Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 3089, column 27
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn371925/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~svn371925/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn371925/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn371925/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn371925/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn371925/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn371925=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-09-15-043714-16238-1 -x c++ /build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp

/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeNVPTX.h"
23#include "CodeGenFunction.h"
24#include "CodeGenPGO.h"
25#include "ConstantEmitter.h"
26#include "CoverageMappingGen.h"
27#include "TargetInfo.h"
28#include "clang/AST/ASTContext.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/AST/DeclCXX.h"
31#include "clang/AST/DeclObjC.h"
32#include "clang/AST/DeclTemplate.h"
33#include "clang/AST/Mangle.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/RecursiveASTVisitor.h"
36#include "clang/AST/StmtVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/CodeGenOptions.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/Module.h"
42#include "clang/Basic/SourceManager.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/Version.h"
45#include "clang/CodeGen/ConstantInitBuilder.h"
46#include "clang/Frontend/FrontendDiagnostic.h"
47#include "llvm/ADT/StringSwitch.h"
48#include "llvm/ADT/Triple.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/ProfileSummary.h"
56#include "llvm/ProfileData/InstrProfReader.h"
57#include "llvm/Support/CodeGen.h"
58#include "llvm/Support/ConvertUTF.h"
59#include "llvm/Support/ErrorHandling.h"
60#include "llvm/Support/MD5.h"
61#include "llvm/Support/TimeProfiler.h"
62
63using namespace clang;
64using namespace CodeGen;
65
66static llvm::cl::opt<bool> LimitedCoverage(
67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69 llvm::cl::init(false));
70
71static const char AnnotationSection[] = "llvm.metadata";
72
73static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74 switch (CGM.getTarget().getCXXABI().getKind()) {
75 case TargetCXXABI::GenericAArch64:
76 case TargetCXXABI::GenericARM:
77 case TargetCXXABI::iOS:
78 case TargetCXXABI::iOS64:
79 case TargetCXXABI::WatchOS:
80 case TargetCXXABI::GenericMIPS:
81 case TargetCXXABI::GenericItanium:
82 case TargetCXXABI::WebAssembly:
83 return CreateItaniumCXXABI(CGM);
84 case TargetCXXABI::Microsoft:
85 return CreateMicrosoftCXXABI(CGM);
86 }
87
88 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 88)
;
89}
90
91CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92 const PreprocessorOptions &PPO,
93 const CodeGenOptions &CGO, llvm::Module &M,
94 DiagnosticsEngine &diags,
95 CoverageSourceInfo *CoverageInfo)
96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99 VMContext(M.getContext()), Types(*this), VTables(*this),
100 SanitizerMD(new SanitizerMetadata(*this)) {
101
102 // Initialize the type cache.
103 llvm::LLVMContext &LLVMContext = M.getContext();
104 VoidTy = llvm::Type::getVoidTy(LLVMContext);
105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109 HalfTy = llvm::Type::getHalfTy(LLVMContext);
110 FloatTy = llvm::Type::getFloatTy(LLVMContext);
111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113 PointerAlignInBytes =
114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115 SizeSizeInBytes =
116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117 IntAlignInBytes =
118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120 IntPtrTy = llvm::IntegerType::get(LLVMContext,
121 C.getTargetInfo().getMaxPointerWidth());
122 Int8PtrTy = Int8Ty->getPointerTo(0);
123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124 AllocaInt8PtrTy = Int8Ty->getPointerTo(
125 M.getDataLayout().getAllocaAddrSpace());
126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127
128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129
130 if (LangOpts.ObjC)
131 createObjCRuntime();
132 if (LangOpts.OpenCL)
133 createOpenCLRuntime();
134 if (LangOpts.OpenMP)
135 createOpenMPRuntime();
136 if (LangOpts.CUDA)
137 createCUDARuntime();
138
139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143 getCXXABI().getMangleContext()));
144
145 // If debug info or coverage generation is enabled, create the CGDebugInfo
146 // object.
147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149 DebugInfo.reset(new CGDebugInfo(*this));
150
151 Block.GlobalUniqueCount = 0;
152
153 if (C.getLangOpts().ObjC)
154 ObjCData.reset(new ObjCEntrypoints());
155
156 if (CodeGenOpts.hasProfileClangUse()) {
157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159 if (auto E = ReaderOrErr.takeError()) {
160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161 "Could not read profile %0: %1");
162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164 << EI.message();
165 });
166 } else
167 PGOReader = std::move(ReaderOrErr.get());
168 }
169
170 // If coverage mapping generation is enabled, create the
171 // CoverageMappingModuleGen object.
172 if (CodeGenOpts.CoverageMapping)
173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174}
175
176CodeGenModule::~CodeGenModule() {}
177
178void CodeGenModule::createObjCRuntime() {
179 // This is just isGNUFamily(), but we want to force implementors of
180 // new ABIs to decide how best to do this.
181 switch (LangOpts.ObjCRuntime.getKind()) {
182 case ObjCRuntime::GNUstep:
183 case ObjCRuntime::GCC:
184 case ObjCRuntime::ObjFW:
185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186 return;
187
188 case ObjCRuntime::FragileMacOSX:
189 case ObjCRuntime::MacOSX:
190 case ObjCRuntime::iOS:
191 case ObjCRuntime::WatchOS:
192 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193 return;
194 }
195 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 195)
;
196}
197
198void CodeGenModule::createOpenCLRuntime() {
199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200}
201
202void CodeGenModule::createOpenMPRuntime() {
203 // Select a specialized code generation class based on the target, if any.
204 // If it does not exist use the default implementation.
205 switch (getTriple().getArch()) {
206 case llvm::Triple::nvptx:
207 case llvm::Triple::nvptx64:
208 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 209, __PRETTY_FUNCTION__))
209 "OpenMP NVPTX is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211 break;
212 default:
213 if (LangOpts.OpenMPSimd)
214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215 else
216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217 break;
218 }
219}
220
221void CodeGenModule::createCUDARuntime() {
222 CUDARuntime.reset(CreateNVCUDARuntime(*this));
223}
224
225void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226 Replacements[Name] = C;
227}
228
229void CodeGenModule::applyReplacements() {
230 for (auto &I : Replacements) {
231 StringRef MangledName = I.first();
232 llvm::Constant *Replacement = I.second;
233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234 if (!Entry)
235 continue;
236 auto *OldF = cast<llvm::Function>(Entry);
237 auto *NewF = dyn_cast<llvm::Function>(Replacement);
238 if (!NewF) {
239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241 } else {
242 auto *CE = cast<llvm::ConstantExpr>(Replacement);
243 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 244, __PRETTY_FUNCTION__))
244 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 244, __PRETTY_FUNCTION__))
;
245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246 }
247 }
248
249 // Replace old with new, but keep the old order.
250 OldF->replaceAllUsesWith(Replacement);
251 if (NewF) {
252 NewF->removeFromParent();
253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254 NewF);
255 }
256 OldF->eraseFromParent();
257 }
258}
259
260void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261 GlobalValReplacements.push_back(std::make_pair(GV, C));
262}
263
264void CodeGenModule::applyGlobalValReplacements() {
265 for (auto &I : GlobalValReplacements) {
266 llvm::GlobalValue *GV = I.first;
267 llvm::Constant *C = I.second;
268
269 GV->replaceAllUsesWith(C);
270 GV->eraseFromParent();
271 }
272}
273
274// This is only used in aliases that we created and we know they have a
275// linear structure.
276static const llvm::GlobalObject *getAliasedGlobal(
277 const llvm::GlobalIndirectSymbol &GIS) {
278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279 const llvm::Constant *C = &GIS;
280 for (;;) {
281 C = C->stripPointerCasts();
282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283 return GO;
284 // stripPointerCasts will not walk over weak aliases.
285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286 if (!GIS2)
287 return nullptr;
288 if (!Visited.insert(GIS2).second)
289 return nullptr;
290 C = GIS2->getIndirectSymbol();
291 }
292}
293
294void CodeGenModule::checkAliases() {
295 // Check if the constructed aliases are well formed. It is really unfortunate
296 // that we have to do this in CodeGen, but we only construct mangled names
297 // and aliases during codegen.
298 bool Error = false;
299 DiagnosticsEngine &Diags = getDiags();
300 for (const GlobalDecl &GD : Aliases) {
301 const auto *D = cast<ValueDecl>(GD.getDecl());
302 SourceLocation Location;
303 bool IsIFunc = D->hasAttr<IFuncAttr>();
304 if (const Attr *A = D->getDefiningAttr())
305 Location = A->getLocation();
306 else
307 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 307)
;
308 StringRef MangledName = getMangledName(GD);
309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312 if (!GV) {
313 Error = true;
314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315 } else if (GV->isDeclaration()) {
316 Error = true;
317 Diags.Report(Location, diag::err_alias_to_undefined)
318 << IsIFunc << IsIFunc;
319 } else if (IsIFunc) {
320 // Check resolver function type.
321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322 GV->getType()->getPointerElementType());
323 assert(FTy)((FTy) ? static_cast<void> (0) : __assert_fail ("FTy", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 323, __PRETTY_FUNCTION__))
;
324 if (!FTy->getReturnType()->isPointerTy())
325 Diags.Report(Location, diag::err_ifunc_resolver_return);
326 }
327
328 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329 llvm::GlobalValue *AliaseeGV;
330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332 else
333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334
335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336 StringRef AliasSection = SA->getName();
337 if (AliasSection != AliaseeGV->getSection())
338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339 << AliasSection << IsIFunc << IsIFunc;
340 }
341
342 // We have to handle alias to weak aliases in here. LLVM itself disallows
343 // this since the object semantics would not match the IL one. For
344 // compatibility with gcc we implement it by just pointing the alias
345 // to its aliasee's aliasee. We also warn, since the user is probably
346 // expecting the link to be weak.
347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348 if (GA->isInterposable()) {
349 Diags.Report(Location, diag::warn_alias_to_weak_alias)
350 << GV->getName() << GA->getName() << IsIFunc;
351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352 GA->getIndirectSymbol(), Alias->getType());
353 Alias->setIndirectSymbol(Aliasee);
354 }
355 }
356 }
357 if (!Error)
358 return;
359
360 for (const GlobalDecl &GD : Aliases) {
361 StringRef MangledName = getMangledName(GD);
362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365 Alias->eraseFromParent();
366 }
367}
368
369void CodeGenModule::clear() {
370 DeferredDeclsToEmit.clear();
371 if (OpenMPRuntime)
372 OpenMPRuntime->clear();
373}
374
375void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376 StringRef MainFile) {
377 if (!hasDiagnostics())
378 return;
379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380 if (MainFile.empty())
381 MainFile = "<stdin>";
382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383 } else {
384 if (Mismatched > 0)
385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386
387 if (Missing > 0)
388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389 }
390}
391
392void CodeGenModule::Release() {
393 EmitDeferred();
394 EmitVTablesOpportunistically();
395 applyGlobalValReplacements();
396 applyReplacements();
397 checkAliases();
398 emitMultiVersionFunctions();
399 EmitCXXGlobalInitFunc();
400 EmitCXXGlobalDtorFunc();
401 registerGlobalDtorsWithAtExit();
402 EmitCXXThreadLocalInitFunc();
403 if (ObjCRuntime)
404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405 AddGlobalCtor(ObjCInitFunction);
406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407 CUDARuntime) {
408 if (llvm::Function *CudaCtorFunction =
409 CUDARuntime->makeModuleCtorFunction())
410 AddGlobalCtor(CudaCtorFunction);
411 }
412 if (OpenMPRuntime) {
413 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416 }
417 if (llvm::Function *OpenMPRegistrationFunction =
418 OpenMPRuntime->emitRegistrationFunction()) {
419 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
420 OpenMPRegistrationFunction : nullptr;
421 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
422 }
423 OpenMPRuntime->clear();
424 }
425 if (PGOReader) {
426 getModule().setProfileSummary(
427 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
428 llvm::ProfileSummary::PSK_Instr);
429 if (PGOStats.hasDiagnostics())
430 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
431 }
432 EmitCtorList(GlobalCtors, "llvm.global_ctors");
433 EmitCtorList(GlobalDtors, "llvm.global_dtors");
434 EmitGlobalAnnotations();
435 EmitStaticExternCAliases();
436 EmitDeferredUnusedCoverageMappings();
437 if (CoverageMapping)
438 CoverageMapping->emit();
439 if (CodeGenOpts.SanitizeCfiCrossDso) {
440 CodeGenFunction(*this).EmitCfiCheckFail();
441 CodeGenFunction(*this).EmitCfiCheckStub();
442 }
443 emitAtAvailableLinkGuard();
444 emitLLVMUsed();
445 if (SanStats)
446 SanStats->finish();
447
448 if (CodeGenOpts.Autolink &&
449 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
450 EmitModuleLinkOptions();
451 }
452
453 // On ELF we pass the dependent library specifiers directly to the linker
454 // without manipulating them. This is in contrast to other platforms where
455 // they are mapped to a specific linker option by the compiler. This
456 // difference is a result of the greater variety of ELF linkers and the fact
457 // that ELF linkers tend to handle libraries in a more complicated fashion
458 // than on other platforms. This forces us to defer handling the dependent
459 // libs to the linker.
460 //
461 // CUDA/HIP device and host libraries are different. Currently there is no
462 // way to differentiate dependent libraries for host or device. Existing
463 // usage of #pragma comment(lib, *) is intended for host libraries on
464 // Windows. Therefore emit llvm.dependent-libraries only for host.
465 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
466 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
467 for (auto *MD : ELFDependentLibraries)
468 NMD->addOperand(MD);
469 }
470
471 // Record mregparm value now so it is visible through rest of codegen.
472 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
473 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
474 CodeGenOpts.NumRegisterParameters);
475
476 if (CodeGenOpts.DwarfVersion) {
477 // We actually want the latest version when there are conflicts.
478 // We can change from Warning to Latest if such mode is supported.
479 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
480 CodeGenOpts.DwarfVersion);
481 }
482 if (CodeGenOpts.EmitCodeView) {
483 // Indicate that we want CodeView in the metadata.
484 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
485 }
486 if (CodeGenOpts.CodeViewGHash) {
487 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
488 }
489 if (CodeGenOpts.ControlFlowGuard) {
490 // We want function ID tables for Control Flow Guard.
491 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
492 }
493 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
494 // We don't support LTO with 2 with different StrictVTablePointers
495 // FIXME: we could support it by stripping all the information introduced
496 // by StrictVTablePointers.
497
498 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
499
500 llvm::Metadata *Ops[2] = {
501 llvm::MDString::get(VMContext, "StrictVTablePointers"),
502 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
503 llvm::Type::getInt32Ty(VMContext), 1))};
504
505 getModule().addModuleFlag(llvm::Module::Require,
506 "StrictVTablePointersRequirement",
507 llvm::MDNode::get(VMContext, Ops));
508 }
509 if (DebugInfo)
510 // We support a single version in the linked module. The LLVM
511 // parser will drop debug info with a different version number
512 // (and warn about it, too).
513 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
514 llvm::DEBUG_METADATA_VERSION);
515
516 // We need to record the widths of enums and wchar_t, so that we can generate
517 // the correct build attributes in the ARM backend. wchar_size is also used by
518 // TargetLibraryInfo.
519 uint64_t WCharWidth =
520 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
521 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
522
523 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
524 if ( Arch == llvm::Triple::arm
525 || Arch == llvm::Triple::armeb
526 || Arch == llvm::Triple::thumb
527 || Arch == llvm::Triple::thumbeb) {
528 // The minimum width of an enum in bytes
529 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
530 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
531 }
532
533 if (CodeGenOpts.SanitizeCfiCrossDso) {
534 // Indicate that we want cross-DSO control flow integrity checks.
535 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
536 }
537
538 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
539 getModule().addModuleFlag(llvm::Module::Override,
540 "CFI Canonical Jump Tables",
541 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
542 }
543
544 if (CodeGenOpts.CFProtectionReturn &&
545 Target.checkCFProtectionReturnSupported(getDiags())) {
546 // Indicate that we want to instrument return control flow protection.
547 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
548 1);
549 }
550
551 if (CodeGenOpts.CFProtectionBranch &&
552 Target.checkCFProtectionBranchSupported(getDiags())) {
553 // Indicate that we want to instrument branch control flow protection.
554 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
555 1);
556 }
557
558 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
559 // Indicate whether __nvvm_reflect should be configured to flush denormal
560 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
561 // property.)
562 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
563 CodeGenOpts.FlushDenorm ? 1 : 0);
564 }
565
566 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
567 if (LangOpts.OpenCL) {
568 EmitOpenCLMetadata();
569 // Emit SPIR version.
570 if (getTriple().isSPIR()) {
571 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
572 // opencl.spir.version named metadata.
573 // C++ is backwards compatible with OpenCL v2.0.
574 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
575 llvm::Metadata *SPIRVerElts[] = {
576 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
577 Int32Ty, Version / 100)),
578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
580 llvm::NamedMDNode *SPIRVerMD =
581 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
582 llvm::LLVMContext &Ctx = TheModule.getContext();
583 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
584 }
585 }
586
587 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
588 assert(PLevel < 3 && "Invalid PIC Level")((PLevel < 3 && "Invalid PIC Level") ? static_cast
<void> (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 588, __PRETTY_FUNCTION__))
;
589 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
590 if (Context.getLangOpts().PIE)
591 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
592 }
593
594 if (getCodeGenOpts().CodeModel.size() > 0) {
595 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
596 .Case("tiny", llvm::CodeModel::Tiny)
597 .Case("small", llvm::CodeModel::Small)
598 .Case("kernel", llvm::CodeModel::Kernel)
599 .Case("medium", llvm::CodeModel::Medium)
600 .Case("large", llvm::CodeModel::Large)
601 .Default(~0u);
602 if (CM != ~0u) {
603 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
604 getModule().setCodeModel(codeModel);
605 }
606 }
607
608 if (CodeGenOpts.NoPLT)
609 getModule().setRtLibUseGOT();
610
611 SimplifyPersonality();
612
613 if (getCodeGenOpts().EmitDeclMetadata)
614 EmitDeclMetadata();
615
616 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
617 EmitCoverageFile();
618
619 if (DebugInfo)
620 DebugInfo->finalize();
621
622 if (getCodeGenOpts().EmitVersionIdentMetadata)
623 EmitVersionIdentMetadata();
624
625 if (!getCodeGenOpts().RecordCommandLine.empty())
626 EmitCommandLineMetadata();
627
628 EmitTargetMetadata();
629}
630
631void CodeGenModule::EmitOpenCLMetadata() {
632 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
633 // opencl.ocl.version named metadata node.
634 // C++ is backwards compatible with OpenCL v2.0.
635 // FIXME: We might need to add CXX version at some point too?
636 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
637 llvm::Metadata *OCLVerElts[] = {
638 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
639 Int32Ty, Version / 100)),
640 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
641 Int32Ty, (Version % 100) / 10))};
642 llvm::NamedMDNode *OCLVerMD =
643 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
644 llvm::LLVMContext &Ctx = TheModule.getContext();
645 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
646}
647
648void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
649 // Make sure that this type is translated.
650 Types.UpdateCompletedType(TD);
651}
652
653void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
654 // Make sure that this type is translated.
655 Types.RefreshTypeCacheForClass(RD);
656}
657
658llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
659 if (!TBAA)
660 return nullptr;
661 return TBAA->getTypeInfo(QTy);
662}
663
664TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
665 if (!TBAA)
666 return TBAAAccessInfo();
667 return TBAA->getAccessInfo(AccessType);
668}
669
670TBAAAccessInfo
671CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
672 if (!TBAA)
673 return TBAAAccessInfo();
674 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
675}
676
677llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
678 if (!TBAA)
679 return nullptr;
680 return TBAA->getTBAAStructInfo(QTy);
681}
682
683llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
684 if (!TBAA)
685 return nullptr;
686 return TBAA->getBaseTypeInfo(QTy);
687}
688
689llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
690 if (!TBAA)
691 return nullptr;
692 return TBAA->getAccessTagInfo(Info);
693}
694
695TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
696 TBAAAccessInfo TargetInfo) {
697 if (!TBAA)
698 return TBAAAccessInfo();
699 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
700}
701
702TBAAAccessInfo
703CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
704 TBAAAccessInfo InfoB) {
705 if (!TBAA)
706 return TBAAAccessInfo();
707 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
708}
709
710TBAAAccessInfo
711CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
712 TBAAAccessInfo SrcInfo) {
713 if (!TBAA)
714 return TBAAAccessInfo();
715 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
716}
717
718void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
719 TBAAAccessInfo TBAAInfo) {
720 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
721 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
722}
723
724void CodeGenModule::DecorateInstructionWithInvariantGroup(
725 llvm::Instruction *I, const CXXRecordDecl *RD) {
726 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
727 llvm::MDNode::get(getLLVMContext(), {}));
728}
729
730void CodeGenModule::Error(SourceLocation loc, StringRef message) {
731 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
732 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
733}
734
735/// ErrorUnsupported - Print out an error that codegen doesn't support the
736/// specified stmt yet.
737void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
738 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
739 "cannot compile this %0 yet");
740 std::string Msg = Type;
741 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
742 << Msg << S->getSourceRange();
743}
744
745/// ErrorUnsupported - Print out an error that codegen doesn't support the
746/// specified decl yet.
747void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
748 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
749 "cannot compile this %0 yet");
750 std::string Msg = Type;
751 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
752}
753
754llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
755 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
756}
757
758void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
759 const NamedDecl *D) const {
760 if (GV->hasDLLImportStorageClass())
761 return;
762 // Internal definitions always have default visibility.
763 if (GV->hasLocalLinkage()) {
764 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
765 return;
766 }
767 if (!D)
768 return;
769 // Set visibility for definitions, and for declarations if requested globally
770 // or set explicitly.
771 LinkageInfo LV = D->getLinkageAndVisibility();
772 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
773 !GV->isDeclarationForLinker())
774 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
775}
776
777static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
778 llvm::GlobalValue *GV) {
779 if (GV->hasLocalLinkage())
780 return true;
781
782 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
783 return true;
784
785 // DLLImport explicitly marks the GV as external.
786 if (GV->hasDLLImportStorageClass())
787 return false;
788
789 const llvm::Triple &TT = CGM.getTriple();
790 if (TT.isWindowsGNUEnvironment()) {
791 // In MinGW, variables without DLLImport can still be automatically
792 // imported from a DLL by the linker; don't mark variables that
793 // potentially could come from another DLL as DSO local.
794 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
795 !GV->isThreadLocal())
796 return false;
797 }
798
799 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
800 // remain unresolved in the link, they can be resolved to zero, which is
801 // outside the current DSO.
802 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
803 return false;
804
805 // Every other GV is local on COFF.
806 // Make an exception for windows OS in the triple: Some firmware builds use
807 // *-win32-macho triples. This (accidentally?) produced windows relocations
808 // without GOT tables in older clang versions; Keep this behaviour.
809 // FIXME: even thread local variables?
810 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
811 return true;
812
813 // Only handle COFF and ELF for now.
814 if (!TT.isOSBinFormatELF())
815 return false;
816
817 // If this is not an executable, don't assume anything is local.
818 const auto &CGOpts = CGM.getCodeGenOpts();
819 llvm::Reloc::Model RM = CGOpts.RelocationModel;
820 const auto &LOpts = CGM.getLangOpts();
821 if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
822 return false;
823
824 // A definition cannot be preempted from an executable.
