decl that, because of the asm attribute or the other decl being a builtin,
2957// ends up pointing to itself.
2958bool
2959CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2960 StringRef Name;
2961 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2962 // asm labels are a special kind of mangling we have to support.
2963 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2964 if (!Attr)
2965 return false;
2966 Name = Attr->getLabel();
2967 } else {
2968 Name = FD->getName();
2969 }
2970
2971 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2972 const Stmt *Body = FD->getBody();
2973 return Body ? Walker.Visit(Body) : false;
2974}
2975
2976bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2977 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2978 return true;
2979 const auto *F = cast<FunctionDecl>(GD.getDecl());
2980 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2981 return false;
2982
2983 if (F->hasAttr<DLLImportAttr>()) {
2984 // Check whether it would be safe to inline this dllimport function.
2985 DLLImportFunctionVisitor Visitor;
2986 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2987 if (!Visitor.SafeToInline)
2988 return false;
2989
2990 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2991 // Implicit destructor invocations aren't captured in the AST, so the
2992 // check above can't see them. Check for them manually here.
2993 for (const Decl *Member : Dtor->getParent()->decls())
2994 if (isa<FieldDecl>(Member))
2995 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2996 return false;
2997 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2998 if (HasNonDllImportDtor(B.getType()))
2999 return false;
3000 }
3001 }
3002
3003 // PR9614. Avoid cases where the source code is lying to us. An available
3004 // externally function should have an equivalent function somewhere else,
3005 // but a function that calls itself through asm label/`__builtin_` trickery is
3006 // clearly not equivalent to the real implementation.
3007 // This happens in glibc's btowc and in some configure checks.
3008 return !isTriviallyRecursive(F);
3009}
3010
3011bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3012 return CodeGenOpts.OptimizationLevel > 0;
3013}
3014
3015void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3016 llvm::GlobalValue *GV) {
3017 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3018
3019 if (FD->isCPUSpecificMultiVersion()) {
3020 auto *Spec = FD->getAttr<CPUSpecificAttr>();
3021 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3022 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3023 // Requires multiple emits.
3024 } else
3025 EmitGlobalFunctionDefinition(GD, GV);
3026}
3027
3028void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3029 const auto *D = cast<ValueDecl>(GD.getDecl());
3030
3031 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3032 Context.getSourceManager(),
3033 "Generating code for declaration");
3034
3035 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3036 // At -O0, don't generate IR for functions with available_externally
3037 // linkage.
3038 if (!shouldEmitFunction(GD))
3039 return;
3040
3041 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3042 std::string Name;
3043 llvm::raw_string_ostream OS(Name);
3044 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3045 /*Qualified=*/true);
3046 return Name;
3047 });
3048
3049 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3050 // Make sure to emit the definition(s) before we emit the thunks.
3051 // This is necessary for the generation of certain thunks.
3052 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3053 ABI->emitCXXStructor(GD);
3054 else if (FD->isMultiVersion())
3055 EmitMultiVersionFunctionDefinition(GD, GV);
3056 else
3057 EmitGlobalFunctionDefinition(GD, GV);
3058
3059 if (Method->isVirtual())
3060 getVTables().EmitThunks(GD);
3061
3062 return;
3063 }
3064
3065 if (FD->isMultiVersion())
3066 return EmitMultiVersionFunctionDefinition(GD, GV);
3067 return EmitGlobalFunctionDefinition(GD, GV);
3068 }
3069
3070 if (const auto *VD = dyn_cast<VarDecl>(D))
3071 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3072
3073 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3073)
;
3074}
3075
3076static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3077 llvm::Function *NewFn);
3078
3079static unsigned
3080TargetMVPriority(const TargetInfo &TI,
3081 const CodeGenFunction::MultiVersionResolverOption &RO) {
3082 unsigned Priority = 0;
3083 for (StringRef Feat : RO.Conditions.Features)
3084 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3085
3086 if (!RO.Conditions.Architecture.empty())
3087 Priority = std::max(
3088 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3089 return Priority;
3090}
3091
3092void CodeGenModule::emitMultiVersionFunctions() {
3093 for (GlobalDecl GD : MultiVersionFuncs) {
3094 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3095 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3096 getContext().forEachMultiversionedFunctionVersion(
3097 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3098 GlobalDecl CurGD{
3099 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3100 StringRef MangledName = getMangledName(CurGD);
3101 llvm::Constant *Func = GetGlobalValue(MangledName);
3102 if (!Func) {
3103 if (CurFD->isDefined()) {
3104 EmitGlobalFunctionDefinition(CurGD, nullptr);
3105 Func = GetGlobalValue(MangledName);
3106 } else {
3107 const CGFunctionInfo &FI =
3108 getTypes().arrangeGlobalDeclaration(GD);
3109 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3110 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3111 /*DontDefer=*/false, ForDefinition);
3112 }
3113 assert(Func && "This should have just been created")((Func && "This should have just been created") ? static_cast
<void> (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3113, __PRETTY_FUNCTION__))
;
3114 }
3115
3116 const auto *TA = CurFD->getAttr<TargetAttr>();
3117 llvm::SmallVector<StringRef, 8> Feats;
3118 TA->getAddedFeatures(Feats);
3119
3120 Options.emplace_back(cast<llvm::Function>(Func),
3121 TA->getArchitecture(), Feats);
3122 });
3123
3124 llvm::Function *ResolverFunc;
3125 const TargetInfo &TI = getTarget();
3126
3127 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3128 ResolverFunc = cast<llvm::Function>(
3129 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3130 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3131 } else {
3132 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3133 }
3134
3135 if (supportsCOMDAT())
3136 ResolverFunc->setComdat(
3137 getModule().getOrInsertComdat(ResolverFunc->getName()));
3138
3139 llvm::stable_sort(
3140 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3141 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3142 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3143 });
3144 CodeGenFunction CGF(*this);
3145 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3146 }
3147}
3148
3149void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3150 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3151 assert(FD && "Not a FunctionDecl?")((FD && "Not a FunctionDecl?") ? static_cast<void>
(0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3151, __PRETTY_FUNCTION__))
;
3152 const auto *DD = FD->getAttr<CPUDispatchAttr>();
3153 assert(DD && "Not a cpu_dispatch Function?")((DD && "Not a cpu_dispatch Function?") ? static_cast
<void> (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3153, __PRETTY_FUNCTION__))
;
3154 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3155
3156 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3157 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3158 DeclTy = getTypes().GetFunctionType(FInfo);
3159 }
3160
3161 StringRef ResolverName = getMangledName(GD);
3162
3163 llvm::Type *ResolverType;
3164 GlobalDecl ResolverGD;
3165 if (getTarget().supportsIFunc())
3166 ResolverType = llvm::FunctionType::get(
3167 llvm::PointerType::get(DeclTy,
3168 Context.getTargetAddressSpace(FD->getType())),
3169 false);
3170 else {
3171 ResolverType = DeclTy;
3172 ResolverGD = GD;
3173 }
3174
3175 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3176 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3177 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3178 if (supportsCOMDAT())
3179 ResolverFunc->setComdat(
3180 getModule().getOrInsertComdat(ResolverFunc->getName()));
3181
3182 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3183 const TargetInfo &Target = getTarget();
3184 unsigned Index = 0;
3185 for (const IdentifierInfo *II : DD->cpus()) {
3186 // Get the name of the target function so we can look it up/create it.
3187 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3188 getCPUSpecificMangling(*this, II->getName());
3189
3190 llvm::Constant *Func = GetGlobalValue(MangledName);
3191
3192 if (!Func) {
3193 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3194 if (ExistingDecl.getDecl() &&
3195 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3196 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3197 Func = GetGlobalValue(MangledName);
3198 } else {
3199 if (!ExistingDecl.getDecl())
3200 ExistingDecl = GD.getWithMultiVersionIndex(Index);
3201
3202 Func = GetOrCreateLLVMFunction(
3203 MangledName, DeclTy, ExistingDecl,
3204 /*ForVTable=*/false, /*DontDefer=*/true,
3205 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3206 }
3207 }
3208
3209 llvm::SmallVector<StringRef, 32> Features;
3210 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3211 llvm::transform(Features, Features.begin(),
3212 [](StringRef Str) { return Str.substr(1); });
3213 Features.erase(std::remove_if(
3214 Features.begin(), Features.end(), [&Target](StringRef Feat) {
3215 return !Target.validateCpuSupports(Feat);
3216 }), Features.end());
3217 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3218 ++Index;
3219 }
3220
3221 llvm::sort(
3222 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3223 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3224 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3225 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3226 });
3227
3228 // If the list contains multiple 'default' versions, such as when it contains
3229 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3230 // always run on at least a 'pentium'). We do this by deleting the 'least
3231 // advanced' (read, lowest mangling letter).
3232 while (Options.size() > 1 &&
3233 CodeGenFunction::GetX86CpuSupportsMask(
3234 (Options.end() - 2)->Conditions.Features) == 0) {
3235 StringRef LHSName = (Options.end() - 2)->Function->getName();
3236 StringRef RHSName = (Options.end() - 1)->Function->getName();
3237 if (LHSName.compare(RHSName) < 0)
3238 Options.erase(Options.end() - 2);
3239 else
3240 Options.erase(Options.end() - 1);
3241 }
3242
3243 CodeGenFunction CGF(*this);
3244 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3245
3246 if (getTarget().supportsIFunc()) {
3247 std::string AliasName = getMangledNameImpl(
3248 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3249 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3250 if (!AliasFunc) {
3251 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3252 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3253 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3254 auto *GA = llvm::GlobalAlias::create(
3255 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3256 GA->setLinkage(llvm::Function::WeakODRLinkage);
3257 SetCommonAttributes(GD, GA);
3258 }
3259 }
3260}
3261
3262/// If a dispatcher for the specified mangled name is not in the module, create
3263/// and return an llvm Function with the specified type.
3264llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3265 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3266 std::string MangledName =
3267 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3268
3269 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3270 // a separate resolver).
3271 std::string ResolverName = MangledName;
3272 if (getTarget().supportsIFunc())
3273 ResolverName += ".ifunc";
3274 else if (FD->isTargetMultiVersion())
3275 ResolverName += ".resolver";
3276
3277 // If this already exists, just return that one.
3278 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3279 return ResolverGV;
3280
3281 // Since this is the first time we've created this IFunc, make sure
3282 // that we put this multiversioned function into the list to be
3283 // replaced later if necessary (target multiversioning only).
3284 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3285 MultiVersionFuncs.push_back(GD);
3286
3287 if (getTarget().supportsIFunc()) {
3288 llvm::Type *ResolverType = llvm::FunctionType::get(
3289 llvm::PointerType::get(
3290 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3291 false);
3292 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3293 MangledName + ".resolver", ResolverType, GlobalDecl{},
3294 /*ForVTable=*/false);
3295 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3296 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3297 GIF->setName(ResolverName);
3298 SetCommonAttributes(FD, GIF);
3299
3300 return GIF;
3301 }
3302
3303 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3304 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3305 assert(isa<llvm::GlobalValue>(Resolver) &&((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3306, __PRETTY_FUNCTION__))
3306 "Resolver should be created for the first time")((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3306, __PRETTY_FUNCTION__))
;
3307 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3308 return Resolver;
3309}
3310
3311/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3312/// module, create and return an llvm Function with the specified type. If there
3313/// is something in the module with the specified name, return it potentially
3314/// bitcasted to the right type.
3315///
3316/// If D is non-null, it specifies a decl that correspond to this. This is used
3317/// to set the attributes on the function when it is first created.
3318llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3319 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3320 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3321 ForDefinition_t IsForDefinition) {
3322 const Decl *D = GD.getDecl();
3323
3324 // Any attempts to use a MultiVersion function should result in retrieving
3325 // the iFunc instead. Name Mangling will handle the rest of the changes.
3326 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3327 // For the device mark the function as one that should be emitted.
3328 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3329 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3330 !DontDefer && !IsForDefinition) {
3331 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3332 GlobalDecl GDDef;
3333 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3334 GDDef = GlobalDecl(CD, GD.getCtorType());
3335 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3336 GDDef = GlobalDecl(DD, GD.getDtorType());
3337 else
3338 GDDef = GlobalDecl(FDDef);
3339 EmitGlobal(GDDef);
3340 }
3341 }
3342
3343 if (FD->isMultiVersion()) {
3344 if (FD->hasAttr<TargetAttr>())
3345 UpdateMultiVersionNames(GD, FD);
3346 if (!IsForDefinition)
3347 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3348 }
3349 }
3350
3351 // Lookup the entry, lazily creating it if necessary.
