Bug Summary

File:clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 375, column 53
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-13-084841-49055-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeNVPTX.h"
23#include "CodeGenFunction.h"
24#include "CodeGenPGO.h"
25#include "ConstantEmitter.h"
26#include "CoverageMappingGen.h"
27#include "TargetInfo.h"
28#include "clang/AST/ASTContext.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/AST/DeclCXX.h"
31#include "clang/AST/DeclObjC.h"
32#include "clang/AST/DeclTemplate.h"
33#include "clang/AST/Mangle.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/RecursiveASTVisitor.h"
36#include "clang/AST/StmtVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/CodeGenOptions.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/Module.h"
42#include "clang/Basic/SourceManager.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/Version.h"
45#include "clang/CodeGen/ConstantInitBuilder.h"
46#include "clang/Frontend/FrontendDiagnostic.h"
47#include "llvm/ADT/StringSwitch.h"
48#include "llvm/ADT/Triple.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51#include "llvm/IR/CallingConv.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ProfileSummary.h"
57#include "llvm/ProfileData/InstrProfReader.h"
58#include "llvm/Support/CodeGen.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/ConvertUTF.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/MD5.h"
63#include "llvm/Support/TimeProfiler.h"
64
65using namespace clang;
66using namespace CodeGen;
67
68static llvm::cl::opt<bool> LimitedCoverage(
69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71 llvm::cl::init(false));
72
73static const char AnnotationSection[] = "llvm.metadata";
74
75static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76 switch (CGM.getTarget().getCXXABI().getKind()) {
77 case TargetCXXABI::Fuchsia:
78 case TargetCXXABI::GenericAArch64:
79 case TargetCXXABI::GenericARM:
80 case TargetCXXABI::iOS:
81 case TargetCXXABI::iOS64:
82 case TargetCXXABI::WatchOS:
83 case TargetCXXABI::GenericMIPS:
84 case TargetCXXABI::GenericItanium:
85 case TargetCXXABI::WebAssembly:
86 return CreateItaniumCXXABI(CGM);
87 case TargetCXXABI::Microsoft:
88 return CreateMicrosoftCXXABI(CGM);
89 }
90
91 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 91)
;
92}
93
94CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
95 const PreprocessorOptions &PPO,
96 const CodeGenOptions &CGO, llvm::Module &M,
97 DiagnosticsEngine &diags,
98 CoverageSourceInfo *CoverageInfo)
99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
102 VMContext(M.getContext()), Types(*this), VTables(*this),
103 SanitizerMD(new SanitizerMetadata(*this)) {
104
105 // Initialize the type cache.
106 llvm::LLVMContext &LLVMContext = M.getContext();
107 VoidTy = llvm::Type::getVoidTy(LLVMContext);
108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
112 HalfTy = llvm::Type::getHalfTy(LLVMContext);
113 FloatTy = llvm::Type::getFloatTy(LLVMContext);
114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
116 PointerAlignInBytes =
117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
118 SizeSizeInBytes =
119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
120 IntAlignInBytes =
121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
123 IntPtrTy = llvm::IntegerType::get(LLVMContext,
124 C.getTargetInfo().getMaxPointerWidth());
125 Int8PtrTy = Int8Ty->getPointerTo(0);
126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
127 AllocaInt8PtrTy = Int8Ty->getPointerTo(
128 M.getDataLayout().getAllocaAddrSpace());
129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
130
131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
132
133 if (LangOpts.ObjC)
134 createObjCRuntime();
135 if (LangOpts.OpenCL)
136 createOpenCLRuntime();
137 if (LangOpts.OpenMP)
138 createOpenMPRuntime();
139 if (LangOpts.CUDA)
140 createCUDARuntime();
141
142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
146 getCXXABI().getMangleContext()));
147
148 // If debug info or coverage generation is enabled, create the CGDebugInfo
149 // object.
150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
152 DebugInfo.reset(new CGDebugInfo(*this));
153
154 Block.GlobalUniqueCount = 0;
155
156 if (C.getLangOpts().ObjC)
157 ObjCData.reset(new ObjCEntrypoints());
158
159 if (CodeGenOpts.hasProfileClangUse()) {
160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
162 if (auto E = ReaderOrErr.takeError()) {
163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
164 "Could not read profile %0: %1");
165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
167 << EI.message();
168 });
169 } else
170 PGOReader = std::move(ReaderOrErr.get());
171 }
172
173 // If coverage mapping generation is enabled, create the
174 // CoverageMappingModuleGen object.
175 if (CodeGenOpts.CoverageMapping)
176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
177}
178
179CodeGenModule::~CodeGenModule() {}
180
181void CodeGenModule::createObjCRuntime() {
182 // This is just isGNUFamily(), but we want to force implementors of
183 // new ABIs to decide how best to do this.
184 switch (LangOpts.ObjCRuntime.getKind()) {
185 case ObjCRuntime::GNUstep:
186 case ObjCRuntime::GCC:
187 case ObjCRuntime::ObjFW:
188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
189 return;
190
191 case ObjCRuntime::FragileMacOSX:
192 case ObjCRuntime::MacOSX:
193 case ObjCRuntime::iOS:
194 case ObjCRuntime::WatchOS:
195 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
196 return;
197 }
198 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 198)
;
199}
200
201void CodeGenModule::createOpenCLRuntime() {
202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
203}
204
205void CodeGenModule::createOpenMPRuntime() {
206 // Select a specialized code generation class based on the target, if any.
207 // If it does not exist use the default implementation.
208 switch (getTriple().getArch()) {
209 case llvm::Triple::nvptx:
210 case llvm::Triple::nvptx64:
211 assert(getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 212, __PRETTY_FUNCTION__))
212 "OpenMP NVPTX is only prepared to deal with device code.")((getLangOpts().OpenMPIsDevice && "OpenMP NVPTX is only prepared to deal with device code."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 212, __PRETTY_FUNCTION__))
;
213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
214 break;
215 default:
216 if (LangOpts.OpenMPSimd)
217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
218 else
219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
220 break;
221 }
222
223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens
224 // but we are not there yet so they both reside in CGModule for now and the
225 // OpenMP-IR-Builder is opt-in only.
226 if (LangOpts.OpenMPIRBuilder) {
227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
228 OMPBuilder->initialize();
229 }
230}
231
232void CodeGenModule::createCUDARuntime() {
233 CUDARuntime.reset(CreateNVCUDARuntime(*this));
234}
235
236void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
237 Replacements[Name] = C;
238}
239
240void CodeGenModule::applyReplacements() {
241 for (auto &I : Replacements) {
242 StringRef MangledName = I.first();
243 llvm::Constant *Replacement = I.second;
244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
245 if (!Entry)
246 continue;
247 auto *OldF = cast<llvm::Function>(Entry);
248 auto *NewF = dyn_cast<llvm::Function>(Replacement);
249 if (!NewF) {
250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
252 } else {
253 auto *CE = cast<llvm::ConstantExpr>(Replacement);
254 assert(CE->getOpcode() == llvm::Instruction::BitCast ||((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 255, __PRETTY_FUNCTION__))
255 CE->getOpcode() == llvm::Instruction::GetElementPtr)((CE->getOpcode() == llvm::Instruction::BitCast || CE->
getOpcode() == llvm::Instruction::GetElementPtr) ? static_cast
<void> (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 255, __PRETTY_FUNCTION__))
;
256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
257 }
258 }
259
260 // Replace old with new, but keep the old order.
261 OldF->replaceAllUsesWith(Replacement);
262 if (NewF) {
263 NewF->removeFromParent();
264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
265 NewF);
266 }
267 OldF->eraseFromParent();
268 }
269}
270
271void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
272 GlobalValReplacements.push_back(std::make_pair(GV, C));
273}
274
275void CodeGenModule::applyGlobalValReplacements() {
276 for (auto &I : GlobalValReplacements) {
277 llvm::GlobalValue *GV = I.first;
278 llvm::Constant *C = I.second;
279
280 GV->replaceAllUsesWith(C);
281 GV->eraseFromParent();
282 }
283}
284
285// This is only used in aliases that we created and we know they have a
286// linear structure.
287static const llvm::GlobalObject *getAliasedGlobal(
288 const llvm::GlobalIndirectSymbol &GIS) {
289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
290 const llvm::Constant *C = &GIS;
291 for (;;) {
7
Loop condition is true. Entering loop body
292 C = C->stripPointerCasts();
293 if (auto *GO
8.1
'GO' is null
= dyn_cast<llvm::GlobalObject>(C))
8
Assuming 'C' is not a 'GlobalObject'
9
Taking false branch
294 return GO;
295 // stripPointerCasts will not walk over weak aliases.
296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
10
Assuming 'C' is not a 'GlobalIndirectSymbol'
297 if (!GIS2
10.1
'GIS2' is null
)
11
Taking true branch
298 return nullptr;
12
Returning null pointer, which participates in a condition later
299 if (!Visited.insert(GIS2).second)
300 return nullptr;
301 C = GIS2->getIndirectSymbol();
302 }
303}
304
305void CodeGenModule::checkAliases() {
306 // Check if the constructed aliases are well formed. It is really unfortunate
307 // that we have to do this in CodeGen, but we only construct mangled names
308 // and aliases during codegen.
309 bool Error = false;
310 DiagnosticsEngine &Diags = getDiags();
311 for (const GlobalDecl &GD : Aliases) {
312 const auto *D = cast<ValueDecl>(GD.getDecl());
2
The object is a 'ValueDecl'
313 SourceLocation Location;
314 bool IsIFunc = D->hasAttr<IFuncAttr>();
315 if (const Attr *A = D->getDefiningAttr())
3
Assuming 'A' is non-null
4
Taking true branch
316 Location = A->getLocation();
317 else
318 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 318)
;
319 StringRef MangledName = getMangledName(GD);
320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
5
'Entry' is a 'GlobalIndirectSymbol'
322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
6
Calling 'getAliasedGlobal'
13
Returning from 'getAliasedGlobal'
323 if (!GV
13.1
'GV' is null
) {
14
Taking true branch
324 Error = true;
325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
326 } else if (GV->isDeclaration()) {
327 Error = true;
328 Diags.Report(Location, diag::err_alias_to_undefined)
329 << IsIFunc << IsIFunc;
330 } else if (IsIFunc) {
331 // Check resolver function type.
332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
333 GV->getType()->getPointerElementType());
334 assert(FTy)((FTy) ? static_cast<void> (0) : __assert_fail ("FTy", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 334, __PRETTY_FUNCTION__))
;
335 if (!FTy->getReturnType()->isPointerTy())
336 Diags.Report(Location, diag::err_ifunc_resolver_return);
337 }
338
339 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
340 llvm::GlobalValue *AliaseeGV;
341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
15
Assuming 'CE' is null
16
Taking false branch
342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
343 else
344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
345
346 if (const SectionAttr *SA
16.1
'SA' is null
= D->getAttr<SectionAttr>()) {
17
Taking false branch
347 StringRef AliasSection = SA->getName();
348 if (AliasSection != AliaseeGV->getSection())
349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
350 << AliasSection << IsIFunc << IsIFunc;
351 }
352
353 // We have to handle alias to weak aliases in here. LLVM itself disallows
354 // this since the object semantics would not match the IL one. For
355 // compatibility with gcc we implement it by just pointing the alias
356 // to its aliasee's aliasee. We also warn, since the user is probably
357 // expecting the link to be weak.
358 if (auto GA
18.1
'GA' is null
= dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
18
Assuming 'AliaseeGV' is not a 'GlobalIndirectSymbol'
19
Taking false branch
359 if (GA->isInterposable()) {
360 Diags.Report(Location, diag::warn_alias_to_weak_alias)
361 << GV->getName() << GA->getName() << IsIFunc;
362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
363 GA->getIndirectSymbol(), Alias->getType());
364 Alias->setIndirectSymbol(Aliasee);
365 }
366 }
367 }
368 if (!Error
19.1
'Error' is true
)
20
Taking false branch
369 return;
370
371 for (const GlobalDecl &GD : Aliases) {
372 StringRef MangledName = getMangledName(GD);
373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
21
Assuming 'Entry' is not a 'GlobalIndirectSymbol'
22
'Alias' initialized to a null pointer value
375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
23
Called C++ object pointer is null
376 Alias->eraseFromParent();
377 }
378}
379
380void CodeGenModule::clear() {
381 DeferredDeclsToEmit.clear();
382 if (OpenMPRuntime)
383 OpenMPRuntime->clear();
384}
385
386void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
387 StringRef MainFile) {
388 if (!hasDiagnostics())
389 return;
390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
391 if (MainFile.empty())
392 MainFile = "<stdin>";
393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
394 } else {
395 if (Mismatched > 0)
396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
397
398 if (Missing > 0)
399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
400 }
401}
402
403void CodeGenModule::Release() {
404 EmitDeferred();
405 EmitVTablesOpportunistically();
406 applyGlobalValReplacements();
407 applyReplacements();
408 checkAliases();
1
Calling 'CodeGenModule::checkAliases'
409 emitMultiVersionFunctions();
410 EmitCXXGlobalInitFunc();
411 EmitCXXGlobalDtorFunc();
412 registerGlobalDtorsWithAtExit();
413 EmitCXXThreadLocalInitFunc();
414 if (ObjCRuntime)
415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
416 AddGlobalCtor(ObjCInitFunction);
417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
418 CUDARuntime) {
419 if (llvm::Function *CudaCtorFunction =
420 CUDARuntime->makeModuleCtorFunction())
421 AddGlobalCtor(CudaCtorFunction);
422 }
423 if (OpenMPRuntime) {
424 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
425 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
427 }
428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
429 OpenMPRuntime->clear();
430 }
431 if (PGOReader) {
432 getModule().setProfileSummary(
433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
434 llvm::ProfileSummary::PSK_Instr);
435 if (PGOStats.hasDiagnostics())
436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
437 }
438 EmitCtorList(GlobalCtors, "llvm.global_ctors");
439 EmitCtorList(GlobalDtors, "llvm.global_dtors");
440 EmitGlobalAnnotations();
441 EmitStaticExternCAliases();
442 EmitDeferredUnusedCoverageMappings();
443 if (CoverageMapping)
444 CoverageMapping->emit();
445 if (CodeGenOpts.SanitizeCfiCrossDso) {
446 CodeGenFunction(*this).EmitCfiCheckFail();
447 CodeGenFunction(*this).EmitCfiCheckStub();
448 }
449 emitAtAvailableLinkGuard();
450 emitLLVMUsed();
451 if (SanStats)
452 SanStats->finish();
453
454 if (CodeGenOpts.Autolink &&
455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
456 EmitModuleLinkOptions();
457 }
458
459 // On ELF we pass the dependent library specifiers directly to the linker
460 // without manipulating them. This is in contrast to other platforms where
461 // they are mapped to a specific linker option by the compiler. This
462 // difference is a result of the greater variety of ELF linkers and the fact
463 // that ELF linkers tend to handle libraries in a more complicated fashion
464 // than on other platforms. This forces us to defer handling the dependent
465 // libs to the linker.
466 //
467 // CUDA/HIP device and host libraries are different. Currently there is no
468 // way to differentiate dependent libraries for host or device. Existing
469 // usage of #pragma comment(lib, *) is intended for host libraries on
470 // Windows. Therefore emit llvm.dependent-libraries only for host.
471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
473 for (auto *MD : ELFDependentLibraries)
474 NMD->addOperand(MD);
475 }
476
477 // Record mregparm value now so it is visible through rest of codegen.
478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
480 CodeGenOpts.NumRegisterParameters);
481
482 if (CodeGenOpts.DwarfVersion) {
483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
484 CodeGenOpts.DwarfVersion);
485 }
486 if (CodeGenOpts.EmitCodeView) {
487 // Indicate that we want CodeView in the metadata.
488 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
489 }
490 if (CodeGenOpts.CodeViewGHash) {
491 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
492 }
493 if (CodeGenOpts.ControlFlowGuard) {
494 // Function ID tables and checks for Control Flow Guard (cfguard=2).
495 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
496 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
497 // Function ID tables for Control Flow Guard (cfguard=1).
498 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
499 }
500 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
501 // We don't support LTO with 2 with different StrictVTablePointers
502 // FIXME: we could support it by stripping all the information introduced
503 // by StrictVTablePointers.
504
505 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
506
507 llvm::Metadata *Ops[2] = {
508 llvm::MDString::get(VMContext, "StrictVTablePointers"),
509 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
510 llvm::Type::getInt32Ty(VMContext), 1))};
511
512 getModule().addModuleFlag(llvm::Module::Require,
513 "StrictVTablePointersRequirement",
514 llvm::MDNode::get(VMContext, Ops));
515 }
516 if (DebugInfo)
517 // We support a single version in the linked module. The LLVM
518 // parser will drop debug info with a different version number
519 // (and warn about it, too).
520 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
521 llvm::DEBUG_METADATA_VERSION);
522
523 // We need to record the widths of enums and wchar_t, so that we can generate
524 // the correct build attributes in the ARM backend. wchar_size is also used by
525 // TargetLibraryInfo.
526 uint64_t WCharWidth =
527 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
528 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
529
530 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
531 if ( Arch == llvm::Triple::arm
532 || Arch == llvm::Triple::armeb
533 || Arch == llvm::Triple::thumb
534 || Arch == llvm::Triple::thumbeb) {
535 // The minimum width of an enum in bytes
536 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
537 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
538 }
539
540 if (CodeGenOpts.SanitizeCfiCrossDso) {
541 // Indicate that we want cross-DSO control flow integrity checks.
542 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
543 }
544
545 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
546 getModule().addModuleFlag(llvm::Module::Override,
547 "CFI Canonical Jump Tables",
548 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
549 }
550
551 if (CodeGenOpts.CFProtectionReturn &&
552 Target.checkCFProtectionReturnSupported(getDiags())) {
553 // Indicate that we want to instrument return control flow protection.
554 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
555 1);
556 }
557
558 if (CodeGenOpts.CFProtectionBranch &&
559 Target.checkCFProtectionBranchSupported(getDiags())) {
560 // Indicate that we want to instrument branch control flow protection.
561 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
562 1);
563 }
564
565 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
566 // Indicate whether __nvvm_reflect should be configured to flush denormal
567 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
568 // property.)
569 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
570 CodeGenOpts.FlushDenorm ? 1 : 0);
571 }
572
573 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
574 if (LangOpts.OpenCL) {
575 EmitOpenCLMetadata();
576 // Emit SPIR version.
577 if (getTriple().isSPIR()) {
578 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
579 // opencl.spir.version named metadata.
580 // C++ is backwards compatible with OpenCL v2.0.
581 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
582 llvm::Metadata *SPIRVerElts[] = {
583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
584 Int32Ty, Version / 100)),
585 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
586 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
587 llvm::NamedMDNode *SPIRVerMD =
588 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
589 llvm::LLVMContext &Ctx = TheModule.getContext();
590 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
591 }
592 }
593
594 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
595 assert(PLevel < 3 && "Invalid PIC Level")((PLevel < 3 && "Invalid PIC Level") ? static_cast
<void> (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 595, __PRETTY_FUNCTION__))
;
596 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
597 if (Context.getLangOpts().PIE)
598 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
599 }
600
601 if (getCodeGenOpts().CodeModel.size() > 0) {
602 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
603 .Case("tiny", llvm::CodeModel::Tiny)
604 .Case("small", llvm::CodeModel::Small)
605 .Case("kernel", llvm::CodeModel::Kernel)
606 .Case("medium", llvm::CodeModel::Medium)
607 .Case("large", llvm::CodeModel::Large)
608 .Default(~0u);
609 if (CM != ~0u) {
610 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
611 getModule().setCodeModel(codeModel);
612 }
613 }
614
615 if (CodeGenOpts.NoPLT)
616 getModule().setRtLibUseGOT();
617
618 SimplifyPersonality();
619
620 if (getCodeGenOpts().EmitDeclMetadata)
621 EmitDeclMetadata();
622
623 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
624 EmitCoverageFile();
625
626 if (DebugInfo)
627 DebugInfo->finalize();
628
629 if (getCodeGenOpts().EmitVersionIdentMetadata)
630 EmitVersionIdentMetadata();
631
632 if (!getCodeGenOpts().RecordCommandLine.empty())
633 EmitCommandLineMetadata();
634
635 EmitTargetMetadata();
636}
637
638void CodeGenModule::EmitOpenCLMetadata() {
639 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
640 // opencl.ocl.version named metadata node.
641 // C++ is backwards compatible with OpenCL v2.0.
642 // FIXME: We might need to add CXX version at some point too?
643 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
644 llvm::Metadata *OCLVerElts[] = {
645 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
646 Int32Ty, Version / 100)),
647 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
648 Int32Ty, (Version % 100) / 10))};
649 llvm::NamedMDNode *OCLVerMD =
650 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
651 llvm::LLVMContext &Ctx = TheModule.getContext();
652 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
653}
654
655void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
656 // Make sure that this type is translated.
657 Types.UpdateCompletedType(TD);
658}
659
660void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
661 // Make sure that this type is translated.
662 Types.RefreshTypeCacheForClass(RD);
663}
664
665llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
666 if (!TBAA)
667 return nullptr;
668 return TBAA->getTypeInfo(QTy);
669}
670
671TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
672 if (!TBAA)
673 return TBAAAccessInfo();
674 return TBAA->getAccessInfo(AccessType);
675}
676
677TBAAAccessInfo
678CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
679 if (!TBAA)
680 return TBAAAccessInfo();
681 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
682}
683
684llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
685 if (!TBAA)
686 return nullptr;
687 return TBAA->getTBAAStructInfo(QTy);
688}
689
690llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
691 if (!TBAA)
692 return nullptr;
693 return TBAA->getBaseTypeInfo(QTy);
694}
695
696llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
697 if (!TBAA)
698 return nullptr;
699 return TBAA->getAccessTagInfo(Info);
700}
701
702TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
703 TBAAAccessInfo TargetInfo) {
704 if (!TBAA)
705 return TBAAAccessInfo();
706 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
707}
708
709TBAAAccessInfo
710CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
711 TBAAAccessInfo InfoB) {
712 if (!TBAA)
713 return TBAAAccessInfo();
714 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
715}
716
717TBAAAccessInfo
718CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
719 TBAAAccessInfo SrcInfo) {
720 if (!TBAA)
721 return TBAAAccessInfo();
722 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
723}
724
725void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
726 TBAAAccessInfo TBAAInfo) {
727 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
728 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
729}
730
731void CodeGenModule::DecorateInstructionWithInvariantGroup(
732 llvm::Instruction *I, const CXXRecordDecl *RD) {
733 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
734 llvm::MDNode::get(getLLVMContext(), {}));
735}
736
737void CodeGenModule::Error(SourceLocation loc, StringRef message) {
738 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
739 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
740}
741
742/// ErrorUnsupported - Print out an error that codegen doesn't support the
743/// specified stmt yet.
744void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
745 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
746 "cannot compile this %0 yet");
747 std::string Msg = Type;
748 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
749 << Msg << S->getSourceRange();
750}
751
752/// ErrorUnsupported - Print out an error that codegen doesn't support the
753/// specified decl yet.
754void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
755 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
756 "cannot compile this %0 yet");
757 std::string Msg = Type;
758 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
759}
760
761llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
762 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
763}
764
765void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
766 const NamedDecl *D) const {
767 if (GV->hasDLLImportStorageClass())
768 return;
769 // Internal definitions always have default visibility.
770 if (GV->hasLocalLinkage()) {
771 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
772 return;
773 }
774 if (!D)
775 return;
776 // Set visibility for definitions, and for declarations if requested globally
777 // or set explicitly.
778 LinkageInfo LV = D->getLinkageAndVisibility();
779 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
780 !GV->isDeclarationForLinker())
781 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
782}
783
784static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
785 llvm::GlobalValue *GV) {
786 if (GV->hasLocalLinkage())
787 return true;
788
789 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
790 return true;
791
792 // DLLImport explicitly marks the GV as external.