825 if (!GV->isDeclarationForLinker())
826 return true;
827
828 // Most PIC code sequences that assume that a symbol is local cannot produce a
829 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
830 // depended, it seems worth it to handle it here.
831 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
832 return false;
833
834 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
835 llvm::Triple::ArchType Arch = TT.getArch();
836 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
837 Arch == llvm::Triple::ppc64le)
838 return false;
839
840 // If we can use copy relocations we can assume it is local.
841 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
842 if (!Var->isThreadLocal() &&
843 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
844 return true;
845
846 // If we can use a plt entry as the symbol address we can assume it
847 // is local.
848 // FIXME: This should work for PIE, but the gold linker doesn't support it.
849 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
850 return true;
851
852 // Otherwise don't assue it is local.
853 return false;
854}
855
856void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
857 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
858}
859
860void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
861 GlobalDecl GD) const {
862 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
863 // C++ destructors have a few C++ ABI specific special cases.
864 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
865 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
866 return;
867 }
868 setDLLImportDLLExport(GV, D);
869}
870
871void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
872 const NamedDecl *D) const {
873 if (D && D->isExternallyVisible()) {
874 if (D->hasAttr<DLLImportAttr>())
875 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
876 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
877 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
878 }
879}
880
881void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
882 GlobalDecl GD) const {
883 setDLLImportDLLExport(GV, GD);
884 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
885}
886
887void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
888 const NamedDecl *D) const {
889 setDLLImportDLLExport(GV, D);
890 setGVPropertiesAux(GV, D);
891}
892
893void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
894 const NamedDecl *D) const {
895 setGlobalVisibility(GV, D);
896 setDSOLocal(GV);
897 GV->setPartition(CodeGenOpts.SymbolPartition);
898}
899
900static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
901 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
902 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
903 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
904 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
905 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
906}
907
908static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
909 CodeGenOptions::TLSModel M) {
910 switch (M) {
911 case CodeGenOptions::GeneralDynamicTLSModel:
912 return llvm::GlobalVariable::GeneralDynamicTLSModel;
913 case CodeGenOptions::LocalDynamicTLSModel:
914 return llvm::GlobalVariable::LocalDynamicTLSModel;
915 case CodeGenOptions::InitialExecTLSModel:
916 return llvm::GlobalVariable::InitialExecTLSModel;
917 case CodeGenOptions::LocalExecTLSModel:
918 return llvm::GlobalVariable::LocalExecTLSModel;
919 }
920 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 920)
;
921}
922
923void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
924 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")((D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? static_cast<void> (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 924, __PRETTY_FUNCTION__))
;
925
926 llvm::GlobalValue::ThreadLocalMode TLM;
927 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
928
929 // Override the TLS model if it is explicitly specified.
930 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
931 TLM = GetLLVMTLSModel(Attr->getModel());
932 }
933
934 GV->setThreadLocalMode(TLM);
935}
936
937static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
938 StringRef Name) {
939 const TargetInfo &Target = CGM.getTarget();
940 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
941}
942
943static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
944 const CPUSpecificAttr *Attr,
945 unsigned CPUIndex,
946 raw_ostream &Out) {
947 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
948 // supported.
949 if (Attr)
950 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
951 else if (CGM.getTarget().supportsIFunc())
952 Out << ".resolver";
953}
954
955static void AppendTargetMangling(const CodeGenModule &CGM,
956 const TargetAttr *Attr, raw_ostream &Out) {
957 if (Attr->isDefaultVersion())
958 return;
959
960 Out << '.';
961 const TargetInfo &Target = CGM.getTarget();
962 TargetAttr::ParsedTargetAttr Info =
963 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
964 // Multiversioning doesn't allow "no-${feature}", so we can
965 // only have "+" prefixes here.
966 assert(LHS.startswith("+") && RHS.startswith("+") &&((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 967, __PRETTY_FUNCTION__))
967 "Features should always have a prefix.")((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 967, __PRETTY_FUNCTION__))
;
968 return Target.multiVersionSortPriority(LHS.substr(1)) >
969 Target.multiVersionSortPriority(RHS.substr(1));
970 });
971
972 bool IsFirst = true;
973
974 if (!Info.Architecture.empty()) {
975 IsFirst = false;
976 Out << "arch_" << Info.Architecture;
977 }
978
979 for (StringRef Feat : Info.Features) {
980 if (!IsFirst)
981 Out << '_';
982 IsFirst = false;
983 Out << Feat.substr(1);
984 }
985}
986
987static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
988 const NamedDecl *ND,
989 bool OmitMultiVersionMangling = false) {
990 SmallString<256> Buffer;
991 llvm::raw_svector_ostream Out(Buffer);
992 MangleContext &MC = CGM.getCXXABI().getMangleContext();
993 if (MC.shouldMangleDeclName(ND)) {
994 llvm::raw_svector_ostream Out(Buffer);
995 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
996 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
997 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
998 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
999 else
1000 MC.mangleName(ND, Out);
1001 } else {
1002 IdentifierInfo *II = ND->getIdentifier();
1003 assert(II && "Attempt to mangle unnamed decl.")((II && "Attempt to mangle unnamed decl.") ? static_cast
<void> (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1003, __PRETTY_FUNCTION__))
;
1004 const auto *FD = dyn_cast<FunctionDecl>(ND);
1005
1006 if (FD &&
1007 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1008 llvm::raw_svector_ostream Out(Buffer);
1009 Out << "__regcall3__" << II->getName();
1010 } else {
1011 Out << II->getName();
1012 }
1013 }
1014
1015 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1016 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1017 switch (FD->getMultiVersionKind()) {
1018 case MultiVersionKind::CPUDispatch:
1019 case MultiVersionKind::CPUSpecific:
1020 AppendCPUSpecificCPUDispatchMangling(CGM,
1021 FD->getAttr<CPUSpecificAttr>(),
1022 GD.getMultiVersionIndex(), Out);
1023 break;
1024 case MultiVersionKind::Target:
1025 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1026 break;
1027 case MultiVersionKind::None:
1028 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1028)
;
1029 }
1030 }
1031
1032 return Out.str();
1033}
1034
1035void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1036 const FunctionDecl *FD) {
1037 if (!FD->isMultiVersion())
1038 return;
1039
1040 // Get the name of what this would be without the 'target' attribute. This
1041 // allows us to lookup the version that was emitted when this wasn't a
1042 // multiversion function.
1043 std::string NonTargetName =
1044 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1045 GlobalDecl OtherGD;
1046 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1047 assert(OtherGD.getCanonicalDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1051, __PRETTY_FUNCTION__))
1048 .getDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1051, __PRETTY_FUNCTION__))
1049 ->getAsFunction()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1051, __PRETTY_FUNCTION__))
1050 ->isMultiVersion() &&((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1051, __PRETTY_FUNCTION__))
1051 "Other GD should now be a multiversioned function")((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1051, __PRETTY_FUNCTION__))
;
1052 // OtherFD is the version of this function that was mangled BEFORE
1053 // becoming a MultiVersion function. It potentially needs to be updated.
1054 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1055 .getDecl()
1056 ->getAsFunction()
1057 ->getMostRecentDecl();
1058 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1059 // This is so that if the initial version was already the 'default'
1060 // version, we don't try to update it.
1061 if (OtherName != NonTargetName) {
1062 // Remove instead of erase, since others may have stored the StringRef
1063 // to this.
1064 const auto ExistingRecord = Manglings.find(NonTargetName);
1065 if (ExistingRecord != std::end(Manglings))
1066 Manglings.remove(&(*ExistingRecord));
1067 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1068 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1069 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1070 Entry->setName(OtherName);
1071 }
1072 }
1073}
1074
1075StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1076 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1077
1078 // Some ABIs don't have constructor variants. Make sure that base and
1079 // complete constructors get mangled the same.
1080 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1081 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1082 CXXCtorType OrigCtorType = GD.getCtorType();
1083 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)((OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)
? static_cast<void> (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1083, __PRETTY_FUNCTION__))
;
1084 if (OrigCtorType == Ctor_Base)
1085 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1086 }
1087 }
1088
1089 auto FoundName = MangledDeclNames.find(CanonicalGD);
1090 if (FoundName != MangledDeclNames.end())
1091 return FoundName->second;
1092
1093 // Keep the first result in the case of a mangling collision.
1094 const auto *ND = cast<NamedDecl>(GD.getDecl());
1095 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1096
1097 // Adjust kernel stub mangling as we may need to be able to differentiate
1098 // them from the kernel itself (e.g., for HIP).
1099 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1100 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1101 MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1102
1103 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1104 return MangledDeclNames[CanonicalGD] = Result.first->first();
1105}
1106
1107StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1108 const BlockDecl *BD) {
1109 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1110 const Decl *D = GD.getDecl();
1111
1112 SmallString<256> Buffer;
1113 llvm::raw_svector_ostream Out(Buffer);
1114 if (!D)
1115 MangleCtx.mangleGlobalBlock(BD,
1116 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1117 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1118 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1119 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1120 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1121 else
1122 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1123
1124 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1125 return Result.first->first();
1126}
1127
1128llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1129 return getModule().getNamedValue(Name);
1130}
1131
1132/// AddGlobalCtor - Add a function to the list that will be called before
1133/// main() runs.
1134void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1135 llvm::Constant *AssociatedData) {
1136 // FIXME: Type coercion of void()* types.
1137 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1138}
1139
1140/// AddGlobalDtor - Add a function to the list that will be called
1141/// when the module is unloaded.
1142void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1143 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1144 DtorsUsingAtExit[Priority].push_back(Dtor);
1145 return;
1146 }
1147
1148 // FIXME: Type coercion of void()* types.
1149 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1150}
1151
1152void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1153 if (Fns.empty()) return;
1154
1155 // Ctor function type is void()*.
1156 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1157 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1158 TheModule.getDataLayout().getProgramAddressSpace());
1159
1160 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1161 llvm::StructType *CtorStructTy = llvm::StructType::get(
1162 Int32Ty, CtorPFTy, VoidPtrTy);
1163
1164 // Construct the constructor and destructor arrays.
1165 ConstantInitBuilder builder(*this);
1166 auto ctors = builder.beginArray(CtorStructTy);
1167 for (const auto &I : Fns) {
1168 auto ctor = ctors.beginStruct(CtorStructTy);
1169 ctor.addInt(Int32Ty, I.Priority);
1170 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1171 if (I.AssociatedData)
1172 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1173 else
1174 ctor.addNullPointer(VoidPtrTy);
1175 ctor.finishAndAddTo(ctors);
1176 }
1177
1178 auto list =
1179 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1180 /*constant*/ false,
1181 llvm::GlobalValue::AppendingLinkage);
1182
1183 // The LTO linker doesn't seem to like it when we set an alignment
1184 // on appending variables. Take it off as a workaround.
1185 list->setAlignment(0);
1186
1187 Fns.clear();
1188}
1189
1190llvm::GlobalValue::LinkageTypes
1191CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1192 const auto *D = cast<FunctionDecl>(GD.getDecl());
1193
1194 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1195
1196 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1197 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1198
1199 if (isa<CXXConstructorDecl>(D) &&
1200 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1201 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1202 // Our approach to inheriting constructors is fundamentally different from
1203 // that used by the MS ABI, so keep our inheriting constructor thunks
1204 // internal rather than trying to pick an unambiguous mangling for them.
1205 return llvm::GlobalValue::InternalLinkage;
1206 }
1207
1208 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1209}
1210
1211llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1212 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1213 if (!MDS) return nullptr;
1214
1215 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1216}
1217
1218void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1219 const CGFunctionInfo &Info,
1220 llvm::Function *F) {
1221 unsigned CallingConv;
1222 llvm::AttributeList PAL;
1223 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1224 F->setAttributes(PAL);
1225 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1226}
1227
1228static void removeImageAccessQualifier(std::string& TyName) {
1229 std::string ReadOnlyQual("__read_only");
1230 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1231 if (ReadOnlyPos != std::string::npos)
1232 // "+ 1" for the space after access qualifier.
1233 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1234 else {
1235 std::string WriteOnlyQual("__write_only");
1236 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1237 if (WriteOnlyPos != std::string::npos)
1238 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1239 else {
1240 std::string ReadWriteQual("__read_write");
1241 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1242 if (ReadWritePos != std::string::npos)
1243 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1244 }
1245 }
1246}
1247
1248// Returns the address space id that should be produced to the
1249// kernel_arg_addr_space metadata. This is always fixed to the ids
1250// as specified in the SPIR 2.0 specification in order to differentiate
1251// for example in clGetKernelArgInfo() implementation between the address
1252// spaces with targets without unique mapping to the OpenCL address spaces
1253// (basically all single AS CPUs).
1254static unsigned ArgInfoAddressSpace(LangAS AS) {
1255 switch (AS) {
1256 case LangAS::opencl_global: return 1;
1257 case LangAS::opencl_constant: return 2;
1258 case LangAS::opencl_local: return 3;
1259 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs.
1260 default:
1261 return 0; // Assume private.
1262 }
1263}
1264
1265void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1266 const FunctionDecl *FD,
1267 CodeGenFunction *CGF) {
1268 assert(((FD && CGF) || (!FD && !CGF)) &&((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1269, __PRETTY_FUNCTION__))
1269 "Incorrect use - FD and CGF should either be both null or not!")((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1269, __PRETTY_FUNCTION__))
;
1270 // Create MDNodes that represent the kernel arg metadata.
1271 // Each MDNode is a list in the form of "key", N number of values which is
1272 // the same number of values as their are kernel arguments.
1273
1274 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1275
1276 // MDNode for the kernel argument address space qualifiers.
1277 SmallVector<llvm::Metadata *, 8> addressQuals;
1278
1279 // MDNode for the kernel argument access qualifiers (images only).
1280 SmallVector<llvm::Metadata *, 8> accessQuals;
1281
1282 // MDNode for the kernel argument type names.
1283 SmallVector<llvm::Metadata *, 8> argTypeNames;
1284
1285 // MDNode for the kernel argument base type names.
1286 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1287
1288 // MDNode for the kernel argument type qualifiers.
1289 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1290
1291 // MDNode for the kernel argument names.
1292 SmallVector<llvm::Metadata *, 8> argNames;
1293
1294 if (FD && CGF)
1295 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1296 const ParmVarDecl *parm = FD->getParamDecl(i);
1297 QualType ty = parm->getType();
1298 std::string typeQuals;
1299
1300 if (ty->isPointerType()) {
1301 QualType pointeeTy = ty->getPointeeType();
1302
1303 // Get address qualifier.
1304 addressQuals.push_back(
1305 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1306 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1307
1308 // Get argument type name.
1309 std::string typeName =
1310 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1311
1312 // Turn "unsigned type" to "utype"
1313 std::string::size_type pos = typeName.find("unsigned");
1314 if (pointeeTy.isCanonical() && pos != std::string::npos)
1315 typeName.erase(pos + 1, 8);
1316
1317 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1318
1319 std::string baseTypeName =
1320 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1321 Policy) +
1322 "*";
1323
1324 // Turn "unsigned type" to "utype"
1325 pos = baseTypeName.find("unsigned");
1326 if (pos != std::string::npos)
1327 baseTypeName.erase(pos + 1, 8);
1328
1329 argBaseTypeNames.push_back(
1330 llvm::MDString::get(VMContext, baseTypeName));
1331
1332 // Get argument type qualifiers:
1333 if (ty.isRestrictQualified())
1334 typeQuals = "restrict";
1335 if (pointeeTy.isConstQualified() ||
1336 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1337 typeQuals += typeQuals.empty() ? "const" : " const";
1338 if (pointeeTy.isVolatileQualified())
1339 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1340 } else {
1341 uint32_t AddrSpc = 0;
1342 bool isPipe = ty->isPipeType();
1343 if (ty->isImageType() || isPipe)
1344 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1345
1346 addressQuals.push_back(
1347 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1348
1349 // Get argument type name.
1350 std::string typeName;
1351 if (isPipe)
1352 typeName = ty.getCanonicalType()
1353 ->getAs<PipeType>()
1354 ->getElementType()
1355 .getAsString(Policy);
1356 else
1357 typeName = ty.getUnqualifiedType().getAsString(Policy);
1358
1359 // Turn "unsigned type" to "utype"
1360 std::string::size_type pos = typeName.find("unsigned");
1361 if (ty.isCanonical() && pos != std::string::npos)
1362 typeName.erase(pos + 1, 8);
1363
1364 std::string baseTypeName;
1365 if (isPipe)
1366 baseTypeName = ty.getCanonicalType()
1367 ->getAs<PipeType>()
1368 ->getElementType()
1369 .getCanonicalType()
1370 .getAsString(Policy);
1371 else
1372 baseTypeName =
1373 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1374
1375 // Remove access qualifiers on images
1376 // (as they are inseparable from type in clang implementation,
1377 // but OpenCL spec provides a special query to get access qualifier
1378 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1379 if (ty->isImageType()) {
1380 removeImageAccessQualifier(typeName);
1381 removeImageAccessQualifier(baseTypeName);
1382 }
1383
1384 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1385
1386 // Turn "unsigned type" to "utype"
1387 pos = baseTypeName.find("unsigned");
1388 if (pos != std::string::npos)
1389 baseTypeName.erase(pos + 1, 8);
1390
1391 argBaseTypeNames.push_back(
1392 llvm::MDString::get(VMContext, baseTypeName));
1393
1394 if (isPipe)
1395 typeQuals = "pipe";
1396 }
1397
1398 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1399
1400 // Get image and pipe access qualifier:
1401 if (ty->isImageType() || ty->isPipeType()) {
1402 const Decl *PDecl = parm;
1403 if (auto *TD = dyn_cast<TypedefType>(ty))
1404 PDecl = TD->getDecl();
1405 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1406 if (A && A->isWriteOnly())
1407 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1408 else if (A && A->isReadWrite())
1409 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1410 else
1411 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1412 } else
1413 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1414
1415 // Get argument name.
1416 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1417 }
1418
1419 Fn->setMetadata("kernel_arg_addr_space",
1420 llvm::MDNode::get(VMContext, addressQuals));
1421 Fn->setMetadata("kernel_arg_access_qual",
1422 llvm::MDNode::get(VMContext, accessQuals));
1423 Fn->setMetadata("kernel_arg_type",
1424 llvm::MDNode::get(VMContext, argTypeNames));
1425 Fn->setMetadata("kernel_arg_base_type",
1426 llvm::MDNode::get(VMContext, argBaseTypeNames));
1427 Fn->setMetadata("kernel_arg_type_qual",
1428 llvm::MDNode::get(VMContext, argTypeQuals));
1429 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1430 Fn->setMetadata("kernel_arg_name",
1431 llvm::MDNode::get(VMContext, argNames));
1432}
1433
1434/// Determines whether the language options require us to model
1435/// unwind exceptions. We treat -fexceptions as mandating this
1436/// except under the fragile ObjC ABI with only ObjC exceptions
1437/// enabled. This means, for example, that C with -fexceptions
1438/// enables this.
1439static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1440 // If exceptions are completely disabled, obviously this is false.
1441 if (!LangOpts.Exceptions) return false;
1442
1443 // If C++ exceptions are enabled, this is true.
1444 if (LangOpts.CXXExceptions) return true;
1445
1446 // If ObjC exceptions are enabled, this depends on the ABI.
1447 if (LangOpts.ObjCExceptions) {
1448 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1449 }
1450
1451 return true;
1452}
1453
1454static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1455 const CXXMethodDecl *MD) {
1456 // Check that the type metadata can ever actually be used by a call.
1457 if (!CGM.getCodeGenOpts().LTOUnit ||
1458 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1459 return false;
1460
1461 // Only functions whose address can be taken with a member function pointer
1462 // need this sort of type metadata.
1463 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1464 !isa<CXXDestructorDecl>(MD);
1465}
1466
1467std::vector<const CXXRecordDecl *>
1468CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1469 llvm::SetVector<const CXXRecordDecl *> MostBases;
1470
1471 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1472 CollectMostBases = [&](const CXXRecordDecl *RD) {
1473 if (RD->getNumBases() == 0)
1474 MostBases.insert(RD);
1475 for (const CXXBaseSpecifier &B : RD->bases())
1476 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1477 };
1478 CollectMostBases(RD);
1479 return MostBases.takeVector();
1480}
1481
1482void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1483 llvm::Function *F) {
1484 llvm::AttrBuilder B;
1485
1486 if (CodeGenOpts.UnwindTables)
1487 B.addAttribute(llvm::Attribute::UWTable);
1488
1489 if (!hasUnwindExceptions(LangOpts))
1490 B.addAttribute(llvm::Attribute::NoUnwind);
1491
1492 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1493 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1494 B.addAttribute(llvm::Attribute::StackProtect);
1495 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1496 B.addAttribute(llvm::Attribute::StackProtectStrong);
1497 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1498 B.addAttribute(llvm::Attribute::StackProtectReq);
1499 }
1500
1501 if (!D) {
1502 // If we don't have a declaration to control inlining, the function isn't
1503 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1504 // disabled, mark the function as noinline.
1505 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1506 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1507 B.addAttribute(llvm::Attribute::NoInline);
1508
1509 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1510 return;
1511 }
1512
1513 // Track whether we need to add the optnone LLVM attribute,
1514 // starting with the default for this optimization level.
1515 bool ShouldAddOptNone =
1516 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1517 // We can't add optnone in the following cases, it won't pass the verifier.
1518 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1519 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1520 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1521
1522 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1523 B.addAttribute(llvm::Attribute::OptimizeNone);
1524
1525 // OptimizeNone implies noinline; we should not be inlining such functions.
1526 B.addAttribute(llvm::Attribute::NoInline);
1527 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&((!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
"OptimizeNone and AlwaysInline on same function!") ? static_cast
<void> (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1528, __PRETTY_FUNCTION__))
1528 "OptimizeNone and AlwaysInline on same function!")((!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
"OptimizeNone and AlwaysInline on same function!") ? static_cast
<void> (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1528, __PRETTY_FUNCTION__))
;
1529
1530 // We still need to handle naked functions even though optnone subsumes
1531 // much of their semantics.
1532 if (D->hasAttr<NakedAttr>())
1533 B.addAttribute(llvm::Attribute::Naked);
1534
1535 // OptimizeNone wins over OptimizeForSize and MinSize.
1536 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1537 F->removeFnAttr(llvm::Attribute::MinSize);
1538 } else if (D->hasAttr<NakedAttr>()) {
1539 // Naked implies noinline: we should not be inlining such functions.
1540 B.addAttribute(llvm::Attribute::Naked);
1541 B.addAttribute(llvm::Attribute::NoInline);
1542 } else if (D->hasAttr<NoDuplicateAttr>()) {
1543 B.addAttribute(llvm::Attribute::NoDuplicate);
1544 } else if (D->hasAttr<NoInlineAttr>()) {
1545 B.addAttribute(llvm::Attribute::NoInline);
1546 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1547 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1548 // (noinline wins over always_inline, and we can't specify both in IR)
1549 B.addAttribute(llvm::Attribute::AlwaysInline);
1550 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1551 // If we're not inlining, then force everything that isn't always_inline to
1552 // carry an explicit noinline attribute.
1553 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1554 B.addAttribute(llvm::Attribute::NoInline);
1555 } else {
1556 // Otherwise, propagate the inline hint attribute and potentially use its
1557 // absence to mark things as noinline.
1558 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1559 // Search function and template pattern redeclarations for inline.