3352 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3353 if (Entry) {
3354 if (WeakRefReferences.erase(Entry)) {
3355 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3356 if (FD && !FD->hasAttr<WeakAttr>())
3357 Entry->setLinkage(llvm::Function::ExternalLinkage);
3358 }
3359
3360 // Handle dropped DLL attributes.
3361 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3362 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3363 setDSOLocal(Entry);
3364 }
3365
3366 // If there are two attempts to define the same mangled name, issue an
3367 // error.
3368 if (IsForDefinition && !Entry->isDeclaration()) {
3369 GlobalDecl OtherGD;
3370 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3371 // to make sure that we issue an error only once.
3372 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3373 (GD.getCanonicalDecl().getDecl() !=
3374 OtherGD.getCanonicalDecl().getDecl()) &&
3375 DiagnosedConflictingDefinitions.insert(GD).second) {
3376 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3377 << MangledName;
3378 getDiags().Report(OtherGD.getDecl()->getLocation(),
3379 diag::note_previous_definition);
3380 }
3381 }
3382
3383 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3384 (Entry->getValueType() == Ty)) {
3385 return Entry;
3386 }
3387
3388 // Make sure the result is of the correct type.
3389 // (If function is requested for a definition, we always need to create a new
3390 // function, not just return a bitcast.)
3391 if (!IsForDefinition)
3392 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3393 }
3394
3395 // This function doesn't have a complete type (for example, the return
3396 // type is an incomplete struct). Use a fake type instead, and make
3397 // sure not to try to set attributes.
3398 bool IsIncompleteFunction = false;
3399
3400 llvm::FunctionType *FTy;
3401 if (isa<llvm::FunctionType>(Ty)) {
3402 FTy = cast<llvm::FunctionType>(Ty);
3403 } else {
3404 FTy = llvm::FunctionType::get(VoidTy, false);
3405 IsIncompleteFunction = true;
3406 }
3407
3408 llvm::Function *F =
3409 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3410 Entry ? StringRef() : MangledName, &getModule());
3411
3412 // If we already created a function with the same mangled name (but different
3413 // type) before, take its name and add it to the list of functions to be
3414 // replaced with F at the end of CodeGen.
3415 //
3416 // This happens if there is a prototype for a function (e.g. "int f()") and
3417 // then a definition of a different type (e.g. "int f(int x)").
3418 if (Entry) {
3419 F->takeName(Entry);
3420
3421 // This might be an implementation of a function without a prototype, in
3422 // which case, try to do special replacement of calls which match the new
3423 // prototype. The really key thing here is that we also potentially drop
3424 // arguments from the call site so as to make a direct call, which makes the
3425 // inliner happier and suppresses a number of optimizer warnings (!) about
3426 // dropping arguments.
3427 if (!Entry->use_empty()) {
3428 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3429 Entry->removeDeadConstantUsers();
3430 }
3431
3432 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3433 F, Entry->getValueType()->getPointerTo());
3434 addGlobalValReplacement(Entry, BC);
3435 }
3436
3437 assert(F->getName() == MangledName && "name was uniqued!")((F->getName() == MangledName && "name was uniqued!"
) ? static_cast<void> (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3437, __PRETTY_FUNCTION__))
;
3438 if (D)
3439 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3440 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3441 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3442 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3443 }
3444
3445 if (!DontDefer) {
3446 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3447 // each other bottoming out with the base dtor. Therefore we emit non-base
3448 // dtors on usage, even if there is no dtor definition in the TU.
3449 if (D && isa<CXXDestructorDecl>(D) &&
3450 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3451 GD.getDtorType()))
3452 addDeferredDeclToEmit(GD);
3453
3454 // This is the first use or definition of a mangled name. If there is a
3455 // deferred decl with this name, remember that we need to emit it at the end
3456 // of the file.
3457 auto DDI = DeferredDecls.find(MangledName);
3458 if (DDI != DeferredDecls.end()) {
3459 // Move the potentially referenced deferred decl to the
3460 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3461 // don't need it anymore).
3462 addDeferredDeclToEmit(DDI->second);
3463 DeferredDecls.erase(DDI);
3464
3465 // Otherwise, there are cases we have to worry about where we're
3466 // using a declaration for which we must emit a definition but where
3467 // we might not find a top-level definition:
3468 // - member functions defined inline in their classes
3469 // - friend functions defined inline in some class
3470 // - special member functions with implicit definitions
3471 // If we ever change our AST traversal to walk into class methods,
3472 // this will be unnecessary.
3473 //
3474 // We also don't emit a definition for a function if it's going to be an
3475 // entry in a vtable, unless it's already marked as used.
3476 } else if (getLangOpts().CPlusPlus && D) {
3477 // Look for a declaration that's lexically in a record.
3478 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3479 FD = FD->getPreviousDecl()) {
3480 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3481 if (FD->doesThisDeclarationHaveABody()) {
3482 addDeferredDeclToEmit(GD.getWithDecl(FD));
3483 break;
3484 }
3485 }
3486 }
3487 }
3488 }
3489
3490 // Make sure the result is of the requested type.
3491 if (!IsIncompleteFunction) {
3492 assert(F->getFunctionType() == Ty)((F->getFunctionType() == Ty) ? static_cast<void> (0
) : __assert_fail ("F->getFunctionType() == Ty", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3492, __PRETTY_FUNCTION__))
;
3493 return F;
3494 }
3495
3496 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3497 return llvm::ConstantExpr::getBitCast(F, PTy);
3498}
3499
3500/// GetAddrOfFunction - Return the address of the given function. If Ty is
3501/// non-null, then this function will use the specified type if it has to
3502/// create it (this occurs when we see a definition of the function).
3503llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3504 llvm::Type *Ty,
3505 bool ForVTable,
3506 bool DontDefer,
3507 ForDefinition_t IsForDefinition) {
3508 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&((!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
"consteval function should never be emitted") ? static_cast<
void> (0) : __assert_fail ("!cast<FunctionDecl>(GD.getDecl())->isConsteval() && \"consteval function should never be emitted\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3509, __PRETTY_FUNCTION__))
3509 "consteval function should never be emitted")((!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
"consteval function should never be emitted") ? static_cast<
void> (0) : __assert_fail ("!cast<FunctionDecl>(GD.getDecl())->isConsteval() && \"consteval function should never be emitted\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3509, __PRETTY_FUNCTION__))
;
3510 // If there was no specific requested type, just convert it now.
3511 if (!Ty) {
3512 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3513 Ty = getTypes().ConvertType(FD->getType());
3514 }
3515
3516 // Devirtualized destructor calls may come through here instead of via
3517 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3518 // of the complete destructor when necessary.
3519 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3520 if (getTarget().getCXXABI().isMicrosoft() &&
3521 GD.getDtorType() == Dtor_Complete &&
3522 DD->getParent()->getNumVBases() == 0)
3523 GD = GlobalDecl(DD, Dtor_Base);
3524 }
3525
3526 StringRef MangledName = getMangledName(GD);
3527 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3528 /*IsThunk=*/false, llvm::AttributeList(),
3529 IsForDefinition);
3530}
3531
3532static const FunctionDecl *
3533GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3534 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3535 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3536
3537 IdentifierInfo &CII = C.Idents.get(Name);
3538 for (const auto &Result : DC->lookup(&CII))
3539 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3540 return FD;
3541
3542 if (!C.getLangOpts().CPlusPlus)
3543 return nullptr;
3544
3545 // Demangle the premangled name from getTerminateFn()
3546 IdentifierInfo &CXXII =
3547 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3548 ? C.Idents.get("terminate")
3549 : C.Idents.get(Name);
3550
3551 for (const auto &N : {"__cxxabiv1", "std"}) {
3552 IdentifierInfo &NS = C.Idents.get(N);
3553 for (const auto &Result : DC->lookup(&NS)) {
3554 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3555 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3556 for (const auto &Result : LSD->lookup(&NS))
3557 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3558 break;
3559
3560 if (ND)
3561 for (const auto &Result : ND->lookup(&CXXII))
3562 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3563 return FD;
3564 }
3565 }
3566
3567 return nullptr;
3568}
3569
3570/// CreateRuntimeFunction - Create a new runtime function with the specified
3571/// type and name.
3572llvm::FunctionCallee
3573CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3574 llvm::AttributeList ExtraAttrs, bool Local,
3575 bool AssumeConvergent) {
3576 if (AssumeConvergent) {
3577 ExtraAttrs =
3578 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3579 llvm::Attribute::Convergent);
3580 }
3581
3582 llvm::Constant *C =
3583 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3584 /*DontDefer=*/false, /*IsThunk=*/false,
3585 ExtraAttrs);
3586
3587 if (auto *F = dyn_cast<llvm::Function>(C)) {
3588 if (F->empty()) {
3589 F->setCallingConv(getRuntimeCC());
3590
3591 // In Windows Itanium environments, try to mark runtime functions
3592 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3593 // will link their standard library statically or dynamically. Marking
3594 // functions imported when they are not imported can cause linker errors
3595 // and warnings.
3596 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3597 !getCodeGenOpts().LTOVisibilityPublicStd) {
3598 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3599 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3600 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3601 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3602 }
3603 }
3604 setDSOLocal(F);
3605 }
3606 }
3607
3608 return {FTy, C};
3609}
3610
3611/// isTypeConstant - Determine whether an object of this type can be emitted
3612/// as a constant.
3613///
3614/// If ExcludeCtor is true, the duration when the object's constructor runs
3615/// will not be considered. The caller will need to verify that the object is
3616/// not written to during its construction.
3617bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3618 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3619 return false;
3620
3621 if (Context.getLangOpts().CPlusPlus) {
3622 if (const CXXRecordDecl *Record
3623 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3624 return ExcludeCtor && !Record->hasMutableFields() &&
3625 Record->hasTrivialDestructor();
3626 }
3627
3628 return true;
3629}
3630
3631/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3632/// create and return an llvm GlobalVariable with the specified type. If there
3633/// is something in the module with the specified name, return it potentially
3634/// bitcasted to the right type.
3635///
3636/// If D is non-null, it specifies a decl that correspond to this. This is used
3637/// to set the attributes on the global when it is first created.
3638///
3639/// If IsForDefinition is true, it is guaranteed that an actual global with
3640/// type Ty will be returned, not conversion of a variable with the same
3641/// mangled name but some other type.
3642llvm::Constant *
3643CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3644 llvm::PointerType *Ty,
3645 const VarDecl *D,
3646 ForDefinition_t IsForDefinition) {
3647 // Lookup the entry, lazily creating it if necessary.
3648 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3649 if (Entry) {
3650 if (WeakRefReferences.erase(Entry)) {
3651 if (D && !D->hasAttr<WeakAttr>())
3652 Entry->setLinkage(llvm::Function::ExternalLinkage);
3653 }
3654
3655 // Handle dropped DLL attributes.
3656 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3657 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3658
3659 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3660 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3661
3662 if (Entry->getType() == Ty)
3663 return Entry;
3664
3665 // If there are two attempts to define the same mangled name, issue an
3666 // error.
3667 if (IsForDefinition && !Entry->isDeclaration()) {
3668 GlobalDecl OtherGD;
3669 const VarDecl *OtherD;
3670
3671 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3672 // to make sure that we issue an error only once.
3673 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3674 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3675 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3676 OtherD->hasInit() &&
3677 DiagnosedConflictingDefinitions.insert(D).second) {
3678 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3679 << MangledName;
3680 getDiags().Report(OtherGD.getDecl()->getLocation(),
3681 diag::note_previous_definition);
3682 }
3683 }
3684
3685 // Make sure the result is of the correct type.
3686 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3687 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3688
3689 // (If global is requested for a definition, we always need to create a new
3690 // global, not just return a bitcast.)
3691 if (!IsForDefinition)
3692 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3693 }
3694
3695 auto AddrSpace = GetGlobalVarAddressSpace(D);
3696 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3697
3698 auto *GV = new llvm::GlobalVariable(
3699 getModule(), Ty->getElementType(), false,
3700 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3701 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3702
3703 // If we already created a global with the same mangled name (but different
3704 // type) before, take its name and remove it from its parent.
