Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 4175, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn325118/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn325118/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-14-150435-17243-1 -x c++ /build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp

/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGObjCRuntime.h"
21#include "CGOpenCLRuntime.h"
22#include "CGOpenMPRuntime.h"
23#include "CGOpenMPRuntimeNVPTX.h"
24#include "CodeGenFunction.h"
25#include "CodeGenPGO.h"
26#include "ConstantEmitter.h"
27#include "CoverageMappingGen.h"
28#include "TargetInfo.h"
29#include "clang/AST/ASTContext.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/AST/DeclCXX.h"
32#include "clang/AST/DeclObjC.h"
33#include "clang/AST/DeclTemplate.h"
34#include "clang/AST/Mangle.h"
35#include "clang/AST/RecordLayout.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/Diagnostic.h"
40#include "clang/Basic/Module.h"
41#include "clang/Basic/SourceManager.h"
42#include "clang/Basic/TargetInfo.h"
43#include "clang/Basic/Version.h"
44#include "clang/CodeGen/ConstantInitBuilder.h"
45#include "clang/Frontend/CodeGenOptions.h"
46#include "clang/Sema/SemaDiagnostic.h"
47#include "llvm/ADT/Triple.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/IR/CallSite.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/ProfileData/InstrProfReader.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MD5.h"
59
60using namespace clang;
61using namespace CodeGen;
62
63static llvm::cl::opt<bool> LimitedCoverage(
64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66 llvm::cl::init(false));
67
68static const char AnnotationSection[] = "llvm.metadata";
69
70static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71 switch (CGM.getTarget().getCXXABI().getKind()) {
72 case TargetCXXABI::GenericAArch64:
73 case TargetCXXABI::GenericARM:
74 case TargetCXXABI::iOS:
75 case TargetCXXABI::iOS64:
76 case TargetCXXABI::WatchOS:
77 case TargetCXXABI::GenericMIPS:
78 case TargetCXXABI::GenericItanium:
79 case TargetCXXABI::WebAssembly:
80 return CreateItaniumCXXABI(CGM);
81 case TargetCXXABI::Microsoft:
82 return CreateMicrosoftCXXABI(CGM);
83 }
84
85 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 85)
;
86}
87
88CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89 const PreprocessorOptions &PPO,
90 const CodeGenOptions &CGO, llvm::Module &M,
91 DiagnosticsEngine &diags,
92 CoverageSourceInfo *CoverageInfo)
93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96 VMContext(M.getContext()), Types(*this), VTables(*this),
97 SanitizerMD(new SanitizerMetadata(*this)) {
98
99 // Initialize the type cache.
100 llvm::LLVMContext &LLVMContext = M.getContext();
101 VoidTy = llvm::Type::getVoidTy(LLVMContext);
102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106 HalfTy = llvm::Type::getHalfTy(LLVMContext);
107 FloatTy = llvm::Type::getFloatTy(LLVMContext);
108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110 PointerAlignInBytes =
111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112 SizeSizeInBytes =
113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114 IntAlignInBytes =
115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117 IntPtrTy = llvm::IntegerType::get(LLVMContext,
118 C.getTargetInfo().getMaxPointerWidth());
119 Int8PtrTy = Int8Ty->getPointerTo(0);
120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121 AllocaInt8PtrTy = Int8Ty->getPointerTo(
122 M.getDataLayout().getAllocaAddrSpace());
123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124
125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127
128 if (LangOpts.ObjC1)
129 createObjCRuntime();
130 if (LangOpts.OpenCL)
131 createOpenCLRuntime();
132 if (LangOpts.OpenMP)
133 createOpenMPRuntime();
134 if (LangOpts.CUDA)
135 createCUDARuntime();
136
137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141 getCXXABI().getMangleContext()));
142
143 // If debug info or coverage generation is enabled, create the CGDebugInfo
144 // object.
145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147 DebugInfo.reset(new CGDebugInfo(*this));
148
149 Block.GlobalUniqueCount = 0;
150
151 if (C.getLangOpts().ObjC1)
152 ObjCData.reset(new ObjCEntrypoints());
153
154 if (CodeGenOpts.hasProfileClangUse()) {
155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156 CodeGenOpts.ProfileInstrumentUsePath);
157 if (auto E = ReaderOrErr.takeError()) {
158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159 "Could not read profile %0: %1");
160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162 << EI.message();
163 });
164 } else
165 PGOReader = std::move(ReaderOrErr.get());
166 }
167
168 // If coverage mapping generation is enabled, create the
169 // CoverageMappingModuleGen object.
170 if (CodeGenOpts.CoverageMapping)
171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172}
173
174CodeGenModule::~CodeGenModule() {}
175
176void CodeGenModule::createObjCRuntime() {
177 // This is just isGNUFamily(), but we want to force implementors of
178 // new ABIs to decide how best to do this.
179 switch (LangOpts.ObjCRuntime.getKind()) {
180 case ObjCRuntime::GNUstep:
181 case ObjCRuntime::GCC:
182 case ObjCRuntime::ObjFW:
183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184 return;
185
186 case ObjCRuntime::FragileMacOSX:
187 case ObjCRuntime::MacOSX:
188 case ObjCRuntime::iOS:
189 case ObjCRuntime::WatchOS:
190 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191 return;
192 }
193 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 193)
;
194}
195
196void CodeGenModule::createOpenCLRuntime() {
197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198}
199
200void CodeGenModule::createOpenMPRuntime() {
201 // Select a specialized code generation class based on the target, if any.
202 // If it does not exist use the default implementation.
203 switch (getTriple().getArch()) {
204 case llvm::Triple::nvptx:
205 case llvm::Triple::nvptx64:
206 assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 207, __extension__ __PRETTY_FUNCTION__))
207 "OpenMP NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 207, __extension__ __PRETTY_FUNCTION__))
;
208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209 break;
210 default:
211 if (LangOpts.OpenMPSimd)
212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213 else
214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215 break;
216 }
217}
218
219void CodeGenModule::createCUDARuntime() {
220 CUDARuntime.reset(CreateNVCUDARuntime(*this));
221}
222
223void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224 Replacements[Name] = C;
225}
226
227void CodeGenModule::applyReplacements() {
228 for (auto &I : Replacements) {
229 StringRef MangledName = I.first();
230 llvm::Constant *Replacement = I.second;
231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232 if (!Entry)
233 continue;
234 auto *OldF = cast<llvm::Function>(Entry);
235 auto *NewF = dyn_cast<llvm::Function>(Replacement);
236 if (!NewF) {
237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239 } else {
240 auto *CE = cast<llvm::ConstantExpr>(Replacement);
241 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 242, __extension__ __PRETTY_FUNCTION__))
242 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 242, __extension__ __PRETTY_FUNCTION__))
;
243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244 }
245 }
246
247 // Replace old with new, but keep the old order.
248 OldF->replaceAllUsesWith(Replacement);
249 if (NewF) {
250 NewF->removeFromParent();
251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252 NewF);
253 }
254 OldF->eraseFromParent();
255 }
256}
257
258void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259 GlobalValReplacements.push_back(std::make_pair(GV, C));
260}
261
262void CodeGenModule::applyGlobalValReplacements() {
263 for (auto &I : GlobalValReplacements) {
264 llvm::GlobalValue *GV = I.first;
265 llvm::Constant *C = I.second;
266
267 GV->replaceAllUsesWith(C);
268 GV->eraseFromParent();
269 }
270}
271
272// This is only used in aliases that we created and we know they have a
273// linear structure.
274static const llvm::GlobalObject *getAliasedGlobal(
275 const llvm::GlobalIndirectSymbol &GIS) {
276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277 const llvm::Constant *C = &GIS;
278 for (;;) {
279 C = C->stripPointerCasts();
280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281 return GO;
282 // stripPointerCasts will not walk over weak aliases.
283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284 if (!GIS2)
285 return nullptr;
286 if (!Visited.insert(GIS2).second)
287 return nullptr;
288 C = GIS2->getIndirectSymbol();
289 }
290}
291
292void CodeGenModule::checkAliases() {
293 // Check if the constructed aliases are well formed. It is really unfortunate
294 // that we have to do this in CodeGen, but we only construct mangled names
295 // and aliases during codegen.
296 bool Error = false;
297 DiagnosticsEngine &Diags = getDiags();
298 for (const GlobalDecl &GD : Aliases) {
299 const auto *D = cast<ValueDecl>(GD.getDecl());
300 SourceLocation Location;
301 bool IsIFunc = D->hasAttr<IFuncAttr>();
302 if (const Attr *A = D->getDefiningAttr())
303 Location = A->getLocation();
304 else
305 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 305)
;
306 StringRef MangledName = getMangledName(GD);
307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310 if (!GV) {
311 Error = true;
312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313 } else if (GV->isDeclaration()) {
314 Error = true;
315 Diags.Report(Location, diag::err_alias_to_undefined)
316 << IsIFunc << IsIFunc;
317 } else if (IsIFunc) {
318 // Check resolver function type.
319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320 GV->getType()->getPointerElementType());
321 assert(FTy)(static_cast <bool> (FTy) ? void (0) : __assert_fail ("FTy"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
;
322 if (!FTy->getReturnType()->isPointerTy())
323 Diags.Report(Location, diag::err_ifunc_resolver_return);
324 if (FTy->getNumParams())
325 Diags.Report(Location, diag::err_ifunc_resolver_params);
326 }
327
328 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329 llvm::GlobalValue *AliaseeGV;
330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332 else
333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334
335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336 StringRef AliasSection = SA->getName();
337 if (AliasSection != AliaseeGV->getSection())
338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339 << AliasSection << IsIFunc << IsIFunc;
340 }
341
342 // We have to handle alias to weak aliases in here. LLVM itself disallows
343 // this since the object semantics would not match the IL one. For
344 // compatibility with gcc we implement it by just pointing the alias
345 // to its aliasee's aliasee. We also warn, since the user is probably
346 // expecting the link to be weak.
347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348 if (GA->isInterposable()) {
349 Diags.Report(Location, diag::warn_alias_to_weak_alias)
350 << GV->getName() << GA->getName() << IsIFunc;
351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352 GA->getIndirectSymbol(), Alias->getType());
353 Alias->setIndirectSymbol(Aliasee);
354 }
355 }
356 }
357 if (!Error)
358 return;
359
360 for (const GlobalDecl &GD : Aliases) {
361 StringRef MangledName = getMangledName(GD);
362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365 Alias->eraseFromParent();
366 }
367}
368
369void CodeGenModule::clear() {
370 DeferredDeclsToEmit.clear();
371 if (OpenMPRuntime)
372 OpenMPRuntime->clear();
373}
374
375void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376 StringRef MainFile) {
377 if (!hasDiagnostics())
378 return;
379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380 if (MainFile.empty())
381 MainFile = "<stdin>";
382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383 } else {
384 if (Mismatched > 0)
385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386
387 if (Missing > 0)
388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389 }
390}
391
392void CodeGenModule::Release() {
393 EmitDeferred();
394 EmitVTablesOpportunistically();
395 applyGlobalValReplacements();
396 applyReplacements();
397 checkAliases();
398 emitMultiVersionFunctions();
399 EmitCXXGlobalInitFunc();
400 EmitCXXGlobalDtorFunc();
401 EmitCXXThreadLocalInitFunc();
402 if (ObjCRuntime)
403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404 AddGlobalCtor(ObjCInitFunction);
405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406 CUDARuntime) {
407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408 AddGlobalCtor(CudaCtorFunction);
409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410 AddGlobalDtor(CudaDtorFunction);
411 }
412 if (OpenMPRuntime)
413 if (llvm::Function *OpenMPRegistrationFunction =
414 OpenMPRuntime->emitRegistrationFunction()) {
415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416 OpenMPRegistrationFunction : nullptr;
417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418 }
419 if (PGOReader) {
420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421 if (PGOStats.hasDiagnostics())
422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423 }
424 EmitCtorList(GlobalCtors, "llvm.global_ctors");
425 EmitCtorList(GlobalDtors, "llvm.global_dtors");
426 EmitGlobalAnnotations();
427 EmitStaticExternCAliases();
428 EmitDeferredUnusedCoverageMappings();
429 if (CoverageMapping)
430 CoverageMapping->emit();
431 if (CodeGenOpts.SanitizeCfiCrossDso) {
432 CodeGenFunction(*this).EmitCfiCheckFail();
433 CodeGenFunction(*this).EmitCfiCheckStub();
434 }
435 emitAtAvailableLinkGuard();
436 emitLLVMUsed();
437 if (SanStats)
438 SanStats->finish();
439
440 if (CodeGenOpts.Autolink &&
441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442 EmitModuleLinkOptions();
443 }
444
445 // Record mregparm value now so it is visible through rest of codegen.
446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448 CodeGenOpts.NumRegisterParameters);
449
450 if (CodeGenOpts.DwarfVersion) {
451 // We actually want the latest version when there are conflicts.
452 // We can change from Warning to Latest if such mode is supported.
453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454 CodeGenOpts.DwarfVersion);
455 }
456 if (CodeGenOpts.EmitCodeView) {
457 // Indicate that we want CodeView in the metadata.
458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459 }
460 if (CodeGenOpts.ControlFlowGuard) {
461 // We want function ID tables for Control Flow Guard.
462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463 }
464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465 // We don't support LTO with 2 with different StrictVTablePointers
466 // FIXME: we could support it by stripping all the information introduced
467 // by StrictVTablePointers.
468
469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470
471 llvm::Metadata *Ops[2] = {
472 llvm::MDString::get(VMContext, "StrictVTablePointers"),
473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474 llvm::Type::getInt32Ty(VMContext), 1))};
475
476 getModule().addModuleFlag(llvm::Module::Require,
477 "StrictVTablePointersRequirement",
478 llvm::MDNode::get(VMContext, Ops));
479 }
480 if (DebugInfo)
481 // We support a single version in the linked module. The LLVM
482 // parser will drop debug info with a different version number
483 // (and warn about it, too).
484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485 llvm::DEBUG_METADATA_VERSION);
486
487 // We need to record the widths of enums and wchar_t, so that we can generate
488 // the correct build attributes in the ARM backend. wchar_size is also used by
489 // TargetLibraryInfo.
490 uint64_t WCharWidth =
491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493
494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495 if ( Arch == llvm::Triple::arm
496 || Arch == llvm::Triple::armeb
497 || Arch == llvm::Triple::thumb
498 || Arch == llvm::Triple::thumbeb) {
499 // The minimum width of an enum in bytes
500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502 }
503
504 if (CodeGenOpts.SanitizeCfiCrossDso) {
505 // Indicate that we want cross-DSO control flow integrity checks.
506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507 }
508
509 if (CodeGenOpts.CFProtectionReturn &&
510 Target.checkCFProtectionReturnSupported(getDiags())) {
511 // Indicate that we want to instrument return control flow protection.
512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513 1);
514 }
515
516 if (CodeGenOpts.CFProtectionBranch &&
517 Target.checkCFProtectionBranchSupported(getDiags())) {
518 // Indicate that we want to instrument branch control flow protection.
519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520 1);
521 }
522
523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524 // Indicate whether __nvvm_reflect should be configured to flush denormal
525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
526 // property.)
527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529 }
530
531 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532 if (LangOpts.OpenCL) {
533 EmitOpenCLMetadata();
534 // Emit SPIR version.
535 if (getTriple().getArch() == llvm::Triple::spir ||
536 getTriple().getArch() == llvm::Triple::spir64) {
537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538 // opencl.spir.version named metadata.
539 llvm::Metadata *SPIRVerElts[] = {
540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541 Int32Ty, LangOpts.OpenCLVersion / 100)),
542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544 llvm::NamedMDNode *SPIRVerMD =
545 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546 llvm::LLVMContext &Ctx = TheModule.getContext();
547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548 }
549 }
550
551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552 assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level"
) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 552, __extension__ __PRETTY_FUNCTION__))
;
553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554 if (Context.getLangOpts().PIE)
555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556 }
557
558 SimplifyPersonality();
559
560 if (getCodeGenOpts().EmitDeclMetadata)
561 EmitDeclMetadata();
562
563 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564 EmitCoverageFile();
565
566 if (DebugInfo)
567 DebugInfo->finalize();
568
569 EmitVersionIdentMetadata();
570
571 EmitTargetMetadata();
572}
573
574void CodeGenModule::EmitOpenCLMetadata() {
575 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576 // opencl.ocl.version named metadata node.
577 llvm::Metadata *OCLVerElts[] = {
578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579 Int32Ty, LangOpts.OpenCLVersion / 100)),
580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582 llvm::NamedMDNode *OCLVerMD =
583 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584 llvm::LLVMContext &Ctx = TheModule.getContext();
585 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586}
587
588void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589 // Make sure that this type is translated.
590 Types.UpdateCompletedType(TD);
591}
592
593void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594 // Make sure that this type is translated.
595 Types.RefreshTypeCacheForClass(RD);
596}
597
598llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599 if (!TBAA)
600 return nullptr;
601 return TBAA->getTypeInfo(QTy);
602}
603
604TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605 // Pointee values may have incomplete types, but they shall never be
606 // dereferenced.
607 if (AccessType->isIncompleteType())
608 return TBAAAccessInfo::getIncompleteInfo();
609
610 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
611 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size);
612}
613
614TBAAAccessInfo
615CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616 if (!TBAA)
617 return TBAAAccessInfo();
618 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619}
620
621llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622 if (!TBAA)
623 return nullptr;
624 return TBAA->getTBAAStructInfo(QTy);
625}
626
627llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628 if (!TBAA)
629 return nullptr;
630 return TBAA->getBaseTypeInfo(QTy);
631}
632
633llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634 if (!TBAA)
635 return nullptr;
636 return TBAA->getAccessTagInfo(Info);
637}
638
639TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640 TBAAAccessInfo TargetInfo) {
641 if (!TBAA)
642 return TBAAAccessInfo();
643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644}
645
646TBAAAccessInfo
647CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648 TBAAAccessInfo InfoB) {
649 if (!TBAA)
650 return TBAAAccessInfo();
651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652}
653
654TBAAAccessInfo
655CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656 TBAAAccessInfo SrcInfo) {
657 if (!TBAA)
658 return TBAAAccessInfo();
659 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660}
661
662void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663 TBAAAccessInfo TBAAInfo) {
664 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666}
667
668void CodeGenModule::DecorateInstructionWithInvariantGroup(
669 llvm::Instruction *I, const CXXRecordDecl *RD) {
670 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671 llvm::MDNode::get(getLLVMContext(), {}));
672}
673
674void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677}
678
679/// ErrorUnsupported - Print out an error that codegen doesn't support the
680/// specified stmt yet.
681void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683 "cannot compile this %0 yet");
684 std::string Msg = Type;
685 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686 << Msg << S->getSourceRange();
687}
688
689/// ErrorUnsupported - Print out an error that codegen doesn't support the
690/// specified decl yet.
691void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693 "cannot compile this %0 yet");
694 std::string Msg = Type;
695 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696}
697
698llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700}
701
702void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703 const NamedDecl *D) const {
704 if (GV->hasDLLImportStorageClass())
705 return;
706 // Internal definitions always have default visibility.
707 if (GV->hasLocalLinkage()) {
708 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709 return;
710 }
711
712 // Set visibility for definitions.
713 LinkageInfo LV = D->getLinkageAndVisibility();
714 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
715 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
716}
717
718static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
719 llvm::GlobalValue *GV, const NamedDecl *D) {
720 const llvm::Triple &TT = CGM.getTriple();
721 // Only handle ELF for now.
722 if (!TT.isOSBinFormatELF())
723 return false;
724
725 // If this is not an executable, don't assume anything is local.
726 const auto &CGOpts = CGM.getCodeGenOpts();
727 llvm::Reloc::Model RM = CGOpts.RelocationModel;
728 const auto &LOpts = CGM.getLangOpts();
729 if (RM != llvm::Reloc::Static && !LOpts.PIE)
730 return false;
731
732 // A definition cannot be preempted from an executable.
733 if (!GV->isDeclarationForLinker())
734 return true;
735
736 // Most PIC code sequences that assume that a symbol is local cannot produce a
737 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
738 // depended, it seems worth it to handle it here.
739 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
740 return false;
741
742 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
743 llvm::Triple::ArchType Arch = TT.getArch();
744 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
745 Arch == llvm::Triple::ppc64le)
746 return false;
747
748 // If we can use copy relocations we can assume it is local.
749 if (auto *VD = dyn_cast<VarDecl>(D))
750 if (VD->getTLSKind() == VarDecl::TLS_None &&
751 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
752 return true;
753
754 // If we can use a plt entry as the symbol address we can assume it
755 // is local.
756 // FIXME: This should work for PIE, but the gold linker doesn't support it.
757 if (isa<FunctionDecl>(D) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
758 return true;
759
760 // Otherwise don't assue it is local.
761 return false;
762}
763
764void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV,
765 const NamedDecl *D) const {
766 if (shouldAssumeDSOLocal(*this, GV, D))
767 GV->setDSOLocal(true);
768}
769
770void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
771 const NamedDecl *D) const {
772 setGlobalVisibility(GV, D);
773 setDSOLocal(GV, D);
774}
775
776static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
777 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
778 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
779 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
780 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
781 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
782}
783
784static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
785 CodeGenOptions::TLSModel M) {
786 switch (M) {
787 case CodeGenOptions::GeneralDynamicTLSModel:
788 return llvm::GlobalVariable::GeneralDynamicTLSModel;
789 case CodeGenOptions::LocalDynamicTLSModel:
790 return llvm::GlobalVariable::LocalDynamicTLSModel;
791 case CodeGenOptions::InitialExecTLSModel:
792 return llvm::GlobalVariable::InitialExecTLSModel;
793 case CodeGenOptions::LocalExecTLSModel:
794 return llvm::GlobalVariable::LocalExecTLSModel;
795 }
796 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 796)
;
797}
798
799void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
800 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 800, __extension__ __PRETTY_FUNCTION__))
;
801
802 llvm::GlobalValue::ThreadLocalMode TLM;
803 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
804
805 // Override the TLS model if it is explicitly specified.