793 if (GV->hasDLLImportStorageClass())
794 return false;
795
796 const llvm::Triple &TT = CGM.getTriple();
797 if (TT.isWindowsGNUEnvironment()) {
798 // In MinGW, variables without DLLImport can still be automatically
799 // imported from a DLL by the linker; don't mark variables that
800 // potentially could come from another DLL as DSO local.
801 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
802 !GV->isThreadLocal())
803 return false;
804 }
805
806 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
807 // remain unresolved in the link, they can be resolved to zero, which is
808 // outside the current DSO.
809 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
810 return false;
811
812 // Every other GV is local on COFF.
813 // Make an exception for windows OS in the triple: Some firmware builds use
814 // *-win32-macho triples. This (accidentally?) produced windows relocations
815 // without GOT tables in older clang versions; Keep this behaviour.
816 // FIXME: even thread local variables?
817 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
818 return true;
819
820 // Only handle COFF and ELF for now.
821 if (!TT.isOSBinFormatELF())
822 return false;
823
824 // If this is not an executable, don't assume anything is local.
825 const auto &CGOpts = CGM.getCodeGenOpts();
826 llvm::Reloc::Model RM = CGOpts.RelocationModel;
827 const auto &LOpts = CGM.getLangOpts();
828 if (RM != llvm::Reloc::Static && !LOpts.PIE)
829 return false;
830
831 // A definition cannot be preempted from an executable.
832 if (!GV->isDeclarationForLinker())
833 return true;
834
835 // Most PIC code sequences that assume that a symbol is local cannot produce a
836 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
837 // depended, it seems worth it to handle it here.
838 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
839 return false;
840
841 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
842 llvm::Triple::ArchType Arch = TT.getArch();
843 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
844 Arch == llvm::Triple::ppc64le)
845 return false;
846
847 // If we can use copy relocations we can assume it is local.
848 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
849 if (!Var->isThreadLocal() &&
850 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
851 return true;
852
853 // If we can use a plt entry as the symbol address we can assume it
854 // is local.
855 // FIXME: This should work for PIE, but the gold linker doesn't support it.
856 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
857 return true;
858
859 // Otherwise don't assue it is local.
860 return false;
861}
862
863void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
864 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
865}
866
867void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
868 GlobalDecl GD) const {
869 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
870 // C++ destructors have a few C++ ABI specific special cases.
871 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
872 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
873 return;
874 }
875 setDLLImportDLLExport(GV, D);
876}
877
878void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
879 const NamedDecl *D) const {
880 if (D && D->isExternallyVisible()) {
881 if (D->hasAttr<DLLImportAttr>())
882 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
883 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
884 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
885 }
886}
887
888void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
889 GlobalDecl GD) const {
890 setDLLImportDLLExport(GV, GD);
891 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
892}
893
894void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
895 const NamedDecl *D) const {
896 setDLLImportDLLExport(GV, D);
897 setGVPropertiesAux(GV, D);
898}
899
900void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
901 const NamedDecl *D) const {
902 setGlobalVisibility(GV, D);
903 setDSOLocal(GV);
904 GV->setPartition(CodeGenOpts.SymbolPartition);
905}
906
907static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
908 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
909 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
910 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
911 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
912 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
913}
914
915static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
916 CodeGenOptions::TLSModel M) {
917 switch (M) {
918 case CodeGenOptions::GeneralDynamicTLSModel:
919 return llvm::GlobalVariable::GeneralDynamicTLSModel;
920 case CodeGenOptions::LocalDynamicTLSModel:
921 return llvm::GlobalVariable::LocalDynamicTLSModel;
922 case CodeGenOptions::InitialExecTLSModel:
923 return llvm::GlobalVariable::InitialExecTLSModel;
924 case CodeGenOptions::LocalExecTLSModel:
925 return llvm::GlobalVariable::LocalExecTLSModel;
926 }
927 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 927)
;
928}
929
930void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
931 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")((D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? static_cast<void> (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 931, __PRETTY_FUNCTION__))
;
932
933 llvm::GlobalValue::ThreadLocalMode TLM;
934 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
935
936 // Override the TLS model if it is explicitly specified.
937 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
938 TLM = GetLLVMTLSModel(Attr->getModel());
939 }
940
941 GV->setThreadLocalMode(TLM);
942}
943
944static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
945 StringRef Name) {
946 const TargetInfo &Target = CGM.getTarget();
947 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
948}
949
950static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
951 const CPUSpecificAttr *Attr,
952 unsigned CPUIndex,
953 raw_ostream &Out) {
954 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
955 // supported.
956 if (Attr)
957 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
958 else if (CGM.getTarget().supportsIFunc())
959 Out << ".resolver";
960}
961
962static void AppendTargetMangling(const CodeGenModule &CGM,
963 const TargetAttr *Attr, raw_ostream &Out) {
964 if (Attr->isDefaultVersion())
965 return;
966
967 Out << '.';
968 const TargetInfo &Target = CGM.getTarget();
969 ParsedTargetAttr Info =
970 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
971 // Multiversioning doesn't allow "no-${feature}", so we can
972 // only have "+" prefixes here.
973 assert(LHS.startswith("+") && RHS.startswith("+") &&((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 974, __PRETTY_FUNCTION__))
974 "Features should always have a prefix.")((LHS.startswith("+") && RHS.startswith("+") &&
"Features should always have a prefix.") ? static_cast<void
> (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 974, __PRETTY_FUNCTION__))
;
975 return Target.multiVersionSortPriority(LHS.substr(1)) >
976 Target.multiVersionSortPriority(RHS.substr(1));
977 });
978
979 bool IsFirst = true;
980
981 if (!Info.Architecture.empty()) {
982 IsFirst = false;
983 Out << "arch_" << Info.Architecture;
984 }
985
986 for (StringRef Feat : Info.Features) {
987 if (!IsFirst)
988 Out << '_';
989 IsFirst = false;
990 Out << Feat.substr(1);
991 }
992}
993
994static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
995 const NamedDecl *ND,
996 bool OmitMultiVersionMangling = false) {
997 SmallString<256> Buffer;
998 llvm::raw_svector_ostream Out(Buffer);
999 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1000 if (MC.shouldMangleDeclName(ND)) {
1001 llvm::raw_svector_ostream Out(Buffer);
1002 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1003 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1004 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1005 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1006 else
1007 MC.mangleName(ND, Out);
1008 } else {
1009 IdentifierInfo *II = ND->getIdentifier();
1010 assert(II && "Attempt to mangle unnamed decl.")((II && "Attempt to mangle unnamed decl.") ? static_cast
<void> (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1010, __PRETTY_FUNCTION__))
;
1011 const auto *FD = dyn_cast<FunctionDecl>(ND);
1012
1013 if (FD &&
1014 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1015 llvm::raw_svector_ostream Out(Buffer);
1016 Out << "__regcall3__" << II->getName();
1017 } else {
1018 Out << II->getName();
1019 }
1020 }
1021
1022 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1023 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1024 switch (FD->getMultiVersionKind()) {
1025 case MultiVersionKind::CPUDispatch:
1026 case MultiVersionKind::CPUSpecific:
1027 AppendCPUSpecificCPUDispatchMangling(CGM,
1028 FD->getAttr<CPUSpecificAttr>(),
1029 GD.getMultiVersionIndex(), Out);
1030 break;
1031 case MultiVersionKind::Target:
1032 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1033 break;
1034 case MultiVersionKind::None:
1035 llvm_unreachable("None multiversion type isn't valid here")::llvm::llvm_unreachable_internal("None multiversion type isn't valid here"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1035)
;
1036 }
1037 }
1038
1039 return Out.str();
1040}
1041
1042void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1043 const FunctionDecl *FD) {
1044 if (!FD->isMultiVersion())
1045 return;
1046
1047 // Get the name of what this would be without the 'target' attribute. This
1048 // allows us to lookup the version that was emitted when this wasn't a
1049 // multiversion function.
1050 std::string NonTargetName =
1051 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1052 GlobalDecl OtherGD;
1053 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1054 assert(OtherGD.getCanonicalDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1055 .getDecl()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1056 ->getAsFunction()((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1057 ->isMultiVersion() &&((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
1058 "Other GD should now be a multiversioned function")((OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->
isMultiVersion() && "Other GD should now be a multiversioned function"
) ? static_cast<void> (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1058, __PRETTY_FUNCTION__))
;
1059 // OtherFD is the version of this function that was mangled BEFORE
1060 // becoming a MultiVersion function. It potentially needs to be updated.
1061 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1062 .getDecl()
1063 ->getAsFunction()
1064 ->getMostRecentDecl();
1065 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1066 // This is so that if the initial version was already the 'default'
1067 // version, we don't try to update it.
1068 if (OtherName != NonTargetName) {
1069 // Remove instead of erase, since others may have stored the StringRef
1070 // to this.
1071 const auto ExistingRecord = Manglings.find(NonTargetName);
1072 if (ExistingRecord != std::end(Manglings))
1073 Manglings.remove(&(*ExistingRecord));
1074 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1075 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1076 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1077 Entry->setName(OtherName);
1078 }
1079 }
1080}
1081
1082StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1083 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1084
1085 // Some ABIs don't have constructor variants. Make sure that base and
1086 // complete constructors get mangled the same.
1087 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1088 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1089 CXXCtorType OrigCtorType = GD.getCtorType();
1090 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)((OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)
? static_cast<void> (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1090, __PRETTY_FUNCTION__))
;
1091 if (OrigCtorType == Ctor_Base)
1092 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1093 }
1094 }
1095
1096 auto FoundName = MangledDeclNames.find(CanonicalGD);
1097 if (FoundName != MangledDeclNames.end())
1098 return FoundName->second;
1099
1100 // Keep the first result in the case of a mangling collision.
1101 const auto *ND = cast<NamedDecl>(GD.getDecl());
1102 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1103
1104 // Adjust kernel stub mangling as we may need to be able to differentiate
1105 // them from the kernel itself (e.g., for HIP).
1106 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1107 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1108 MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1109
1110 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1111 return MangledDeclNames[CanonicalGD] = Result.first->first();
1112}
1113
1114StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1115 const BlockDecl *BD) {
1116 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1117 const Decl *D = GD.getDecl();
1118
1119 SmallString<256> Buffer;
1120 llvm::raw_svector_ostream Out(Buffer);
1121 if (!D)
1122 MangleCtx.mangleGlobalBlock(BD,
1123 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1124 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1125 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1126 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1127 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1128 else
1129 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1130
1131 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1132 return Result.first->first();
1133}
1134
1135llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1136 return getModule().getNamedValue(Name);
1137}
1138
1139/// AddGlobalCtor - Add a function to the list that will be called before
1140/// main() runs.
1141void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1142 llvm::Constant *AssociatedData) {
1143 // FIXME: Type coercion of void()* types.
1144 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1145}
1146
1147/// AddGlobalDtor - Add a function to the list that will be called
1148/// when the module is unloaded.
1149void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1150 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1151 DtorsUsingAtExit[Priority].push_back(Dtor);
1152 return;
1153 }
1154
1155 // FIXME: Type coercion of void()* types.
1156 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1157}
1158
1159void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1160 if (Fns.empty()) return;
1161
1162 // Ctor function type is void()*.
1163 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1164 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1165 TheModule.getDataLayout().getProgramAddressSpace());
1166
1167 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1168 llvm::StructType *CtorStructTy = llvm::StructType::get(
1169 Int32Ty, CtorPFTy, VoidPtrTy);
1170
1171 // Construct the constructor and destructor arrays.
1172 ConstantInitBuilder builder(*this);
1173 auto ctors = builder.beginArray(CtorStructTy);
1174 for (const auto &I : Fns) {
1175 auto ctor = ctors.beginStruct(CtorStructTy);
1176 ctor.addInt(Int32Ty, I.Priority);
1177 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1178 if (I.AssociatedData)
1179 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1180 else
1181 ctor.addNullPointer(VoidPtrTy);
1182 ctor.finishAndAddTo(ctors);
1183 }
1184
1185 auto list =
1186 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1187 /*constant*/ false,
1188 llvm::GlobalValue::AppendingLinkage);
1189
1190 // The LTO linker doesn't seem to like it when we set an alignment
1191 // on appending variables. Take it off as a workaround.
1192 list->setAlignment(llvm::None);
1193
1194 Fns.clear();
1195}
1196
1197llvm::GlobalValue::LinkageTypes
1198CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1199 const auto *D = cast<FunctionDecl>(GD.getDecl());
1200
1201 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1202
1203 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1204 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1205
1206 if (isa<CXXConstructorDecl>(D) &&
1207 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1208 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1209 // Our approach to inheriting constructors is fundamentally different from
1210 // that used by the MS ABI, so keep our inheriting constructor thunks
1211 // internal rather than trying to pick an unambiguous mangling for them.
1212 return llvm::GlobalValue::InternalLinkage;
1213 }
1214
1215 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1216}
1217
1218llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1219 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1220 if (!MDS) return nullptr;
1221
1222 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1223}
1224
1225void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1226 const CGFunctionInfo &Info,
1227 llvm::Function *F) {
1228 unsigned CallingConv;
1229 llvm::AttributeList PAL;
1230 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1231 F->setAttributes(PAL);
1232 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1233}
1234
1235static void removeImageAccessQualifier(std::string& TyName) {
1236 std::string ReadOnlyQual("__read_only");
1237 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1238 if (ReadOnlyPos != std::string::npos)
1239 // "+ 1" for the space after access qualifier.
1240 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1241 else {
1242 std::string WriteOnlyQual("__write_only");
1243 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1244 if (WriteOnlyPos != std::string::npos)
1245 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1246 else {
1247 std::string ReadWriteQual("__read_write");
1248 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1249 if (ReadWritePos != std::string::npos)
1250 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1251 }
1252 }
1253}
1254
1255// Returns the address space id that should be produced to the
1256// kernel_arg_addr_space metadata. This is always fixed to the ids
1257// as specified in the SPIR 2.0 specification in order to differentiate
1258// for example in clGetKernelArgInfo() implementation between the address
1259// spaces with targets without unique mapping to the OpenCL address spaces
1260// (basically all single AS CPUs).
1261static unsigned ArgInfoAddressSpace(LangAS AS) {
1262 switch (AS) {
1263 case LangAS::opencl_global: return 1;
1264 case LangAS::opencl_constant: return 2;
1265 case LangAS::opencl_local: return 3;
1266 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs.
1267 default:
1268 return 0; // Assume private.
1269 }
1270}
1271
1272void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1273 const FunctionDecl *FD,
1274 CodeGenFunction *CGF) {
1275 assert(((FD && CGF) || (!FD && !CGF)) &&((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1276, __PRETTY_FUNCTION__))
1276 "Incorrect use - FD and CGF should either be both null or not!")((((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"
) ? static_cast<void> (0) : __assert_fail ("((FD && CGF) || (!FD && !CGF)) && \"Incorrect use - FD and CGF should either be both null or not!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1276, __PRETTY_FUNCTION__))
;
1277 // Create MDNodes that represent the kernel arg metadata.
1278 // Each MDNode is a list in the form of "key", N number of values which is
1279 // the same number of values as their are kernel arguments.
1280
1281 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1282
1283 // MDNode for the kernel argument address space qualifiers.
1284 SmallVector<llvm::Metadata *, 8> addressQuals;
1285
1286 // MDNode for the kernel argument access qualifiers (images only).
1287 SmallVector<llvm::Metadata *, 8> accessQuals;
1288
1289 // MDNode for the kernel argument type names.
1290 SmallVector<llvm::Metadata *, 8> argTypeNames;
1291
1292 // MDNode for the kernel argument base type names.
1293 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1294
1295 // MDNode for the kernel argument type qualifiers.
1296 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1297
1298 // MDNode for the kernel argument names.
1299 SmallVector<llvm::Metadata *, 8> argNames;
1300
1301 if (FD && CGF)
1302 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1303 const ParmVarDecl *parm = FD->getParamDecl(i);
1304 QualType ty = parm->getType();
1305 std::string typeQuals;
1306
1307 if (ty->isPointerType()) {
1308 QualType pointeeTy = ty->getPointeeType();
1309
1310 // Get address qualifier.
1311 addressQuals.push_back(
1312 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1313 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1314
1315 // Get argument type name.
1316 std::string typeName =
1317 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1318
1319 // Turn "unsigned type" to "utype"
1320 std::string::size_type pos = typeName.find("unsigned");
1321 if (pointeeTy.isCanonical() && pos != std::string::npos)
1322 typeName.erase(pos + 1, 8);
1323
1324 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1325
1326 std::string baseTypeName =
1327 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1328 Policy) +
1329 "*";
1330
1331 // Turn "unsigned type" to "utype"
1332 pos = baseTypeName.find("unsigned");
1333 if (pos != std::string::npos)
1334 baseTypeName.erase(pos + 1, 8);
1335
1336 argBaseTypeNames.push_back(
1337 llvm::MDString::get(VMContext, baseTypeName));
1338
1339 // Get argument type qualifiers:
1340 if (ty.isRestrictQualified())
1341 typeQuals = "restrict";
1342 if (pointeeTy.isConstQualified() ||
1343 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1344 typeQuals += typeQuals.empty() ? "const" : " const";
1345 if (pointeeTy.isVolatileQualified())
1346 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1347 } else {
1348 uint32_t AddrSpc = 0;
1349 bool isPipe = ty->isPipeType();
1350 if (ty->isImageType() || isPipe)
1351 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1352
1353 addressQuals.push_back(
1354 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1355
1356 // Get argument type name.
1357 std::string typeName;
1358 if (isPipe)
1359 typeName = ty.getCanonicalType()
1360 ->getAs<PipeType>()
1361 ->getElementType()
1362 .getAsString(Policy);
1363 else
1364 typeName = ty.getUnqualifiedType().getAsString(Policy);
1365
1366 // Turn "unsigned type" to "utype"
1367 std::string::size_type pos = typeName.find("unsigned");
1368 if (ty.isCanonical() && pos != std::string::npos)
1369 typeName.erase(pos + 1, 8);
1370
1371 std::string baseTypeName;
1372 if (isPipe)
1373 baseTypeName = ty.getCanonicalType()
1374 ->getAs<PipeType>()
1375 ->getElementType()
1376 .getCanonicalType()
1377 .getAsString(Policy);
1378 else
1379 baseTypeName =
1380 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1381
1382 // Remove access qualifiers on images
1383 // (as they are inseparable from type in clang implementation,
1384 // but OpenCL spec provides a special query to get access qualifier
1385 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1386 if (ty->isImageType()) {
1387 removeImageAccessQualifier(typeName);
1388 removeImageAccessQualifier(baseTypeName);
1389 }
1390
1391 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1392
1393 // Turn "unsigned type" to "utype"
1394 pos = baseTypeName.find("unsigned");
1395 if (pos != std::string::npos)
1396 baseTypeName.erase(pos + 1, 8);
1397
1398 argBaseTypeNames.push_back(
1399 llvm::MDString::get(VMContext, baseTypeName));
1400
1401 if (isPipe)
1402 typeQuals = "pipe";
1403 }
1404
1405 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1406
1407 // Get image and pipe access qualifier:
1408 if (ty->isImageType() || ty->isPipeType()) {
1409 const Decl *PDecl = parm;
1410 if (auto *TD = dyn_cast<TypedefType>(ty))
1411 PDecl = TD->getDecl();
1412 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1413 if (A && A->isWriteOnly())
1414 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1415 else if (A && A->isReadWrite())
1416 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1417 else
1418 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1419 } else
1420 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1421
1422 // Get argument name.
1423 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1424 }
1425
1426 Fn->setMetadata("kernel_arg_addr_space",
1427 llvm::MDNode::get(VMContext, addressQuals));
1428 Fn->setMetadata("kernel_arg_access_qual",
1429 llvm::MDNode::get(VMContext, accessQuals));
1430 Fn->setMetadata("kernel_arg_type",
1431 llvm::MDNode::get(VMContext, argTypeNames));
1432 Fn->setMetadata("kernel_arg_base_type",
1433 llvm::MDNode::get(VMContext, argBaseTypeNames));
1434 Fn->setMetadata("kernel_arg_type_qual",
1435 llvm::MDNode::get(VMContext, argTypeQuals));
1436 if (getCodeGenOpts().EmitOpenCLArgMetadata)
1437 Fn->setMetadata("kernel_arg_name",
1438 llvm::MDNode::get(VMContext, argNames));
1439}
1440
1441/// Determines whether the language options require us to model
1442/// unwind exceptions. We treat -fexceptions as mandating this
1443/// except under the fragile ObjC ABI with only ObjC exceptions
1444/// enabled. This means, for example, that C with -fexceptions
1445/// enables this.
1446static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1447 // If exceptions are completely disabled, obviously this is false.
1448 if (!LangOpts.Exceptions) return false;
1449
1450 // If C++ exceptions are enabled, this is true.
1451 if (LangOpts.CXXExceptions) return true;
1452
1453 // If ObjC exceptions are enabled, this depends on the ABI.
1454 if (LangOpts.ObjCExceptions) {
1455 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1456 }
1457
1458 return true;
1459}
1460
1461static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1462 const CXXMethodDecl *MD) {
1463 // Check that the type metadata can ever actually be used by a call.
1464 if (!CGM.getCodeGenOpts().LTOUnit ||
1465 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1466 return false;
1467
1468 // Only functions whose address can be taken with a member function pointer
1469 // need this sort of type metadata.
1470 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1471 !isa<CXXDestructorDecl>(MD);
1472}
1473
1474std::vector<const CXXRecordDecl *>
1475CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1476 llvm::SetVector<const CXXRecordDecl *> MostBases;
1477
1478 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1479 CollectMostBases = [&](const CXXRecordDecl *RD) {
1480 if (RD->getNumBases() == 0)
1481 MostBases.insert(RD);
1482 for (const CXXBaseSpecifier &B : RD->bases())
1483 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1484 };
1485 CollectMostBases(RD);
1486 return MostBases.takeVector();
1487}
1488
1489void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1490 llvm::Function *F) {
1491 llvm::AttrBuilder B;
1492
1493 if (CodeGenOpts.UnwindTables)
1494 B.addAttribute(llvm::Attribute::UWTable);
1495
1496 if (!hasUnwindExceptions(LangOpts))
1497 B.addAttribute(llvm::Attribute::NoUnwind);
1498
1499 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1500 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1501 B.addAttribute(llvm::Attribute::StackProtect);
1502 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1503 B.addAttribute(llvm::Attribute::StackProtectStrong);
1504 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1505 B.addAttribute(llvm::Attribute::StackProtectReq);
1506 }
1507
1508 if (!D) {
1509 // If we don't have a declaration to control inlining, the function isn't
1510 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1511 // disabled, mark the function as noinline.
1512 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1513 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1514 B.addAttribute(llvm::Attribute::NoInline);
1515
1516 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1517 return;
1518 }
1519
1520 // Track whether we need to add the optnone LLVM attribute,
1521 // starting with the default for this optimization level.
1522 bool ShouldAddOptNone =
1523 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1524 // We can't add optnone in the following cases, it won't pass the verifier.
1525 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1526 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1527
1528 // Add optnone, but do so only if the function isn't always_inline.
1529 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1530 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1531 B.addAttribute(llvm::Attribute::OptimizeNone);
1532
1533 // OptimizeNone implies noinline; we should not be inlining such functions.
1534 B.addAttribute(llvm::Attribute::NoInline);
1535
1536 // We still need to handle naked functions even though optnone subsumes
1537 // much of their semantics.
1538 if (D->hasAttr<NakedAttr>())
1539 B.addAttribute(llvm::Attribute::Naked);
1540
1541 // OptimizeNone wins over OptimizeForSize and MinSize.
1542 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1543 F->removeFnAttr(llvm::Attribute::MinSize);
1544 } else if (D->hasAttr<NakedAttr>()) {
1545 // Naked implies noinline: we should not be inlining such functions.