1560 auto CheckForInline = [](const FunctionDecl *FD) {
1561 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1562 return Redecl->isInlineSpecified();
1563 };
1564 if (any_of(FD->redecls(), CheckRedeclForInline))
1565 return true;
1566 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1567 if (!Pattern)
1568 return false;
1569 return any_of(Pattern->redecls(), CheckRedeclForInline);
1570 };
1571 if (CheckForInline(FD)) {
1572 B.addAttribute(llvm::Attribute::InlineHint);
1573 } else if (CodeGenOpts.getInlining() ==
1574 CodeGenOptions::OnlyHintInlining &&
1575 !FD->isInlined() &&
1576 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1577 B.addAttribute(llvm::Attribute::NoInline);
1578 }
1579 }
1580 }
1581
1582 // Add other optimization related attributes if we are optimizing this
1583 // function.
1584 if (!D->hasAttr<OptimizeNoneAttr>()) {
1585 if (D->hasAttr<ColdAttr>()) {
1586 if (!ShouldAddOptNone)
1587 B.addAttribute(llvm::Attribute::OptimizeForSize);
1588 B.addAttribute(llvm::Attribute::Cold);
1589 }
1590
1591 if (D->hasAttr<MinSizeAttr>())
1592 B.addAttribute(llvm::Attribute::MinSize);
1593 }
1594
1595 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1596
1597 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1598 if (alignment)
1599 F->setAlignment(alignment);
1600
1601 if (!D->hasAttr<AlignedAttr>())
1602 if (LangOpts.FunctionAlignment)
1603 F->setAlignment(1 << LangOpts.FunctionAlignment);
1604
1605 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1606 // reserve a bit for differentiating between virtual and non-virtual member
1607 // functions. If the current target's C++ ABI requires this and this is a
1608 // member function, set its alignment accordingly.
1609 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1610 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1611 F->setAlignment(2);
1612 }
1613
1614 // In the cross-dso CFI mode with canonical jump tables, we want !type
1615 // attributes on definitions only.
1616 if (CodeGenOpts.SanitizeCfiCrossDso &&
1617 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1618 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1619 // Skip available_externally functions. They won't be codegen'ed in the
1620 // current module anyway.
1621 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1622 CreateFunctionTypeMetadataForIcall(FD, F);
1623 }
1624 }
1625
1626 // Emit type metadata on member functions for member function pointer checks.
1627 // These are only ever necessary on definitions; we're guaranteed that the
1628 // definition will be present in the LTO unit as a result of LTO visibility.
1629 auto *MD = dyn_cast<CXXMethodDecl>(D);
1630 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1631 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1632 llvm::Metadata *Id =
1633 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1634 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1635 F->addTypeMetadata(0, Id);
1636 }
1637 }
1638}
1639
1640void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1641 const Decl *D = GD.getDecl();
1642 if (dyn_cast_or_null<NamedDecl>(D))
1643 setGVProperties(GV, GD);
1644 else
1645 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1646
1647 if (D && D->hasAttr<UsedAttr>())
1648 addUsedGlobal(GV);
1649
1650 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1651 const auto *VD = cast<VarDecl>(D);
1652 if (VD->getType().isConstQualified() &&
1653 VD->getStorageDuration() == SD_Static)
1654 addUsedGlobal(GV);
1655 }
1656}
1657
1658bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1659 llvm::AttrBuilder &Attrs) {
1660 // Add target-cpu and target-features attributes to functions. If
1661 // we have a decl for the function and it has a target attribute then
1662 // parse that and add it to the feature set.
1663 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1664 std::vector<std::string> Features;
1665 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1666 FD = FD ? FD->getMostRecentDecl() : FD;
1667 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1668 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1669 bool AddedAttr = false;
1670 if (TD || SD) {
1671 llvm::StringMap<bool> FeatureMap;
1672 getFunctionFeatureMap(FeatureMap, GD);
1673
1674 // Produce the canonical string for this set of features.
1675 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1676 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1677
1678 // Now add the target-cpu and target-features to the function.
1679 // While we populated the feature map above, we still need to
1680 // get and parse the target attribute so we can get the cpu for
1681 // the function.
1682 if (TD) {
1683 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1684 if (ParsedAttr.Architecture != "" &&
1685 getTarget().isValidCPUName(ParsedAttr.Architecture))
1686 TargetCPU = ParsedAttr.Architecture;
1687 }
1688 } else {
1689 // Otherwise just add the existing target cpu and target features to the
1690 // function.
1691 Features = getTarget().getTargetOpts().Features;
1692 }
1693
1694 if (TargetCPU != "") {
1695 Attrs.addAttribute("target-cpu", TargetCPU);
1696 AddedAttr = true;
1697 }
1698 if (!Features.empty()) {
1699 llvm::sort(Features);
1700 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1701 AddedAttr = true;
1702 }
1703
1704 return AddedAttr;
1705}
1706
1707void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1708 llvm::GlobalObject *GO) {
1709 const Decl *D = GD.getDecl();
1710 SetCommonAttributes(GD, GO);
1711
1712 if (D) {
1713 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1714 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1715 GV->addAttribute("bss-section", SA->getName());
1716 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1717 GV->addAttribute("data-section", SA->getName());
1718 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1719 GV->addAttribute("rodata-section", SA->getName());
1720 }
1721
1722 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1723 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1724 if (!D->getAttr<SectionAttr>())
1725 F->addFnAttr("implicit-section-name", SA->getName());
1726
1727 llvm::AttrBuilder Attrs;
1728 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1729 // We know that GetCPUAndFeaturesAttributes will always have the
1730 // newest set, since it has the newest possible FunctionDecl, so the
1731 // new ones should replace the old.
1732 F->removeFnAttr("target-cpu");
1733 F->removeFnAttr("target-features");
1734 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1735 }
1736 }
1737
1738 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1739 GO->setSection(CSA->getName());
1740 else if (const auto *SA = D->getAttr<SectionAttr>())
1741 GO->setSection(SA->getName());
1742 }
1743
1744 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1745}
1746
1747void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1748 llvm::Function *F,
1749 const CGFunctionInfo &FI) {
1750 const Decl *D = GD.getDecl();
1751 SetLLVMFunctionAttributes(GD, FI, F);
1752 SetLLVMFunctionAttributesForDefinition(D, F);
1753
1754 F->setLinkage(llvm::Function::InternalLinkage);
1755
1756 setNonAliasAttributes(GD, F);
1757}
1758
1759static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1760 // Set linkage and visibility in case we never see a definition.
1761 LinkageInfo LV = ND->getLinkageAndVisibility();
1762 // Don't set internal linkage on declarations.
1763 // "extern_weak" is overloaded in LLVM; we probably should have
1764 // separate linkage types for this.
1765 if (isExternallyVisible(LV.getLinkage()) &&
1766 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1767 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1768}
1769
1770void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1771 llvm::Function *F) {
1772 // Only if we are checking indirect calls.
1773 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1774 return;
1775
1776 // Non-static class methods are handled via vtable or member function pointer
1777 // checks elsewhere.
1778 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1779 return;
1780
1781 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1782 F->addTypeMetadata(0, MD);
1783 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1784
1785 // Emit a hash-based bit set entry for cross-DSO calls.
1786 if (CodeGenOpts.SanitizeCfiCrossDso)
1787 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1788 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1789}
1790
1791void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1792 bool IsIncompleteFunction,
1793 bool IsThunk) {
1794
1795 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1796 // If this is an intrinsic function, set the function's attributes
1797 // to the intrinsic's attributes.
1798 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1799 return;
1800 }
1801
1802 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1803
1804 if (!IsIncompleteFunction)
1805 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1806
1807 // Add the Returned attribute for "this", except for iOS 5 and earlier
1808 // where substantial code, including the libstdc++ dylib, was compiled with
1809 // GCC and does not actually return "this".
1810 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1811 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1812 assert(!F->arg_empty() &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1815, __PRETTY_FUNCTION__))
1813 F->arg_begin()->getType()((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1815, __PRETTY_FUNCTION__))
1814 ->canLosslesslyBitCastTo(F->getReturnType()) &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1815, __PRETTY_FUNCTION__))
1815 "unexpected this return")((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1815, __PRETTY_FUNCTION__))
;
1816 F->addAttribute(1, llvm::Attribute::Returned);
1817 }
1818
1819 // Only a few attributes are set on declarations; these may later be
1820 // overridden by a definition.
1821
1822 setLinkageForGV(F, FD);
1823 setGVProperties(F, FD);
1824
1825 // Setup target-specific attributes.
1826 if (!IsIncompleteFunction && F->isDeclaration())
1827 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1828
1829 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1830 F->setSection(CSA->getName());
1831 else if (const auto *SA = FD->getAttr<SectionAttr>())
1832 F->setSection(SA->getName());
1833
1834 if (FD->isReplaceableGlobalAllocationFunction()) {
1835 // A replaceable global allocation function does not act like a builtin by
1836 // default, only if it is invoked by a new-expression or delete-expression.
1837 F->addAttribute(llvm::AttributeList::FunctionIndex,
1838 llvm::Attribute::NoBuiltin);
1839
1840 // A sane operator new returns a non-aliasing pointer.
1841 // FIXME: Also add NonNull attribute to the return value
1842 // for the non-nothrow forms?
1843 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1844 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1845 (Kind == OO_New || Kind == OO_Array_New))
1846 F->addAttribute(llvm::AttributeList::ReturnIndex,
1847 llvm::Attribute::NoAlias);
1848 }
1849
1850 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1851 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1852 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1853 if (MD->isVirtual())
1854 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1855
1856 // Don't emit entries for function declarations in the cross-DSO mode. This
1857 // is handled with better precision by the receiving DSO. But if jump tables
1858 // are non-canonical then we need type metadata in order to produce the local
1859 // jump table.
1860 if (!CodeGenOpts.SanitizeCfiCrossDso ||
1861 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1862 CreateFunctionTypeMetadataForIcall(FD, F);
1863
1864 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1865 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1866
1867 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1868 // Annotate the callback behavior as metadata:
1869 // - The callback callee (as argument number).
1870 // - The callback payloads (as argument numbers).
1871 llvm::LLVMContext &Ctx = F->getContext();
1872 llvm::MDBuilder MDB(Ctx);
1873
1874 // The payload indices are all but the first one in the encoding. The first
1875 // identifies the callback callee.
1876 int CalleeIdx = *CB->encoding_begin();
1877 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1878 F->addMetadata(llvm::LLVMContext::MD_callback,
1879 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1880 CalleeIdx, PayloadIndices,
1881 /* VarArgsArePassed */ false)}));
1882 }
1883}
1884
1885void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1886 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1887, __PRETTY_FUNCTION__))
1887 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1887, __PRETTY_FUNCTION__))
;
1888 LLVMUsed.emplace_back(GV);
1889}
1890
1891void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1892 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1893, __PRETTY_FUNCTION__))
1893 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1893, __PRETTY_FUNCTION__))
;
1894 LLVMCompilerUsed.emplace_back(GV);
1895}
1896
1897static void emitUsed(CodeGenModule &CGM, StringRef Name,
1898 std::vector<llvm::WeakTrackingVH> &List) {
1899 // Don't create llvm.used if there is no need.
1900 if (List.empty())
1901 return;
1902
1903 // Convert List to what ConstantArray needs.
1904 SmallVector<llvm::Constant*, 8> UsedArray;
1905 UsedArray.resize(List.size());
1906 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1907 UsedArray[i] =
1908 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1909 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1910 }
1911
1912 if (UsedArray.empty())
1913 return;
1914 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1915
1916 auto *GV = new llvm::GlobalVariable(
1917 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1918 llvm::ConstantArray::get(ATy, UsedArray), Name);
1919
1920 GV->setSection("llvm.metadata");
1921}
1922
1923void CodeGenModule::emitLLVMUsed() {
1924 emitUsed(*this, "llvm.used", LLVMUsed);
1925 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1926}
1927
1928void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1929 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1930 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931}
1932
1933void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1934 llvm::SmallString<32> Opt;
1935 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1936 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1937 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1938}
1939
1940void CodeGenModule::AddDependentLib(StringRef Lib) {
1941 auto &C = getLLVMContext();
1942 if (getTarget().getTriple().isOSBinFormatELF()) {
1943 ELFDependentLibraries.push_back(
1944 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1945 return;
1946 }
1947
1948 llvm::SmallString<24> Opt;
1949 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1950 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1951 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1952}
1953
1954/// Add link options implied by the given module, including modules
1955/// it depends on, using a postorder walk.
1956static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1957 SmallVectorImpl<llvm::MDNode *> &Metadata,
1958 llvm::SmallPtrSet<Module *, 16> &Visited) {
1959 // Import this module's parent.
1960 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1961 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1962 }
1963
1964 // Import this module's dependencies.
1965 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1966 if (Visited.insert(Mod->Imports[I - 1]).second)
1967 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1968 }
1969
1970 // Add linker options to link against the libraries/frameworks
1971 // described by this module.
1972 llvm::LLVMContext &Context = CGM.getLLVMContext();
1973 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1974
1975 // For modules that use export_as for linking, use that module
1976 // name instead.
1977 if (Mod->UseExportAsModuleLinkName)
1978 return;
1979
1980 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1981 // Link against a framework. Frameworks are currently Darwin only, so we
1982 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1983 if (Mod->LinkLibraries[I-1].IsFramework) {
1984 llvm::Metadata *Args[2] = {
1985 llvm::MDString::get(Context, "-framework"),
1986 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1987
1988 Metadata.push_back(llvm::MDNode::get(Context, Args));
1989 continue;
1990 }
1991
1992 // Link against a library.
1993 if (IsELF) {
1994 llvm::Metadata *Args[2] = {
1995 llvm::MDString::get(Context, "lib"),
1996 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1997 };
1998 Metadata.push_back(llvm::MDNode::get(Context, Args));
1999 } else {
2000 llvm::SmallString<24> Opt;
2001 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2002 Mod->LinkLibraries[I - 1].Library, Opt);
2003 auto *OptString = llvm::MDString::get(Context, Opt);
2004 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2005 }
2006 }
2007}
2008
2009void CodeGenModule::EmitModuleLinkOptions() {
2010 // Collect the set of all of the modules we want to visit to emit link
2011 // options, which is essentially the imported modules and all of their
2012 // non-explicit child modules.
2013 llvm::SetVector<clang::Module *> LinkModules;
2014 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2015 SmallVector<clang::Module *, 16> Stack;
2016
2017 // Seed the stack with imported modules.
2018 for (Module *M : ImportedModules) {
2019 // Do not add any link flags when an implementation TU of a module imports
2020 // a header of that same module.
2021 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2022 !getLangOpts().isCompilingModule())
2023 continue;
2024 if (Visited.insert(M).second)
2025 Stack.push_back(M);
2026 }
2027
2028 // Find all of the modules to import, making a little effort to prune
2029 // non-leaf modules.
2030 while (!Stack.empty()) {
2031 clang::Module *Mod = Stack.pop_back_val();
2032
2033 bool AnyChildren = false;
2034
2035 // Visit the submodules of this module.
2036 for (const auto &SM : Mod->submodules()) {
2037 // Skip explicit children; they need to be explicitly imported to be
2038 // linked against.
2039 if (SM->IsExplicit)
2040 continue;
2041
2042 if (Visited.insert(SM).second) {
2043 Stack.push_back(SM);
2044 AnyChildren = true;
2045 }
2046 }
2047
2048 // We didn't find any children, so add this module to the list of
2049 // modules to link against.
2050 if (!AnyChildren) {
2051 LinkModules.insert(Mod);
2052 }
2053 }
2054
2055 // Add link options for all of the imported modules in reverse topological
2056 // order. We don't do anything to try to order import link flags with respect
2057 // to linker options inserted by things like #pragma comment().
2058 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2059 Visited.clear();
2060 for (Module *M : LinkModules)
2061 if (Visited.insert(M).second)
2062 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2063 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2064 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2065
2066 // Add the linker options metadata flag.
2067 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2068 for (auto *MD : LinkerOptionsMetadata)
2069 NMD->addOperand(MD);
2070}
2071
2072void CodeGenModule::EmitDeferred() {
2073 // Emit deferred declare target declarations.
2074 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2075 getOpenMPRuntime().emitDeferredTargetDecls();
2076
2077 // Emit code for any potentially referenced deferred decls. Since a
2078 // previously unused static decl may become used during the generation of code
2079 // for a static function, iterate until no changes are made.
2080
2081 if (!DeferredVTables.empty()) {
2082 EmitDeferredVTables();
2083
2084 // Emitting a vtable doesn't directly cause more vtables to
2085 // become deferred, although it can cause functions to be
2086 // emitted that then need those vtables.
2087 assert(DeferredVTables.empty())((DeferredVTables.empty()) ? static_cast<void> (0) : __assert_fail
("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2087, __PRETTY_FUNCTION__))
;
2088 }
2089
2090 // Stop if we're out of both deferred vtables and deferred declarations.
2091 if (DeferredDeclsToEmit.empty())
2092 return;
2093
2094 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2095 // work, it will not interfere with this.
2096 std::vector<GlobalDecl> CurDeclsToEmit;
2097 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2098
2099 for (GlobalDecl &D : CurDeclsToEmit) {
2100 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2101 // to get GlobalValue with exactly the type we need, not something that
2102 // might had been created for another decl with the same mangled name but
2103 // different type.
2104 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2105 GetAddrOfGlobal(D, ForDefinition));
2106
2107 // In case of different address spaces, we may still get a cast, even with
2108 // IsForDefinition equal to true. Query mangled names table to get
2109 // GlobalValue.
2110 if (!GV)
2111 GV = GetGlobalValue(getMangledName(D));
2112
2113 // Make sure GetGlobalValue returned non-null.
2114 assert(GV)((GV) ? static_cast<void> (0) : __assert_fail ("GV", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2114, __PRETTY_FUNCTION__))
;
2115
2116 // Check to see if we've already emitted this. This is necessary
2117 // for a couple of reasons: first, decls can end up in the
2118 // deferred-decls queue multiple times, and second, decls can end
2119 // up with definitions in unusual ways (e.g. by an extern inline
2120 // function acquiring a strong function redefinition). Just
2121 // ignore these cases.
2122 if (!GV->isDeclaration())
2123 continue;
2124
2125 // If this is OpenMP, check if it is legal to emit this global normally.
2126 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2127 continue;
2128
2129 // Otherwise, emit the definition and move on to the next one.
2130 EmitGlobalDefinition(D, GV);
2131
2132 // If we found out that we need to emit more decls, do that recursively.
2133 // This has the advantage that the decls are emitted in a DFS and related
2134 // ones are close together, which is convenient for testing.
2135 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2136 EmitDeferred();
2137 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())((DeferredVTables.empty() && DeferredDeclsToEmit.empty
()) ? static_cast<void> (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2137, __PRETTY_FUNCTION__))
;
2138 }
2139 }
2140}
2141
2142void CodeGenModule::EmitVTablesOpportunistically() {
2143 // Try to emit external vtables as available_externally if they have emitted
2144 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2145 // is not allowed to create new references to things that need to be emitted
2146 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2147
2148 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2149, __PRETTY_FUNCTION__))
2149 && "Only emit opportunistic vtables with optimizations")(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2149, __PRETTY_FUNCTION__))
;
2150
2151 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2152 assert(getVTables().isVTableExternal(RD) &&((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2153, __PRETTY_FUNCTION__))
2153 "This queue should only contain external vtables")((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2153, __PRETTY_FUNCTION__))
;
2154 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2155 VTables.GenerateClassData(RD);
2156 }
2157 OpportunisticVTables.clear();
2158}
2159
2160void CodeGenModule::EmitGlobalAnnotations() {
2161 if (Annotations.empty())
2162 return;
2163
2164 // Create a new global variable for the ConstantStruct in the Module.
2165 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2166 Annotations[0]->getType(), Annotations.size()), Annotations);
2167 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2168 llvm::GlobalValue::AppendingLinkage,
2169 Array, "llvm.global.annotations");
2170 gv->setSection(AnnotationSection);
2171}
2172
2173llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2174 llvm::Constant *&AStr = AnnotationStrings[Str];
2175 if (AStr)
2176 return AStr;
2177
2178 // Not found yet, create a new global.
2179 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2180 auto *gv =
2181 new llvm::GlobalVariable(getModule(), s->getType(), true,
2182 llvm::GlobalValue::PrivateLinkage, s, ".str");
2183 gv->setSection(AnnotationSection);
2184 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2185 AStr = gv;
2186 return gv;
2187}
2188
2189llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2190 SourceManager &SM = getContext().getSourceManager();
2191 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2192 if (PLoc.isValid())
2193 return EmitAnnotationString(PLoc.getFilename());
2194 return EmitAnnotationString(SM.getBufferName(Loc));
2195}
2196
2197llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2198 SourceManager &SM = getContext().getSourceManager();
2199 PresumedLoc PLoc = SM.getPresumedLoc(L);
2200 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2201 SM.getExpansionLineNumber(L);
2202 return llvm::ConstantInt::get(Int32Ty, LineNo);
2203}
2204
2205llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2206 const AnnotateAttr *AA,
2207 SourceLocation L) {
2208 // Get the globals for file name, annotation, and the line number.
2209 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2210 *UnitGV = EmitAnnotationUnit(L),
2211 *LineNoCst = EmitAnnotationLineNo(L);
2212
2213 // Create the ConstantStruct for the global annotation.
2214 llvm::Constant *Fields[4] = {
2215 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2216 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2217 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2218 LineNoCst
2219 };
2220 return llvm::ConstantStruct::getAnon(Fields);
2221}
2222
2223void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2224 llvm::GlobalValue *GV) {
2225 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")((D->hasAttr<AnnotateAttr>() && "no annotate attribute"
) ? static_cast<void> (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2225, __PRETTY_FUNCTION__))
;
2226 // Get the struct elements for these annotations.
2227 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2228 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2229}
2230
2231bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2232 llvm::Function *Fn,
2233 SourceLocation Loc) const {
2234 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2235 // Blacklist by function name.
2236 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2237 return true;
2238 // Blacklist by location.
2239 if (Loc.isValid())
2240 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2241 // If location is unknown, this may be a compiler-generated function. Assume
2242 // it's located in the main file.
2243 auto &SM = Context.getSourceManager();
2244 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2245 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2246 }
2247 return false;
2248}
2249
2250bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2251 SourceLocation Loc, QualType Ty,
2252 StringRef Category) const {
2253 // For now globals can be blacklisted only in ASan and KASan.
2254 const SanitizerMask EnabledAsanMask =
2255 LangOpts.Sanitize.Mask &
2256 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2257 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2258 SanitizerKind::MemTag);
2259 if (!EnabledAsanMask)
2260 return false;
2261 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2262 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2263 return true;
2264 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2265 return true;
2266 // Check global type.
2267 if (!Ty.isNull()) {
2268 // Drill down the array types: if global variable of a fixed type is
2269 // blacklisted, we also don't instrument arrays of them.
2270 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2271 Ty = AT->getElementType();
2272 Ty = Ty.getCanonicalType().getUnqualifiedType();
2273 // We allow to blacklist only record types (classes, structs etc.)