806 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
807 TLM = GetLLVMTLSModel(Attr->getModel());
808 }
809
810 GV->setThreadLocalMode(TLM);
811}
812
813static void AppendTargetMangling(const CodeGenModule &CGM,
814 const TargetAttr *Attr, raw_ostream &Out) {
815 if (Attr->isDefaultVersion())
816 return;
817
818 Out << '.';
819 const auto &Target = CGM.getTarget();
820 TargetAttr::ParsedTargetAttr Info =
821 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
822 // Multiversioning doesn't allow "no-${feature}", so we can
823 // only have "+" prefixes here.
824 assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 825, __extension__ __PRETTY_FUNCTION__))
825 "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 825, __extension__ __PRETTY_FUNCTION__))
;
826 return Target.multiVersionSortPriority(LHS.substr(1)) >
827 Target.multiVersionSortPriority(RHS.substr(1));
828 });
829
830 bool IsFirst = true;
831
832 if (!Info.Architecture.empty()) {
833 IsFirst = false;
834 Out << "arch_" << Info.Architecture;
835 }
836
837 for (StringRef Feat : Info.Features) {
838 if (!IsFirst)
839 Out << '_';
840 IsFirst = false;
841 Out << Feat.substr(1);
842 }
843}
844
845static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
846 const NamedDecl *ND,
847 bool OmitTargetMangling = false) {
848 SmallString<256> Buffer;
849 llvm::raw_svector_ostream Out(Buffer);
850 MangleContext &MC = CGM.getCXXABI().getMangleContext();
851 if (MC.shouldMangleDeclName(ND)) {
852 llvm::raw_svector_ostream Out(Buffer);
853 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
854 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
855 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
856 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
857 else
858 MC.mangleName(ND, Out);
859 } else {
860 IdentifierInfo *II = ND->getIdentifier();
861 assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl."
) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 861, __extension__ __PRETTY_FUNCTION__))
;
862 const auto *FD = dyn_cast<FunctionDecl>(ND);
863
864 if (FD &&
865 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
866 llvm::raw_svector_ostream Out(Buffer);
867 Out << "__regcall3__" << II->getName();
868 } else {
869 Out << II->getName();
870 }
871 }
872
873 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
874 if (FD->isMultiVersion() && !OmitTargetMangling)
875 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
876 return Out.str();
877}
878
879void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
880 const FunctionDecl *FD) {
881 if (!FD->isMultiVersion())
882 return;
883
884 // Get the name of what this would be without the 'target' attribute. This
885 // allows us to lookup the version that was emitted when this wasn't a
886 // multiversion function.
887 std::string NonTargetName =
888 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
889 GlobalDecl OtherGD;
890 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
891 assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 895, __extension__ __PRETTY_FUNCTION__))
892 .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 895, __extension__ __PRETTY_FUNCTION__))
893 ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 895, __extension__ __PRETTY_FUNCTION__))
894 ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 895, __extension__ __PRETTY_FUNCTION__))
895 "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 895, __extension__ __PRETTY_FUNCTION__))
;
896 // OtherFD is the version of this function that was mangled BEFORE
897 // becoming a MultiVersion function. It potentially needs to be updated.
898 const FunctionDecl *OtherFD =
899 OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
900 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
901 // This is so that if the initial version was already the 'default'
902 // version, we don't try to update it.
903 if (OtherName != NonTargetName) {
904 // Remove instead of erase, since others may have stored the StringRef
905 // to this.
906 const auto ExistingRecord = Manglings.find(NonTargetName);
907 if (ExistingRecord != std::end(Manglings))
908 Manglings.remove(&(*ExistingRecord));
909 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
910 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
911 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
912 Entry->setName(OtherName);
913 }
914 }
915}
916
917StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
918 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
919
920 // Some ABIs don't have constructor variants. Make sure that base and
921 // complete constructors get mangled the same.
922 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
923 if (!getTarget().getCXXABI().hasConstructorVariants()) {
924 CXXCtorType OrigCtorType = GD.getCtorType();
925 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType
== Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 925, __extension__ __PRETTY_FUNCTION__))
;
926 if (OrigCtorType == Ctor_Base)
927 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
928 }
929 }
930
931 auto FoundName = MangledDeclNames.find(CanonicalGD);
932 if (FoundName != MangledDeclNames.end())
933 return FoundName->second;
934
935
936 // Keep the first result in the case of a mangling collision.
937 const auto *ND = cast<NamedDecl>(GD.getDecl());
938 auto Result =
939 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
940 return MangledDeclNames[CanonicalGD] = Result.first->first();
941}
942
943StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
944 const BlockDecl *BD) {
945 MangleContext &MangleCtx = getCXXABI().getMangleContext();
946 const Decl *D = GD.getDecl();
947
948 SmallString<256> Buffer;
949 llvm::raw_svector_ostream Out(Buffer);
950 if (!D)
951 MangleCtx.mangleGlobalBlock(BD,
952 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
953 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
954 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
955 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
956 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
957 else
958 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
959
960 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
961 return Result.first->first();
962}
963
964llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
965 return getModule().getNamedValue(Name);
966}
967
968/// AddGlobalCtor - Add a function to the list that will be called before
969/// main() runs.
970void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
971 llvm::Constant *AssociatedData) {
972 // FIXME: Type coercion of void()* types.
973 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
974}
975
976/// AddGlobalDtor - Add a function to the list that will be called
977/// when the module is unloaded.
978void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
979 // FIXME: Type coercion of void()* types.
980 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
981}
982
983void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
984 if (Fns.empty()) return;
985
986 // Ctor function type is void()*.
987 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
988 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
989
990 // Get the type of a ctor entry, { i32, void ()*, i8* }.
991 llvm::StructType *CtorStructTy = llvm::StructType::get(
992 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
993
994 // Construct the constructor and destructor arrays.
995 ConstantInitBuilder builder(*this);
996 auto ctors = builder.beginArray(CtorStructTy);
997 for (const auto &I : Fns) {
998 auto ctor = ctors.beginStruct(CtorStructTy);
999 ctor.addInt(Int32Ty, I.Priority);
1000 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1001 if (I.AssociatedData)
1002 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1003 else
1004 ctor.addNullPointer(VoidPtrTy);
1005 ctor.finishAndAddTo(ctors);
1006 }
1007
1008 auto list =
1009 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1010 /*constant*/ false,
1011 llvm::GlobalValue::AppendingLinkage);
1012
1013 // The LTO linker doesn't seem to like it when we set an alignment
1014 // on appending variables. Take it off as a workaround.
1015 list->setAlignment(0);
1016
1017 Fns.clear();
1018}
1019
1020llvm::GlobalValue::LinkageTypes
1021CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1022 const auto *D = cast<FunctionDecl>(GD.getDecl());
1023
1024 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1025
1026 if (isa<CXXDestructorDecl>(D) &&
1027 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1028 GD.getDtorType())) {
1029 // Destructor variants in the Microsoft C++ ABI are always internal or
1030 // linkonce_odr thunks emitted on an as-needed basis.
1031 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1032 : llvm::GlobalValue::LinkOnceODRLinkage;
1033 }
1034
1035 if (isa<CXXConstructorDecl>(D) &&
1036 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1037 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1038 // Our approach to inheriting constructors is fundamentally different from
1039 // that used by the MS ABI, so keep our inheriting constructor thunks
1040 // internal rather than trying to pick an unambiguous mangling for them.
1041 return llvm::GlobalValue::InternalLinkage;
1042 }
1043
1044 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1045}
1046
1047void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1048 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1049
1050 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1051 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1052 // Don't dllexport/import destructor thunks.
1053 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1054 return;
1055 }
1056 }
1057
1058 if (FD->hasAttr<DLLImportAttr>())
1059 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1060 else if (FD->hasAttr<DLLExportAttr>())
1061 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1062 else
1063 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1064}
1065
1066llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1067 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1068 if (!MDS) return nullptr;
1069
1070 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1071}
1072
1073void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1074 llvm::Function *F) {
1075 setNonAliasAttributes(D, F);
1076}
1077
1078void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1079 const CGFunctionInfo &Info,
1080 llvm::Function *F) {
1081 unsigned CallingConv;
1082 llvm::AttributeList PAL;
1083 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1084 F->setAttributes(PAL);
1085 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1086}
1087
1088/// Determines whether the language options require us to model
1089/// unwind exceptions. We treat -fexceptions as mandating this
1090/// except under the fragile ObjC ABI with only ObjC exceptions
1091/// enabled. This means, for example, that C with -fexceptions
1092/// enables this.
1093static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1094 // If exceptions are completely disabled, obviously this is false.
1095 if (!LangOpts.Exceptions) return false;
1096
1097 // If C++ exceptions are enabled, this is true.
1098 if (LangOpts.CXXExceptions) return true;
1099
1100 // If ObjC exceptions are enabled, this depends on the ABI.
1101 if (LangOpts.ObjCExceptions) {
1102 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1103 }
1104
1105 return true;
1106}
1107
1108void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1109 llvm::Function *F) {
1110 llvm::AttrBuilder B;
1111
1112 if (CodeGenOpts.UnwindTables)
1113 B.addAttribute(llvm::Attribute::UWTable);
1114
1115 if (!hasUnwindExceptions(LangOpts))
1116 B.addAttribute(llvm::Attribute::NoUnwind);
1117
1118 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1119 B.addAttribute(llvm::Attribute::StackProtect);
1120 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1121 B.addAttribute(llvm::Attribute::StackProtectStrong);
1122 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1123 B.addAttribute(llvm::Attribute::StackProtectReq);
1124
1125 if (!D) {
1126 // If we don't have a declaration to control inlining, the function isn't
1127 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1128 // disabled, mark the function as noinline.
1129 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1130 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1131 B.addAttribute(llvm::Attribute::NoInline);
1132
1133 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1134 return;
1135 }
1136
1137 // Track whether we need to add the optnone LLVM attribute,
1138 // starting with the default for this optimization level.
1139 bool ShouldAddOptNone =
1140 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1141 // We can't add optnone in the following cases, it won't pass the verifier.
1142 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1143 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1144 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1145
1146 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1147 B.addAttribute(llvm::Attribute::OptimizeNone);
1148
1149 // OptimizeNone implies noinline; we should not be inlining such functions.
1150 B.addAttribute(llvm::Attribute::NoInline);
1151 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1152, __extension__ __PRETTY_FUNCTION__))
1152 "OptimizeNone and AlwaysInline on same function!")(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1152, __extension__ __PRETTY_FUNCTION__))
;
1153
1154 // We still need to handle naked functions even though optnone subsumes
1155 // much of their semantics.
1156 if (D->hasAttr<NakedAttr>())
1157 B.addAttribute(llvm::Attribute::Naked);
1158
1159 // OptimizeNone wins over OptimizeForSize and MinSize.
1160 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1161 F->removeFnAttr(llvm::Attribute::MinSize);
1162 } else if (D->hasAttr<NakedAttr>()) {
1163 // Naked implies noinline: we should not be inlining such functions.
1164 B.addAttribute(llvm::Attribute::Naked);
1165 B.addAttribute(llvm::Attribute::NoInline);
1166 } else if (D->hasAttr<NoDuplicateAttr>()) {
1167 B.addAttribute(llvm::Attribute::NoDuplicate);
1168 } else if (D->hasAttr<NoInlineAttr>()) {
1169 B.addAttribute(llvm::Attribute::NoInline);
1170 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1171 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1172 // (noinline wins over always_inline, and we can't specify both in IR)
1173 B.addAttribute(llvm::Attribute::AlwaysInline);
1174 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1175 // If we're not inlining, then force everything that isn't always_inline to
1176 // carry an explicit noinline attribute.
1177 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1178 B.addAttribute(llvm::Attribute::NoInline);
1179 } else {
1180 // Otherwise, propagate the inline hint attribute and potentially use its
1181 // absence to mark things as noinline.
1182 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1183 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1184 return Redecl->isInlineSpecified();
1185 })) {
1186 B.addAttribute(llvm::Attribute::InlineHint);
1187 } else if (CodeGenOpts.getInlining() ==
1188 CodeGenOptions::OnlyHintInlining &&
1189 !FD->isInlined() &&
1190 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1191 B.addAttribute(llvm::Attribute::NoInline);
1192 }
1193 }
1194 }
1195
1196 // Add other optimization related attributes if we are optimizing this
1197 // function.
1198 if (!D->hasAttr<OptimizeNoneAttr>()) {
1199 if (D->hasAttr<ColdAttr>()) {
1200 if (!ShouldAddOptNone)
1201 B.addAttribute(llvm::Attribute::OptimizeForSize);
1202 B.addAttribute(llvm::Attribute::Cold);
1203 }
1204
1205 if (D->hasAttr<MinSizeAttr>())
1206 B.addAttribute(llvm::Attribute::MinSize);
1207 }
1208
1209 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1210
1211 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1212 if (alignment)
1213 F->setAlignment(alignment);
1214
1215 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1216 // reserve a bit for differentiating between virtual and non-virtual member
1217 // functions. If the current target's C++ ABI requires this and this is a
1218 // member function, set its alignment accordingly.
1219 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1220 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1221 F->setAlignment(2);
1222 }
1223
1224 // In the cross-dso CFI mode, we want !type attributes on definitions only.
1225 if (CodeGenOpts.SanitizeCfiCrossDso)
1226 if (auto *FD = dyn_cast<FunctionDecl>(D))
1227 CreateFunctionTypeMetadata(FD, F);
1228}
1229
1230void CodeGenModule::SetCommonAttributes(const Decl *D,
1231 llvm::GlobalValue *GV) {
1232 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1233 setGVProperties(GV, ND);
1234 else
1235 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1236
1237 if (D && D->hasAttr<UsedAttr>())
1238 addUsedGlobal(GV);
1239}
1240
1241void CodeGenModule::setAliasAttributes(const Decl *D,
1242 llvm::GlobalValue *GV) {
1243 SetCommonAttributes(D, GV);
1244
1245 // Process the dllexport attribute based on whether the original definition
1246 // (not necessarily the aliasee) was exported.
1247 if (D->hasAttr<DLLExportAttr>())
1248 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1249}
1250
1251bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1252 llvm::AttrBuilder &Attrs) {
1253 // Add target-cpu and target-features attributes to functions. If
1254 // we have a decl for the function and it has a target attribute then
1255 // parse that and add it to the feature set.
1256 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1257 std::vector<std::string> Features;
1258 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1259 FD = FD ? FD->getMostRecentDecl() : FD;
1260 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1261 bool AddedAttr = false;
1262 if (TD) {
1263 llvm::StringMap<bool> FeatureMap;
1264 getFunctionFeatureMap(FeatureMap, FD);
1265
1266 // Produce the canonical string for this set of features.
1267 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1268 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1269
1270 // Now add the target-cpu and target-features to the function.
1271 // While we populated the feature map above, we still need to
1272 // get and parse the target attribute so we can get the cpu for
1273 // the function.
1274 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1275 if (ParsedAttr.Architecture != "" &&
1276 getTarget().isValidCPUName(ParsedAttr.Architecture))
1277 TargetCPU = ParsedAttr.Architecture;
1278 } else {
1279 // Otherwise just add the existing target cpu and target features to the
1280 // function.
1281 Features = getTarget().getTargetOpts().Features;
1282 }
1283
1284 if (TargetCPU != "") {
1285 Attrs.addAttribute("target-cpu", TargetCPU);
1286 AddedAttr = true;
1287 }
1288 if (!Features.empty()) {
1289 std::sort(Features.begin(), Features.end());
1290 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1291 AddedAttr = true;
1292 }
1293
1294 return AddedAttr;
1295}
1296
1297void CodeGenModule::setNonAliasAttributes(const Decl *D,
1298 llvm::GlobalObject *GO) {
1299 SetCommonAttributes(D, GO);
1300
1301 if (D) {
1302 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1303 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1304 GV->addAttribute("bss-section", SA->getName());
1305 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1306 GV->addAttribute("data-section", SA->getName());
1307 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1308 GV->addAttribute("rodata-section", SA->getName());
1309 }
1310
1311 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1312 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1313 if (!D->getAttr<SectionAttr>())
1314 F->addFnAttr("implicit-section-name", SA->getName());
1315
1316 llvm::AttrBuilder Attrs;
1317 if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1318 // We know that GetCPUAndFeaturesAttributes will always have the
1319 // newest set, since it has the newest possible FunctionDecl, so the
1320 // new ones should replace the old.
1321 F->removeFnAttr("target-cpu");
1322 F->removeFnAttr("target-features");
1323 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1324 }
1325 }
1326
1327 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1328 GO->setSection(SA->getName());
1329 }
1330
1331 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1332}
1333
1334void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1335 llvm::Function *F,
1336 const CGFunctionInfo &FI) {
1337 SetLLVMFunctionAttributes(D, FI, F);
1338 SetLLVMFunctionAttributesForDefinition(D, F);
1339
1340 F->setLinkage(llvm::Function::InternalLinkage);
1341
1342 setNonAliasAttributes(D, F);
1343}
1344
1345static void setLinkageForGV(llvm::GlobalValue *GV,
1346 const NamedDecl *ND) {
1347 // Set linkage and visibility in case we never see a definition.
1348 LinkageInfo LV = ND->getLinkageAndVisibility();
1349 if (!isExternallyVisible(LV.getLinkage())) {
1350 // Don't set internal linkage on declarations.
1351 } else {
1352 if (ND->hasAttr<DLLImportAttr>()) {
1353 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1354 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1355 } else if (ND->hasAttr<DLLExportAttr>()) {
1356 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1357 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1358 // "extern_weak" is overloaded in LLVM; we probably should have
1359 // separate linkage types for this.
1360 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1361 }
1362 }
1363}
1364
1365void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1366 llvm::Function *F) {
1367 // Only if we are checking indirect calls.
1368 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1369 return;
1370
1371 // Non-static class methods are handled via vtable pointer checks elsewhere.
1372 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1373 return;
1374
1375 // Additionally, if building with cross-DSO support...
1376 if (CodeGenOpts.SanitizeCfiCrossDso) {
1377 // Skip available_externally functions. They won't be codegen'ed in the
1378 // current module anyway.
1379 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1380 return;
1381 }
1382
1383 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1384 F->addTypeMetadata(0, MD);
1385 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1386
1387 // Emit a hash-based bit set entry for cross-DSO calls.
1388 if (CodeGenOpts.SanitizeCfiCrossDso)
1389 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1390 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1391}
1392
1393void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1394 bool IsIncompleteFunction,
1395 bool IsThunk) {
1396
1397 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1398 // If this is an intrinsic function, set the function's attributes
1399 // to the intrinsic's attributes.
1400 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1401 return;
1402 }
1403
1404 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1405
1406 if (!IsIncompleteFunction) {
1407 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1408 // Setup target-specific attributes.
1409 if (F->isDeclaration())
1410 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1411 }
1412
1413 // Add the Returned attribute for "this", except for iOS 5 and earlier
1414 // where substantial code, including the libstdc++ dylib, was compiled with
1415 // GCC and does not actually return "this".
1416 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1417 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1418 assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1421, __extension__ __PRETTY_FUNCTION__))
1419 F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1421, __extension__ __PRETTY_FUNCTION__))
1420 ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1421, __extension__ __PRETTY_FUNCTION__))
1421 "unexpected this return")(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1421, __extension__ __PRETTY_FUNCTION__))
;
1422 F->addAttribute(1, llvm::Attribute::Returned);
1423 }
1424
1425 // Only a few attributes are set on declarations; these may later be
1426 // overridden by a definition.
1427
1428 setLinkageForGV(F, FD);
1429 setGVProperties(F, FD);
1430
1431 if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1432 F->addFnAttr("implicit-section-name");
1433 }
1434
1435 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1436 F->setSection(SA->getName());
1437
1438 if (FD->isReplaceableGlobalAllocationFunction()) {
1439 // A replaceable global allocation function does not act like a builtin by
1440 // default, only if it is invoked by a new-expression or delete-expression.
1441 F->addAttribute(llvm::AttributeList::FunctionIndex,
1442 llvm::Attribute::NoBuiltin);
1443
1444 // A sane operator new returns a non-aliasing pointer.
1445 // FIXME: Also add NonNull attribute to the return value
1446 // for the non-nothrow forms?
1447 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1448 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1449 (Kind == OO_New || Kind == OO_Array_New))
1450 F->addAttribute(llvm::AttributeList::ReturnIndex,
1451 llvm::Attribute::NoAlias);
1452 }
1453
1454 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1455 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1456 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1457 if (MD->isVirtual())
1458 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1459
1460 // Don't emit entries for function declarations in the cross-DSO mode. This
1461 // is handled with better precision by the receiving DSO.
1462 if (!CodeGenOpts.SanitizeCfiCrossDso)
1463 CreateFunctionTypeMetadata(FD, F);
1464
1465 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1466 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1467}
1468
1469void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1470 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1471, __extension__ __PRETTY_FUNCTION__))
1471 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1471, __extension__ __PRETTY_FUNCTION__))
;
1472 LLVMUsed.emplace_back(GV);
1473}
1474
1475void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1476 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1477, __extension__ __PRETTY_FUNCTION__))
1477 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1477, __extension__ __PRETTY_FUNCTION__))
;
1478 LLVMCompilerUsed.emplace_back(GV);
1479}
1480
1481static void emitUsed(CodeGenModule &CGM, StringRef Name,
1482 std::vector<llvm::WeakTrackingVH> &List) {
1483 // Don't create llvm.used if there is no need.