1546 B.addAttribute(llvm::Attribute::Naked);
1547 B.addAttribute(llvm::Attribute::NoInline);
1548 } else if (D->hasAttr<NoDuplicateAttr>()) {
1549 B.addAttribute(llvm::Attribute::NoDuplicate);
1550 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1551 // Add noinline if the function isn't always_inline.
1552 B.addAttribute(llvm::Attribute::NoInline);
1553 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1554 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1555 // (noinline wins over always_inline, and we can't specify both in IR)
1556 B.addAttribute(llvm::Attribute::AlwaysInline);
1557 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1558 // If we're not inlining, then force everything that isn't always_inline to
1559 // carry an explicit noinline attribute.
1560 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1561 B.addAttribute(llvm::Attribute::NoInline);
1562 } else {
1563 // Otherwise, propagate the inline hint attribute and potentially use its
1564 // absence to mark things as noinline.
1565 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1566 // Search function and template pattern redeclarations for inline.
1567 auto CheckForInline = [](const FunctionDecl *FD) {
1568 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1569 return Redecl->isInlineSpecified();
1570 };
1571 if (any_of(FD->redecls(), CheckRedeclForInline))
1572 return true;
1573 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1574 if (!Pattern)
1575 return false;
1576 return any_of(Pattern->redecls(), CheckRedeclForInline);
1577 };
1578 if (CheckForInline(FD)) {
1579 B.addAttribute(llvm::Attribute::InlineHint);
1580 } else if (CodeGenOpts.getInlining() ==
1581 CodeGenOptions::OnlyHintInlining &&
1582 !FD->isInlined() &&
1583 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1584 B.addAttribute(llvm::Attribute::NoInline);
1585 }
1586 }
1587 }
1588
1589 // Add other optimization related attributes if we are optimizing this
1590 // function.
1591 if (!D->hasAttr<OptimizeNoneAttr>()) {
1592 if (D->hasAttr<ColdAttr>()) {
1593 if (!ShouldAddOptNone)
1594 B.addAttribute(llvm::Attribute::OptimizeForSize);
1595 B.addAttribute(llvm::Attribute::Cold);
1596 }
1597
1598 if (D->hasAttr<MinSizeAttr>())
1599 B.addAttribute(llvm::Attribute::MinSize);
1600 }
1601
1602 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1603
1604 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1605 if (alignment)
1606 F->setAlignment(llvm::Align(alignment));
1607
1608 if (!D->hasAttr<AlignedAttr>())
1609 if (LangOpts.FunctionAlignment)
1610 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1611
1612 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1613 // reserve a bit for differentiating between virtual and non-virtual member
1614 // functions. If the current target's C++ ABI requires this and this is a
1615 // member function, set its alignment accordingly.
1616 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1617 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1618 F->setAlignment(llvm::Align(2));
1619 }
1620
1621 // In the cross-dso CFI mode with canonical jump tables, we want !type
1622 // attributes on definitions only.
1623 if (CodeGenOpts.SanitizeCfiCrossDso &&
1624 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1625 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1626 // Skip available_externally functions. They won't be codegen'ed in the
1627 // current module anyway.
1628 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1629 CreateFunctionTypeMetadataForIcall(FD, F);
1630 }
1631 }
1632
1633 // Emit type metadata on member functions for member function pointer checks.
1634 // These are only ever necessary on definitions; we're guaranteed that the
1635 // definition will be present in the LTO unit as a result of LTO visibility.
1636 auto *MD = dyn_cast<CXXMethodDecl>(D);
1637 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1638 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1639 llvm::Metadata *Id =
1640 CreateMetadataIdentifierForType(Context.getMemberPointerType(
1641 MD->getType(), Context.getRecordType(Base).getTypePtr()));
1642 F->addTypeMetadata(0, Id);
1643 }
1644 }
1645}
1646
1647void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1648 const Decl *D = GD.getDecl();
1649 if (dyn_cast_or_null<NamedDecl>(D))
1650 setGVProperties(GV, GD);
1651 else
1652 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1653
1654 if (D && D->hasAttr<UsedAttr>())
1655 addUsedGlobal(GV);
1656
1657 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1658 const auto *VD = cast<VarDecl>(D);
1659 if (VD->getType().isConstQualified() &&
1660 VD->getStorageDuration() == SD_Static)
1661 addUsedGlobal(GV);
1662 }
1663}
1664
1665bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1666 llvm::AttrBuilder &Attrs) {
1667 // Add target-cpu and target-features attributes to functions. If
1668 // we have a decl for the function and it has a target attribute then
1669 // parse that and add it to the feature set.
1670 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1671 std::vector<std::string> Features;
1672 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1673 FD = FD ? FD->getMostRecentDecl() : FD;
1674 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1675 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1676 bool AddedAttr = false;
1677 if (TD || SD) {
1678 llvm::StringMap<bool> FeatureMap;
1679 getContext().getFunctionFeatureMap(FeatureMap, GD);
1680
1681 // Produce the canonical string for this set of features.
1682 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1683 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1684
1685 // Now add the target-cpu and target-features to the function.
1686 // While we populated the feature map above, we still need to
1687 // get and parse the target attribute so we can get the cpu for
1688 // the function.
1689 if (TD) {
1690 ParsedTargetAttr ParsedAttr = TD->parse();
1691 if (ParsedAttr.Architecture != "" &&
1692 getTarget().isValidCPUName(ParsedAttr.Architecture))
1693 TargetCPU = ParsedAttr.Architecture;
1694 }
1695 } else {
1696 // Otherwise just add the existing target cpu and target features to the
1697 // function.
1698 Features = getTarget().getTargetOpts().Features;
1699 }
1700
1701 if (TargetCPU != "") {
1702 Attrs.addAttribute("target-cpu", TargetCPU);
1703 AddedAttr = true;
1704 }
1705 if (!Features.empty()) {
1706 llvm::sort(Features);
1707 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1708 AddedAttr = true;
1709 }
1710
1711 return AddedAttr;
1712}
1713
1714void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1715 llvm::GlobalObject *GO) {
1716 const Decl *D = GD.getDecl();
1717 SetCommonAttributes(GD, GO);
1718
1719 if (D) {
1720 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1721 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1722 GV->addAttribute("bss-section", SA->getName());
1723 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1724 GV->addAttribute("data-section", SA->getName());
1725 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1726 GV->addAttribute("rodata-section", SA->getName());
1727 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1728 GV->addAttribute("relro-section", SA->getName());
1729 }
1730
1731 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1732 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1733 if (!D->getAttr<SectionAttr>())
1734 F->addFnAttr("implicit-section-name", SA->getName());
1735
1736 llvm::AttrBuilder Attrs;
1737 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1738 // We know that GetCPUAndFeaturesAttributes will always have the
1739 // newest set, since it has the newest possible FunctionDecl, so the
1740 // new ones should replace the old.
1741 F->removeFnAttr("target-cpu");
1742 F->removeFnAttr("target-features");
1743 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1744 }
1745 }
1746
1747 if (const auto *CSA = D->getAttr<CodeSegAttr>())
1748 GO->setSection(CSA->getName());
1749 else if (const auto *SA = D->getAttr<SectionAttr>())
1750 GO->setSection(SA->getName());
1751 }
1752
1753 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1754}
1755
1756void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1757 llvm::Function *F,
1758 const CGFunctionInfo &FI) {
1759 const Decl *D = GD.getDecl();
1760 SetLLVMFunctionAttributes(GD, FI, F);
1761 SetLLVMFunctionAttributesForDefinition(D, F);
1762
1763 F->setLinkage(llvm::Function::InternalLinkage);
1764
1765 setNonAliasAttributes(GD, F);
1766}
1767
1768static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1769 // Set linkage and visibility in case we never see a definition.
1770 LinkageInfo LV = ND->getLinkageAndVisibility();
1771 // Don't set internal linkage on declarations.
1772 // "extern_weak" is overloaded in LLVM; we probably should have
1773 // separate linkage types for this.
1774 if (isExternallyVisible(LV.getLinkage()) &&
1775 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1776 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1777}
1778
1779void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1780 llvm::Function *F) {
1781 // Only if we are checking indirect calls.
1782 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1783 return;
1784
1785 // Non-static class methods are handled via vtable or member function pointer
1786 // checks elsewhere.
1787 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1788 return;
1789
1790 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1791 F->addTypeMetadata(0, MD);
1792 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1793
1794 // Emit a hash-based bit set entry for cross-DSO calls.
1795 if (CodeGenOpts.SanitizeCfiCrossDso)
1796 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1797 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1798}
1799
1800void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1801 bool IsIncompleteFunction,
1802 bool IsThunk) {
1803
1804 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1805 // If this is an intrinsic function, set the function's attributes
1806 // to the intrinsic's attributes.
1807 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1808 return;
1809 }
1810
1811 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1812
1813 if (!IsIncompleteFunction)
1814 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1815
1816 // Add the Returned attribute for "this", except for iOS 5 and earlier
1817 // where substantial code, including the libstdc++ dylib, was compiled with
1818 // GCC and does not actually return "this".
1819 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1820 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1821 assert(!F->arg_empty() &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
1822 F->arg_begin()->getType()((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
1823 ->canLosslesslyBitCastTo(F->getReturnType()) &&((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
1824 "unexpected this return")((!F->arg_empty() && F->arg_begin()->getType
() ->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return") ? static_cast<void> (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1824, __PRETTY_FUNCTION__))
;
1825 F->addAttribute(1, llvm::Attribute::Returned);
1826 }
1827
1828 // Only a few attributes are set on declarations; these may later be
1829 // overridden by a definition.
1830
1831 setLinkageForGV(F, FD);
1832 setGVProperties(F, FD);
1833
1834 // Setup target-specific attributes.
1835 if (!IsIncompleteFunction && F->isDeclaration())
1836 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1837
1838 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1839 F->setSection(CSA->getName());
1840 else if (const auto *SA = FD->getAttr<SectionAttr>())
1841 F->setSection(SA->getName());
1842
1843 if (FD->isInlineBuiltinDeclaration()) {
1844 F->addAttribute(llvm::AttributeList::FunctionIndex,
1845 llvm::Attribute::NoBuiltin);
1846 }
1847
1848 if (FD->isReplaceableGlobalAllocationFunction()) {
1849 // A replaceable global allocation function does not act like a builtin by
1850 // default, only if it is invoked by a new-expression or delete-expression.
1851 F->addAttribute(llvm::AttributeList::FunctionIndex,
1852 llvm::Attribute::NoBuiltin);
1853
1854 // A sane operator new returns a non-aliasing pointer.
1855 // FIXME: Also add NonNull attribute to the return value
1856 // for the non-nothrow forms?
1857 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1858 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1859 (Kind == OO_New || Kind == OO_Array_New))
1860 F->addAttribute(llvm::AttributeList::ReturnIndex,
1861 llvm::Attribute::NoAlias);
1862 }
1863
1864 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1865 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1866 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1867 if (MD->isVirtual())
1868 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1869
1870 // Don't emit entries for function declarations in the cross-DSO mode. This
1871 // is handled with better precision by the receiving DSO. But if jump tables
1872 // are non-canonical then we need type metadata in order to produce the local
1873 // jump table.
1874 if (!CodeGenOpts.SanitizeCfiCrossDso ||
1875 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1876 CreateFunctionTypeMetadataForIcall(FD, F);
1877
1878 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1879 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1880
1881 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1882 // Annotate the callback behavior as metadata:
1883 // - The callback callee (as argument number).
1884 // - The callback payloads (as argument numbers).
1885 llvm::LLVMContext &Ctx = F->getContext();
1886 llvm::MDBuilder MDB(Ctx);
1887
1888 // The payload indices are all but the first one in the encoding. The first
1889 // identifies the callback callee.
1890 int CalleeIdx = *CB->encoding_begin();
1891 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1892 F->addMetadata(llvm::LLVMContext::MD_callback,
1893 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1894 CalleeIdx, PayloadIndices,
1895 /* VarArgsArePassed */ false)}));
1896 }
1897}
1898
1899void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1900 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1901, __PRETTY_FUNCTION__))
1901 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1901, __PRETTY_FUNCTION__))
;
1902 LLVMUsed.emplace_back(GV);
1903}
1904
1905void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1906 assert(!GV->isDeclaration() &&((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1907, __PRETTY_FUNCTION__))
1907 "Only globals with definition can force usage.")((!GV->isDeclaration() && "Only globals with definition can force usage."
) ? static_cast<void> (0) : __assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 1907, __PRETTY_FUNCTION__))
;
1908 LLVMCompilerUsed.emplace_back(GV);
1909}
1910
1911static void emitUsed(CodeGenModule &CGM, StringRef Name,
1912 std::vector<llvm::WeakTrackingVH> &List) {
1913 // Don't create llvm.used if there is no need.
1914 if (List.empty())
1915 return;
1916
1917 // Convert List to what ConstantArray needs.
1918 SmallVector<llvm::Constant*, 8> UsedArray;
1919 UsedArray.resize(List.size());
1920 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1921 UsedArray[i] =
1922 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1923 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1924 }
1925
1926 if (UsedArray.empty())
1927 return;
1928 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1929
1930 auto *GV = new llvm::GlobalVariable(
1931 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1932 llvm::ConstantArray::get(ATy, UsedArray), Name);
1933
1934 GV->setSection("llvm.metadata");
1935}
1936
1937void CodeGenModule::emitLLVMUsed() {
1938 emitUsed(*this, "llvm.used", LLVMUsed);
1939 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1940}
1941
1942void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1943 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1944 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1945}
1946
1947void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1948 llvm::SmallString<32> Opt;
1949 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1950 if (Opt.empty())
1951 return;
1952 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1953 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1954}
1955
1956void CodeGenModule::AddDependentLib(StringRef Lib) {
1957 auto &C = getLLVMContext();
1958 if (getTarget().getTriple().isOSBinFormatELF()) {
1959 ELFDependentLibraries.push_back(
1960 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1961 return;
1962 }
1963
1964 llvm::SmallString<24> Opt;
1965 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1966 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1967 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1968}
1969
1970/// Add link options implied by the given module, including modules
1971/// it depends on, using a postorder walk.
1972static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1973 SmallVectorImpl<llvm::MDNode *> &Metadata,
1974 llvm::SmallPtrSet<Module *, 16> &Visited) {
1975 // Import this module's parent.
1976 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1977 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1978 }
1979
1980 // Import this module's dependencies.
1981 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1982 if (Visited.insert(Mod->Imports[I - 1]).second)
1983 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1984 }
1985
1986 // Add linker options to link against the libraries/frameworks
1987 // described by this module.
1988 llvm::LLVMContext &Context = CGM.getLLVMContext();
1989 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1990
1991 // For modules that use export_as for linking, use that module
1992 // name instead.
1993 if (Mod->UseExportAsModuleLinkName)
1994 return;
1995
1996 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1997 // Link against a framework. Frameworks are currently Darwin only, so we
1998 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1999 if (Mod->LinkLibraries[I-1].IsFramework) {
2000 llvm::Metadata *Args[2] = {
2001 llvm::MDString::get(Context, "-framework"),
2002 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2003
2004 Metadata.push_back(llvm::MDNode::get(Context, Args));
2005 continue;
2006 }
2007
2008 // Link against a library.
2009 if (IsELF) {
2010 llvm::Metadata *Args[2] = {
2011 llvm::MDString::get(Context, "lib"),
2012 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2013 };
2014 Metadata.push_back(llvm::MDNode::get(Context, Args));
2015 } else {
2016 llvm::SmallString<24> Opt;
2017 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2018 Mod->LinkLibraries[I - 1].Library, Opt);
2019 auto *OptString = llvm::MDString::get(Context, Opt);
2020 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2021 }
2022 }
2023}
2024
2025void CodeGenModule::EmitModuleLinkOptions() {
2026 // Collect the set of all of the modules we want to visit to emit link
2027 // options, which is essentially the imported modules and all of their
2028 // non-explicit child modules.
2029 llvm::SetVector<clang::Module *> LinkModules;
2030 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2031 SmallVector<clang::Module *, 16> Stack;
2032
2033 // Seed the stack with imported modules.
2034 for (Module *M : ImportedModules) {
2035 // Do not add any link flags when an implementation TU of a module imports
2036 // a header of that same module.
2037 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2038 !getLangOpts().isCompilingModule())
2039 continue;
2040 if (Visited.insert(M).second)
2041 Stack.push_back(M);
2042 }
2043
2044 // Find all of the modules to import, making a little effort to prune
2045 // non-leaf modules.
2046 while (!Stack.empty()) {
2047 clang::Module *Mod = Stack.pop_back_val();
2048
2049 bool AnyChildren = false;
2050
2051 // Visit the submodules of this module.
2052 for (const auto &SM : Mod->submodules()) {
2053 // Skip explicit children; they need to be explicitly imported to be
2054 // linked against.
2055 if (SM->IsExplicit)
2056 continue;
2057
2058 if (Visited.insert(SM).second) {
2059 Stack.push_back(SM);
2060 AnyChildren = true;
2061 }
2062 }
2063
2064 // We didn't find any children, so add this module to the list of
2065 // modules to link against.
2066 if (!AnyChildren) {
2067 LinkModules.insert(Mod);
2068 }
2069 }
2070
2071 // Add link options for all of the imported modules in reverse topological
2072 // order. We don't do anything to try to order import link flags with respect
2073 // to linker options inserted by things like #pragma comment().
2074 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2075 Visited.clear();
2076 for (Module *M : LinkModules)
2077 if (Visited.insert(M).second)
2078 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2079 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2080 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2081
2082 // Add the linker options metadata flag.
2083 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2084 for (auto *MD : LinkerOptionsMetadata)
2085 NMD->addOperand(MD);
2086}
2087
2088void CodeGenModule::EmitDeferred() {
2089 // Emit deferred declare target declarations.
2090 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2091 getOpenMPRuntime().emitDeferredTargetDecls();
2092
2093 // Emit code for any potentially referenced deferred decls. Since a
2094 // previously unused static decl may become used during the generation of code
2095 // for a static function, iterate until no changes are made.
2096
2097 if (!DeferredVTables.empty()) {
2098 EmitDeferredVTables();
2099
2100 // Emitting a vtable doesn't directly cause more vtables to
2101 // become deferred, although it can cause functions to be
2102 // emitted that then need those vtables.
2103 assert(DeferredVTables.empty())((DeferredVTables.empty()) ? static_cast<void> (0) : __assert_fail
("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2103, __PRETTY_FUNCTION__))
;
2104 }
2105
2106 // Stop if we're out of both deferred vtables and deferred declarations.
2107 if (DeferredDeclsToEmit.empty())
2108 return;
2109
2110 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2111 // work, it will not interfere with this.
2112 std::vector<GlobalDecl> CurDeclsToEmit;
2113 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2114
2115 for (GlobalDecl &D : CurDeclsToEmit) {
2116 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2117 // to get GlobalValue with exactly the type we need, not something that
2118 // might had been created for another decl with the same mangled name but
2119 // different type.
2120 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2121 GetAddrOfGlobal(D, ForDefinition));
2122
2123 // In case of different address spaces, we may still get a cast, even with
2124 // IsForDefinition equal to true. Query mangled names table to get
2125 // GlobalValue.
2126 if (!GV)
2127 GV = GetGlobalValue(getMangledName(D));
2128
2129 // Make sure GetGlobalValue returned non-null.
2130 assert(GV)((GV) ? static_cast<void> (0) : __assert_fail ("GV", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2130, __PRETTY_FUNCTION__))
;
2131
2132 // Check to see if we've already emitted this. This is necessary
2133 // for a couple of reasons: first, decls can end up in the
2134 // deferred-decls queue multiple times, and second, decls can end
2135 // up with definitions in unusual ways (e.g. by an extern inline
2136 // function acquiring a strong function redefinition). Just
2137 // ignore these cases.
2138 if (!GV->isDeclaration())
2139 continue;
2140
2141 // If this is OpenMP, check if it is legal to emit this global normally.
2142 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2143 continue;
2144
2145 // Otherwise, emit the definition and move on to the next one.
2146 EmitGlobalDefinition(D, GV);
2147
2148 // If we found out that we need to emit more decls, do that recursively.
2149 // This has the advantage that the decls are emitted in a DFS and related
2150 // ones are close together, which is convenient for testing.
2151 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2152 EmitDeferred();
2153 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())((DeferredVTables.empty() && DeferredDeclsToEmit.empty
()) ? static_cast<void> (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2153, __PRETTY_FUNCTION__))
;
2154 }
2155 }
2156}
2157
2158void CodeGenModule::EmitVTablesOpportunistically() {
2159 // Try to emit external vtables as available_externally if they have emitted
2160 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2161 // is not allowed to create new references to things that need to be emitted
2162 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2163
2164 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2165, __PRETTY_FUNCTION__))
2165 && "Only emit opportunistic vtables with optimizations")(((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? static_cast<void> (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2165, __PRETTY_FUNCTION__))
;
2166
2167 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2168 assert(getVTables().isVTableExternal(RD) &&((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2169, __PRETTY_FUNCTION__))
2169 "This queue should only contain external vtables")((getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"
) ? static_cast<void> (0) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2169, __PRETTY_FUNCTION__))
;
2170 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2171 VTables.GenerateClassData(RD);
2172 }
2173 OpportunisticVTables.clear();
2174}
2175
2176void CodeGenModule::EmitGlobalAnnotations() {
2177 if (Annotations.empty())
2178 return;
2179
2180 // Create a new global variable for the ConstantStruct in the Module.
2181 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2182 Annotations[0]->getType(), Annotations.size()), Annotations);
2183 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2184 llvm::GlobalValue::AppendingLinkage,
2185 Array, "llvm.global.annotations");
2186 gv->setSection(AnnotationSection);
2187}
2188
2189llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2190 llvm::Constant *&AStr = AnnotationStrings[Str];
2191 if (AStr)
2192 return AStr;
2193
2194 // Not found yet, create a new global.
2195 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2196 auto *gv =
2197 new llvm::GlobalVariable(getModule(), s->getType(), true,
2198 llvm::GlobalValue::PrivateLinkage, s, ".str");
2199 gv->setSection(AnnotationSection);
2200 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2201 AStr = gv;
2202 return gv;
2203}
2204
2205llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2206 SourceManager &SM = getContext().getSourceManager();
2207 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2208 if (PLoc.isValid())
2209 return EmitAnnotationString(PLoc.getFilename());
2210 return EmitAnnotationString(SM.getBufferName(Loc));
2211}
2212
2213llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2214 SourceManager &SM = getContext().getSourceManager();
2215 PresumedLoc PLoc = SM.getPresumedLoc(L);
2216 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2217 SM.getExpansionLineNumber(L);
2218 return llvm::ConstantInt::get(Int32Ty, LineNo);
2219}
2220
2221llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2222 const AnnotateAttr *AA,
2223 SourceLocation L) {
2224 // Get the globals for file name, annotation, and the line number.
2225 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2226 *UnitGV = EmitAnnotationUnit(L),
2227 *LineNoCst = EmitAnnotationLineNo(L);
2228
2229 llvm::Constant *ASZeroGV = GV;
2230 if (GV->getAddressSpace() != 0) {
2231 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2232 GV, GV->getValueType()->getPointerTo(0));
2233 }
2234
2235 // Create the ConstantStruct for the global annotation.
2236 llvm::Constant *Fields[4] = {
2237 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2238 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2239 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2240 LineNoCst
2241 };
2242 return llvm::ConstantStruct::getAnon(Fields);
2243}
2244
2245void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2246 llvm::GlobalValue *GV) {
2247 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")((D->hasAttr<AnnotateAttr>() && "no annotate attribute"
) ? static_cast<void> (0) : __assert_fail ("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2247, __PRETTY_FUNCTION__))
;
2248 // Get the struct elements for these annotations.
2249 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2250 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2251}
2252
2253bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2254 llvm::Function *Fn,
2255 SourceLocation Loc) const {
2256 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2257 // Blacklist by function name.
2258 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2259 return true;
2260 // Blacklist by location.
2261 if (Loc.isValid())
2262 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2263 // If location is unknown, this may be a compiler-generated function. Assume
2264 // it's located in the main file.
