Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 3382, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp

/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGObjCRuntime.h"
21#include "CGOpenCLRuntime.h"
22#include "CGOpenMPRuntime.h"
23#include "CGOpenMPRuntimeNVPTX.h"
24#include "CodeGenFunction.h"
25#include "CodeGenPGO.h"
26#include "ConstantEmitter.h"
27#include "CoverageMappingGen.h"
28#include "TargetInfo.h"
29#include "clang/AST/ASTContext.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/AST/DeclCXX.h"
32#include "clang/AST/DeclObjC.h"
33#include "clang/AST/DeclTemplate.h"
34#include "clang/AST/Mangle.h"
35#include "clang/AST/RecordLayout.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/Diagnostic.h"
40#include "clang/Basic/Module.h"
41#include "clang/Basic/SourceManager.h"
42#include "clang/Basic/TargetInfo.h"
43#include "clang/Basic/Version.h"
44#include "clang/CodeGen/ConstantInitBuilder.h"
45#include "clang/Frontend/CodeGenOptions.h"
46#include "clang/Sema/SemaDiagnostic.h"
47#include "llvm/ADT/Triple.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/IR/CallSite.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/ProfileData/InstrProfReader.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MD5.h"
59
60using namespace clang;
61using namespace CodeGen;
62
63static llvm::cl::opt<bool> LimitedCoverage(
64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66 llvm::cl::init(false));
67
68static const char AnnotationSection[] = "llvm.metadata";
69
70static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71 switch (CGM.getTarget().getCXXABI().getKind()) {
72 case TargetCXXABI::GenericAArch64:
73 case TargetCXXABI::GenericARM:
74 case TargetCXXABI::iOS:
75 case TargetCXXABI::iOS64:
76 case TargetCXXABI::WatchOS:
77 case TargetCXXABI::GenericMIPS:
78 case TargetCXXABI::GenericItanium:
79 case TargetCXXABI::WebAssembly:
80 return CreateItaniumCXXABI(CGM);
81 case TargetCXXABI::Microsoft:
82 return CreateMicrosoftCXXABI(CGM);
83 }
84
85 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 85)
;
86}
87
88CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89 const PreprocessorOptions &PPO,
90 const CodeGenOptions &CGO, llvm::Module &M,
91 DiagnosticsEngine &diags,
92 CoverageSourceInfo *CoverageInfo)
93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96 VMContext(M.getContext()), Types(*this), VTables(*this),
97 SanitizerMD(new SanitizerMetadata(*this)) {
98
99 // Initialize the type cache.
100 llvm::LLVMContext &LLVMContext = M.getContext();
101 VoidTy = llvm::Type::getVoidTy(LLVMContext);
102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106 HalfTy = llvm::Type::getHalfTy(LLVMContext);
107 FloatTy = llvm::Type::getFloatTy(LLVMContext);
108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110 PointerAlignInBytes =
111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112 SizeSizeInBytes =
113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114 IntAlignInBytes =
115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117 IntPtrTy = llvm::IntegerType::get(LLVMContext,
118 C.getTargetInfo().getMaxPointerWidth());
119 Int8PtrTy = Int8Ty->getPointerTo(0);
120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121 AllocaInt8PtrTy = Int8Ty->getPointerTo(
122 M.getDataLayout().getAllocaAddrSpace());
123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124
125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126
127 if (LangOpts.ObjC1)
128 createObjCRuntime();
129 if (LangOpts.OpenCL)
130 createOpenCLRuntime();
131 if (LangOpts.OpenMP)
132 createOpenMPRuntime();
133 if (LangOpts.CUDA)
134 createCUDARuntime();
135
136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140 getCXXABI().getMangleContext()));
141
142 // If debug info or coverage generation is enabled, create the CGDebugInfo
143 // object.
144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146 DebugInfo.reset(new CGDebugInfo(*this));
147
148 Block.GlobalUniqueCount = 0;
149
150 if (C.getLangOpts().ObjC1)
151 ObjCData.reset(new ObjCEntrypoints());
152
153 if (CodeGenOpts.hasProfileClangUse()) {
154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155 CodeGenOpts.ProfileInstrumentUsePath);
156 if (auto E = ReaderOrErr.takeError()) {
157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158 "Could not read profile %0: %1");
159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161 << EI.message();
162 });
163 } else
164 PGOReader = std::move(ReaderOrErr.get());
165 }
166
167 // If coverage mapping generation is enabled, create the
168 // CoverageMappingModuleGen object.
169 if (CodeGenOpts.CoverageMapping)
170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171}
172
173CodeGenModule::~CodeGenModule() {}
174
175void CodeGenModule::createObjCRuntime() {
176 // This is just isGNUFamily(), but we want to force implementors of
177 // new ABIs to decide how best to do this.
178 switch (LangOpts.ObjCRuntime.getKind()) {
179 case ObjCRuntime::GNUstep:
180 case ObjCRuntime::GCC:
181 case ObjCRuntime::ObjFW:
182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183 return;
184
185 case ObjCRuntime::FragileMacOSX:
186 case ObjCRuntime::MacOSX:
187 case ObjCRuntime::iOS:
188 case ObjCRuntime::WatchOS:
189 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190 return;
191 }
192 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 192)
;
193}
194
195void CodeGenModule::createOpenCLRuntime() {
196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197}
198
199void CodeGenModule::createOpenMPRuntime() {
200 // Select a specialized code generation class based on the target, if any.
201 // If it does not exist use the default implementation.
202 switch (getTriple().getArch()) {
203 case llvm::Triple::nvptx:
204 case llvm::Triple::nvptx64:
205 assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
206 "OpenMP NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
;
207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208 break;
209 default:
210 if (LangOpts.OpenMPSimd)
211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212 else
213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214 break;
215 }
216}
217
218void CodeGenModule::createCUDARuntime() {
219 CUDARuntime.reset(CreateNVCUDARuntime(*this));
220}
221
222void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223 Replacements[Name] = C;
224}
225
226void CodeGenModule::applyReplacements() {
227 for (auto &I : Replacements) {
228 StringRef MangledName = I.first();
229 llvm::Constant *Replacement = I.second;
230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231 if (!Entry)
232 continue;
233 auto *OldF = cast<llvm::Function>(Entry);
234 auto *NewF = dyn_cast<llvm::Function>(Replacement);
235 if (!NewF) {
236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238 } else {
239 auto *CE = cast<llvm::ConstantExpr>(Replacement);
240 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 241, __extension__ __PRETTY_FUNCTION__))
241 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243 }
244 }
245
246 // Replace old with new, but keep the old order.
247 OldF->replaceAllUsesWith(Replacement);
248 if (NewF) {
249 NewF->removeFromParent();
250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251 NewF);
252 }
253 OldF->eraseFromParent();
254 }
255}
256
257void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258 GlobalValReplacements.push_back(std::make_pair(GV, C));
259}
260
261void CodeGenModule::applyGlobalValReplacements() {
262 for (auto &I : GlobalValReplacements) {
263 llvm::GlobalValue *GV = I.first;
264 llvm::Constant *C = I.second;
265
266 GV->replaceAllUsesWith(C);
267 GV->eraseFromParent();
268 }
269}
270
271// This is only used in aliases that we created and we know they have a
272// linear structure.
273static const llvm::GlobalObject *getAliasedGlobal(
274 const llvm::GlobalIndirectSymbol &GIS) {
275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276 const llvm::Constant *C = &GIS;
277 for (;;) {
278 C = C->stripPointerCasts();
279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280 return GO;
281 // stripPointerCasts will not walk over weak aliases.
282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283 if (!GIS2)
284 return nullptr;
285 if (!Visited.insert(GIS2).second)
286 return nullptr;
287 C = GIS2->getIndirectSymbol();
288 }
289}
290
291void CodeGenModule::checkAliases() {
292 // Check if the constructed aliases are well formed. It is really unfortunate
293 // that we have to do this in CodeGen, but we only construct mangled names
294 // and aliases during codegen.
295 bool Error = false;
296 DiagnosticsEngine &Diags = getDiags();
297 for (const GlobalDecl &GD : Aliases) {
298 const auto *D = cast<ValueDecl>(GD.getDecl());
299 SourceLocation Location;
300 bool IsIFunc = D->hasAttr<IFuncAttr>();
301 if (const Attr *A = D->getDefiningAttr())
302 Location = A->getLocation();
303 else
304 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 304)
;
305 StringRef MangledName = getMangledName(GD);
306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309 if (!GV) {
310 Error = true;
311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312 } else if (GV->isDeclaration()) {
313 Error = true;
314 Diags.Report(Location, diag::err_alias_to_undefined)
315 << IsIFunc << IsIFunc;
316 } else if (IsIFunc) {
317 // Check resolver function type.
318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319 GV->getType()->getPointerElementType());
320 assert(FTy)(static_cast <bool> (FTy) ? void (0) : __assert_fail ("FTy"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 320, __extension__ __PRETTY_FUNCTION__))
;
321 if (!FTy->getReturnType()->isPointerTy())
322 Diags.Report(Location, diag::err_ifunc_resolver_return);
323 if (FTy->getNumParams())
324 Diags.Report(Location, diag::err_ifunc_resolver_params);
325 }
326
327 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328 llvm::GlobalValue *AliaseeGV;
329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331 else
332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333
334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335 StringRef AliasSection = SA->getName();
336 if (AliasSection != AliaseeGV->getSection())
337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338 << AliasSection << IsIFunc << IsIFunc;
339 }
340
341 // We have to handle alias to weak aliases in here. LLVM itself disallows
342 // this since the object semantics would not match the IL one. For
343 // compatibility with gcc we implement it by just pointing the alias
344 // to its aliasee's aliasee. We also warn, since the user is probably
345 // expecting the link to be weak.