2274 if (Ty->isRecordType()) {
2275 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2276 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2277 return true;
2278 }
2279 }
2280 return false;
2281}
2282
2283bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2284 StringRef Category) const {
2285 const auto &XRayFilter = getContext().getXRayFilter();
2286 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2287 auto Attr = ImbueAttr::NONE;
2288 if (Loc.isValid())
2289 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2290 if (Attr == ImbueAttr::NONE)
2291 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2292 switch (Attr) {
2293 case ImbueAttr::NONE:
2294 return false;
2295 case ImbueAttr::ALWAYS:
2296 Fn->addFnAttr("function-instrument", "xray-always");
2297 break;
2298 case ImbueAttr::ALWAYS_ARG1:
2299 Fn->addFnAttr("function-instrument", "xray-always");
2300 Fn->addFnAttr("xray-log-args", "1");
2301 break;
2302 case ImbueAttr::NEVER:
2303 Fn->addFnAttr("function-instrument", "xray-never");
2304 break;
2305 }
2306 return true;
2307}
2308
2309bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2310 // Never defer when EmitAllDecls is specified.
2311 if (LangOpts.EmitAllDecls)
2312 return true;
2313
2314 if (CodeGenOpts.KeepStaticConsts) {
2315 const auto *VD = dyn_cast<VarDecl>(Global);
2316 if (VD && VD->getType().isConstQualified() &&
2317 VD->getStorageDuration() == SD_Static)
2318 return true;
2319 }
2320
2321 return getContext().DeclMustBeEmitted(Global);
2322}
2323
2324bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2325 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2326 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2327 // Implicit template instantiations may change linkage if they are later
2328 // explicitly instantiated, so they should not be emitted eagerly.
2329 return false;
2330 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2331 // not emit them eagerly unless we sure that the function must be emitted on
2332 // the host.
2333 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2334 !LangOpts.OpenMPIsDevice &&
2335 !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2336 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2337 return false;
2338 }
2339 if (const auto *VD = dyn_cast<VarDecl>(Global))
2340 if (Context.getInlineVariableDefinitionKind(VD) ==
2341 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2342 // A definition of an inline constexpr static data member may change
2343 // linkage later if it's redeclared outside the class.
2344 return false;
2345 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2346 // codegen for global variables, because they may be marked as threadprivate.
2347 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2348 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2349 !isTypeConstant(Global->getType(), false) &&
2350 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2351 return false;
2352
2353 return true;
2354}
2355
2356ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2357 const CXXUuidofExpr* E) {
2358 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2359 // well-formed.
2360 StringRef Uuid = E->getUuidStr();
2361 std::string Name = "_GUID_" + Uuid.lower();
2362 std::replace(Name.begin(), Name.end(), '-', '_');
2363
2364 // The UUID descriptor should be pointer aligned.
2365 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2366
2367 // Look for an existing global.
2368 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2369 return ConstantAddress(GV, Alignment);
2370
2371 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2372 assert(Init && "failed to initialize as constant")((Init && "failed to initialize as constant") ? static_cast
<void> (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2372, __PRETTY_FUNCTION__))
;
2373
2374 auto *GV = new llvm::GlobalVariable(
2375 getModule(), Init->getType(),
2376 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2377 if (supportsCOMDAT())
2378 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2379 setDSOLocal(GV);
2380 return ConstantAddress(GV, Alignment);
2381}
2382
2383ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2384 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2385 assert(AA && "No alias?")((AA && "No alias?") ? static_cast<void> (0) : __assert_fail
("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2385, __PRETTY_FUNCTION__))
;
1
Assuming 'AA' is non-null
2
'?' condition is true
2386
2387 CharUnits Alignment = getContext().getDeclAlign(VD);
2388 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2389
2390 // See if there is already something with the target's name in the module.
2391 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2392 if (Entry) {
3
Assuming 'Entry' is null
4
Taking false branch
2393 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2394 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2395 return ConstantAddress(Ptr, Alignment);
2396 }
2397
2398 llvm::Constant *Aliasee;
2399 if (isa<llvm::FunctionType>(DeclTy))
5
Assuming 'DeclTy' is a 'FunctionType'
6
Taking true branch
2400 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
8
Calling 'CodeGenModule::GetOrCreateLLVMFunction'
2401 GlobalDecl(cast<FunctionDecl>(VD)),
7
'VD' is a 'FunctionDecl'
2402 /*ForVTable=*/false);
2403 else
2404 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2405 llvm::PointerType::getUnqual(DeclTy),
2406 nullptr);
2407
2408 auto *F = cast<llvm::GlobalValue>(Aliasee);
2409 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2410 WeakRefReferences.insert(F);
2411
2412 return ConstantAddress(Aliasee, Alignment);
2413}
2414
2415void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2416 const auto *Global = cast<ValueDecl>(GD.getDecl());
22
The object is a 'ValueDecl'
2417
2418 // Weak references don't produce any output by themselves.
2419 if (Global->hasAttr<WeakRefAttr>())
23
Taking false branch
2420 return;
2421
2422 // If this is an alias definition (which otherwise looks like a declaration)
2423 // emit it now.
2424 if (Global->hasAttr<AliasAttr>())
24
Taking false branch
2425 return EmitAliasDefinition(GD);
2426
2427 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2428 if (Global->hasAttr<IFuncAttr>())
25
Taking false branch
2429 return emitIFuncDefinition(GD);
2430
2431 // If this is a cpu_dispatch multiversion function, emit the resolver.
2432 if (Global->hasAttr<CPUDispatchAttr>())
26
Taking true branch
2433 return emitCPUDispatchDefinition(GD);
27
Calling 'CodeGenModule::emitCPUDispatchDefinition'
2434
2435 // If this is CUDA, be selective about which declarations we emit.
2436 if (LangOpts.CUDA) {
2437 if (LangOpts.CUDAIsDevice) {
2438 if (!Global->hasAttr<CUDADeviceAttr>() &&
2439 !Global->hasAttr<CUDAGlobalAttr>() &&
2440 !Global->hasAttr<CUDAConstantAttr>() &&
2441 !Global->hasAttr<CUDASharedAttr>() &&
2442 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2443 return;
2444 } else {
2445 // We need to emit host-side 'shadows' for all global
2446 // device-side variables because the CUDA runtime needs their
2447 // size and host-side address in order to provide access to
2448 // their device-side incarnations.
2449
2450 // So device-only functions are the only things we skip.
2451 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2452 Global->hasAttr<CUDADeviceAttr>())
2453 return;
2454
2455 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2456, __PRETTY_FUNCTION__))
2456 "Expected Variable or Function")(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2456, __PRETTY_FUNCTION__))
;
2457 }
2458 }
2459
2460 if (LangOpts.OpenMP) {
2461 // If this is OpenMP, check if it is legal to emit this global normally.
2462 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2463 return;
2464 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2465 if (MustBeEmitted(Global))
2466 EmitOMPDeclareReduction(DRD);
2467 return;
2468 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2469 if (MustBeEmitted(Global))
2470 EmitOMPDeclareMapper(DMD);
2471 return;
2472 }
2473 }
2474
2475 // Ignore declarations, they will be emitted on their first use.
2476 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2477 // Forward declarations are emitted lazily on first use.
2478 if (!FD->doesThisDeclarationHaveABody()) {
2479 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2480 return;
2481
2482 StringRef MangledName = getMangledName(GD);
2483
2484 // Compute the function info and LLVM type.
2485 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2486 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2487
2488 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2489 /*DontDefer=*/false);
2490 return;
2491 }
2492 } else {
2493 const auto *VD = cast<VarDecl>(Global);
2494 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")((VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2494, __PRETTY_FUNCTION__))
;
2495 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2496 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2497 if (LangOpts.OpenMP) {
2498 // Emit declaration of the must-be-emitted declare target variable.
2499 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2500 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2501 bool UnifiedMemoryEnabled =
2502 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2503 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2504 !UnifiedMemoryEnabled) {
2505 (void)GetAddrOfGlobalVar(VD);
2506 } else {
2507 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2510, __PRETTY_FUNCTION__))
2508 (*Res == OMPDeclareTargetDeclAttr::MT_To &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2510, __PRETTY_FUNCTION__))
2509 UnifiedMemoryEnabled)) &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2510, __PRETTY_FUNCTION__))
2510 "Link clause or to clause with unified memory expected.")((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2510, __PRETTY_FUNCTION__))
;
2511 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2512 }
2513
2514 return;
2515 }
2516 }
2517 // If this declaration may have caused an inline variable definition to
2518 // change linkage, make sure that it's emitted.
2519 if (Context.getInlineVariableDefinitionKind(VD) ==
2520 ASTContext::InlineVariableDefinitionKind::Strong)
2521 GetAddrOfGlobalVar(VD);
2522 return;
2523 }
2524 }
2525
2526 // Defer code generation to first use when possible, e.g. if this is an inline
2527 // function. If the global must always be emitted, do it eagerly if possible
2528 // to benefit from cache locality.
2529 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2530 // Emit the definition if it can't be deferred.
2531 EmitGlobalDefinition(GD);
2532 return;
2533 }
2534
2535 // If we're deferring emission of a C++ variable with an
2536 // initializer, remember the order in which it appeared in the file.
2537 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2538 cast<VarDecl>(Global)->hasInit()) {
2539 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2540 CXXGlobalInits.push_back(nullptr);
2541 }
2542
2543 StringRef MangledName = getMangledName(GD);
2544 if (GetGlobalValue(MangledName) != nullptr) {
2545 // The value has already been used and should therefore be emitted.
2546 addDeferredDeclToEmit(GD);
2547 } else if (MustBeEmitted(Global)) {
2548 // The value must be emitted, but cannot be emitted eagerly.
2549 assert(!MayBeEmittedEagerly(Global))((!MayBeEmittedEagerly(Global)) ? static_cast<void> (0)
: __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2549, __PRETTY_FUNCTION__))
;
2550 addDeferredDeclToEmit(GD);
2551 } else {
2552 // Otherwise, remember that we saw a deferred decl with this name. The
2553 // first use of the mangled name will cause it to move into
2554 // DeferredDeclsToEmit.
2555 DeferredDecls[MangledName] = GD;
2556 }
2557}
2558
2559// Check if T is a class type with a destructor that's not dllimport.
2560static bool HasNonDllImportDtor(QualType T) {
2561 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2562 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2563 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2564 return true;
2565
2566 return false;
2567}
2568
2569namespace {
2570 struct FunctionIsDirectlyRecursive
2571 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2572 const StringRef Name;
2573 const Builtin::Context &BI;
2574 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2575 : Name(N), BI(C) {}
2576
2577 bool VisitCallExpr(const CallExpr *E) {
2578 const FunctionDecl *FD = E->getDirectCallee();
2579 if (!FD)
2580 return false;
2581 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2582 if (Attr && Name == Attr->getLabel())
2583 return true;
2584 unsigned BuiltinID = FD->getBuiltinID();
2585 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2586 return false;
2587 StringRef BuiltinName = BI.getName(BuiltinID);
2588 if (BuiltinName.startswith("__builtin_") &&
2589 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2590 return true;
2591 }
2592 return false;
2593 }
2594
2595 bool VisitStmt(const Stmt *S) {
2596 for (const Stmt *Child : S->children())
2597 if (Child && this->Visit(Child))
2598 return true;
2599 return false;
2600 }
2601 };
2602
2603 // Make sure we're not referencing non-imported vars or functions.
2604 struct DLLImportFunctionVisitor
2605 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2606 bool SafeToInline = true;
2607
2608 bool shouldVisitImplicitCode() const { return true; }
2609
2610 bool VisitVarDecl(VarDecl *VD) {
2611 if (VD->getTLSKind()) {
2612 // A thread-local variable cannot be imported.
2613 SafeToInline = false;
2614 return SafeToInline;
2615 }
2616
2617 // A variable definition might imply a destructor call.
2618 if (VD->isThisDeclarationADefinition())
2619 SafeToInline = !HasNonDllImportDtor(VD->getType());
2620
2621 return SafeToInline;
2622 }
2623
2624 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2625 if (const auto *D = E->getTemporary()->getDestructor())
2626 SafeToInline = D->hasAttr<DLLImportAttr>();
2627 return SafeToInline;
2628 }
2629
2630 bool VisitDeclRefExpr(DeclRefExpr *E) {
2631 ValueDecl *VD = E->getDecl();
2632 if (isa<FunctionDecl>(VD))
2633 SafeToInline = VD->hasAttr<DLLImportAttr>();
2634 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2635 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2636 return SafeToInline;
2637 }
2638
2639 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2640 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2641 return SafeToInline;
2642 }
2643
2644 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2645 CXXMethodDecl *M = E->getMethodDecl();
2646 if (!M) {
2647 // Call through a pointer to member function. This is safe to inline.
2648 SafeToInline = true;
2649 } else {
2650 SafeToInline = M->hasAttr<DLLImportAttr>();
2651 }
2652 return SafeToInline;
2653 }
2654
2655 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2656 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2657 return SafeToInline;
2658 }
2659
2660 bool VisitCXXNewExpr(CXXNewExpr *E) {
2661 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2662 return SafeToInline;
2663 }
2664 };
2665}
2666
2667// isTriviallyRecursive - Check if this function calls another
2668// decl that, because of the asm attribute or the other decl being a builtin,
2669// ends up pointing to itself.
2670bool
2671CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2672 StringRef Name;
2673 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2674 // asm labels are a special kind of mangling we have to support.
2675 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2676 if (!Attr)
2677 return false;
2678 Name = Attr->getLabel();
2679 } else {
2680 Name = FD->getName();
2681 }
2682
2683 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2684 const Stmt *Body = FD->getBody();
2685 return Body ? Walker.Visit(Body) : false;
2686}
2687
2688bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2689 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2690 return true;
2691 const auto *F = cast<FunctionDecl>(GD.getDecl());
2692 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2693 return false;
2694
2695 if (F->hasAttr<DLLImportAttr>()) {
2696 // Check whether it would be safe to inline this dllimport function.
2697 DLLImportFunctionVisitor Visitor;
2698 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2699 if (!Visitor.SafeToInline)
2700 return false;
2701
2702 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2703 // Implicit destructor invocations aren't captured in the AST, so the
2704 // check above can't see them. Check for them manually here.
2705 for (const Decl *Member : Dtor->getParent()->decls())
2706 if (isa<FieldDecl>(Member))
2707 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2708 return false;
2709 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2710 if (HasNonDllImportDtor(B.getType()))
2711 return false;
2712 }
2713 }
2714
2715 // PR9614. Avoid cases where the source code is lying to us. An available
2716 // externally function should have an equivalent function somewhere else,
2717 // but a function that calls itself is clearly not equivalent to the real
2718 // implementation.
2719 // This happens in glibc's btowc and in some configure checks.
2720 return !isTriviallyRecursive(F);
2721}
2722
2723bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2724 return CodeGenOpts.OptimizationLevel > 0;
2725}
2726
2727void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2728 llvm::GlobalValue *GV) {
2729 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2730
2731 if (FD->isCPUSpecificMultiVersion()) {
2732 auto *Spec = FD->getAttr<CPUSpecificAttr>();
2733 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2734 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2735 // Requires multiple emits.
2736 } else
2737 EmitGlobalFunctionDefinition(GD, GV);
2738}
2739
2740void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2741 const auto *D = cast<ValueDecl>(GD.getDecl());
2742
2743 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2744 Context.getSourceManager(),
2745 "Generating code for declaration");
2746
2747 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2748 // At -O0, don't generate IR for functions with available_externally
2749 // linkage.
2750 if (!shouldEmitFunction(GD))
2751 return;
2752
2753 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2754 std::string Name;
2755 llvm::raw_string_ostream OS(Name);
2756 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2757 /*Qualified=*/true);
2758 return Name;
2759 });
2760
2761 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2762 // Make sure to emit the definition(s) before we emit the thunks.
2763 // This is necessary for the generation of certain thunks.
2764 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2765 ABI->emitCXXStructor(GD);
2766 else if (FD->isMultiVersion())
2767 EmitMultiVersionFunctionDefinition(GD, GV);
2768 else
2769 EmitGlobalFunctionDefinition(GD, GV);
2770
2771 if (Method->isVirtual())
2772 getVTables().EmitThunks(GD);
2773
2774 return;
2775 }
2776
2777 if (FD->isMultiVersion())
2778 return EmitMultiVersionFunctionDefinition(GD, GV);
2779 return EmitGlobalFunctionDefinition(GD, GV);
2780 }
2781
2782 if (const auto *VD = dyn_cast<VarDecl>(D))
2783 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2784
2785 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2785)
;
2786}
2787
2788static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2789 llvm::Function *NewFn);
2790
2791static unsigned
2792TargetMVPriority(const TargetInfo &TI,
2793 const CodeGenFunction::MultiVersionResolverOption &RO) {
2794 unsigned Priority = 0;
2795 for (StringRef Feat : RO.Conditions.Features)
2796 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2797
2798 if (!RO.Conditions.Architecture.empty())
2799 Priority = std::max(
2800 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2801 return Priority;
2802}
2803
2804void CodeGenModule::emitMultiVersionFunctions() {
2805 for (GlobalDecl GD : MultiVersionFuncs) {
2806 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2807 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2808 getContext().forEachMultiversionedFunctionVersion(
2809 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2810 GlobalDecl CurGD{
2811 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2812 StringRef MangledName = getMangledName(CurGD);
2813 llvm::Constant *Func = GetGlobalValue(MangledName);
2814 if (!Func) {
2815 if (CurFD->isDefined()) {
2816 EmitGlobalFunctionDefinition(CurGD, nullptr);
2817 Func = GetGlobalValue(MangledName);
2818 } else {
2819 const CGFunctionInfo &FI =
2820 getTypes().arrangeGlobalDeclaration(GD);
2821 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2822 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2823 /*DontDefer=*/false, ForDefinition);
2824 }
2825 assert(Func && "This should have just been created")((Func && "This should have just been created") ? static_cast
<void> (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2825, __PRETTY_FUNCTION__))
;
2826 }
2827
2828 const auto *TA = CurFD->getAttr<TargetAttr>();
2829 llvm::SmallVector<StringRef, 8> Feats;
2830 TA->getAddedFeatures(Feats);
2831
2832 Options.emplace_back(cast<llvm::Function>(Func),
2833 TA->getArchitecture(), Feats);
2834 });
2835
2836 llvm::Function *ResolverFunc;
2837 const TargetInfo &TI = getTarget();
2838
2839 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2840 ResolverFunc = cast<llvm::Function>(
2841 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2842 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2843 } else {
2844 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2845 }
2846
2847 if (supportsCOMDAT())
2848 ResolverFunc->setComdat(
2849 getModule().getOrInsertComdat(ResolverFunc->getName()));
2850
2851 llvm::stable_sort(
2852 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2853 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2854 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2855 });
2856 CodeGenFunction CGF(*this);
2857 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2858 }
2859}
2860
2861void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2862 const auto *FD = cast<FunctionDecl>(GD.getDecl());
28
The object is a 'FunctionDecl'
2863 assert
28.1
'FD' is non-null
28.1
'FD' is non-null
28.1
'FD' is non-null
28.1
'FD' is non-null
(FD && "Not a FunctionDecl?")((FD && "Not a FunctionDecl?") ? static_cast<void>
(0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2863, __PRETTY_FUNCTION__))
;
29
'?' condition is true
2864 const auto *DD = FD->getAttr<CPUDispatchAttr>();
2865 assert(DD && "Not a cpu_dispatch Function?")((DD && "Not a cpu_dispatch Function?") ? static_cast
<void> (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2865, __PRETTY_FUNCTION__))
;
30
Assuming 'DD' is non-null
31
'?' condition is true
2866 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2867
2868 if (const auto *CXXFD
32.1
'CXXFD' is null
32.1
'CXXFD' is null
32.1
'CXXFD' is null
32.1
'CXXFD' is null
= dyn_cast<CXXMethodDecl>(FD)) {
32
Assuming 'FD' is not a 'CXXMethodDecl'
33
Taking false branch
2869 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2870 DeclTy = getTypes().GetFunctionType(FInfo);
2871 }
2872
2873 StringRef ResolverName = getMangledName(GD);
2874
2875 llvm::Type *ResolverType;
2876 GlobalDecl ResolverGD;
2877 if (getTarget().supportsIFunc())
34
Taking false branch
2878 ResolverType = llvm::FunctionType::get(
2879 llvm::PointerType::get(DeclTy,
2880 Context.getTargetAddressSpace(FD->getType())),
2881 false);
2882 else {
2883 ResolverType = DeclTy;
2884 ResolverGD = GD;
2885 }
2886
2887 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
35
The object is a 'Function'
2888 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2889 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2890 if (supportsCOMDAT())
36
Assuming the condition is false
37
Taking false branch
2891 ResolverFunc->setComdat(
2892 getModule().getOrInsertComdat(ResolverFunc->getName()));
2893
2894 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2895 const TargetInfo &Target = getTarget();
2896 unsigned Index = 0;
2897 for (const IdentifierInfo *II : DD->cpus()) {
38
Assuming '__begin1' is not equal to '__end1'
2898 // Get the name of the target function so we can look it up/create it.
2899 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2900 getCPUSpecificMangling(*this, II->getName());
2901
2902 llvm::Constant *Func = GetGlobalValue(MangledName);
2903
2904 if (!Func) {
39
Assuming 'Func' is null
40
Taking true branch
2905 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2906 if (ExistingDecl.getDecl() &&
41
Assuming the condition is false
2907 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2908 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2909 Func = GetGlobalValue(MangledName);
2910 } else {
2911 if (!ExistingDecl.getDecl())
42
Assuming the condition is false
43
Taking false branch
2912 ExistingDecl = GD.getWithMultiVersionIndex(Index);
2913
2914 Func = GetOrCreateLLVMFunction(
44
Calling 'CodeGenModule::GetOrCreateLLVMFunction'
2915 MangledName, DeclTy, ExistingDecl,
2916 /*ForVTable=*/false, /*DontDefer=*/true,
2917 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2918 }
2919 }
2920
2921 llvm::SmallVector<StringRef, 32> Features;
2922 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2923 llvm::transform(Features, Features.begin(),
2924 [](StringRef Str) { return Str.substr(1); });
2925 Features.erase(std::remove_if(
2926 Features.begin(), Features.end(), [&Target](StringRef Feat) {
2927 return !Target.validateCpuSupports(Feat);
2928 }), Features.end());
2929 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2930 ++Index;
2931 }
2932
2933 llvm::sort(
2934 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2935 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2936 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2937 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2938 });
2939
2940 // If the list contains multiple 'default' versions, such as when it contains
2941 // 'pentium' and 'generic', don't emit the call to the generic one (since we
2942 // always run on at least a 'pentium'). We do this by deleting the 'least
2943 // advanced' (read, lowest mangling letter).
2944 while (Options.size() > 1 &&
2945 CodeGenFunction::GetX86CpuSupportsMask(
2946 (Options.end() - 2)->Conditions.Features) == 0) {
2947 StringRef LHSName = (Options.end() - 2)->Function->getName();
2948 StringRef RHSName = (Options.end() - 1)->Function->getName();
2949 if (LHSName.compare(RHSName) < 0)
2950 Options.erase(Options.end() - 2);
2951 else
2952 Options.erase(Options.end() - 1);
2953 }
2954
2955 CodeGenFunction CGF(*this);
2956 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2957
2958 if (getTarget().supportsIFunc()) {
2959 std::string AliasName = getMangledNameImpl(
2960 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
2961 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
2962 if (!AliasFunc) {
2963 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
2964 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
2965 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
2966 auto *GA = llvm::GlobalAlias::create(
2967 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
2968 GA->setLinkage(llvm::Function::WeakODRLinkage);
2969 SetCommonAttributes(GD, GA);
2970 }
2971 }
2972}
2973
2974/// If a dispatcher for the specified mangled name is not in the module, create
2975/// and return an llvm Function with the specified type.