3705 if (Entry) {
3706 GV->takeName(Entry);
3707
3708 if (!Entry->use_empty()) {
3709 llvm::Constant *NewPtrForOldDecl =
3710 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3711 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3712 }
3713
3714 Entry->eraseFromParent();
3715 }
3716
3717 // This is the first use or definition of a mangled name. If there is a
3718 // deferred decl with this name, remember that we need to emit it at the end
3719 // of the file.
3720 auto DDI = DeferredDecls.find(MangledName);
3721 if (DDI != DeferredDecls.end()) {
3722 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3723 // list, and remove it from DeferredDecls (since we don't need it anymore).
3724 addDeferredDeclToEmit(DDI->second);
3725 DeferredDecls.erase(DDI);
3726 }
3727
3728 // Handle things which are present even on external declarations.
3729 if (D) {
3730 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3731 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3732
3733 // FIXME: This code is overly simple and should be merged with other global
3734 // handling.
3735 GV->setConstant(isTypeConstant(D->getType(), false));
3736
3737 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3738
3739 setLinkageForGV(GV, D);
3740
3741 if (D->getTLSKind()) {
3742 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3743 CXXThreadLocals.push_back(D);
3744 setTLSMode(GV, *D);
3745 }
3746
3747 setGVProperties(GV, D);
3748
3749 // If required by the ABI, treat declarations of static data members with
3750 // inline initializers as definitions.
3751 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3752 EmitGlobalVarDefinition(D);
3753 }
3754
3755 // Emit section information for extern variables.
3756 if (D->hasExternalStorage()) {
3757 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3758 GV->setSection(SA->getName());
3759 }
3760
3761 // Handle XCore specific ABI requirements.
3762 if (getTriple().getArch() == llvm::Triple::xcore &&
3763 D->getLanguageLinkage() == CLanguageLinkage &&
3764 D->getType().isConstant(Context) &&
3765 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3766 GV->setSection(".cp.rodata");
3767
3768 // Check if we a have a const declaration with an initializer, we may be
3769 // able to emit it as available_externally to expose it's value to the
3770 // optimizer.
3771 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3772 D->getType().isConstQualified() && !GV->hasInitializer() &&
3773 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3774 const auto *Record =
3775 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3776 bool HasMutableFields = Record && Record->hasMutableFields();
3777 if (!HasMutableFields) {
3778 const VarDecl *InitDecl;
3779 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3780 if (InitExpr) {
3781 ConstantEmitter emitter(*this);
3782 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3783 if (Init) {
3784 auto *InitType = Init->getType();
3785 if (GV->getValueType() != InitType) {
3786 // The type of the initializer does not match the definition.
3787 // This happens when an initializer has a different type from
3788 // the type of the global (because of padding at the end of a
3789 // structure for instance).
3790 GV->setName(StringRef());
3791 // Make a new global with the correct type, this is now guaranteed
3792 // to work.
3793 auto *NewGV = cast<llvm::GlobalVariable>(
3794 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3795 ->stripPointerCasts());
3796
3797 // Erase the old global, since it is no longer used.
3798 GV->eraseFromParent();
3799 GV = NewGV;
3800 } else {
3801 GV->setInitializer(Init);
3802 GV->setConstant(true);
3803 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3804 }
3805 emitter.finalize(GV);
3806 }
3807 }
3808 }
3809 }
3810 }
3811
3812 if (GV->isDeclaration())
3813 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3814
3815 LangAS ExpectedAS =
3816 D ? D->getType().getAddressSpace()
3817 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3818 assert(getContext().getTargetAddressSpace(ExpectedAS) ==((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3819, __PRETTY_FUNCTION__))
3819 Ty->getPointerAddressSpace())((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3819, __PRETTY_FUNCTION__))
;
3820 if (AddrSpace != ExpectedAS)
3821 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3822 ExpectedAS, Ty);
3823
3824 return GV;
3825}
3826
3827llvm::Constant *
3828CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3829 const Decl *D = GD.getDecl();
3830
3831 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3832 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3833 /*DontDefer=*/false, IsForDefinition);
3834
3835 if (isa<CXXMethodDecl>(D)) {
3836 auto FInfo =
3837 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3838 auto Ty = getTypes().GetFunctionType(*FInfo);
3839 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3840 IsForDefinition);
3841 }
3842
3843 if (isa<FunctionDecl>(D)) {
3844 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3845 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3846 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3847 IsForDefinition);
3848 }
3849
3850 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3851}
3852
3853llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3854 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3855 unsigned Alignment) {
3856 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3857 llvm::GlobalVariable *OldGV = nullptr;
3858
3859 if (GV) {
3860 // Check if the variable has the right type.
3861 if (GV->getValueType() == Ty)
3862 return GV;
3863
3864 // Because C++ name mangling, the only way we can end up with an already
3865 // existing global with the same name is if it has been declared extern "C".
3866 assert(GV->isDeclaration() && "Declaration has wrong type!")((GV->isDeclaration() && "Declaration has wrong type!"
) ? static_cast<void> (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3866, __PRETTY_FUNCTION__))
;
3867 OldGV = GV;
3868 }
3869
3870 // Create a new variable.
3871 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3872 Linkage, nullptr, Name);
3873
3874 if (OldGV) {
3875 // Replace occurrences of the old variable if needed.
3876 GV->takeName(OldGV);
3877
3878 if (!OldGV->use_empty()) {
3879 llvm::Constant *NewPtrForOldDecl =
3880 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3881 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3882 }
3883
3884 OldGV->eraseFromParent();
3885 }
3886
3887 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3888 !GV->hasAvailableExternallyLinkage())
3889 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3890
3891 GV->setAlignment(llvm::MaybeAlign(Alignment));
3892
3893 return GV;
3894}
3895
3896/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3897/// given global variable. If Ty is non-null and if the global doesn't exist,
3898/// then it will be created with the specified type instead of whatever the
3899/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3900/// that an actual global with type Ty will be returned, not conversion of a
3901/// variable with the same mangled name but some other type.
3902llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3903 llvm::Type *Ty,
3904 ForDefinition_t IsForDefinition) {
3905 assert(D->hasGlobalStorage() && "Not a global variable")((D->hasGlobalStorage() && "Not a global variable"
) ? static_cast<void> (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3905, __PRETTY_FUNCTION__))
;
3906 QualType ASTTy = D->getType();
3907 if (!Ty)
3908 Ty = getTypes().ConvertTypeForMem(ASTTy);
3909
3910 llvm::PointerType *PTy =
3911 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3912
3913 StringRef MangledName = getMangledName(D);
3914 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3915}
3916
3917/// CreateRuntimeVariable - Create a new runtime global variable with the
3918/// specified type and name.
3919llvm::Constant *
3920CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3921 StringRef Name) {
3922 auto PtrTy =
3923 getContext().getLangOpts().OpenCL
3924 ? llvm::PointerType::get(
3925 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3926 : llvm::PointerType::getUnqual(Ty);
3927 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3928 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3929 return Ret;
3930}
3931
3932void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3933 assert(!D->getInit() && "Cannot emit definite definitions here!")((!D->getInit() && "Cannot emit definite definitions here!"
) ? static_cast<void> (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3933, __PRETTY_FUNCTION__))
;
3934
3935 StringRef MangledName = getMangledName(D);
3936 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3937
3938 // We already have a definition, not declaration, with the same mangled name.
3939 // Emitting of declaration is not required (and actually overwrites emitted
3940 // definition).
3941 if (GV && !GV->isDeclaration())
3942 return;
3943
3944 // If we have not seen a reference to this variable yet, place it into the
3945 // deferred declarations table to be emitted if needed later.
3946 if (!MustBeEmitted(D) && !GV) {
3947 DeferredDecls[MangledName] = D;
3948 return;
3949 }
3950
3951 // The tentative definition is the only definition.
3952 EmitGlobalVarDefinition(D);
3953}
3954
3955void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3956 EmitExternalVarDeclaration(D);
3957}
3958
3959CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3960 return Context.toCharUnitsFromBits(
3961 getDataLayout().getTypeStoreSizeInBits(Ty));
3962}
3963
3964LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3965 LangAS AddrSpace = LangAS::Default;
3966 if (LangOpts.OpenCL) {
3967 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3968 assert(AddrSpace == LangAS::opencl_global ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_global_device || AddrSpace == LangAS::opencl_global_host
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_global_device || AddrSpace == LangAS::opencl_global_host || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3973, __PRETTY_FUNCTION__))
3969 AddrSpace == LangAS::opencl_global_device ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_global_device || AddrSpace == LangAS::opencl_global_host
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_global_device || AddrSpace == LangAS::opencl_global_host || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3973, __PRETTY_FUNCTION__))
3970 AddrSpace == LangAS::opencl_global_host ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_global_device || AddrSpace == LangAS::opencl_global_host
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_global_device || AddrSpace == LangAS::opencl_global_host || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3973, __PRETTY_FUNCTION__))
3971 AddrSpace == LangAS::opencl_constant ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_global_device || AddrSpace == LangAS::opencl_global_host
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_global_device || AddrSpace == LangAS::opencl_global_host || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3973, __PRETTY_FUNCTION__))
3972 AddrSpace == LangAS::opencl_local ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_global_device || AddrSpace == LangAS::opencl_global_host
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_global_device || AddrSpace == LangAS::opencl_global_host || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3973, __PRETTY_FUNCTION__))
3973 AddrSpace >= LangAS::FirstTargetAddressSpace)((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_global_device || AddrSpace == LangAS::opencl_global_host
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? static_cast<void> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_global_device || AddrSpace == LangAS::opencl_global_host || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 3973, __PRETTY_FUNCTION__))
;
3974 return AddrSpace;
3975 }
3976
3977 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3978 if (D && D->hasAttr<CUDAConstantAttr>())
3979 return LangAS::cuda_constant;
3980 else if (D && D->hasAttr<CUDASharedAttr>())
3981 return LangAS::cuda_shared;
3982 else if (D && D->hasAttr<CUDADeviceAttr>())
3983 return LangAS::cuda_device;
3984 else if (D && D->getType().isConstQualified())
3985 return LangAS::cuda_constant;
3986 else
3987 return LangAS::cuda_device;
3988 }
3989
3990 if (LangOpts.OpenMP) {
3991 LangAS AS;
3992 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3993 return AS;
3994 }
3995 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3996}
3997
3998LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3999 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4000 if (LangOpts.OpenCL)
4001 return LangAS::opencl_constant;
4002 if (auto AS = getTarget().getConstantAddressSpace())
4003 return AS.getValue();
4004 return LangAS::Default;
4005}
4006
4007// In address space agnostic languages, string literals are in default address
4008// space in AST. However, certain targets (e.g. amdgcn) request them to be
4009// emitted in constant address space in LLVM IR. To be consistent with other
4010// parts of AST, string literal global variables in constant address space
4011// need to be casted to default address space before being put into address
4012// map and referenced by other part of CodeGen.
4013// In OpenCL, string literals are in constant address space in AST, therefore
4014// they should not be casted to default address space.
4015static llvm::Constant *
4016castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4017 llvm::GlobalVariable *GV) {
4018 llvm::Constant *Cast = GV;
4019 if (!CGM.getLangOpts().OpenCL) {
4020 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4021 if (AS != LangAS::Default)
4022 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4023 CGM, GV, AS.getValue(), LangAS::Default,
4024 GV->getValueType()->getPointerTo(
4025 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4026 }
4027 }
4028 return Cast;
4029}
4030
4031template<typename SomeDecl>
4032void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4033 llvm::GlobalValue *GV) {
4034 if (!getLangOpts().CPlusPlus)
4035 return;
4036
4037 // Must have 'used' attribute, or else inline assembly can't rely on
4038 // the name existing.
4039 if (!D->template hasAttr<UsedAttr>())
4040 return;
4041
4042 // Must have internal linkage and an ordinary name.
4043 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4044 return;
4045
4046 // Must be in an extern "C" context. Entities declared directly within
4047 // a record are not extern "C" even if the record is in such a context.
4048 const SomeDecl *First = D->getFirstDecl();
4049 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4050 return;
4051
4052 // OK, this is an internal linkage entity inside an extern "C" linkage
4053 // specification. Make a note of that so we can give it the "expected"
4054 // mangled name if nothing else is using that name.
4055 std::pair<StaticExternCMap::iterator, bool> R =
4056 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4057
4058 // If we have multiple internal linkage entities with the same name
4059 // in extern "C" regions, none of them gets that name.