2265 auto &SM = Context.getSourceManager();
2266 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2267 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2268 }
2269 return false;
2270}
2271
2272bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2273 SourceLocation Loc, QualType Ty,
2274 StringRef Category) const {
2275 // For now globals can be blacklisted only in ASan and KASan.
2276 const SanitizerMask EnabledAsanMask =
2277 LangOpts.Sanitize.Mask &
2278 (SanitizerKind::Address | SanitizerKind::KernelAddress |
2279 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2280 SanitizerKind::MemTag);
2281 if (!EnabledAsanMask)
2282 return false;
2283 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2284 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2285 return true;
2286 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2287 return true;
2288 // Check global type.
2289 if (!Ty.isNull()) {
2290 // Drill down the array types: if global variable of a fixed type is
2291 // blacklisted, we also don't instrument arrays of them.
2292 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2293 Ty = AT->getElementType();
2294 Ty = Ty.getCanonicalType().getUnqualifiedType();
2295 // We allow to blacklist only record types (classes, structs etc.)
2296 if (Ty->isRecordType()) {
2297 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2298 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2299 return true;
2300 }
2301 }
2302 return false;
2303}
2304
2305bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2306 StringRef Category) const {
2307 const auto &XRayFilter = getContext().getXRayFilter();
2308 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2309 auto Attr = ImbueAttr::NONE;
2310 if (Loc.isValid())
2311 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2312 if (Attr == ImbueAttr::NONE)
2313 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2314 switch (Attr) {
2315 case ImbueAttr::NONE:
2316 return false;
2317 case ImbueAttr::ALWAYS:
2318 Fn->addFnAttr("function-instrument", "xray-always");
2319 break;
2320 case ImbueAttr::ALWAYS_ARG1:
2321 Fn->addFnAttr("function-instrument", "xray-always");
2322 Fn->addFnAttr("xray-log-args", "1");
2323 break;
2324 case ImbueAttr::NEVER:
2325 Fn->addFnAttr("function-instrument", "xray-never");
2326 break;
2327 }
2328 return true;
2329}
2330
2331bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2332 // Never defer when EmitAllDecls is specified.
2333 if (LangOpts.EmitAllDecls)
2334 return true;
2335
2336 if (CodeGenOpts.KeepStaticConsts) {
2337 const auto *VD = dyn_cast<VarDecl>(Global);
2338 if (VD && VD->getType().isConstQualified() &&
2339 VD->getStorageDuration() == SD_Static)
2340 return true;
2341 }
2342
2343 return getContext().DeclMustBeEmitted(Global);
2344}
2345
2346bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2347 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2348 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2349 // Implicit template instantiations may change linkage if they are later
2350 // explicitly instantiated, so they should not be emitted eagerly.
2351 return false;
2352 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2353 // not emit them eagerly unless we sure that the function must be emitted on
2354 // the host.
2355 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2356 !LangOpts.OpenMPIsDevice &&
2357 !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2358 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2359 return false;
2360 }
2361 if (const auto *VD = dyn_cast<VarDecl>(Global))
2362 if (Context.getInlineVariableDefinitionKind(VD) ==
2363 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2364 // A definition of an inline constexpr static data member may change
2365 // linkage later if it's redeclared outside the class.
2366 return false;
2367 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2368 // codegen for global variables, because they may be marked as threadprivate.
2369 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2370 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2371 !isTypeConstant(Global->getType(), false) &&
2372 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2373 return false;
2374
2375 return true;
2376}
2377
2378ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2379 const CXXUuidofExpr* E) {
2380 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2381 // well-formed.
2382 StringRef Uuid = E->getUuidStr();
2383 std::string Name = "_GUID_" + Uuid.lower();
2384 std::replace(Name.begin(), Name.end(), '-', '_');
2385
2386 // The UUID descriptor should be pointer aligned.
2387 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2388
2389 // Look for an existing global.
2390 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2391 return ConstantAddress(GV, Alignment);
2392
2393 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2394 assert(Init && "failed to initialize as constant")((Init && "failed to initialize as constant") ? static_cast
<void> (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2394, __PRETTY_FUNCTION__))
;
2395
2396 auto *GV = new llvm::GlobalVariable(
2397 getModule(), Init->getType(),
2398 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2399 if (supportsCOMDAT())
2400 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2401 setDSOLocal(GV);
2402 return ConstantAddress(GV, Alignment);
2403}
2404
2405ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2406 const AliasAttr *AA = VD->getAttr<AliasAttr>();
2407 assert(AA && "No alias?")((AA && "No alias?") ? static_cast<void> (0) : __assert_fail
("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2407, __PRETTY_FUNCTION__))
;
2408
2409 CharUnits Alignment = getContext().getDeclAlign(VD);
2410 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2411
2412 // See if there is already something with the target's name in the module.
2413 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2414 if (Entry) {
2415 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2416 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2417 return ConstantAddress(Ptr, Alignment);
2418 }
2419
2420 llvm::Constant *Aliasee;
2421 if (isa<llvm::FunctionType>(DeclTy))
2422 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2423 GlobalDecl(cast<FunctionDecl>(VD)),
2424 /*ForVTable=*/false);
2425 else
2426 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2427 llvm::PointerType::getUnqual(DeclTy),
2428 nullptr);
2429
2430 auto *F = cast<llvm::GlobalValue>(Aliasee);
2431 F->setLinkage(llvm::Function::ExternalWeakLinkage);
2432 WeakRefReferences.insert(F);
2433
2434 return ConstantAddress(Aliasee, Alignment);
2435}
2436
2437void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2438 const auto *Global = cast<ValueDecl>(GD.getDecl());
2439
2440 // Weak references don't produce any output by themselves.
2441 if (Global->hasAttr<WeakRefAttr>())
2442 return;
2443
2444 // If this is an alias definition (which otherwise looks like a declaration)
2445 // emit it now.
2446 if (Global->hasAttr<AliasAttr>())
2447 return EmitAliasDefinition(GD);
2448
2449 // IFunc like an alias whose value is resolved at runtime by calling resolver.
2450 if (Global->hasAttr<IFuncAttr>())
2451 return emitIFuncDefinition(GD);
2452
2453 // If this is a cpu_dispatch multiversion function, emit the resolver.
2454 if (Global->hasAttr<CPUDispatchAttr>())
2455 return emitCPUDispatchDefinition(GD);
2456
2457 // If this is CUDA, be selective about which declarations we emit.
2458 if (LangOpts.CUDA) {
2459 if (LangOpts.CUDAIsDevice) {
2460 if (!Global->hasAttr<CUDADeviceAttr>() &&
2461 !Global->hasAttr<CUDAGlobalAttr>() &&
2462 !Global->hasAttr<CUDAConstantAttr>() &&
2463 !Global->hasAttr<CUDASharedAttr>() &&
2464 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2465 return;
2466 } else {
2467 // We need to emit host-side 'shadows' for all global
2468 // device-side variables because the CUDA runtime needs their
2469 // size and host-side address in order to provide access to
2470 // their device-side incarnations.
2471
2472 // So device-only functions are the only things we skip.
2473 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2474 Global->hasAttr<CUDADeviceAttr>())
2475 return;
2476
2477 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2478, __PRETTY_FUNCTION__))
2478 "Expected Variable or Function")(((isa<FunctionDecl>(Global) || isa<VarDecl>(Global
)) && "Expected Variable or Function") ? static_cast<
void> (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2478, __PRETTY_FUNCTION__))
;
2479 }
2480 }
2481
2482 if (LangOpts.OpenMP) {
2483 // If this is OpenMP, check if it is legal to emit this global normally.
2484 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2485 return;
2486 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2487 if (MustBeEmitted(Global))
2488 EmitOMPDeclareReduction(DRD);
2489 return;
2490 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2491 if (MustBeEmitted(Global))
2492 EmitOMPDeclareMapper(DMD);
2493 return;
2494 }
2495 }
2496
2497 // Ignore declarations, they will be emitted on their first use.
2498 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2499 // Forward declarations are emitted lazily on first use.
2500 if (!FD->doesThisDeclarationHaveABody()) {
2501 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2502 return;
2503
2504 StringRef MangledName = getMangledName(GD);
2505
2506 // Compute the function info and LLVM type.
2507 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2508 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2509
2510 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2511 /*DontDefer=*/false);
2512 return;
2513 }
2514 } else {
2515 const auto *VD = cast<VarDecl>(Global);
2516 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")((VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? static_cast<void> (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2516, __PRETTY_FUNCTION__))
;
2517 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2518 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2519 if (LangOpts.OpenMP) {
2520 // Emit declaration of the must-be-emitted declare target variable.
2521 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2522 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2523 bool UnifiedMemoryEnabled =
2524 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2525 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2526 !UnifiedMemoryEnabled) {
2527 (void)GetAddrOfGlobalVar(VD);
2528 } else {
2529 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
2530 (*Res == OMPDeclareTargetDeclAttr::MT_To &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
2531 UnifiedMemoryEnabled)) &&((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
2532 "Link clause or to clause with unified memory expected.")((((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr
::MT_To && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."
) ? static_cast<void> (0) : __assert_fail ("((*Res == OMPDeclareTargetDeclAttr::MT_Link) || (*Res == OMPDeclareTargetDeclAttr::MT_To && UnifiedMemoryEnabled)) && \"Link clause or to clause with unified memory expected.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2532, __PRETTY_FUNCTION__))
;
2533 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2534 }
2535
2536 return;
2537 }
2538 }
2539 // If this declaration may have caused an inline variable definition to
2540 // change linkage, make sure that it's emitted.
2541 if (Context.getInlineVariableDefinitionKind(VD) ==
2542 ASTContext::InlineVariableDefinitionKind::Strong)
2543 GetAddrOfGlobalVar(VD);
2544 return;
2545 }
2546 }
2547
2548 // Defer code generation to first use when possible, e.g. if this is an inline
2549 // function. If the global must always be emitted, do it eagerly if possible
2550 // to benefit from cache locality.
2551 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2552 // Emit the definition if it can't be deferred.
2553 EmitGlobalDefinition(GD);
2554 return;
2555 }
2556
2557 // Check if this must be emitted as declare variant.
2558 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2559 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2560 return;
2561
2562 // If we're deferring emission of a C++ variable with an
2563 // initializer, remember the order in which it appeared in the file.
2564 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2565 cast<VarDecl>(Global)->hasInit()) {
2566 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2567 CXXGlobalInits.push_back(nullptr);
2568 }
2569
2570 StringRef MangledName = getMangledName(GD);
2571 if (GetGlobalValue(MangledName) != nullptr) {
2572 // The value has already been used and should therefore be emitted.
2573 addDeferredDeclToEmit(GD);
2574 } else if (MustBeEmitted(Global)) {
2575 // The value must be emitted, but cannot be emitted eagerly.
2576 assert(!MayBeEmittedEagerly(Global))((!MayBeEmittedEagerly(Global)) ? static_cast<void> (0)
: __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2576, __PRETTY_FUNCTION__))
;
2577 addDeferredDeclToEmit(GD);
2578 } else {
2579 // Otherwise, remember that we saw a deferred decl with this name. The
2580 // first use of the mangled name will cause it to move into
2581 // DeferredDeclsToEmit.
2582 DeferredDecls[MangledName] = GD;
2583 }
2584}
2585
2586// Check if T is a class type with a destructor that's not dllimport.
2587static bool HasNonDllImportDtor(QualType T) {
2588 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2589 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2590 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2591 return true;
2592
2593 return false;
2594}
2595
2596namespace {
2597 struct FunctionIsDirectlyRecursive
2598 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2599 const StringRef Name;
2600 const Builtin::Context &BI;
2601 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2602 : Name(N), BI(C) {}
2603
2604 bool VisitCallExpr(const CallExpr *E) {
2605 const FunctionDecl *FD = E->getDirectCallee();
2606 if (!FD)
2607 return false;
2608 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2609 if (Attr && Name == Attr->getLabel())
2610 return true;
2611 unsigned BuiltinID = FD->getBuiltinID();
2612 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2613 return false;
2614 StringRef BuiltinName = BI.getName(BuiltinID);
2615 if (BuiltinName.startswith("__builtin_") &&
2616 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2617 return true;
2618 }
2619 return false;
2620 }
2621
2622 bool VisitStmt(const Stmt *S) {
2623 for (const Stmt *Child : S->children())
2624 if (Child && this->Visit(Child))
2625 return true;
2626 return false;
2627 }
2628 };
2629
2630 // Make sure we're not referencing non-imported vars or functions.
2631 struct DLLImportFunctionVisitor
2632 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2633 bool SafeToInline = true;
2634
2635 bool shouldVisitImplicitCode() const { return true; }
2636
2637 bool VisitVarDecl(VarDecl *VD) {
2638 if (VD->getTLSKind()) {
2639 // A thread-local variable cannot be imported.
2640 SafeToInline = false;
2641 return SafeToInline;
2642 }
2643
2644 // A variable definition might imply a destructor call.
2645 if (VD->isThisDeclarationADefinition())
2646 SafeToInline = !HasNonDllImportDtor(VD->getType());
2647
2648 return SafeToInline;
2649 }
2650
2651 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2652 if (const auto *D = E->getTemporary()->getDestructor())
2653 SafeToInline = D->hasAttr<DLLImportAttr>();
2654 return SafeToInline;
2655 }
2656
2657 bool VisitDeclRefExpr(DeclRefExpr *E) {
2658 ValueDecl *VD = E->getDecl();
2659 if (isa<FunctionDecl>(VD))
2660 SafeToInline = VD->hasAttr<DLLImportAttr>();
2661 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2662 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2663 return SafeToInline;
2664 }
2665
2666 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2667 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2668 return SafeToInline;
2669 }
2670
2671 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2672 CXXMethodDecl *M = E->getMethodDecl();
2673 if (!M) {
2674 // Call through a pointer to member function. This is safe to inline.
2675 SafeToInline = true;
2676 } else {
2677 SafeToInline = M->hasAttr<DLLImportAttr>();
2678 }
2679 return SafeToInline;
2680 }
2681
2682 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2683 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2684 return SafeToInline;
2685 }
2686
2687 bool VisitCXXNewExpr(CXXNewExpr *E) {
2688 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2689 return SafeToInline;
2690 }
2691 };
2692}
2693
2694// isTriviallyRecursive - Check if this function calls another
2695// decl that, because of the asm attribute or the other decl being a builtin,
2696// ends up pointing to itself.
2697bool
2698CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2699 StringRef Name;
2700 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2701 // asm labels are a special kind of mangling we have to support.
2702 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2703 if (!Attr)
2704 return false;
2705 Name = Attr->getLabel();
2706 } else {
2707 Name = FD->getName();
2708 }
2709
2710 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2711 const Stmt *Body = FD->getBody();
2712 return Body ? Walker.Visit(Body) : false;
2713}
2714
2715bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2716 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2717 return true;
2718 const auto *F = cast<FunctionDecl>(GD.getDecl());
2719 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2720 return false;
2721
2722 if (F->hasAttr<DLLImportAttr>()) {
2723 // Check whether it would be safe to inline this dllimport function.
2724 DLLImportFunctionVisitor Visitor;
2725 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2726 if (!Visitor.SafeToInline)
2727 return false;
2728
2729 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2730 // Implicit destructor invocations aren't captured in the AST, so the
2731 // check above can't see them. Check for them manually here.
2732 for (const Decl *Member : Dtor->getParent()->decls())
2733 if (isa<FieldDecl>(Member))
2734 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2735 return false;
2736 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2737 if (HasNonDllImportDtor(B.getType()))
2738 return false;
2739 }
2740 }
2741
2742 // PR9614. Avoid cases where the source code is lying to us. An available
2743 // externally function should have an equivalent function somewhere else,
2744 // but a function that calls itself is clearly not equivalent to the real
2745 // implementation.
2746 // This happens in glibc's btowc and in some configure checks.
2747 return !isTriviallyRecursive(F);
2748}
2749
2750bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2751 return CodeGenOpts.OptimizationLevel > 0;
2752}
2753
2754void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2755 llvm::GlobalValue *GV) {
2756 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2757
2758 if (FD->isCPUSpecificMultiVersion()) {
2759 auto *Spec = FD->getAttr<CPUSpecificAttr>();
2760 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2761 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2762 // Requires multiple emits.
2763 } else
2764 EmitGlobalFunctionDefinition(GD, GV);
2765}
2766
2767void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2768 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2769 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&((getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice
&& OpenMPRuntime && "Expected OpenMP device mode."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && OpenMPRuntime && \"Expected OpenMP device mode.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2770, __PRETTY_FUNCTION__))
2770 OpenMPRuntime && "Expected OpenMP device mode.")((getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice
&& OpenMPRuntime && "Expected OpenMP device mode."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && OpenMPRuntime && \"Expected OpenMP device mode.\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2770, __PRETTY_FUNCTION__))
;
2771 const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2772
2773 // Compute the function info and LLVM type.
2774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2775 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2776
2777 // Get or create the prototype for the function.
2778 if (!GV || (GV->getType()->getElementType() != Ty)) {
2779 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2780 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2781 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2782 ForDefinition));
2783 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2784 /*IsIncompleteFunction=*/false,
2785 /*IsThunk=*/false);
2786 }
2787 // We need to set linkage and visibility on the function before
2788 // generating code for it because various parts of IR generation
2789 // want to propagate this information down (e.g. to local static
2790 // declarations).
2791 auto *Fn = cast<llvm::Function>(GV);
2792 setFunctionLinkage(OldGD, Fn);
2793
2794 // FIXME: this is redundant with part of
2795 // setFunctionDefinitionAttributes
2796 setGVProperties(Fn, OldGD);
2797
2798 MaybeHandleStaticInExternC(D, Fn);
2799
2800 maybeSetTrivialComdat(*D, *Fn);
2801
2802 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2803
2804 setNonAliasAttributes(OldGD, Fn);
2805 SetLLVMFunctionAttributesForDefinition(D, Fn);
2806
2807 if (D->hasAttr<AnnotateAttr>())
2808 AddGlobalAnnotations(D, Fn);
2809}
2810
2811void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2812 const auto *D = cast<ValueDecl>(GD.getDecl());
2813
2814 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2815 Context.getSourceManager(),
2816 "Generating code for declaration");
2817
2818 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2819 // At -O0, don't generate IR for functions with available_externally
2820 // linkage.
2821 if (!shouldEmitFunction(GD))
2822 return;
2823
2824 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2825 std::string Name;
2826 llvm::raw_string_ostream OS(Name);
2827 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2828 /*Qualified=*/true);
2829 return Name;
2830 });
2831
2832 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2833 // Make sure to emit the definition(s) before we emit the thunks.
2834 // This is necessary for the generation of certain thunks.
2835 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2836 ABI->emitCXXStructor(GD);
2837 else if (FD->isMultiVersion())
2838 EmitMultiVersionFunctionDefinition(GD, GV);
2839 else
2840 EmitGlobalFunctionDefinition(GD, GV);
2841
2842 if (Method->isVirtual())
2843 getVTables().EmitThunks(GD);
2844
2845 return;
2846 }
2847
2848 if (FD->isMultiVersion())
2849 return EmitMultiVersionFunctionDefinition(GD, GV);
2850 return EmitGlobalFunctionDefinition(GD, GV);
2851 }
2852
2853 if (const auto *VD = dyn_cast<VarDecl>(D))
2854 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2855
2856 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2856)
;
2857}
2858
2859static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2860 llvm::Function *NewFn);
2861
2862static unsigned
2863TargetMVPriority(const TargetInfo &TI,
2864 const CodeGenFunction::MultiVersionResolverOption &RO) {
2865 unsigned Priority = 0;
2866 for (StringRef Feat : RO.Conditions.Features)
2867 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2868
2869 if (!RO.Conditions.Architecture.empty())
2870 Priority = std::max(
2871 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2872 return Priority;
2873}
2874
2875void CodeGenModule::emitMultiVersionFunctions() {
2876 for (GlobalDecl GD : MultiVersionFuncs) {
2877 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2878 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2879 getContext().forEachMultiversionedFunctionVersion(
2880 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2881 GlobalDecl CurGD{
2882 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2883 StringRef MangledName = getMangledName(CurGD);
2884 llvm::Constant *Func = GetGlobalValue(MangledName);
2885 if (!Func) {
2886 if (CurFD->isDefined()) {
2887 EmitGlobalFunctionDefinition(CurGD, nullptr);
2888 Func = GetGlobalValue(MangledName);
2889 } else {
2890 const CGFunctionInfo &FI =
2891 getTypes().arrangeGlobalDeclaration(GD);
2892 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2893 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2894 /*DontDefer=*/false, ForDefinition);
2895 }
2896 assert(Func && "This should have just been created")((Func && "This should have just been created") ? static_cast
<void> (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2896, __PRETTY_FUNCTION__))
;
2897 }
2898
2899 const auto *TA = CurFD->getAttr<TargetAttr>();
2900 llvm::SmallVector<StringRef, 8> Feats;
2901 TA->getAddedFeatures(Feats);
2902
2903 Options.emplace_back(cast<llvm::Function>(Func),
2904 TA->getArchitecture(), Feats);
2905 });
2906
2907 llvm::Function *ResolverFunc;
2908 const TargetInfo &TI = getTarget();
2909
2910 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2911 ResolverFunc = cast<llvm::Function>(
2912 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2913 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2914 } else {
2915 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2916 }
2917
2918 if (supportsCOMDAT())
2919 ResolverFunc->setComdat(
2920 getModule().getOrInsertComdat(ResolverFunc->getName()));
2921
2922 llvm::stable_sort(
2923 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2924 const CodeGenFunction::MultiVersionResolverOption &RHS) {
2925 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2926 });
2927 CodeGenFunction CGF(*this);
2928 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2929 }
2930}
2931
2932void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2933 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2934 assert(FD && "Not a FunctionDecl?")((FD && "Not a FunctionDecl?") ? static_cast<void>
(0) : __assert_fail ("FD && \"Not a FunctionDecl?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2934, __PRETTY_FUNCTION__))
;
2935 const auto *DD = FD->getAttr<CPUDispatchAttr>();
2936 assert(DD && "Not a cpu_dispatch Function?")((DD && "Not a cpu_dispatch Function?") ? static_cast
<void> (0) : __assert_fail ("DD && \"Not a cpu_dispatch Function?\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 2936, __PRETTY_FUNCTION__))
;
2937 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2938
2939 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2940 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2941 DeclTy = getTypes().GetFunctionType(FInfo);
2942 }
2943
2944 StringRef ResolverName = getMangledName(GD);
2945
2946 llvm::Type *ResolverType;
2947 GlobalDecl ResolverGD;
2948 if (getTarget().supportsIFunc())
2949 ResolverType = llvm::FunctionType::get(
2950 llvm::PointerType::get(DeclTy,
2951 Context.getTargetAddressSpace(FD->getType())),
2952 false);
2953 else {
2954 ResolverType = DeclTy;
2955 ResolverGD = GD;
2956 }
2957
2958 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2959 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2960 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2961 if (supportsCOMDAT())
2962 ResolverFunc->setComdat(
2963 getModule().getOrInsertComdat(ResolverFunc->getName()));
2964
2965 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2966 const TargetInfo &Target = getTarget();
2967 unsigned Index = 0;
2968 for (const IdentifierInfo *II : DD->cpus()) {
2969 // Get the name of the target function so we can look it up/create it.