2976llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2977 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2978 std::string MangledName =
2979 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2980
2981 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2982 // a separate resolver).
2983 std::string ResolverName = MangledName;
2984 if (getTarget().supportsIFunc())
2985 ResolverName += ".ifunc";
2986 else if (FD->isTargetMultiVersion())
2987 ResolverName += ".resolver";
2988
2989 // If this already exists, just return that one.
2990 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2991 return ResolverGV;
2992
2993 // Since this is the first time we've created this IFunc, make sure
2994 // that we put this multiversioned function into the list to be
2995 // replaced later if necessary (target multiversioning only).
2996 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2997 MultiVersionFuncs.push_back(GD);
2998
2999 if (getTarget().supportsIFunc()) {
3000 llvm::Type *ResolverType = llvm::FunctionType::get(
3001 llvm::PointerType::get(
3002 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3003 false);
3004 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3005 MangledName + ".resolver", ResolverType, GlobalDecl{},
3006 /*ForVTable=*/false);
3007 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3008 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3009 GIF->setName(ResolverName);
3010 SetCommonAttributes(FD, GIF);
3011
3012 return GIF;
3013 }
3014
3015 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3016 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3017 assert(isa<llvm::GlobalValue>(Resolver) &&((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3018, __PRETTY_FUNCTION__))
3018 "Resolver should be created for the first time")((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3018, __PRETTY_FUNCTION__))
;
3019 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3020 return Resolver;
3021}
3022
3023/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3024/// module, create and return an llvm Function with the specified type. If there
3025/// is something in the module with the specified name, return it potentially
3026/// bitcasted to the right type.
3027///
3028/// If D is non-null, it specifies a decl that correspond to this. This is used
3029/// to set the attributes on the function when it is first created.
3030llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3031 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3032 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3033 ForDefinition_t IsForDefinition) {
3034 const Decl *D = GD.getDecl();
45
Calling 'GlobalDecl::getDecl'
57
Returning from 'GlobalDecl::getDecl'
58
'D' initialized here
3035
3036 // Any attempts to use a MultiVersion function should result in retrieving
3037 // the iFunc instead. Name Mangling will handle the rest of the changes.
3038 if (const FunctionDecl *FD
9.1
'FD' is non-null
60.1
'FD' is null
9.1
'FD' is non-null
60.1
'FD' is null
9.1
'FD' is non-null
60.1
'FD' is null
9.1
'FD' is non-null
60.1
'FD' is null
= cast_or_null<FunctionDecl>(D)) {
9
Assuming 'D' is a 'FunctionDecl'
10
Taking true branch
59
Assuming null pointer is passed into cast
60
Assuming pointer value is null
61
Taking false branch
3039 // For the device mark the function as one that should be emitted.
3040 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
11
Assuming field 'OpenMPIsDevice' is not equal to 0
14
Taking true branch
3041 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
12
Assuming the condition is true
13
Assuming the condition is true
3042 !DontDefer
13.1
'DontDefer' is false
13.1
'DontDefer' is false
13.1
'DontDefer' is false
13.1
'DontDefer' is false
&& !IsForDefinition
13.2
'IsForDefinition' is 0
13.2
'IsForDefinition' is 0
13.2
'IsForDefinition' is 0
13.2
'IsForDefinition' is 0
) {
3043 if (const FunctionDecl *FDDef = FD->getDefinition()) {
15
Assuming 'FDDef' is non-null
16
Taking true branch
3044 GlobalDecl GDDef;
3045 if (const auto *CD
17.1
'CD' is null
17.1
'CD' is null
17.1
'CD' is null
17.1
'CD' is null
= dyn_cast<CXXConstructorDecl>(FDDef))
17
Assuming 'FDDef' is not a 'CXXConstructorDecl'
18
Taking false branch
3046 GDDef = GlobalDecl(CD, GD.getCtorType());
3047 else if (const auto *DD
19.1
'DD' is null
19.1
'DD' is null
19.1
'DD' is null
19.1
'DD' is null
= dyn_cast<CXXDestructorDecl>(FDDef))
19
Assuming 'FDDef' is not a 'CXXDestructorDecl'
20
Taking false branch
3048 GDDef = GlobalDecl(DD, GD.getDtorType());
3049 else
3050 GDDef = GlobalDecl(FDDef);
3051 EmitGlobal(GDDef);
21
Calling 'CodeGenModule::EmitGlobal'
3052 }
3053 }
3054
3055 if (FD->isMultiVersion()) {
3056 const auto *TA = FD->getAttr<TargetAttr>();
3057 if (TA && TA->isDefaultVersion())
3058 UpdateMultiVersionNames(GD, FD);
3059 if (!IsForDefinition)
3060 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3061 }
3062 }
3063
3064 // Lookup the entry, lazily creating it if necessary.
3065 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3066 if (Entry) {
62
Assuming 'Entry' is non-null
63
Taking true branch
3067 if (WeakRefReferences.erase(Entry)) {
64
Assuming the condition is false
65
Taking false branch
3068 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3069 if (FD && !FD->hasAttr<WeakAttr>())
3070 Entry->setLinkage(llvm::Function::ExternalLinkage);
3071 }
3072
3073 // Handle dropped DLL attributes.
3074 if (D
65.1
'D' is null
65.1
'D' is null
65.1
'D' is null
65.1
'D' is null
&& !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3075 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3076 setDSOLocal(Entry);
3077 }
3078
3079 // If there are two attempts to define the same mangled name, issue an
3080 // error.
3081 if (IsForDefinition
65.2
'IsForDefinition' is 1
65.2
'IsForDefinition' is 1
65.2
'IsForDefinition' is 1
65.2
'IsForDefinition' is 1
&& !Entry->isDeclaration()) {
66
Assuming the condition is true
67
Taking true branch
3082 GlobalDecl OtherGD;
3083 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3084 // to make sure that we issue an error only once.
3085 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
68
Assuming the condition is true
70
Assuming the condition is true
71
Taking true branch
3086 (GD.getCanonicalDecl().getDecl() !=
69
Assuming the condition is true
3087 OtherGD.getCanonicalDecl().getDecl()) &&
3088 DiagnosedConflictingDefinitions.insert(GD).second) {
3089 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
72
Called C++ object pointer is null
3090 << MangledName;
3091 getDiags().Report(OtherGD.getDecl()->getLocation(),
3092 diag::note_previous_definition);
3093 }
3094 }
3095
3096 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3097 (Entry->getType()->getElementType() == Ty)) {
3098 return Entry;
3099 }
3100
3101 // Make sure the result is of the correct type.
3102 // (If function is requested for a definition, we always need to create a new
3103 // function, not just return a bitcast.)
3104 if (!IsForDefinition)
3105 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3106 }
3107
3108 // This function doesn't have a complete type (for example, the return
3109 // type is an incomplete struct). Use a fake type instead, and make
3110 // sure not to try to set attributes.
3111 bool IsIncompleteFunction = false;
3112
3113 llvm::FunctionType *FTy;
3114 if (isa<llvm::FunctionType>(Ty)) {
3115 FTy = cast<llvm::FunctionType>(Ty);
3116 } else {
3117 FTy = llvm::FunctionType::get(VoidTy, false);
3118 IsIncompleteFunction = true;
3119 }
3120
3121 llvm::Function *F =
3122 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3123 Entry ? StringRef() : MangledName, &getModule());
3124
3125 // If we already created a function with the same mangled name (but different
3126 // type) before, take its name and add it to the list of functions to be
3127 // replaced with F at the end of CodeGen.
3128 //
3129 // This happens if there is a prototype for a function (e.g. "int f()") and
3130 // then a definition of a different type (e.g. "int f(int x)").
3131 if (Entry) {
3132 F->takeName(Entry);
3133
3134 // This might be an implementation of a function without a prototype, in
3135 // which case, try to do special replacement of calls which match the new
3136 // prototype. The really key thing here is that we also potentially drop
3137 // arguments from the call site so as to make a direct call, which makes the
3138 // inliner happier and suppresses a number of optimizer warnings (!) about
3139 // dropping arguments.
3140 if (!Entry->use_empty()) {
3141 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3142 Entry->removeDeadConstantUsers();
3143 }
3144
3145 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3146 F, Entry->getType()->getElementType()->getPointerTo());
3147 addGlobalValReplacement(Entry, BC);
3148 }
3149
3150 assert(F->getName() == MangledName && "name was uniqued!")((F->getName() == MangledName && "name was uniqued!"
) ? static_cast<void> (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3150, __PRETTY_FUNCTION__))
;
3151 if (D)
3152 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3153 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3154 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3155 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3156 }
3157
3158 if (!DontDefer) {
3159 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3160 // each other bottoming out with the base dtor. Therefore we emit non-base
3161 // dtors on usage, even if there is no dtor definition in the TU.
3162 if (D && isa<CXXDestructorDecl>(D) &&
3163 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3164 GD.getDtorType()))
3165 addDeferredDeclToEmit(GD);
3166
3167 // This is the first use or definition of a mangled name. If there is a
3168 // deferred decl with this name, remember that we need to emit it at the end
3169 // of the file.
3170 auto DDI = DeferredDecls.find(MangledName);
3171 if (DDI != DeferredDecls.end()) {
3172 // Move the potentially referenced deferred decl to the
3173 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3174 // don't need it anymore).
3175 addDeferredDeclToEmit(DDI->second);
3176 DeferredDecls.erase(DDI);
3177
3178 // Otherwise, there are cases we have to worry about where we're
3179 // using a declaration for which we must emit a definition but where
3180 // we might not find a top-level definition:
3181 // - member functions defined inline in their classes
3182 // - friend functions defined inline in some class
3183 // - special member functions with implicit definitions
3184 // If we ever change our AST traversal to walk into class methods,
3185 // this will be unnecessary.
3186 //
3187 // We also don't emit a definition for a function if it's going to be an
3188 // entry in a vtable, unless it's already marked as used.
3189 } else if (getLangOpts().CPlusPlus && D) {
3190 // Look for a declaration that's lexically in a record.
3191 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3192 FD = FD->getPreviousDecl()) {
3193 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3194 if (FD->doesThisDeclarationHaveABody()) {
3195 addDeferredDeclToEmit(GD.getWithDecl(FD));
3196 break;
3197 }
3198 }
3199 }
3200 }
3201 }
3202
3203 // Make sure the result is of the requested type.
3204 if (!IsIncompleteFunction) {
3205 assert(F->getType()->getElementType() == Ty)((F->getType()->getElementType() == Ty) ? static_cast<
void> (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3205, __PRETTY_FUNCTION__))
;
3206 return F;
3207 }
3208
3209 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3210 return llvm::ConstantExpr::getBitCast(F, PTy);
3211}
3212
3213/// GetAddrOfFunction - Return the address of the given function. If Ty is
3214/// non-null, then this function will use the specified type if it has to
3215/// create it (this occurs when we see a definition of the function).
3216llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3217 llvm::Type *Ty,
3218 bool ForVTable,
3219 bool DontDefer,
3220 ForDefinition_t IsForDefinition) {
3221 // If there was no specific requested type, just convert it now.
3222 if (!Ty) {
3223 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3224 Ty = getTypes().ConvertType(FD->getType());
3225 }
3226
3227 // Devirtualized destructor calls may come through here instead of via
3228 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3229 // of the complete destructor when necessary.
3230 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3231 if (getTarget().getCXXABI().isMicrosoft() &&
3232 GD.getDtorType() == Dtor_Complete &&
3233 DD->getParent()->getNumVBases() == 0)
3234 GD = GlobalDecl(DD, Dtor_Base);
3235 }
3236
3237 StringRef MangledName = getMangledName(GD);
3238 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3239 /*IsThunk=*/false, llvm::AttributeList(),
3240 IsForDefinition);
3241}
3242
3243static const FunctionDecl *
3244GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3245 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3246 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3247
3248 IdentifierInfo &CII = C.Idents.get(Name);
3249 for (const auto &Result : DC->lookup(&CII))
3250 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3251 return FD;
3252
3253 if (!C.getLangOpts().CPlusPlus)
3254 return nullptr;
3255
3256 // Demangle the premangled name from getTerminateFn()
3257 IdentifierInfo &CXXII =
3258 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3259 ? C.Idents.get("terminate")
3260 : C.Idents.get(Name);
3261
3262 for (const auto &N : {"__cxxabiv1", "std"}) {
3263 IdentifierInfo &NS = C.Idents.get(N);
3264 for (const auto &Result : DC->lookup(&NS)) {
3265 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3266 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3267 for (const auto &Result : LSD->lookup(&NS))
3268 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3269 break;
3270
3271 if (ND)
3272 for (const auto &Result : ND->lookup(&CXXII))
3273 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3274 return FD;
3275 }
3276 }
3277
3278 return nullptr;
3279}
3280
3281/// CreateRuntimeFunction - Create a new runtime function with the specified
3282/// type and name.
3283llvm::FunctionCallee
3284CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3285 llvm::AttributeList ExtraAttrs,
3286 bool Local) {
3287 llvm::Constant *C =
3288 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3289 /*DontDefer=*/false, /*IsThunk=*/false,
3290 ExtraAttrs);
3291
3292 if (auto *F = dyn_cast<llvm::Function>(C)) {
3293 if (F->empty()) {
3294 F->setCallingConv(getRuntimeCC());
3295
3296 // In Windows Itanium environments, try to mark runtime functions
3297 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3298 // will link their standard library statically or dynamically. Marking
3299 // functions imported when they are not imported can cause linker errors
3300 // and warnings.
3301 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3302 !getCodeGenOpts().LTOVisibilityPublicStd) {
3303 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3304 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3305 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3306 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3307 }
3308 }
3309 setDSOLocal(F);
3310 }
3311 }
3312
3313 return {FTy, C};
3314}
3315
3316/// isTypeConstant - Determine whether an object of this type can be emitted
3317/// as a constant.
3318///
3319/// If ExcludeCtor is true, the duration when the object's constructor runs
3320/// will not be considered. The caller will need to verify that the object is
3321/// not written to during its construction.
3322bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3323 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3324 return false;
3325
3326 if (Context.getLangOpts().CPlusPlus) {
3327 if (const CXXRecordDecl *Record
3328 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3329 return ExcludeCtor && !Record->hasMutableFields() &&
3330 Record->hasTrivialDestructor();
3331 }
3332
3333 return true;
3334}
3335
3336/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3337/// create and return an llvm GlobalVariable with the specified type. If there
3338/// is something in the module with the specified name, return it potentially
3339/// bitcasted to the right type.
3340///
3341/// If D is non-null, it specifies a decl that correspond to this. This is used
3342/// to set the attributes on the global when it is first created.
3343///
3344/// If IsForDefinition is true, it is guaranteed that an actual global with
3345/// type Ty will be returned, not conversion of a variable with the same
3346/// mangled name but some other type.
3347llvm::Constant *
3348CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3349 llvm::PointerType *Ty,
3350 const VarDecl *D,
3351 ForDefinition_t IsForDefinition) {
3352 // Lookup the entry, lazily creating it if necessary.
3353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3354 if (Entry) {
3355 if (WeakRefReferences.erase(Entry)) {
3356 if (D && !D->hasAttr<WeakAttr>())
3357 Entry->setLinkage(llvm::Function::ExternalLinkage);
3358 }
3359
3360 // Handle dropped DLL attributes.
3361 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3362 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3363
3364 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3365 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3366
3367 if (Entry->getType() == Ty)
3368 return Entry;
3369
3370 // If there are two attempts to define the same mangled name, issue an
3371 // error.
3372 if (IsForDefinition && !Entry->isDeclaration()) {
3373 GlobalDecl OtherGD;
3374 const VarDecl *OtherD;
3375
3376 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3377 // to make sure that we issue an error only once.
3378 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3379 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3380 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3381 OtherD->hasInit() &&
3382 DiagnosedConflictingDefinitions.insert(D).second) {
3383 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3384 << MangledName;
3385 getDiags().Report(OtherGD.getDecl()->getLocation(),
3386 diag::note_previous_definition);
3387 }
3388 }
3389
3390 // Make sure the result is of the correct type.
3391 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3392 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3393
3394 // (If global is requested for a definition, we always need to create a new
3395 // global, not just return a bitcast.)
3396 if (!IsForDefinition)
3397 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3398 }
3399
3400 auto AddrSpace = GetGlobalVarAddressSpace(D);
3401 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3402
3403 auto *GV = new llvm::GlobalVariable(
3404 getModule(), Ty->getElementType(), false,
3405 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3406 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3407
3408 // If we already created a global with the same mangled name (but different
3409 // type) before, take its name and remove it from its parent.
3410 if (Entry) {
3411 GV->takeName(Entry);
3412
3413 if (!Entry->use_empty()) {
3414 llvm::Constant *NewPtrForOldDecl =
3415 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3416 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3417 }
3418
3419 Entry->eraseFromParent();
3420 }
3421
3422 // This is the first use or definition of a mangled name. If there is a
3423 // deferred decl with this name, remember that we need to emit it at the end
3424 // of the file.
3425 auto DDI = DeferredDecls.find(MangledName);
3426 if (DDI != DeferredDecls.end()) {
3427 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3428 // list, and remove it from DeferredDecls (since we don't need it anymore).
3429 addDeferredDeclToEmit(DDI->second);
3430 DeferredDecls.erase(DDI);
3431 }
3432
3433 // Handle things which are present even on external declarations.
3434 if (D) {
3435 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3436 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3437
3438 // FIXME: This code is overly simple and should be merged with other global
3439 // handling.
3440 GV->setConstant(isTypeConstant(D->getType(), false));
3441
3442 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3443
3444 setLinkageForGV(GV, D);
3445
3446 if (D->getTLSKind()) {
3447 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3448 CXXThreadLocals.push_back(D);
3449 setTLSMode(GV, *D);
3450 }
3451
3452 setGVProperties(GV, D);
3453
3454 // If required by the ABI, treat declarations of static data members with
3455 // inline initializers as definitions.
3456 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3457 EmitGlobalVarDefinition(D);
3458 }
3459
3460 // Emit section information for extern variables.
3461 if (D->hasExternalStorage()) {
3462 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3463 GV->setSection(SA->getName());
3464 }
3465
3466 // Handle XCore specific ABI requirements.
3467 if (getTriple().getArch() == llvm::Triple::xcore &&
3468 D->getLanguageLinkage() == CLanguageLinkage &&
3469 D->getType().isConstant(Context) &&
3470 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3471 GV->setSection(".cp.rodata");
3472
3473 // Check if we a have a const declaration with an initializer, we may be
3474 // able to emit it as available_externally to expose it's value to the
3475 // optimizer.
3476 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3477 D->getType().isConstQualified() && !GV->hasInitializer() &&
3478 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3479 const auto *Record =
3480 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3481 bool HasMutableFields = Record && Record->hasMutableFields();
3482 if (!HasMutableFields) {
3483 const VarDecl *InitDecl;
3484 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3485 if (InitExpr) {
3486 ConstantEmitter emitter(*this);
3487 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3488 if (Init) {
3489 auto *InitType = Init->getType();
3490 if (GV->getType()->getElementType() != InitType) {
3491 // The type of the initializer does not match the definition.
3492 // This happens when an initializer has a different type from
3493 // the type of the global (because of padding at the end of a
3494 // structure for instance).
3495 GV->setName(StringRef());
3496 // Make a new global with the correct type, this is now guaranteed
3497 // to work.
3498 auto *NewGV = cast<llvm::GlobalVariable>(
3499 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3500
3501 // Erase the old global, since it is no longer used.
3502 GV->eraseFromParent();
3503 GV = NewGV;
3504 } else {
3505 GV->setInitializer(Init);
3506 GV->setConstant(true);
3507 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3508 }
3509 emitter.finalize(GV);
3510 }
3511 }
3512 }
3513 }
3514 }
3515
3516 LangAS ExpectedAS =
3517 D ? D->getType().getAddressSpace()
3518 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3519 assert(getContext().getTargetAddressSpace(ExpectedAS) ==((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3520, __PRETTY_FUNCTION__))
3520 Ty->getPointerAddressSpace())((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3520, __PRETTY_FUNCTION__))
;
3521 if (AddrSpace != ExpectedAS)
3522 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3523 ExpectedAS, Ty);
3524
3525 if (GV->isDeclaration())
3526 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3527
3528 return GV;
3529}
3530
3531llvm::Constant *
3532CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3533 ForDefinition_t IsForDefinition) {
3534 const Decl *D = GD.getDecl();
3535 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3536 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3537 /*DontDefer=*/false, IsForDefinition);
3538 else if (isa<CXXMethodDecl>(D)) {
3539 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3540 cast<CXXMethodDecl>(D));
3541 auto Ty = getTypes().GetFunctionType(*FInfo);
3542 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3543 IsForDefinition);
3544 } else if (isa<FunctionDecl>(D)) {
3545 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3546 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3547 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3548 IsForDefinition);
3549 } else
3550 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3551 IsForDefinition);
3552}
3553
3554llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3555 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3556 unsigned Alignment) {
3557 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3558 llvm::GlobalVariable *OldGV = nullptr;
3559
3560 if (GV) {
3561 // Check if the variable has the right type.
3562 if (GV->getType()->getElementType() == Ty)
3563 return GV;
3564
3565 // Because C++ name mangling, the only way we can end up with an already
3566 // existing global with the same name is if it has been declared extern "C".
3567 assert(GV->isDeclaration() && "Declaration has wrong type!")((GV->isDeclaration() && "Declaration has wrong type!"
) ? static_cast<void> (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3567, __PRETTY_FUNCTION__))
;
3568 OldGV = GV;
3569 }
3570
3571 // Create a new variable.
3572 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3573 Linkage, nullptr, Name);
3574
3575 if (OldGV) {
3576 // Replace occurrences of the old variable if needed.
3577 GV->takeName(OldGV);
3578
3579 if (!OldGV->use_empty()) {
3580 llvm::Constant *NewPtrForOldDecl =
3581 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3582 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3583 }
3584
3585 OldGV->eraseFromParent();
3586 }
3587
3588 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3589 !GV->hasAvailableExternallyLinkage())
3590 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3591
3592 GV->setAlignment(Alignment);
3593
3594 return GV;
3595}
3596
3597/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3598/// given global variable. If Ty is non-null and if the global doesn't exist,
3599/// then it will be created with the specified type instead of whatever the
3600/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3601/// that an actual global with type Ty will be returned, not conversion of a
3602/// variable with the same mangled name but some other type.
3603llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3604 llvm::Type *Ty,
3605 ForDefinition_t IsForDefinition) {
3606 assert(D->hasGlobalStorage() && "Not a global variable")((D->hasGlobalStorage() && "Not a global variable"
) ? static_cast<void> (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3606, __PRETTY_FUNCTION__))
;
3607 QualType ASTTy = D->getType();
3608 if (!Ty)
3609 Ty = getTypes().ConvertTypeForMem(ASTTy);
3610
3611 llvm::PointerType *PTy =
3612 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3613
3614 StringRef MangledName = getMangledName(D);
3615 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3616}
3617
3618/// CreateRuntimeVariable - Create a new runtime global variable with the
3619/// specified type and name.