346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347 if (GA->isInterposable()) {
348 Diags.Report(Location, diag::warn_alias_to_weak_alias)
349 << GV->getName() << GA->getName() << IsIFunc;
350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351 GA->getIndirectSymbol(), Alias->getType());
352 Alias->setIndirectSymbol(Aliasee);
353 }
354 }
355 }
356 if (!Error)
357 return;
358
359 for (const GlobalDecl &GD : Aliases) {
360 StringRef MangledName = getMangledName(GD);
361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364 Alias->eraseFromParent();
365 }
366}
367
368void CodeGenModule::clear() {
369 DeferredDeclsToEmit.clear();
370 if (OpenMPRuntime)
371 OpenMPRuntime->clear();
372}
373
374void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375 StringRef MainFile) {
376 if (!hasDiagnostics())
377 return;
378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379 if (MainFile.empty())
380 MainFile = "<stdin>";
381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382 } else {
383 if (Mismatched > 0)
384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385
386 if (Missing > 0)
387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388 }
389}
390
391void CodeGenModule::Release() {
392 EmitDeferred();
393 EmitVTablesOpportunistically();
394 applyGlobalValReplacements();
395 applyReplacements();
396 checkAliases();
397 emitMultiVersionFunctions();
398 EmitCXXGlobalInitFunc();
399 EmitCXXGlobalDtorFunc();
400 EmitCXXThreadLocalInitFunc();
401 if (ObjCRuntime)
402 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
403 AddGlobalCtor(ObjCInitFunction);
404 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
405 CUDARuntime) {
406 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
407 AddGlobalCtor(CudaCtorFunction);
408 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
409 AddGlobalDtor(CudaDtorFunction);
410 }
411 if (OpenMPRuntime) {
412 if (llvm::Function *OpenMPRegistrationFunction =
413 OpenMPRuntime->emitRegistrationFunction()) {
414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415 OpenMPRegistrationFunction : nullptr;
416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417 }
418 OpenMPRuntime->clear();
419 }
420 if (PGOReader) {
421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422 if (PGOStats.hasDiagnostics())
423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424 }
425 EmitCtorList(GlobalCtors, "llvm.global_ctors");
426 EmitCtorList(GlobalDtors, "llvm.global_dtors");
427 EmitGlobalAnnotations();
428 EmitStaticExternCAliases();
429 EmitDeferredUnusedCoverageMappings();
430 if (CoverageMapping)
431 CoverageMapping->emit();
432 if (CodeGenOpts.SanitizeCfiCrossDso) {
433 CodeGenFunction(*this).EmitCfiCheckFail();
434 CodeGenFunction(*this).EmitCfiCheckStub();
435 }
436 emitAtAvailableLinkGuard();
437 emitLLVMUsed();
438 if (SanStats)
439 SanStats->finish();
440
441 if (CodeGenOpts.Autolink &&
442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443 EmitModuleLinkOptions();
444 }
445
446 // Record mregparm value now so it is visible through rest of codegen.
447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449 CodeGenOpts.NumRegisterParameters);
450
451 if (CodeGenOpts.DwarfVersion) {
452 // We actually want the latest version when there are conflicts.
453 // We can change from Warning to Latest if such mode is supported.
454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455 CodeGenOpts.DwarfVersion);
456 }
457 if (CodeGenOpts.EmitCodeView) {
458 // Indicate that we want CodeView in the metadata.
459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460 }
461 if (CodeGenOpts.ControlFlowGuard) {
462 // We want function ID tables for Control Flow Guard.
463 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
464 }
465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
466 // We don't support LTO with 2 with different StrictVTablePointers
467 // FIXME: we could support it by stripping all the information introduced
468 // by StrictVTablePointers.
469
470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
471
472 llvm::Metadata *Ops[2] = {
473 llvm::MDString::get(VMContext, "StrictVTablePointers"),
474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
475 llvm::Type::getInt32Ty(VMContext), 1))};
476
477 getModule().addModuleFlag(llvm::Module::Require,
478 "StrictVTablePointersRequirement",
479 llvm::MDNode::get(VMContext, Ops));
480 }
481 if (DebugInfo)
482 // We support a single version in the linked module. The LLVM
483 // parser will drop debug info with a different version number
484 // (and warn about it, too).
485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
486 llvm::DEBUG_METADATA_VERSION);
487
488 // We need to record the widths of enums and wchar_t, so that we can generate
489 // the correct build attributes in the ARM backend. wchar_size is also used by
490 // TargetLibraryInfo.
491 uint64_t WCharWidth =
492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
494
495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
496 if ( Arch == llvm::Triple::arm
497 || Arch == llvm::Triple::armeb
498 || Arch == llvm::Triple::thumb
499 || Arch == llvm::Triple::thumbeb) {
500 // The minimum width of an enum in bytes
501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
503 }
504
505 if (CodeGenOpts.SanitizeCfiCrossDso) {
506 // Indicate that we want cross-DSO control flow integrity checks.
507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
508 }
509
510 if (CodeGenOpts.CFProtectionReturn &&
511 Target.checkCFProtectionReturnSupported(getDiags())) {
512 // Indicate that we want to instrument return control flow protection.
513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
514 1);
515 }
516
517 if (CodeGenOpts.CFProtectionBranch &&
518 Target.checkCFProtectionBranchSupported(getDiags())) {
519 // Indicate that we want to instrument branch control flow protection.
520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
521 1);
522 }
523
524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
525 // Indicate whether __nvvm_reflect should be configured to flush denormal
526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
527 // property.)
528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
529 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
530 }
531
532 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
533 if (LangOpts.OpenCL) {
534 EmitOpenCLMetadata();
535 // Emit SPIR version.
536 if (getTriple().getArch() == llvm::Triple::spir ||
537 getTriple().getArch() == llvm::Triple::spir64) {
538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
539 // opencl.spir.version named metadata.
540 llvm::Metadata *SPIRVerElts[] = {
541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
542 Int32Ty, LangOpts.OpenCLVersion / 100)),
543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
545 llvm::NamedMDNode *SPIRVerMD =
546 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
547 llvm::LLVMContext &Ctx = TheModule.getContext();
548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
549 }
550 }
551
552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
553 assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level"
) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 553, __extension__ __PRETTY_FUNCTION__))
;
554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
555 if (Context.getLangOpts().PIE)
556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
557 }
558
559 if (CodeGenOpts.NoPLT)
560 getModule().setRtLibUseGOT();
561
562 SimplifyPersonality();
563
564 if (getCodeGenOpts().EmitDeclMetadata)
565 EmitDeclMetadata();
566
567 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
568 EmitCoverageFile();
569
570 if (DebugInfo)
571 DebugInfo->finalize();
572
573 EmitVersionIdentMetadata();
574
575 EmitTargetMetadata();
576}
577
578void CodeGenModule::EmitOpenCLMetadata() {
579 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
580 // opencl.ocl.version named metadata node.
581 llvm::Metadata *OCLVerElts[] = {
582 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
583 Int32Ty, LangOpts.OpenCLVersion / 100)),
584 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
586 llvm::NamedMDNode *OCLVerMD =
587 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
588 llvm::LLVMContext &Ctx = TheModule.getContext();
589 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
590}
591
592void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
593 // Make sure that this type is translated.
594 Types.UpdateCompletedType(TD);
595}
596
597void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
598 // Make sure that this type is translated.
599 Types.RefreshTypeCacheForClass(RD);
600}
601
602llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
603 if (!TBAA)
604 return nullptr;
605 return TBAA->getTypeInfo(QTy);
606}
607
608TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
609 if (!TBAA)
610 return TBAAAccessInfo();
611 return TBAA->getAccessInfo(AccessType);
612}
613
614TBAAAccessInfo
615CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
616 if (!TBAA)
617 return TBAAAccessInfo();
618 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
619}
620
621llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
622 if (!TBAA)
623 return nullptr;
624 return TBAA->getTBAAStructInfo(QTy);
625}
626
627llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
628 if (!TBAA)
629 return nullptr;
630 return TBAA->getBaseTypeInfo(QTy);
631}
632
633llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
634 if (!TBAA)
635 return nullptr;
636 return TBAA->getAccessTagInfo(Info);
637}
638
639TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
640 TBAAAccessInfo TargetInfo) {
641 if (!TBAA)
642 return TBAAAccessInfo();
643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
644}
645
646TBAAAccessInfo
647CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
648 TBAAAccessInfo InfoB) {
649 if (!TBAA)
650 return TBAAAccessInfo();
651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
652}
653
654TBAAAccessInfo
655CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
656 TBAAAccessInfo SrcInfo) {
657 if (!TBAA)
658 return TBAAAccessInfo();
659 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
660}
661
662void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
663 TBAAAccessInfo TBAAInfo) {
664 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
665 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
666}
667
668void CodeGenModule::DecorateInstructionWithInvariantGroup(
669 llvm::Instruction *I, const CXXRecordDecl *RD) {
670 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
671 llvm::MDNode::get(getLLVMContext(), {}));
672}
673
674void CodeGenModule::Error(SourceLocation loc, StringRef message) {
675 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
676 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
677}
678
679/// ErrorUnsupported - Print out an error that codegen doesn't support the
680/// specified stmt yet.