2970 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2971 getCPUSpecificMangling(*this, II->getName());
2972
2973 llvm::Constant *Func = GetGlobalValue(MangledName);
2974
2975 if (!Func) {
2976 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2977 if (ExistingDecl.getDecl() &&
2978 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2979 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2980 Func = GetGlobalValue(MangledName);
2981 } else {
2982 if (!ExistingDecl.getDecl())
2983 ExistingDecl = GD.getWithMultiVersionIndex(Index);
2984
2985 Func = GetOrCreateLLVMFunction(
2986 MangledName, DeclTy, ExistingDecl,
2987 /*ForVTable=*/false, /*DontDefer=*/true,
2988 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2989 }
2990 }
2991
2992 llvm::SmallVector<StringRef, 32> Features;
2993 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2994 llvm::transform(Features, Features.begin(),
2995 [](StringRef Str) { return Str.substr(1); });
2996 Features.erase(std::remove_if(
2997 Features.begin(), Features.end(), [&Target](StringRef Feat) {
2998 return !Target.validateCpuSupports(Feat);
2999 }), Features.end());
3000 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3001 ++Index;
3002 }
3003
3004 llvm::sort(
3005 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3006 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3007 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3008 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3009 });
3010
3011 // If the list contains multiple 'default' versions, such as when it contains
3012 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3013 // always run on at least a 'pentium'). We do this by deleting the 'least
3014 // advanced' (read, lowest mangling letter).
3015 while (Options.size() > 1 &&
3016 CodeGenFunction::GetX86CpuSupportsMask(
3017 (Options.end() - 2)->Conditions.Features) == 0) {
3018 StringRef LHSName = (Options.end() - 2)->Function->getName();
3019 StringRef RHSName = (Options.end() - 1)->Function->getName();
3020 if (LHSName.compare(RHSName) < 0)
3021 Options.erase(Options.end() - 2);
3022 else
3023 Options.erase(Options.end() - 1);
3024 }
3025
3026 CodeGenFunction CGF(*this);
3027 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3028
3029 if (getTarget().supportsIFunc()) {
3030 std::string AliasName = getMangledNameImpl(
3031 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3032 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3033 if (!AliasFunc) {
3034 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3035 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3036 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3037 auto *GA = llvm::GlobalAlias::create(
3038 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3039 GA->setLinkage(llvm::Function::WeakODRLinkage);
3040 SetCommonAttributes(GD, GA);
3041 }
3042 }
3043}
3044
3045/// If a dispatcher for the specified mangled name is not in the module, create
3046/// and return an llvm Function with the specified type.
3047llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3048 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3049 std::string MangledName =
3050 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3051
3052 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3053 // a separate resolver).
3054 std::string ResolverName = MangledName;
3055 if (getTarget().supportsIFunc())
3056 ResolverName += ".ifunc";
3057 else if (FD->isTargetMultiVersion())
3058 ResolverName += ".resolver";
3059
3060 // If this already exists, just return that one.
3061 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3062 return ResolverGV;
3063
3064 // Since this is the first time we've created this IFunc, make sure
3065 // that we put this multiversioned function into the list to be
3066 // replaced later if necessary (target multiversioning only).
3067 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3068 MultiVersionFuncs.push_back(GD);
3069
3070 if (getTarget().supportsIFunc()) {
3071 llvm::Type *ResolverType = llvm::FunctionType::get(
3072 llvm::PointerType::get(
3073 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3074 false);
3075 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3076 MangledName + ".resolver", ResolverType, GlobalDecl{},
3077 /*ForVTable=*/false);
3078 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3079 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3080 GIF->setName(ResolverName);
3081 SetCommonAttributes(FD, GIF);
3082
3083 return GIF;
3084 }
3085
3086 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3087 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3088 assert(isa<llvm::GlobalValue>(Resolver) &&((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3089, __PRETTY_FUNCTION__))
3089 "Resolver should be created for the first time")((isa<llvm::GlobalValue>(Resolver) && "Resolver should be created for the first time"
) ? static_cast<void> (0) : __assert_fail ("isa<llvm::GlobalValue>(Resolver) && \"Resolver should be created for the first time\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3089, __PRETTY_FUNCTION__))
;
3090 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3091 return Resolver;
3092}
3093
3094/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3095/// module, create and return an llvm Function with the specified type. If there
3096/// is something in the module with the specified name, return it potentially
3097/// bitcasted to the right type.
3098///
3099/// If D is non-null, it specifies a decl that correspond to this. This is used
3100/// to set the attributes on the function when it is first created.
3101llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3102 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3103 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3104 ForDefinition_t IsForDefinition) {
3105 const Decl *D = GD.getDecl();
3106
3107 // Any attempts to use a MultiVersion function should result in retrieving
3108 // the iFunc instead. Name Mangling will handle the rest of the changes.
3109 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3110 // For the device mark the function as one that should be emitted.
3111 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3112 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3113 !DontDefer && !IsForDefinition) {
3114 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3115 GlobalDecl GDDef;
3116 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3117 GDDef = GlobalDecl(CD, GD.getCtorType());
3118 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3119 GDDef = GlobalDecl(DD, GD.getDtorType());
3120 else
3121 GDDef = GlobalDecl(FDDef);
3122 EmitGlobal(GDDef);
3123 }
3124 }
3125 // Check if this must be emitted as declare variant and emit reference to
3126 // the the declare variant function.
3127 if (LangOpts.OpenMP && OpenMPRuntime)
3128 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3129
3130 if (FD->isMultiVersion()) {
3131 const auto *TA = FD->getAttr<TargetAttr>();
3132 if (TA && TA->isDefaultVersion())
3133 UpdateMultiVersionNames(GD, FD);
3134 if (!IsForDefinition)
3135 return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3136 }
3137 }
3138
3139 // Lookup the entry, lazily creating it if necessary.
3140 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3141 if (Entry) {
3142 if (WeakRefReferences.erase(Entry)) {
3143 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3144 if (FD && !FD->hasAttr<WeakAttr>())
3145 Entry->setLinkage(llvm::Function::ExternalLinkage);
3146 }
3147
3148 // Handle dropped DLL attributes.
3149 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3150 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3151 setDSOLocal(Entry);
3152 }
3153
3154 // If there are two attempts to define the same mangled name, issue an
3155 // error.
3156 if (IsForDefinition && !Entry->isDeclaration()) {
3157 GlobalDecl OtherGD;
3158 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3159 // to make sure that we issue an error only once.
3160 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3161 (GD.getCanonicalDecl().getDecl() !=
3162 OtherGD.getCanonicalDecl().getDecl()) &&
3163 DiagnosedConflictingDefinitions.insert(GD).second) {
3164 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3165 << MangledName;
3166 getDiags().Report(OtherGD.getDecl()->getLocation(),
3167 diag::note_previous_definition);
3168 }
3169 }
3170
3171 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3172 (Entry->getType()->getElementType() == Ty)) {
3173 return Entry;
3174 }
3175
3176 // Make sure the result is of the correct type.
3177 // (If function is requested for a definition, we always need to create a new
3178 // function, not just return a bitcast.)
3179 if (!IsForDefinition)
3180 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3181 }
3182
3183 // This function doesn't have a complete type (for example, the return
3184 // type is an incomplete struct). Use a fake type instead, and make
3185 // sure not to try to set attributes.
3186 bool IsIncompleteFunction = false;
3187
3188 llvm::FunctionType *FTy;
3189 if (isa<llvm::FunctionType>(Ty)) {
3190 FTy = cast<llvm::FunctionType>(Ty);
3191 } else {
3192 FTy = llvm::FunctionType::get(VoidTy, false);
3193 IsIncompleteFunction = true;
3194 }
3195
3196 llvm::Function *F =
3197 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3198 Entry ? StringRef() : MangledName, &getModule());
3199
3200 // If we already created a function with the same mangled name (but different
3201 // type) before, take its name and add it to the list of functions to be
3202 // replaced with F at the end of CodeGen.
3203 //
3204 // This happens if there is a prototype for a function (e.g. "int f()") and
3205 // then a definition of a different type (e.g. "int f(int x)").
3206 if (Entry) {
3207 F->takeName(Entry);
3208
3209 // This might be an implementation of a function without a prototype, in
3210 // which case, try to do special replacement of calls which match the new
3211 // prototype. The really key thing here is that we also potentially drop
3212 // arguments from the call site so as to make a direct call, which makes the
3213 // inliner happier and suppresses a number of optimizer warnings (!) about
3214 // dropping arguments.
3215 if (!Entry->use_empty()) {
3216 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3217 Entry->removeDeadConstantUsers();
3218 }
3219
3220 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3221 F, Entry->getType()->getElementType()->getPointerTo());
3222 addGlobalValReplacement(Entry, BC);
3223 }
3224
3225 assert(F->getName() == MangledName && "name was uniqued!")((F->getName() == MangledName && "name was uniqued!"
) ? static_cast<void> (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3225, __PRETTY_FUNCTION__))
;
3226 if (D)
3227 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3228 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3229 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3230 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3231 }
3232
3233 if (!DontDefer) {
3234 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3235 // each other bottoming out with the base dtor. Therefore we emit non-base
3236 // dtors on usage, even if there is no dtor definition in the TU.
3237 if (D && isa<CXXDestructorDecl>(D) &&
3238 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3239 GD.getDtorType()))
3240 addDeferredDeclToEmit(GD);
3241
3242 // This is the first use or definition of a mangled name. If there is a
3243 // deferred decl with this name, remember that we need to emit it at the end
3244 // of the file.
3245 auto DDI = DeferredDecls.find(MangledName);
3246 if (DDI != DeferredDecls.end()) {
3247 // Move the potentially referenced deferred decl to the
3248 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3249 // don't need it anymore).
3250 addDeferredDeclToEmit(DDI->second);
3251 DeferredDecls.erase(DDI);
3252
3253 // Otherwise, there are cases we have to worry about where we're
3254 // using a declaration for which we must emit a definition but where
3255 // we might not find a top-level definition:
3256 // - member functions defined inline in their classes
3257 // - friend functions defined inline in some class
3258 // - special member functions with implicit definitions
3259 // If we ever change our AST traversal to walk into class methods,
3260 // this will be unnecessary.
3261 //
3262 // We also don't emit a definition for a function if it's going to be an
3263 // entry in a vtable, unless it's already marked as used.
3264 } else if (getLangOpts().CPlusPlus && D) {
3265 // Look for a declaration that's lexically in a record.
3266 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3267 FD = FD->getPreviousDecl()) {
3268 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3269 if (FD->doesThisDeclarationHaveABody()) {
3270 addDeferredDeclToEmit(GD.getWithDecl(FD));
3271 break;
3272 }
3273 }
3274 }
3275 }
3276 }
3277
3278 // Make sure the result is of the requested type.
3279 if (!IsIncompleteFunction) {
3280 assert(F->getType()->getElementType() == Ty)((F->getType()->getElementType() == Ty) ? static_cast<
void> (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3280, __PRETTY_FUNCTION__))
;
3281 return F;
3282 }
3283
3284 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3285 return llvm::ConstantExpr::getBitCast(F, PTy);
3286}
3287
3288/// GetAddrOfFunction - Return the address of the given function. If Ty is
3289/// non-null, then this function will use the specified type if it has to
3290/// create it (this occurs when we see a definition of the function).
3291llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3292 llvm::Type *Ty,
3293 bool ForVTable,
3294 bool DontDefer,
3295 ForDefinition_t IsForDefinition) {
3296 // If there was no specific requested type, just convert it now.
3297 if (!Ty) {
3298 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3299 Ty = getTypes().ConvertType(FD->getType());
3300 }
3301
3302 // Devirtualized destructor calls may come through here instead of via
3303 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3304 // of the complete destructor when necessary.
3305 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3306 if (getTarget().getCXXABI().isMicrosoft() &&
3307 GD.getDtorType() == Dtor_Complete &&
3308 DD->getParent()->getNumVBases() == 0)
3309 GD = GlobalDecl(DD, Dtor_Base);
3310 }
3311
3312 StringRef MangledName = getMangledName(GD);
3313 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3314 /*IsThunk=*/false, llvm::AttributeList(),
3315 IsForDefinition);
3316}
3317
3318static const FunctionDecl *
3319GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3320 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3321 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3322
3323 IdentifierInfo &CII = C.Idents.get(Name);
3324 for (const auto &Result : DC->lookup(&CII))
3325 if (const auto FD = dyn_cast<FunctionDecl>(Result))
3326 return FD;
3327
3328 if (!C.getLangOpts().CPlusPlus)
3329 return nullptr;
3330
3331 // Demangle the premangled name from getTerminateFn()
3332 IdentifierInfo &CXXII =
3333 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3334 ? C.Idents.get("terminate")
3335 : C.Idents.get(Name);
3336
3337 for (const auto &N : {"__cxxabiv1", "std"}) {
3338 IdentifierInfo &NS = C.Idents.get(N);
3339 for (const auto &Result : DC->lookup(&NS)) {
3340 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3341 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3342 for (const auto &Result : LSD->lookup(&NS))
3343 if ((ND = dyn_cast<NamespaceDecl>(Result)))
3344 break;
3345
3346 if (ND)
3347 for (const auto &Result : ND->lookup(&CXXII))
3348 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3349 return FD;
3350 }
3351 }
3352
3353 return nullptr;
3354}
3355
3356/// CreateRuntimeFunction - Create a new runtime function with the specified
3357/// type and name.
3358llvm::FunctionCallee
3359CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3360 llvm::AttributeList ExtraAttrs, bool Local,
3361 bool AssumeConvergent) {
3362 if (AssumeConvergent) {
3363 ExtraAttrs =
3364 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3365 llvm::Attribute::Convergent);
3366 }
3367
3368 llvm::Constant *C =
3369 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3370 /*DontDefer=*/false, /*IsThunk=*/false,
3371 ExtraAttrs);
3372
3373 if (auto *F = dyn_cast<llvm::Function>(C)) {
3374 if (F->empty()) {
3375 F->setCallingConv(getRuntimeCC());
3376
3377 // In Windows Itanium environments, try to mark runtime functions
3378 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3379 // will link their standard library statically or dynamically. Marking
3380 // functions imported when they are not imported can cause linker errors
3381 // and warnings.
3382 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3383 !getCodeGenOpts().LTOVisibilityPublicStd) {
3384 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3385 if (!FD || FD->hasAttr<DLLImportAttr>()) {
3386 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3387 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3388 }
3389 }
3390 setDSOLocal(F);
3391 }
3392 }
3393
3394 return {FTy, C};
3395}
3396
3397/// isTypeConstant - Determine whether an object of this type can be emitted
3398/// as a constant.
3399///
3400/// If ExcludeCtor is true, the duration when the object's constructor runs
3401/// will not be considered. The caller will need to verify that the object is
3402/// not written to during its construction.
3403bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3404 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3405 return false;
3406
3407 if (Context.getLangOpts().CPlusPlus) {
3408 if (const CXXRecordDecl *Record
3409 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3410 return ExcludeCtor && !Record->hasMutableFields() &&
3411 Record->hasTrivialDestructor();
3412 }
3413
3414 return true;
3415}
3416
3417/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3418/// create and return an llvm GlobalVariable with the specified type. If there
3419/// is something in the module with the specified name, return it potentially
3420/// bitcasted to the right type.
3421///
3422/// If D is non-null, it specifies a decl that correspond to this. This is used
3423/// to set the attributes on the global when it is first created.
3424///
3425/// If IsForDefinition is true, it is guaranteed that an actual global with
3426/// type Ty will be returned, not conversion of a variable with the same
3427/// mangled name but some other type.
3428llvm::Constant *
3429CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3430 llvm::PointerType *Ty,
3431 const VarDecl *D,
3432 ForDefinition_t IsForDefinition) {
3433 // Lookup the entry, lazily creating it if necessary.
3434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3435 if (Entry) {
3436 if (WeakRefReferences.erase(Entry)) {
3437 if (D && !D->hasAttr<WeakAttr>())
3438 Entry->setLinkage(llvm::Function::ExternalLinkage);
3439 }
3440
3441 // Handle dropped DLL attributes.
3442 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3443 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3444
3445 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3446 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3447
3448 if (Entry->getType() == Ty)
3449 return Entry;
3450
3451 // If there are two attempts to define the same mangled name, issue an
3452 // error.
3453 if (IsForDefinition && !Entry->isDeclaration()) {
3454 GlobalDecl OtherGD;
3455 const VarDecl *OtherD;
3456
3457 // Check that D is not yet in DiagnosedConflictingDefinitions is required
3458 // to make sure that we issue an error only once.
3459 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3460 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3461 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3462 OtherD->hasInit() &&
3463 DiagnosedConflictingDefinitions.insert(D).second) {
3464 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3465 << MangledName;
3466 getDiags().Report(OtherGD.getDecl()->getLocation(),
3467 diag::note_previous_definition);
3468 }
3469 }
3470
3471 // Make sure the result is of the correct type.
3472 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3473 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3474
3475 // (If global is requested for a definition, we always need to create a new
3476 // global, not just return a bitcast.)
3477 if (!IsForDefinition)
3478 return llvm::ConstantExpr::getBitCast(Entry, Ty);
3479 }
3480
3481 auto AddrSpace = GetGlobalVarAddressSpace(D);
3482 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3483
3484 auto *GV = new llvm::GlobalVariable(
3485 getModule(), Ty->getElementType(), false,
3486 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3487 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3488
3489 // If we already created a global with the same mangled name (but different
3490 // type) before, take its name and remove it from its parent.
3491 if (Entry) {
3492 GV->takeName(Entry);
3493
3494 if (!Entry->use_empty()) {
3495 llvm::Constant *NewPtrForOldDecl =
3496 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3497 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3498 }
3499
3500 Entry->eraseFromParent();
3501 }
3502
3503 // This is the first use or definition of a mangled name. If there is a
3504 // deferred decl with this name, remember that we need to emit it at the end
3505 // of the file.
3506 auto DDI = DeferredDecls.find(MangledName);
3507 if (DDI != DeferredDecls.end()) {
3508 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3509 // list, and remove it from DeferredDecls (since we don't need it anymore).
3510 addDeferredDeclToEmit(DDI->second);
3511 DeferredDecls.erase(DDI);
3512 }
3513
3514 // Handle things which are present even on external declarations.
3515 if (D) {
3516 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3517 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3518
3519 // FIXME: This code is overly simple and should be merged with other global
3520 // handling.
3521 GV->setConstant(isTypeConstant(D->getType(), false));
3522
3523 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3524
3525 setLinkageForGV(GV, D);
3526
3527 if (D->getTLSKind()) {
3528 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3529 CXXThreadLocals.push_back(D);
3530 setTLSMode(GV, *D);
3531 }
3532
3533 setGVProperties(GV, D);
3534
3535 // If required by the ABI, treat declarations of static data members with
3536 // inline initializers as definitions.
3537 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3538 EmitGlobalVarDefinition(D);
3539 }
3540
3541 // Emit section information for extern variables.
3542 if (D->hasExternalStorage()) {
3543 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3544 GV->setSection(SA->getName());
3545 }
3546
3547 // Handle XCore specific ABI requirements.
3548 if (getTriple().getArch() == llvm::Triple::xcore &&
3549 D->getLanguageLinkage() == CLanguageLinkage &&
3550 D->getType().isConstant(Context) &&
3551 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3552 GV->setSection(".cp.rodata");
3553
3554 // Check if we a have a const declaration with an initializer, we may be
3555 // able to emit it as available_externally to expose it's value to the
3556 // optimizer.
3557 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3558 D->getType().isConstQualified() && !GV->hasInitializer() &&
3559 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3560 const auto *Record =
3561 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3562 bool HasMutableFields = Record && Record->hasMutableFields();
3563 if (!HasMutableFields) {
3564 const VarDecl *InitDecl;
3565 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3566 if (InitExpr) {
3567 ConstantEmitter emitter(*this);
3568 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3569 if (Init) {
3570 auto *InitType = Init->getType();
3571 if (GV->getType()->getElementType() != InitType) {
3572 // The type of the initializer does not match the definition.
3573 // This happens when an initializer has a different type from
3574 // the type of the global (because of padding at the end of a
3575 // structure for instance).
3576 GV->setName(StringRef());
3577 // Make a new global with the correct type, this is now guaranteed
3578 // to work.
3579 auto *NewGV = cast<llvm::GlobalVariable>(
3580 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3581 ->stripPointerCasts());
3582
3583 // Erase the old global, since it is no longer used.
3584 GV->eraseFromParent();
3585 GV = NewGV;
3586 } else {
3587 GV->setInitializer(Init);
3588 GV->setConstant(true);
3589 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3590 }
3591 emitter.finalize(GV);
3592 }
3593 }
3594 }
3595 }
3596 }
3597
3598 if (GV->isDeclaration())
3599 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3600
3601 LangAS ExpectedAS =
3602 D ? D->getType().getAddressSpace()
3603 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3604 assert(getContext().getTargetAddressSpace(ExpectedAS) ==((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3605, __PRETTY_FUNCTION__))
3605 Ty->getPointerAddressSpace())((getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace
()) ? static_cast<void> (0) : __assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3605, __PRETTY_FUNCTION__))
;
3606 if (AddrSpace != ExpectedAS)
3607 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3608 ExpectedAS, Ty);
3609
3610 return GV;
3611}
3612
3613llvm::Constant *
3614CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3615 ForDefinition_t IsForDefinition) {
3616 const Decl *D = GD.getDecl();
3617 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3618 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3619 /*DontDefer=*/false, IsForDefinition);
3620 else if (isa<CXXMethodDecl>(D)) {
3621 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3622 cast<CXXMethodDecl>(D));
3623 auto Ty = getTypes().GetFunctionType(*FInfo);
3624 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3625 IsForDefinition);
3626 } else if (isa<FunctionDecl>(D)) {
3627 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3628 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3629 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3630 IsForDefinition);
3631 } else
3632 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3633 IsForDefinition);
3634}
3635
3636llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3637 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3638 unsigned Alignment) {
3639 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3640 llvm::GlobalVariable *OldGV = nullptr;
3641
3642 if (GV) {
3643 // Check if the variable has the right type.
3644 if (GV->getType()->getElementType() == Ty)
3645 return GV;
3646
3647 // Because C++ name mangling, the only way we can end up with an already
3648 // existing global with the same name is if it has been declared extern "C".
3649 assert(GV->isDeclaration() && "Declaration has wrong type!")((GV->isDeclaration() && "Declaration has wrong type!"
) ? static_cast<void> (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3649, __PRETTY_FUNCTION__))
;
3650 OldGV = GV;
3651 }
3652
3653 // Create a new variable.
3654 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3655 Linkage, nullptr, Name);
3656
3657 if (OldGV) {
3658 // Replace occurrences of the old variable if needed.
3659 GV->takeName(OldGV);
3660
3661 if (!OldGV->use_empty()) {
3662 llvm::Constant *NewPtrForOldDecl =
3663 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3664 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3665 }
3666
3667 OldGV->eraseFromParent();
3668 }
3669
3670 if (supportsCOMDAT() && GV->isWeakForLinker() &&
3671 !GV->hasAvailableExternallyLinkage())
3672 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3673
3674 GV->setAlignment(llvm::MaybeAlign(Alignment));
3675
3676 return GV;
3677}
3678
3679/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3680/// given global variable. If Ty is non-null and if the global doesn't exist,
3681/// then it will be created with the specified type instead of whatever the
3682/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3683/// that an actual global with type Ty will be returned, not conversion of a
3684/// variable with the same mangled name but some other type.
3685llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3686 llvm::Type *Ty,
3687 ForDefinition_t IsForDefinition) {
3688 assert(D->hasGlobalStorage() && "Not a global variable")((D->hasGlobalStorage() && "Not a global variable"
) ? static_cast<void> (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3688, __PRETTY_FUNCTION__))
;
3689 QualType ASTTy = D->getType();
3690 if (!Ty)
3691 Ty = getTypes().ConvertTypeForMem(ASTTy);
3692
3693 llvm::PointerType *PTy =
3694 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3695
3696 StringRef MangledName = getMangledName(D);
3697 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3698}
3699
3700/// CreateRuntimeVariable - Create a new runtime global variable with the
3701/// specified type and name.
3702llvm::Constant *
3703CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3704 StringRef Name) {
3705 auto PtrTy =
3706 getContext().getLangOpts().OpenCL
3707 ? llvm::PointerType::get(
3708 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3709 : llvm::PointerType::getUnqual(Ty);
3710 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3711 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3712 return Ret;
3713}
3714
3715void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3716 assert(!D->getInit() && "Cannot emit definite definitions here!")((!D->getInit() && "Cannot emit definite definitions here!"