4060 if (!R.second)
4061 R.first->second = nullptr;
4062}
4063
4064static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4065 if (!CGM.supportsCOMDAT())
4066 return false;
4067
4068 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4069 // them being "merged" by the COMDAT Folding linker optimization.
4070 if (D.hasAttr<CUDAGlobalAttr>())
4071 return false;
4072
4073 if (D.hasAttr<SelectAnyAttr>())
4074 return true;
4075
4076 GVALinkage Linkage;
4077 if (auto *VD = dyn_cast<VarDecl>(&D))
4078 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4079 else
4080 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4081
4082 switch (Linkage) {
4083 case GVA_Internal:
4084 case GVA_AvailableExternally:
4085 case GVA_StrongExternal:
4086 return false;
4087 case GVA_DiscardableODR:
4088 case GVA_StrongODR:
4089 return true;
4090 }
4091 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4091)
;
4092}
4093
4094void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4095 llvm::GlobalObject &GO) {
4096 if (!shouldBeInCOMDAT(*this, D))
4097 return;
4098 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4099}
4100
4101/// Pass IsTentative as true if you want to create a tentative definition.
4102void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4103 bool IsTentative) {
4104 // OpenCL global variables of sampler type are translated to function calls,
4105 // therefore no need to be translated.
4106 QualType ASTTy = D->getType();
4107 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
1
Assuming field 'OpenCL' is 0
4108 return;
4109
4110 // If this is OpenMP device, check if it is legal to emit this global
4111 // normally.
4112 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
2
Assuming field 'OpenMPIsDevice' is 0
3
Taking false branch
4113 OpenMPRuntime->emitTargetGlobalVariable(D))
4114 return;
4115
4116 llvm::Constant *Init = nullptr;
4117 bool NeedsGlobalCtor = false;
4118 bool NeedsGlobalDtor =
4119 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4
Assuming the condition is false
4120
4121 const VarDecl *InitDecl;
4122 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4123
4124 Optional<ConstantEmitter> emitter;
4125
4126 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4127 // as part of their declaration." Sema has already checked for
4128 // error cases, so we just need to set Init to UndefValue.
4129 bool IsCUDASharedVar =
4130 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5
Assuming field 'CUDAIsDevice' is 0
4131 // Shadows of initialized device-side global variables are also left
4132 // undefined.
4133 bool IsCUDAShadowVar =
4134 !getLangOpts().CUDAIsDevice
5.1
Field 'CUDAIsDevice' is 0
5.1
Field 'CUDAIsDevice' is 0
&&
4135 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4136 D->hasAttr<CUDASharedAttr>());
4137 bool IsCUDADeviceShadowVar =
4138 getLangOpts().CUDAIsDevice
5.2
Field 'CUDAIsDevice' is 0
5.2
Field 'CUDAIsDevice' is 0
&&
4139 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4140 D->getType()->isCUDADeviceBuiltinTextureType());
4141 // HIP pinned shadow of initialized host-side global variables are also
4142 // left undefined.
4143 if (getLangOpts().CUDA &&
6
Assuming field 'CUDA' is 0
4144 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4145 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4146 else if (D->hasAttr<LoaderUninitializedAttr>())
7
Calling 'Decl::hasAttr'
9
Returning from 'Decl::hasAttr'
10
Taking false branch
4147 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4148 else if (!InitExpr) {
11
Assuming 'InitExpr' is non-null
12
Taking false branch
4149 // This is a tentative definition; tentative definitions are
4150 // implicitly initialized with { 0 }.
4151 //
4152 // Note that tentative definitions are only emitted at the end of
4153 // a translation unit, so they should never have incomplete
4154 // type. In addition, EmitTentativeDefinition makes sure that we
4155 // never attempt to emit a tentative definition if a real one
4156 // exists. A use may still exists, however, so we still may need
4157 // to do a RAUW.
4158 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")((!ASTTy->isIncompleteType() && "Unexpected incomplete type"
) ? static_cast<void> (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4158, __PRETTY_FUNCTION__))
;
4159 Init = EmitNullConstant(D->getType());
4160 } else {
4161 initializedGlobalDecl = GlobalDecl(D);
4162 emitter.emplace(*this);
4163 Init = emitter->tryEmitForInitializer(*InitDecl);
4164
4165 if (!Init) {
13
Assuming 'Init' is non-null
14
Taking false branch
4166 QualType T = InitExpr->getType();
4167 if (D->getType()->isReferenceType())
4168 T = D->getType();
4169
4170 if (getLangOpts().CPlusPlus) {
4171 Init = EmitNullConstant(T);
4172 NeedsGlobalCtor = true;
4173 } else {
4174 ErrorUnsupported(D, "static initializer");
4175 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4176 }
4177 } else {
4178 // We don't need an initializer, so remove the entry for the delayed
4179 // initializer position (just in case this entry was delayed) if we
4180 // also don't need to register a destructor.
4181 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
15
Assuming field 'CPlusPlus' is 0
4182 DelayedCXXInitPosition.erase(D);
4183 }
4184 }
4185
4186 llvm::Type* InitType = Init->getType();
4187 llvm::Constant *Entry =
4188 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
16
Assuming 'IsTentative' is true
4189
4190 // Strip off pointer casts if we got them.
4191 Entry = Entry->stripPointerCasts();
4192
4193 // Entry is now either a Function or GlobalVariable.
4194 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
17
Assuming 'Entry' is a 'GlobalVariable'
4195
4196 // We have a definition after a declaration with the wrong type.
4197 // We must make a new GlobalVariable* and update everything that used OldGV
4198 // (a declaration or tentative definition) with the new GlobalVariable*
4199 // (which will be a definition).
4200 //
4201 // This happens if there is a prototype for a global (e.g.
4202 // "extern int x[];") and then a definition of a different type (e.g.
4203 // "int x[10];"). This also happens when an initializer has a different type
4204 // from the type of the global (this happens with unions).
4205 if (!GV
17.1
'GV' is non-null
17.1
'GV' is non-null
|| GV->getValueType() != InitType ||
18
Assuming the condition is false
20
Taking false branch
4206 GV->getType()->getAddressSpace() !=
19
Assuming the condition is false
4207 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4208
4209 // Move the old entry aside so that we'll create a new one.
4210 Entry->setName(StringRef());
4211
4212 // Make a new global with the correct type, this is now guaranteed to work.
4213 GV = cast<llvm::GlobalVariable>(
4214 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4215 ->stripPointerCasts());
4216
4217 // Replace all uses of the old global with the new global
4218 llvm::Constant *NewPtrForOldDecl =
4219 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4220 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4221
4222 // Erase the old global, since it is no longer used.
4223 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4224 }
4225
4226 MaybeHandleStaticInExternC(D, GV);
4227
4228 if (D->hasAttr<AnnotateAttr>())
21
Taking false branch
4229 AddGlobalAnnotations(D, GV);
4230
4231 // Set the llvm linkage type as appropriate.
4232 llvm::GlobalValue::LinkageTypes Linkage =
4233 getLLVMLinkageVarDefinition(D, GV->isConstant());
4234
4235 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4236 // the device. [...]"
4237 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4238 // __device__, declares a variable that: [...]
4239 // Is accessible from all the threads within the grid and from the host
4240 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4241 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4242 if (GV
21.1
'GV' is non-null
21.1
'GV' is non-null
&& LangOpts.CUDA) {
22
Assuming field 'CUDA' is not equal to 0
23
Taking true branch
4243 if (LangOpts.CUDAIsDevice) {
24
Assuming field 'CUDAIsDevice' is 0
25
Taking false branch
4244 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4245 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4246 GV->setExternallyInitialized(true);
4247 } else {
4248 // Host-side shadows of external declarations of device-side
4249 // global variables become internal definitions. These have to
4250 // be internal in order to prevent name conflicts with global
4251 // host variables with the same name in a different TUs.
4252 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
26
Calling 'Decl::hasAttr'
28
Returning from 'Decl::hasAttr'
29
Calling 'Decl::hasAttr'
31
Returning from 'Decl::hasAttr'
32
Taking false branch
4253 Linkage = llvm::GlobalValue::InternalLinkage;
4254 // Shadow variables and their properties must be registered with CUDA
4255 // runtime. Skip Extern global variables, which will be registered in
4256 // the TU where they are defined.
4257 //
4258 // Don't register a C++17 inline variable. The local symbol can be
4259 // discarded and referencing a discarded local symbol from outside the
4260 // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4261 // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4262 if (!D->hasExternalStorage() && !D->isInline())
4263 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4264 D->hasAttr<CUDAConstantAttr>());
4265 } else if (D->hasAttr<CUDASharedAttr>()) {
33
Calling 'Decl::hasAttr'
35
Returning from 'Decl::hasAttr'
36
Taking false branch
4266 // __shared__ variables are odd. Shadows do get created, but
4267 // they are not registered with the CUDA runtime, so they
4268 // can't really be used to access their device-side
4269 // counterparts. It's not clear yet whether it's nvcc's bug or
4270 // a feature, but we've got to do the same for compatibility.
4271 Linkage = llvm::GlobalValue::InternalLinkage;
4272 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
37
Assuming the condition is true
38
Taking true branch
4273 D->getType()->isCUDADeviceBuiltinTextureType()) {
4274 // Builtin surfaces and textures and their template arguments are
4275 // also registered with CUDA runtime.
4276 Linkage = llvm::GlobalValue::InternalLinkage;
4277 const ClassTemplateSpecializationDecl *TD =
4278 cast<ClassTemplateSpecializationDecl>(
4279 D->getType()->getAs<RecordType>()->getDecl());
39
Assuming the object is not a 'RecordType'
40
Called C++ object pointer is null
4280 const TemplateArgumentList &Args = TD->getTemplateArgs();
4281 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4282 assert(Args.size() == 2 &&((Args.size() == 2 && "Unexpected number of template arguments of CUDA device "
"builtin surface type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 2 && \"Unexpected number of template arguments of CUDA device \" \"builtin surface type.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4284, __PRETTY_FUNCTION__))
4283 "Unexpected number of template arguments of CUDA device "((Args.size() == 2 && "Unexpected number of template arguments of CUDA device "
"builtin surface type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 2 && \"Unexpected number of template arguments of CUDA device \" \"builtin surface type.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4284, __PRETTY_FUNCTION__))
4284 "builtin surface type.")((Args.size() == 2 && "Unexpected number of template arguments of CUDA device "
"builtin surface type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 2 && \"Unexpected number of template arguments of CUDA device \" \"builtin surface type.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4284, __PRETTY_FUNCTION__))
;
4285 auto SurfType = Args[1].getAsIntegral();
4286 if (!D->hasExternalStorage())
4287 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4288 SurfType.getSExtValue());
4289 } else {
4290 assert(Args.size() == 3 &&((Args.size() == 3 && "Unexpected number of template arguments of CUDA device "
"builtin texture type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 3 && \"Unexpected number of template arguments of CUDA device \" \"builtin texture type.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4292, __PRETTY_FUNCTION__))
4291 "Unexpected number of template arguments of CUDA device "((Args.size() == 3 && "Unexpected number of template arguments of CUDA device "
"builtin texture type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 3 && \"Unexpected number of template arguments of CUDA device \" \"builtin texture type.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4292, __PRETTY_FUNCTION__))
4292 "builtin texture type.")((Args.size() == 3 && "Unexpected number of template arguments of CUDA device "
"builtin texture type.") ? static_cast<void> (0) : __assert_fail
("Args.size() == 3 && \"Unexpected number of template arguments of CUDA device \" \"builtin texture type.\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4292, __PRETTY_FUNCTION__))
;
4293 auto TexType = Args[1].getAsIntegral();
4294 auto Normalized = Args[2].getAsIntegral();
4295 if (!D->hasExternalStorage())
4296 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4297 TexType.getSExtValue(),
4298 Normalized.getZExtValue());
4299 }
4300 }
4301 }
4302 }
4303
4304 GV->setInitializer(Init);
4305 if (emitter)
4306 emitter->finalize(GV);
4307
4308 // If it is safe to mark the global 'constant', do so now.
4309 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4310 isTypeConstant(D->getType(), true));
4311
4312 // If it is in a read-only section, mark it 'constant'.