681void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
682 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
683 "cannot compile this %0 yet");
684 std::string Msg = Type;
685 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
686 << Msg << S->getSourceRange();
687}
688
689/// ErrorUnsupported - Print out an error that codegen doesn't support the
690/// specified decl yet.
691void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
692 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
693 "cannot compile this %0 yet");
694 std::string Msg = Type;
695 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
696}
697
698llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
699 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
700}
701
702void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
703 const NamedDecl *D) const {
704 if (GV->hasDLLImportStorageClass())
705 return;
706 // Internal definitions always have default visibility.
707 if (GV->hasLocalLinkage()) {
708 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
709 return;
710 }
711 if (!D)
712 return;
713 // Set visibility for definitions.
714 LinkageInfo LV = D->getLinkageAndVisibility();
715 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
716 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
717}
718
719static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
720 llvm::GlobalValue *GV) {
721 if (GV->hasLocalLinkage())
722 return true;
723
724 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
725 return true;
726
727 // DLLImport explicitly marks the GV as external.
728 if (GV->hasDLLImportStorageClass())
729 return false;
730
731 const llvm::Triple &TT = CGM.getTriple();
732 // Every other GV is local on COFF.
733 // Make an exception for windows OS in the triple: Some firmware builds use
734 // *-win32-macho triples. This (accidentally?) produced windows relocations
735 // without GOT tables in older clang versions; Keep this behaviour.
736 // FIXME: even thread local variables?
737 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
738 return true;
739
740 // Only handle COFF and ELF for now.
741 if (!TT.isOSBinFormatELF())
742 return false;
743
744 // If this is not an executable, don't assume anything is local.
745 const auto &CGOpts = CGM.getCodeGenOpts();
746 llvm::Reloc::Model RM = CGOpts.RelocationModel;
747 const auto &LOpts = CGM.getLangOpts();
748 if (RM != llvm::Reloc::Static && !LOpts.PIE)
749 return false;
750
751 // A definition cannot be preempted from an executable.
752 if (!GV->isDeclarationForLinker())
753 return true;
754
755 // Most PIC code sequences that assume that a symbol is local cannot produce a
756 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
757 // depended, it seems worth it to handle it here.
758 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
759 return false;
760
761 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
762 llvm::Triple::ArchType Arch = TT.getArch();
763 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
764 Arch == llvm::Triple::ppc64le)
765 return false;
766
767 // If we can use copy relocations we can assume it is local.
768 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
769 if (!Var->isThreadLocal() &&
770 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
771 return true;
772
773 // If we can use a plt entry as the symbol address we can assume it
774 // is local.
775 // FIXME: This should work for PIE, but the gold linker doesn't support it.
776 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
777 return true;
778
779 // Otherwise don't assue it is local.
780 return false;
781}
782
783void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
784 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
785}
786
787void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
788 GlobalDecl GD) const {
789 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
790 // C++ destructors have a few C++ ABI specific special cases.
791 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
792 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
793 return;
794 }
795 setDLLImportDLLExport(GV, D);
796}
797
798void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
799 const NamedDecl *D) const {
800 if (D && D->isExternallyVisible()) {
801 if (D->hasAttr<DLLImportAttr>())
802 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
803 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
804 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
805 }
806}
807
808void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
809 GlobalDecl GD) const {
810 setDLLImportDLLExport(GV, GD);
811 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
812}
813
814void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
815 const NamedDecl *D) const {
816 setDLLImportDLLExport(GV, D);
817 setGlobalVisibilityAndLocal(GV, D);
818}
819
820void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
821 const NamedDecl *D) const {
822 setGlobalVisibility(GV, D);
823 setDSOLocal(GV);
824}
825
826static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
827 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
828 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
829 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
830 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
831 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
832}
833
834static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
835 CodeGenOptions::TLSModel M) {
836 switch (M) {
837 case CodeGenOptions::GeneralDynamicTLSModel:
838 return llvm::GlobalVariable::GeneralDynamicTLSModel;
839 case CodeGenOptions::LocalDynamicTLSModel:
840 return llvm::GlobalVariable::LocalDynamicTLSModel;
841 case CodeGenOptions::InitialExecTLSModel:
842 return llvm::GlobalVariable::InitialExecTLSModel;
843 case CodeGenOptions::LocalExecTLSModel:
844 return llvm::GlobalVariable::LocalExecTLSModel;
845 }
846 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 846)
;
847}
848
849void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
850 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 850, __extension__ __PRETTY_FUNCTION__))
;
851
852 llvm::GlobalValue::ThreadLocalMode TLM;
853 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
854
855 // Override the TLS model if it is explicitly specified.
856 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
857 TLM = GetLLVMTLSModel(Attr->getModel());
858 }
859
860 GV->setThreadLocalMode(TLM);
861}
862
863static void AppendTargetMangling(const CodeGenModule &CGM,
864 const TargetAttr *Attr, raw_ostream &Out) {
865 if (Attr->isDefaultVersion())
866 return;
867
868 Out << '.';
869 const auto &Target = CGM.getTarget();
870 TargetAttr::ParsedTargetAttr Info =
871 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
872 // Multiversioning doesn't allow "no-${feature}", so we can
873 // only have "+" prefixes here.
874 assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 875, __extension__ __PRETTY_FUNCTION__))
875 "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 875, __extension__ __PRETTY_FUNCTION__))
;
876 return Target.multiVersionSortPriority(LHS.substr(1)) >
877 Target.multiVersionSortPriority(RHS.substr(1));
878 });
879
880 bool IsFirst = true;
881
882 if (!Info.Architecture.empty()) {
883 IsFirst = false;
884 Out << "arch_" << Info.Architecture;
885 }
886
887 for (StringRef Feat : Info.Features) {
888 if (!IsFirst)
889 Out << '_';
890 IsFirst = false;
891 Out << Feat.substr(1);
892 }
893}
894
895static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
896 const NamedDecl *ND,
897 bool OmitTargetMangling = false) {
898 SmallString<256> Buffer;
899 llvm::raw_svector_ostream Out(Buffer);
900 MangleContext &MC = CGM.getCXXABI().getMangleContext();
901 if (MC.shouldMangleDeclName(ND)) {
902 llvm::raw_svector_ostream Out(Buffer);
903 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
904 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
905 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
906 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
907 else
908 MC.mangleName(ND, Out);
909 } else {
910 IdentifierInfo *II = ND->getIdentifier();
911 assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl."
) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 911, __extension__ __PRETTY_FUNCTION__))
;
912 const auto *FD = dyn_cast<FunctionDecl>(ND);
913
914 if (FD &&
915 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
916 llvm::raw_svector_ostream Out(Buffer);
917 Out << "__regcall3__" << II->getName();
918 } else {
919 Out << II->getName();
920 }
921 }
922
923 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
924 if (FD->isMultiVersion() && !OmitTargetMangling)
925 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
926 return Out.str();
927}
928
929void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
930 const FunctionDecl *FD) {
931 if (!FD->isMultiVersion())
932 return;
933
934 // Get the name of what this would be without the 'target' attribute. This
935 // allows us to lookup the version that was emitted when this wasn't a
936 // multiversion function.
937 std::string NonTargetName =
938 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
939 GlobalDecl OtherGD;
940 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
941 assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 945, __extension__ __PRETTY_FUNCTION__))
942 .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 945, __extension__ __PRETTY_FUNCTION__))
943 ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 945, __extension__ __PRETTY_FUNCTION__))
944 ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 945, __extension__ __PRETTY_FUNCTION__))
945 "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 945, __extension__ __PRETTY_FUNCTION__))
;
946 // OtherFD is the version of this function that was mangled BEFORE
947 // becoming a MultiVersion function. It potentially needs to be updated.
948 const FunctionDecl *OtherFD =
949 OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
950 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
951 // This is so that if the initial version was already the 'default'
952 // version, we don't try to update it.
953 if (OtherName != NonTargetName) {
954 // Remove instead of erase, since others may have stored the StringRef
955 // to this.
956 const auto ExistingRecord = Manglings.find(NonTargetName);
957 if (ExistingRecord != std::end(Manglings))
958 Manglings.remove(&(*ExistingRecord));
959 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
960 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
961 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
962 Entry->setName(OtherName);
963 }
964 }
965}
966
967StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
968 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
969
970 // Some ABIs don't have constructor variants. Make sure that base and
971 // complete constructors get mangled the same.
972 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
973 if (!getTarget().getCXXABI().hasConstructorVariants()) {
974 CXXCtorType OrigCtorType = GD.getCtorType();
975 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType
== Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 975, __extension__ __PRETTY_FUNCTION__))
;
976 if (OrigCtorType == Ctor_Base)
977 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
978 }
979 }
980
981 auto FoundName = MangledDeclNames.find(CanonicalGD);
982 if (FoundName != MangledDeclNames.end())
983 return FoundName->second;
984
985
986 // Keep the first result in the case of a mangling collision.
987 const auto *ND = cast<NamedDecl>(GD.getDecl());
988 auto Result =
989 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
990 return MangledDeclNames[CanonicalGD] = Result.first->first();
991}
992
993StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
994 const BlockDecl *BD) {
995 MangleContext &MangleCtx = getCXXABI().getMangleContext();
996 const Decl *D = GD.getDecl();
997
998 SmallString<256> Buffer;
999 llvm::raw_svector_ostream Out(Buffer);
1000 if (!D)
1001 MangleCtx.mangleGlobalBlock(BD,
1002 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1003 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1004 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1005 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1006 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1007 else
1008 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1009
1010 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1011 return Result.first->first();
1012}
1013
1014llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1015 return getModule().getNamedValue(Name);
1016}
1017
1018/// AddGlobalCtor - Add a function to the list that will be called before
1019/// main() runs.