1484 if (List.empty())
1485 return;
1486
1487 // Convert List to what ConstantArray needs.
1488 SmallVector<llvm::Constant*, 8> UsedArray;
1489 UsedArray.resize(List.size());
1490 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1491 UsedArray[i] =
1492 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1493 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1494 }
1495
1496 if (UsedArray.empty())
1497 return;
1498 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1499
1500 auto *GV = new llvm::GlobalVariable(
1501 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1502 llvm::ConstantArray::get(ATy, UsedArray), Name);
1503
1504 GV->setSection("llvm.metadata");
1505}
1506
1507void CodeGenModule::emitLLVMUsed() {
1508 emitUsed(*this, "llvm.used", LLVMUsed);
1509 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1510}
1511
1512void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1513 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1514 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1515}
1516
1517void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1518 llvm::SmallString<32> Opt;
1519 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1520 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1521 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1522}
1523
1524void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1525 auto &C = getLLVMContext();
1526 LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1527 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1528}
1529
1530void CodeGenModule::AddDependentLib(StringRef Lib) {
1531 llvm::SmallString<24> Opt;
1532 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1533 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1534 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1535}
1536
1537/// \brief Add link options implied by the given module, including modules
1538/// it depends on, using a postorder walk.
1539static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1540 SmallVectorImpl<llvm::MDNode *> &Metadata,
1541 llvm::SmallPtrSet<Module *, 16> &Visited) {
1542 // Import this module's parent.
1543 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1544 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1545 }
1546
1547 // Import this module's dependencies.
1548 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1549 if (Visited.insert(Mod->Imports[I - 1]).second)
1550 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1551 }
1552
1553 // Add linker options to link against the libraries/frameworks
1554 // described by this module.
1555 llvm::LLVMContext &Context = CGM.getLLVMContext();
1556 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1557 // Link against a framework. Frameworks are currently Darwin only, so we
1558 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1559 if (Mod->LinkLibraries[I-1].IsFramework) {
1560 llvm::Metadata *Args[2] = {
1561 llvm::MDString::get(Context, "-framework"),
1562 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1563
1564 Metadata.push_back(llvm::MDNode::get(Context, Args));
1565 continue;
1566 }
1567
1568 // Link against a library.
1569 llvm::SmallString<24> Opt;
1570 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1571 Mod->LinkLibraries[I-1].Library, Opt);
1572 auto *OptString = llvm::MDString::get(Context, Opt);
1573 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1574 }
1575}
1576
1577void CodeGenModule::EmitModuleLinkOptions() {
1578 // Collect the set of all of the modules we want to visit to emit link
1579 // options, which is essentially the imported modules and all of their
1580 // non-explicit child modules.
1581 llvm::SetVector<clang::Module *> LinkModules;
1582 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1583 SmallVector<clang::Module *, 16> Stack;
1584
1585 // Seed the stack with imported modules.
1586 for (Module *M : ImportedModules) {
1587 // Do not add any link flags when an implementation TU of a module imports
1588 // a header of that same module.
1589 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1590 !getLangOpts().isCompilingModule())
1591 continue;
1592 if (Visited.insert(M).second)
1593 Stack.push_back(M);
1594 }
1595
1596 // Find all of the modules to import, making a little effort to prune
1597 // non-leaf modules.
1598 while (!Stack.empty()) {
1599 clang::Module *Mod = Stack.pop_back_val();
1600
1601 bool AnyChildren = false;
1602
1603 // Visit the submodules of this module.
1604 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1605 SubEnd = Mod->submodule_end();
1606 Sub != SubEnd; ++Sub) {
1607 // Skip explicit children; they need to be explicitly imported to be
1608 // linked against.
1609 if ((*Sub)->IsExplicit)
1610 continue;
1611
1612 if (Visited.insert(*Sub).second) {
1613 Stack.push_back(*Sub);
1614 AnyChildren = true;
1615 }
1616 }
1617
1618 // We didn't find any children, so add this module to the list of
1619 // modules to link against.
1620 if (!AnyChildren) {
1621 LinkModules.insert(Mod);
1622 }
1623 }
1624
1625 // Add link options for all of the imported modules in reverse topological
1626 // order. We don't do anything to try to order import link flags with respect
1627 // to linker options inserted by things like #pragma comment().
1628 SmallVector<llvm::MDNode *, 16> MetadataArgs;
1629 Visited.clear();
1630 for (Module *M : LinkModules)
1631 if (Visited.insert(M).second)
1632 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1633 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1634 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1635
1636 // Add the linker options metadata flag.
1637 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1638 for (auto *MD : LinkerOptionsMetadata)
1639 NMD->addOperand(MD);
1640}
1641
1642void CodeGenModule::EmitDeferred() {
1643 // Emit code for any potentially referenced deferred decls. Since a
1644 // previously unused static decl may become used during the generation of code
1645 // for a static function, iterate until no changes are made.
1646
1647 if (!DeferredVTables.empty()) {
1648 EmitDeferredVTables();
1649
1650 // Emitting a vtable doesn't directly cause more vtables to
1651 // become deferred, although it can cause functions to be
1652 // emitted that then need those vtables.
1653 assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0
) : __assert_fail ("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1653, __extension__ __PRETTY_FUNCTION__))
;
1654 }
1655
1656 // Stop if we're out of both deferred vtables and deferred declarations.
1657 if (DeferredDeclsToEmit.empty())
1658 return;
1659
1660 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1661 // work, it will not interfere with this.
1662 std::vector<GlobalDecl> CurDeclsToEmit;
1663 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1664
1665 for (GlobalDecl &D : CurDeclsToEmit) {
1666 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1667 // to get GlobalValue with exactly the type we need, not something that
1668 // might had been created for another decl with the same mangled name but
1669 // different type.
1670 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1671 GetAddrOfGlobal(D, ForDefinition));
1672
1673 // In case of different address spaces, we may still get a cast, even with
1674 // IsForDefinition equal to true. Query mangled names table to get
1675 // GlobalValue.
1676 if (!GV)
1677 GV = GetGlobalValue(getMangledName(D));
1678
1679 // Make sure GetGlobalValue returned non-null.
1680 assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1680, __extension__ __PRETTY_FUNCTION__))
;
1681
1682 // Check to see if we've already emitted this. This is necessary
1683 // for a couple of reasons: first, decls can end up in the
1684 // deferred-decls queue multiple times, and second, decls can end
1685 // up with definitions in unusual ways (e.g. by an extern inline
1686 // function acquiring a strong function redefinition). Just
1687 // ignore these cases.
1688 if (!GV->isDeclaration())
1689 continue;
1690
1691 // Otherwise, emit the definition and move on to the next one.
1692 EmitGlobalDefinition(D, GV);
1693
1694 // If we found out that we need to emit more decls, do that recursively.
1695 // This has the advantage that the decls are emitted in a DFS and related
1696 // ones are close together, which is convenient for testing.
1697 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1698 EmitDeferred();
1699 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() &&
DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1699, __extension__ __PRETTY_FUNCTION__))
;
1700 }
1701 }
1702}
1703
1704void CodeGenModule::EmitVTablesOpportunistically() {
1705 // Try to emit external vtables as available_externally if they have emitted
1706 // all inlined virtual functions. It runs after EmitDeferred() and therefore
1707 // is not allowed to create new references to things that need to be emitted
1708 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1709
1710 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1711, __extension__ __PRETTY_FUNCTION__))
1711 && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1711, __extension__ __PRETTY_FUNCTION__))
;
1712
1713 for (const CXXRecordDecl *RD : OpportunisticVTables) {
1714 assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1715, __extension__ __PRETTY_FUNCTION__))
1715 "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1715, __extension__ __PRETTY_FUNCTION__))
;
1716 if (getCXXABI().canSpeculativelyEmitVTable(RD))
1717 VTables.GenerateClassData(RD);
1718 }
1719 OpportunisticVTables.clear();
1720}
1721
1722void CodeGenModule::EmitGlobalAnnotations() {
1723 if (Annotations.empty())
1724 return;
1725
1726 // Create a new global variable for the ConstantStruct in the Module.
1727 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1728 Annotations[0]->getType(), Annotations.size()), Annotations);
1729 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1730 llvm::GlobalValue::AppendingLinkage,
1731 Array, "llvm.global.annotations");
1732 gv->setSection(AnnotationSection);
1733}
1734
1735llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1736 llvm::Constant *&AStr = AnnotationStrings[Str];
1737 if (AStr)
1738 return AStr;
1739
1740 // Not found yet, create a new global.
1741 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1742 auto *gv =
1743 new llvm::GlobalVariable(getModule(), s->getType(), true,
1744 llvm::GlobalValue::PrivateLinkage, s, ".str");
1745 gv->setSection(AnnotationSection);
1746 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1747 AStr = gv;
1748 return gv;
1749}
1750
1751llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1752 SourceManager &SM = getContext().getSourceManager();
1753 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1754 if (PLoc.isValid())
1755 return EmitAnnotationString(PLoc.getFilename());
1756 return EmitAnnotationString(SM.getBufferName(Loc));
1757}
1758
1759llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1760 SourceManager &SM = getContext().getSourceManager();
1761 PresumedLoc PLoc = SM.getPresumedLoc(L);
1762 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1763 SM.getExpansionLineNumber(L);
1764 return llvm::ConstantInt::get(Int32Ty, LineNo);
1765}
1766
1767llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1768 const AnnotateAttr *AA,
1769 SourceLocation L) {
1770 // Get the globals for file name, annotation, and the line number.
1771 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1772 *UnitGV = EmitAnnotationUnit(L),
1773 *LineNoCst = EmitAnnotationLineNo(L);
1774
1775 // Create the ConstantStruct for the global annotation.
1776 llvm::Constant *Fields[4] = {
1777 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1778 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1779 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1780 LineNoCst
1781 };
1782 return llvm::ConstantStruct::getAnon(Fields);
1783}
1784
1785void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1786 llvm::GlobalValue *GV) {
1787 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>(
) && "no annotate attribute") ? void (0) : __assert_fail
("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1787, __extension__ __PRETTY_FUNCTION__))
;
1788 // Get the struct elements for these annotations.
1789 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1790 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1791}
1792
1793bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1794 llvm::Function *Fn,
1795 SourceLocation Loc) const {
1796 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1797 // Blacklist by function name.
1798 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1799 return true;
1800 // Blacklist by location.
1801 if (Loc.isValid())
1802 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1803 // If location is unknown, this may be a compiler-generated function. Assume
1804 // it's located in the main file.
1805 auto &SM = Context.getSourceManager();
1806 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1807 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1808 }
1809 return false;
1810}
1811
1812bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1813 SourceLocation Loc, QualType Ty,
1814 StringRef Category) const {
1815 // For now globals can be blacklisted only in ASan and KASan.
1816 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1817 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1818 if (!EnabledAsanMask)
1819 return false;
1820 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1821 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1822 return true;
1823 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1824 return true;
1825 // Check global type.
1826 if (!Ty.isNull()) {
1827 // Drill down the array types: if global variable of a fixed type is
1828 // blacklisted, we also don't instrument arrays of them.
1829 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1830 Ty = AT->getElementType();
1831 Ty = Ty.getCanonicalType().getUnqualifiedType();
1832 // We allow to blacklist only record types (classes, structs etc.)
1833 if (Ty->isRecordType()) {
1834 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1835 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1836 return true;
1837 }
1838 }
1839 return false;
1840}
1841
1842bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1843 StringRef Category) const {
1844 if (!LangOpts.XRayInstrument)
1845 return false;
1846 const auto &XRayFilter = getContext().getXRayFilter();
1847 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1848 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1849 if (Loc.isValid())
1850 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1851 if (Attr == ImbueAttr::NONE)
1852 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1853 switch (Attr) {
1854 case ImbueAttr::NONE:
1855 return false;
1856 case ImbueAttr::ALWAYS:
1857 Fn->addFnAttr("function-instrument", "xray-always");
1858 break;
1859 case ImbueAttr::ALWAYS_ARG1:
1860 Fn->addFnAttr("function-instrument", "xray-always");
1861 Fn->addFnAttr("xray-log-args", "1");
1862 break;
1863 case ImbueAttr::NEVER:
1864 Fn->addFnAttr("function-instrument", "xray-never");
1865 break;
1866 }
1867 return true;
1868}
1869
1870bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1871 // Never defer when EmitAllDecls is specified.
1872 if (LangOpts.EmitAllDecls)
1873 return true;
1874
1875 return getContext().DeclMustBeEmitted(Global);
1876}
1877
1878bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1879 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1880 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1881 // Implicit template instantiations may change linkage if they are later
1882 // explicitly instantiated, so they should not be emitted eagerly.
1883 return false;
1884 if (const auto *VD = dyn_cast<VarDecl>(Global))
1885 if (Context.getInlineVariableDefinitionKind(VD) ==
1886 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1887 // A definition of an inline constexpr static data member may change
1888 // linkage later if it's redeclared outside the class.
1889 return false;
1890 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1891 // codegen for global variables, because they may be marked as threadprivate.
1892 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1893 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1894 return false;
1895
1896 return true;
1897}
1898
1899ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1900 const CXXUuidofExpr* E) {
1901 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1902 // well-formed.
1903 StringRef Uuid = E->getUuidStr();
1904 std::string Name = "_GUID_" + Uuid.lower();
1905 std::replace(Name.begin(), Name.end(), '-', '_');
1906
1907 // The UUID descriptor should be pointer aligned.
1908 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1909
1910 // Look for an existing global.
1911 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1912 return ConstantAddress(GV, Alignment);
1913
1914 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1915 assert(Init && "failed to initialize as constant")(static_cast <bool> (Init && "failed to initialize as constant"
) ? void (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1915, __extension__ __PRETTY_FUNCTION__))
;
1916
1917 auto *GV = new llvm::GlobalVariable(
1918 getModule(), Init->getType(),
1919 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1920 if (supportsCOMDAT())
1921 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1922 return ConstantAddress(GV, Alignment);
1923}
1924
1925ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1926 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1927 assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void (
0) : __assert_fail ("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1927, __extension__ __PRETTY_FUNCTION__))
;
1928
1929 CharUnits Alignment = getContext().getDeclAlign(VD);
1930 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1931
1932 // See if there is already something with the target's name in the module.
1933 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1934 if (Entry) {
1935 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1936 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1937 return ConstantAddress(Ptr, Alignment);
1938 }
1939
1940 llvm::Constant *Aliasee;
1941 if (isa<llvm::FunctionType>(DeclTy))
1942 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1943 GlobalDecl(cast<FunctionDecl>(VD)),
1944 /*ForVTable=*/false);
1945 else
1946 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1947 llvm::PointerType::getUnqual(DeclTy),
1948 nullptr);
1949
1950 auto *F = cast<llvm::GlobalValue>(Aliasee);
1951 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1952 WeakRefReferences.insert(F);
1953
1954 return ConstantAddress(Aliasee, Alignment);
1955}
1956
1957void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1958 const auto *Global = cast<ValueDecl>(GD.getDecl());
1959
1960 // Weak references don't produce any output by themselves.
1961 if (Global->hasAttr<WeakRefAttr>())
1962 return;
1963
1964 // If this is an alias definition (which otherwise looks like a declaration)
1965 // emit it now.
1966 if (Global->hasAttr<AliasAttr>())
1967 return EmitAliasDefinition(GD);
1968
1969 // IFunc like an alias whose value is resolved at runtime by calling resolver.
1970 if (Global->hasAttr<IFuncAttr>())
1971 return emitIFuncDefinition(GD);
1972
1973 // If this is CUDA, be selective about which declarations we emit.
1974 if (LangOpts.CUDA) {
1975 if (LangOpts.CUDAIsDevice) {
1976 if (!Global->hasAttr<CUDADeviceAttr>() &&
1977 !Global->hasAttr<CUDAGlobalAttr>() &&
1978 !Global->hasAttr<CUDAConstantAttr>() &&
1979 !Global->hasAttr<CUDASharedAttr>())
1980 return;
1981 } else {
1982 // We need to emit host-side 'shadows' for all global
1983 // device-side variables because the CUDA runtime needs their
1984 // size and host-side address in order to provide access to
1985 // their device-side incarnations.
1986
1987 // So device-only functions are the only things we skip.
1988 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1989 Global->hasAttr<CUDADeviceAttr>())
1990 return;
1991
1992 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1993, __extension__ __PRETTY_FUNCTION__))
1993 "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1993, __extension__ __PRETTY_FUNCTION__))
;
1994 }
1995 }
1996
1997 if (LangOpts.OpenMP) {
1998 // If this is OpenMP device, check if it is legal to emit this global
1999 // normally.
2000 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2001 return;
2002 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2003 if (MustBeEmitted(Global))
2004 EmitOMPDeclareReduction(DRD);
2005 return;
2006 }
2007 }
2008
2009 // Ignore declarations, they will be emitted on their first use.
2010 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2011 // Forward declarations are emitted lazily on first use.
2012 if (!FD->doesThisDeclarationHaveABody()) {
2013 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2014 return;
2015
2016 StringRef MangledName = getMangledName(GD);
2017
2018 // Compute the function info and LLVM type.
2019 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2020 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2021
2022 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2023 /*DontDefer=*/false);
2024 return;
2025 }
2026 } else {
2027 const auto *VD = cast<VarDecl>(Global);
2028 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2028, __extension__ __PRETTY_FUNCTION__))
;
2029 // We need to emit device-side global CUDA variables even if a
2030 // variable does not have a definition -- we still need to define
2031 // host-side shadow for it.
2032 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2033 !VD->hasDefinition() &&
2034 (VD->hasAttr<CUDAConstantAttr>() ||
2035 VD->hasAttr<CUDADeviceAttr>());
2036 if (!MustEmitForCuda &&
2037 VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2038 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2039 // If this declaration may have caused an inline variable definition to
2040 // change linkage, make sure that it's emitted.
2041 if (Context.getInlineVariableDefinitionKind(VD) ==
2042 ASTContext::InlineVariableDefinitionKind::Strong)
2043 GetAddrOfGlobalVar(VD);
2044 return;
2045 }
2046 }
2047
2048 // Defer code generation to first use when possible, e.g. if this is an inline
2049 // function. If the global must always be emitted, do it eagerly if possible
2050 // to benefit from cache locality.
2051 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2052 // Emit the definition if it can't be deferred.
2053 EmitGlobalDefinition(GD);
2054 return;
2055 }
2056
2057 // If we're deferring emission of a C++ variable with an
2058 // initializer, remember the order in which it appeared in the file.
2059 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2060 cast<VarDecl>(Global)->hasInit()) {
2061 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2062 CXXGlobalInits.push_back(nullptr);
2063 }
2064
2065 StringRef MangledName = getMangledName(GD);
2066 if (GetGlobalValue(MangledName) != nullptr) {
2067 // The value has already been used and should therefore be emitted.
2068 addDeferredDeclToEmit(GD);
2069 } else if (MustBeEmitted(Global)) {
2070 // The value must be emitted, but cannot be emitted eagerly.
2071 assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void
(0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2071, __extension__ __PRETTY_FUNCTION__))
;
2072 addDeferredDeclToEmit(GD);
2073 } else {
2074 // Otherwise, remember that we saw a deferred decl with this name. The
2075 // first use of the mangled name will cause it to move into
2076 // DeferredDeclsToEmit.
2077 DeferredDecls[MangledName] = GD;
2078 }
2079}
2080
2081// Check if T is a class type with a destructor that's not dllimport.
2082static bool HasNonDllImportDtor(QualType T) {
2083 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2084 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2085 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2086 return true;
2087
2088 return false;
2089}
2090
2091namespace {
2092 struct FunctionIsDirectlyRecursive :
2093 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2094 const StringRef Name;
2095 const Builtin::Context &BI;
2096 bool Result;
2097 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2098 Name(N), BI(C), Result(false) {
2099 }
2100 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2101
2102 bool TraverseCallExpr(CallExpr *E) {
2103 const FunctionDecl *FD = E->getDirectCallee();
2104 if (!FD)
2105 return true;
2106 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2107 if (Attr && Name == Attr->getLabel()) {
2108 Result = true;
2109 return false;
2110 }
2111 unsigned BuiltinID = FD->getBuiltinID();
2112 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2113 return true;
2114 StringRef BuiltinName = BI.getName(BuiltinID);
2115 if (BuiltinName.startswith("__builtin_") &&
2116 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2117 Result = true;
2118 return false;
2119 }
2120 return true;
2121 }
2122 };
2123
2124 // Make sure we're not referencing non-imported vars or functions.
2125 struct DLLImportFunctionVisitor
2126 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2127 bool SafeToInline = true;
2128
2129 bool shouldVisitImplicitCode() const { return true; }
2130
2131 bool VisitVarDecl(VarDecl *VD) {
2132 if (VD->getTLSKind()) {
2133 // A thread-local variable cannot be imported.
2134 SafeToInline = false;
2135 return SafeToInline;
2136 }
2137
2138 // A variable definition might imply a destructor call.
2139 if (VD->isThisDeclarationADefinition())
2140 SafeToInline = !HasNonDllImportDtor(VD->getType());
2141
2142 return SafeToInline;
2143 }
2144
2145 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2146 if (const auto *D = E->getTemporary()->getDestructor())
2147 SafeToInline = D->hasAttr<DLLImportAttr>();
2148 return SafeToInline;
2149 }
2150
2151 bool VisitDeclRefExpr(DeclRefExpr *E) {
2152 ValueDecl *VD = E->getDecl();
2153 if (isa<FunctionDecl>(VD))
2154 SafeToInline = VD->hasAttr<DLLImportAttr>();
2155 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2156 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2157 return SafeToInline;
2158 }
2159
2160 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2161 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2162 return SafeToInline;
2163 }
2164
2165 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2166 CXXMethodDecl *M = E->getMethodDecl();
2167 if (!M) {
2168 // Call through a pointer to member function. This is safe to inline.