) ? static_cast<void> (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3716, __PRETTY_FUNCTION__))
;
3717
3718 StringRef MangledName = getMangledName(D);
3719 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3720
3721 // We already have a definition, not declaration, with the same mangled name.
3722 // Emitting of declaration is not required (and actually overwrites emitted
3723 // definition).
3724 if (GV && !GV->isDeclaration())
3725 return;
3726
3727 // If we have not seen a reference to this variable yet, place it into the
3728 // deferred declarations table to be emitted if needed later.
3729 if (!MustBeEmitted(D) && !GV) {
3730 DeferredDecls[MangledName] = D;
3731 return;
3732 }
3733
3734 // The tentative definition is the only definition.
3735 EmitGlobalVarDefinition(D);
3736}
3737
3738void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3739 EmitExternalVarDeclaration(D);
3740}
3741
3742CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3743 return Context.toCharUnitsFromBits(
3744 getDataLayout().getTypeStoreSizeInBits(Ty));
3745}
3746
3747LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3748 LangAS AddrSpace = LangAS::Default;
3749 if (LangOpts.OpenCL) {
3750 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3751 assert(AddrSpace == LangAS::opencl_global ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
3752 AddrSpace == LangAS::opencl_constant ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
3753 AddrSpace == LangAS::opencl_local ||((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
3754 AddrSpace >= LangAS::FirstTargetAddressSpace)((AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::
opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace
>= LangAS::FirstTargetAddressSpace) ? static_cast<void
> (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3754, __PRETTY_FUNCTION__))
;
3755 return AddrSpace;
3756 }
3757
3758 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3759 if (D && D->hasAttr<CUDAConstantAttr>())
3760 return LangAS::cuda_constant;
3761 else if (D && D->hasAttr<CUDASharedAttr>())
3762 return LangAS::cuda_shared;
3763 else if (D && D->hasAttr<CUDADeviceAttr>())
3764 return LangAS::cuda_device;
3765 else if (D && D->getType().isConstQualified())
3766 return LangAS::cuda_constant;
3767 else
3768 return LangAS::cuda_device;
3769 }
3770
3771 if (LangOpts.OpenMP) {
3772 LangAS AS;
3773 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3774 return AS;
3775 }
3776 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3777}
3778
3779LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3780 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3781 if (LangOpts.OpenCL)
3782 return LangAS::opencl_constant;
3783 if (auto AS = getTarget().getConstantAddressSpace())
3784 return AS.getValue();
3785 return LangAS::Default;
3786}
3787
3788// In address space agnostic languages, string literals are in default address
3789// space in AST. However, certain targets (e.g. amdgcn) request them to be
3790// emitted in constant address space in LLVM IR. To be consistent with other
3791// parts of AST, string literal global variables in constant address space
3792// need to be casted to default address space before being put into address
3793// map and referenced by other part of CodeGen.
3794// In OpenCL, string literals are in constant address space in AST, therefore
3795// they should not be casted to default address space.
3796static llvm::Constant *
3797castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3798 llvm::GlobalVariable *GV) {
3799 llvm::Constant *Cast = GV;
3800 if (!CGM.getLangOpts().OpenCL) {
3801 if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3802 if (AS != LangAS::Default)
3803 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3804 CGM, GV, AS.getValue(), LangAS::Default,
3805 GV->getValueType()->getPointerTo(
3806 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3807 }
3808 }
3809 return Cast;
3810}
3811
3812template<typename SomeDecl>
3813void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3814 llvm::GlobalValue *GV) {
3815 if (!getLangOpts().CPlusPlus)
3816 return;
3817
3818 // Must have 'used' attribute, or else inline assembly can't rely on
3819 // the name existing.
3820 if (!D->template hasAttr<UsedAttr>())
3821 return;
3822
3823 // Must have internal linkage and an ordinary name.
3824 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3825 return;
3826
3827 // Must be in an extern "C" context. Entities declared directly within
3828 // a record are not extern "C" even if the record is in such a context.
3829 const SomeDecl *First = D->getFirstDecl();
3830 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3831 return;
3832
3833 // OK, this is an internal linkage entity inside an extern "C" linkage
3834 // specification. Make a note of that so we can give it the "expected"
3835 // mangled name if nothing else is using that name.
3836 std::pair<StaticExternCMap::iterator, bool> R =
3837 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3838
3839 // If we have multiple internal linkage entities with the same name
3840 // in extern "C" regions, none of them gets that name.
3841 if (!R.second)
3842 R.first->second = nullptr;
3843}
3844
3845static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3846 if (!CGM.supportsCOMDAT())
3847 return false;
3848
3849 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3850 // them being "merged" by the COMDAT Folding linker optimization.
3851 if (D.hasAttr<CUDAGlobalAttr>())
3852 return false;
3853
3854 if (D.hasAttr<SelectAnyAttr>())
3855 return true;
3856
3857 GVALinkage Linkage;
3858 if (auto *VD = dyn_cast<VarDecl>(&D))
3859 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3860 else
3861 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3862
3863 switch (Linkage) {
3864 case GVA_Internal:
3865 case GVA_AvailableExternally:
3866 case GVA_StrongExternal:
3867 return false;
3868 case GVA_DiscardableODR:
3869 case GVA_StrongODR:
3870 return true;
3871 }
3872 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3872)
;
3873}
3874
3875void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3876 llvm::GlobalObject &GO) {
3877 if (!shouldBeInCOMDAT(*this, D))
3878 return;
3879 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3880}
3881
3882/// Pass IsTentative as true if you want to create a tentative definition.
3883void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3884 bool IsTentative) {
3885 // OpenCL global variables of sampler type are translated to function calls,
3886 // therefore no need to be translated.
3887 QualType ASTTy = D->getType();
3888 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3889 return;
3890
3891 // If this is OpenMP device, check if it is legal to emit this global
3892 // normally.
3893 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3894 OpenMPRuntime->emitTargetGlobalVariable(D))
3895 return;
3896
3897 llvm::Constant *Init = nullptr;
3898 bool NeedsGlobalCtor = false;
3899 bool NeedsGlobalDtor =
3900 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3901
3902 const VarDecl *InitDecl;
3903 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3904
3905 Optional<ConstantEmitter> emitter;
3906
3907 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3908 // as part of their declaration." Sema has already checked for
3909 // error cases, so we just need to set Init to UndefValue.
3910 bool IsCUDASharedVar =
3911 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3912 // Shadows of initialized device-side global variables are also left
3913 // undefined.
3914 bool IsCUDAShadowVar =
3915 !getLangOpts().CUDAIsDevice &&
3916 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3917 D->hasAttr<CUDASharedAttr>());
3918 // HIP pinned shadow of initialized host-side global variables are also
3919 // left undefined.
3920 bool IsHIPPinnedShadowVar =
3921 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3922 if (getLangOpts().CUDA &&
3923 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3924 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3925 else if (!InitExpr) {
3926 // This is a tentative definition; tentative definitions are
3927 // implicitly initialized with { 0 }.
3928 //
3929 // Note that tentative definitions are only emitted at the end of
3930 // a translation unit, so they should never have incomplete
3931 // type. In addition, EmitTentativeDefinition makes sure that we
3932 // never attempt to emit a tentative definition if a real one
3933 // exists. A use may still exists, however, so we still may need
3934 // to do a RAUW.
3935 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")((!ASTTy->isIncompleteType() && "Unexpected incomplete type"
) ? static_cast<void> (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 3935, __PRETTY_FUNCTION__))
;
3936 Init = EmitNullConstant(D->getType());
3937 } else {
3938 initializedGlobalDecl = GlobalDecl(D);
3939 emitter.emplace(*this);
3940 Init = emitter->tryEmitForInitializer(*InitDecl);
3941
3942 if (!Init) {
3943 QualType T = InitExpr->getType();
3944 if (D->getType()->isReferenceType())
3945 T = D->getType();
3946
3947 if (getLangOpts().CPlusPlus) {
3948 Init = EmitNullConstant(T);
3949 NeedsGlobalCtor = true;
3950 } else {
3951 ErrorUnsupported(D, "static initializer");
3952 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3953 }
3954 } else {
3955 // We don't need an initializer, so remove the entry for the delayed
3956 // initializer position (just in case this entry was delayed) if we
3957 // also don't need to register a destructor.
3958 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3959 DelayedCXXInitPosition.erase(D);
3960 }
3961 }
3962
3963 llvm::Type* InitType = Init->getType();
3964 llvm::Constant *Entry =
3965 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3966
3967 // Strip off pointer casts if we got them.
3968 Entry = Entry->stripPointerCasts();
3969
3970 // Entry is now either a Function or GlobalVariable.
3971 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3972
3973 // We have a definition after a declaration with the wrong type.
3974 // We must make a new GlobalVariable* and update everything that used OldGV
3975 // (a declaration or tentative definition) with the new GlobalVariable*
3976 // (which will be a definition).
3977 //
3978 // This happens if there is a prototype for a global (e.g.
3979 // "extern int x[];") and then a definition of a different type (e.g.
3980 // "int x[10];"). This also happens when an initializer has a different type
3981 // from the type of the global (this happens with unions).
3982 if (!GV || GV->getType()->getElementType() != InitType ||
3983 GV->getType()->getAddressSpace() !=
3984 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3985
3986 // Move the old entry aside so that we'll create a new one.
3987 Entry->setName(StringRef());
3988
3989 // Make a new global with the correct type, this is now guaranteed to work.
3990 GV = cast<llvm::GlobalVariable>(
3991 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3992 ->stripPointerCasts());
3993
3994 // Replace all uses of the old global with the new global
3995 llvm::Constant *NewPtrForOldDecl =
3996 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3997 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3998
3999 // Erase the old global, since it is no longer used.
4000 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4001 }
4002
4003 MaybeHandleStaticInExternC(D, GV);
4004
4005 if (D->hasAttr<AnnotateAttr>())
4006 AddGlobalAnnotations(D, GV);
4007
4008 // Set the llvm linkage type as appropriate.
4009 llvm::GlobalValue::LinkageTypes Linkage =
4010 getLLVMLinkageVarDefinition(D, GV->isConstant());
4011
4012 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4013 // the device. [...]"
4014 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4015 // __device__, declares a variable that: [...]
4016 // Is accessible from all the threads within the grid and from the host
4017 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4018 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4019 if (GV && LangOpts.CUDA) {
4020 if (LangOpts.CUDAIsDevice) {
4021 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4022 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4023 GV->setExternallyInitialized(true);
4024 } else {
4025 // Host-side shadows of external declarations of device-side
4026 // global variables become internal definitions. These have to
4027 // be internal in order to prevent name conflicts with global
4028 // host variables with the same name in a different TUs.
4029 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4030 D->hasAttr<HIPPinnedShadowAttr>()) {
4031 Linkage = llvm::GlobalValue::InternalLinkage;
4032
4033 // Shadow variables and their properties must be registered
4034 // with CUDA runtime.
4035 unsigned Flags = 0;
4036 if (!D->hasDefinition())
4037 Flags |= CGCUDARuntime::ExternDeviceVar;
4038 if (D->hasAttr<CUDAConstantAttr>())
4039 Flags |= CGCUDARuntime::ConstantDeviceVar;
4040 // Extern global variables will be registered in the TU where they are
4041 // defined.
4042 if (!D->hasExternalStorage())
4043 getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4044 } else if (D->hasAttr<CUDASharedAttr>())
4045 // __shared__ variables are odd. Shadows do get created, but
4046 // they are not registered with the CUDA runtime, so they
4047 // can't really be used to access their device-side
4048 // counterparts. It's not clear yet whether it's nvcc's bug or
4049 // a feature, but we've got to do the same for compatibility.
4050 Linkage = llvm::GlobalValue::InternalLinkage;
4051 }
4052 }
4053
4054 if (!IsHIPPinnedShadowVar)
4055 GV->setInitializer(Init);
4056 if (emitter) emitter->finalize(GV);
4057
4058 // If it is safe to mark the global 'constant', do so now.
4059 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4060 isTypeConstant(D->getType(), true));
4061
4062 // If it is in a read-only section, mark it 'constant'.
4063 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4064 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4065 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4066 GV->setConstant(true);
4067 }
4068
4069 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4070
4071 // On Darwin, if the normal linkage of a C++ thread_local variable is
4072 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4073 // copies within a linkage unit; otherwise, the backing variable has
4074 // internal linkage and all accesses should just be calls to the
4075 // Itanium-specified entry point, which has the normal linkage of the
4076 // variable. This is to preserve the ability to change the implementation
4077 // behind the scenes.
4078 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4079 Context.getTargetInfo().getTriple().isOSDarwin() &&
4080 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4081 !llvm::GlobalVariable::isWeakLinkage(Linkage))
4082 Linkage = llvm::GlobalValue::InternalLinkage;
4083
4084 GV->setLinkage(Linkage);
4085 if (D->hasAttr<DLLImportAttr>())
4086 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4087 else if (D->hasAttr<DLLExportAttr>())
4088 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4089 else
4090 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4091
4092 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4093 // common vars aren't constant even if declared const.
4094 GV->setConstant(false);
4095 // Tentative definition of global variables may be initialized with
4096 // non-zero null pointers. In this case they should have weak linkage
4097 // since common linkage must have zero initializer and must not have
4098 // explicit section therefore cannot have non-zero initial value.
4099 if (!GV->getInitializer()->isNullValue())
4100 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4101 }
4102
4103 setNonAliasAttributes(D, GV);
4104
4105 if (D->getTLSKind() && !GV->isThreadLocal()) {
4106 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4107 CXXThreadLocals.push_back(D);
4108 setTLSMode(GV, *D);
4109 }
4110
4111 maybeSetTrivialComdat(*D, *GV);
4112
4113 // Emit the initializer function if necessary.
4114 if (NeedsGlobalCtor || NeedsGlobalDtor)
4115 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4116
4117 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4118
4119 // Emit global variable debug information.
4120 if (CGDebugInfo *DI = getModuleDebugInfo())
4121 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4122 DI->EmitGlobalVariable(GV, D);
4123}
4124
4125void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4126 if (CGDebugInfo *DI = getModuleDebugInfo())
4127 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
4128 QualType ASTTy = D->getType();
4129 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4130 llvm::PointerType *PTy =
4131 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4132 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4133 DI->EmitExternalVariable(
4134 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4135 }
4136}
4137
4138static bool isVarDeclStrongDefinition(const ASTContext &Context,
4139 CodeGenModule &CGM, const VarDecl *D,
4140 bool NoCommon) {
4141 // Don't give variables common linkage if -fno-common was specified unless it
4142 // was overridden by a NoCommon attribute.
4143 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4144 return true;
4145
4146 // C11 6.9.2/2:
4147 // A declaration of an identifier for an object that has file scope without
4148 // an initializer, and without a storage-class specifier or with the
4149 // storage-class specifier static, constitutes a tentative definition.
4150 if (D->getInit() || D->hasExternalStorage())
4151 return true;
4152
4153 // A variable cannot be both common and exist in a section.
4154 if (D->hasAttr<SectionAttr>())
4155 return true;
4156
4157 // A variable cannot be both common and exist in a section.
4158 // We don't try to determine which is the right section in the front-end.
4159 // If no specialized section name is applicable, it will resort to default.
4160 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4161 D->hasAttr<PragmaClangDataSectionAttr>() ||
4162 D->hasAttr<PragmaClangRelroSectionAttr>() ||
4163 D->hasAttr<PragmaClangRodataSectionAttr>())
4164 return true;
4165
4166 // Thread local vars aren't considered common linkage.
4167 if (D->getTLSKind())
4168 return true;
4169
4170 // Tentative definitions marked with WeakImportAttr are true definitions.
4171 if (D->hasAttr<WeakImportAttr>())
4172 return true;
4173
4174 // A variable cannot be both common and exist in a comdat.
4175 if (shouldBeInCOMDAT(CGM, *D))
4176 return true;
4177
4178 // Declarations with a required alignment do not have common linkage in MSVC
4179 // mode.
4180 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4181 if (D->hasAttr<AlignedAttr>())
4182 return true;
4183 QualType VarType = D->getType();
4184 if (Context.isAlignmentRequired(VarType))
4185 return true;
4186
4187 if (const auto *RT = VarType->getAs<RecordType>()) {
4188 const RecordDecl *RD = RT->getDecl();
4189 for (const FieldDecl *FD : RD->fields()) {
4190 if (FD->isBitField())
4191 continue;
4192 if (FD->hasAttr<AlignedAttr>())
4193 return true;
4194 if (Context.isAlignmentRequired(FD->getType()))
4195 return true;
4196 }
4197 }
4198 }
4199
4200 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4201 // common symbols, so symbols with greater alignment requirements cannot be
4202 // common.
4203 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4204 // alignments for common symbols via the aligncomm directive, so this
4205 // restriction only applies to MSVC environments.
4206 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4207 Context.getTypeAlignIfKnown(D->getType()) >
4208 Context.toBits(CharUnits::fromQuantity(32)))
4209 return true;
4210
4211 return false;
4212}
4213
4214llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4215 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4216 if (Linkage == GVA_Internal)
4217 return llvm::Function::InternalLinkage;
4218
4219 if (D->hasAttr<WeakAttr>()) {
4220 if (IsConstantVariable)
4221 return llvm::GlobalVariable::WeakODRLinkage;
4222 else
4223 return llvm::GlobalVariable::WeakAnyLinkage;
4224 }
4225
4226 if (const auto *FD = D->getAsFunction())
4227 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4228 return llvm::GlobalVariable::LinkOnceAnyLinkage;
4229
4230 // We are guaranteed to have a strong definition somewhere else,
4231 // so we can use available_externally linkage.
4232 if (Linkage == GVA_AvailableExternally)
4233 return llvm::GlobalValue::AvailableExternallyLinkage;
4234
4235 // Note that Apple's kernel linker doesn't support symbol
4236 // coalescing, so we need to avoid linkonce and weak linkages there.
4237 // Normally, this means we just map to internal, but for explicit
4238 // instantiations we'll map to external.
4239
4240 // In C++, the compiler has to emit a definition in every translation unit
4241 // that references the function. We should use linkonce_odr because
4242 // a) if all references in this translation unit are optimized away, we
4243 // don't need to codegen it. b) if the function persists, it needs to be
4244 // merged with other definitions. c) C++ has the ODR, so we know the
4245 // definition is dependable.
4246 if (Linkage == GVA_DiscardableODR)
4247 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4248 : llvm::Function::InternalLinkage;
4249
4250 // An explicit instantiation of a template has weak linkage, since
4251 // explicit instantiations can occur in multiple translation units
4252 // and must all be equivalent. However, we are not allowed to
4253 // throw away these explicit instantiations.
4254 //
4255 // We don't currently support CUDA device code spread out across multiple TUs,
4256 // so say that CUDA templates are either external (for kernels) or internal.
4257 // This lets llvm perform aggressive inter-procedural optimizations.
4258 if (Linkage == GVA_StrongODR) {
4259 if (Context.getLangOpts().AppleKext)
4260 return llvm::Function::ExternalLinkage;
4261 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4262 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4263 : llvm::Function::InternalLinkage;
4264 return llvm::Function::WeakODRLinkage;
4265 }
4266
4267 // C++ doesn't have tentative definitions and thus cannot have common
4268 // linkage.
4269 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4270 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4271 CodeGenOpts.NoCommon))
4272 return llvm::GlobalVariable::CommonLinkage;
4273
4274 // selectany symbols are externally visible, so use weak instead of
4275 // linkonce. MSVC optimizes away references to const selectany globals, so
4276 // all definitions should be the same and ODR linkage should be used.
4277 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4278 if (D->hasAttr<SelectAnyAttr>())
4279 return llvm::GlobalVariable::WeakODRLinkage;
4280
4281 // Otherwise, we have strong external linkage.
4282 assert(Linkage == GVA_StrongExternal)((Linkage == GVA_StrongExternal) ? static_cast<void> (0
) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4282, __PRETTY_FUNCTION__))
;
4283 return llvm::GlobalVariable::ExternalLinkage;
4284}
4285
4286llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4287 const VarDecl *VD, bool IsConstant) {
4288 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4289 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4290}
4291
4292/// Replace the uses of a function that was declared with a non-proto type.
4293/// We want to silently drop extra arguments from call sites
4294static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4295 llvm::Function *newFn) {
4296 // Fast path.
4297 if (old->use_empty()) return;
4298
4299 llvm::Type *newRetTy = newFn->getReturnType();
4300 SmallVector<llvm::Value*, 4> newArgs;
4301 SmallVector<llvm::OperandBundleDef, 1> newBundles;
4302
4303 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4304 ui != ue; ) {
4305 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4306 llvm::User *user = use->getUser();
4307
4308 // Recognize and replace uses of bitcasts. Most calls to
4309 // unprototyped functions will use bitcasts.
4310 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4311 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4312 replaceUsesOfNonProtoConstant(bitcast, newFn);
4313 continue;
4314 }
4315
4316 // Recognize calls to the function.
4317 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4318 if (!callSite) continue;
4319 if (!callSite->isCallee(&*use))
4320 continue;
4321
4322 // If the return types don't match exactly, then we can't
4323 // transform this call unless it's dead.
4324 if (callSite->getType() != newRetTy && !callSite->use_empty())
4325 continue;
4326
4327 // Get the call site's attribute list.
4328 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4329 llvm::AttributeList oldAttrs = callSite->getAttributes();
4330
4331 // If the function was passed too few arguments, don't transform.
4332 unsigned newNumArgs = newFn->arg_size();
4333 if (callSite->arg_size() < newNumArgs)
4334 continue;
4335
4336 // If extra arguments were passed, we silently drop them.
4337 // If any of the types mismatch, we don't transform.
4338 unsigned argNo = 0;
4339 bool dontTransform = false;
4340 for (llvm::Argument &A : newFn->args()) {
4341 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4342 dontTransform = true;
4343 break;
4344 }
4345
4346 // Add any parameter attributes.
4347 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4348 argNo++;
4349 }
4350 if (dontTransform)
4351 continue;
4352
4353 // Okay, we can transform this. Create the new call instruction and copy
4354 // over the required information.
4355 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4356
4357 // Copy over any operand bundles.
4358 callSite->getOperandBundlesAsDefs(newBundles);
4359
4360 llvm::CallBase *newCall;
4361 if (dyn_cast<llvm::CallInst>(callSite)) {
4362 newCall =
4363 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4364 } else {
4365 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4366 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4367 oldInvoke->getUnwindDest(), newArgs,
4368 newBundles, "", callSite);
4369 }
4370 newArgs.clear(); // for the next iteration
4371
4372 if (!newCall->getType()->isVoidTy())
4373 newCall->takeName(callSite);
4374 newCall->setAttributes(llvm::AttributeList::get(
4375 newFn->getContext(), oldAttrs.getFnAttributes(),
4376 oldAttrs.getRetAttributes(), newArgAttrs));
4377 newCall->setCallingConv(callSite->getCallingConv());
4378
4379 // Finally, remove the old call, replacing any uses with the new one.
4380 if (!callSite->use_empty())
4381 callSite->replaceAllUsesWith(newCall);
4382
4383 // Copy debug location attached to CI.
4384 if (callSite->getDebugLoc())
4385 newCall->setDebugLoc(callSite->getDebugLoc());
4386
4387 callSite->eraseFromParent();
4388 }
4389}
4390
4391/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4392/// implement a function with no prototype, e.g. "int foo() {}". If there are
4393/// existing call uses of the old function in the module, this adjusts them to
4394/// call the new function directly.
4395///
4396/// This is not just a cleanup: the always_inline pass requires direct calls to
4397/// functions to be able to inline them. If there is a bitcast in the way, it
4398/// won't inline them. Instcombine normally deletes these calls, but it isn't
4399/// run at -O0.
4400static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4401 llvm::Function *NewFn) {
4402 // If we're redefining a global as a function, don't transform it.