1020void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1021 llvm::Constant *AssociatedData) {
1022 // FIXME: Type coercion of void()* types.
1023 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1024}
1025
1026/// AddGlobalDtor - Add a function to the list that will be called
1027/// when the module is unloaded.
1028void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1029 // FIXME: Type coercion of void()* types.
1030 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1031}
1032
1033void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1034 if (Fns.empty()) return;
1035
1036 // Ctor function type is void()*.
1037 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1038 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1039
1040 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1041 llvm::StructType *CtorStructTy = llvm::StructType::get(
1042 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1043
1044 // Construct the constructor and destructor arrays.
1045 ConstantInitBuilder builder(*this);
1046 auto ctors = builder.beginArray(CtorStructTy);
1047 for (const auto &I : Fns) {
1048 auto ctor = ctors.beginStruct(CtorStructTy);
1049 ctor.addInt(Int32Ty, I.Priority);
1050 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1051 if (I.AssociatedData)
1052 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1053 else
1054 ctor.addNullPointer(VoidPtrTy);
1055 ctor.finishAndAddTo(ctors);
1056 }
1057
1058 auto list =
1059 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1060 /*constant*/ false,
1061 llvm::GlobalValue::AppendingLinkage);
1062
1063 // The LTO linker doesn't seem to like it when we set an alignment
1064 // on appending variables. Take it off as a workaround.
1065 list->setAlignment(0);
1066
1067 Fns.clear();
1068}
1069
1070llvm::GlobalValue::LinkageTypes
1071CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1072 const auto *D = cast<FunctionDecl>(GD.getDecl());
1073
1074 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1075
1076 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1077 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1078
1079 if (isa<CXXConstructorDecl>(D) &&
1080 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1081 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1082 // Our approach to inheriting constructors is fundamentally different from
1083 // that used by the MS ABI, so keep our inheriting constructor thunks
1084 // internal rather than trying to pick an unambiguous mangling for them.
1085 return llvm::GlobalValue::InternalLinkage;
1086 }
1087
1088 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1089}
1090
1091llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1092 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1093 if (!MDS) return nullptr;
1094
1095 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1096}
1097
1098void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1099 const CGFunctionInfo &Info,
1100 llvm::Function *F) {
1101 unsigned CallingConv;
1102 llvm::AttributeList PAL;
1103 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1104 F->setAttributes(PAL);
1105 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1106}
1107
1108/// Determines whether the language options require us to model
1109/// unwind exceptions. We treat -fexceptions as mandating this
1110/// except under the fragile ObjC ABI with only ObjC exceptions
1111/// enabled. This means, for example, that C with -fexceptions
1112/// enables this.
1113static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1114 // If exceptions are completely disabled, obviously this is false.
1115 if (!LangOpts.Exceptions) return false;
1116
1117 // If C++ exceptions are enabled, this is true.
1118 if (LangOpts.CXXExceptions) return true;
1119
1120 // If ObjC exceptions are enabled, this depends on the ABI.
1121 if (LangOpts.ObjCExceptions) {
1122 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1123 }
1124
1125 return true;
1126}
1127
1128void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1129 llvm::Function *F) {
1130 llvm::AttrBuilder B;
1131
1132 if (CodeGenOpts.UnwindTables)
1133 B.addAttribute(llvm::Attribute::UWTable);
1134
1135 if (!hasUnwindExceptions(LangOpts))
1136 B.addAttribute(llvm::Attribute::NoUnwind);
1137
1138 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1139 B.addAttribute(llvm::Attribute::StackProtect);
1140 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1141 B.addAttribute(llvm::Attribute::StackProtectStrong);
1142 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1143 B.addAttribute(llvm::Attribute::StackProtectReq);
1144
1145 if (!D) {
1146 // If we don't have a declaration to control inlining, the function isn't
1147 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1148 // disabled, mark the function as noinline.
1149 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1150 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1151 B.addAttribute(llvm::Attribute::NoInline);
1152
1153 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1154 return;
1155 }
1156
1157 // Track whether we need to add the optnone LLVM attribute,
1158 // starting with the default for this optimization level.
1159 bool ShouldAddOptNone =
1160 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1161 // We can't add optnone in the following cases, it won't pass the verifier.
1162 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1163 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1164 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1165
1166 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1167 B.addAttribute(llvm::Attribute::OptimizeNone);
1168
1169 // OptimizeNone implies noinline; we should not be inlining such functions.
1170 B.addAttribute(llvm::Attribute::NoInline);
1171 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1172, __extension__ __PRETTY_FUNCTION__))
1172 "OptimizeNone and AlwaysInline on same function!")(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1172, __extension__ __PRETTY_FUNCTION__))
;
1173
1174 // We still need to handle naked functions even though optnone subsumes
1175 // much of their semantics.
1176 if (D->hasAttr<NakedAttr>())
1177 B.addAttribute(llvm::Attribute::Naked);
1178
1179 // OptimizeNone wins over OptimizeForSize and MinSize.
1180 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1181 F->removeFnAttr(llvm::Attribute::MinSize);
1182 } else if (D->hasAttr<NakedAttr>()) {
1183 // Naked implies noinline: we should not be inlining such functions.
1184 B.addAttribute(llvm::Attribute::Naked);
1185 B.addAttribute(llvm::Attribute::NoInline);
1186 } else if (D->hasAttr<NoDuplicateAttr>()) {
1187 B.addAttribute(llvm::Attribute::NoDuplicate);
1188 } else if (D->hasAttr<NoInlineAttr>()) {
1189 B.addAttribute(llvm::Attribute::NoInline);
1190 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1191 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1192 // (noinline wins over always_inline, and we can't specify both in IR)
1193 B.addAttribute(llvm::Attribute::AlwaysInline);
1194 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1195 // If we're not inlining, then force everything that isn't always_inline to
1196 // carry an explicit noinline attribute.
1197 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1198 B.addAttribute(llvm::Attribute::NoInline);
1199 } else {
1200 // Otherwise, propagate the inline hint attribute and potentially use its
1201 // absence to mark things as noinline.
1202 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1203 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1204 return Redecl->isInlineSpecified();
1205 })) {
1206 B.addAttribute(llvm::Attribute::InlineHint);
1207 } else if (CodeGenOpts.getInlining() ==
1208 CodeGenOptions::OnlyHintInlining &&
1209 !FD->isInlined() &&
1210 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1211 B.addAttribute(llvm::Attribute::NoInline);
1212 }
1213 }
1214 }
1215
1216 // Add other optimization related attributes if we are optimizing this
1217 // function.
1218 if (!D->hasAttr<OptimizeNoneAttr>()) {
1219 if (D->hasAttr<ColdAttr>()) {
1220 if (!ShouldAddOptNone)
1221 B.addAttribute(llvm::Attribute::OptimizeForSize);
1222 B.addAttribute(llvm::Attribute::Cold);
1223 }
1224
1225 if (D->hasAttr<MinSizeAttr>())
1226 B.addAttribute(llvm::Attribute::MinSize);
1227 }
1228
1229 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1230
1231 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1232 if (alignment)
1233 F->setAlignment(alignment);
1234
1235 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1236 // reserve a bit for differentiating between virtual and non-virtual member
1237 // functions. If the current target's C++ ABI requires this and this is a
1238 // member function, set its alignment accordingly.
1239 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1240 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1241 F->setAlignment(2);
1242 }
1243
1244 // In the cross-dso CFI mode, we want !type attributes on definitions only.
1245 if (CodeGenOpts.SanitizeCfiCrossDso)
1246 if (auto *FD = dyn_cast<FunctionDecl>(D))
1247 CreateFunctionTypeMetadata(FD, F);
1248}
1249
1250void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1251 const Decl *D = GD.getDecl();
1252 if (dyn_cast_or_null<NamedDecl>(D))
1253 setGVProperties(GV, GD);
1254 else
1255 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1256
1257 if (D && D->hasAttr<UsedAttr>())
1258 addUsedGlobal(GV);
1259}
1260
1261bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1262 llvm::AttrBuilder &Attrs) {
1263 // Add target-cpu and target-features attributes to functions. If
1264 // we have a decl for the function and it has a target attribute then
1265 // parse that and add it to the feature set.
1266 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1267 std::vector<std::string> Features;
1268 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1269 FD = FD ? FD->getMostRecentDecl() : FD;
1270 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1271 bool AddedAttr = false;
1272 if (TD) {
1273 llvm::StringMap<bool> FeatureMap;
1274 getFunctionFeatureMap(FeatureMap, FD);
1275
1276 // Produce the canonical string for this set of features.
1277 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1278 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1279
1280 // Now add the target-cpu and target-features to the function.
1281 // While we populated the feature map above, we still need to
1282 // get and parse the target attribute so we can get the cpu for
1283 // the function.
1284 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1285 if (ParsedAttr.Architecture != "" &&
1286 getTarget().isValidCPUName(ParsedAttr.Architecture))
1287 TargetCPU = ParsedAttr.Architecture;
1288 } else {
1289 // Otherwise just add the existing target cpu and target features to the
1290 // function.