2169 SafeToInline = true;
2170 } else {
2171 SafeToInline = M->hasAttr<DLLImportAttr>();
2172 }
2173 return SafeToInline;
2174 }
2175
2176 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2177 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2178 return SafeToInline;
2179 }
2180
2181 bool VisitCXXNewExpr(CXXNewExpr *E) {
2182 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2183 return SafeToInline;
2184 }
2185 };
2186}
2187
2188// isTriviallyRecursive - Check if this function calls another
2189// decl that, because of the asm attribute or the other decl being a builtin,
2190// ends up pointing to itself.
2191bool
2192CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2193 StringRef Name;
2194 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2195 // asm labels are a special kind of mangling we have to support.
2196 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2197 if (!Attr)
2198 return false;
2199 Name = Attr->getLabel();
2200 } else {
2201 Name = FD->getName();
2202 }
2203
2204 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2205 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2206 return Walker.Result;
2207}
2208
2209bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2210 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2211 return true;
2212 const auto *F = cast<FunctionDecl>(GD.getDecl());
2213 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2214 return false;
2215
2216 if (F->hasAttr<DLLImportAttr>()) {
2217 // Check whether it would be safe to inline this dllimport function.
2218 DLLImportFunctionVisitor Visitor;
2219 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2220 if (!Visitor.SafeToInline)
2221 return false;
2222
2223 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2224 // Implicit destructor invocations aren't captured in the AST, so the
2225 // check above can't see them. Check for them manually here.
2226 for (const Decl *Member : Dtor->getParent()->decls())
2227 if (isa<FieldDecl>(Member))
2228 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2229 return false;
2230 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2231 if (HasNonDllImportDtor(B.getType()))
2232 return false;
2233 }
2234 }
2235
2236 // PR9614. Avoid cases where the source code is lying to us. An available
2237 // externally function should have an equivalent function somewhere else,
2238 // but a function that calls itself is clearly not equivalent to the real
2239 // implementation.
2240 // This happens in glibc's btowc and in some configure checks.
2241 return !isTriviallyRecursive(F);
2242}
2243
2244bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2245 return CodeGenOpts.OptimizationLevel > 0;
2246}
2247
2248void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2249 const auto *D = cast<ValueDecl>(GD.getDecl());
2250
2251 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2252 Context.getSourceManager(),
2253 "Generating code for declaration");
2254
2255 if (isa<FunctionDecl>(D)) {
2256 // At -O0, don't generate IR for functions with available_externally
2257 // linkage.
2258 if (!shouldEmitFunction(GD))
2259 return;
2260
2261 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2262 // Make sure to emit the definition(s) before we emit the thunks.
2263 // This is necessary for the generation of certain thunks.
2264 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2265 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2266 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2267 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2268 else
2269 EmitGlobalFunctionDefinition(GD, GV);
2270
2271 if (Method->isVirtual())
2272 getVTables().EmitThunks(GD);
2273
2274 return;
2275 }
2276
2277 return EmitGlobalFunctionDefinition(GD, GV);
2278 }
2279
2280 if (const auto *VD = dyn_cast<VarDecl>(D))
2281 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2282
2283 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2283)
;
2284}
2285
2286static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2287 llvm::Function *NewFn);
2288
2289void CodeGenModule::emitMultiVersionFunctions() {
2290 for (GlobalDecl GD : MultiVersionFuncs) {
2291 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2292 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2293 getContext().forEachMultiversionedFunctionVersion(
2294 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2295 GlobalDecl CurGD{
2296 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2297 StringRef MangledName = getMangledName(CurGD);
2298 llvm::Constant *Func = GetGlobalValue(MangledName);
2299 if (!Func) {
2300 if (CurFD->isDefined()) {
2301 EmitGlobalFunctionDefinition(CurGD, nullptr);
2302 Func = GetGlobalValue(MangledName);
2303 } else {
2304 const CGFunctionInfo &FI =
2305 getTypes().arrangeGlobalDeclaration(GD);
2306 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2307 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2308 /*DontDefer=*/false, ForDefinition);
2309 }
2310 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2310, __extension__ __PRETTY_FUNCTION__))
;
2311 }
2312 Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2313 CurFD->getAttr<TargetAttr>()->parse());
2314 });
2315
2316 llvm::Function *ResolverFunc = cast<llvm::Function>(
2317 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2318 if (supportsCOMDAT())
2319 ResolverFunc->setComdat(
2320 getModule().getOrInsertComdat(ResolverFunc->getName()));
2321 std::stable_sort(
2322 Options.begin(), Options.end(),
2323 std::greater<CodeGenFunction::MultiVersionResolverOption>());
2324 CodeGenFunction CGF(*this);
2325 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2326 }
2327}
2328
2329/// If an ifunc for the specified mangled name is not in the module, create and
2330/// return an llvm IFunc Function with the specified type.
2331llvm::Constant *
2332CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2333 StringRef MangledName,
2334 const FunctionDecl *FD) {
2335 std::string IFuncName = (MangledName + ".ifunc").str();
2336 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2337 return IFuncGV;
2338
2339 // Since this is the first time we've created this IFunc, make sure
2340 // that we put this multiversioned function into the list to be
2341 // replaced later.
2342 MultiVersionFuncs.push_back(GD);
2343
2344 std::string ResolverName = (MangledName + ".resolver").str();
2345 llvm::Type *ResolverType = llvm::FunctionType::get(
2346 llvm::PointerType::get(DeclTy,
2347 Context.getTargetAddressSpace(FD->getType())),
2348 false);
2349 llvm::Constant *Resolver =
2350 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2351 /*ForVTable=*/false);
2352 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2353 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2354 GIF->setName(IFuncName);
2355 SetCommonAttributes(FD, GIF);
2356
2357 return GIF;
2358}
2359
2360/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2361/// module, create and return an llvm Function with the specified type. If there
2362/// is something in the module with the specified name, return it potentially
2363/// bitcasted to the right type.
2364///
2365/// If D is non-null, it specifies a decl that correspond to this. This is used
2366/// to set the attributes on the function when it is first created.
2367llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2368 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2369 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2370 ForDefinition_t IsForDefinition) {
2371 const Decl *D = GD.getDecl();
2372
2373 // Any attempts to use a MultiVersion function should result in retrieving
2374 // the iFunc instead. Name Mangling will handle the rest of the changes.
2375 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2376 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2377 UpdateMultiVersionNames(GD, FD);
2378 if (!IsForDefinition)
2379 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2380 }
2381 }
2382
2383 // Lookup the entry, lazily creating it if necessary.
2384 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2385 if (Entry) {
2386 if (WeakRefReferences.erase(Entry)) {
2387 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2388 if (FD && !FD->hasAttr<WeakAttr>())
2389 Entry->setLinkage(llvm::Function::ExternalLinkage);
2390 }
2391
2392 // Handle dropped DLL attributes.
2393 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2394 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2395
2396 // If there are two attempts to define the same mangled name, issue an
2397 // error.
2398 if (IsForDefinition && !Entry->isDeclaration()) {
2399 GlobalDecl OtherGD;
2400 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2401 // to make sure that we issue an error only once.
2402 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2403 (GD.getCanonicalDecl().getDecl() !=
2404 OtherGD.getCanonicalDecl().getDecl()) &&
2405 DiagnosedConflictingDefinitions.insert(GD).second) {
2406 getDiags().Report(D->getLocation(),
2407 diag::err_duplicate_mangled_name);
2408 getDiags().Report(OtherGD.getDecl()->getLocation(),
2409 diag::note_previous_definition);
2410 }
2411 }
2412
2413 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2414 (Entry->getType()->getElementType() == Ty)) {
2415 return Entry;
2416 }
2417
2418 // Make sure the result is of the correct type.
2419 // (If function is requested for a definition, we always need to create a new
2420 // function, not just return a bitcast.)
2421 if (!IsForDefinition)
2422 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2423 }
2424
2425 // This function doesn't have a complete type (for example, the return
2426 // type is an incomplete struct). Use a fake type instead, and make
2427 // sure not to try to set attributes.
2428 bool IsIncompleteFunction = false;
2429
2430 llvm::FunctionType *FTy;
2431 if (isa<llvm::FunctionType>(Ty)) {
2432 FTy = cast<llvm::FunctionType>(Ty);
2433 } else {
2434 FTy = llvm::FunctionType::get(VoidTy, false);
2435 IsIncompleteFunction = true;
2436 }
2437
2438 llvm::Function *F =
2439 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2440 Entry ? StringRef() : MangledName, &getModule());
2441
2442 // If we already created a function with the same mangled name (but different
2443 // type) before, take its name and add it to the list of functions to be
2444 // replaced with F at the end of CodeGen.
2445 //
2446 // This happens if there is a prototype for a function (e.g. "int f()") and
2447 // then a definition of a different type (e.g. "int f(int x)").
2448 if (Entry) {
2449 F->takeName(Entry);
2450
2451 // This might be an implementation of a function without a prototype, in
2452 // which case, try to do special replacement of calls which match the new
2453 // prototype. The really key thing here is that we also potentially drop
2454 // arguments from the call site so as to make a direct call, which makes the
2455 // inliner happier and suppresses a number of optimizer warnings (!) about
2456 // dropping arguments.
2457 if (!Entry->use_empty()) {
2458 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2459 Entry->removeDeadConstantUsers();
2460 }
2461
2462 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2463 F, Entry->getType()->getElementType()->getPointerTo());
2464 addGlobalValReplacement(Entry, BC);
2465 }
2466
2467 assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName &&
"name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2467, __extension__ __PRETTY_FUNCTION__))
;
2468 if (D)
2469 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2470 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2471 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2472 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2473 }
2474
2475 if (!DontDefer) {
2476 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2477 // each other bottoming out with the base dtor. Therefore we emit non-base
2478 // dtors on usage, even if there is no dtor definition in the TU.
2479 if (D && isa<CXXDestructorDecl>(D) &&
2480 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2481 GD.getDtorType()))
2482 addDeferredDeclToEmit(GD);
2483
2484 // This is the first use or definition of a mangled name. If there is a
2485 // deferred decl with this name, remember that we need to emit it at the end
2486 // of the file.
2487 auto DDI = DeferredDecls.find(MangledName);
2488 if (DDI != DeferredDecls.end()) {
2489 // Move the potentially referenced deferred decl to the
2490 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2491 // don't need it anymore).
2492 addDeferredDeclToEmit(DDI->second);
2493 DeferredDecls.erase(DDI);
2494
2495 // Otherwise, there are cases we have to worry about where we're
2496 // using a declaration for which we must emit a definition but where
2497 // we might not find a top-level definition:
2498 // - member functions defined inline in their classes
2499 // - friend functions defined inline in some class
2500 // - special member functions with implicit definitions
2501 // If we ever change our AST traversal to walk into class methods,
2502 // this will be unnecessary.
2503 //
2504 // We also don't emit a definition for a function if it's going to be an
2505 // entry in a vtable, unless it's already marked as used.
2506 } else if (getLangOpts().CPlusPlus && D) {
2507 // Look for a declaration that's lexically in a record.
2508 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2509 FD = FD->getPreviousDecl()) {
2510 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2511 if (FD->doesThisDeclarationHaveABody()) {
2512 addDeferredDeclToEmit(GD.getWithDecl(FD));
2513 break;
2514 }
2515 }
2516 }
2517 }
2518 }
2519
2520 // Make sure the result is of the requested type.
2521 if (!IsIncompleteFunction) {
2522 assert(F->getType()->getElementType() == Ty)(static_cast <bool> (F->getType()->getElementType
() == Ty) ? void (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2522, __extension__ __PRETTY_FUNCTION__))
;
2523 return F;
2524 }
2525
2526 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2527 return llvm::ConstantExpr::getBitCast(F, PTy);
2528}
2529
2530/// GetAddrOfFunction - Return the address of the given function. If Ty is
2531/// non-null, then this function will use the specified type if it has to
2532/// create it (this occurs when we see a definition of the function).
2533llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2534 llvm::Type *Ty,
2535 bool ForVTable,
2536 bool DontDefer,
2537 ForDefinition_t IsForDefinition) {
2538 // If there was no specific requested type, just convert it now.
2539 if (!Ty) {
2540 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2541 auto CanonTy = Context.getCanonicalType(FD->getType());
2542 Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2543 }
2544
2545 StringRef MangledName = getMangledName(GD);
2546 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2547 /*IsThunk=*/false, llvm::AttributeList(),
2548 IsForDefinition);
2549}
2550
2551static const FunctionDecl *
2552GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2553 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2554 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2555
2556 IdentifierInfo &CII = C.Idents.get(Name);
2557 for (const auto &Result : DC->lookup(&CII))
2558 if (const auto FD = dyn_cast<FunctionDecl>(Result))
2559 return FD;
2560
2561 if (!C.getLangOpts().CPlusPlus)
2562 return nullptr;
2563
2564 // Demangle the premangled name from getTerminateFn()
2565 IdentifierInfo &CXXII =
2566 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2567 ? C.Idents.get("terminate")
2568 : C.Idents.get(Name);
2569
2570 for (const auto &N : {"__cxxabiv1", "std"}) {
2571 IdentifierInfo &NS = C.Idents.get(N);
2572 for (const auto &Result : DC->lookup(&NS)) {
2573 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2574 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2575 for (const auto &Result : LSD->lookup(&NS))
2576 if ((ND = dyn_cast<NamespaceDecl>(Result)))
2577 break;
2578
2579 if (ND)
2580 for (const auto &Result : ND->lookup(&CXXII))
2581 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2582 return FD;
2583 }
2584 }
2585
2586 return nullptr;
2587}
2588
2589/// CreateRuntimeFunction - Create a new runtime function with the specified
2590/// type and name.
2591llvm::Constant *
2592CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2593 llvm::AttributeList ExtraAttrs,
2594 bool Local) {
2595 llvm::Constant *C =
2596 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2597 /*DontDefer=*/false, /*IsThunk=*/false,
2598 ExtraAttrs);
2599
2600 if (auto *F = dyn_cast<llvm::Function>(C)) {
2601 if (F->empty()) {
2602 F->setCallingConv(getRuntimeCC());
2603
2604 if (!Local && getTriple().isOSBinFormatCOFF() &&
2605 !getCodeGenOpts().LTOVisibilityPublicStd &&
2606 !getTriple().isWindowsGNUEnvironment()) {
2607 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2608 if (!FD || FD->hasAttr<DLLImportAttr>()) {
2609 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2610 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2611 }
2612 }
2613 }
2614 }
2615
2616 return C;
2617}
2618
2619/// CreateBuiltinFunction - Create a new builtin function with the specified
2620/// type and name.
2621llvm::Constant *
2622CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2623 llvm::AttributeList ExtraAttrs) {
2624 llvm::Constant *C =
2625 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2626 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2627 if (auto *F = dyn_cast<llvm::Function>(C))
2628 if (F->empty())
2629 F->setCallingConv(getBuiltinCC());
2630 return C;
2631}
2632
2633/// isTypeConstant - Determine whether an object of this type can be emitted
2634/// as a constant.
2635///
2636/// If ExcludeCtor is true, the duration when the object's constructor runs
2637/// will not be considered. The caller will need to verify that the object is
2638/// not written to during its construction.
2639bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2640 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2641 return false;
2642
2643 if (Context.getLangOpts().CPlusPlus) {
2644 if (const CXXRecordDecl *Record
2645 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2646 return ExcludeCtor && !Record->hasMutableFields() &&
2647 Record->hasTrivialDestructor();
2648 }
2649
2650 return true;
2651}
2652
2653/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2654/// create and return an llvm GlobalVariable with the specified type. If there
2655/// is something in the module with the specified name, return it potentially
2656/// bitcasted to the right type.
2657///
2658/// If D is non-null, it specifies a decl that correspond to this. This is used
2659/// to set the attributes on the global when it is first created.
2660///
2661/// If IsForDefinition is true, it is guranteed that an actual global with
2662/// type Ty will be returned, not conversion of a variable with the same
2663/// mangled name but some other type.
2664llvm::Constant *
2665CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2666 llvm::PointerType *Ty,
2667 const VarDecl *D,
2668 ForDefinition_t IsForDefinition) {
2669 // Lookup the entry, lazily creating it if necessary.
2670 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2671 if (Entry) {
2672 if (WeakRefReferences.erase(Entry)) {
2673 if (D && !D->hasAttr<WeakAttr>())
2674 Entry->setLinkage(llvm::Function::ExternalLinkage);
2675 }
2676
2677 // Handle dropped DLL attributes.
2678 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2679 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2680
2681 if (Entry->getType() == Ty)
2682 return Entry;
2683
2684 // If there are two attempts to define the same mangled name, issue an
2685 // error.
2686 if (IsForDefinition && !Entry->isDeclaration()) {
2687 GlobalDecl OtherGD;
2688 const VarDecl *OtherD;
2689
2690 // Check that D is not yet in DiagnosedConflictingDefinitions is required
2691 // to make sure that we issue an error only once.
2692 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2693 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2694 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2695 OtherD->hasInit() &&
2696 DiagnosedConflictingDefinitions.insert(D).second) {
2697 getDiags().Report(D->getLocation(),
2698 diag::err_duplicate_mangled_name);
2699 getDiags().Report(OtherGD.getDecl()->getLocation(),
2700 diag::note_previous_definition);
2701 }
2702 }
2703
2704 // Make sure the result is of the correct type.
2705 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2706 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2707
2708 // (If global is requested for a definition, we always need to create a new
2709 // global, not just return a bitcast.)
2710 if (!IsForDefinition)
2711 return llvm::ConstantExpr::getBitCast(Entry, Ty);
2712 }
2713
2714 auto AddrSpace = GetGlobalVarAddressSpace(D);
2715 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2716
2717 auto *GV = new llvm::GlobalVariable(
2718 getModule(), Ty->getElementType(), false,
2719 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2720 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2721
2722 // If we already created a global with the same mangled name (but different
2723 // type) before, take its name and remove it from its parent.
2724 if (Entry) {
2725 GV->takeName(Entry);
2726
2727 if (!Entry->use_empty()) {
2728 llvm::Constant *NewPtrForOldDecl =
2729 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2730 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2731 }
2732
2733 Entry->eraseFromParent();
2734 }
2735
2736 // This is the first use or definition of a mangled name. If there is a
2737 // deferred decl with this name, remember that we need to emit it at the end
2738 // of the file.
2739 auto DDI = DeferredDecls.find(MangledName);
2740 if (DDI != DeferredDecls.end()) {
2741 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2742 // list, and remove it from DeferredDecls (since we don't need it anymore).
2743 addDeferredDeclToEmit(DDI->second);
2744 DeferredDecls.erase(DDI);
2745 }
2746
2747 // Handle things which are present even on external declarations.
2748 if (D) {
2749 // FIXME: This code is overly simple and should be merged with other global
2750 // handling.
2751 GV->setConstant(isTypeConstant(D->getType(), false));
2752
2753 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2754
2755 setLinkageForGV(GV, D);
2756 setGVProperties(GV, D);
2757
2758 if (D->getTLSKind()) {
2759 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2760 CXXThreadLocals.push_back(D);
2761 setTLSMode(GV, *D);
2762 }
2763
2764 // If required by the ABI, treat declarations of static data members with
2765 // inline initializers as definitions.
2766 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2767 EmitGlobalVarDefinition(D);
2768 }
2769
2770 // Emit section information for extern variables.
2771 if (D->hasExternalStorage()) {
2772 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2773 GV->setSection(SA->getName());
2774 }
2775
2776 // Handle XCore specific ABI requirements.
2777 if (getTriple().getArch() == llvm::Triple::xcore &&
2778 D->getLanguageLinkage() == CLanguageLinkage &&
2779 D->getType().isConstant(Context) &&
2780 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2781 GV->setSection(".cp.rodata");
2782
2783 // Check if we a have a const declaration with an initializer, we may be
2784 // able to emit it as available_externally to expose it's value to the
2785 // optimizer.
2786 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2787 D->getType().isConstQualified() && !GV->hasInitializer() &&
2788 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2789 const auto *Record =
2790 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2791 bool HasMutableFields = Record && Record->hasMutableFields();
2792 if (!HasMutableFields) {
2793 const VarDecl *InitDecl;
2794 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2795 if (InitExpr) {
2796 ConstantEmitter emitter(*this);
2797 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2798 if (Init) {
2799 auto *InitType = Init->getType();
2800 if (GV->getType()->getElementType() != InitType) {
2801 // The type of the initializer does not match the definition.
2802 // This happens when an initializer has a different type from
2803 // the type of the global (because of padding at the end of a
2804 // structure for instance).
2805 GV->setName(StringRef());
2806 // Make a new global with the correct type, this is now guaranteed
2807 // to work.
2808 auto *NewGV = cast<llvm::GlobalVariable>(
2809 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2810
2811 // Erase the old global, since it is no longer used.