4403 if (!isa<llvm::Function>(Old)) return;
4404
4405 replaceUsesOfNonProtoConstant(Old, NewFn);
4406}
4407
4408void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4409 auto DK = VD->isThisDeclarationADefinition();
4410 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4411 return;
4412
4413 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4414 // If we have a definition, this might be a deferred decl. If the
4415 // instantiation is explicit, make sure we emit it at the end.
4416 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4417 GetAddrOfGlobalVar(VD);
4418
4419 EmitTopLevelDecl(VD);
4420}
4421
4422void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4423 llvm::GlobalValue *GV) {
4424 // Check if this must be emitted as declare variant.
4425 if (LangOpts.OpenMP && OpenMPRuntime &&
4426 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4427 return;
4428
4429 const auto *D = cast<FunctionDecl>(GD.getDecl());
4430
4431 // Compute the function info and LLVM type.
4432 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4433 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4434
4435 // Get or create the prototype for the function.
4436 if (!GV || (GV->getType()->getElementType() != Ty))
4437 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4438 /*DontDefer=*/true,
4439 ForDefinition));
4440
4441 // Already emitted.
4442 if (!GV->isDeclaration())
4443 return;
4444
4445 // We need to set linkage and visibility on the function before
4446 // generating code for it because various parts of IR generation
4447 // want to propagate this information down (e.g. to local static
4448 // declarations).
4449 auto *Fn = cast<llvm::Function>(GV);
4450 setFunctionLinkage(GD, Fn);
4451
4452 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4453 setGVProperties(Fn, GD);
4454
4455 MaybeHandleStaticInExternC(D, Fn);
4456
4457
4458 maybeSetTrivialComdat(*D, *Fn);
4459
4460 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4461
4462 setNonAliasAttributes(GD, Fn);
4463 SetLLVMFunctionAttributesForDefinition(D, Fn);
4464
4465 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4466 AddGlobalCtor(Fn, CA->getPriority());
4467 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4468 AddGlobalDtor(Fn, DA->getPriority());
4469 if (D->hasAttr<AnnotateAttr>())
4470 AddGlobalAnnotations(D, Fn);
4471}
4472
4473void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4474 const auto *D = cast<ValueDecl>(GD.getDecl());
4475 const AliasAttr *AA = D->getAttr<AliasAttr>();
4476 assert(AA && "Not an alias?")((AA && "Not an alias?") ? static_cast<void> (0
) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4476, __PRETTY_FUNCTION__))
;
4477
4478 StringRef MangledName = getMangledName(GD);
4479
4480 if (AA->getAliasee() == MangledName) {
4481 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4482 return;
4483 }
4484
4485 // If there is a definition in the module, then it wins over the alias.
4486 // This is dubious, but allow it to be safe. Just ignore the alias.
4487 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4488 if (Entry && !Entry->isDeclaration())
4489 return;
4490
4491 Aliases.push_back(GD);
4492
4493 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4494
4495 // Create a reference to the named value. This ensures that it is emitted
4496 // if a deferred decl.
4497 llvm::Constant *Aliasee;
4498 llvm::GlobalValue::LinkageTypes LT;
4499 if (isa<llvm::FunctionType>(DeclTy)) {
4500 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4501 /*ForVTable=*/false);
4502 LT = getFunctionLinkage(GD);
4503 } else {
4504 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4505 llvm::PointerType::getUnqual(DeclTy),
4506 /*D=*/nullptr);
4507 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4508 D->getType().isConstQualified());
4509 }
4510
4511 // Create the new alias itself, but don't set a name yet.
4512 auto *GA =
4513 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4514
4515 if (Entry) {
4516 if (GA->getAliasee() == Entry) {
4517 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4518 return;
4519 }
4520
4521 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4521, __PRETTY_FUNCTION__))
;
4522
4523 // If there is a declaration in the module, then we had an extern followed
4524 // by the alias, as in:
4525 // extern int test6();
4526 // ...
4527 // int test6() __attribute__((alias("test7")));
4528 //
4529 // Remove it and replace uses of it with the alias.
4530 GA->takeName(Entry);
4531
4532 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4533 Entry->getType()));
4534 Entry->eraseFromParent();
4535 } else {
4536 GA->setName(MangledName);
4537 }
4538
4539 // Set attributes which are particular to an alias; this is a
4540 // specialization of the attributes which may be set on a global
4541 // variable/function.
4542 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4543 D->isWeakImported()) {
4544 GA->setLinkage(llvm::Function::WeakAnyLinkage);
4545 }
4546
4547 if (const auto *VD = dyn_cast<VarDecl>(D))
4548 if (VD->getTLSKind())
4549 setTLSMode(GA, *VD);
4550
4551 SetCommonAttributes(GD, GA);
4552}
4553
4554void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4555 const auto *D = cast<ValueDecl>(GD.getDecl());
4556 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4557 assert(IFA && "Not an ifunc?")((IFA && "Not an ifunc?") ? static_cast<void> (
0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4557, __PRETTY_FUNCTION__))
;
4558
4559 StringRef MangledName = getMangledName(GD);
4560
4561 if (IFA->getResolver() == MangledName) {
4562 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4563 return;
4564 }
4565
4566 // Report an error if some definition overrides ifunc.
4567 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4568 if (Entry && !Entry->isDeclaration()) {
4569 GlobalDecl OtherGD;
4570 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4571 DiagnosedConflictingDefinitions.insert(GD).second) {
4572 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4573 << MangledName;
4574 Diags.Report(OtherGD.getDecl()->getLocation(),
4575 diag::note_previous_definition);
4576 }
4577 return;
4578 }
4579
4580 Aliases.push_back(GD);
4581
4582 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4583 llvm::Constant *Resolver =
4584 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4585 /*ForVTable=*/false);
4586 llvm::GlobalIFunc *GIF =
4587 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4588 "", Resolver, &getModule());
4589 if (Entry) {
4590 if (GIF->getResolver() == Entry) {
4591 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4592 return;
4593 }
4594 assert(Entry->isDeclaration())((Entry->isDeclaration()) ? static_cast<void> (0) : __assert_fail
("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4594, __PRETTY_FUNCTION__))
;
4595
4596 // If there is a declaration in the module, then we had an extern followed
4597 // by the ifunc, as in:
4598 // extern int test();
4599 // ...
4600 // int test() __attribute__((ifunc("resolver")));
4601 //
4602 // Remove it and replace uses of it with the ifunc.
4603 GIF->takeName(Entry);
4604
4605 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4606 Entry->getType()));
4607 Entry->eraseFromParent();
4608 } else
4609 GIF->setName(MangledName);
4610
4611 SetCommonAttributes(GD, GIF);
4612}
4613
4614llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4615 ArrayRef<llvm::Type*> Tys) {
4616 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4617 Tys);
4618}
4619
4620static llvm::StringMapEntry<llvm::GlobalVariable *> &
4621GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4622 const StringLiteral *Literal, bool TargetIsLSB,
4623 bool &IsUTF16, unsigned &StringLength) {
4624 StringRef String = Literal->getString();
4625 unsigned NumBytes = String.size();
4626
4627 // Check for simple case.
4628 if (!Literal->containsNonAsciiOrNull()) {
4629 StringLength = NumBytes;
4630 return *Map.insert(std::make_pair(String, nullptr)).first;
4631 }
4632
4633 // Otherwise, convert the UTF8 literals into a string of shorts.
4634 IsUTF16 = true;
4635
4636 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4637 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4638 llvm::UTF16 *ToPtr = &ToBuf[0];
4639
4640 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4641 ToPtr + NumBytes, llvm::strictConversion);
4642
4643 // ConvertUTF8toUTF16 returns the length in ToPtr.
4644 StringLength = ToPtr - &ToBuf[0];
4645
4646 // Add an explicit null.
4647 *ToPtr = 0;
4648 return *Map.insert(std::make_pair(
4649 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4650 (StringLength + 1) * 2),
4651 nullptr)).first;
4652}
4653
4654ConstantAddress
4655CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4656 unsigned StringLength = 0;
4657 bool isUTF16 = false;
4658 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4659 GetConstantCFStringEntry(CFConstantStringMap, Literal,
4660 getDataLayout().isLittleEndian(), isUTF16,
4661 StringLength);
4662
4663 if (auto *C = Entry.second)
4664 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4665
4666 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4667 llvm::Constant *Zeros[] = { Zero, Zero };
4668
4669 const ASTContext &Context = getContext();
4670 const llvm::Triple &Triple = getTriple();
4671
4672 const auto CFRuntime = getLangOpts().CFRuntime;
4673 const bool IsSwiftABI =
4674 static_cast<unsigned>(CFRuntime) >=
4675 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4676 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4677
4678 // If we don't already have it, get __CFConstantStringClassReference.
4679 if (!CFConstantStringClassRef) {
4680 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4681 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4682 Ty = llvm::ArrayType::get(Ty, 0);
4683
4684 switch (CFRuntime) {
4685 default: break;
4686 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH[[gnu::fallthrough]];
4687 case LangOptions::CoreFoundationABI::Swift5_0:
4688 CFConstantStringClassName =
4689 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4690 : "$s10Foundation19_NSCFConstantStringCN";
4691 Ty = IntPtrTy;
4692 break;
4693 case LangOptions::CoreFoundationABI::Swift4_2:
4694 CFConstantStringClassName =
4695 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4696 : "$S10Foundation19_NSCFConstantStringCN";
4697 Ty = IntPtrTy;
4698 break;
4699 case LangOptions::CoreFoundationABI::Swift4_1:
4700 CFConstantStringClassName =
4701 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4702 : "__T010Foundation19_NSCFConstantStringCN";
4703 Ty = IntPtrTy;
4704 break;
4705 }
4706
4707 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4708
4709 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4710 llvm::GlobalValue *GV = nullptr;
4711
4712 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4713 IdentifierInfo &II = Context.Idents.get(GV->getName());
4714 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4715 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4716
4717 const VarDecl *VD = nullptr;
4718 for (const auto &Result : DC->lookup(&II))
4719 if ((VD = dyn_cast<VarDecl>(Result)))
4720 break;
4721
4722 if (Triple.isOSBinFormatELF()) {
4723 if (!VD)
4724 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4725 } else {
4726 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4727 if (!VD || !VD->hasAttr<DLLExportAttr>())
4728 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4729 else
4730 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4731 }
4732
4733 setDSOLocal(GV);
4734 }
4735 }
4736
4737 // Decay array -> ptr
4738 CFConstantStringClassRef =
4739 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4740 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4741 }
4742
4743 QualType CFTy = Context.getCFConstantStringType();
4744
4745 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4746
4747 ConstantInitBuilder Builder(*this);
4748 auto Fields = Builder.beginStruct(STy);
4749
4750 // Class pointer.
4751 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4752
4753 // Flags.
4754 if (IsSwiftABI) {
4755 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4756 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4757 } else {
4758 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4759 }
4760
4761 // String pointer.
4762 llvm::Constant *C = nullptr;
4763 if (isUTF16) {
4764 auto Arr = llvm::makeArrayRef(
4765 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4766 Entry.first().size() / 2);
4767 C = llvm::ConstantDataArray::get(VMContext, Arr);
4768 } else {
4769 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4770 }
4771
4772 // Note: -fwritable-strings doesn't make the backing store strings of
4773 // CFStrings writable. (See <rdar://problem/10657500>)
4774 auto *GV =
4775 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4776 llvm::GlobalValue::PrivateLinkage, C, ".str");
4777 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4778 // Don't enforce the target's minimum global alignment, since the only use
4779 // of the string is via this class initializer.
4780 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4781 : Context.getTypeAlignInChars(Context.CharTy);
4782 GV->setAlignment(Align.getAsAlign());
4783
4784 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4785 // Without it LLVM can merge the string with a non unnamed_addr one during
4786 // LTO. Doing that changes the section it ends in, which surprises ld64.
4787 if (Triple.isOSBinFormatMachO())
4788 GV->setSection(isUTF16 ? "__TEXT,__ustring"
4789 : "__TEXT,__cstring,cstring_literals");
4790 // Make sure the literal ends up in .rodata to allow for safe ICF and for
4791 // the static linker to adjust permissions to read-only later on.
4792 else if (Triple.isOSBinFormatELF())
4793 GV->setSection(".rodata");
4794
4795 // String.
4796 llvm::Constant *Str =
4797 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4798
4799 if (isUTF16)
4800 // Cast the UTF16 string to the correct type.
4801 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4802 Fields.add(Str);
4803
4804 // String length.
4805 llvm::IntegerType *LengthTy =
4806 llvm::IntegerType::get(getModule().getContext(),
4807 Context.getTargetInfo().getLongWidth());
4808 if (IsSwiftABI) {
4809 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4810 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4811 LengthTy = Int32Ty;
4812 else
4813 LengthTy = IntPtrTy;
4814 }
4815 Fields.addInt(LengthTy, StringLength);
4816
4817 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4818 // properly aligned on 32-bit platforms.
4819 CharUnits Alignment =
4820 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4821
4822 // The struct.
4823 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4824 /*isConstant=*/false,
4825 llvm::GlobalVariable::PrivateLinkage);
4826 GV->addAttribute("objc_arc_inert");
4827 switch (Triple.getObjectFormat()) {
4828 case llvm::Triple::UnknownObjectFormat:
4829 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4829)
;
4830 case llvm::Triple::XCOFF:
4831 llvm_unreachable("XCOFF is not yet implemented")::llvm::llvm_unreachable_internal("XCOFF is not yet implemented"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4831)
;
4832 case llvm::Triple::COFF:
4833 case llvm::Triple::ELF:
4834 case llvm::Triple::Wasm:
4835 GV->setSection("cfstring");
4836 break;
4837 case llvm::Triple::MachO:
4838 GV->setSection("__DATA,__cfstring");
4839 break;
4840 }
4841 Entry.second = GV;
4842
4843 return ConstantAddress(GV, Alignment);
4844}
4845
4846bool CodeGenModule::getExpressionLocationsEnabled() const {
4847 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4848}
4849
4850QualType CodeGenModule::getObjCFastEnumerationStateType() {
4851 if (ObjCFastEnumerationStateType.isNull()) {
4852 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4853 D->startDefinition();
4854
4855 QualType FieldTypes[] = {
4856 Context.UnsignedLongTy,
4857 Context.getPointerType(Context.getObjCIdType()),
4858 Context.getPointerType(Context.UnsignedLongTy),
4859 Context.getConstantArrayType(Context.UnsignedLongTy,
4860 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4861 };
4862
4863 for (size_t i = 0; i < 4; ++i) {
4864 FieldDecl *Field = FieldDecl::Create(Context,
4865 D,
4866 SourceLocation(),
4867 SourceLocation(), nullptr,
4868 FieldTypes[i], /*TInfo=*/nullptr,
4869 /*BitWidth=*/nullptr,
4870 /*Mutable=*/false,
4871 ICIS_NoInit);
4872 Field->setAccess(AS_public);
4873 D->addDecl(Field);
4874 }
4875
4876 D->completeDefinition();
4877 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4878 }
4879
4880 return ObjCFastEnumerationStateType;
4881}
4882
4883llvm::Constant *
4884CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4885 assert(!E->getType()->isPointerType() && "Strings are always arrays")((!E->getType()->isPointerType() && "Strings are always arrays"
) ? static_cast<void> (0) : __assert_fail ("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4885, __PRETTY_FUNCTION__))
;
4886
4887 // Don't emit it as the address of the string, emit the string data itself
4888 // as an inline array.
4889 if (E->getCharByteWidth() == 1) {
4890 SmallString<64> Str(E->getString());
4891
4892 // Resize the string to the right size, which is indicated by its type.
4893 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4894 Str.resize(CAT->getSize().getZExtValue());
4895 return llvm::ConstantDataArray::getString(VMContext, Str, false);
4896 }
4897
4898 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4899 llvm::Type *ElemTy = AType->getElementType();
4900 unsigned NumElements = AType->getNumElements();
4901
4902 // Wide strings have either 2-byte or 4-byte elements.
4903 if (ElemTy->getPrimitiveSizeInBits() == 16) {
4904 SmallVector<uint16_t, 32> Elements;
4905 Elements.reserve(NumElements);
4906
4907 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4908 Elements.push_back(E->getCodeUnit(i));
4909 Elements.resize(NumElements);
4910 return llvm::ConstantDataArray::get(VMContext, Elements);
4911 }
4912
4913 assert(ElemTy->getPrimitiveSizeInBits() == 32)((ElemTy->getPrimitiveSizeInBits() == 32) ? static_cast<
void> (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4913, __PRETTY_FUNCTION__))
;
4914 SmallVector<uint32_t, 32> Elements;
4915 Elements.reserve(NumElements);
4916
4917 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4918 Elements.push_back(E->getCodeUnit(i));
4919 Elements.resize(NumElements);
4920 return llvm::ConstantDataArray::get(VMContext, Elements);
4921}
4922
4923static llvm::GlobalVariable *
4924GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4925 CodeGenModule &CGM, StringRef GlobalName,
4926 CharUnits Alignment) {
4927 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4928 CGM.getStringLiteralAddressSpace());
4929
4930 llvm::Module &M = CGM.getModule();
4931 // Create a global variable for this string
4932 auto *GV = new llvm::GlobalVariable(
4933 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4934 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4935 GV->setAlignment(Alignment.getAsAlign());
4936 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4937 if (GV->isWeakForLinker()) {
4938 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")((CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? static_cast<void> (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 4938, __PRETTY_FUNCTION__))
;
4939 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4940 }
4941 CGM.setDSOLocal(GV);
4942
4943 return GV;
4944}
4945
4946/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4947/// constant array for the given string literal.
4948ConstantAddress
4949CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4950 StringRef Name) {
4951 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4952
4953 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4954 llvm::GlobalVariable **Entry = nullptr;
4955 if (!LangOpts.WritableStrings) {
4956 Entry = &ConstantStringMap[C];
4957 if (auto GV = *Entry) {
4958 if (Alignment.getQuantity() > GV->getAlignment())
4959 GV->setAlignment(Alignment.getAsAlign());
4960 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4961 Alignment);
4962 }
4963 }
4964
4965 SmallString<256> MangledNameBuffer;
4966 StringRef GlobalVariableName;
4967 llvm::GlobalValue::LinkageTypes LT;
4968
4969 // Mangle the string literal if that's how the ABI merges duplicate strings.
4970 // Don't do it if they are writable, since we don't want writes in one TU to
4971 // affect strings in another.
4972 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4973 !LangOpts.WritableStrings) {
4974 llvm::raw_svector_ostream Out(MangledNameBuffer);
4975 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4976 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4977 GlobalVariableName = MangledNameBuffer;
4978 } else {
4979 LT = llvm::GlobalValue::PrivateLinkage;
4980 GlobalVariableName = Name;
4981 }
4982
4983 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4984 if (Entry)
4985 *Entry = GV;
4986
4987 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4988 QualType());
4989
4990 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4991 Alignment);
4992}
4993
4994/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4995/// array for the given ObjCEncodeExpr node.
4996ConstantAddress
4997CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4998 std::string Str;
4999 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5000
5001 return GetAddrOfConstantCString(Str);
5002}
5003
5004/// GetAddrOfConstantCString - Returns a pointer to a character array containing
5005/// the literal and a terminating '\0' character.
5006/// The result has pointer to array type.
5007ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5008 const std::string &Str, const char *GlobalName) {
5009 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5010 CharUnits Alignment =
5011 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5012
5013 llvm::Constant *C =
5014 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5015
5016 // Don't share any string literals if strings aren't constant.
5017 llvm::GlobalVariable **Entry = nullptr;
5018 if (!LangOpts.WritableStrings) {
5019 Entry = &ConstantStringMap[C];
5020 if (auto GV = *Entry) {
5021 if (Alignment.getQuantity() > GV->getAlignment())
5022 GV->setAlignment(Alignment.getAsAlign());
5023 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5024 Alignment);
5025 }
5026 }
5027
5028 // Get the default prefix if a name wasn't specified.
5029 if (!GlobalName)
5030 GlobalName = ".str";
5031 // Create a global variable for this.
5032 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5033 GlobalName, Alignment);
5034 if (Entry)
5035 *Entry = GV;
5036
5037 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5038 Alignment);
5039}
5040
5041ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5042 const MaterializeTemporaryExpr *E, const Expr *Init) {
5043 assert((E->getStorageDuration() == SD_Static ||(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5044, __PRETTY_FUNCTION__))
5044 E->getStorageDuration() == SD_Thread) && "not a global temporary")(((E->getStorageDuration() == SD_Static || E->getStorageDuration
() == SD_Thread) && "not a global temporary") ? static_cast
<void> (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5044, __PRETTY_FUNCTION__))
;
5045 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5046
5047 // If we're not materializing a subobject of the temporary, keep the
5048 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5049 QualType MaterializedType = Init->getType();
5050 if (Init == E->getSubExpr())
5051 MaterializedType = E->getType();
5052
5053 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5054
5055 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5056 return ConstantAddress(Slot, Align);
5057
5058 // FIXME: If an externally-visible declaration extends multiple temporaries,
5059 // we need to give each temporary the same name in every translation unit (and
5060 // we also need to make the temporaries externally-visible).
5061 SmallString<256> Name;
5062 llvm::raw_svector_ostream Out(Name);
5063 getCXXABI().getMangleContext().mangleReferenceTemporary(
5064 VD, E->getManglingNumber(), Out);
5065
5066 APValue *Value = nullptr;
5067 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5068 // If the initializer of the extending declaration is a constant
5069 // initializer, we should have a cached constant initializer for this
5070 // temporary. Note that this might have a different value from the value
5071 // computed by evaluating the initializer if the surrounding constant
5072 // expression modifies the temporary.
5073 Value = E->getOrCreateValue(false);
5074 }
5075
5076 // Try evaluating it now, it might have a constant initializer.
5077 Expr::EvalResult EvalResult;
5078 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5079 !EvalResult.hasSideEffects())
5080 Value = &EvalResult.Val;
5081
5082 LangAS AddrSpace =
5083 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5084
5085 Optional<ConstantEmitter> emitter;
5086 llvm::Constant *InitialValue = nullptr;
5087 bool Constant = false;
5088 llvm::Type *Type;
5089 if (Value) {
5090 // The temporary has a constant initializer, use it.
5091 emitter.emplace(*this);
5092 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5093 MaterializedType);
5094 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5095 Type = InitialValue->getType();
5096 } else {
5097 // No initializer, the initialization will be provided when we
5098 // initialize the declaration which performed lifetime extension.
5099 Type = getTypes().ConvertTypeForMem(MaterializedType);
5100 }
5101
5102 // Create a global variable for this lifetime-extended temporary.
5103 llvm::GlobalValue::LinkageTypes Linkage =
5104 getLLVMLinkageVarDefinition(VD, Constant);
5105 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5106 const VarDecl *InitVD;
5107 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5108 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5109 // Temporaries defined inside a class get linkonce_odr linkage because the
5110 // class can be defined in multiple translation units.
5111 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5112 } else {
5113 // There is no need for this temporary to have external linkage if the
5114 // VarDecl has external linkage.
5115 Linkage = llvm::GlobalVariable::InternalLinkage;
5116 }
5117 }
5118 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5119 auto *GV = new llvm::GlobalVariable(
5120 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5121 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5122 if (emitter) emitter->finalize(GV);
5123 setGVProperties(GV, VD);
5124 GV->setAlignment(Align.getAsAlign());
5125 if (supportsCOMDAT() && GV->isWeakForLinker())
5126 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5127 if (VD->getTLSKind())
5128 setTLSMode(GV, *VD);
5129 llvm::Constant *CV = GV;
5130 if (AddrSpace != LangAS::Default)
5131 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5132 *this, GV, AddrSpace, LangAS::Default,
5133 Type->getPointerTo(
5134 getContext().getTargetAddressSpace(LangAS::Default)));
5135 MaterializedGlobalTemporaryMap[E] = CV;
5136 return ConstantAddress(CV, Align);
5137}
5138
5139/// EmitObjCPropertyImplementations - Emit information for synthesized
5140/// properties for an implementation.