1291 Features = getTarget().getTargetOpts().Features;
1292 }
1293
1294 if (TargetCPU != "") {
1295 Attrs.addAttribute("target-cpu", TargetCPU);
1296 AddedAttr = true;
1297 }
1298 if (!Features.empty()) {
1299 llvm::sort(Features.begin(), Features.end());
1300 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1301 AddedAttr = true;
1302 }
1303
1304 return AddedAttr;
1305}
1306
1307void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1308 llvm::GlobalObject *GO) {
1309 const Decl *D = GD.getDecl();
1310 SetCommonAttributes(GD, GO);
1311
1312 if (D) {
1313 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1314 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1315 GV->addAttribute("bss-section", SA->getName());
1316 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1317 GV->addAttribute("data-section", SA->getName());
1318 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1319 GV->addAttribute("rodata-section", SA->getName());
1320 }
1321
1322 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1323 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1324 if (!D->getAttr<SectionAttr>())
1325 F->addFnAttr("implicit-section-name", SA->getName());
1326
1327 llvm::AttrBuilder Attrs;
1328 if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1329 // We know that GetCPUAndFeaturesAttributes will always have the
1330 // newest set, since it has the newest possible FunctionDecl, so the
1331 // new ones should replace the old.
1332 F->removeFnAttr("target-cpu");
1333 F->removeFnAttr("target-features");
1334 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1335 }
1336 }
1337
1338 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1339 GO->setSection(SA->getName());
1340 }
1341
1342 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1343}
1344
1345void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1346 llvm::Function *F,
1347 const CGFunctionInfo &FI) {
1348 const Decl *D = GD.getDecl();
1349 SetLLVMFunctionAttributes(D, FI, F);
1350 SetLLVMFunctionAttributesForDefinition(D, F);
1351
1352 F->setLinkage(llvm::Function::InternalLinkage);
1353
1354 setNonAliasAttributes(GD, F);
1355}
1356
1357static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1358 // Set linkage and visibility in case we never see a definition.
1359 LinkageInfo LV = ND->getLinkageAndVisibility();
1360 // Don't set internal linkage on declarations.
1361 // "extern_weak" is overloaded in LLVM; we probably should have
1362 // separate linkage types for this.
1363 if (isExternallyVisible(LV.getLinkage()) &&
1364 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1365 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1366}
1367
1368void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1369 llvm::Function *F) {
1370 // Only if we are checking indirect calls.
1371 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1372 return;
1373
1374 // Non-static class methods are handled via vtable pointer checks elsewhere.
1375 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1376 return;
1377
1378 // Additionally, if building with cross-DSO support...
1379 if (CodeGenOpts.SanitizeCfiCrossDso) {
1380 // Skip available_externally functions. They won't be codegen'ed in the
1381 // current module anyway.
1382 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1383 return;
1384 }
1385
1386 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1387 F->addTypeMetadata(0, MD);
1388 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1389
1390 // Emit a hash-based bit set entry for cross-DSO calls.
1391 if (CodeGenOpts.SanitizeCfiCrossDso)
1392 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1393 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1394}
1395
1396void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1397 bool IsIncompleteFunction,
1398 bool IsThunk) {
1399
1400 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1401 // If this is an intrinsic function, set the function's attributes
1402 // to the intrinsic's attributes.
1403 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1404 return;
1405 }
1406
1407 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1408
1409 if (!IsIncompleteFunction) {
1410 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1411 // Setup target-specific attributes.
1412 if (F->isDeclaration())
1413 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1414 }
1415
1416 // Add the Returned attribute for "this", except for iOS 5 and earlier
1417 // where substantial code, including the libstdc++ dylib, was compiled with
1418 // GCC and does not actually return "this".
1419 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1420 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1421 assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
1422 F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
1423 ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
1424 "unexpected this return")(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1424, __extension__ __PRETTY_FUNCTION__))
;
1425 F->addAttribute(1, llvm::Attribute::Returned);
1426 }
1427
1428 // Only a few attributes are set on declarations; these may later be
1429 // overridden by a definition.
1430
1431 setLinkageForGV(F, FD);
1432 setGVProperties(F, FD);
1433
1434 if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1435 F->addFnAttr("implicit-section-name");
1436 }
1437
1438 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1439 F->setSection(SA->getName());
1440
1441 if (FD->isReplaceableGlobalAllocationFunction()) {
1442 // A replaceable global allocation function does not act like a builtin by
1443 // default, only if it is invoked by a new-expression or delete-expression.
1444 F->addAttribute(llvm::AttributeList::FunctionIndex,
1445 llvm::Attribute::NoBuiltin);
1446
1447 // A sane operator new returns a non-aliasing pointer.
1448 // FIXME: Also add NonNull attribute to the return value
1449 // for the non-nothrow forms?
1450 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1451 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1452 (Kind == OO_New || Kind == OO_Array_New))
1453 F->addAttribute(llvm::AttributeList::ReturnIndex,
1454 llvm::Attribute::NoAlias);
1455 }
1456
1457 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1458 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1459 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1460 if (MD->isVirtual())
1461 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1462
1463 // Don't emit entries for function declarations in the cross-DSO mode. This
1464 // is handled with better precision by the receiving DSO.
1465 if (!CodeGenOpts.SanitizeCfiCrossDso)
1466 CreateFunctionTypeMetadata(FD, F);
1467
1468 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1469 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1470}
1471
1472void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1473 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1474, __extension__ __PRETTY_FUNCTION__))
1474 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1474, __extension__ __PRETTY_FUNCTION__))
;
1475 LLVMUsed.emplace_back(GV);
1476}
1477
1478void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1479 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
1480 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
;
1481 LLVMCompilerUsed.emplace_back(GV);
1482}
1483
1484static void emitUsed(CodeGenModule &CGM, StringRef Name,
1485 std::vector<llvm::WeakTrackingVH> &List) {
1486 // Don't create llvm.used if there is no need.
1487 if (List.empty())
1488 return;
1489
1490 // Convert List to what ConstantArray needs.
1491 SmallVector<llvm::Constant*, 8> UsedArray;
1492 UsedArray.resize(List.size());
1493 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1494 UsedArray[i] =
1495 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1496 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1497 }
1498
1499 if (UsedArray.empty())
1500 return;
1501 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1502
1503 auto *GV = new llvm::GlobalVariable(
1504 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1505 llvm::ConstantArray::get(ATy, UsedArray), Name);
1506
1507 GV->setSection("llvm.metadata");
1508}
1509
1510void CodeGenModule::emitLLVMUsed() {
1511 emitUsed(*this, "llvm.used", LLVMUsed);
1512 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1513}
1514
1515void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1516 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1517 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1518}
1519
1520void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1521 llvm::SmallString<32> Opt;
1522 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1523 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1524 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1525}
1526
1527void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1528 auto &C = getLLVMContext();
1529 LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1530 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1531}
1532
1533void CodeGenModule::AddDependentLib(StringRef Lib) {
1534 llvm::SmallString<24> Opt;
1535 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1536 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1537 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1538}
1539
1540/// \brief Add link options implied by the given module, including modules
1541/// it depends on, using a postorder walk.
1542static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1543 SmallVectorImpl<llvm::MDNode *> &Metadata,
1544 llvm::SmallPtrSet<Module *, 16> &Visited) {
1545 // Import this module's parent.
1546 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1547 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1548 }
1549
1550 // Import this module's dependencies.
1551 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1552 if (Visited.insert(Mod->Imports[I - 1]).second)
1553 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1554 }
1555
1556 // Add linker options to link against the libraries/frameworks
1557 // described by this module.
1558 llvm::LLVMContext &Context = CGM.getLLVMContext();
1559 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1560 // Link against a framework. Frameworks are currently Darwin only, so we
1561 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1562 if (Mod->LinkLibraries[I-1].IsFramework) {
1563 llvm::Metadata *Args[2] = {
1564 llvm::MDString::get(Context, "-framework"),
1565 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1566
1567 Metadata.push_back(llvm::MDNode::get(Context, Args));
1568 continue;
1569 }
1570
1571 // Link against a library.
1572 llvm::SmallString<24> Opt;
1573 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1574 Mod->LinkLibraries[I-1].Library, Opt);
1575 auto *OptString = llvm::MDString::get(Context, Opt);
1576 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1577 }
1578}
1579
1580void CodeGenModule::EmitModuleLinkOptions() {
1581 // Collect the set of all of the modules we want to visit to emit link
1582 // options, which is essentially the imported modules and all of their
1583 // non-explicit child modules.
1584 llvm::SetVector<clang::Module *> LinkModules;
1585 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1586 SmallVector<clang::Module *, 16> Stack;
1587
1588 // Seed the stack with imported modules.
1589 for (Module *M : ImportedModules) {
1590 // Do not add any link flags when an implementation TU of a module imports
1591 // a header of that same module.
1592 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1593 !getLangOpts().isCompilingModule())
1594 continue;
1595 if (Visited.insert(M).second)
1596 Stack.push_back(M);
1597 }
1598
1599 // Find all of the modules to import, making a little effort to prune
1600 // non-leaf modules.
1601 while (!Stack.empty()) {
1602 clang::Module *Mod = Stack.pop_back_val();
1603
1604 bool AnyChildren = false;
1605
1606 // Visit the submodules of this module.
1607 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1608 SubEnd = Mod->submodule_end();
1609 Sub != SubEnd; ++Sub) {
1610 // Skip explicit children; they need to be explicitly imported to be
1611 // linked against.