2812 cast<llvm::GlobalValue>(GV)->eraseFromParent();
2813 GV = NewGV;
2814 } else {
2815 GV->setInitializer(Init);
2816 GV->setConstant(true);
2817 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2818 }
2819 emitter.finalize(GV);
2820 }
2821 }
2822 }
2823 }
2824 }
2825
2826 LangAS ExpectedAS =
2827 D ? D->getType().getAddressSpace()
2828 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2829 assert(getContext().getTargetAddressSpace(ExpectedAS) ==(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2830, __extension__ __PRETTY_FUNCTION__))
2830 Ty->getPointerAddressSpace())(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2830, __extension__ __PRETTY_FUNCTION__))
;
2831 if (AddrSpace != ExpectedAS)
2832 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2833 ExpectedAS, Ty);
2834
2835 return GV;
2836}
2837
2838llvm::Constant *
2839CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2840 ForDefinition_t IsForDefinition) {
2841 const Decl *D = GD.getDecl();
2842 if (isa<CXXConstructorDecl>(D))
2843 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2844 getFromCtorType(GD.getCtorType()),
2845 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2846 /*DontDefer=*/false, IsForDefinition);
2847 else if (isa<CXXDestructorDecl>(D))
2848 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2849 getFromDtorType(GD.getDtorType()),
2850 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2851 /*DontDefer=*/false, IsForDefinition);
2852 else if (isa<CXXMethodDecl>(D)) {
2853 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2854 cast<CXXMethodDecl>(D));
2855 auto Ty = getTypes().GetFunctionType(*FInfo);
2856 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2857 IsForDefinition);
2858 } else if (isa<FunctionDecl>(D)) {
2859 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2860 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2861 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2862 IsForDefinition);
2863 } else
2864 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2865 IsForDefinition);
2866}
2867
2868llvm::GlobalVariable *
2869CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2870 llvm::Type *Ty,
2871 llvm::GlobalValue::LinkageTypes Linkage) {
2872 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2873 llvm::GlobalVariable *OldGV = nullptr;
2874
2875 if (GV) {
2876 // Check if the variable has the right type.
2877 if (GV->getType()->getElementType() == Ty)
2878 return GV;
2879
2880 // Because C++ name mangling, the only way we can end up with an already
2881 // existing global with the same name is if it has been declared extern "C".
2882 assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!"
) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2882, __extension__ __PRETTY_FUNCTION__))
;
2883 OldGV = GV;
2884 }
2885
2886 // Create a new variable.
2887 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2888 Linkage, nullptr, Name);
2889
2890 if (OldGV) {
2891 // Replace occurrences of the old variable if needed.
2892 GV->takeName(OldGV);
2893
2894 if (!OldGV->use_empty()) {
2895 llvm::Constant *NewPtrForOldDecl =
2896 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2897 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2898 }
2899
2900 OldGV->eraseFromParent();
2901 }
2902
2903 if (supportsCOMDAT() && GV->isWeakForLinker() &&
2904 !GV->hasAvailableExternallyLinkage())
2905 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2906
2907 return GV;
2908}
2909
2910/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2911/// given global variable. If Ty is non-null and if the global doesn't exist,
2912/// then it will be created with the specified type instead of whatever the
2913/// normal requested type would be. If IsForDefinition is true, it is guranteed
2914/// that an actual global with type Ty will be returned, not conversion of a
2915/// variable with the same mangled name but some other type.
2916llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2917 llvm::Type *Ty,
2918 ForDefinition_t IsForDefinition) {
2919 assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() &&
"Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2919, __extension__ __PRETTY_FUNCTION__))
;
2920 QualType ASTTy = D->getType();
2921 if (!Ty)
2922 Ty = getTypes().ConvertTypeForMem(ASTTy);
2923
2924 llvm::PointerType *PTy =
2925 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2926
2927 StringRef MangledName = getMangledName(D);
2928 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2929}
2930
2931/// CreateRuntimeVariable - Create a new runtime global variable with the
2932/// specified type and name.
2933llvm::Constant *
2934CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2935 StringRef Name) {
2936 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2937}
2938
2939void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2940 assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!"
) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2940, __extension__ __PRETTY_FUNCTION__))
;
2941
2942 StringRef MangledName = getMangledName(D);
2943 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2944
2945 // We already have a definition, not declaration, with the same mangled name.
2946 // Emitting of declaration is not required (and actually overwrites emitted
2947 // definition).
2948 if (GV && !GV->isDeclaration())
2949 return;
2950
2951 // If we have not seen a reference to this variable yet, place it into the
2952 // deferred declarations table to be emitted if needed later.
2953 if (!MustBeEmitted(D) && !GV) {
2954 DeferredDecls[MangledName] = D;
2955 return;
2956 }
2957
2958 // The tentative definition is the only definition.
2959 EmitGlobalVarDefinition(D);
2960}
2961
2962CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2963 return Context.toCharUnitsFromBits(
2964 getDataLayout().getTypeStoreSizeInBits(Ty));
2965}
2966
2967LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2968 LangAS AddrSpace = LangAS::Default;
2969 if (LangOpts.OpenCL) {
2970 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2971 assert(AddrSpace == LangAS::opencl_global ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2974, __extension__ __PRETTY_FUNCTION__))
2972 AddrSpace == LangAS::opencl_constant ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2974, __extension__ __PRETTY_FUNCTION__))
2973 AddrSpace == LangAS::opencl_local ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2974, __extension__ __PRETTY_FUNCTION__))
2974 AddrSpace >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2974, __extension__ __PRETTY_FUNCTION__))
;
2975 return AddrSpace;
2976 }
2977
2978 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2979 if (D && D->hasAttr<CUDAConstantAttr>())
2980 return LangAS::cuda_constant;
2981 else if (D && D->hasAttr<CUDASharedAttr>())
2982 return LangAS::cuda_shared;
2983 else
2984 return LangAS::cuda_device;
2985 }
2986
2987 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2988}
2989
2990template<typename SomeDecl>
2991void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2992 llvm::GlobalValue *GV) {
2993 if (!getLangOpts().CPlusPlus)
2994 return;
2995
2996 // Must have 'used' attribute, or else inline assembly can't rely on
2997 // the name existing.
2998 if (!D->template hasAttr<UsedAttr>())
2999 return;
3000
3001 // Must have internal linkage and an ordinary name.
3002 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3003 return;
3004
3005 // Must be in an extern "C" context. Entities declared directly within
3006 // a record are not extern "C" even if the record is in such a context.
3007 const SomeDecl *First = D->getFirstDecl();
3008 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3009 return;
3010
3011 // OK, this is an internal linkage entity inside an extern "C" linkage
3012 // specification. Make a note of that so we can give it the "expected"
3013 // mangled name if nothing else is using that name.
3014 std::pair<StaticExternCMap::iterator, bool> R =
3015 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3016
3017 // If we have multiple internal linkage entities with the same name
3018 // in extern "C" regions, none of them gets that name.
3019 if (!R.second)
3020 R.first->second = nullptr;
3021}
3022
3023static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3024 if (!CGM.supportsCOMDAT())
3025 return false;
3026
3027 if (D.hasAttr<SelectAnyAttr>())
3028 return true;
3029
3030 GVALinkage Linkage;
3031 if (auto *VD = dyn_cast<VarDecl>(&D))
3032 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3033 else
3034 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3035
3036 switch (Linkage) {
3037 case GVA_Internal:
3038 case GVA_AvailableExternally:
3039 case GVA_StrongExternal:
3040 return false;
3041 case GVA_DiscardableODR:
3042 case GVA_StrongODR:
3043 return true;
3044 }
3045 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3045)
;
3046}
3047
3048void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3049 llvm::GlobalObject &GO) {
3050 if (!shouldBeInCOMDAT(*this, D))
3051 return;
3052 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3053}
3054
3055/// Pass IsTentative as true if you want to create a tentative definition.
3056void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3057 bool IsTentative) {
3058 // OpenCL global variables of sampler type are translated to function calls,
3059 // therefore no need to be translated.
3060 QualType ASTTy = D->getType();
3061 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3062 return;
3063
3064 llvm::Constant *Init = nullptr;
3065 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3066 bool NeedsGlobalCtor = false;
3067 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3068
3069 const VarDecl *InitDecl;
3070 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3071
3072 Optional<ConstantEmitter> emitter;
3073
3074 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3075 // as part of their declaration." Sema has already checked for
3076 // error cases, so we just need to set Init to UndefValue.
3077 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3078 D->hasAttr<CUDASharedAttr>())
3079 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3080 else if (!InitExpr) {
3081 // This is a tentative definition; tentative definitions are
3082 // implicitly initialized with { 0 }.
3083 //
3084 // Note that tentative definitions are only emitted at the end of
3085 // a translation unit, so they should never have incomplete
3086 // type. In addition, EmitTentativeDefinition makes sure that we
3087 // never attempt to emit a tentative definition if a real one
3088 // exists. A use may still exists, however, so we still may need
3089 // to do a RAUW.
3090 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() &&
"Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3090, __extension__ __PRETTY_FUNCTION__))
;
3091 Init = EmitNullConstant(D->getType());
3092 } else {
3093 initializedGlobalDecl = GlobalDecl(D);
3094 emitter.emplace(*this);
3095 Init = emitter->tryEmitForInitializer(*InitDecl);
3096
3097 if (!Init) {
3098 QualType T = InitExpr->getType();
3099 if (D->getType()->isReferenceType())
3100 T = D->getType();
3101
3102 if (getLangOpts().CPlusPlus) {
3103 Init = EmitNullConstant(T);
3104 NeedsGlobalCtor = true;
3105 } else {
3106 ErrorUnsupported(D, "static initializer");
3107 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3108 }
3109 } else {
3110 // We don't need an initializer, so remove the entry for the delayed
3111 // initializer position (just in case this entry was delayed) if we
3112 // also don't need to register a destructor.
3113 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3114 DelayedCXXInitPosition.erase(D);
3115 }
3116 }
3117
3118 llvm::Type* InitType = Init->getType();
3119 llvm::Constant *Entry =
3120 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3121
3122 // Strip off a bitcast if we got one back.
3123 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3124 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3127, __extension__ __PRETTY_FUNCTION__))
3125 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3127, __extension__ __PRETTY_FUNCTION__))
3126 // All zero index gep.(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3127, __extension__ __PRETTY_FUNCTION__))
3127 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3127, __extension__ __PRETTY_FUNCTION__))
;
3128 Entry = CE->getOperand(0);
3129 }
3130
3131 // Entry is now either a Function or GlobalVariable.
3132 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3133
3134 // We have a definition after a declaration with the wrong type.
3135 // We must make a new GlobalVariable* and update everything that used OldGV
3136 // (a declaration or tentative definition) with the new GlobalVariable*
3137 // (which will be a definition).
3138 //
3139 // This happens if there is a prototype for a global (e.g.
3140 // "extern int x[];") and then a definition of a different type (e.g.
3141 // "int x[10];"). This also happens when an initializer has a different type
3142 // from the type of the global (this happens with unions).
3143 if (!GV || GV->getType()->getElementType() != InitType ||
3144 GV->getType()->getAddressSpace() !=
3145 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3146
3147 // Move the old entry aside so that we'll create a new one.
3148 Entry->setName(StringRef());
3149
3150 // Make a new global with the correct type, this is now guaranteed to work.
3151 GV = cast<llvm::GlobalVariable>(
3152 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3153
3154 // Replace all uses of the old global with the new global
3155 llvm::Constant *NewPtrForOldDecl =
3156 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3157 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3158
3159 // Erase the old global, since it is no longer used.
3160 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3161 }
3162
3163 MaybeHandleStaticInExternC(D, GV);
3164
3165 if (D->hasAttr<AnnotateAttr>())
3166 AddGlobalAnnotations(D, GV);
3167
3168 // Set the llvm linkage type as appropriate.
3169 llvm::GlobalValue::LinkageTypes Linkage =
3170 getLLVMLinkageVarDefinition(D, GV->isConstant());
3171
3172 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3173 // the device. [...]"
3174 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3175 // __device__, declares a variable that: [...]
3176 // Is accessible from all the threads within the grid and from the host
3177 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3178 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3179 if (GV && LangOpts.CUDA) {
3180 if (LangOpts.CUDAIsDevice) {
3181 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3182 GV->setExternallyInitialized(true);
3183 } else {
3184 // Host-side shadows of external declarations of device-side
3185 // global variables become internal definitions. These have to
3186 // be internal in order to prevent name conflicts with global
3187 // host variables with the same name in a different TUs.
3188 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3189 Linkage = llvm::GlobalValue::InternalLinkage;
3190
3191 // Shadow variables and their properties must be registered
3192 // with CUDA runtime.
3193 unsigned Flags = 0;
3194 if (!D->hasDefinition())
3195 Flags |= CGCUDARuntime::ExternDeviceVar;
3196 if (D->hasAttr<CUDAConstantAttr>())
3197 Flags |= CGCUDARuntime::ConstantDeviceVar;
3198 getCUDARuntime().registerDeviceVar(*GV, Flags);
3199 } else if (D->hasAttr<CUDASharedAttr>())
3200 // __shared__ variables are odd. Shadows do get created, but
3201 // they are not registered with the CUDA runtime, so they
3202 // can't really be used to access their device-side
3203 // counterparts. It's not clear yet whether it's nvcc's bug or
3204 // a feature, but we've got to do the same for compatibility.
3205 Linkage = llvm::GlobalValue::InternalLinkage;
3206 }
3207 }
3208
3209 GV->setInitializer(Init);
3210 if (emitter) emitter->finalize(GV);
3211
3212 // If it is safe to mark the global 'constant', do so now.
3213 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3214 isTypeConstant(D->getType(), true));
3215
3216 // If it is in a read-only section, mark it 'constant'.
3217 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3218 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3219 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3220 GV->setConstant(true);
3221 }
3222
3223 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3224
3225
3226 // On Darwin, if the normal linkage of a C++ thread_local variable is
3227 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3228 // copies within a linkage unit; otherwise, the backing variable has
3229 // internal linkage and all accesses should just be calls to the
3230 // Itanium-specified entry point, which has the normal linkage of the
3231 // variable. This is to preserve the ability to change the implementation
3232 // behind the scenes.
3233 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3234 Context.getTargetInfo().getTriple().isOSDarwin() &&
3235 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3236 !llvm::GlobalVariable::isWeakLinkage(Linkage))
3237 Linkage = llvm::GlobalValue::InternalLinkage;
3238
3239 GV->setLinkage(Linkage);
3240 if (D->hasAttr<DLLImportAttr>())
3241 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3242 else if (D->hasAttr<DLLExportAttr>())
3243 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3244 else
3245 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3246
3247 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3248 // common vars aren't constant even if declared const.
3249 GV->setConstant(false);
3250 // Tentative definition of global variables may be initialized with
3251 // non-zero null pointers. In this case they should have weak linkage
3252 // since common linkage must have zero initializer and must not have
3253 // explicit section therefore cannot have non-zero initial value.
3254 if (!GV->getInitializer()->isNullValue())
3255 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3256 }
3257
3258 setNonAliasAttributes(D, GV);
3259
3260 if (D->getTLSKind() && !GV->isThreadLocal()) {
3261 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3262 CXXThreadLocals.push_back(D);
3263 setTLSMode(GV, *D);
3264 }
3265
3266 maybeSetTrivialComdat(*D, *GV);
3267
3268 // Emit the initializer function if necessary.
3269 if (NeedsGlobalCtor || NeedsGlobalDtor)
3270 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3271
3272 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3273
3274 // Emit global variable debug information.
3275 if (CGDebugInfo *DI = getModuleDebugInfo())
3276 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3277 DI->EmitGlobalVariable(GV, D);
3278}
3279
3280static bool isVarDeclStrongDefinition(const ASTContext &Context,
3281 CodeGenModule &CGM, const VarDecl *D,
3282 bool NoCommon) {
3283 // Don't give variables common linkage if -fno-common was specified unless it
3284 // was overridden by a NoCommon attribute.
3285 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3286 return true;
3287
3288 // C11 6.9.2/2:
3289 // A declaration of an identifier for an object that has file scope without
3290 // an initializer, and without a storage-class specifier or with the
3291 // storage-class specifier static, constitutes a tentative definition.
3292 if (D->getInit() || D->hasExternalStorage())
3293 return true;
3294
3295 // A variable cannot be both common and exist in a section.
3296 if (D->hasAttr<SectionAttr>())
3297 return true;
3298
3299 // A variable cannot be both common and exist in a section.
3300 // We dont try to determine which is the right section in the front-end.
3301 // If no specialized section name is applicable, it will resort to default.
3302 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3303 D->hasAttr<PragmaClangDataSectionAttr>() ||
3304 D->hasAttr<PragmaClangRodataSectionAttr>())
3305 return true;
3306
3307 // Thread local vars aren't considered common linkage.
3308 if (D->getTLSKind())
3309 return true;
3310
3311 // Tentative definitions marked with WeakImportAttr are true definitions.
3312 if (D->hasAttr<WeakImportAttr>())
3313 return true;
3314
3315 // A variable cannot be both common and exist in a comdat.
3316 if (shouldBeInCOMDAT(CGM, *D))
3317 return true;
3318
3319 // Declarations with a required alignment do not have common linkage in MSVC
3320 // mode.
3321 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3322 if (D->hasAttr<AlignedAttr>())
3323 return true;
3324 QualType VarType = D->getType();
3325 if (Context.isAlignmentRequired(VarType))
3326 return true;
3327
3328 if (const auto *RT = VarType->getAs<RecordType>()) {
3329 const RecordDecl *RD = RT->getDecl();
3330 for (const FieldDecl *FD : RD->fields()) {
3331 if (FD->isBitField())
3332 continue;
3333 if (FD->hasAttr<AlignedAttr>())
3334 return true;
3335 if (Context.isAlignmentRequired(FD->getType()))
3336 return true;
3337 }
3338 }
3339 }
3340
3341 return false;
3342}
3343
3344llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3345 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3346 if (Linkage == GVA_Internal)
3347 return llvm::Function::InternalLinkage;
3348
3349 if (D->hasAttr<WeakAttr>()) {
3350 if (IsConstantVariable)
3351 return llvm::GlobalVariable::WeakODRLinkage;
3352 else
3353 return llvm::GlobalVariable::WeakAnyLinkage;
3354 }
3355
3356 // We are guaranteed to have a strong definition somewhere else,
3357 // so we can use available_externally linkage.
3358 if (Linkage == GVA_AvailableExternally)
3359 return llvm::GlobalValue::AvailableExternallyLinkage;
3360
3361 // Note that Apple's kernel linker doesn't support symbol
3362 // coalescing, so we need to avoid linkonce and weak linkages there.
3363 // Normally, this means we just map to internal, but for explicit
3364 // instantiations we'll map to external.
3365
3366 // In C++, the compiler has to emit a definition in every translation unit
3367 // that references the function. We should use linkonce_odr because
3368 // a) if all references in this translation unit are optimized away, we
3369 // don't need to codegen it. b) if the function persists, it needs to be
3370 // merged with other definitions. c) C++ has the ODR, so we know the
3371 // definition is dependable.
3372 if (Linkage == GVA_DiscardableODR)
3373 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3374 : llvm::Function::InternalLinkage;
3375
3376 // An explicit instantiation of a template has weak linkage, since
3377 // explicit instantiations can occur in multiple translation units
3378 // and must all be equivalent. However, we are not allowed to
3379 // throw away these explicit instantiations.
3380 //
3381 // We don't currently support CUDA device code spread out across multiple TUs,
3382 // so say that CUDA templates are either external (for kernels) or internal.
3383 // This lets llvm perform aggressive inter-procedural optimizations.
3384 if (Linkage == GVA_StrongODR) {
3385 if (Context.getLangOpts().AppleKext)
3386 return llvm::Function::ExternalLinkage;
3387 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3388 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3389 : llvm::Function::InternalLinkage;
3390 return llvm::Function::WeakODRLinkage;
3391 }
3392
3393 // C++ doesn't have tentative definitions and thus cannot have common
3394 // linkage.
3395 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3396 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3397 CodeGenOpts.NoCommon))
3398 return llvm::GlobalVariable::CommonLinkage;
3399
3400 // selectany symbols are externally visible, so use weak instead of
3401 // linkonce. MSVC optimizes away references to const selectany globals, so
3402 // all definitions should be the same and ODR linkage should be used.
3403 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3404 if (D->hasAttr<SelectAnyAttr>())
3405 return llvm::GlobalVariable::WeakODRLinkage;
3406
3407 // Otherwise, we have strong external linkage.
3408 assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void
(0) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3408, __extension__ __PRETTY_FUNCTION__))
;
3409 return llvm::GlobalVariable::ExternalLinkage;
3410}
3411
3412llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3413 const VarDecl *VD, bool IsConstant) {
3414 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3415 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3416}
3417
3418/// Replace the uses of a function that was declared with a non-proto type.
3419/// We want to silently drop extra arguments from call sites
3420static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3421 llvm::Function *newFn) {
3422 // Fast path.
3423 if (old->use_empty()) return;
3424
3425 llvm::Type *newRetTy = newFn->getReturnType();
3426 SmallVector<llvm::Value*, 4> newArgs;
3427 SmallVector<llvm::OperandBundleDef, 1> newBundles;
3428
3429 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3430 ui != ue; ) {
3431 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3432 llvm::User *user = use->getUser();
3433
3434 // Recognize and replace uses of bitcasts. Most calls to
3435 // unprototyped functions will use bitcasts.
3436 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3437 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3438 replaceUsesOfNonProtoConstant(bitcast, newFn);
3439 continue;
3440 }
3441
3442 // Recognize calls to the function.
3443 llvm::CallSite callSite(user);
3444 if (!callSite) continue;
3445 if (!callSite.isCallee(&*use)) continue;
3446
3447 // If the return types don't match exactly, then we can't
3448 // transform this call unless it's dead.
3449 if (callSite->getType() != newRetTy && !callSite->use_empty())
3450 continue;
3451
3452 // Get the call site's attribute list.
3453 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3454 llvm::AttributeList oldAttrs = callSite.getAttributes();
3455
3456 // If the function was passed too few arguments, don't transform.