5141void CodeGenModule::EmitObjCPropertyImplementations(const
5142 ObjCImplementationDecl *D) {
5143 for (const auto *PID : D->property_impls()) {
5144 // Dynamic is just for type-checking.
5145 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5146 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5147
5148 // Determine which methods need to be implemented, some may have
5149 // been overridden. Note that ::isPropertyAccessor is not the method
5150 // we want, that just indicates if the decl came from a
5151 // property. What we want to know is if the method is defined in
5152 // this implementation.
5153 auto *Getter = PID->getGetterMethodDecl();
5154 if (!Getter || Getter->isSynthesizedAccessorStub())
5155 CodeGenFunction(*this).GenerateObjCGetter(
5156 const_cast<ObjCImplementationDecl *>(D), PID);
5157 auto *Setter = PID->getSetterMethodDecl();
5158 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5159 CodeGenFunction(*this).GenerateObjCSetter(
5160 const_cast<ObjCImplementationDecl *>(D), PID);
5161 }
5162 }
5163}
5164
5165static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5166 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5167 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5168 ivar; ivar = ivar->getNextIvar())
5169 if (ivar->getType().isDestructedType())
5170 return true;
5171
5172 return false;
5173}
5174
5175static bool AllTrivialInitializers(CodeGenModule &CGM,
5176 ObjCImplementationDecl *D) {
5177 CodeGenFunction CGF(CGM);
5178 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5179 E = D->init_end(); B != E; ++B) {
5180 CXXCtorInitializer *CtorInitExp = *B;
5181 Expr *Init = CtorInitExp->getInit();
5182 if (!CGF.isTrivialInitializer(Init))
5183 return false;
5184 }
5185 return true;
5186}
5187
5188/// EmitObjCIvarInitializations - Emit information for ivar initialization
5189/// for an implementation.
5190void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5191 // We might need a .cxx_destruct even if we don't have any ivar initializers.
5192 if (needsDestructMethod(D)) {
5193 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5194 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5195 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5196 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5197 getContext().VoidTy, nullptr, D,
5198 /*isInstance=*/true, /*isVariadic=*/false,
5199 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5200 /*isImplicitlyDeclared=*/true,
5201 /*isDefined=*/false, ObjCMethodDecl::Required);
5202 D->addInstanceMethod(DTORMethod);
5203 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5204 D->setHasDestructors(true);
5205 }
5206
5207 // If the implementation doesn't have any ivar initializers, we don't need
5208 // a .cxx_construct.
5209 if (D->getNumIvarInitializers() == 0 ||
5210 AllTrivialInitializers(*this, D))
5211 return;
5212
5213 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5214 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5215 // The constructor returns 'self'.
5216 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5217 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5218 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5219 /*isVariadic=*/false,
5220 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5221 /*isImplicitlyDeclared=*/true,
5222 /*isDefined=*/false, ObjCMethodDecl::Required);
5223 D->addInstanceMethod(CTORMethod);
5224 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5225 D->setHasNonZeroConstructors(true);
5226}
5227
5228// EmitLinkageSpec - Emit all declarations in a linkage spec.
5229void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5230 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5231 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5232 ErrorUnsupported(LSD, "linkage spec");
5233 return;
5234 }
5235
5236 EmitDeclContext(LSD);
5237}
5238
5239void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5240 for (auto *I : DC->decls()) {
5241 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5242 // are themselves considered "top-level", so EmitTopLevelDecl on an
5243 // ObjCImplDecl does not recursively visit them. We need to do that in
5244 // case they're nested inside another construct (LinkageSpecDecl /
5245 // ExportDecl) that does stop them from being considered "top-level".
5246 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5247 for (auto *M : OID->methods())
5248 EmitTopLevelDecl(M);
5249 }
5250
5251 EmitTopLevelDecl(I);
5252 }
5253}
5254
5255/// EmitTopLevelDecl - Emit code for a single top level declaration.
5256void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5257 // Ignore dependent declarations.
5258 if (D->isTemplated())
5259 return;
5260
5261 switch (D->getKind()) {
5262 case Decl::CXXConversion:
5263 case Decl::CXXMethod:
5264 case Decl::Function:
5265 EmitGlobal(cast<FunctionDecl>(D));
5266 // Always provide some coverage mapping
5267 // even for the functions that aren't emitted.
5268 AddDeferredUnusedCoverageMapping(D);
5269 break;
5270
5271 case Decl::CXXDeductionGuide:
5272 // Function-like, but does not result in code emission.
5273 break;
5274
5275 case Decl::Var:
5276 case Decl::Decomposition:
5277 case Decl::VarTemplateSpecialization:
5278 EmitGlobal(cast<VarDecl>(D));
5279 if (auto *DD = dyn_cast<DecompositionDecl>(D))
5280 for (auto *B : DD->bindings())
5281 if (auto *HD = B->getHoldingVar())
5282 EmitGlobal(HD);
5283 break;
5284
5285 // Indirect fields from global anonymous structs and unions can be
5286 // ignored; only the actual variable requires IR gen support.
5287 case Decl::IndirectField:
5288 break;
5289
5290 // C++ Decls
5291 case Decl::Namespace:
5292 EmitDeclContext(cast<NamespaceDecl>(D));
5293 break;
5294 case Decl::ClassTemplateSpecialization: {
5295 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5296 if (DebugInfo &&
5297 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5298 Spec->hasDefinition())
5299 DebugInfo->completeTemplateDefinition(*Spec);
5300 } LLVM_FALLTHROUGH[[gnu::fallthrough]];
5301 case Decl::CXXRecord:
5302 if (DebugInfo) {
5303 if (auto *ES = D->getASTContext().getExternalSource())
5304 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5305 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5306 }
5307 // Emit any static data members, they may be definitions.
5308 for (auto *I : cast<CXXRecordDecl>(D)->decls())
5309 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5310 EmitTopLevelDecl(I);
5311 break;
5312 // No code generation needed.
5313 case Decl::UsingShadow:
5314 case Decl::ClassTemplate:
5315 case Decl::VarTemplate:
5316 case Decl::Concept:
5317 case Decl::VarTemplatePartialSpecialization:
5318 case Decl::FunctionTemplate:
5319 case Decl::TypeAliasTemplate:
5320 case Decl::Block:
5321 case Decl::Empty:
5322 case Decl::Binding:
5323 break;
5324 case Decl::Using: // using X; [C++]
5325 if (CGDebugInfo *DI = getModuleDebugInfo())
5326 DI->EmitUsingDecl(cast<UsingDecl>(*D));
5327 return;
5328 case Decl::NamespaceAlias:
5329 if (CGDebugInfo *DI = getModuleDebugInfo())
5330 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5331 return;
5332 case Decl::UsingDirective: // using namespace X; [C++]
5333 if (CGDebugInfo *DI = getModuleDebugInfo())
5334 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5335 return;
5336 case Decl::CXXConstructor:
5337 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5338 break;
5339 case Decl::CXXDestructor:
5340 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5341 break;
5342
5343 case Decl::StaticAssert:
5344 // Nothing to do.
5345 break;
5346
5347 // Objective-C Decls
5348
5349 // Forward declarations, no (immediate) code generation.
5350 case Decl::ObjCInterface:
5351 case Decl::ObjCCategory:
5352 break;
5353
5354 case Decl::ObjCProtocol: {
5355 auto *Proto = cast<ObjCProtocolDecl>(D);
5356 if (Proto->isThisDeclarationADefinition())
5357 ObjCRuntime->GenerateProtocol(Proto);
5358 break;
5359 }
5360
5361 case Decl::ObjCCategoryImpl:
5362 // Categories have properties but don't support synthesize so we
5363 // can ignore them here.
5364 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5365 break;
5366
5367 case Decl::ObjCImplementation: {
5368 auto *OMD = cast<ObjCImplementationDecl>(D);
5369 EmitObjCPropertyImplementations(OMD);
5370 EmitObjCIvarInitializations(OMD);
5371 ObjCRuntime->GenerateClass(OMD);
5372 // Emit global variable debug information.
5373 if (CGDebugInfo *DI = getModuleDebugInfo())
5374 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5375 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5376 OMD->getClassInterface()), OMD->getLocation());
5377 break;
5378 }
5379 case Decl::ObjCMethod: {
5380 auto *OMD = cast<ObjCMethodDecl>(D);
5381 // If this is not a prototype, emit the body.
5382 if (OMD->getBody())
5383 CodeGenFunction(*this).GenerateObjCMethod(OMD);
5384 break;
5385 }
5386 case Decl::ObjCCompatibleAlias:
5387 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5388 break;
5389
5390 case Decl::PragmaComment: {
5391 const auto *PCD = cast<PragmaCommentDecl>(D);
5392 switch (PCD->getCommentKind()) {
5393 case PCK_Unknown:
5394 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5394)
;
5395 case PCK_Linker:
5396 AppendLinkerOptions(PCD->getArg());
5397 break;
5398 case PCK_Lib:
5399 AddDependentLib(PCD->getArg());
5400 break;
5401 case PCK_Compiler:
5402 case PCK_ExeStr:
5403 case PCK_User:
5404 break; // We ignore all of these.
5405 }
5406 break;
5407 }
5408
5409 case Decl::PragmaDetectMismatch: {
5410 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5411 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5412 break;
5413 }
5414
5415 case Decl::LinkageSpec:
5416 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5417 break;
5418
5419 case Decl::FileScopeAsm: {
5420 // File-scope asm is ignored during device-side CUDA compilation.
5421 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5422 break;
5423 // File-scope asm is ignored during device-side OpenMP compilation.
5424 if (LangOpts.OpenMPIsDevice)
5425 break;
5426 auto *AD = cast<FileScopeAsmDecl>(D);
5427 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5428 break;
5429 }
5430
5431 case Decl::Import: {
5432 auto *Import = cast<ImportDecl>(D);
5433
5434 // If we've already imported this module, we're done.
5435 if (!ImportedModules.insert(Import->getImportedModule()))
5436 break;
5437
5438 // Emit debug information for direct imports.
5439 if (!Import->getImportedOwningModule()) {
5440 if (CGDebugInfo *DI = getModuleDebugInfo())
5441 DI->EmitImportDecl(*Import);
5442 }
5443
5444 // Find all of the submodules and emit the module initializers.
5445 llvm::SmallPtrSet<clang::Module *, 16> Visited;
5446 SmallVector<clang::Module *, 16> Stack;
5447 Visited.insert(Import->getImportedModule());
5448 Stack.push_back(Import->getImportedModule());
5449
5450 while (!Stack.empty()) {
5451 clang::Module *Mod = Stack.pop_back_val();
5452 if (!EmittedModuleInitializers.insert(Mod).second)
5453 continue;
5454
5455 for (auto *D : Context.getModuleInitializers(Mod))
5456 EmitTopLevelDecl(D);
5457
5458 // Visit the submodules of this module.
5459 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5460 SubEnd = Mod->submodule_end();
5461 Sub != SubEnd; ++Sub) {
5462 // Skip explicit children; they need to be explicitly imported to emit
5463 // the initializers.
5464 if ((*Sub)->IsExplicit)
5465 continue;
5466
5467 if (Visited.insert(*Sub).second)
5468 Stack.push_back(*Sub);
5469 }
5470 }
5471 break;
5472 }
5473
5474 case Decl::Export:
5475 EmitDeclContext(cast<ExportDecl>(D));
5476 break;
5477
5478 case Decl::OMPThreadPrivate:
5479 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5480 break;
5481
5482 case Decl::OMPAllocate:
5483 break;
5484
5485 case Decl::OMPDeclareReduction:
5486 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5487 break;
5488
5489 case Decl::OMPDeclareMapper:
5490 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5491 break;
5492
5493 case Decl::OMPRequires:
5494 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5495 break;
5496
5497 default:
5498 // Make sure we handled everything we should, every other kind is a
5499 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
5500 // function. Need to recode Decl::Kind to do that easily.
5501 assert(isa<TypeDecl>(D) && "Unsupported decl kind")((isa<TypeDecl>(D) && "Unsupported decl kind") ?
static_cast<void> (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5501, __PRETTY_FUNCTION__))
;
5502 break;
5503 }
5504}
5505
5506void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5507 // Do we need to generate coverage mapping?
5508 if (!CodeGenOpts.CoverageMapping)
5509 return;
5510 switch (D->getKind()) {
5511 case Decl::CXXConversion:
5512 case Decl::CXXMethod:
5513 case Decl::Function:
5514 case Decl::ObjCMethod:
5515 case Decl::CXXConstructor:
5516 case Decl::CXXDestructor: {
5517 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5518 return;
5519 SourceManager &SM = getContext().getSourceManager();
5520 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5521 return;
5522 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5523 if (I == DeferredEmptyCoverageMappingDecls.end())
5524 DeferredEmptyCoverageMappingDecls[D] = true;
5525 break;
5526 }
5527 default:
5528 break;
5529 };
5530}
5531
5532void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5533 // Do we need to generate coverage mapping?
5534 if (!CodeGenOpts.CoverageMapping)
5535 return;
5536 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5537 if (Fn->isTemplateInstantiation())
5538 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5539 }
5540 auto I = DeferredEmptyCoverageMappingDecls.find(D);
5541 if (I == DeferredEmptyCoverageMappingDecls.end())
5542 DeferredEmptyCoverageMappingDecls[D] = false;
5543 else
5544 I->second = false;
5545}
5546
5547void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5548 // We call takeVector() here to avoid use-after-free.
5549 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5550 // we deserialize function bodies to emit coverage info for them, and that
5551 // deserializes more declarations. How should we handle that case?
5552 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5553 if (!Entry.second)
5554 continue;
5555 const Decl *D = Entry.first;
5556 switch (D->getKind()) {
5557 case Decl::CXXConversion:
5558 case Decl::CXXMethod:
5559 case Decl::Function:
5560 case Decl::ObjCMethod: {
5561 CodeGenPGO PGO(*this);
5562 GlobalDecl GD(cast<FunctionDecl>(D));
5563 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5564 getFunctionLinkage(GD));
5565 break;
5566 }
5567 case Decl::CXXConstructor: {
5568 CodeGenPGO PGO(*this);
5569 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5570 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5571 getFunctionLinkage(GD));
5572 break;
5573 }
5574 case Decl::CXXDestructor: {
5575 CodeGenPGO PGO(*this);
5576 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5577 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5578 getFunctionLinkage(GD));
5579 break;
5580 }
5581 default:
5582 break;
5583 };
5584 }
5585}
5586
5587/// Turns the given pointer into a constant.
5588static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5589 const void *Ptr) {
5590 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5591 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5592 return llvm::ConstantInt::get(i64, PtrInt);
5593}
5594
5595static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5596 llvm::NamedMDNode *&GlobalMetadata,
5597 GlobalDecl D,
5598 llvm::GlobalValue *Addr) {
5599 if (!GlobalMetadata)
5600 GlobalMetadata =
5601 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5602
5603 // TODO: should we report variant information for ctors/dtors?
5604 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5605 llvm::ConstantAsMetadata::get(GetPointerConstant(
5606 CGM.getLLVMContext(), D.getDecl()))};
5607 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5608}
5609
5610/// For each function which is declared within an extern "C" region and marked
5611/// as 'used', but has internal linkage, create an alias from the unmangled
5612/// name to the mangled name if possible. People expect to be able to refer
5613/// to such functions with an unmangled name from inline assembly within the
5614/// same translation unit.
5615void CodeGenModule::EmitStaticExternCAliases() {
5616 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5617 return;
5618 for (auto &I : StaticExternCValues) {
5619 IdentifierInfo *Name = I.first;
5620 llvm::GlobalValue *Val = I.second;
5621 if (Val && !getModule().getNamedValue(Name->getName()))
5622 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5623 }
5624}
5625
5626bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5627 GlobalDecl &Result) const {
5628 auto Res = Manglings.find(MangledName);
5629 if (Res == Manglings.end())
5630 return false;
5631 Result = Res->getValue();
5632 return true;
5633}
5634
5635/// Emits metadata nodes associating all the global values in the
5636/// current module with the Decls they came from. This is useful for
5637/// projects using IR gen as a subroutine.
5638///
5639/// Since there's currently no way to associate an MDNode directly
5640/// with an llvm::GlobalValue, we create a global named metadata
5641/// with the name 'clang.global.decl.ptrs'.
5642void CodeGenModule::EmitDeclMetadata() {
5643 llvm::NamedMDNode *GlobalMetadata = nullptr;
5644
5645 for (auto &I : MangledDeclNames) {
5646 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5647 // Some mangled names don't necessarily have an associated GlobalValue
5648 // in this module, e.g. if we mangled it for DebugInfo.
5649 if (Addr)
5650 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5651 }
5652}
5653
5654/// Emits metadata nodes for all the local variables in the current
5655/// function.
5656void CodeGenFunction::EmitDeclMetadata() {
5657 if (LocalDeclMap.empty()) return;
5658
5659 llvm::LLVMContext &Context = getLLVMContext();
5660
5661 // Find the unique metadata ID for this name.
5662 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5663
5664 llvm::NamedMDNode *GlobalMetadata = nullptr;
5665
5666 for (auto &I : LocalDeclMap) {
5667 const Decl *D = I.first;
5668 llvm::Value *Addr = I.second.getPointer();
5669 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5670 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5671 Alloca->setMetadata(
5672 DeclPtrKind, llvm::MDNode::get(
5673 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5674 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5675 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5676 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5677 }
5678 }
5679}
5680
5681void CodeGenModule::EmitVersionIdentMetadata() {
5682 llvm::NamedMDNode *IdentMetadata =
5683 TheModule.getOrInsertNamedMetadata("llvm.ident");
5684 std::string Version = getClangFullVersion();
5685 llvm::LLVMContext &Ctx = TheModule.getContext();
5686
5687 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5688 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5689}
5690
5691void CodeGenModule::EmitCommandLineMetadata() {
5692 llvm::NamedMDNode *CommandLineMetadata =
5693 TheModule.getOrInsertNamedMetadata("llvm.commandline");
5694 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5695 llvm::LLVMContext &Ctx = TheModule.getContext();
5696
5697 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5698 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5699}
5700
5701void CodeGenModule::EmitTargetMetadata() {
5702 // Warning, new MangledDeclNames may be appended within this loop.
5703 // We rely on MapVector insertions adding new elements to the end
5704 // of the container.
5705 // FIXME: Move this loop into the one target that needs it, and only
5706 // loop over those declarations for which we couldn't emit the target
5707 // metadata when we emitted the declaration.
5708 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5709 auto Val = *(MangledDeclNames.begin() + I);
5710 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5711 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5712 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5713 }
5714}
5715
5716void CodeGenModule::EmitCoverageFile() {
5717 if (getCodeGenOpts().CoverageDataFile.empty() &&
5718 getCodeGenOpts().CoverageNotesFile.empty())
5719 return;
5720
5721 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5722 if (!CUNode)
5723 return;
5724
5725 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5726 llvm::LLVMContext &Ctx = TheModule.getContext();
5727 auto *CoverageDataFile =
5728 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5729 auto *CoverageNotesFile =
5730 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5731 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5732 llvm::MDNode *CU = CUNode->getOperand(i);
5733 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5734 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5735 }
5736}
5737
5738llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5739 // Sema has checked that all uuid strings are of the form
5740 // "12345678-1234-1234-1234-1234567890ab".
5741 assert(Uuid.size() == 36)((Uuid.size() == 36) ? static_cast<void> (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5741, __PRETTY_FUNCTION__))
;
5742 for (unsigned i = 0; i < 36; ++i) {
5743 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')((Uuid[i] == '-') ? static_cast<void> (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5743, __PRETTY_FUNCTION__))
;
5744 else assert(isHexDigit(Uuid[i]))((isHexDigit(Uuid[i])) ? static_cast<void> (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5744, __PRETTY_FUNCTION__))
;
5745 }
5746
5747 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5748 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5749
5750 llvm::Constant *Field3[8];
5751 for (unsigned Idx = 0; Idx < 8; ++Idx)
5752 Field3[Idx] = llvm::ConstantInt::get(
5753 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5754
5755 llvm::Constant *Fields[4] = {
5756 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
5757 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
5758 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5759 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5760 };
5761
5762 return llvm::ConstantStruct::getAnon(Fields);
5763}
5764
5765llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5766 bool ForEH) {
5767 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5768 // FIXME: should we even be calling this method if RTTI is disabled
5769 // and it's not for EH?
5770 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5771 return llvm::Constant::getNullValue(Int8PtrTy);
5772
5773 if (ForEH && Ty->isObjCObjectPointerType() &&
5774 LangOpts.ObjCRuntime.isGNUFamily())
5775 return ObjCRuntime->GetEHType(Ty);
5776
5777 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5778}
5779
5780void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5781 // Do not emit threadprivates in simd-only mode.
5782 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5783 return;
5784 for (auto RefExpr : D->varlists()) {
5785 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5786 bool PerformInit =
5787 VD->getAnyInitializer() &&
5788 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5789 /*ForRef=*/false);
5790
5791 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5792 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5793 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5794 CXXGlobalInits.push_back(InitFunction);
5795 }
5796}
5797
5798llvm::Metadata *
5799CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5800 StringRef Suffix) {
5801 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5802 if (InternalId)
5803 return InternalId;
5804
5805 if (isExternallyVisible(T->getLinkage())) {
5806 std::string OutName;
5807 llvm::raw_string_ostream Out(OutName);
5808 getCXXABI().getMangleContext().mangleTypeName(T, Out);
5809 Out << Suffix;
5810
5811 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5812 } else {
5813 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5814 llvm::ArrayRef<llvm::Metadata *>());
5815 }
5816
5817 return InternalId;
5818}
5819
5820llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5821 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5822}
5823
5824llvm::Metadata *
5825CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5826 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5827}
5828
5829// Generalize pointer types to a void pointer with the qualifiers of the
5830// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5831// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5832// 'void *'.
5833static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5834 if (!Ty->isPointerType())
5835 return Ty;
5836
5837 return Ctx.getPointerType(
5838 QualType(Ctx.VoidTy).withCVRQualifiers(
5839 Ty->getPointeeType().getCVRQualifiers()));
5840}
5841
5842// Apply type generalization to a FunctionType's return and argument types
5843static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5844 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5845 SmallVector<QualType, 8> GeneralizedParams;
5846 for (auto &Param : FnType->param_types())
5847 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5848
5849 return Ctx.getFunctionType(
5850 GeneralizeType(Ctx, FnType->getReturnType()),
5851 GeneralizedParams, FnType->getExtProtoInfo());
5852 }
5853
5854 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5855 return Ctx.getFunctionNoProtoType(
5856 GeneralizeType(Ctx, FnType->getReturnType()));
5857
5858 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-10~++20200112100611+7fa5290d5bd/clang/lib/CodeGen/CodeGenModule.cpp"
, 5858)
;
5859}
5860
5861llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5862 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5863 GeneralizedMetadataIdMap, ".generalized");
5864}
5865
5866/// Returns whether this module needs the "all-vtables" type identifier.
5867bool CodeGenModule::NeedAllVtablesTypeId() const {
5868 // Returns true if at least one of vtable-based CFI checkers is enabled and
5869 // is not in the trapping mode.
5870 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5871 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5872 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5873 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5874 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5875 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5876 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5877 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5878}
5879
5880void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5881 CharUnits Offset,
5882 const CXXRecordDecl *RD) {
5883 llvm::Metadata *MD =
5884 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5885 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5886
5887 if (CodeGenOpts.SanitizeCfiCrossDso)
5888 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5889 VTable->addTypeMetadata(Offset.getQuantity(),
5890 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5891
5892 if (NeedAllVtablesTypeId()) {
5893 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5894 VTable->addTypeMetadata(Offset.getQuantity(), MD);
5895 }
5896}
5897
5898llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5899 if (!SanStats)
5900 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5901
5902 return *SanStats;
5903}
5904llvm::Value *
5905CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5906 CodeGenFunction &CGF) {
5907 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5908 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5909 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5910 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5911 "__translate_sampler_initializer"),
5912 {C});
5913}