3620llvm::Constant *
3621CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3622 StringRef Name) {
3623 auto PtrTy =
3624 getContext().getLangOpts().OpenCL
3625 ? llvm::PointerType::get(
3626 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3627 : llvm::PointerType::getUnqual(Ty);
3628 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3629 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3630 return Ret;
3631}
3632
3633void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3634 assert(!D->getInit() && "Cannot emit definite definitions here!")((!D->getInit() && "Cannot emit definite definitions here!"
) ? static_cast<void> (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3634, __PRETTY_FUNCTION__))
;
3635
3636 StringRef MangledName = getMangledName(D);
3637 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3638
3639 // We already have a definition, not declaration, with the same mangled name.
3640 // Emitting of declaration is not required (and actually overwrites emitted
3641 // definition).
3642 if (GV && !GV->isDeclaration())
3643 return;
3644
3645 // If we have not seen a reference to this variable yet, place it into the
3646 // deferred declarations table to be emitted if needed later.
3647 if (!MustBeEmitted(D) && !GV) {
3648 DeferredDecls[MangledName] = D;
3649 return;
3650 }
3651
3652 // The tentative definition is the only definition.
3653 EmitGlobalVarDefinition(D);
3654}
3655
3656CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3657 return Context.toCharUnitsFromBits(
3658 getDataLayout().getTypeStoreSizeInBits(Ty));
3659}
3660
3661LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3662 LangAS AddrSpace = LangAS::Default;
3663 if (LangOpts.OpenCL) {
3664 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3665 assert(AddrSpace == LangAS::opencl_global ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3668, __PRETTY_FUNCTION__))
3666 AddrSpace == LangAS::opencl_constant ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3668, __PRETTY_FUNCTION__))
3667 AddrSpace == LangAS::opencl_local ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3668, __PRETTY_FUNCTION__))
3668 AddrSpace >= LangAS::FirstTargetAddressSpace)((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3668, __PRETTY_FUNCTION__))
;
3669 return AddrSpace;
3670 }
3671
3672 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3673 if (D && D->hasAttr<CUDAConstantAttr>())
3674 return LangAS::cuda_constant;
3675 else if (D && D->hasAttr<CUDASharedAttr>())
3676 return LangAS::cuda_shared;
3677 else if (D && D->hasAttr<CUDADeviceAttr>())
3678 return LangAS::cuda_device;
3679 else if (D && D->getType().isConstQualified())
3680 return LangAS::cuda_constant;
3681 else
3682 return LangAS::cuda_device;
3683 }
3684
3685 if (LangOpts.OpenMP) {
3686 LangAS AS;
3687 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3688 return AS;
3689 }
3690 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3691}
3692
3693LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3694 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3695 if (LangOpts.OpenCL)
3696 return LangAS::opencl_constant;
3697 if (auto AS = getTarget().getConstantAddressSpace())
3698 return AS.getValue();
3699 return LangAS::Default;
3700}
3701
3702// In address space agnostic languages, string literals are in default address
3703// space in AST. However, certain targets (e.g. amdgcn) request them to be
3704// emitted in constant address space in LLVM IR. To be consistent with other
3705// parts of AST, string literal global variables in constant address space
3706// need to be casted to default address space before being put into address
3707// map and referenced by other part of CodeGen.
3708// In OpenCL, string literals are in constant address space in AST, therefore
3709// they should not be casted to default address space.
3710static llvm::Constant *
3711castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3712 llvm::GlobalVariable *GV) {
3713 llvm::Constant *Cast = GV;
3714 if (!CGM.getLangOpts().OpenCL) {
3715 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3716 if (AS != LangAS::Default)
3717 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3718 CGM, GV, AS.getValue(), LangAS::Default,
3719 GV->getValueType()->getPointerTo(
3720 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3721 }
3722 }
3723 return Cast;
3724}
3725
3726template<typename SomeDecl>
3727void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3728 llvm::GlobalValue *GV) {
3729 if (!getLangOpts().CPlusPlus)
3730 return;
3731
3732 // Must have 'used' attribute, or else inline assembly can't rely on
3733 // the name existing.
3734 if (!D->template hasAttr<UsedAttr>())
3735 return;
3736
3737 // Must have internal linkage and an ordinary name.
3738 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3739 return;
3740
3741 // Must be in an extern "C" context. Entities declared directly within
3742 // a record are not extern "C" even if the record is in such a context.
3743 const SomeDecl *First = D->getFirstDecl();
3744 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3745 return;
3746
3747 // OK, this is an internal linkage entity inside an extern "C" linkage
3748 // specification. Make a note of that so we can give it the "expected"
3749 // mangled name if nothing else is using that name.
3750 std::pair<StaticExternCMap::iterator, bool> R =
3751 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3752
3753 // If we have multiple internal linkage entities with the same name
3754 // in extern "C" regions, none of them gets that name.
3755 if (!R.second)
3756 R.first->second = nullptr;
3757}
3758
3759static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3760 if (!CGM.supportsCOMDAT())
3761 return false;
3762
3763 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3764 // them being "merged" by the COMDAT Folding linker optimization.
3765 if (D.hasAttr<CUDAGlobalAttr>())
3766 return false;
3767
3768 if (D.hasAttr<SelectAnyAttr>())
3769 return true;
3770
3771 GVALinkage Linkage;
3772 if (auto *VD = dyn_cast<VarDecl>(&D))
3773 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3774 else
3775 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3776
3777 switch (Linkage) {
3778 case GVA_Internal:
3779 case GVA_AvailableExternally:
3780 case GVA_StrongExternal:
3781 return false;
3782 case GVA_DiscardableODR:
3783 case GVA_StrongODR:
3784 return true;
3785 }
3786 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3786)
;
3787}
3788
3789void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3790 llvm::GlobalObject &GO) {
3791 if (!shouldBeInCOMDAT(*this, D))
3792 return;
3793 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3794}
3795
3796/// Pass IsTentative as true if you want to create a tentative definition.
3797void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3798 bool IsTentative) {
3799 // OpenCL global variables of sampler type are translated to function calls,
3800 // therefore no need to be translated.
3801 QualType ASTTy = D->getType();
3802 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3803 return;
3804
3805 // If this is OpenMP device, check if it is legal to emit this global
3806 // normally.
3807 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3808 OpenMPRuntime->emitTargetGlobalVariable(D))
3809 return;
3810
3811 llvm::Constant *Init = nullptr;
3812 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3813 bool NeedsGlobalCtor = false;
3814 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3815
3816 const VarDecl *InitDecl;
3817 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3818
3819 Optional<ConstantEmitter> emitter;
3820
3821 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3822 // as part of their declaration." Sema has already checked for
3823 // error cases, so we just need to set Init to UndefValue.
3824 bool IsCUDASharedVar =
3825 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3826 // Shadows of initialized device-side global variables are also left
3827 // undefined.
3828 bool IsCUDAShadowVar =
3829 !getLangOpts().CUDAIsDevice &&
3830 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3831 D->hasAttr<CUDASharedAttr>());
3832 // HIP pinned shadow of initialized host-side global variables are also
3833 // left undefined.
3834 bool IsHIPPinnedShadowVar =
3835 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3836 if (getLangOpts().CUDA &&
3837 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3838 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3839 else if (!InitExpr) {
3840 // This is a tentative definition; tentative definitions are
3841 // implicitly initialized with { 0 }.
3842 //
3843 // Note that tentative definitions are only emitted at the end of
3844 // a translation unit, so they should never have incomplete
3845 // type. In addition, EmitTentativeDefinition makes sure that we
3846 // never attempt to emit a tentative definition if a real one
3847 // exists. A use may still exists, however, so we still may need
3848 // to do a RAUW.
3849 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")((!ASTTy->isIncompleteType() && "Unexpected incomplete type"
) ? static_cast<void> (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3849, __PRETTY_FUNCTION__))
;
3850 Init = EmitNullConstant(D->getType());
3851 } else {
3852 initializedGlobalDecl = GlobalDecl(D);
3853 emitter.emplace(*this);
3854 Init = emitter->tryEmitForInitializer(*InitDecl);
3855
3856 if (!Init) {
3857 QualType T = InitExpr->getType();
3858 if (D->getType()->isReferenceType())
3859 T = D->getType();
3860
3861 if (getLangOpts().CPlusPlus) {
3862 Init = EmitNullConstant(T);
3863 NeedsGlobalCtor = true;
3864 } else {
3865 ErrorUnsupported(D, "static initializer");
3866 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3867 }
3868 } else {
3869 // We don't need an initializer, so remove the entry for the delayed
3870 // initializer position (just in case this entry was delayed) if we
3871 // also don't need to register a destructor.
3872 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3873 DelayedCXXInitPosition.erase(D);
3874 }
3875 }
3876
3877 llvm::Type* InitType = Init->getType();
3878 llvm::Constant *Entry =
3879 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3880
3881 // Strip off a bitcast if we got one back.
3882 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3883 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3886, __PRETTY_FUNCTION__))
3884 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3886, __PRETTY_FUNCTION__))
3885 // All zero index gep.((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3886, __PRETTY_FUNCTION__))
3886 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode
() == llvm::Instruction::GetElementPtr) ? static_cast<void
> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3886, __PRETTY_FUNCTION__))
;
3887 Entry = CE->getOperand(0);
3888 }
3889
3890 // Entry is now either a Function or GlobalVariable.
3891 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3892
3893 // We have a definition after a declaration with the wrong type.
3894 // We must make a new GlobalVariable* and update everything that used OldGV
3895 // (a declaration or tentative definition) with the new GlobalVariable*
3896 // (which will be a definition).
3897 //
3898 // This happens if there is a prototype for a global (e.g.
3899 // "extern int x[];") and then a definition of a different type (e.g.
3900 // "int x[10];"). This also happens when an initializer has a different type
3901 // from the type of the global (this happens with unions).
3902 if (!GV || GV->getType()->getElementType() != InitType ||
3903 GV->getType()->getAddressSpace() !=
3904 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3905
3906 // Move the old entry aside so that we'll create a new one.
3907 Entry->setName(StringRef());
3908
3909 // Make a new global with the correct type, this is now guaranteed to work.
3910 GV = cast<llvm::GlobalVariable>(
3911 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3912
3913 // Replace all uses of the old global with the new global
3914 llvm::Constant *NewPtrForOldDecl =
3915 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3916 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3917
3918 // Erase the old global, since it is no longer used.
3919 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3920 }
3921
3922 MaybeHandleStaticInExternC(D, GV);
3923
3924 if (D->hasAttr<AnnotateAttr>())
3925 AddGlobalAnnotations(D, GV);
3926
3927 // Set the llvm linkage type as appropriate.
3928 llvm::GlobalValue::LinkageTypes Linkage =
3929 getLLVMLinkageVarDefinition(D, GV->isConstant());
3930
3931 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3932 // the device. [...]"
3933 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3934 // __device__, declares a variable that: [...]
3935 // Is accessible from all the threads within the grid and from the host
3936 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3937 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3938 if (GV && LangOpts.CUDA) {
3939 if (LangOpts.CUDAIsDevice) {
3940 if (Linkage != llvm::GlobalValue::InternalLinkage &&
3941 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3942 GV->setExternallyInitialized(true);
3943 } else {
3944 // Host-side shadows of external declarations of device-side
3945 // global variables become internal definitions. These have to
3946 // be internal in order to prevent name conflicts with global
3947 // host variables with the same name in a different TUs.
3948 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
3949 D->hasAttr<HIPPinnedShadowAttr>()) {
3950 Linkage = llvm::GlobalValue::InternalLinkage;
3951
3952 // Shadow variables and their properties must be registered
3953 // with CUDA runtime.
3954 unsigned Flags = 0;
3955 if (!D->hasDefinition())
3956 Flags |= CGCUDARuntime::ExternDeviceVar;
3957 if (D->hasAttr<CUDAConstantAttr>())
3958 Flags |= CGCUDARuntime::ConstantDeviceVar;
3959 // Extern global variables will be registered in the TU where they are
3960 // defined.
3961 if (!D->hasExternalStorage())
3962 getCUDARuntime().registerDeviceVar(D, *GV, Flags);
3963 } else if (D->hasAttr<CUDASharedAttr>())
3964 // __shared__ variables are odd. Shadows do get created, but
3965 // they are not registered with the CUDA runtime, so they
3966 // can't really be used to access their device-side
3967 // counterparts. It's not clear yet whether it's nvcc's bug or
3968 // a feature, but we've got to do the same for compatibility.
3969 Linkage = llvm::GlobalValue::InternalLinkage;
3970 }
3971 }
3972
3973 if (!IsHIPPinnedShadowVar)
3974 GV->setInitializer(Init);
3975 if (emitter) emitter->finalize(GV);
3976
3977 // If it is safe to mark the global 'constant', do so now.
3978 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3979 isTypeConstant(D->getType(), true));
3980
3981 // If it is in a read-only section, mark it 'constant'.
3982 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3983 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3984 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3985 GV->setConstant(true);
3986 }
3987
3988 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3989
3990
3991 // On Darwin, if the normal linkage of a C++ thread_local variable is
3992 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3993 // copies within a linkage unit; otherwise, the backing variable has
3994 // internal linkage and all accesses should just be calls to the
3995 // Itanium-specified entry point, which has the normal linkage of the
3996 // variable. This is to preserve the ability to change the implementation
3997 // behind the scenes.
3998 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3999 Context.getTargetInfo().getTriple().isOSDarwin() &&
4000 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4001 !llvm::GlobalVariable::isWeakLinkage(Linkage))
4002 Linkage = llvm::GlobalValue::InternalLinkage;
4003
4004 GV->setLinkage(Linkage);
4005 if (D->hasAttr<DLLImportAttr>())
4006 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4007 else if (D->hasAttr<DLLExportAttr>())
4008 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4009 else
4010 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4011
4012 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4013 // common vars aren't constant even if declared const.
4014 GV->setConstant(false);
4015 // Tentative definition of global variables may be initialized with
4016 // non-zero null pointers. In this case they should have weak linkage
4017 // since common linkage must have zero initializer and must not have
4018 // explicit section therefore cannot have non-zero initial value.
4019 if (!GV->getInitializer()->isNullValue())
4020 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4021 }
4022
4023 setNonAliasAttributes(D, GV);
4024
4025 if (D->getTLSKind() && !GV->isThreadLocal()) {
4026 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4027 CXXThreadLocals.push_back(D);
4028 setTLSMode(GV, *D);
4029 }
4030
4031 maybeSetTrivialComdat(*D, *GV);
4032
4033 // Emit the initializer function if necessary.
4034 if (NeedsGlobalCtor || NeedsGlobalDtor)
4035 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4036
4037 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4038
4039 // Emit global variable debug information.
4040 if (CGDebugInfo *DI = getModuleDebugInfo())
4041 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4042 DI->EmitGlobalVariable(GV, D);
4043}
4044
4045static bool isVarDeclStrongDefinition(const ASTContext &Context,
4046 CodeGenModule &CGM, const VarDecl *D,
4047 bool NoCommon) {
4048 // Don't give variables common linkage if -fno-common was specified unless it
4049 // was overridden by a NoCommon attribute.
4050 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4051 return true;
4052
4053 // C11 6.9.2/2:
4054 // A declaration of an identifier for an object that has file scope without
4055 // an initializer, and without a storage-class specifier or with the
4056 // storage-class specifier static, constitutes a tentative definition.
4057 if (D->getInit() || D->hasExternalStorage())
4058 return true;
4059
4060 // A variable cannot be both common and exist in a section.
4061 if (D->hasAttr<SectionAttr>())
4062 return true;
4063
4064 // A variable cannot be both common and exist in a section.
4065 // We don't try to determine which is the right section in the front-end.
4066 // If no specialized section name is applicable, it will resort to default.
4067 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4068 D->hasAttr<PragmaClangDataSectionAttr>() ||
4069 D->hasAttr<PragmaClangRodataSectionAttr>())
4070 return true;
4071
4072 // Thread local vars aren't considered common linkage.
4073 if (D->getTLSKind())
4074 return true;
4075
4076 // Tentative definitions marked with WeakImportAttr are true definitions.
4077 if (D->hasAttr<WeakImportAttr>())
4078 return true;
4079
4080 // A variable cannot be both common and exist in a comdat.
4081 if (shouldBeInCOMDAT(CGM, *D))
4082 return true;
4083
4084 // Declarations with a required alignment do not have common linkage in MSVC
4085 // mode.
4086 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4087 if (D->hasAttr<AlignedAttr>())
4088 return true;
4089 QualType VarType = D->getType();
4090 if (Context.isAlignmentRequired(VarType))
4091 return true;
4092
4093 if (const auto *RT = VarType->getAs<RecordType>()) {
4094 const RecordDecl *RD = RT->getDecl();
4095 for (const FieldDecl *FD : RD->fields()) {
4096 if (FD->isBitField())
4097 continue;
4098 if (FD->hasAttr<AlignedAttr>())
4099 return true;
4100 if (Context.isAlignmentRequired(FD->getType()))
4101 return true;
4102 }
4103 }
4104 }
4105
4106 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4107 // common symbols, so symbols with greater alignment requirements cannot be
4108 // common.
4109 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4110 // alignments for common symbols via the aligncomm directive, so this
4111 // restriction only applies to MSVC environments.
4112 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4113 Context.getTypeAlignIfKnown(D->getType()) >
4114 Context.toBits(CharUnits::fromQuantity(32)))
4115 return true;
4116
4117 return false;
4118}
4119
4120llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4121 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4122 if (Linkage == GVA_Internal)
4123 return llvm::Function::InternalLinkage;
4124
4125 if (D->hasAttr<WeakAttr>()) {
4126 if (IsConstantVariable)
4127 return llvm::GlobalVariable::WeakODRLinkage;
4128 else
4129 return llvm::GlobalVariable::WeakAnyLinkage;
4130 }
4131
4132 if (const auto *FD = D->getAsFunction())
4133 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4134 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4135
4136 // We are guaranteed to have a strong definition somewhere else,
4137 // so we can use available_externally linkage.
4138 if (Linkage == GVA_AvailableExternally)
4139 return llvm::GlobalValue::AvailableExternallyLinkage;
4140
4141 // Note that Apple's kernel linker doesn't support symbol
4142 // coalescing, so we need to avoid linkonce and weak linkages there.
4143 // Normally, this means we just map to internal, but for explicit
4144 // instantiations we'll map to external.
4145
4146 // In C++, the compiler has to emit a definition in every translation unit
4147 // that references the function. We should use linkonce_odr because
4148 // a) if all references in this translation unit are optimized away, we
4149 // don't need to codegen it. b) if the function persists, it needs to be
4150 // merged with other definitions. c) C++ has the ODR, so we know the
4151 // definition is dependable.
4152 if (Linkage == GVA_DiscardableODR)
4153 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4154 : llvm::Function::InternalLinkage;
4155
4156 // An explicit instantiation of a template has weak linkage, since
4157 // explicit instantiations can occur in multiple translation units
4158 // and must all be equivalent. However, we are not allowed to
4159 // throw away these explicit instantiations.
4160 //
4161 // We don't currently support CUDA device code spread out across multiple TUs,
4162 // so say that CUDA templates are either external (for kernels) or internal.
4163 // This lets llvm perform aggressive inter-procedural optimizations.
4164 if (Linkage == GVA_StrongODR) {
4165 if (Context.getLangOpts().AppleKext)
4166 return llvm::Function::ExternalLinkage;
4167 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4168 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4169 : llvm::Function::InternalLinkage;
4170 return llvm::Function::WeakODRLinkage;
4171 }
4172
4173 // C++ doesn't have tentative definitions and thus cannot have common
4174 // linkage.
4175 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4176 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4177 CodeGenOpts.NoCommon))
4178 return llvm::GlobalVariable::CommonLinkage;
4179
4180 // selectany symbols are externally visible, so use weak instead of
4181 // linkonce. MSVC optimizes away references to const selectany globals, so
4182 // all definitions should be the same and ODR linkage should be used.
4183 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4184 if (D->hasAttr<SelectAnyAttr>())
4185 return llvm::GlobalVariable::WeakODRLinkage;
4186
4187 // Otherwise, we have strong external linkage.
4188 assert(Linkage == GVA_StrongExternal)((Linkage == GVA_StrongExternal) ? static_cast<void> (0
) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4188, __PRETTY_FUNCTION__))
;
4189 return llvm::GlobalVariable::ExternalLinkage;
4190}
4191
4192llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4193 const VarDecl *VD, bool IsConstant) {
4194 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4195 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4196}
4197
4198/// Replace the uses of a function that was declared with a non-proto type.
4199/// We want to silently drop extra arguments from call sites
4200static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4201 llvm::Function *newFn) {
4202 // Fast path.
4203 if (old->use_empty()) return;
4204
4205 llvm::Type *newRetTy = newFn->getReturnType();
4206 SmallVector<llvm::Value*, 4> newArgs;
4207 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4208
4209 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4210 ui != ue; ) {
4211 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4212 llvm::User *user = use->getUser();
4213
4214 // Recognize and replace uses of bitcasts. Most calls to
4215 // unprototyped functions will use bitcasts.
4216 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4217 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4218 replaceUsesOfNonProtoConstant(bitcast, newFn);
4219 continue;
4220 }
4221
4222 // Recognize calls to the function.
4223 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4224 if (!callSite) continue;
4225 if (!callSite->isCallee(&*use))
4226 continue;
4227
4228 // If the return types don't match exactly, then we can't
4229 // transform this call unless it's dead.
4230 if (callSite->getType() != newRetTy && !callSite->use_empty())
4231 continue;
4232
4233 // Get the call site's attribute list.
4234 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4235 llvm::AttributeList oldAttrs = callSite->getAttributes();
4236
4237 // If the function was passed too few arguments, don't transform.
4238 unsigned newNumArgs = newFn->arg_size();
4239 if (callSite->arg_size() < newNumArgs)
4240 continue;
4241
4242 // If extra arguments were passed, we silently drop them.
4243 // If any of the types mismatch, we don't transform.
4244 unsigned argNo = 0;
4245 bool dontTransform = false;
4246 for (llvm::Argument &A : newFn->args()) {
4247 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4248 dontTransform = true;
4249 break;
4250 }
4251
4252 // Add any parameter attributes.
4253 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4254 argNo++;
4255 }
4256 if (dontTransform)
4257 continue;
4258
4259 // Okay, we can transform this. Create the new call instruction and copy
4260 // over the required information.
4261 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4262
4263 // Copy over any operand bundles.
4264 callSite->getOperandBundlesAsDefs(newBundles);
4265
4266 llvm::CallBase *newCall;
4267 if (dyn_cast<llvm::CallInst>(callSite)) {
4268 newCall =
4269 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4270 } else {
4271 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4272 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4273 oldInvoke->getUnwindDest(), newArgs,
4274 newBundles, "", callSite);
4275 }
4276 newArgs.clear(); // for the next iteration
4277
4278 if (!newCall->getType()->isVoidTy())
4279 newCall->takeName(callSite);
4280 newCall->setAttributes(llvm::AttributeList::get(
4281 newFn->getContext(), oldAttrs.getFnAttributes(),
4282 oldAttrs.getRetAttributes(), newArgAttrs));
4283 newCall->setCallingConv(callSite->getCallingConv());
4284
4285 // Finally, remove the old call, replacing any uses with the new one.
4286 if (!callSite->use_empty())
4287 callSite->replaceAllUsesWith(newCall);
4288
4289 // Copy debug location attached to CI.
4290 if (callSite->getDebugLoc())
4291 newCall->setDebugLoc(callSite->getDebugLoc());
4292
4293 callSite->eraseFromParent();
4294 }
4295}
4296
4297/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4298/// implement a function with no prototype, e.g. "int foo() {}". If there are
4299/// existing call uses of the old function in the module, this adjusts them to
4300/// call the new function directly.