3457 unsigned newNumArgs = newFn->arg_size();
3458 if (callSite.arg_size() < newNumArgs) continue;
3459
3460 // If extra arguments were passed, we silently drop them.
3461 // If any of the types mismatch, we don't transform.
3462 unsigned argNo = 0;
3463 bool dontTransform = false;
3464 for (llvm::Argument &A : newFn->args()) {
3465 if (callSite.getArgument(argNo)->getType() != A.getType()) {
3466 dontTransform = true;
3467 break;
3468 }
3469
3470 // Add any parameter attributes.
3471 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3472 argNo++;
3473 }
3474 if (dontTransform)
3475 continue;
3476
3477 // Okay, we can transform this. Create the new call instruction and copy
3478 // over the required information.
3479 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3480
3481 // Copy over any operand bundles.
3482 callSite.getOperandBundlesAsDefs(newBundles);
3483
3484 llvm::CallSite newCall;
3485 if (callSite.isCall()) {
3486 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3487 callSite.getInstruction());
3488 } else {
3489 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3490 newCall = llvm::InvokeInst::Create(newFn,
3491 oldInvoke->getNormalDest(),
3492 oldInvoke->getUnwindDest(),
3493 newArgs, newBundles, "",
3494 callSite.getInstruction());
3495 }
3496 newArgs.clear(); // for the next iteration
3497
3498 if (!newCall->getType()->isVoidTy())
3499 newCall->takeName(callSite.getInstruction());
3500 newCall.setAttributes(llvm::AttributeList::get(
3501 newFn->getContext(), oldAttrs.getFnAttributes(),
3502 oldAttrs.getRetAttributes(), newArgAttrs));
3503 newCall.setCallingConv(callSite.getCallingConv());
3504
3505 // Finally, remove the old call, replacing any uses with the new one.
3506 if (!callSite->use_empty())
3507 callSite->replaceAllUsesWith(newCall.getInstruction());
3508
3509 // Copy debug location attached to CI.
3510 if (callSite->getDebugLoc())
3511 newCall->setDebugLoc(callSite->getDebugLoc());
3512
3513 callSite->eraseFromParent();
3514 }
3515}
3516
3517/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3518/// implement a function with no prototype, e.g. "int foo() {}". If there are
3519/// existing call uses of the old function in the module, this adjusts them to
3520/// call the new function directly.
3521///
3522/// This is not just a cleanup: the always_inline pass requires direct calls to
3523/// functions to be able to inline them. If there is a bitcast in the way, it
3524/// won't inline them. Instcombine normally deletes these calls, but it isn't
3525/// run at -O0.
3526static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3527 llvm::Function *NewFn) {
3528 // If we're redefining a global as a function, don't transform it.
3529 if (!isa<llvm::Function>(Old)) return;
3530
3531 replaceUsesOfNonProtoConstant(Old, NewFn);
3532}
3533
3534void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3535 auto DK = VD->isThisDeclarationADefinition();
3536 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3537 return;
3538
3539 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3540 // If we have a definition, this might be a deferred decl. If the
3541 // instantiation is explicit, make sure we emit it at the end.
3542 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3543 GetAddrOfGlobalVar(VD);
3544
3545 EmitTopLevelDecl(VD);
3546}
3547
3548void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3549 llvm::GlobalValue *GV) {
3550 const auto *D = cast<FunctionDecl>(GD.getDecl());
3551
3552 // Compute the function info and LLVM type.
3553 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3554 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3555
3556 // Get or create the prototype for the function.
3557 if (!GV || (GV->getType()->getElementType() != Ty))
3558 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3559 /*DontDefer=*/true,
3560 ForDefinition));
3561
3562 // Already emitted.
3563 if (!GV->isDeclaration())
3564 return;
3565
3566 // We need to set linkage and visibility on the function before
3567 // generating code for it because various parts of IR generation
3568 // want to propagate this information down (e.g. to local static
3569 // declarations).
3570 auto *Fn = cast<llvm::Function>(GV);
3571 setFunctionLinkage(GD, Fn);
3572 setFunctionDLLStorageClass(GD, Fn);
3573
3574 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3575 setGVProperties(Fn, D);
3576
3577 MaybeHandleStaticInExternC(D, Fn);
3578
3579 maybeSetTrivialComdat(*D, *Fn);
3580
3581 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3582
3583 setFunctionDefinitionAttributes(D, Fn);
3584 SetLLVMFunctionAttributesForDefinition(D, Fn);
3585
3586 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3587 AddGlobalCtor(Fn, CA->getPriority());
3588 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3589 AddGlobalDtor(Fn, DA->getPriority());
3590 if (D->hasAttr<AnnotateAttr>())
3591 AddGlobalAnnotations(D, Fn);
3592}
3593
3594void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3595 const auto *D = cast<ValueDecl>(GD.getDecl());
3596 const AliasAttr *AA = D->getAttr<AliasAttr>();
3597 assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void
(0) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3597, __extension__ __PRETTY_FUNCTION__))
;
3598
3599 StringRef MangledName = getMangledName(GD);
3600
3601 if (AA->getAliasee() == MangledName) {
3602 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3603 return;
3604 }
3605
3606 // If there is a definition in the module, then it wins over the alias.
3607 // This is dubious, but allow it to be safe. Just ignore the alias.
3608 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3609 if (Entry && !Entry->isDeclaration())
3610 return;
3611
3612 Aliases.push_back(GD);
3613
3614 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3615
3616 // Create a reference to the named value. This ensures that it is emitted
3617 // if a deferred decl.
3618 llvm::Constant *Aliasee;
3619 if (isa<llvm::FunctionType>(DeclTy))
3620 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3621 /*ForVTable=*/false);
3622 else
3623 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3624 llvm::PointerType::getUnqual(DeclTy),
3625 /*D=*/nullptr);
3626
3627 // Create the new alias itself, but don't set a name yet.
3628 auto *GA = llvm::GlobalAlias::create(
3629 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3630
3631 if (Entry) {
3632 if (GA->getAliasee() == Entry) {
3633 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3634 return;
3635 }
3636
3637 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3637, __extension__ __PRETTY_FUNCTION__))
;
3638
3639 // If there is a declaration in the module, then we had an extern followed
3640 // by the alias, as in:
3641 // extern int test6();
3642 // ...
3643 // int test6() __attribute__((alias("test7")));
3644 //
3645 // Remove it and replace uses of it with the alias.
3646 GA->takeName(Entry);
3647
3648 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3649 Entry->getType()));
3650 Entry->eraseFromParent();
3651 } else {
3652 GA->setName(MangledName);
3653 }
3654
3655 // Set attributes which are particular to an alias; this is a
3656 // specialization of the attributes which may be set on a global
3657 // variable/function.
3658 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3659 D->isWeakImported()) {
3660 GA->setLinkage(llvm::Function::WeakAnyLinkage);
3661 }
3662
3663 if (const auto *VD = dyn_cast<VarDecl>(D))
3664 if (VD->getTLSKind())
3665 setTLSMode(GA, *VD);
3666
3667 setAliasAttributes(D, GA);
3668}
3669
3670void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3671 const auto *D = cast<ValueDecl>(GD.getDecl());
3672 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3673 assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void
(0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3673, __extension__ __PRETTY_FUNCTION__))
;
3674
3675 StringRef MangledName = getMangledName(GD);
3676
3677 if (IFA->getResolver() == MangledName) {
3678 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3679 return;
3680 }
3681
3682 // Report an error if some definition overrides ifunc.
3683 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3684 if (Entry && !Entry->isDeclaration()) {
3685 GlobalDecl OtherGD;
3686 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3687 DiagnosedConflictingDefinitions.insert(GD).second) {
3688 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3689 Diags.Report(OtherGD.getDecl()->getLocation(),
3690 diag::note_previous_definition);
3691 }
3692 return;
3693 }
3694
3695 Aliases.push_back(GD);
3696
3697 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3698 llvm::Constant *Resolver =
3699 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3700 /*ForVTable=*/false);
3701 llvm::GlobalIFunc *GIF =
3702 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3703 "", Resolver, &getModule());
3704 if (Entry) {
3705 if (GIF->getResolver() == Entry) {
3706 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3707 return;
3708 }
3709 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3709, __extension__ __PRETTY_FUNCTION__))
;
3710
3711 // If there is a declaration in the module, then we had an extern followed
3712 // by the ifunc, as in:
3713 // extern int test();
3714 // ...
3715 // int test() __attribute__((ifunc("resolver")));
3716 //
3717 // Remove it and replace uses of it with the ifunc.
3718 GIF->takeName(Entry);
3719
3720 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3721 Entry->getType()));
3722 Entry->eraseFromParent();
3723 } else
3724 GIF->setName(MangledName);
3725
3726 SetCommonAttributes(D, GIF);
3727}
3728
3729llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3730 ArrayRef<llvm::Type*> Tys) {
3731 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3732 Tys);
3733}
3734
3735static llvm::StringMapEntry<llvm::GlobalVariable *> &
3736GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3737 const StringLiteral *Literal, bool TargetIsLSB,
3738 bool &IsUTF16, unsigned &StringLength) {
3739 StringRef String = Literal->getString();
3740 unsigned NumBytes = String.size();
3741
3742 // Check for simple case.
3743 if (!Literal->containsNonAsciiOrNull()) {
3744 StringLength = NumBytes;
3745 return *Map.insert(std::make_pair(String, nullptr)).first;
3746 }
3747
3748 // Otherwise, convert the UTF8 literals into a string of shorts.
3749 IsUTF16 = true;
3750
3751 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3752 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3753 llvm::UTF16 *ToPtr = &ToBuf[0];
3754
3755 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3756 ToPtr + NumBytes, llvm::strictConversion);
3757
3758 // ConvertUTF8toUTF16 returns the length in ToPtr.
3759 StringLength = ToPtr - &ToBuf[0];
3760
3761 // Add an explicit null.
3762 *ToPtr = 0;
3763 return *Map.insert(std::make_pair(
3764 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3765 (StringLength + 1) * 2),
3766 nullptr)).first;
3767}
3768
3769ConstantAddress
3770CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3771 unsigned StringLength = 0;
3772 bool isUTF16 = false;
3773 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3774 GetConstantCFStringEntry(CFConstantStringMap, Literal,
3775 getDataLayout().isLittleEndian(), isUTF16,
3776 StringLength);
3777
3778 if (auto *C = Entry.second)
3779 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3780
3781 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3782 llvm::Constant *Zeros[] = { Zero, Zero };
3783
3784 // If we don't already have it, get __CFConstantStringClassReference.
3785 if (!CFConstantStringClassRef) {
3786 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3787 Ty = llvm::ArrayType::get(Ty, 0);
3788 llvm::Constant *GV =
3789 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3790
3791 if (getTriple().isOSBinFormatCOFF()) {
3792 IdentifierInfo &II = getContext().Idents.get(GV->getName());
3793 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3794 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3795 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3796
3797 const VarDecl *VD = nullptr;
3798 for (const auto &Result : DC->lookup(&II))
3799 if ((VD = dyn_cast<VarDecl>(Result)))
3800 break;
3801
3802 if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3803 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3804 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3805 } else {
3806 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3807 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3808 }
3809 }
3810
3811 // Decay array -> ptr
3812 CFConstantStringClassRef =
3813 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3814 }
3815
3816 QualType CFTy = getContext().getCFConstantStringType();
3817
3818 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3819
3820 ConstantInitBuilder Builder(*this);
3821 auto Fields = Builder.beginStruct(STy);
3822
3823 // Class pointer.
3824 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3825
3826 // Flags.
3827 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3828
3829 // String pointer.
3830 llvm::Constant *C = nullptr;
3831 if (isUTF16) {
3832 auto Arr = llvm::makeArrayRef(
3833 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3834 Entry.first().size() / 2);
3835 C = llvm::ConstantDataArray::get(VMContext, Arr);
3836 } else {
3837 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3838 }
3839
3840 // Note: -fwritable-strings doesn't make the backing store strings of
3841 // CFStrings writable. (See <rdar://problem/10657500>)
3842 auto *GV =
3843 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3844 llvm::GlobalValue::PrivateLinkage, C, ".str");
3845 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3846 // Don't enforce the target's minimum global alignment, since the only use
3847 // of the string is via this class initializer.
3848 CharUnits Align = isUTF16
3849 ? getContext().getTypeAlignInChars(getContext().ShortTy)
3850 : getContext().getTypeAlignInChars(getContext().CharTy);
3851 GV->setAlignment(Align.getQuantity());
3852
3853 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3854 // Without it LLVM can merge the string with a non unnamed_addr one during
3855 // LTO. Doing that changes the section it ends in, which surprises ld64.
3856 if (getTriple().isOSBinFormatMachO())
3857 GV->setSection(isUTF16 ? "__TEXT,__ustring"
3858 : "__TEXT,__cstring,cstring_literals");
3859
3860 // String.
3861 llvm::Constant *Str =
3862 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3863
3864 if (isUTF16)
3865 // Cast the UTF16 string to the correct type.
3866 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3867 Fields.add(Str);
3868
3869 // String length.
3870 auto Ty = getTypes().ConvertType(getContext().LongTy);
3871 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3872
3873 CharUnits Alignment = getPointerAlign();
3874
3875 // The struct.
3876 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3877 /*isConstant=*/false,
3878 llvm::GlobalVariable::PrivateLinkage);
3879 switch (getTriple().getObjectFormat()) {
3880 case llvm::Triple::UnknownObjectFormat:
3881 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3881)
;
3882 case llvm::Triple::COFF:
3883 case llvm::Triple::ELF:
3884 case llvm::Triple::Wasm:
3885 GV->setSection("cfstring");
3886 break;
3887 case llvm::Triple::MachO:
3888 GV->setSection("__DATA,__cfstring");
3889 break;
3890 }
3891 Entry.second = GV;
3892
3893 return ConstantAddress(GV, Alignment);
3894}
3895
3896bool CodeGenModule::getExpressionLocationsEnabled() const {
3897 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3898}
3899
3900QualType CodeGenModule::getObjCFastEnumerationStateType() {
3901 if (ObjCFastEnumerationStateType.isNull()) {
3902 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3903 D->startDefinition();
3904
3905 QualType FieldTypes[] = {
3906 Context.UnsignedLongTy,
3907 Context.getPointerType(Context.getObjCIdType()),
3908 Context.getPointerType(Context.UnsignedLongTy),
3909 Context.getConstantArrayType(Context.UnsignedLongTy,
3910 llvm::APInt(32, 5), ArrayType::Normal, 0)
3911 };
3912
3913 for (size_t i = 0; i < 4; ++i) {
3914 FieldDecl *Field = FieldDecl::Create(Context,
3915 D,
3916 SourceLocation(),
3917 SourceLocation(), nullptr,
3918 FieldTypes[i], /*TInfo=*/nullptr,
3919 /*BitWidth=*/nullptr,
3920 /*Mutable=*/false,
3921 ICIS_NoInit);
3922 Field->setAccess(AS_public);
3923 D->addDecl(Field);
3924 }
3925
3926 D->completeDefinition();
3927 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3928 }
3929
3930 return ObjCFastEnumerationStateType;
3931}
3932
3933llvm::Constant *
3934CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3935 assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast <bool> (!E->getType()->isPointerType
() && "Strings are always arrays") ? void (0) : __assert_fail
("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3935, __extension__ __PRETTY_FUNCTION__))
;
3936
3937 // Don't emit it as the address of the string, emit the string data itself
3938 // as an inline array.
3939 if (E->getCharByteWidth() == 1) {
3940 SmallString<64> Str(E->getString());
3941
3942 // Resize the string to the right size, which is indicated by its type.
3943 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3944 Str.resize(CAT->getSize().getZExtValue());
3945 return llvm::ConstantDataArray::getString(VMContext, Str, false);
3946 }
3947
3948 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3949 llvm::Type *ElemTy = AType->getElementType();
3950 unsigned NumElements = AType->getNumElements();
3951
3952 // Wide strings have either 2-byte or 4-byte elements.
3953 if (ElemTy->getPrimitiveSizeInBits() == 16) {
3954 SmallVector<uint16_t, 32> Elements;
3955 Elements.reserve(NumElements);
3956
3957 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3958 Elements.push_back(E->getCodeUnit(i));
3959 Elements.resize(NumElements);
3960 return llvm::ConstantDataArray::get(VMContext, Elements);
3961 }
3962
3963 assert(ElemTy->getPrimitiveSizeInBits() == 32)(static_cast <bool> (ElemTy->getPrimitiveSizeInBits(
) == 32) ? void (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3963, __extension__ __PRETTY_FUNCTION__))
;
3964 SmallVector<uint32_t, 32> Elements;
3965 Elements.reserve(NumElements);
3966
3967 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3968 Elements.push_back(E->getCodeUnit(i));
3969 Elements.resize(NumElements);
3970 return llvm::ConstantDataArray::get(VMContext, Elements);
3971}
3972
3973static llvm::GlobalVariable *
3974GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3975 CodeGenModule &CGM, StringRef GlobalName,
3976 CharUnits Alignment) {
3977 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3978 unsigned AddrSpace = 0;
3979 if (CGM.getLangOpts().OpenCL)
3980 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3981
3982 llvm::Module &M = CGM.getModule();
3983 // Create a global variable for this string
3984 auto *GV = new llvm::GlobalVariable(
3985 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3986 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3987 GV->setAlignment(Alignment.getQuantity());
3988 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3989 if (GV->isWeakForLinker()) {
3990 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")(static_cast <bool> (CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? void (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3990, __extension__ __PRETTY_FUNCTION__))
;
3991 GV->setComdat(M.getOrInsertComdat(GV->getName()));
3992 }
3993
3994 return GV;
3995}
3996
3997/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3998/// constant array for the given string literal.
3999ConstantAddress
4000CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4001 StringRef Name) {
4002 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4003
4004 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4005 llvm::GlobalVariable **Entry = nullptr;
4006 if (!LangOpts.WritableStrings) {
4007 Entry = &ConstantStringMap[C];
4008 if (auto GV = *Entry) {
4009 if (Alignment.getQuantity() > GV->getAlignment())
4010 GV->setAlignment(Alignment.getQuantity());
4011 return ConstantAddress(GV, Alignment);
4012 }
4013 }
4014
4015 SmallString<256> MangledNameBuffer;
4016 StringRef GlobalVariableName;
4017 llvm::GlobalValue::LinkageTypes LT;
4018
4019 // Mangle the string literal if the ABI allows for it. However, we cannot
4020 // do this if we are compiling with ASan or -fwritable-strings because they
4021 // rely on strings having normal linkage.
4022 if (!LangOpts.WritableStrings &&
4023 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4024 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4025 llvm::raw_svector_ostream Out(MangledNameBuffer);
4026 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4027
4028 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4029 GlobalVariableName = MangledNameBuffer;
4030 } else {
4031 LT = llvm::GlobalValue::PrivateLinkage;
4032 GlobalVariableName = Name;
4033 }
4034
4035 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4036 if (Entry)
4037 *Entry = GV;
4038
4039 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4040 QualType());
4041 return ConstantAddress(GV, Alignment);
4042}
4043
4044/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4045/// array for the given ObjCEncodeExpr node.
4046ConstantAddress
4047CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4048 std::string Str;
4049 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4050
4051 return GetAddrOfConstantCString(Str);
4052}
4053
4054/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4055/// the literal and a terminating '\0' character.
4056/// The result has pointer to array type.
4057ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4058 const std::string &Str, const char *GlobalName) {
4059 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4060 CharUnits Alignment =
4061 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4062
4063 llvm::Constant *C =
4064 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4065
4066 // Don't share any string literals if strings aren't constant.
4067 llvm::GlobalVariable **Entry = nullptr;
4068 if (!LangOpts.WritableStrings) {
4069 Entry = &ConstantStringMap[C];
4070 if (auto GV = *Entry) {
4071 if (Alignment.getQuantity() > GV->getAlignment())
4072 GV->setAlignment(Alignment.getQuantity());
4073 return ConstantAddress(GV, Alignment);
4074 }
4075 }
4076
4077 // Get the default prefix if a name wasn't specified.
4078 if (!GlobalName)
4079 GlobalName = ".str";
4080 // Create a global variable for this.
4081 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4082 GlobalName, Alignment);
4083 if (Entry)
4084 *Entry = GV;
4085 return ConstantAddress(GV, Alignment);
4086}
4087
4088ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4089 const MaterializeTemporaryExpr *E, const Expr *Init) {
4090 assert((E->getStorageDuration() == SD_Static ||(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4091, __extension__ __PRETTY_FUNCTION__))
4091 E->getStorageDuration() == SD_Thread) && "not a global temporary")(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4091, __extension__ __PRETTY_FUNCTION__))
;
4092 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
1
Calling 'cast'
26
Returning from 'cast'
27
'VD' initialized here
4093
4094 // If we're not materializing a subobject of the temporary, keep the
4095 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4096 QualType MaterializedType = Init->getType();
4097 if (Init == E->GetTemporaryExpr())
28
Assuming the condition is false
29
Taking false branch
4098 MaterializedType = E->getType();
4099
4100 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4101
4102 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
30
Assuming 'Slot' is null
31
Taking false branch
4103 return ConstantAddress(Slot, Align);
4104
4105 // FIXME: If an externally-visible declaration extends multiple temporaries,
4106 // we need to give each temporary the same name in every translation unit (and
4107 // we also need to make the temporaries externally-visible).