4313 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4314 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4315 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4316 GV->setConstant(true);
4317 }
4318
4319 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4320
4321 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4322 // function is only defined alongside the variable, not also alongside
4323 // callers. Normally, all accesses to a thread_local go through the
4324 // thread-wrapper in order to ensure initialization has occurred, underlying
4325 // variable will never be used other than the thread-wrapper, so it can be
4326 // converted to internal linkage.
4327 //
4328 // However, if the variable has the 'constinit' attribute, it _can_ be
4329 // referenced directly, without calling the thread-wrapper, so the linkage
4330 // must not be changed.
4331 //
4332 // Additionally, if the variable isn't plain external linkage, e.g. if it's
4333 // weak or linkonce, the de-duplication semantics are important to preserve,
4334 // so we don't change the linkage.
4335 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4336 Linkage == llvm::GlobalValue::ExternalLinkage &&
4337 Context.getTargetInfo().getTriple().isOSDarwin() &&
4338 !D->hasAttr<ConstInitAttr>())
4339 Linkage = llvm::GlobalValue::InternalLinkage;
4340
4341 GV->setLinkage(Linkage);
4342 if (D->hasAttr<DLLImportAttr>())
4343 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4344 else if (D->hasAttr<DLLExportAttr>())
4345 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4346 else
4347 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4348
4349 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4350 // common vars aren't constant even if declared const.
4351 GV->setConstant(false);
4352 // Tentative definition of global variables may be initialized with
4353 // non-zero null pointers. In this case they should have weak linkage
4354 // since common linkage must have zero initializer and must not have
4355 // explicit section therefore cannot have non-zero initial value.
4356 if (!GV->getInitializer()->isNullValue())
4357 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4358 }
4359
4360 setNonAliasAttributes(D, GV);
4361
4362 if (D->getTLSKind() && !GV->isThreadLocal()) {
4363 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4364 CXXThreadLocals.push_back(D);
4365 setTLSMode(GV, *D);
4366 }
4367
4368 maybeSetTrivialComdat(*D, *GV);
4369
4370 // Emit the initializer function if necessary.
4371 if (NeedsGlobalCtor || NeedsGlobalDtor)
4372 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4373
4374 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4375
4376 // Emit global variable debug information.
4377 if (CGDebugInfo *DI = getModuleDebugInfo())
4378 if (getCodeGenOpts().hasReducedDebugInfo())
4379 DI->EmitGlobalVariable(GV, D);
4380}
4381
4382void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4383 if (CGDebugInfo *DI = getModuleDebugInfo())
4384 if (getCodeGenOpts().hasReducedDebugInfo()) {
4385 QualType ASTTy = D->getType();
4386 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4387 llvm::PointerType *PTy =
4388 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4389 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4390 DI->EmitExternalVariable(
4391 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4392 }
4393}
4394
4395static bool isVarDeclStrongDefinition(const ASTContext &Context,
4396 CodeGenModule &CGM, const VarDecl *D,
4397 bool NoCommon) {
4398 // Don't give variables common linkage if -fno-common was specified unless it
4399 // was overridden by a NoCommon attribute.
4400 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4401 return true;
4402
4403 // C11 6.9.2/2:
4404 // A declaration of an identifier for an object that has file scope without
4405 // an initializer, and without a storage-class specifier or with the
4406 // storage-class specifier static, constitutes a tentative definition.
4407 if (D->getInit() || D->hasExternalStorage())
4408 return true;
4409
4410 // A variable cannot be both common and exist in a section.
4411 if (D->hasAttr<SectionAttr>())
4412 return true;
4413
4414 // A variable cannot be both common and exist in a section.
4415 // We don't try to determine which is the right section in the front-end.
4416 // If no specialized section name is applicable, it will resort to default.
4417 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4418 D->hasAttr<PragmaClangDataSectionAttr>() ||
4419 D->hasAttr<PragmaClangRelroSectionAttr>() ||
4420 D->hasAttr<PragmaClangRodataSectionAttr>())
4421 return true;
4422
4423 // Thread local vars aren't considered common linkage.
4424 if (D->getTLSKind())
4425 return true;
4426
4427 // Tentative definitions marked with WeakImportAttr are true definitions.
4428 if (D->hasAttr<WeakImportAttr>())
4429 return true;
4430
4431 // A variable cannot be both common and exist in a comdat.
4432 if (shouldBeInCOMDAT(CGM, *D))
4433 return true;
4434
4435 // Declarations with a required alignment do not have common linkage in MSVC
4436 // mode.
4437 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4438 if (D->hasAttr<AlignedAttr>())
4439 return true;
4440 QualType VarType = D->getType();
4441 if (Context.isAlignmentRequired(VarType))
4442 return true;
4443
4444 if (const auto *RT = VarType->getAs<RecordType>()) {
4445 const RecordDecl *RD = RT->getDecl();
4446 for (const FieldDecl *FD : RD->fields()) {
4447 if (FD->isBitField())
4448 continue;
4449 if (FD->hasAttr<AlignedAttr>())
4450 return true;
4451 if (Context.isAlignmentRequired(FD->getType()))
4452 return true;
4453 }
4454 }
4455 }
4456
4457 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4458 // common symbols, so symbols with greater alignment requirements cannot be
4459 // common.
4460 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4461 // alignments for common symbols via the aligncomm directive, so this
4462 // restriction only applies to MSVC environments.
4463 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4464 Context.getTypeAlignIfKnown(D->getType()) >
4465 Context.toBits(CharUnits::fromQuantity(32)))
4466 return true;
4467
4468 return false;
4469}
4470
4471llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4472 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4473 if (Linkage == GVA_Internal)
4474 return llvm::Function::InternalLinkage;
4475
4476 if (D->hasAttr<WeakAttr>()) {
4477 if (IsConstantVariable)
4478 return llvm::GlobalVariable::WeakODRLinkage;
4479 else
4480 return llvm::GlobalVariable::WeakAnyLinkage;
4481 }
4482
4483 if (const auto *FD = D->getAsFunction())
4484 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4485 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4486
4487 // We are guaranteed to have a strong definition somewhere else,
4488 // so we can use available_externally linkage.
4489 if (Linkage == GVA_AvailableExternally)
4490 return llvm::GlobalValue::AvailableExternallyLinkage;
4491
4492 // Note that Apple's kernel linker doesn't support symbol
4493 // coalescing, so we need to avoid linkonce and weak linkages there.
4494 // Normally, this means we just map to internal, but for explicit
4495 // instantiations we'll map to external.
4496
4497 // In C++, the compiler has to emit a definition in every translation unit
4498 // that references the function. We should use linkonce_odr because
4499 // a) if all references in this translation unit are optimized away, we
4500 // don't need to codegen it. b) if the function persists, it needs to be
4501 // merged with other definitions. c) C++ has the ODR, so we know the
4502 // definition is dependable.
4503 if (Linkage == GVA_DiscardableODR)
4504 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4505 : llvm::Function::InternalLinkage;
4506
4507 // An explicit instantiation of a template has weak linkage, since
4508 // explicit instantiations can occur in multiple translation units
4509 // and must all be equivalent. However, we are not allowed to
4510 // throw away these explicit instantiations.
4511 //
4512 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4513 // so say that CUDA templates are either external (for kernels) or internal.
4514 // This lets llvm perform aggressive inter-procedural optimizations. For
4515 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4516 // therefore we need to follow the normal linkage paradigm.
4517 if (Linkage == GVA_StrongODR) {
4518 if (getLangOpts().AppleKext)
4519 return llvm::Function::ExternalLinkage;
4520 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4521 !getLangOpts().GPURelocatableDeviceCode)
4522 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4523 : llvm::Function::InternalLinkage;
4524 return llvm::Function::WeakODRLinkage;
4525 }
4526
4527 // C++ doesn't have tentative definitions and thus cannot have common
4528 // linkage.
4529 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4530 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4531 CodeGenOpts.NoCommon))
4532 return llvm::GlobalVariable::CommonLinkage;
4533
4534 // selectany symbols are externally visible, so use weak instead of
4535 // linkonce. MSVC optimizes away references to const selectany globals, so
4536 // all definitions should be the same and ODR linkage should be used.
4537 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4538 if (D->hasAttr<SelectAnyAttr>())
4539 return llvm::GlobalVariable::WeakODRLinkage;
4540
4541 // Otherwise, we have strong external linkage.
4542 assert(Linkage == GVA_StrongExternal)((Linkage == GVA_StrongExternal) ? static_cast<void> (0
) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4542, __PRETTY_FUNCTION__))
;
4543 return llvm::GlobalVariable::ExternalLinkage;
4544}
4545
4546llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4547 const VarDecl *VD, bool IsConstant) {
4548 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4549 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4550}
4551
4552/// Replace the uses of a function that was declared with a non-proto type.
4553/// We want to silently drop extra arguments from call sites
4554static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4555 llvm::Function *newFn) {
4556 // Fast path.
4557 if (old->use_empty()) return;
4558
4559 llvm::Type *newRetTy = newFn->getReturnType();
4560 SmallVector<llvm::Value*, 4> newArgs;
4561 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4562
4563 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4564 ui != ue; ) {
4565 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4566 llvm::User *user = use->getUser();
4567
4568 // Recognize and replace uses of bitcasts. Most calls to
4569 // unprototyped functions will use bitcasts.
4570 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4571 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4572 replaceUsesOfNonProtoConstant(bitcast, newFn);
4573 continue;
4574 }
4575
4576 // Recognize calls to the function.
4577 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4578 if (!callSite) continue;
4579 if (!callSite->isCallee(&*use))
4580 continue;
4581
4582 // If the return types don't match exactly, then we can't
4583 // transform this call unless it's dead.
4584 if (callSite->getType() != newRetTy && !callSite->use_empty())
4585 continue;
4586
4587 // Get the call site's attribute list.
4588 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4589 llvm::AttributeList oldAttrs = callSite->getAttributes();
4590
4591 // If the function was passed too few arguments, don't transform.
4592 unsigned newNumArgs = newFn->arg_size();
4593 if (callSite->arg_size() < newNumArgs)
4594 continue;
4595
4596 // If extra arguments were passed, we silently drop them.
4597 // If any of the types mismatch, we don't transform.
4598 unsigned argNo = 0;
4599 bool dontTransform = false;
4600 for (llvm::Argument &A : newFn->args()) {
4601 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4602 dontTransform = true;
4603 break;
4604 }
4605
4606 // Add any parameter attributes.
4607 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4608 argNo++;
4609 }
4610 if (dontTransform)
4611 continue;
4612
4613 // Okay, we can transform this. Create the new call instruction and copy
4614 // over the required information.
4615 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4616
4617 // Copy over any operand bundles.
4618 callSite->getOperandBundlesAsDefs(newBundles);
4619
4620 llvm::CallBase *newCall;
4621 if (dyn_cast<llvm::CallInst>(callSite)) {
4622 newCall =
4623 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4624 } else {
4625 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4626 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4627 oldInvoke->getUnwindDest(), newArgs,
4628 newBundles, "", callSite);
4629 }
4630 newArgs.clear(); // for the next iteration
4631
4632 if (!newCall->getType()->isVoidTy())
4633 newCall->takeName(callSite);
4634 newCall->setAttributes(llvm::AttributeList::get(
4635 newFn->getContext(), oldAttrs.getFnAttributes(),
4636 oldAttrs.getRetAttributes(), newArgAttrs));
4637 newCall->setCallingConv(callSite->getCallingConv());
4638
4639 // Finally, remove the old call, replacing any uses with the new one.
4640 if (!callSite->use_empty())
4641 callSite->replaceAllUsesWith(newCall);
4642
4643 // Copy debug location attached to CI.
4644 if (callSite->getDebugLoc())
4645 newCall->setDebugLoc(callSite->getDebugLoc());
4646
4647 callSite->eraseFromParent();
4648 }
4649}
4650
4651/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4652/// implement a function with no prototype, e.g. "int foo() {}". If there are
4653/// existing call uses of the old function in the module, this adjusts them to
4654/// call the new function directly.
4655///
4656/// This is not just a cleanup: the always_inline pass requires direct calls to
4657/// functions to be able to inline them. If there is a bitcast in the way, it
4658/// won't inline them. Instcombine normally deletes these calls, but it isn't
4659/// run at -O0.
4660static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4661 llvm::Function *NewFn) {
4662 // If we're redefining a global as a function, don't transform it.