1612 if ((*Sub)->IsExplicit)
1613 continue;
1614
1615 if (Visited.insert(*Sub).second) {
1616 Stack.push_back(*Sub);
1617 AnyChildren = true;
1618 }
1619 }
1620
1621 // We didn't find any children, so add this module to the list of
1622 // modules to link against.
1623 if (!AnyChildren) {
1624 LinkModules.insert(Mod);
1625 }
1626 }
1627
1628 // Add link options for all of the imported modules in reverse topological
1629 // order. We don't do anything to try to order import link flags with respect
1630 // to linker options inserted by things like #pragma comment().
1631 SmallVector<llvm::MDNode *, 16> MetadataArgs;
1632 Visited.clear();
1633 for (Module *M : LinkModules)
1634 if (Visited.insert(M).second)
1635 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1636 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1637 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1638
1639 // Add the linker options metadata flag.
1640 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1641 for (auto *MD : LinkerOptionsMetadata)
1642 NMD->addOperand(MD);
1643}
1644
1645void CodeGenModule::EmitDeferred() {
1646 // Emit code for any potentially referenced deferred decls. Since a
1647 // previously unused static decl may become used during the generation of code
1648 // for a static function, iterate until no changes are made.
1649
1650 if (!DeferredVTables.empty()) {
1651 EmitDeferredVTables();
1652
1653 // Emitting a vtable doesn't directly cause more vtables to
1654 // become deferred, although it can cause functions to be
1655 // emitted that then need those vtables.
1656 assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0
) : __assert_fail ("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1656, __extension__ __PRETTY_FUNCTION__))
;
1657 }
1658
1659 // Stop if we're out of both deferred vtables and deferred declarations.
1660 if (DeferredDeclsToEmit.empty())
1661 return;
1662
1663 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1664 // work, it will not interfere with this.
1665 std::vector<GlobalDecl> CurDeclsToEmit;
1666 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1667
1668 for (GlobalDecl &D : CurDeclsToEmit) {
1669 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1670 // to get GlobalValue with exactly the type we need, not something that
1671 // might had been created for another decl with the same mangled name but
1672 // different type.
1673 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1674 GetAddrOfGlobal(D, ForDefinition));
1675
1676 // In case of different address spaces, we may still get a cast, even with
1677 // IsForDefinition equal to true. Query mangled names table to get
1678 // GlobalValue.
1679 if (!GV)
1680 GV = GetGlobalValue(getMangledName(D));
1681
1682 // Make sure GetGlobalValue returned non-null.
1683 assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1683, __extension__ __PRETTY_FUNCTION__))
;
1684
1685 // Check to see if we've already emitted this. This is necessary
1686 // for a couple of reasons: first, decls can end up in the
1687 // deferred-decls queue multiple times, and second, decls can end
1688 // up with definitions in unusual ways (e.g. by an extern inline
1689 // function acquiring a strong function redefinition). Just
1690 // ignore these cases.
1691 if (!GV->isDeclaration())
1692 continue;
1693
1694 // Otherwise, emit the definition and move on to the next one.
1695 EmitGlobalDefinition(D, GV);
1696
1697 // If we found out that we need to emit more decls, do that recursively.
1698 // This has the advantage that the decls are emitted in a DFS and related
1699 // ones are close together, which is convenient for testing.
1700 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1701 EmitDeferred();
1702 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() &&
DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1702, __extension__ __PRETTY_FUNCTION__))
;
1703 }
1704 }
1705}
1706
1707void CodeGenModule::EmitVTablesOpportunistically() {
1708 // Try to emit external vtables as available_externally if they have emitted
1709 // all inlined virtual functions. It runs after EmitDeferred() and therefore
1710 // is not allowed to create new references to things that need to be emitted
1711 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1712
1713 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1714, __extension__ __PRETTY_FUNCTION__))
1714 && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1714, __extension__ __PRETTY_FUNCTION__))
;
1715
1716 for (const CXXRecordDecl *RD : OpportunisticVTables) {
1717 assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1718, __extension__ __PRETTY_FUNCTION__))
1718 "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1718, __extension__ __PRETTY_FUNCTION__))
;
1719 if (getCXXABI().canSpeculativelyEmitVTable(RD))
1720 VTables.GenerateClassData(RD);
1721 }
1722 OpportunisticVTables.clear();
1723}
1724
1725void CodeGenModule::EmitGlobalAnnotations() {
1726 if (Annotations.empty())
1727 return;
1728
1729 // Create a new global variable for the ConstantStruct in the Module.
1730 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1731 Annotations[0]->getType(), Annotations.size()), Annotations);
1732 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1733 llvm::GlobalValue::AppendingLinkage,
1734 Array, "llvm.global.annotations");
1735 gv->setSection(AnnotationSection);
1736}
1737
1738llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1739 llvm::Constant *&AStr = AnnotationStrings[Str];
1740 if (AStr)
1741 return AStr;
1742
1743 // Not found yet, create a new global.
1744 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1745 auto *gv =
1746 new llvm::GlobalVariable(getModule(), s->getType(), true,
1747 llvm::GlobalValue::PrivateLinkage, s, ".str");
1748 gv->setSection(AnnotationSection);
1749 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1750 AStr = gv;
1751 return gv;
1752}
1753
1754llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1755 SourceManager &SM = getContext().getSourceManager();
1756 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1757 if (PLoc.isValid())
1758 return EmitAnnotationString(PLoc.getFilename());
1759 return EmitAnnotationString(SM.getBufferName(Loc));
1760}
1761
1762llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1763 SourceManager &SM = getContext().getSourceManager();
1764 PresumedLoc PLoc = SM.getPresumedLoc(L);
1765 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1766 SM.getExpansionLineNumber(L);
1767 return llvm::ConstantInt::get(Int32Ty, LineNo);
1768}
1769
1770llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1771 const AnnotateAttr *AA,
1772 SourceLocation L) {
1773 // Get the globals for file name, annotation, and the line number.
1774 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1775 *UnitGV = EmitAnnotationUnit(L),
1776 *LineNoCst = EmitAnnotationLineNo(L);
1777
1778 // Create the ConstantStruct for the global annotation.
1779 llvm::Constant *Fields[4] = {
1780 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1781 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1782 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1783 LineNoCst
1784 };
1785 return llvm::ConstantStruct::getAnon(Fields);
1786}
1787
1788void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1789 llvm::GlobalValue *GV) {
1790 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>(
) && "no annotate attribute") ? void (0) : __assert_fail
("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1790, __extension__ __PRETTY_FUNCTION__))
;
1791 // Get the struct elements for these annotations.
1792 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1793 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1794}
1795
1796bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1797 llvm::Function *Fn,
1798 SourceLocation Loc) const {
1799 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1800 // Blacklist by function name.
1801 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1802 return true;
1803 // Blacklist by location.
1804 if (Loc.isValid())
1805 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1806 // If location is unknown, this may be a compiler-generated function. Assume
1807 // it's located in the main file.
1808 auto &SM = Context.getSourceManager();
1809 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1810 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1811 }
1812 return false;
1813}
1814
1815bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1816 SourceLocation Loc, QualType Ty,
1817 StringRef Category) const {
1818 // For now globals can be blacklisted only in ASan and KASan.
1819 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1820 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1821 if (!EnabledAsanMask)
1822 return false;
1823 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1824 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1825 return true;
1826 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1827 return true;
1828 // Check global type.
1829 if (!Ty.isNull()) {
1830 // Drill down the array types: if global variable of a fixed type is
1831 // blacklisted, we also don't instrument arrays of them.
1832 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1833 Ty = AT->getElementType();
1834 Ty = Ty.getCanonicalType().getUnqualifiedType();
1835 // We allow to blacklist only record types (classes, structs etc.)
1836 if (Ty->isRecordType()) {
1837 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1838 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1839 return true;
1840 }
1841 }
1842 return false;
1843}
1844
1845bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1846 StringRef Category) const {
1847 if (!LangOpts.XRayInstrument)
1848 return false;
1849 const auto &XRayFilter = getContext().getXRayFilter();
1850 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1851 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1852 if (Loc.isValid())
1853 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1854 if (Attr == ImbueAttr::NONE)
1855 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1856 switch (Attr) {
1857 case ImbueAttr::NONE:
1858 return false;
1859 case ImbueAttr::ALWAYS:
1860 Fn->addFnAttr("function-instrument", "xray-always");
1861 break;
1862 case ImbueAttr::ALWAYS_ARG1:
1863 Fn->addFnAttr("function-instrument", "xray-always");
1864 Fn->addFnAttr("xray-log-args", "1");
1865 break;
1866 case ImbueAttr::NEVER:
1867 Fn->addFnAttr("function-instrument", "xray-never");
1868 break;
1869 }
1870 return true;
1871}
1872
1873bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1874 // Never defer when EmitAllDecls is specified.
1875 if (LangOpts.EmitAllDecls)
1876 return true;
1877
1878 return getContext().DeclMustBeEmitted(Global);
1879}
1880
1881bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1882 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1883 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1884 // Implicit template instantiations may change linkage if they are later
1885 // explicitly instantiated, so they should not be emitted eagerly.
1886 return false;
1887 if (const auto *VD = dyn_cast<VarDecl>(Global))
1888 if (Context.getInlineVariableDefinitionKind(VD) ==
1889 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1890 // A definition of an inline constexpr static data member may change
1891 // linkage later if it's redeclared outside the class.