4108 SmallString<256> Name;
4109 llvm::raw_svector_ostream Out(Name);
4110 getCXXABI().getMangleContext().mangleReferenceTemporary(
4111 VD, E->getManglingNumber(), Out);
4112
4113 APValue *Value = nullptr;
4114 if (E->getStorageDuration() == SD_Static) {
32
Taking true branch
4115 // We might have a cached constant initializer for this temporary. Note
4116 // that this might have a different value from the value computed by
4117 // evaluating the initializer if the surrounding constant expression
4118 // modifies the temporary.
4119 Value = getContext().getMaterializedTemporaryValue(E, false);
4120 if (Value && Value->isUninit())
33
Assuming 'Value' is null
4121 Value = nullptr;
4122 }
4123
4124 // Try evaluating it now, it might have a constant initializer.
4125 Expr::EvalResult EvalResult;
4126 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
34
Assuming the condition is false
4127 !EvalResult.hasSideEffects())
4128 Value = &EvalResult.Val;
4129
4130 LangAS AddrSpace =
4131 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
35
Assuming 'VD' is null
36
'?' condition is false
4132
4133 Optional<ConstantEmitter> emitter;
4134 llvm::Constant *InitialValue = nullptr;
4135 bool Constant = false;
4136 llvm::Type *Type;
4137 if (Value) {
37
Taking false branch
4138 // The temporary has a constant initializer, use it.
4139 emitter.emplace(*this);
4140 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4141 MaterializedType);
4142 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4143 Type = InitialValue->getType();
4144 } else {
4145 // No initializer, the initialization will be provided when we
4146 // initialize the declaration which performed lifetime extension.
4147 Type = getTypes().ConvertTypeForMem(MaterializedType);
4148 }
4149
4150 // Create a global variable for this lifetime-extended temporary.
4151 llvm::GlobalValue::LinkageTypes Linkage =
4152 getLLVMLinkageVarDefinition(VD, Constant);
4153 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
38
Taking false branch
4154 const VarDecl *InitVD;
4155 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4156 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4157 // Temporaries defined inside a class get linkonce_odr linkage because the
4158 // class can be defined in multipe translation units.
4159 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4160 } else {
4161 // There is no need for this temporary to have external linkage if the
4162 // VarDecl has external linkage.
4163 Linkage = llvm::GlobalVariable::InternalLinkage;
4164 }
4165 }
4166 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4167 auto *GV = new llvm::GlobalVariable(
4168 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4169 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4170 if (emitter) emitter->finalize(GV);
39
Taking false branch
4171 setGVProperties(GV, VD);
4172 GV->setAlignment(Align.getQuantity());
4173 if (supportsCOMDAT() && GV->isWeakForLinker())
40
Assuming the condition is false
4174 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4175 if (VD->getTLSKind())
41
Called C++ object pointer is null
4176 setTLSMode(GV, *VD);
4177 llvm::Constant *CV = GV;
4178 if (AddrSpace != LangAS::Default)
4179 CV = getTargetCodeGenInfo().performAddrSpaceCast(
4180 *this, GV, AddrSpace, LangAS::Default,
4181 Type->getPointerTo(
4182 getContext().getTargetAddressSpace(LangAS::Default)));
4183 MaterializedGlobalTemporaryMap[E] = CV;
4184 return ConstantAddress(CV, Align);
4185}
4186
4187/// EmitObjCPropertyImplementations - Emit information for synthesized
4188/// properties for an implementation.
4189void CodeGenModule::EmitObjCPropertyImplementations(const
4190 ObjCImplementationDecl *D) {
4191 for (const auto *PID : D->property_impls()) {
4192 // Dynamic is just for type-checking.
4193 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4194 ObjCPropertyDecl *PD = PID->getPropertyDecl();
4195
4196 // Determine which methods need to be implemented, some may have
4197 // been overridden. Note that ::isPropertyAccessor is not the method
4198 // we want, that just indicates if the decl came from a
4199 // property. What we want to know is if the method is defined in
4200 // this implementation.
4201 if (!D->getInstanceMethod(PD->getGetterName()))
4202 CodeGenFunction(*this).GenerateObjCGetter(
4203 const_cast<ObjCImplementationDecl *>(D), PID);
4204 if (!PD->isReadOnly() &&
4205 !D->getInstanceMethod(PD->getSetterName()))
4206 CodeGenFunction(*this).GenerateObjCSetter(
4207 const_cast<ObjCImplementationDecl *>(D), PID);
4208 }
4209 }
4210}
4211
4212static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4213 const ObjCInterfaceDecl *iface = impl->getClassInterface();
4214 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4215 ivar; ivar = ivar->getNextIvar())
4216 if (ivar->getType().isDestructedType())
4217 return true;
4218
4219 return false;
4220}
4221
4222static bool AllTrivialInitializers(CodeGenModule &CGM,
4223 ObjCImplementationDecl *D) {
4224 CodeGenFunction CGF(CGM);
4225 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4226 E = D->init_end(); B != E; ++B) {
4227 CXXCtorInitializer *CtorInitExp = *B;
4228 Expr *Init = CtorInitExp->getInit();
4229 if (!CGF.isTrivialInitializer(Init))
4230 return false;
4231 }
4232 return true;
4233}
4234
4235/// EmitObjCIvarInitializations - Emit information for ivar initialization
4236/// for an implementation.
4237void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4238 // We might need a .cxx_destruct even if we don't have any ivar initializers.
4239 if (needsDestructMethod(D)) {
4240 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4241 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4242 ObjCMethodDecl *DTORMethod =
4243 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4244 cxxSelector, getContext().VoidTy, nullptr, D,
4245 /*isInstance=*/true, /*isVariadic=*/false,
4246 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4247 /*isDefined=*/false, ObjCMethodDecl::Required);
4248 D->addInstanceMethod(DTORMethod);
4249 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4250 D->setHasDestructors(true);
4251 }
4252
4253 // If the implementation doesn't have any ivar initializers, we don't need
4254 // a .cxx_construct.
4255 if (D->getNumIvarInitializers() == 0 ||
4256 AllTrivialInitializers(*this, D))
4257 return;
4258
4259 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4260 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4261 // The constructor returns 'self'.
4262 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4263 D->getLocation(),
4264 D->getLocation(),
4265 cxxSelector,
4266 getContext().getObjCIdType(),
4267 nullptr, D, /*isInstance=*/true,
4268 /*isVariadic=*/false,
4269 /*isPropertyAccessor=*/true,
4270 /*isImplicitlyDeclared=*/true,
4271 /*isDefined=*/false,
4272 ObjCMethodDecl::Required);
4273 D->addInstanceMethod(CTORMethod);
4274 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4275 D->setHasNonZeroConstructors(true);
4276}
4277
4278// EmitLinkageSpec - Emit all declarations in a linkage spec.
4279void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4280 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4281 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4282 ErrorUnsupported(LSD, "linkage spec");
4283 return;
4284 }
4285
4286 EmitDeclContext(LSD);
4287}
4288
4289void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4290 for (auto *I : DC->decls()) {
4291 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4292 // are themselves considered "top-level", so EmitTopLevelDecl on an
4293 // ObjCImplDecl does not recursively visit them. We need to do that in
4294 // case they're nested inside another construct (LinkageSpecDecl /
4295 // ExportDecl) that does stop them from being considered "top-level".
4296 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4297 for (auto *M : OID->methods())
4298 EmitTopLevelDecl(M);
4299 }
4300
4301 EmitTopLevelDecl(I);
4302 }
4303}
4304
4305/// EmitTopLevelDecl - Emit code for a single top level declaration.
4306void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4307 // Ignore dependent declarations.
4308 if (D->isTemplated())
4309 return;
4310
4311 switch (D->getKind()) {
4312 case Decl::CXXConversion:
4313 case Decl::CXXMethod:
4314 case Decl::Function:
4315 EmitGlobal(cast<FunctionDecl>(D));
4316 // Always provide some coverage mapping
4317 // even for the functions that aren't emitted.
4318 AddDeferredUnusedCoverageMapping(D);
4319 break;
4320
4321 case Decl::CXXDeductionGuide:
4322 // Function-like, but does not result in code emission.
4323 break;
4324
4325 case Decl::Var:
4326 case Decl::Decomposition:
4327 case Decl::VarTemplateSpecialization:
4328 EmitGlobal(cast<VarDecl>(D));
4329 if (auto *DD = dyn_cast<DecompositionDecl>(D))
4330 for (auto *B : DD->bindings())
4331 if (auto *HD = B->getHoldingVar())
4332 EmitGlobal(HD);
4333 break;
4334
4335 // Indirect fields from global anonymous structs and unions can be
4336 // ignored; only the actual variable requires IR gen support.
4337 case Decl::IndirectField:
4338 break;
4339
4340 // C++ Decls
4341 case Decl::Namespace:
4342 EmitDeclContext(cast<NamespaceDecl>(D));
4343 break;
4344 case Decl::ClassTemplateSpecialization: {
4345 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4346 if (DebugInfo &&
4347 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4348 Spec->hasDefinition())
4349 DebugInfo->completeTemplateDefinition(*Spec);
4350 } LLVM_FALLTHROUGH[[clang::fallthrough]];
4351 case Decl::CXXRecord:
4352 if (DebugInfo) {
4353 if (auto *ES = D->getASTContext().getExternalSource())
4354 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4355 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4356 }
4357 // Emit any static data members, they may be definitions.
4358 for (auto *I : cast<CXXRecordDecl>(D)->decls())
4359 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4360 EmitTopLevelDecl(I);
4361 break;
4362 // No code generation needed.
4363 case Decl::UsingShadow:
4364 case Decl::ClassTemplate:
4365 case Decl::VarTemplate:
4366 case Decl::VarTemplatePartialSpecialization:
4367 case Decl::FunctionTemplate:
4368 case Decl::TypeAliasTemplate:
4369 case Decl::Block:
4370 case Decl::Empty:
4371 break;
4372 case Decl::Using: // using X; [C++]
4373 if (CGDebugInfo *DI = getModuleDebugInfo())
4374 DI->EmitUsingDecl(cast<UsingDecl>(*D));
4375 return;
4376 case Decl::NamespaceAlias:
4377 if (CGDebugInfo *DI = getModuleDebugInfo())
4378 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4379 return;
4380 case Decl::UsingDirective: // using namespace X; [C++]
4381 if (CGDebugInfo *DI = getModuleDebugInfo())
4382 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4383 return;
4384 case Decl::CXXConstructor:
4385 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4386 break;
4387 case Decl::CXXDestructor:
4388 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4389 break;
4390
4391 case Decl::StaticAssert:
4392 // Nothing to do.
4393 break;
4394
4395 // Objective-C Decls
4396
4397 // Forward declarations, no (immediate) code generation.
4398 case Decl::ObjCInterface:
4399 case Decl::ObjCCategory:
4400 break;
4401
4402 case Decl::ObjCProtocol: {
4403 auto *Proto = cast<ObjCProtocolDecl>(D);
4404 if (Proto->isThisDeclarationADefinition())
4405 ObjCRuntime->GenerateProtocol(Proto);
4406 break;
4407 }
4408
4409 case Decl::ObjCCategoryImpl:
4410 // Categories have properties but don't support synthesize so we
4411 // can ignore them here.
4412 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4413 break;
4414
4415 case Decl::ObjCImplementation: {
4416 auto *OMD = cast<ObjCImplementationDecl>(D);
4417 EmitObjCPropertyImplementations(OMD);
4418 EmitObjCIvarInitializations(OMD);
4419 ObjCRuntime->GenerateClass(OMD);
4420 // Emit global variable debug information.
4421 if (CGDebugInfo *DI = getModuleDebugInfo())
4422 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4423 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4424 OMD->getClassInterface()), OMD->getLocation());
4425 break;
4426 }
4427 case Decl::ObjCMethod: {
4428 auto *OMD = cast<ObjCMethodDecl>(D);
4429 // If this is not a prototype, emit the body.
4430 if (OMD->getBody())
4431 CodeGenFunction(*this).GenerateObjCMethod(OMD);
4432 break;
4433 }
4434 case Decl::ObjCCompatibleAlias:
4435 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4436 break;
4437
4438 case Decl::PragmaComment: {
4439 const auto *PCD = cast<PragmaCommentDecl>(D);
4440 switch (PCD->getCommentKind()) {
4441 case PCK_Unknown:
4442 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4442)
;
4443 case PCK_Linker:
4444 AppendLinkerOptions(PCD->getArg());
4445 break;
4446 case PCK_Lib:
4447 if (getTarget().getTriple().isOSBinFormatELF() &&
4448 !getTarget().getTriple().isPS4())
4449 AddELFLibDirective(PCD->getArg());
4450 else
4451 AddDependentLib(PCD->getArg());
4452 break;
4453 case PCK_Compiler:
4454 case PCK_ExeStr:
4455 case PCK_User:
4456 break; // We ignore all of these.
4457 }
4458 break;
4459 }
4460
4461 case Decl::PragmaDetectMismatch: {
4462 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4463 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4464 break;
4465 }
4466
4467 case Decl::LinkageSpec:
4468 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4469 break;
4470
4471 case Decl::FileScopeAsm: {
4472 // File-scope asm is ignored during device-side CUDA compilation.
4473 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4474 break;
4475 // File-scope asm is ignored during device-side OpenMP compilation.
4476 if (LangOpts.OpenMPIsDevice)
4477 break;
4478 auto *AD = cast<FileScopeAsmDecl>(D);
4479 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4480 break;
4481 }
4482
4483 case Decl::Import: {
4484 auto *Import = cast<ImportDecl>(D);
4485
4486 // If we've already imported this module, we're done.
4487 if (!ImportedModules.insert(Import->getImportedModule()))
4488 break;
4489
4490 // Emit debug information for direct imports.
4491 if (!Import->getImportedOwningModule()) {
4492 if (CGDebugInfo *DI = getModuleDebugInfo())
4493 DI->EmitImportDecl(*Import);
4494 }
4495
4496 // Find all of the submodules and emit the module initializers.
4497 llvm::SmallPtrSet<clang::Module *, 16> Visited;
4498 SmallVector<clang::Module *, 16> Stack;
4499 Visited.insert(Import->getImportedModule());
4500 Stack.push_back(Import->getImportedModule());
4501
4502 while (!Stack.empty()) {
4503 clang::Module *Mod = Stack.pop_back_val();
4504 if (!EmittedModuleInitializers.insert(Mod).second)
4505 continue;
4506
4507 for (auto *D : Context.getModuleInitializers(Mod))
4508 EmitTopLevelDecl(D);
4509
4510 // Visit the submodules of this module.
4511 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4512 SubEnd = Mod->submodule_end();
4513 Sub != SubEnd; ++Sub) {
4514 // Skip explicit children; they need to be explicitly imported to emit
4515 // the initializers.
4516 if ((*Sub)->IsExplicit)
4517 continue;
4518
4519 if (Visited.insert(*Sub).second)
4520 Stack.push_back(*Sub);
4521 }
4522 }
4523 break;
4524 }
4525
4526 case Decl::Export:
4527 EmitDeclContext(cast<ExportDecl>(D));
4528 break;
4529
4530 case Decl::OMPThreadPrivate:
4531 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4532 break;
4533
4534 case Decl::OMPDeclareReduction:
4535 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4536 break;
4537
4538 default:
4539 // Make sure we handled everything we should, every other kind is a
4540 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
4541 // function. Need to recode Decl::Kind to do that easily.
4542 assert(isa<TypeDecl>(D) && "Unsupported decl kind")(static_cast <bool> (isa<TypeDecl>(D) && "Unsupported decl kind"
) ? void (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4542, __extension__ __PRETTY_FUNCTION__))
;
4543 break;
4544 }
4545}
4546
4547void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4548 // Do we need to generate coverage mapping?
4549 if (!CodeGenOpts.CoverageMapping)
4550 return;
4551 switch (D->getKind()) {
4552 case Decl::CXXConversion:
4553 case Decl::CXXMethod:
4554 case Decl::Function:
4555 case Decl::ObjCMethod:
4556 case Decl::CXXConstructor:
4557 case Decl::CXXDestructor: {
4558 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4559 return;
4560 SourceManager &SM = getContext().getSourceManager();
4561 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4562 return;
4563 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4564 if (I == DeferredEmptyCoverageMappingDecls.end())
4565 DeferredEmptyCoverageMappingDecls[D] = true;
4566 break;
4567 }
4568 default:
4569 break;
4570 };
4571}
4572
4573void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4574 // Do we need to generate coverage mapping?
4575 if (!CodeGenOpts.CoverageMapping)
4576 return;
4577 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4578 if (Fn->isTemplateInstantiation())
4579 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4580 }
4581 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4582 if (I == DeferredEmptyCoverageMappingDecls.end())
4583 DeferredEmptyCoverageMappingDecls[D] = false;
4584 else
4585 I->second = false;
4586}
4587
4588void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4589 // We call takeVector() here to avoid use-after-free.
4590 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4591 // we deserialize function bodies to emit coverage info for them, and that
4592 // deserializes more declarations. How should we handle that case?
4593 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4594 if (!Entry.second)
4595 continue;
4596 const Decl *D = Entry.first;
4597 switch (D->getKind()) {
4598 case Decl::CXXConversion:
4599 case Decl::CXXMethod:
4600 case Decl::Function:
4601 case Decl::ObjCMethod: {
4602 CodeGenPGO PGO(*this);
4603 GlobalDecl GD(cast<FunctionDecl>(D));
4604 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4605 getFunctionLinkage(GD));
4606 break;
4607 }
4608 case Decl::CXXConstructor: {
4609 CodeGenPGO PGO(*this);
4610 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4611 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4612 getFunctionLinkage(GD));
4613 break;
4614 }
4615 case Decl::CXXDestructor: {
4616 CodeGenPGO PGO(*this);
4617 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4618 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4619 getFunctionLinkage(GD));
4620 break;
4621 }
4622 default:
4623 break;
4624 };
4625 }
4626}
4627
4628/// Turns the given pointer into a constant.
4629static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4630 const void *Ptr) {
4631 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4632 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4633 return llvm::ConstantInt::get(i64, PtrInt);
4634}
4635
4636static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4637 llvm::NamedMDNode *&GlobalMetadata,
4638 GlobalDecl D,
4639 llvm::GlobalValue *Addr) {
4640 if (!GlobalMetadata)
4641 GlobalMetadata =
4642 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4643
4644 // TODO: should we report variant information for ctors/dtors?
4645 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4646 llvm::ConstantAsMetadata::get(GetPointerConstant(
4647 CGM.getLLVMContext(), D.getDecl()))};
4648 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4649}
4650
4651/// For each function which is declared within an extern "C" region and marked
4652/// as 'used', but has internal linkage, create an alias from the unmangled
4653/// name to the mangled name if possible. People expect to be able to refer
4654/// to such functions with an unmangled name from inline assembly within the
4655/// same translation unit.
4656void CodeGenModule::EmitStaticExternCAliases() {
4657 // Don't do anything if we're generating CUDA device code -- the NVPTX
4658 // assembly target doesn't support aliases.
4659 if (Context.getTargetInfo().getTriple().isNVPTX())
4660 return;
4661 for (auto &I : StaticExternCValues) {
4662 IdentifierInfo *Name = I.first;
4663 llvm::GlobalValue *Val = I.second;
4664 if (Val && !getModule().getNamedValue(Name->getName()))
4665 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4666 }
4667}
4668
4669bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4670 GlobalDecl &Result) const {
4671 auto Res = Manglings.find(MangledName);
4672 if (Res == Manglings.end())
4673 return false;
4674 Result = Res->getValue();
4675 return true;
4676}
4677
4678/// Emits metadata nodes associating all the global values in the
4679/// current module with the Decls they came from. This is useful for
4680/// projects using IR gen as a subroutine.
4681///
4682/// Since there's currently no way to associate an MDNode directly
4683/// with an llvm::GlobalValue, we create a global named metadata
4684/// with the name 'clang.global.decl.ptrs'.
4685void CodeGenModule::EmitDeclMetadata() {
4686 llvm::NamedMDNode *GlobalMetadata = nullptr;
4687
4688 for (auto &I : MangledDeclNames) {
4689 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4690 // Some mangled names don't necessarily have an associated GlobalValue
4691 // in this module, e.g. if we mangled it for DebugInfo.
4692 if (Addr)
4693 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4694 }
4695}
4696
4697/// Emits metadata nodes for all the local variables in the current
4698/// function.
4699void CodeGenFunction::EmitDeclMetadata() {
4700 if (LocalDeclMap.empty()) return;
4701
4702 llvm::LLVMContext &Context = getLLVMContext();
4703
4704 // Find the unique metadata ID for this name.
4705 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4706
4707 llvm::NamedMDNode *GlobalMetadata = nullptr;
4708
4709 for (auto &I : LocalDeclMap) {
4710 const Decl *D = I.first;
4711 llvm::Value *Addr = I.second.getPointer();
4712 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4713 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4714 Alloca->setMetadata(
4715 DeclPtrKind, llvm::MDNode::get(
4716 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4717 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4718 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4719 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4720 }
4721 }
4722}
4723
4724void CodeGenModule::EmitVersionIdentMetadata() {
4725 llvm::NamedMDNode *IdentMetadata =
4726 TheModule.getOrInsertNamedMetadata("llvm.ident");
4727 std::string Version = getClangFullVersion();
4728 llvm::LLVMContext &Ctx = TheModule.getContext();
4729
4730 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4731 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4732}
4733
4734void CodeGenModule::EmitTargetMetadata() {
4735 // Warning, new MangledDeclNames may be appended within this loop.
4736 // We rely on MapVector insertions adding new elements to the end
4737 // of the container.
4738 // FIXME: Move this loop into the one target that needs it, and only
4739 // loop over those declarations for which we couldn't emit the target
4740 // metadata when we emitted the declaration.