4301///
4302/// This is not just a cleanup: the always_inline pass requires direct calls to
4303/// functions to be able to inline them. If there is a bitcast in the way, it
4304/// won't inline them. Instcombine normally deletes these calls, but it isn't
4305/// run at -O0.
4306static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4307 llvm::Function *NewFn) {
4308 // If we're redefining a global as a function, don't transform it.
4309 if (!isa<llvm::Function>(Old)) return;
4310
4311 replaceUsesOfNonProtoConstant(Old, NewFn);
4312}
4313
4314void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4315 auto DK = VD->isThisDeclarationADefinition();
4316 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4317 return;
4318
4319 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4320 // If we have a definition, this might be a deferred decl. If the
4321 // instantiation is explicit, make sure we emit it at the end.
4322 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4323 GetAddrOfGlobalVar(VD);
4324
4325 EmitTopLevelDecl(VD);
4326}
4327
4328void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4329 llvm::GlobalValue *GV) {
4330 const auto *D = cast<FunctionDecl>(GD.getDecl());
4331
4332 // Compute the function info and LLVM type.
4333 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4334 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4335
4336 // Get or create the prototype for the function.
4337 if (!GV || (GV->getType()->getElementType() != Ty))
4338 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4339 /*DontDefer=*/true,
4340 ForDefinition));
4341
4342 // Already emitted.
4343 if (!GV->isDeclaration())
4344 return;
4345
4346 // We need to set linkage and visibility on the function before
4347 // generating code for it because various parts of IR generation
4348 // want to propagate this information down (e.g. to local static
4349 // declarations).
4350 auto *Fn = cast<llvm::Function>(GV);
4351 setFunctionLinkage(GD, Fn);
4352
4353 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4354 setGVProperties(Fn, GD);
4355
4356 MaybeHandleStaticInExternC(D, Fn);
4357
4358
4359 maybeSetTrivialComdat(*D, *Fn);
4360
4361 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4362
4363 setNonAliasAttributes(GD, Fn);
4364 SetLLVMFunctionAttributesForDefinition(D, Fn);
4365
4366 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4367 AddGlobalCtor(Fn, CA->getPriority());
4368 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4369 AddGlobalDtor(Fn, DA->getPriority());
4370 if (D->hasAttr<AnnotateAttr>())
4371 AddGlobalAnnotations(D, Fn);
4372}
4373
4374void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4375 const auto *D = cast<ValueDecl>(GD.getDecl());
4376 const AliasAttr *AA = D->getAttr<AliasAttr>();
4377 assert(AA && "Not an alias?")((AA && "Not an alias?") ? static_cast<void> (0
) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4377, __PRETTY_FUNCTION__))
;
4378
4379 StringRef MangledName = getMangledName(GD);
4380
4381 if (AA->getAliasee() == MangledName) {
4382 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4383 return;
4384 }
4385
4386 // If there is a definition in the module, then it wins over the alias.
4387 // This is dubious, but allow it to be safe. Just ignore the alias.
4388 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4389 if (Entry && !Entry->isDeclaration())
4390 return;
4391
4392 Aliases.push_back(GD);
4393
4394 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4395
4396 // Create a reference to the named value. This ensures that it is emitted
4397 // if a deferred decl.
4398 llvm::Constant *Aliasee;
4399 llvm::GlobalValue::LinkageTypes LT;
4400 if (isa<llvm::FunctionType>(DeclTy)) {
4401 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4402 /*ForVTable=*/false);
4403 LT = getFunctionLinkage(GD);
4404 } else {
4405 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4406 llvm::PointerType::getUnqual(DeclTy),
4407 /*D=*/nullptr);
4408 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4409 D->getType().isConstQualified());
4410 }
4411
4412 // Create the new alias itself, but don't set a name yet.
4413 auto *GA =
4414 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4415
4416 if (Entry) {
4417 if (GA->getAliasee() == Entry) {
4418 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4419 return;
4420 }
4421
4422 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4422, __PRETTY_FUNCTION__))
;
4423
4424 // If there is a declaration in the module, then we had an extern followed
4425 // by the alias, as in:
4426 // extern int test6();
4427 // ...
4428 // int test6() __attribute__((alias("test7")));
4429 //
4430 // Remove it and replace uses of it with the alias.
4431 GA->takeName(Entry);
4432
4433 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4434 Entry->getType()));
4435 Entry->eraseFromParent();
4436 } else {
4437 GA->setName(MangledName);
4438 }
4439
4440 // Set attributes which are particular to an alias; this is a
4441 // specialization of the attributes which may be set on a global
4442 // variable/function.
4443 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4444 D->isWeakImported()) {
4445 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4446 }
4447
4448 if (const auto *VD = dyn_cast<VarDecl>(D))
4449 if (VD->getTLSKind())
4450 setTLSMode(GA, *VD);
4451
4452 SetCommonAttributes(GD, GA);
4453}
4454
4455void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4456 const auto *D = cast<ValueDecl>(GD.getDecl());
4457 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4458 assert(IFA && "Not an ifunc?")((IFA && "Not an ifunc?") ? static_cast<void> (
0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4458, __PRETTY_FUNCTION__))
;
4459
4460 StringRef MangledName = getMangledName(GD);
4461
4462 if (IFA->getResolver() == MangledName) {
4463 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4464 return;
4465 }
4466
4467 // Report an error if some definition overrides ifunc.
4468 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4469 if (Entry && !Entry->isDeclaration()) {
4470 GlobalDecl OtherGD;
4471 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4472 DiagnosedConflictingDefinitions.insert(GD).second) {
4473 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4474 << MangledName;
4475 Diags.Report(OtherGD.getDecl()->getLocation(),
4476 diag::note_previous_definition);
4477 }
4478 return;
4479 }
4480
4481 Aliases.push_back(GD);
4482
4483 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4484 llvm::Constant *Resolver =
4485 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4486 /*ForVTable=*/false);
4487 llvm::GlobalIFunc *GIF =
4488 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4489 "", Resolver, &getModule());
4490 if (Entry) {
4491 if (GIF->getResolver() == Entry) {
4492 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4493 return;
4494 }
4495 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4495, __PRETTY_FUNCTION__))
;
4496
4497 // If there is a declaration in the module, then we had an extern followed
4498 // by the ifunc, as in:
4499 // extern int test();
4500 // ...
4501 // int test() __attribute__((ifunc("resolver")));
4502 //
4503 // Remove it and replace uses of it with the ifunc.
4504 GIF->takeName(Entry);
4505
4506 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4507 Entry->getType()));
4508 Entry->eraseFromParent();
4509 } else
4510 GIF->setName(MangledName);
4511
4512 SetCommonAttributes(GD, GIF);
4513}
4514
4515llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4516 ArrayRef<llvm::Type*> Tys) {
4517 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4518 Tys);
4519}
4520
4521static llvm::StringMapEntry<llvm::GlobalVariable *> &
4522GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4523 const StringLiteral *Literal, bool TargetIsLSB,
4524 bool &IsUTF16, unsigned &StringLength) {
4525 StringRef String = Literal->getString();
4526 unsigned NumBytes = String.size();
4527
4528 // Check for simple case.
4529 if (!Literal->containsNonAsciiOrNull()) {
4530 StringLength = NumBytes;
4531 return *Map.insert(std::make_pair(String, nullptr)).first;
4532 }
4533
4534 // Otherwise, convert the UTF8 literals into a string of shorts.
4535 IsUTF16 = true;
4536
4537 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4538 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4539 llvm::UTF16 *ToPtr = &ToBuf[0];
4540
4541 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4542 ToPtr + NumBytes, llvm::strictConversion);
4543
4544 // ConvertUTF8toUTF16 returns the length in ToPtr.
4545 StringLength = ToPtr - &ToBuf[0];
4546
4547 // Add an explicit null.
4548 *ToPtr = 0;
4549 return *Map.insert(std::make_pair(
4550 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4551 (StringLength + 1) * 2),
4552 nullptr)).first;
4553}
4554
4555ConstantAddress
4556CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4557 unsigned StringLength = 0;
4558 bool isUTF16 = false;
4559 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4560 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4561 getDataLayout().isLittleEndian(), isUTF16,
4562 StringLength);
4563
4564 if (auto *C = Entry.second)
4565 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4566
4567 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4568 llvm::Constant *Zeros[] = { Zero, Zero };
4569
4570 const ASTContext &Context = getContext();
4571 const llvm::Triple &Triple = getTriple();
4572
4573 const auto CFRuntime = getLangOpts().CFRuntime;
4574 const bool IsSwiftABI =
4575 static_cast<unsigned>(CFRuntime) >=
4576 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4577 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4578
4579 // If we don't already have it, get __CFConstantStringClassReference.
4580 if (!CFConstantStringClassRef) {
4581 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4582 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4583 Ty = llvm::ArrayType::get(Ty, 0);
4584
4585 switch (CFRuntime) {
4586 default: break;
4587 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH[[gnu::fallthrough]];
4588 case LangOptions::CoreFoundationABI::Swift5_0:
4589 CFConstantStringClassName =
4590 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4591 : "$s10Foundation19_NSCFConstantStringCN";
4592 Ty = IntPtrTy;
4593 break;
4594 case LangOptions::CoreFoundationABI::Swift4_2:
4595 CFConstantStringClassName =
4596 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4597 : "$S10Foundation19_NSCFConstantStringCN";
4598 Ty = IntPtrTy;
4599 break;
4600 case LangOptions::CoreFoundationABI::Swift4_1:
4601 CFConstantStringClassName =
4602 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4603 : "__T010Foundation19_NSCFConstantStringCN";
4604 Ty = IntPtrTy;
4605 break;
4606 }
4607
4608 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4609
4610 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4611 llvm::GlobalValue *GV = nullptr;
4612
4613 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4614 IdentifierInfo &II = Context.Idents.get(GV->getName());
4615 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4616 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4617
4618 const VarDecl *VD = nullptr;
4619 for (const auto &Result : DC->lookup(&II))
4620 if ((VD = dyn_cast<VarDecl>(Result)))
4621 break;
4622
4623 if (Triple.isOSBinFormatELF()) {
4624 if (!VD)
4625 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4626 } else {
4627 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4628 if (!VD || !VD->hasAttr<DLLExportAttr>())
4629 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4630 else
4631 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4632 }
4633
4634 setDSOLocal(GV);
4635 }
4636 }
4637
4638 // Decay array -> ptr
4639 CFConstantStringClassRef =
4640 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4641 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4642 }
4643
4644 QualType CFTy = Context.getCFConstantStringType();
4645
4646 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4647
4648 ConstantInitBuilder Builder(*this);
4649 auto Fields = Builder.beginStruct(STy);
4650
4651 // Class pointer.
4652 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4653
4654 // Flags.
4655 if (IsSwiftABI) {
4656 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4657 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4658 } else {
4659 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4660 }
4661
4662 // String pointer.
4663 llvm::Constant *C = nullptr;
4664 if (isUTF16) {
4665 auto Arr = llvm::makeArrayRef(
4666 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4667 Entry.first().size() / 2);
4668 C = llvm::ConstantDataArray::get(VMContext, Arr);
4669 } else {
4670 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4671 }
4672
4673 // Note: -fwritable-strings doesn't make the backing store strings of
4674 // CFStrings writable. (See <rdar://problem/10657500>)
4675 auto *GV =
4676 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4677 llvm::GlobalValue::PrivateLinkage, C, ".str");
4678 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4679 // Don't enforce the target's minimum global alignment, since the only use
4680 // of the string is via this class initializer.
4681 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4682 : Context.getTypeAlignInChars(Context.CharTy);
4683 GV->setAlignment(Align.getQuantity());
4684
4685 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4686 // Without it LLVM can merge the string with a non unnamed_addr one during
4687 // LTO. Doing that changes the section it ends in, which surprises ld64.
4688 if (Triple.isOSBinFormatMachO())
4689 GV->setSection(isUTF16 ? "__TEXT,__ustring"
4690 : "__TEXT,__cstring,cstring_literals");
4691 // Make sure the literal ends up in .rodata to allow for safe ICF and for
4692 // the static linker to adjust permissions to read-only later on.
4693 else if (Triple.isOSBinFormatELF())
4694 GV->setSection(".rodata");
4695
4696 // String.
4697 llvm::Constant *Str =
4698 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4699
4700 if (isUTF16)
4701 // Cast the UTF16 string to the correct type.
4702 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4703 Fields.add(Str);
4704
4705 // String length.
4706 llvm::IntegerType *LengthTy =
4707 llvm::IntegerType::get(getModule().getContext(),
4708 Context.getTargetInfo().getLongWidth());
4709 if (IsSwiftABI) {
4710 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4711 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4712 LengthTy = Int32Ty;
4713 else
4714 LengthTy = IntPtrTy;
4715 }
4716 Fields.addInt(LengthTy, StringLength);
4717
4718 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4719 // properly aligned on 32-bit platforms.
4720 CharUnits Alignment =
4721 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4722
4723 // The struct.
4724 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4725 /*isConstant=*/false,
4726 llvm::GlobalVariable::PrivateLinkage);
4727 GV->addAttribute("objc_arc_inert");
4728 switch (Triple.getObjectFormat()) {
4729 case llvm::Triple::UnknownObjectFormat:
4730 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4730)
;
4731 case llvm::Triple::XCOFF:
4732 llvm_unreachable("XCOFF is not yet implemented")::llvm::llvm_unreachable_internal("XCOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4732)
;
4733 case llvm::Triple::COFF:
4734 case llvm::Triple::ELF:
4735 case llvm::Triple::Wasm:
4736 GV->setSection("cfstring");
4737 break;
4738 case llvm::Triple::MachO:
4739 GV->setSection("__DATA,__cfstring");
4740 break;
4741 }
4742 Entry.second = GV;
4743
4744 return ConstantAddress(GV, Alignment);
4745}
4746
4747bool CodeGenModule::getExpressionLocationsEnabled() const {
4748 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4749}
4750
4751QualType CodeGenModule::getObjCFastEnumerationStateType() {
4752 if (ObjCFastEnumerationStateType.isNull()) {
4753 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4754 D->startDefinition();
4755
4756 QualType FieldTypes[] = {
4757 Context.UnsignedLongTy,
4758 Context.getPointerType(Context.getObjCIdType()),
4759 Context.getPointerType(Context.UnsignedLongTy),
4760 Context.getConstantArrayType(Context.UnsignedLongTy,
4761 llvm::APInt(32, 5), ArrayType::Normal, 0)
4762 };
4763
4764 for (size_t i = 0; i < 4; ++i) {
4765 FieldDecl *Field = FieldDecl::Create(Context,
4766 D,
4767 SourceLocation(),
4768 SourceLocation(), nullptr,
4769 FieldTypes[i], /*TInfo=*/nullptr,
4770 /*BitWidth=*/nullptr,
4771 /*Mutable=*/false,
4772 ICIS_NoInit);
4773 Field->setAccess(AS_public);
4774 D->addDecl(Field);
4775 }
4776
4777 D->completeDefinition();
4778 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4779 }
4780
4781 return ObjCFastEnumerationStateType;
4782}
4783
4784llvm::Constant *
4785CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4786 assert(!E->getType()->isPointerType() && "Strings are always arrays")((!E->getType()->isPointerType() && "Strings are always arrays"
) ? static_cast<void> (0) : __assert_fail ("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4786, __PRETTY_FUNCTION__))
;
4787
4788 // Don't emit it as the address of the string, emit the string data itself
4789 // as an inline array.
4790 if (E->getCharByteWidth() == 1) {
4791 SmallString<64> Str(E->getString());
4792
4793 // Resize the string to the right size, which is indicated by its type.
4794 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4795 Str.resize(CAT->getSize().getZExtValue());
4796 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4797 }
4798
4799 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4800 llvm::Type *ElemTy = AType->getElementType();
4801 unsigned NumElements = AType->getNumElements();
4802
4803 // Wide strings have either 2-byte or 4-byte elements.
4804 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4805 SmallVector<uint16_t, 32> Elements;
4806 Elements.reserve(NumElements);
4807
4808 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4809 Elements.push_back(E->getCodeUnit(i));
4810 Elements.resize(NumElements);
4811 return llvm::ConstantDataArray::get(VMContext, Elements);
4812 }
4813
4814 assert(ElemTy->getPrimitiveSizeInBits() == 32)((ElemTy->getPrimitiveSizeInBits() == 32) ? static_cast<
void> (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4814, __PRETTY_FUNCTION__))
;
4815 SmallVector<uint32_t, 32> Elements;
4816 Elements.reserve(NumElements);
4817
4818 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4819 Elements.push_back(E->getCodeUnit(i));
4820 Elements.resize(NumElements);
4821 return llvm::ConstantDataArray::get(VMContext, Elements);
4822}
4823
4824static llvm::GlobalVariable *
4825GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4826 CodeGenModule &CGM, StringRef GlobalName,
4827 CharUnits Alignment) {
4828 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4829 CGM.getStringLiteralAddressSpace());
4830
4831 llvm::Module &M = CGM.getModule();
4832 // Create a global variable for this string
4833 auto *GV = new llvm::GlobalVariable(
4834 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4835 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4836 GV->setAlignment(Alignment.getQuantity());
4837 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4838 if (GV->isWeakForLinker()) {
4839 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")((CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? static_cast<void> (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4839, __PRETTY_FUNCTION__))
;
4840 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4841 }
4842 CGM.setDSOLocal(GV);
4843
4844 return GV;
4845}
4846
4847/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4848/// constant array for the given string literal.
4849ConstantAddress
4850CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4851 StringRef Name) {
4852 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4853
4854 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4855 llvm::GlobalVariable **Entry = nullptr;
4856 if (!LangOpts.WritableStrings) {
4857 Entry = &ConstantStringMap[C];
4858 if (auto GV = *Entry) {
4859 if (Alignment.getQuantity() > GV->getAlignment())
4860 GV->setAlignment(Alignment.getQuantity());
4861 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4862 Alignment);
4863 }
4864 }
4865
4866 SmallString<256> MangledNameBuffer;
4867 StringRef GlobalVariableName;
4868 llvm::GlobalValue::LinkageTypes LT;
4869
4870 // Mangle the string literal if that's how the ABI merges duplicate strings.
4871 // Don't do it if they are writable, since we don't want writes in one TU to
4872 // affect strings in another.
4873 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4874 !LangOpts.WritableStrings) {
4875 llvm::raw_svector_ostream Out(MangledNameBuffer);
4876 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4877 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4878 GlobalVariableName = MangledNameBuffer;
4879 } else {
4880 LT = llvm::GlobalValue::PrivateLinkage;
4881 GlobalVariableName = Name;
4882 }
4883
4884 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4885 if (Entry)
4886 *Entry = GV;
4887
4888 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4889 QualType());
4890
4891 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4892 Alignment);
4893}
4894
4895/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4896/// array for the given ObjCEncodeExpr node.
4897ConstantAddress
4898CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4899 std::string Str;
4900 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4901
4902 return GetAddrOfConstantCString(Str);
4903}
4904
4905/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4906/// the literal and a terminating '\0' character.
4907/// The result has pointer to array type.
4908ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4909 const std::string &Str, const char *GlobalName) {
4910 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4911 CharUnits Alignment =
4912 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4913
4914 llvm::Constant *C =
4915 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4916
4917 // Don't share any string literals if strings aren't constant.
4918 llvm::GlobalVariable **Entry = nullptr;
4919 if (!LangOpts.WritableStrings) {
4920 Entry = &ConstantStringMap[C];
4921 if (auto GV = *Entry) {
4922 if (Alignment.getQuantity() > GV->getAlignment())
4923 GV->setAlignment(Alignment.getQuantity());
4924 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4925 Alignment);
4926 }
4927 }
4928
4929 // Get the default prefix if a name wasn't specified.
4930 if (!GlobalName)
4931 GlobalName = ".str";
4932 // Create a global variable for this.
4933 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4934 GlobalName, Alignment);
4935 if (Entry)
4936 *Entry = GV;
4937
4938 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4939 Alignment);
4940}
4941
4942ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4943 const MaterializeTemporaryExpr *E, const Expr *Init) {
4944 assert((E->getStorageDuration() == SD_Static ||(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4945, __PRETTY_FUNCTION__))
4945 E->getStorageDuration() == SD_Thread) && "not a global temporary")(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4945, __PRETTY_FUNCTION__))
;
4946 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4947
4948 // If we're not materializing a subobject of the temporary, keep the
4949 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4950 QualType MaterializedType = Init->getType();
4951 if (Init == E->GetTemporaryExpr())
4952 MaterializedType = E->getType();
4953
4954 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4955
4956 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4957 return ConstantAddress(Slot, Align);
4958
4959 // FIXME: If an externally-visible declaration extends multiple temporaries,
4960 // we need to give each temporary the same name in every translation unit (and
4961 // we also need to make the temporaries externally-visible).
4962 SmallString<256> Name;
4963 llvm::raw_svector_ostream Out(Name);
4964 getCXXABI().getMangleContext().mangleReferenceTemporary(
4965 VD, E->getManglingNumber(), Out);
4966
4967 APValue *Value = nullptr;
4968 if (E->getStorageDuration() == SD_Static) {
4969 // We might have a cached constant initializer for this temporary. Note
4970 // that this might have a different value from the value computed by
4971 // evaluating the initializer if the surrounding constant expression
4972 // modifies the temporary.
4973 Value = getContext().getMaterializedTemporaryValue(E, false);
4974 if (Value && Value->isAbsent())
4975 Value = nullptr;
4976 }
4977
4978 // Try evaluating it now, it might have a constant initializer.
4979 Expr::EvalResult EvalResult;
4980 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4981 !EvalResult.hasSideEffects())
4982 Value = &EvalResult.Val;
4983
4984 LangAS AddrSpace =
4985 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4986
4987 Optional<ConstantEmitter> emitter;
4988 llvm::Constant *InitialValue = nullptr;
4989 bool Constant = false;
4990 llvm::Type *Type;
4991 if (Value) {
4992 // The temporary has a constant initializer, use it.
4993 emitter.emplace(*this);
4994 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4995 MaterializedType);
4996 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4997 Type = InitialValue->getType();
4998 } else {
4999 // No initializer, the initialization will be provided when we
5000 // initialize the declaration which performed lifetime extension.
5001 Type = getTypes().ConvertTypeForMem(MaterializedType);
5002 }
5003
5004 // Create a global variable for this lifetime-extended temporary.
5005 llvm::GlobalValue::LinkageTypes Linkage =
5006 getLLVMLinkageVarDefinition(VD, Constant);
5007 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5008 const VarDecl *InitVD;
5009 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5010 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5011 // Temporaries defined inside a class get linkonce_odr linkage because the
5012 // class can be defined in multiple translation units.
5013 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5014 } else {
5015 // There is no need for this temporary to have external linkage if the
5016 // VarDecl has external linkage.