1892 return false;
1893 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1894 // codegen for global variables, because they may be marked as threadprivate.
1895 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1896 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1897 return false;
1898
1899 return true;
1900}
1901
1902ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1903 const CXXUuidofExpr* E) {
1904 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1905 // well-formed.
1906 StringRef Uuid = E->getUuidStr();
1907 std::string Name = "_GUID_" + Uuid.lower();
1908 std::replace(Name.begin(), Name.end(), '-', '_');
1909
1910 // The UUID descriptor should be pointer aligned.
1911 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1912
1913 // Look for an existing global.
1914 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1915 return ConstantAddress(GV, Alignment);
1916
1917 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1918 assert(Init && "failed to initialize as constant")(static_cast <bool> (Init && "failed to initialize as constant"
) ? void (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1918, __extension__ __PRETTY_FUNCTION__))
;
1919
1920 auto *GV = new llvm::GlobalVariable(
1921 getModule(), Init->getType(),
1922 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1923 if (supportsCOMDAT())
1924 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1925 setDSOLocal(GV);
1926 return ConstantAddress(GV, Alignment);
1927}
1928
1929ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1930 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1931 assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void (
0) : __assert_fail ("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1931, __extension__ __PRETTY_FUNCTION__))
;
1932
1933 CharUnits Alignment = getContext().getDeclAlign(VD);
1934 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1935
1936 // See if there is already something with the target's name in the module.
1937 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1938 if (Entry) {
1939 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1940 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1941 return ConstantAddress(Ptr, Alignment);
1942 }
1943
1944 llvm::Constant *Aliasee;
1945 if (isa<llvm::FunctionType>(DeclTy))
1946 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1947 GlobalDecl(cast<FunctionDecl>(VD)),
1948 /*ForVTable=*/false);
1949 else
1950 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1951 llvm::PointerType::getUnqual(DeclTy),
1952 nullptr);
1953
1954 auto *F = cast<llvm::GlobalValue>(Aliasee);
1955 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1956 WeakRefReferences.insert(F);
1957
1958 return ConstantAddress(Aliasee, Alignment);
1959}
1960
1961void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1962 const auto *Global = cast<ValueDecl>(GD.getDecl());
1963
1964 // Weak references don't produce any output by themselves.
1965 if (Global->hasAttr<WeakRefAttr>())
1966 return;
1967
1968 // If this is an alias definition (which otherwise looks like a declaration)
1969 // emit it now.
1970 if (Global->hasAttr<AliasAttr>())
1971 return EmitAliasDefinition(GD);
1972
1973 // IFunc like an alias whose value is resolved at runtime by calling resolver.
1974 if (Global->hasAttr<IFuncAttr>())
1975 return emitIFuncDefinition(GD);
1976
1977 // If this is CUDA, be selective about which declarations we emit.
1978 if (LangOpts.CUDA) {
1979 if (LangOpts.CUDAIsDevice) {
1980 if (!Global->hasAttr<CUDADeviceAttr>() &&
1981 !Global->hasAttr<CUDAGlobalAttr>() &&
1982 !Global->hasAttr<CUDAConstantAttr>() &&
1983 !Global->hasAttr<CUDASharedAttr>())
1984 return;
1985 } else {
1986 // We need to emit host-side 'shadows' for all global
1987 // device-side variables because the CUDA runtime needs their
1988 // size and host-side address in order to provide access to
1989 // their device-side incarnations.
1990
1991 // So device-only functions are the only things we skip.
1992 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1993 Global->hasAttr<CUDADeviceAttr>())
1994 return;
1995
1996 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1997, __extension__ __PRETTY_FUNCTION__))
1997 "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1997, __extension__ __PRETTY_FUNCTION__))
;
1998 }
1999 }
2000
2001 if (LangOpts.OpenMP) {
2002 // If this is OpenMP device, check if it is legal to emit this global
2003 // normally.
2004 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2005 return;
2006 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2007 if (MustBeEmitted(Global))
2008 EmitOMPDeclareReduction(DRD);
2009 return;
2010 }
2011 }
2012
2013 // Ignore declarations, they will be emitted on their first use.
2014 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2015 // Forward declarations are emitted lazily on first use.
2016 if (!FD->doesThisDeclarationHaveABody()) {
2017 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2018 return;
2019
2020 StringRef MangledName = getMangledName(GD);
2021
2022 // Compute the function info and LLVM type.
2023 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2024 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2025
2026 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2027 /*DontDefer=*/false);
2028 return;
2029 }
2030 } else {
2031 const auto *VD = cast<VarDecl>(Global);
2032 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2032, __extension__ __PRETTY_FUNCTION__))
;
2033 // We need to emit device-side global CUDA variables even if a
2034 // variable does not have a definition -- we still need to define
2035 // host-side shadow for it.
2036 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2037 !VD->hasDefinition() &&
2038 (VD->hasAttr<CUDAConstantAttr>() ||
2039 VD->hasAttr<CUDADeviceAttr>());
2040 if (!MustEmitForCuda &&
2041 VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2042 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2043 // If this declaration may have caused an inline variable definition to
2044 // change linkage, make sure that it's emitted.
2045 if (Context.getInlineVariableDefinitionKind(VD) ==
2046 ASTContext::InlineVariableDefinitionKind::Strong)
2047 GetAddrOfGlobalVar(VD);
2048 return;
2049 }
2050 }
2051
2052 // Defer code generation to first use when possible, e.g. if this is an inline
2053 // function. If the global must always be emitted, do it eagerly if possible
2054 // to benefit from cache locality.
2055 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2056 // Emit the definition if it can't be deferred.
2057 EmitGlobalDefinition(GD);
2058 return;
2059 }
2060
2061 // If we're deferring emission of a C++ variable with an
2062 // initializer, remember the order in which it appeared in the file.
2063 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2064 cast<VarDecl>(Global)->hasInit()) {
2065 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2066 CXXGlobalInits.push_back(nullptr);
2067 }
2068
2069 StringRef MangledName = getMangledName(GD);
2070 if (GetGlobalValue(MangledName) != nullptr) {
2071 // The value has already been used and should therefore be emitted.
2072 addDeferredDeclToEmit(GD);
2073 } else if (MustBeEmitted(Global)) {
2074 // The value must be emitted, but cannot be emitted eagerly.
2075 assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void
(0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2075, __extension__ __PRETTY_FUNCTION__))
;
2076 addDeferredDeclToEmit(GD);
2077 } else {
2078 // Otherwise, remember that we saw a deferred decl with this name. The
2079 // first use of the mangled name will cause it to move into
2080 // DeferredDeclsToEmit.
2081 DeferredDecls[MangledName] = GD;
2082 }
2083}
2084
2085// Check if T is a class type with a destructor that's not dllimport.
2086static bool HasNonDllImportDtor(QualType T) {
2087 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2088 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2089 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2090 return true;
2091
2092 return false;
2093}
2094
2095namespace {
2096 struct FunctionIsDirectlyRecursive :
2097 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2098 const StringRef Name;
2099 const Builtin::Context &BI;
2100 bool Result;
2101 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2102 Name(N), BI(C), Result(false) {
2103 }
2104 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2105
2106 bool TraverseCallExpr(CallExpr *E) {
2107 const FunctionDecl *FD = E->getDirectCallee();
2108 if (!FD)
2109 return true;
2110 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2111 if (Attr && Name == Attr->getLabel()) {
2112 Result = true;
2113 return false;
2114 }
2115 unsigned BuiltinID = FD->getBuiltinID();
2116 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2117 return true;
2118 StringRef BuiltinName = BI.getName(BuiltinID);
2119 if (BuiltinName.startswith("__builtin_") &&
2120 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2121 Result = true;
2122 return false;
2123 }
2124 return true;
2125 }
2126 };
2127
2128 // Make sure we're not referencing non-imported vars or functions.
2129 struct DLLImportFunctionVisitor
2130 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2131 bool SafeToInline = true;
2132
2133 bool shouldVisitImplicitCode() const { return true; }
2134
2135 bool VisitVarDecl(VarDecl *VD) {
2136 if (VD->getTLSKind()) {
2137 // A thread-local variable cannot be imported.
2138 SafeToInline = false;
2139 return SafeToInline;
2140 }
2141
2142 // A variable definition might imply a destructor call.
2143 if (VD->isThisDeclarationADefinition())
2144 SafeToInline = !HasNonDllImportDtor(VD->getType());
2145
2146 return SafeToInline;
2147 }
2148
2149 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2150 if (const auto *D = E->getTemporary()->getDestructor())
2151 SafeToInline = D->hasAttr<DLLImportAttr>();
2152 return SafeToInline;
2153 }
2154
2155 bool VisitDeclRefExpr(DeclRefExpr *E) {
2156 ValueDecl *VD = E->getDecl();
2157 if (isa<FunctionDecl>(VD))
2158 SafeToInline = VD->hasAttr<DLLImportAttr>();
2159 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2160 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2161 return SafeToInline;
2162 }
2163
2164 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2165 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2166 return SafeToInline;
2167 }
2168
2169 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2170 CXXMethodDecl *M = E->getMethodDecl();
2171 if (!M) {
2172 // Call through a pointer to member function. This is safe to inline.