4663 if (!isa<llvm::Function>(Old)) return;
4664
4665 replaceUsesOfNonProtoConstant(Old, NewFn);
4666}
4667
4668void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4669 auto DK = VD->isThisDeclarationADefinition();
4670 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4671 return;
4672
4673 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4674 // If we have a definition, this might be a deferred decl. If the
4675 // instantiation is explicit, make sure we emit it at the end.
4676 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4677 GetAddrOfGlobalVar(VD);
4678
4679 EmitTopLevelDecl(VD);
4680}
4681
4682void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4683 llvm::GlobalValue *GV) {
4684 const auto *D = cast<FunctionDecl>(GD.getDecl());
4685
4686 // Compute the function info and LLVM type.
4687 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4688 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4689
4690 // Get or create the prototype for the function.
4691 if (!GV || (GV->getValueType() != Ty))
4692 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4693 /*DontDefer=*/true,
4694 ForDefinition));
4695
4696 // Already emitted.
4697 if (!GV->isDeclaration())
4698 return;
4699
4700 // We need to set linkage and visibility on the function before
4701 // generating code for it because various parts of IR generation
4702 // want to propagate this information down (e.g. to local static
4703 // declarations).
4704 auto *Fn = cast<llvm::Function>(GV);
4705 setFunctionLinkage(GD, Fn);
4706
4707 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4708 setGVProperties(Fn, GD);
4709
4710 MaybeHandleStaticInExternC(D, Fn);
4711
4712 maybeSetTrivialComdat(*D, *Fn);
4713
4714 // Set CodeGen attributes that represent floating point environment.
4715 setLLVMFunctionFEnvAttributes(D, Fn);
4716
4717 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4718
4719 setNonAliasAttributes(GD, Fn);
4720 SetLLVMFunctionAttributesForDefinition(D, Fn);
4721
4722 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4723 AddGlobalCtor(Fn, CA->getPriority());
4724 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4725 AddGlobalDtor(Fn, DA->getPriority(), true);
4726 if (D->hasAttr<AnnotateAttr>())
4727 AddGlobalAnnotations(D, Fn);
4728}
4729
4730void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4731 const auto *D = cast<ValueDecl>(GD.getDecl());
4732 const AliasAttr *AA = D->getAttr<AliasAttr>();
4733 assert(AA && "Not an alias?")((AA && "Not an alias?") ? static_cast<void> (0
) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4733, __PRETTY_FUNCTION__))
;
4734
4735 StringRef MangledName = getMangledName(GD);
4736
4737 if (AA->getAliasee() == MangledName) {
4738 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4739 return;
4740 }
4741
4742 // If there is a definition in the module, then it wins over the alias.
4743 // This is dubious, but allow it to be safe. Just ignore the alias.
4744 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4745 if (Entry && !Entry->isDeclaration())
4746 return;
4747
4748 Aliases.push_back(GD);
4749
4750 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4751
4752 // Create a reference to the named value. This ensures that it is emitted
4753 // if a deferred decl.
4754 llvm::Constant *Aliasee;
4755 llvm::GlobalValue::LinkageTypes LT;
4756 if (isa<llvm::FunctionType>(DeclTy)) {
4757 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4758 /*ForVTable=*/false);
4759 LT = getFunctionLinkage(GD);
4760 } else {
4761 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4762 llvm::PointerType::getUnqual(DeclTy),
4763 /*D=*/nullptr);
4764 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4765 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4766 else
4767 LT = getFunctionLinkage(GD);
4768 }
4769
4770 // Create the new alias itself, but don't set a name yet.
4771 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4772 auto *GA =
4773 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4774
4775 if (Entry) {
4776 if (GA->getAliasee() == Entry) {
4777 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4778 return;
4779 }
4780
4781 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4781, __PRETTY_FUNCTION__))
;
4782
4783 // If there is a declaration in the module, then we had an extern followed
4784 // by the alias, as in:
4785 // extern int test6();
4786 // ...
4787 // int test6() __attribute__((alias("test7")));
4788 //
4789 // Remove it and replace uses of it with the alias.
4790 GA->takeName(Entry);
4791
4792 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4793 Entry->getType()));
4794 Entry->eraseFromParent();
4795 } else {
4796 GA->setName(MangledName);
4797 }
4798
4799 // Set attributes which are particular to an alias; this is a
4800 // specialization of the attributes which may be set on a global
4801 // variable/function.
4802 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4803 D->isWeakImported()) {
4804 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4805 }
4806
4807 if (const auto *VD = dyn_cast<VarDecl>(D))
4808 if (VD->getTLSKind())
4809 setTLSMode(GA, *VD);
4810
4811 SetCommonAttributes(GD, GA);
4812}
4813
4814void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4815 const auto *D = cast<ValueDecl>(GD.getDecl());
4816 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4817 assert(IFA && "Not an ifunc?")((IFA && "Not an ifunc?") ? static_cast<void> (
0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4817, __PRETTY_FUNCTION__))
;
4818
4819 StringRef MangledName = getMangledName(GD);
4820
4821 if (IFA->getResolver() == MangledName) {
4822 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4823 return;
4824 }
4825
4826 // Report an error if some definition overrides ifunc.
4827 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4828 if (Entry && !Entry->isDeclaration()) {
4829 GlobalDecl OtherGD;
4830 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4831 DiagnosedConflictingDefinitions.insert(GD).second) {
4832 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4833 << MangledName;
4834 Diags.Report(OtherGD.getDecl()->getLocation(),
4835 diag::note_previous_definition);
4836 }
4837 return;
4838 }
4839
4840 Aliases.push_back(GD);
4841
4842 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4843 llvm::Constant *Resolver =
4844 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4845 /*ForVTable=*/false);
4846 llvm::GlobalIFunc *GIF =
4847 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4848 "", Resolver, &getModule());
4849 if (Entry) {
4850 if (GIF->getResolver() == Entry) {
4851 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4852 return;
4853 }
4854 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 4854, __PRETTY_FUNCTION__))
;
4855
4856 // If there is a declaration in the module, then we had an extern followed
4857 // by the ifunc, as in:
4858 // extern int test();
4859 // ...
4860 // int test() __attribute__((ifunc("resolver")));
4861 //
4862 // Remove it and replace uses of it with the ifunc.
4863 GIF->takeName(Entry);
4864
4865 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4866 Entry->getType()));
4867 Entry->eraseFromParent();
4868 } else
4869 GIF->setName(MangledName);
4870
4871 SetCommonAttributes(GD, GIF);
4872}
4873
4874llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4875 ArrayRef<llvm::Type*> Tys) {
4876 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4877 Tys);
4878}
4879
4880static llvm::StringMapEntry<llvm::GlobalVariable *> &
4881GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4882 const StringLiteral *Literal, bool TargetIsLSB,
4883 bool &IsUTF16, unsigned &StringLength) {
4884 StringRef String = Literal->getString();
4885 unsigned NumBytes = String.size();
4886
4887 // Check for simple case.
4888 if (!Literal->containsNonAsciiOrNull()) {
4889 StringLength = NumBytes;
4890 return *Map.insert(std::make_pair(String, nullptr)).first;
4891 }
4892
4893 // Otherwise, convert the UTF8 literals into a string of shorts.
4894 IsUTF16 = true;
4895
4896 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4897 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4898 llvm::UTF16 *ToPtr = &ToBuf[0];
4899
4900 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4901 ToPtr + NumBytes, llvm::strictConversion);
4902
4903 // ConvertUTF8toUTF16 returns the length in ToPtr.
4904 StringLength = ToPtr - &ToBuf[0];
4905
4906 // Add an explicit null.
4907 *ToPtr = 0;
4908 return *Map.insert(std::make_pair(
4909 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4910 (StringLength + 1) * 2),
4911 nullptr)).first;
4912}
4913
4914ConstantAddress
4915CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4916 unsigned StringLength = 0;
4917 bool isUTF16 = false;
4918 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4919 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4920 getDataLayout().isLittleEndian(), isUTF16,
4921 StringLength);
4922
4923 if (auto *C = Entry.second)
4924 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4925
4926 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4927 llvm::Constant *Zeros[] = { Zero, Zero };
4928
4929 const ASTContext &Context = getContext();
4930 const llvm::Triple &Triple = getTriple();
4931
4932 const auto CFRuntime = getLangOpts().CFRuntime;
4933 const bool IsSwiftABI =
4934 static_cast<unsigned>(CFRuntime) >=
4935 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4936 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4937
4938 // If we don't already have it, get __CFConstantStringClassReference.
4939 if (!CFConstantStringClassRef) {
4940 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4941 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4942 Ty = llvm::ArrayType::get(Ty, 0);
4943
4944 switch (CFRuntime) {
4945 default: break;
4946 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH[[gnu::fallthrough]];
4947 case LangOptions::CoreFoundationABI::Swift5_0:
4948 CFConstantStringClassName =
4949 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4950 : "$s10Foundation19_NSCFConstantStringCN";
4951 Ty = IntPtrTy;
4952 break;
4953 case LangOptions::CoreFoundationABI::Swift4_2:
4954 CFConstantStringClassName =
4955 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4956 : "$S10Foundation19_NSCFConstantStringCN";
4957 Ty = IntPtrTy;
4958 break;
4959 case LangOptions::CoreFoundationABI::Swift4_1:
4960 CFConstantStringClassName =
4961 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4962 : "__T010Foundation19_NSCFConstantStringCN";
4963 Ty = IntPtrTy;
4964 break;
4965 }
4966
4967 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4968
4969 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4970 llvm::GlobalValue *GV = nullptr;
4971
4972 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4973 IdentifierInfo &II = Context.Idents.get(GV->getName());
4974 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4975 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4976
4977 const VarDecl *VD = nullptr;
4978 for (const auto &Result : DC->lookup(&II))
4979 if ((VD = dyn_cast<VarDecl>(Result)))
4980 break;
4981
4982 if (Triple.isOSBinFormatELF()) {
4983 if (!VD)
4984 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4985 } else {
4986 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4987 if (!VD || !VD->hasAttr<DLLExportAttr>())
4988 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4989 else
4990 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4991 }
4992
4993 setDSOLocal(GV);
4994 }
4995 }
4996
4997 // Decay array -> ptr
4998 CFConstantStringClassRef =
4999 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5000 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5001 }
5002
5003 QualType CFTy = Context.getCFConstantStringType();
5004
5005 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5006
5007 ConstantInitBuilder Builder(*this);
5008 auto Fields = Builder.beginStruct(STy);
5009
5010 // Class pointer.
5011 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5012
5013 // Flags.
5014 if (IsSwiftABI) {
5015 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5016 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5017 } else {
5018 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5019 }
5020
5021 // String pointer.
5022 llvm::Constant *C = nullptr;
5023 if (isUTF16) {
5024 auto Arr = llvm::makeArrayRef(
5025 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5026 Entry.first().size() / 2);
5027 C = llvm::ConstantDataArray::get(VMContext, Arr);
5028 } else {
5029 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5030 }
5031
5032 // Note: -fwritable-strings doesn't make the backing store strings of
5033 // CFStrings writable. (See <rdar://problem/10657500>)
5034 auto *GV =
5035 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5036 llvm::GlobalValue::PrivateLinkage, C, ".str");
5037 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5038 // Don't enforce the target's minimum global alignment, since the only use
5039 // of the string is via this class initializer.
5040 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5041 : Context.getTypeAlignInChars(Context.CharTy);
5042 GV->setAlignment(Align.getAsAlign());
5043
5044 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5045 // Without it LLVM can merge the string with a non unnamed_addr one during
5046 // LTO. Doing that changes the section it ends in, which surprises ld64.
5047 if (Triple.isOSBinFormatMachO())
5048 GV->setSection(isUTF16 ? "__TEXT,__ustring"
5049 : "__TEXT,__cstring,cstring_literals");
5050 // Make sure the literal ends up in .rodata to allow for safe ICF and for
5051 // the static linker to adjust permissions to read-only later on.
5052 else if (Triple.isOSBinFormatELF())
5053 GV->setSection(".rodata");
5054
5055 // String.
5056 llvm::Constant *Str =
5057 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5058
5059 if (isUTF16)
5060 // Cast the UTF16 string to the correct type.
5061 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5062 Fields.add(Str);
5063
5064 // String length.
5065 llvm::IntegerType *LengthTy =
5066 llvm::IntegerType::get(getModule().getContext(),
5067 Context.getTargetInfo().getLongWidth());
5068 if (IsSwiftABI) {
5069 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5070 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5071 LengthTy = Int32Ty;
5072 else
5073 LengthTy = IntPtrTy;
5074 }
5075 Fields.addInt(LengthTy, StringLength);
5076
5077 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5078 // properly aligned on 32-bit platforms.