4741 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4742 auto Val = *(MangledDeclNames.begin() + I);
4743 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4744 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4745 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4746 }
4747}
4748
4749void CodeGenModule::EmitCoverageFile() {
4750 if (getCodeGenOpts().CoverageDataFile.empty() &&
4751 getCodeGenOpts().CoverageNotesFile.empty())
4752 return;
4753
4754 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4755 if (!CUNode)
4756 return;
4757
4758 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4759 llvm::LLVMContext &Ctx = TheModule.getContext();
4760 auto *CoverageDataFile =
4761 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4762 auto *CoverageNotesFile =
4763 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4764 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4765 llvm::MDNode *CU = CUNode->getOperand(i);
4766 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4767 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4768 }
4769}
4770
4771llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4772 // Sema has checked that all uuid strings are of the form
4773 // "12345678-1234-1234-1234-1234567890ab".
4774 assert(Uuid.size() == 36)(static_cast <bool> (Uuid.size() == 36) ? void (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4774, __extension__ __PRETTY_FUNCTION__))
;
4775 for (unsigned i = 0; i < 36; ++i) {
4776 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')(static_cast <bool> (Uuid[i] == '-') ? void (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4776, __extension__ __PRETTY_FUNCTION__))
;
4777 else assert(isHexDigit(Uuid[i]))(static_cast <bool> (isHexDigit(Uuid[i])) ? void (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4777, __extension__ __PRETTY_FUNCTION__))
;
4778 }
4779
4780 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4781 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4782
4783 llvm::Constant *Field3[8];
4784 for (unsigned Idx = 0; Idx < 8; ++Idx)
4785 Field3[Idx] = llvm::ConstantInt::get(
4786 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4787
4788 llvm::Constant *Fields[4] = {
4789 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
4790 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
4791 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4792 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4793 };
4794
4795 return llvm::ConstantStruct::getAnon(Fields);
4796}
4797
4798llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4799 bool ForEH) {
4800 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4801 // FIXME: should we even be calling this method if RTTI is disabled
4802 // and it's not for EH?
4803 if (!ForEH && !getLangOpts().RTTI)
4804 return llvm::Constant::getNullValue(Int8PtrTy);
4805
4806 if (ForEH && Ty->isObjCObjectPointerType() &&
4807 LangOpts.ObjCRuntime.isGNUFamily())
4808 return ObjCRuntime->GetEHType(Ty);
4809
4810 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4811}
4812
4813void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4814 // Do not emit threadprivates in simd-only mode.
4815 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4816 return;
4817 for (auto RefExpr : D->varlists()) {
4818 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4819 bool PerformInit =
4820 VD->getAnyInitializer() &&
4821 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4822 /*ForRef=*/false);
4823
4824 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4825 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4826 VD, Addr, RefExpr->getLocStart(), PerformInit))
4827 CXXGlobalInits.push_back(InitFunction);
4828 }
4829}
4830
4831llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4832 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4833 if (InternalId)
4834 return InternalId;
4835
4836 if (isExternallyVisible(T->getLinkage())) {
4837 std::string OutName;
4838 llvm::raw_string_ostream Out(OutName);
4839 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4840
4841 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4842 } else {
4843 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4844 llvm::ArrayRef<llvm::Metadata *>());
4845 }
4846
4847 return InternalId;
4848}
4849
4850// Generalize pointer types to a void pointer with the qualifiers of the
4851// originally pointed-to type, e.g. 'const char *' and 'char * const *'
4852// generalize to 'const void *' while 'char *' and 'const char **' generalize to
4853// 'void *'.
4854static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4855 if (!Ty->isPointerType())
4856 return Ty;
4857
4858 return Ctx.getPointerType(
4859 QualType(Ctx.VoidTy).withCVRQualifiers(
4860 Ty->getPointeeType().getCVRQualifiers()));
4861}
4862
4863// Apply type generalization to a FunctionType's return and argument types
4864static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4865 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4866 SmallVector<QualType, 8> GeneralizedParams;
4867 for (auto &Param : FnType->param_types())
4868 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4869
4870 return Ctx.getFunctionType(
4871 GeneralizeType(Ctx, FnType->getReturnType()),
4872 GeneralizedParams, FnType->getExtProtoInfo());
4873 }
4874
4875 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4876 return Ctx.getFunctionNoProtoType(
4877 GeneralizeType(Ctx, FnType->getReturnType()));
4878
4879 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4879)
;
4880}
4881
4882llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4883 T = GeneralizeFunctionType(getContext(), T);
4884
4885 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4886 if (InternalId)
4887 return InternalId;
4888
4889 if (isExternallyVisible(T->getLinkage())) {
4890 std::string OutName;
4891 llvm::raw_string_ostream Out(OutName);
4892 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4893 Out << ".generalized";
4894
4895 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4896 } else {
4897 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4898 llvm::ArrayRef<llvm::Metadata *>());
4899 }
4900
4901 return InternalId;
4902}
4903
4904/// Returns whether this module needs the "all-vtables" type identifier.
4905bool CodeGenModule::NeedAllVtablesTypeId() const {
4906 // Returns true if at least one of vtable-based CFI checkers is enabled and
4907 // is not in the trapping mode.
4908 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4909 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4910 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4911 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4912 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4913 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4914 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4915 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4916}
4917
4918void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4919 CharUnits Offset,
4920 const CXXRecordDecl *RD) {
4921 llvm::Metadata *MD =
4922 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4923 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4924
4925 if (CodeGenOpts.SanitizeCfiCrossDso)
4926 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4927 VTable->addTypeMetadata(Offset.getQuantity(),
4928 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4929
4930 if (NeedAllVtablesTypeId()) {
4931 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4932 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4933 }
4934}
4935
4936// Fills in the supplied string map with the set of target features for the
4937// passed in function.
4938void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4939 const FunctionDecl *FD) {
4940 StringRef TargetCPU = Target.getTargetOpts().CPU;
4941 if (const auto *TD = FD->getAttr<TargetAttr>()) {
4942 // If we have a TargetAttr build up the feature map based on that.
4943 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4944
4945 ParsedAttr.Features.erase(
4946 llvm::remove_if(ParsedAttr.Features,
4947 [&](const std::string &Feat) {
4948 return !Target.isValidFeatureName(
4949 StringRef{Feat}.substr(1));
4950 }),
4951 ParsedAttr.Features.end());
4952
4953 // Make a copy of the features as passed on the command line into the
4954 // beginning of the additional features from the function to override.
4955 ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4956 Target.getTargetOpts().FeaturesAsWritten.begin(),
4957 Target.getTargetOpts().FeaturesAsWritten.end());
4958
4959 if (ParsedAttr.Architecture != "" &&
4960 Target.isValidCPUName(ParsedAttr.Architecture))
4961 TargetCPU = ParsedAttr.Architecture;
4962
4963 // Now populate the feature map, first with the TargetCPU which is either
4964 // the default or a new one from the target attribute string. Then we'll use
4965 // the passed in features (FeaturesAsWritten) along with the new ones from
4966 // the attribute.
4967 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4968 ParsedAttr.Features);
4969 } else {
4970 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4971 Target.getTargetOpts().Features);
4972 }
4973}
4974
4975llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4976 if (!SanStats)
4977 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4978
4979 return *SanStats;
4980}
4981llvm::Value *
4982CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4983 CodeGenFunction &CGF) {
4984 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4985 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4986 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4987 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4988 "__translate_sampler_initializer"),
4989 {C});
4990}

/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
5
Calling 'simplify_type::getSimplifiedValue'
6
Returning from 'simplify_type::getSimplifiedValue'
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
12
Calling 'VarDecl::classof'
19
Returning from 'VarDecl::classof'
60 }
61};
62
63/// \brief Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
10
Within the expansion of the macro 'assert':
a
Assuming 'Val' is non-null
107 return isa_impl<To, From>::doit(*Val);
11
Calling 'isa_impl::doit'
20
Returning from 'isa_impl::doit'
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
8
Calling 'isa_impl_wrap::doit'
22
Returning from 'isa_impl_wrap::doit'
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
4
Calling 'simplify_type::getSimplifiedValue'
7
Returning from 'simplify_type::getSimplifiedValue'
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
9
Calling 'isa_impl_cl::doit'
21
Returning from 'isa_impl_cl::doit'
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
3
Calling 'isa_impl_wrap::doit'
23
Returning from 'isa_impl_wrap::doit'
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
2
Within the expansion of the macro 'assert':
a
Calling 'isa'
b
Returning from 'isa'
256 return cast_convert_val<X, Y*,
24
Calling 'cast_convert_val::doit'
25
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H

/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/Redeclarable.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/AddressSpaces.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/IdentifierTable.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/PragmaKinds.h"
32#include "clang/Basic/SourceLocation.h"
33#include "clang/Basic/Specifiers.h"
34#include "clang/Basic/Visibility.h"
35#include "llvm/ADT/APSInt.h"
36#include "llvm/ADT/ArrayRef.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/iterator_range.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/TrailingObjects.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <string>
49#include <utility>
50
51namespace clang {
52
53class ASTContext;
54struct ASTTemplateArgumentListInfo;
55class Attr;
56class CompoundStmt;
57class DependentFunctionTemplateSpecializationInfo;
58class EnumDecl;
59class Expr;
60class FunctionTemplateDecl;
61class FunctionTemplateSpecializationInfo;
62class LabelStmt;
63class MemberSpecializationInfo;
64class Module;
65class NamespaceDecl;
66class ParmVarDecl;
67class RecordDecl;
68class Stmt;
69class StringLiteral;
70class TagDecl;
71class TemplateArgumentList;
72class TemplateArgumentListInfo;
73class TemplateParameterList;
74class TypeAliasTemplateDecl;
75class TypeLoc;
76class UnresolvedSetImpl;
77class VarTemplateDecl;
78
79/// A container of type source information.
80///
81/// A client can read the relevant info using TypeLoc wrappers, e.g:
82/// @code
83/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
84/// TL.getStartLoc().print(OS, SrcMgr);
85/// @endcode
86class LLVM_ALIGNAS(8)alignas(8) TypeSourceInfo {
87 // Contains a memory block after the class, used for type source information,
88 // allocated by ASTContext.
89 friend class ASTContext;
90
91 QualType Ty;
92
93 TypeSourceInfo(QualType ty) : Ty(ty) {}
94
95public:
96 /// Return the type wrapped by this type source info.
97 QualType getType() const { return Ty; }
98
99 /// Return the TypeLoc wrapper for the type source info.
100 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
101
102 /// Override the type stored in this TypeSourceInfo. Use with caution!
103 void overrideType(QualType T) { Ty = T; }
104};
105
106/// The top declaration context.
107class TranslationUnitDecl : public Decl, public DeclContext {
108 ASTContext &Ctx;
109
110 /// The (most recently entered) anonymous namespace for this
111 /// translation unit, if one has been created.
112 NamespaceDecl *AnonymousNamespace = nullptr;
113
114 explicit TranslationUnitDecl(ASTContext &ctx);
115
116 virtual void anchor();
117
118public:
119 ASTContext &getASTContext() const { return Ctx; }
120
121 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
122 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
123
124 static TranslationUnitDecl *Create(ASTContext &C);
125
126 // Implement isa/cast/dyncast/etc.
127 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
128 static bool classofKind(Kind K) { return K == TranslationUnit; }
129 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
130 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
131 }
132 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
133 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
134 }
135};
136
137/// Represents a `#pragma comment` line. Always a child of
138/// TranslationUnitDecl.
139class PragmaCommentDecl final
140 : public Decl,
141 private llvm::TrailingObjects<PragmaCommentDecl, char> {
142 friend class ASTDeclReader;
143 friend class ASTDeclWriter;
144 friend TrailingObjects;
145
146 PragmaMSCommentKind CommentKind;
147
148 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
149 PragmaMSCommentKind CommentKind)
150 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
151
152 virtual void anchor();
153
154public:
155 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
156 SourceLocation CommentLoc,
157 PragmaMSCommentKind CommentKind,
158 StringRef Arg);
159 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
160 unsigned ArgSize);
161
162 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
163
164 StringRef getArg() const { return getTrailingObjects<char>(); }
165
166 // Implement isa/cast/dyncast/etc.
167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
168 static bool classofKind(Kind K) { return K == PragmaComment; }
169};
170
171/// Represents a `#pragma detect_mismatch` line. Always a child of
172/// TranslationUnitDecl.
173class PragmaDetectMismatchDecl final
174 : public Decl,
175 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
176 friend class ASTDeclReader;
177 friend class ASTDeclWriter;
178 friend TrailingObjects;
179
180 size_t ValueStart;
181
182 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
183 size_t ValueStart)
184 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
185
186 virtual void anchor();
187
188public:
189 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
190 TranslationUnitDecl *DC,
191 SourceLocation Loc, StringRef Name,
192 StringRef Value);
193 static PragmaDetectMismatchDecl *
194 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
195
196 StringRef getName() const { return getTrailingObjects<char>(); }
197 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
198
199 // Implement isa/cast/dyncast/etc.
200 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
201 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
202};
203
204/// Declaration context for names declared as extern "C" in C++. This
205/// is neither the semantic nor lexical context for such declarations, but is
206/// used to check for conflicts with other extern "C" declarations. Example:
207///
208/// \code
209/// namespace N { extern "C" void f(); } // #1
210/// void N::f() {} // #2
211/// namespace M { extern "C" void f(); } // #3
212/// \endcode
213///
214/// The semantic context of #1 is namespace N and its lexical context is the
215/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
216/// context is the TU. However, both declarations are also visible in the
217/// extern "C" context.
218///
219/// The declaration at #3 finds it is a redeclaration of \c N::f through
220/// lookup in the extern "C" context.
221class ExternCContextDecl : public Decl, public DeclContext {
222 explicit ExternCContextDecl(TranslationUnitDecl *TU)
223 : Decl(ExternCContext, TU, SourceLocation()),
224 DeclContext(ExternCContext) {}
225
226 virtual void anchor();
227
228public:
229 static ExternCContextDecl *Create(const ASTContext &C,
230 TranslationUnitDecl *TU);
231
232 // Implement isa/cast/dyncast/etc.
233 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
234 static bool classofKind(Kind K) { return K == ExternCContext; }
235 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
236 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
237 }
238 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
239 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
240 }
241};
242
243/// This represents a decl that may have a name. Many decls have names such
244/// as ObjCMethodDecl, but not \@class, etc.
245///
246/// Note that not every NamedDecl is actually named (e.g., a struct might
247/// be anonymous), and not every name is an identifier.
248class NamedDecl : public Decl {
249 /// The name of this declaration, which is typically a normal
250 /// identifier but may also be a special kind of name (C++
251 /// constructor, Objective-C selector, etc.)
252 DeclarationName Name;
253
254 virtual void anchor();
255
256private:
257 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
258
259protected:
260 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
261 : Decl(DK, DC, L), Name(N) {}
262
263public:
264 /// Get the identifier that names this declaration, if there is one.
265 ///
266 /// This will return NULL if this declaration has no name (e.g., for
267 /// an unnamed class) or if the name is a special name (C++ constructor,
268 /// Objective-C selector, etc.).
269 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
270
271 /// Get the name of identifier for this declaration as a StringRef.
272 ///
273 /// This requires that the declaration have a name and that it be a simple
274 /// identifier.
275 StringRef getName() const {
276 assert(Name.isIdentifier() && "Name is not a simple identifier")(static_cast <bool> (Name.isIdentifier() && "Name is not a simple identifier"
) ? void (0) : __assert_fail ("Name.isIdentifier() && \"Name is not a simple identifier\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/include/clang/AST/Decl.h"
, 276, __extension__ __PRETTY_FUNCTION__))
;
277 return getIdentifier() ? getIdentifier()->getName() : "";
278 }
279
280 /// Get a human-readable name for the declaration, even if it is one of the
281 /// special kinds of names (C++ constructor, Objective-C selector, etc).
282 ///
283 /// Creating this name requires expensive string manipulation, so it should
284 /// be called only when performance doesn't matter. For simple declarations,
285 /// getNameAsCString() should suffice.
286 //
287 // FIXME: This function should be renamed to indicate that it is not just an
288 // alternate form of getName(), and clients should move as appropriate.
289 //
290 // FIXME: Deprecated, move clients to getName().
291 std::string getNameAsString() const { return Name.getAsString(); }
292
293 virtual void printName(raw_ostream &os) const;
294
295 /// Get the actual, stored name of the declaration, which may be a special
296 /// name.
297 DeclarationName getDeclName() const { return Name; }
298
299 /// Set the name of this declaration.
300 void setDeclName(DeclarationName N) { Name = N; }
301
302 /// Returns a human-readable qualified name for this declaration, like
303 /// A::B::i, for i being member of namespace A::B.
304 ///
305 /// If the declaration is not a member of context which can be named (record,
306 /// namespace), it will return the same result as printName().
307 ///
308 /// Creating this name is expensive, so it should be called only when
309 /// performance doesn't matter.
310 void printQualifiedName(raw_ostream &OS) const;
311 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
312
313 // FIXME: Remove string version.
314 std::string getQualifiedNameAsString() const;
315
316 /// Appends a human-readable name for this declaration into the given stream.
317 ///
318 /// This is the method invoked by Sema when displaying a NamedDecl
319 /// in a diagnostic. It does not necessarily produce the same
320 /// result as printName(); for example, class template
321 /// specializations are printed with their template arguments.
322 virtual void getNameForDiagnostic(raw_ostream &OS,
323 const PrintingPolicy &Policy,
324 bool Qualified) const;
325
326 /// Determine whether this declaration, if known to be well-formed within
327 /// its context, will replace the declaration OldD if introduced into scope.
328 ///
329 /// A declaration will replace another declaration if, for example, it is
330 /// a redeclaration of the same variable or function, but not if it is a
331 /// declaration of a different kind (function vs. class) or an overloaded
332 /// function.
333 ///
334 /// \param IsKnownNewer \c true if this declaration is known to be newer
335 /// than \p OldD (for instance, if this declaration is newly-created).
336 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
337
338 /// Determine whether this declaration has linkage.
339 bool hasLinkage() const;
340
341 using Decl::isModulePrivate;
342 using Decl::setModulePrivate;
343
344 /// Determine whether this declaration is a C++ class member.
345 bool isCXXClassMember() const {
346 const DeclContext *DC = getDeclContext();
347
348 // C++0x [class.mem]p1:
349 // The enumerators of an unscoped enumeration defined in
350 // the class are members of the class.
351 if (isa<EnumDecl>(DC))
352 DC = DC->getRedeclContext();
353
354 return DC->isRecord();
355 }
356
357 /// Determine whether the given declaration is an instance member of
358 /// a C++ class.
359 bool isCXXInstanceMember() const;
360
361 /// Determine what kind of linkage this entity has.
362 ///
363 /// This is not the linkage as defined by the standard or the codegen notion
364 /// of linkage. It is just an implementation detail that is used to compute
365 /// those.
366 Linkage getLinkageInternal() const;
367
368 /// Get the linkage from a semantic point of view. Entities in
369 /// anonymous namespaces are external (in c++98).
370 Linkage getFormalLinkage() const {
371 return clang::getFormalLinkage(getLinkageInternal());
372 }
373
374 /// True if this decl has external linkage.
375 bool hasExternalFormalLinkage() const {
376 return isExternalFormalLinkage(getLinkageInternal());
377 }
378
379 bool isExternallyVisible() const {
380 return clang::isExternallyVisible(getLinkageInternal());
381 }
382
383 /// Determine whether this declaration can be redeclared in a
384 /// different translation unit.
385 bool isExternallyDeclarable() const {
386 return isExternallyVisible() && !getOwningModuleForLinkage();
387 }
388
389 /// Determines the visibility of this entity.
390 Visibility getVisibility() const {
391 return getLinkageAndVisibility().getVisibility();
392 }
393
394 /// Determines the linkage and visibility of this entity.
395 LinkageInfo getLinkageAndVisibility() const;
396
397 /// Kinds of explicit visibility.
398 enum ExplicitVisibilityKind {
399 /// Do an LV computation for, ultimately, a type.
400 /// Visibility may be restricted by type visibility settings and
401 /// the visibility of template arguments.
402 VisibilityForType,
403
404 /// Do an LV computation for, ultimately, a non-type declaration.
405 /// Visibility may be restricted by value visibility settings and
406 /// the visibility of template arguments.
407 VisibilityForValue
408 };
409
410 /// If visibility was explicitly specified for this
411 /// declaration, return that visibility.
412 Optional<Visibility>
413 getExplicitVisibility(ExplicitVisibilityKind kind) const;
414
415 /// True if the computed linkage is valid. Used for consistency
416 /// checking. Should always return true.
417 bool isLinkageValid() const;
418
419 /// True if something has required us to compute the linkage
420 /// of this declaration.
421 ///
422 /// Language features which can retroactively change linkage (like a
423 /// typedef name for linkage purposes) may need to consider this,
424 /// but hopefully only in transitory ways during parsing.
425 bool hasLinkageBeenComputed() const {
426 return hasCachedLinkage();
427 }
428
429 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
430 /// the underlying named decl.
431 NamedDecl *getUnderlyingDecl() {
432 // Fast-path the common case.
433 if (this->getKind() != UsingShadow &&
434 this->getKind() != ConstructorUsingShadow &&
435 this->getKind() != ObjCCompatibleAlias &&
436 this->getKind() != NamespaceAlias)
437 return this;
438
439 return getUnderlyingDeclImpl();
440 }
441 const NamedDecl *getUnderlyingDecl() const {
442 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
443 }
444
445 NamedDecl *getMostRecentDecl() {
446 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
447 }
448 const NamedDecl *getMostRecentDecl() const {
449 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
450 }
451
452 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
453
454 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
455 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
456};
457