5017 Linkage = llvm::GlobalVariable::InternalLinkage;
5018 }
5019 }
5020 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5021 auto *GV = new llvm::GlobalVariable(
5022 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5023 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5024 if (emitter) emitter->finalize(GV);
5025 setGVProperties(GV, VD);
5026 GV->setAlignment(Align.getQuantity());
5027 if (supportsCOMDAT() && GV->isWeakForLinker())
5028 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5029 if (VD->getTLSKind())
5030 setTLSMode(GV, *VD);
5031 llvm::Constant *CV = GV;
5032 if (AddrSpace != LangAS::Default)
5033 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5034 *this, GV, AddrSpace, LangAS::Default,
5035 Type->getPointerTo(
5036 getContext().getTargetAddressSpace(LangAS::Default)));
5037 MaterializedGlobalTemporaryMap[E] = CV;
5038 return ConstantAddress(CV, Align);
5039}
5040
5041/// EmitObjCPropertyImplementations - Emit information for synthesized
5042/// properties for an implementation.
5043void CodeGenModule::EmitObjCPropertyImplementations(const
5044 ObjCImplementationDecl *D) {
5045 for (const auto *PID : D->property_impls()) {
5046 // Dynamic is just for type-checking.
5047 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5048 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5049
5050 // Determine which methods need to be implemented, some may have
5051 // been overridden. Note that ::isPropertyAccessor is not the method
5052 // we want, that just indicates if the decl came from a
5053 // property. What we want to know is if the method is defined in
5054 // this implementation.
5055 if (!D->getInstanceMethod(PD->getGetterName()))
5056 CodeGenFunction(*this).GenerateObjCGetter(
5057 const_cast<ObjCImplementationDecl *>(D), PID);
5058 if (!PD->isReadOnly() &&
5059 !D->getInstanceMethod(PD->getSetterName()))
5060 CodeGenFunction(*this).GenerateObjCSetter(
5061 const_cast<ObjCImplementationDecl *>(D), PID);
5062 }
5063 }
5064}
5065
5066static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5067 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5068 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5069 ivar; ivar = ivar->getNextIvar())
5070 if (ivar->getType().isDestructedType())
5071 return true;
5072
5073 return false;
5074}
5075
5076static bool AllTrivialInitializers(CodeGenModule &CGM,
5077 ObjCImplementationDecl *D) {
5078 CodeGenFunction CGF(CGM);
5079 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5080 E = D->init_end(); B != E; ++B) {
5081 CXXCtorInitializer *CtorInitExp = *B;
5082 Expr *Init = CtorInitExp->getInit();
5083 if (!CGF.isTrivialInitializer(Init))
5084 return false;
5085 }
5086 return true;
5087}
5088
5089/// EmitObjCIvarInitializations - Emit information for ivar initialization
5090/// for an implementation.
5091void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5092 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5093 if (needsDestructMethod(D)) {
5094 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5095 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5096 ObjCMethodDecl *DTORMethod =
5097 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5098 cxxSelector, getContext().VoidTy, nullptr, D,
5099 /*isInstance=*/true, /*isVariadic=*/false,
5100 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5101 /*isDefined=*/false, ObjCMethodDecl::Required);
5102 D->addInstanceMethod(DTORMethod);
5103 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5104 D->setHasDestructors(true);
5105 }
5106
5107 // If the implementation doesn't have any ivar initializers, we don't need
5108 // a .cxx_construct.
5109 if (D->getNumIvarInitializers() == 0 ||
5110 AllTrivialInitializers(*this, D))
5111 return;
5112
5113 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5114 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5115 // The constructor returns 'self'.
5116 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5117 D->getLocation(),
5118 D->getLocation(),
5119 cxxSelector,
5120 getContext().getObjCIdType(),
5121 nullptr, D, /*isInstance=*/true,
5122 /*isVariadic=*/false,
5123 /*isPropertyAccessor=*/true,
5124 /*isImplicitlyDeclared=*/true,
5125 /*isDefined=*/false,
5126 ObjCMethodDecl::Required);
5127 D->addInstanceMethod(CTORMethod);
5128 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5129 D->setHasNonZeroConstructors(true);
5130}
5131
5132// EmitLinkageSpec - Emit all declarations in a linkage spec.
5133void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5134 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5135 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5136 ErrorUnsupported(LSD, "linkage spec");
5137 return;
5138 }
5139
5140 EmitDeclContext(LSD);
5141}
5142
5143void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5144 for (auto *I : DC->decls()) {
5145 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5146 // are themselves considered "top-level", so EmitTopLevelDecl on an
5147 // ObjCImplDecl does not recursively visit them. We need to do that in
5148 // case they're nested inside another construct (LinkageSpecDecl /
5149 // ExportDecl) that does stop them from being considered "top-level".
5150 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5151 for (auto *M : OID->methods())
5152 EmitTopLevelDecl(M);
5153 }
5154
5155 EmitTopLevelDecl(I);
5156 }
5157}
5158
5159/// EmitTopLevelDecl - Emit code for a single top level declaration.
5160void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5161 // Ignore dependent declarations.
5162 if (D->isTemplated())
5163 return;
5164
5165 switch (D->getKind()) {
5166 case Decl::CXXConversion:
5167 case Decl::CXXMethod:
5168 case Decl::Function:
5169 EmitGlobal(cast<FunctionDecl>(D));
5170 // Always provide some coverage mapping
5171 // even for the functions that aren't emitted.
5172 AddDeferredUnusedCoverageMapping(D);
5173 break;
5174
5175 case Decl::CXXDeductionGuide:
5176 // Function-like, but does not result in code emission.
5177 break;
5178
5179 case Decl::Var:
5180 case Decl::Decomposition:
5181 case Decl::VarTemplateSpecialization:
5182 EmitGlobal(cast<VarDecl>(D));
5183 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5184 for (auto *B : DD->bindings())
5185 if (auto *HD = B->getHoldingVar())
5186 EmitGlobal(HD);
5187 break;
5188
5189 // Indirect fields from global anonymous structs and unions can be
5190 // ignored; only the actual variable requires IR gen support.
5191 case Decl::IndirectField:
5192 break;
5193
5194 // C++ Decls
5195 case Decl::Namespace:
5196 EmitDeclContext(cast<NamespaceDecl>(D));
5197 break;
5198 case Decl::ClassTemplateSpecialization: {
5199 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5200 if (DebugInfo &&
5201 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5202 Spec->hasDefinition())
5203 DebugInfo->completeTemplateDefinition(*Spec);
5204 } LLVM_FALLTHROUGH[[gnu::fallthrough]];
5205 case Decl::CXXRecord:
5206 if (DebugInfo) {
5207 if (auto *ES = D->getASTContext().getExternalSource())
5208 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5209 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5210 }
5211 // Emit any static data members, they may be definitions.
5212 for (auto *I : cast<CXXRecordDecl>(D)->decls())
5213 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5214 EmitTopLevelDecl(I);
5215 break;
5216 // No code generation needed.
5217 case Decl::UsingShadow:
5218 case Decl::ClassTemplate:
5219 case Decl::VarTemplate:
5220 case Decl::Concept:
5221 case Decl::VarTemplatePartialSpecialization:
5222 case Decl::FunctionTemplate:
5223 case Decl::TypeAliasTemplate:
5224 case Decl::Block:
5225 case Decl::Empty:
5226 case Decl::Binding:
5227 break;
5228 case Decl::Using: // using X; [C++]
5229 if (CGDebugInfo *DI = getModuleDebugInfo())
5230 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5231 return;
5232 case Decl::NamespaceAlias:
5233 if (CGDebugInfo *DI = getModuleDebugInfo())
5234 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5235 return;
5236 case Decl::UsingDirective: // using namespace X; [C++]
5237 if (CGDebugInfo *DI = getModuleDebugInfo())
5238 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5239 return;
5240 case Decl::CXXConstructor:
5241 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5242 break;
5243 case Decl::CXXDestructor:
5244 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5245 break;
5246
5247 case Decl::StaticAssert:
5248 // Nothing to do.
5249 break;
5250
5251 // Objective-C Decls
5252
5253 // Forward declarations, no (immediate) code generation.
5254 case Decl::ObjCInterface:
5255 case Decl::ObjCCategory:
5256 break;
5257
5258 case Decl::ObjCProtocol: {
5259 auto *Proto = cast<ObjCProtocolDecl>(D);
5260 if (Proto->isThisDeclarationADefinition())
5261 ObjCRuntime->GenerateProtocol(Proto);
5262 break;
5263 }
5264
5265 case Decl::ObjCCategoryImpl:
5266 // Categories have properties but don't support synthesize so we
5267 // can ignore them here.
5268 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5269 break;
5270
5271 case Decl::ObjCImplementation: {
5272 auto *OMD = cast<ObjCImplementationDecl>(D);
5273 EmitObjCPropertyImplementations(OMD);
5274 EmitObjCIvarInitializations(OMD);
5275 ObjCRuntime->GenerateClass(OMD);
5276 // Emit global variable debug information.
5277 if (CGDebugInfo *DI = getModuleDebugInfo())
5278 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5279 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5280 OMD->getClassInterface()), OMD->getLocation());
5281 break;
5282 }
5283 case Decl::ObjCMethod: {
5284 auto *OMD = cast<ObjCMethodDecl>(D);
5285 // If this is not a prototype, emit the body.
5286 if (OMD->getBody())
5287 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5288 break;
5289 }
5290 case Decl::ObjCCompatibleAlias:
5291 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5292 break;
5293
5294 case Decl::PragmaComment: {
5295 const auto *PCD = cast<PragmaCommentDecl>(D);
5296 switch (PCD->getCommentKind()) {
5297 case PCK_Unknown:
5298 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5298)
;
5299 case PCK_Linker:
5300 AppendLinkerOptions(PCD->getArg());
5301 break;
5302 case PCK_Lib:
5303 AddDependentLib(PCD->getArg());
5304 break;
5305 case PCK_Compiler:
5306 case PCK_ExeStr:
5307 case PCK_User:
5308 break; // We ignore all of these.
5309 }
5310 break;
5311 }
5312
5313 case Decl::PragmaDetectMismatch: {
5314 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5315 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5316 break;
5317 }
5318
5319 case Decl::LinkageSpec:
5320 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5321 break;
5322
5323 case Decl::FileScopeAsm: {
5324 // File-scope asm is ignored during device-side CUDA compilation.
5325 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5326 break;
5327 // File-scope asm is ignored during device-side OpenMP compilation.
5328 if (LangOpts.OpenMPIsDevice)
5329 break;
5330 auto *AD = cast<FileScopeAsmDecl>(D);
5331 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5332 break;
5333 }
5334
5335 case Decl::Import: {
5336 auto *Import = cast<ImportDecl>(D);
5337
5338 // If we've already imported this module, we're done.
5339 if (!ImportedModules.insert(Import->getImportedModule()))
5340 break;
5341
5342 // Emit debug information for direct imports.
5343 if (!Import->getImportedOwningModule()) {
5344 if (CGDebugInfo *DI = getModuleDebugInfo())
5345 DI->EmitImportDecl(*Import);
5346 }
5347
5348 // Find all of the submodules and emit the module initializers.
5349 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5350 SmallVector<clang::Module *, 16> Stack;
5351 Visited.insert(Import->getImportedModule());
5352 Stack.push_back(Import->getImportedModule());
5353
5354 while (!Stack.empty()) {
5355 clang::Module *Mod = Stack.pop_back_val();
5356 if (!EmittedModuleInitializers.insert(Mod).second)
5357 continue;
5358
5359 for (auto *D : Context.getModuleInitializers(Mod))
5360 EmitTopLevelDecl(D);
5361
5362 // Visit the submodules of this module.
5363 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5364 SubEnd = Mod->submodule_end();
5365 Sub != SubEnd; ++Sub) {
5366 // Skip explicit children; they need to be explicitly imported to emit
5367 // the initializers.
5368 if ((*Sub)->IsExplicit)
5369 continue;
5370
5371 if (Visited.insert(*Sub).second)
5372 Stack.push_back(*Sub);
5373 }
5374 }
5375 break;
5376 }
5377
5378 case Decl::Export:
5379 EmitDeclContext(cast<ExportDecl>(D));
5380 break;
5381
5382 case Decl::OMPThreadPrivate:
5383 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5384 break;
5385
5386 case Decl::OMPAllocate:
5387 break;
5388
5389 case Decl::OMPDeclareReduction:
5390 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5391 break;
5392
5393 case Decl::OMPDeclareMapper:
5394 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5395 break;
5396
5397 case Decl::OMPRequires:
5398 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5399 break;
5400
5401 default:
5402 // Make sure we handled everything we should, every other kind is a
5403 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5404 // function. Need to recode Decl::Kind to do that easily.
5405 assert(isa<TypeDecl>(D) && "Unsupported decl kind")((isa<TypeDecl>(D) && "Unsupported decl kind") ?
static_cast<void> (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5405, __PRETTY_FUNCTION__))
;
5406 break;
5407 }
5408}
5409
5410void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5411 // Do we need to generate coverage mapping?
5412 if (!CodeGenOpts.CoverageMapping)
5413 return;
5414 switch (D->getKind()) {
5415 case Decl::CXXConversion:
5416 case Decl::CXXMethod:
5417 case Decl::Function:
5418 case Decl::ObjCMethod:
5419 case Decl::CXXConstructor:
5420 case Decl::CXXDestructor: {
5421 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5422 return;
5423 SourceManager &SM = getContext().getSourceManager();
5424 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5425 return;
5426 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5427 if (I == DeferredEmptyCoverageMappingDecls.end())
5428 DeferredEmptyCoverageMappingDecls[D] = true;
5429 break;
5430 }
5431 default:
5432 break;
5433 };
5434}
5435
5436void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5437 // Do we need to generate coverage mapping?
5438 if (!CodeGenOpts.CoverageMapping)
5439 return;
5440 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5441 if (Fn->isTemplateInstantiation())
5442 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5443 }
5444 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5445 if (I == DeferredEmptyCoverageMappingDecls.end())
5446 DeferredEmptyCoverageMappingDecls[D] = false;
5447 else
5448 I->second = false;
5449}
5450
5451void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5452 // We call takeVector() here to avoid use-after-free.
5453 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5454 // we deserialize function bodies to emit coverage info for them, and that
5455 // deserializes more declarations. How should we handle that case?
5456 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5457 if (!Entry.second)
5458 continue;
5459 const Decl *D = Entry.first;
5460 switch (D->getKind()) {
5461 case Decl::CXXConversion:
5462 case Decl::CXXMethod:
5463 case Decl::Function:
5464 case Decl::ObjCMethod: {
5465 CodeGenPGO PGO(*this);
5466 GlobalDecl GD(cast<FunctionDecl>(D));
5467 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5468 getFunctionLinkage(GD));
5469 break;
5470 }
5471 case Decl::CXXConstructor: {
5472 CodeGenPGO PGO(*this);
5473 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5474 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5475 getFunctionLinkage(GD));
5476 break;
5477 }
5478 case Decl::CXXDestructor: {
5479 CodeGenPGO PGO(*this);
5480 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5481 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5482 getFunctionLinkage(GD));
5483 break;
5484 }
5485 default:
5486 break;
5487 };
5488 }
5489}
5490
5491/// Turns the given pointer into a constant.
5492static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5493 const void *Ptr) {
5494 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5495 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5496 return llvm::ConstantInt::get(i64, PtrInt);
5497}
5498
5499static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5500 llvm::NamedMDNode *&GlobalMetadata,
5501 GlobalDecl D,
5502 llvm::GlobalValue *Addr) {
5503 if (!GlobalMetadata)
5504 GlobalMetadata =
5505 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5506
5507 // TODO: should we report variant information for ctors/dtors?
5508 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5509 llvm::ConstantAsMetadata::get(GetPointerConstant(
5510 CGM.getLLVMContext(), D.getDecl()))};
5511 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5512}
5513
5514/// For each function which is declared within an extern "C" region and marked
5515/// as 'used', but has internal linkage, create an alias from the unmangled
5516/// name to the mangled name if possible. People expect to be able to refer
5517/// to such functions with an unmangled name from inline assembly within the
5518/// same translation unit.
5519void CodeGenModule::EmitStaticExternCAliases() {
5520 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5521 return;
5522 for (auto &I : StaticExternCValues) {
5523 IdentifierInfo *Name = I.first;
5524 llvm::GlobalValue *Val = I.second;
5525 if (Val && !getModule().getNamedValue(Name->getName()))
5526 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5527 }
5528}
5529
5530bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5531 GlobalDecl &Result) const {
5532 auto Res = Manglings.find(MangledName);
5533 if (Res == Manglings.end())
5534 return false;
5535 Result = Res->getValue();
5536 return true;
5537}
5538
5539/// Emits metadata nodes associating all the global values in the
5540/// current module with the Decls they came from. This is useful for
5541/// projects using IR gen as a subroutine.
5542///
5543/// Since there's currently no way to associate an MDNode directly
5544/// with an llvm::GlobalValue, we create a global named metadata
5545/// with the name 'clang.global.decl.ptrs'.
5546void CodeGenModule::EmitDeclMetadata() {
5547 llvm::NamedMDNode *GlobalMetadata = nullptr;
5548
5549 for (auto &I : MangledDeclNames) {
5550 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5551 // Some mangled names don't necessarily have an associated GlobalValue
5552 // in this module, e.g. if we mangled it for DebugInfo.
5553 if (Addr)
5554 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5555 }
5556}
5557
5558/// Emits metadata nodes for all the local variables in the current
5559/// function.
5560void CodeGenFunction::EmitDeclMetadata() {
5561 if (LocalDeclMap.empty()) return;
5562
5563 llvm::LLVMContext &Context = getLLVMContext();
5564
5565 // Find the unique metadata ID for this name.
5566 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5567
5568 llvm::NamedMDNode *GlobalMetadata = nullptr;
5569
5570 for (auto &I : LocalDeclMap) {
5571 const Decl *D = I.first;
5572 llvm::Value *Addr = I.second.getPointer();
5573 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5574 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5575 Alloca->setMetadata(
5576 DeclPtrKind, llvm::MDNode::get(
5577 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5578 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5579 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5580 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5581 }
5582 }
5583}
5584
5585void CodeGenModule::EmitVersionIdentMetadata() {
5586 llvm::NamedMDNode *IdentMetadata =
5587 TheModule.getOrInsertNamedMetadata("llvm.ident");
5588 std::string Version = getClangFullVersion();
5589 llvm::LLVMContext &Ctx = TheModule.getContext();
5590
5591 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5592 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5593}
5594
5595void CodeGenModule::EmitCommandLineMetadata() {
5596 llvm::NamedMDNode *CommandLineMetadata =
5597 TheModule.getOrInsertNamedMetadata("llvm.commandline");
5598 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5599 llvm::LLVMContext &Ctx = TheModule.getContext();
5600
5601 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5602 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5603}
5604
5605void CodeGenModule::EmitTargetMetadata() {
5606 // Warning, new MangledDeclNames may be appended within this loop.
5607 // We rely on MapVector insertions adding new elements to the end
5608 // of the container.
5609 // FIXME: Move this loop into the one target that needs it, and only
5610 // loop over those declarations for which we couldn't emit the target
5611 // metadata when we emitted the declaration.
5612 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5613 auto Val = *(MangledDeclNames.begin() + I);
5614 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5615 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5616 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5617 }
5618}
5619
5620void CodeGenModule::EmitCoverageFile() {
5621 if (getCodeGenOpts().CoverageDataFile.empty() &&
5622 getCodeGenOpts().CoverageNotesFile.empty())
5623 return;
5624
5625 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5626 if (!CUNode)
5627 return;
5628
5629 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5630 llvm::LLVMContext &Ctx = TheModule.getContext();
5631 auto *CoverageDataFile =
5632 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5633 auto *CoverageNotesFile =
5634 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5635 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5636 llvm::MDNode *CU = CUNode->getOperand(i);
5637 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5638 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5639 }
5640}
5641
5642llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5643 // Sema has checked that all uuid strings are of the form
5644 // "12345678-1234-1234-1234-1234567890ab".
5645 assert(Uuid.size() == 36)((Uuid.size() == 36) ? static_cast<void> (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5645, __PRETTY_FUNCTION__))
;
5646 for (unsigned i = 0; i < 36; ++i) {
5647 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')((Uuid[i] == '-') ? static_cast<void> (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5647, __PRETTY_FUNCTION__))
;
5648 else assert(isHexDigit(Uuid[i]))((isHexDigit(Uuid[i])) ? static_cast<void> (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5648, __PRETTY_FUNCTION__))
;
5649 }
5650
5651 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5652 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5653
5654 llvm::Constant *Field3[8];
5655 for (unsigned Idx = 0; Idx < 8; ++Idx)
5656 Field3[Idx] = llvm::ConstantInt::get(
5657 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5658
5659 llvm::Constant *Fields[4] = {
5660 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
5661 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
5662 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5663 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5664 };
5665
5666 return llvm::ConstantStruct::getAnon(Fields);
5667}
5668
5669llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5670 bool ForEH) {
5671 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5672 // FIXME: should we even be calling this method if RTTI is disabled
5673 // and it's not for EH?
5674 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5675 return llvm::Constant::getNullValue(Int8PtrTy);
5676
5677 if (ForEH && Ty->isObjCObjectPointerType() &&
5678 LangOpts.ObjCRuntime.isGNUFamily())
5679 return ObjCRuntime->GetEHType(Ty);
5680
5681 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5682}
5683
5684void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5685 // Do not emit threadprivates in simd-only mode.
5686 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5687 return;
5688 for (auto RefExpr : D->varlists()) {
5689 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5690 bool PerformInit =
5691 VD->getAnyInitializer() &&
5692 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5693 /*ForRef=*/false);
5694
5695 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5696 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5697 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5698 CXXGlobalInits.push_back(InitFunction);
5699 }
5700}
5701
5702llvm::Metadata *
5703CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5704 StringRef Suffix) {
5705 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5706 if (InternalId)
5707 return InternalId;
5708
5709 if (isExternallyVisible(T->getLinkage())) {
5710 std::string OutName;
5711 llvm::raw_string_ostream Out(OutName);
5712 getCXXABI().getMangleContext().mangleTypeName(T, Out);
5713 Out << Suffix;
5714
5715 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5716 } else {
5717 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5718 llvm::ArrayRef<llvm::Metadata *>());
5719 }
5720
5721 return InternalId;
5722}
5723
5724llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5725 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5726}
5727
5728llvm::Metadata *
5729CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5730 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5731}
5732
5733// Generalize pointer types to a void pointer with the qualifiers of the
5734// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5735// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5736// 'void *'.
5737static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5738 if (!Ty->isPointerType())
5739 return Ty;
5740
5741 return Ctx.getPointerType(
5742 QualType(Ctx.VoidTy).withCVRQualifiers(
5743 Ty->getPointeeType().getCVRQualifiers()));
5744}
5745
5746// Apply type generalization to a FunctionType's return and argument types
5747static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5748 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5749 SmallVector<QualType, 8> GeneralizedParams;
5750 for (auto &Param : FnType->param_types())
5751 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5752
5753 return Ctx.getFunctionType(
5754 GeneralizeType(Ctx, FnType->getReturnType()),
5755 GeneralizedParams, FnType->getExtProtoInfo());
5756 }
5757
5758 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5759 return Ctx.getFunctionNoProtoType(
5760 GeneralizeType(Ctx, FnType->getReturnType()));
5761
5762 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-10~svn371925/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 5762)
;
5763}
5764
5765llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5766 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5767 GeneralizedMetadataIdMap, ".generalized");
5768}
5769
5770/// Returns whether this module needs the "all-vtables" type identifier.
5771bool CodeGenModule::NeedAllVtablesTypeId() const {
5772 // Returns true if at least one of vtable-based CFI checkers is enabled and
5773 // is not in the trapping mode.
5774 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5775 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5776 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&