5079 CharUnits Alignment =
5080 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5081
5082 // The struct.
5083 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5084 /*isConstant=*/false,
5085 llvm::GlobalVariable::PrivateLinkage);
5086 GV->addAttribute("objc_arc_inert");
5087 switch (Triple.getObjectFormat()) {
5088 case llvm::Triple::UnknownObjectFormat:
5089 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5089)
;
5090 case llvm::Triple::GOFF:
5091 llvm_unreachable("GOFF is not yet implemented")::llvm::llvm_unreachable_internal("GOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5091)
;
5092 case llvm::Triple::XCOFF:
5093 llvm_unreachable("XCOFF is not yet implemented")::llvm::llvm_unreachable_internal("XCOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5093)
;
5094 case llvm::Triple::COFF:
5095 case llvm::Triple::ELF:
5096 case llvm::Triple::Wasm:
5097 GV->setSection("cfstring");
5098 break;
5099 case llvm::Triple::MachO:
5100 GV->setSection("__DATA,__cfstring");
5101 break;
5102 }
5103 Entry.second = GV;
5104
5105 return ConstantAddress(GV, Alignment);
5106}
5107
5108bool CodeGenModule::getExpressionLocationsEnabled() const {
5109 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5110}
5111
5112QualType CodeGenModule::getObjCFastEnumerationStateType() {
5113 if (ObjCFastEnumerationStateType.isNull()) {
5114 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5115 D->startDefinition();
5116
5117 QualType FieldTypes[] = {
5118 Context.UnsignedLongTy,
5119 Context.getPointerType(Context.getObjCIdType()),
5120 Context.getPointerType(Context.UnsignedLongTy),
5121 Context.getConstantArrayType(Context.UnsignedLongTy,
5122 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5123 };
5124
5125 for (size_t i = 0; i < 4; ++i) {
5126 FieldDecl *Field = FieldDecl::Create(Context,
5127 D,
5128 SourceLocation(),
5129 SourceLocation(), nullptr,
5130 FieldTypes[i], /*TInfo=*/nullptr,
5131 /*BitWidth=*/nullptr,
5132 /*Mutable=*/false,
5133 ICIS_NoInit);
5134 Field->setAccess(AS_public);
5135 D->addDecl(Field);
5136 }
5137
5138 D->completeDefinition();
5139 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5140 }
5141
5142 return ObjCFastEnumerationStateType;
5143}
5144
5145llvm::Constant *
5146CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5147 assert(!E->getType()->isPointerType() && "Strings are always arrays")((!E->getType()->isPointerType() && "Strings are always arrays"
) ? static_cast<void> (0) : __assert_fail ("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5147, __PRETTY_FUNCTION__))
;
5148
5149 // Don't emit it as the address of the string, emit the string data itself
5150 // as an inline array.
5151 if (E->getCharByteWidth() == 1) {
5152 SmallString<64> Str(E->getString());
5153
5154 // Resize the string to the right size, which is indicated by its type.
5155 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5156 Str.resize(CAT->getSize().getZExtValue());
5157 return llvm::ConstantDataArray::getString(VMContext, Str, false);
5158 }
5159
5160 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5161 llvm::Type *ElemTy = AType->getElementType();
5162 unsigned NumElements = AType->getNumElements();
5163
5164 // Wide strings have either 2-byte or 4-byte elements.
5165 if (ElemTy->getPrimitiveSizeInBits() == 16) {
5166 SmallVector<uint16_t, 32> Elements;
5167 Elements.reserve(NumElements);
5168
5169 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5170 Elements.push_back(E->getCodeUnit(i));
5171 Elements.resize(NumElements);
5172 return llvm::ConstantDataArray::get(VMContext, Elements);
5173 }
5174
5175 assert(ElemTy->getPrimitiveSizeInBits() == 32)((ElemTy->getPrimitiveSizeInBits() == 32) ? static_cast<
void> (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5175, __PRETTY_FUNCTION__))
;
5176 SmallVector<uint32_t, 32> Elements;
5177 Elements.reserve(NumElements);
5178
5179 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5180 Elements.push_back(E->getCodeUnit(i));
5181 Elements.resize(NumElements);
5182 return llvm::ConstantDataArray::get(VMContext, Elements);
5183}
5184
5185static llvm::GlobalVariable *
5186GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5187 CodeGenModule &CGM, StringRef GlobalName,
5188 CharUnits Alignment) {
5189 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5190 CGM.getStringLiteralAddressSpace());
5191
5192 llvm::Module &M = CGM.getModule();
5193 // Create a global variable for this string
5194 auto *GV = new llvm::GlobalVariable(
5195 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5196 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5197 GV->setAlignment(Alignment.getAsAlign());
5198 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5199 if (GV->isWeakForLinker()) {
5200 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")((CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? static_cast<void> (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5200, __PRETTY_FUNCTION__))
;
5201 GV->setComdat(M.getOrInsertComdat(GV->getName()));
5202 }
5203 CGM.setDSOLocal(GV);
5204
5205 return GV;
5206}
5207
5208/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5209/// constant array for the given string literal.
5210ConstantAddress
5211CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5212 StringRef Name) {
5213 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5214
5215 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5216 llvm::GlobalVariable **Entry = nullptr;
5217 if (!LangOpts.WritableStrings) {
5218 Entry = &ConstantStringMap[C];
5219 if (auto GV = *Entry) {
5220 if (Alignment.getQuantity() > GV->getAlignment())
5221 GV->setAlignment(Alignment.getAsAlign());
5222 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5223 Alignment);
5224 }
5225 }
5226
5227 SmallString<256> MangledNameBuffer;
5228 StringRef GlobalVariableName;
5229 llvm::GlobalValue::LinkageTypes LT;
5230
5231 // Mangle the string literal if that's how the ABI merges duplicate strings.
5232 // Don't do it if they are writable, since we don't want writes in one TU to
5233 // affect strings in another.
5234 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5235 !LangOpts.WritableStrings) {
5236 llvm::raw_svector_ostream Out(MangledNameBuffer);
5237 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5238 LT = llvm::GlobalValue::LinkOnceODRLinkage;
5239 GlobalVariableName = MangledNameBuffer;
5240 } else {
5241 LT = llvm::GlobalValue::PrivateLinkage;
5242 GlobalVariableName = Name;
5243 }
5244
5245 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5246 if (Entry)
5247 *Entry = GV;
5248
5249 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5250 QualType());
5251
5252 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5253 Alignment);
5254}
5255
5256/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5257/// array for the given ObjCEncodeExpr node.
5258ConstantAddress
5259CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5260 std::string Str;
5261 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5262
5263 return GetAddrOfConstantCString(Str);
5264}
5265
5266/// GetAddrOfConstantCString - Returns a pointer to a character array containing
5267/// the literal and a terminating '\0' character.
5268/// The result has pointer to array type.
5269ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5270 const std::string &Str, const char *GlobalName) {
5271 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5272 CharUnits Alignment =
5273 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5274
5275 llvm::Constant *C =
5276 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5277
5278 // Don't share any string literals if strings aren't constant.
5279 llvm::GlobalVariable **Entry = nullptr;
5280 if (!LangOpts.WritableStrings) {
5281 Entry = &ConstantStringMap[C];
5282 if (auto GV = *Entry) {
5283 if (Alignment.getQuantity() > GV->getAlignment())
5284 GV->setAlignment(Alignment.getAsAlign());
5285 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5286 Alignment);
5287 }
5288 }
5289
5290 // Get the default prefix if a name wasn't specified.
5291 if (!GlobalName)
5292 GlobalName = ".str";
5293 // Create a global variable for this.
5294 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5295 GlobalName, Alignment);
5296 if (Entry)
5297 *Entry = GV;
5298
5299 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5300 Alignment);
5301}
5302
5303ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5304 const MaterializeTemporaryExpr *E, const Expr *Init) {
5305 assert((E->getStorageDuration() == SD_Static ||(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5306, __PRETTY_FUNCTION__))
5306 E->getStorageDuration() == SD_Thread) && "not a global temporary")(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5306, __PRETTY_FUNCTION__))
;
5307 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5308
5309 // If we're not materializing a subobject of the temporary, keep the
5310 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5311 QualType MaterializedType = Init->getType();
5312 if (Init == E->getSubExpr())
5313 MaterializedType = E->getType();
5314
5315 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5316
5317 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5318 return ConstantAddress(Slot, Align);
5319
5320 // FIXME: If an externally-visible declaration extends multiple temporaries,
5321 // we need to give each temporary the same name in every translation unit (and
5322 // we also need to make the temporaries externally-visible).
5323 SmallString<256> Name;
5324 llvm::raw_svector_ostream Out(Name);
5325 getCXXABI().getMangleContext().mangleReferenceTemporary(
5326 VD, E->getManglingNumber(), Out);
5327
5328 APValue *Value = nullptr;
5329 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5330 // If the initializer of the extending declaration is a constant
5331 // initializer, we should have a cached constant initializer for this
5332 // temporary. Note that this might have a different value from the value
5333 // computed by evaluating the initializer if the surrounding constant
5334 // expression modifies the temporary.
5335 Value = E->getOrCreateValue(false);
5336 }
5337
5338 // Try evaluating it now, it might have a constant initializer.
5339 Expr::EvalResult EvalResult;
5340 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5341 !EvalResult.hasSideEffects())
5342 Value = &EvalResult.Val;
5343
5344 LangAS AddrSpace =
5345 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5346
5347 Optional<ConstantEmitter> emitter;
5348 llvm::Constant *InitialValue = nullptr;
5349 bool Constant = false;
5350 llvm::Type *Type;
5351 if (Value) {
5352 // The temporary has a constant initializer, use it.
5353 emitter.emplace(*this);
5354 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5355 MaterializedType);
5356 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5357 Type = InitialValue->getType();
5358 } else {
5359 // No initializer, the initialization will be provided when we
5360 // initialize the declaration which performed lifetime extension.
5361 Type = getTypes().ConvertTypeForMem(MaterializedType);
5362 }
5363
5364 // Create a global variable for this lifetime-extended temporary.
5365 llvm::GlobalValue::LinkageTypes Linkage =
5366 getLLVMLinkageVarDefinition(VD, Constant);
5367 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5368 const VarDecl *InitVD;
5369 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5370 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5371 // Temporaries defined inside a class get linkonce_odr linkage because the
5372 // class can be defined in multiple translation units.
5373 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5374 } else {
5375 // There is no need for this temporary to have external linkage if the
5376 // VarDecl has external linkage.
5377 Linkage = llvm::GlobalVariable::InternalLinkage;
5378 }
5379 }
5380 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5381 auto *GV = new llvm::GlobalVariable(
5382 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5383 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5384 if (emitter) emitter->finalize(GV);
5385 setGVProperties(GV, VD);
5386 GV->setAlignment(Align.getAsAlign());
5387 if (supportsCOMDAT() && GV->isWeakForLinker())
5388 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5389 if (VD->getTLSKind())
5390 setTLSMode(GV, *VD);
5391 llvm::Constant *CV = GV;
5392 if (AddrSpace != LangAS::Default)
5393 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5394 *this, GV, AddrSpace, LangAS::Default,
5395 Type->getPointerTo(
5396 getContext().getTargetAddressSpace(LangAS::Default)));
5397 MaterializedGlobalTemporaryMap[E] = CV;
5398 return ConstantAddress(CV, Align);
5399}
5400
5401/// EmitObjCPropertyImplementations - Emit information for synthesized
5402/// properties for an implementation.
5403void CodeGenModule::EmitObjCPropertyImplementations(const
5404 ObjCImplementationDecl *D) {
5405 for (const auto *PID : D->property_impls()) {
5406 // Dynamic is just for type-checking.
5407 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5408 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5409
5410 // Determine which methods need to be implemented, some may have
5411 // been overridden. Note that ::isPropertyAccessor is not the method
5412 // we want, that just indicates if the decl came from a
5413 // property. What we want to know is if the method is defined in
5414 // this implementation.
5415 auto *Getter = PID->getGetterMethodDecl();
5416 if (!Getter || Getter->isSynthesizedAccessorStub())
5417 CodeGenFunction(*this).GenerateObjCGetter(
5418 const_cast<ObjCImplementationDecl *>(D), PID);
5419 auto *Setter = PID->getSetterMethodDecl();
5420 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5421 CodeGenFunction(*this).GenerateObjCSetter(
5422 const_cast<ObjCImplementationDecl *>(D), PID);
5423 }
5424 }
5425}
5426
5427static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5428 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5429 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5430 ivar; ivar = ivar->getNextIvar())
5431 if (ivar->getType().isDestructedType())
5432 return true;
5433
5434 return false;
5435}
5436
5437static bool AllTrivialInitializers(CodeGenModule &CGM,
5438 ObjCImplementationDecl *D) {
5439 CodeGenFunction CGF(CGM);
5440 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5441 E = D->init_end(); B != E; ++B) {
5442 CXXCtorInitializer *CtorInitExp = *B;
5443 Expr *Init = CtorInitExp->getInit();
5444 if (!CGF.isTrivialInitializer(Init))
5445 return false;
5446 }
5447 return true;
5448}
5449
5450/// EmitObjCIvarInitializations - Emit information for ivar initialization
5451/// for an implementation.
5452void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5453 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5454 if (needsDestructMethod(D)) {
5455 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5456 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5457 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5458 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5459 getContext().VoidTy, nullptr, D,
5460 /*isInstance=*/true, /*isVariadic=*/false,
5461 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5462 /*isImplicitlyDeclared=*/true,
5463 /*isDefined=*/false, ObjCMethodDecl::Required);
5464 D->addInstanceMethod(DTORMethod);
5465 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5466 D->setHasDestructors(true);
5467 }
5468
5469 // If the implementation doesn't have any ivar initializers, we don't need
5470 // a .cxx_construct.
5471 if (D->getNumIvarInitializers() == 0 ||
5472 AllTrivialInitializers(*this, D))
5473 return;
5474
5475 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5476 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5477 // The constructor returns 'self'.
5478 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5479 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5480 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5481 /*isVariadic=*/false,
5482 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5483 /*isImplicitlyDeclared=*/true,
5484 /*isDefined=*/false, ObjCMethodDecl::Required);
5485 D->addInstanceMethod(CTORMethod);
5486 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5487 D->setHasNonZeroConstructors(true);
5488}
5489
5490// EmitLinkageSpec - Emit all declarations in a linkage spec.
5491void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5492 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5493 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5494 ErrorUnsupported(LSD, "linkage spec");
5495 return;
5496 }
5497
5498 EmitDeclContext(LSD);
5499}
5500
5501void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5502 for (auto *I : DC->decls()) {
5503 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5504 // are themselves considered "top-level", so EmitTopLevelDecl on an
5505 // ObjCImplDecl does not recursively visit them. We need to do that in
5506 // case they're nested inside another construct (LinkageSpecDecl /
5507 // ExportDecl) that does stop them from being considered "top-level".
5508 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5509 for (auto *M : OID->methods())
5510 EmitTopLevelDecl(M);
5511 }
5512
5513 EmitTopLevelDecl(I);
5514 }
5515}
5516
5517/// EmitTopLevelDecl - Emit code for a single top level declaration.
5518void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5519 // Ignore dependent declarations.
5520 if (D->isTemplated())
5521 return;
5522
5523 // Consteval function shouldn't be emitted.
5524 if (auto *FD = dyn_cast<FunctionDecl>(D))
5525 if (FD->isConsteval())
5526 return;
5527
5528 switch (D->getKind()) {
5529 case Decl::CXXConversion:
5530 case Decl::CXXMethod:
5531 case Decl::Function:
5532 EmitGlobal(cast<FunctionDecl>(D));
5533 // Always provide some coverage mapping
5534 // even for the functions that aren't emitted.
5535 AddDeferredUnusedCoverageMapping(D);
5536 break;
5537
5538 case Decl::CXXDeductionGuide:
5539 // Function-like, but does not result in code emission.
5540 break;
5541
5542 case Decl::Var:
5543 case Decl::Decomposition:
5544 case Decl::VarTemplateSpecialization:
5545 EmitGlobal(cast<VarDecl>(D));
5546 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5547 for (auto *B : DD->bindings())
5548 if (auto *HD = B->getHoldingVar())
5549 EmitGlobal(HD);
5550 break;
5551
5552 // Indirect fields from global anonymous structs and unions can be
5553 // ignored; only the actual variable requires IR gen support.
5554 case Decl::IndirectField:
5555 break;
5556
5557 // C++ Decls
5558 case Decl::Namespace:
5559 EmitDeclContext(cast<NamespaceDecl>(D));
5560 break;
5561 case Decl::ClassTemplateSpecialization: {
5562 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5563 if (CGDebugInfo *DI = getModuleDebugInfo())
5564 if (Spec->getSpecializationKind() ==
5565 TSK_ExplicitInstantiationDefinition &&
5566 Spec->hasDefinition())
5567 DI->completeTemplateDefinition(*Spec);
5568 } LLVM_FALLTHROUGH[[gnu::fallthrough]];
5569 case Decl::CXXRecord: {
5570 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5571 if (CGDebugInfo *DI = getModuleDebugInfo()) {
5572 if (CRD->hasDefinition())
5573 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5574 if (auto *ES = D->getASTContext().getExternalSource())
5575 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5576 DI->completeUnusedClass(*CRD);
5577 }
5578 // Emit any static data members, they may be definitions.
5579 for (auto *I : CRD->decls())
5580 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5581 EmitTopLevelDecl(I);
5582 break;
5583 }
5584 // No code generation needed.
5585 case Decl::UsingShadow:
5586 case Decl::ClassTemplate:
5587 case Decl::VarTemplate:
5588 case Decl::Concept:
5589 case Decl::VarTemplatePartialSpecialization:
5590 case Decl::FunctionTemplate:
5591 case Decl::TypeAliasTemplate:
5592 case Decl::Block:
5593 case Decl::Empty:
5594 case Decl::Binding:
5595 break;
5596 case Decl::Using: // using X; [C++]
5597 if (CGDebugInfo *DI = getModuleDebugInfo())
5598 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5599 break;
5600 case Decl::NamespaceAlias:
5601 if (CGDebugInfo *DI = getModuleDebugInfo())
5602 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5603 break;
5604 case Decl::UsingDirective: // using namespace X; [C++]
5605 if (CGDebugInfo *DI = getModuleDebugInfo())
5606 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5607 break;
5608 case Decl::CXXConstructor:
5609 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5610 break;
5611 case Decl::CXXDestructor:
5612 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5613 break;
5614
5615 case Decl::StaticAssert:
5616 // Nothing to do.
5617 break;
5618
5619 // Objective-C Decls
5620
5621 // Forward declarations, no (immediate) code generation.
5622 case Decl::ObjCInterface:
5623 case Decl::ObjCCategory:
5624 break;
5625
5626 case Decl::ObjCProtocol: {
5627 auto *Proto = cast<ObjCProtocolDecl>(D);
5628 if (Proto->isThisDeclarationADefinition())
5629 ObjCRuntime->GenerateProtocol(Proto);
5630 break;
5631 }
5632
5633 case Decl::ObjCCategoryImpl:
5634 // Categories have properties but don't support synthesize so we
5635 // can ignore them here.
5636 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5637 break;
5638
5639 case Decl::ObjCImplementation: {
5640 auto *OMD = cast<ObjCImplementationDecl>(D);
5641 EmitObjCPropertyImplementations(OMD);
5642 EmitObjCIvarInitializations(OMD);
5643 ObjCRuntime->GenerateClass(OMD);
5644 // Emit global variable debug information.
5645 if (CGDebugInfo *DI = getModuleDebugInfo())
5646 if (getCodeGenOpts().hasReducedDebugInfo())
5647 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5648 OMD->getClassInterface()), OMD->getLocation());
5649 break;
5650 }
5651 case Decl::ObjCMethod: {
5652 auto *OMD = cast<ObjCMethodDecl>(D);
5653 // If this is not a prototype, emit the body.
5654 if (OMD->getBody())
5655 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5656 break;
5657 }
5658 case Decl::ObjCCompatibleAlias:
5659 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5660 break;
5661
5662 case Decl::PragmaComment: {
5663 const auto *PCD = cast<PragmaCommentDecl>(D);
5664 switch (PCD->getCommentKind()) {
5665 case PCK_Unknown:
5666 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5666)
;
5667 case PCK_Linker:
5668 AppendLinkerOptions(PCD->getArg());
5669 break;
5670 case PCK_Lib:
5671 AddDependentLib(PCD->getArg());
5672 break;
5673 case PCK_Compiler:
5674 case PCK_ExeStr:
5675 case PCK_User:
5676 break; // We ignore all of these.
5677 }
5678 break;
5679 }
5680
5681 case Decl::PragmaDetectMismatch: {
5682 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5683 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5684 break;
5685 }
5686
5687 case Decl::LinkageSpec:
5688 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5689 break;
5690
5691 case Decl::FileScopeAsm: {
5692 // File-scope asm is ignored during device-side CUDA compilation.
5693 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5694 break;
5695 // File-scope asm is ignored during device-side OpenMP compilation.
5696 if (LangOpts.OpenMPIsDevice)
5697 break;
5698 auto *AD = cast<FileScopeAsmDecl>(D);
5699 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5700 break;
5701 }
5702
5703 case Decl::Import: {
5704 auto *Import = cast<ImportDecl>(D);
5705
5706 // If we've already imported this module, we're done.
5707 if (!ImportedModules.insert(Import->getImportedModule()))
5708 break;
5709
5710 // Emit debug information for direct imports.
5711 if (!Import->getImportedOwningModule()) {
5712 if (CGDebugInfo *DI = getModuleDebugInfo())
5713 DI->EmitImportDecl(*Import);
5714 }
5715
5716 // Find all of the submodules and emit the module initializers.
5717 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5718 SmallVector<clang::Module *, 16> Stack;
5719 Visited.insert(Import->getImportedModule());
5720 Stack.push_back(Import->getImportedModule());
5721
5722 while (!Stack.empty()) {
5723 clang::Module *Mod = Stack.pop_back_val();
5724 if (!EmittedModuleInitializers.insert(Mod).second)
5725 continue;
5726
5727 for (auto *D : Context.getModuleInitializers(Mod))
5728 EmitTopLevelDecl(D);
5729
5730 // Visit the submodules of this module.
5731 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5732 SubEnd = Mod->submodule_end();
5733 Sub != SubEnd; ++Sub) {
5734 // Skip explicit children; they need to be explicitly imported to emit
5735 // the initializers.
5736 if ((*Sub)->IsExplicit)
5737 continue;
5738
5739 if (Visited.insert(*Sub).second)
5740 Stack.push_back(*Sub);
5741 }
5742 }
5743 break;
5744 }
5745
5746 case Decl::Export:
5747 EmitDeclContext(cast<ExportDecl>(D));
5748 break;
5749
5750 case Decl::OMPThreadPrivate:
5751 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5752 break;
5753
5754 case Decl::OMPAllocate:
5755 break;
5756
5757 case Decl::OMPDeclareReduction:
5758 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5759 break;
5760
5761 case Decl::OMPDeclareMapper:
5762 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5763 break;
5764
5765 case Decl::OMPRequires:
5766 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5767 break;
5768
5769 case Decl::Typedef:
5770 case Decl::TypeAlias: // using foo = bar; [C++11]
5771 if (CGDebugInfo *DI = getModuleDebugInfo())
5772 DI->EmitAndRetainType(
5773 getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5774 break;
5775
5776 case Decl::Record:
5777 if (CGDebugInfo *DI = getModuleDebugInfo())
5778 if (cast<RecordDecl>(D)->getDefinition())
5779 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5780 break;
5781
5782 case Decl::Enum:
5783 if (CGDebugInfo *DI = getModuleDebugInfo())
5784 if (cast<EnumDecl>(D)->getDefinition())
5785 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5786 break;
5787
5788 default:
5789 // Make sure we handled everything we should, every other kind is a
5790 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5791 // function. Need to recode Decl::Kind to do that easily.
5792 assert(isa<TypeDecl>(D) && "Unsupported decl kind")((isa<TypeDecl>(D) && "Unsupported decl kind") ?
static_cast<void> (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-12~++20201124111112+7b5254223ac/clang/lib/CodeGen/CodeGenModule.cpp"
, 5792, __PRETTY_FUNCTION__))
;
5793 break;
5794 }