2173 SafeToInline = true;
2174 } else {
2175 SafeToInline = M->hasAttr<DLLImportAttr>();
2176 }
2177 return SafeToInline;
2178 }
2179
2180 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2181 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2182 return SafeToInline;
2183 }
2184
2185 bool VisitCXXNewExpr(CXXNewExpr *E) {
2186 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2187 return SafeToInline;
2188 }
2189 };
2190}
2191
2192// isTriviallyRecursive - Check if this function calls another
2193// decl that, because of the asm attribute or the other decl being a builtin,
2194// ends up pointing to itself.
2195bool
2196CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2197 StringRef Name;
2198 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2199 // asm labels are a special kind of mangling we have to support.
2200 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2201 if (!Attr)
2202 return false;
2203 Name = Attr->getLabel();
2204 } else {
2205 Name = FD->getName();
2206 }
2207
2208 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2209 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2210 return Walker.Result;
2211}
2212
2213bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2214 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2215 return true;
2216 const auto *F = cast<FunctionDecl>(GD.getDecl());
2217 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2218 return false;
2219
2220 if (F->hasAttr<DLLImportAttr>()) {
2221 // Check whether it would be safe to inline this dllimport function.
2222 DLLImportFunctionVisitor Visitor;
2223 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2224 if (!Visitor.SafeToInline)
2225 return false;
2226
2227 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2228 // Implicit destructor invocations aren't captured in the AST, so the
2229 // check above can't see them. Check for them manually here.
2230 for (const Decl *Member : Dtor->getParent()->decls())
2231 if (isa<FieldDecl>(Member))
2232 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2233 return false;
2234 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2235 if (HasNonDllImportDtor(B.getType()))
2236 return false;
2237 }
2238 }
2239
2240 // PR9614. Avoid cases where the source code is lying to us. An available
2241 // externally function should have an equivalent function somewhere else,
2242 // but a function that calls itself is clearly not equivalent to the real
2243 // implementation.
2244 // This happens in glibc's btowc and in some configure checks.
2245 return !isTriviallyRecursive(F);
2246}
2247
2248bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2249 return CodeGenOpts.OptimizationLevel > 0;
2250}
2251
2252void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2253 const auto *D = cast<ValueDecl>(GD.getDecl());
2254
2255 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2256 Context.getSourceManager(),
2257 "Generating code for declaration");
2258
2259 if (isa<FunctionDecl>(D)) {
2260 // At -O0, don't generate IR for functions with available_externally
2261 // linkage.
2262 if (!shouldEmitFunction(GD))
2263 return;
2264
2265 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2266 // Make sure to emit the definition(s) before we emit the thunks.
2267 // This is necessary for the generation of certain thunks.
2268 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2269 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2270 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2271 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2272 else
2273 EmitGlobalFunctionDefinition(GD, GV);
2274
2275 if (Method->isVirtual())
2276 getVTables().EmitThunks(GD);
2277
2278 return;
2279 }
2280
2281 return EmitGlobalFunctionDefinition(GD, GV);
2282 }
2283
2284 if (const auto *VD = dyn_cast<VarDecl>(D))
2285 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2286
2287 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2287)
;
2288}
2289
2290static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2291 llvm::Function *NewFn);
2292
2293void CodeGenModule::emitMultiVersionFunctions() {
2294 for (GlobalDecl GD : MultiVersionFuncs) {
2295 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2296 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2297 getContext().forEachMultiversionedFunctionVersion(
2298 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2299 GlobalDecl CurGD{
2300 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2301 StringRef MangledName = getMangledName(CurGD);
2302 llvm::Constant *Func = GetGlobalValue(MangledName);
2303 if (!Func) {
2304 if (CurFD->isDefined()) {
2305 EmitGlobalFunctionDefinition(CurGD, nullptr);
2306 Func = GetGlobalValue(MangledName);
2307 } else {
2308 const CGFunctionInfo &FI =
2309 getTypes().arrangeGlobalDeclaration(GD);
2310 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2311 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2312 /*DontDefer=*/false, ForDefinition);
2313 }
2314 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2314, __extension__ __PRETTY_FUNCTION__))
;
2315 }
2316 Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2317 CurFD->getAttr<TargetAttr>()->parse());
2318 });
2319
2320 llvm::Function *ResolverFunc = cast<llvm::Function>(
2321 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2322 if (supportsCOMDAT())
2323 ResolverFunc->setComdat(
2324 getModule().getOrInsertComdat(ResolverFunc->getName()));
2325 std::stable_sort(
2326 Options.begin(), Options.end(),
2327 std::greater<CodeGenFunction::MultiVersionResolverOption>());
2328 CodeGenFunction CGF(*this);
2329 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2330 }
2331}
2332
2333/// If an ifunc for the specified mangled name is not in the module, create and
2334/// return an llvm IFunc Function with the specified type.
2335llvm::Constant *
2336CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2337 StringRef MangledName,
2338 const FunctionDecl *FD) {
2339 std::string IFuncName = (MangledName + ".ifunc").str();
2340 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2341 return IFuncGV;
2342
2343 // Since this is the first time we've created this IFunc, make sure
2344 // that we put this multiversioned function into the list to be
2345 // replaced later.
2346 MultiVersionFuncs.push_back(GD);
2347
2348 std::string ResolverName = (MangledName + ".resolver").str();
2349 llvm::Type *ResolverType = llvm::FunctionType::get(
2350 llvm::PointerType::get(DeclTy,
2351 Context.getTargetAddressSpace(FD->getType())),
2352 false);
2353 llvm::Constant *Resolver =
2354 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2355 /*ForVTable=*/false);
2356 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2357 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2358 GIF->setName(IFuncName);
2359 SetCommonAttributes(FD, GIF);
2360
2361 return GIF;
2362}
2363
2364/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2365/// module, create and return an llvm Function with the specified type. If there
2366/// is something in the module with the specified name, return it potentially
2367/// bitcasted to the right type.
2368///
2369/// If D is non-null, it specifies a decl that correspond to this. This is used
2370/// to set the attributes on the function when it is first created.
2371llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2372 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2373 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2374 ForDefinition_t IsForDefinition) {
2375 const Decl *D = GD.getDecl();
2376
2377 // Any attempts to use a MultiVersion function should result in retrieving
2378 // the iFunc instead. Name Mangling will handle the rest of the changes.
2379 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2380 // For the device mark the function as one that should be emitted.
2381 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2382 !OpenMPRuntime->markAsGlobalTarget(FD) && FD->isDefined() &&
2383 !DontDefer && !IsForDefinition)
2384 addDeferredDeclToEmit(GD);
2385
2386 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2387 UpdateMultiVersionNames(GD, FD);
2388 if (!IsForDefinition)
2389 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2390 }
2391 }
2392
2393 // Lookup the entry, lazily creating it if necessary.
2394 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2395 if (Entry) {
2396 if (WeakRefReferences.erase(Entry)) {
2397 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2398 if (FD && !FD->hasAttr<WeakAttr>())
2399 Entry->setLinkage(llvm::Function::ExternalLinkage);
2400 }
2401
2402 // Handle dropped DLL attributes.
2403 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2404 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2405 setDSOLocal(Entry);
2406 }
2407
2408 // If there are two attempts to define the same mangled name, issue an
2409 // error.
2410 if (IsForDefinition && !Entry->isDeclaration()) {
2411 GlobalDecl OtherGD;
2412 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2413 // to make sure that we issue an error only once.
2414 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2415 (GD.getCanonicalDecl().getDecl() !=
2416 OtherGD.getCanonicalDecl().getDecl()) &&
2417 DiagnosedConflictingDefinitions.insert(GD).second) {
2418 getDiags().Report(D->getLocation(),
2419 diag::err_duplicate_mangled_name);
2420 getDiags().Report(OtherGD.getDecl()->getLocation(),
2421 diag::note_previous_definition);
2422 }
2423 }
2424
2425 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2426 (Entry->getType()->getElementType() == Ty)) {
2427 return Entry;
2428 }
2429
2430 // Make sure the result is of the correct type.
2431 // (If function is requested for a definition, we always need to create a new
2432 // function, not just return a bitcast.)
2433 if (!IsForDefinition)
2434 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2435 }
2436
2437 // This function doesn't have a complete type (for example, the return
2438 // type is an incomplete struct). Use a fake type instead, and make
2439 // sure not to try to set attributes.
2440 bool IsIncompleteFunction = false;
2441
2442 llvm::FunctionType *FTy;
2443 if (isa<llvm::FunctionType>(Ty)) {
2444 FTy = cast<llvm::FunctionType>(Ty);
2445 } else {
2446 FTy = llvm::FunctionType::get(VoidTy, false);
2447 IsIncompleteFunction = true;
2448 }
2449
2450 llvm::Function *F =
2451 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2452 Entry ? StringRef() : MangledName, &getModule());
2453
2454 // If we already created a function with the same mangled name (but different
2455 // type) before, take its name and add it to the list of functions to be
2456 // replaced with F at the end of CodeGen.
2457 //
2458 // This happens if there is a prototype for a function (e.g. "int f()") and
2459 // then a definition of a different type (e.g. "int f(int x)").
2460 if (Entry) {
2461 F->takeName(Entry);
2462
2463 // This might be an implementation of a function without a prototype, in
2464 // which case, try to do special replacement of calls which match the new
2465 // prototype. The really key thing here is that we also potentially drop
2466 // arguments from the call site so as to make a direct call, which makes the
2467 // inliner happier and suppresses a number of optimizer warnings (!) about
2468 // dropping arguments.
2469 if (!Entry->use_empty()) {
2470 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2471 Entry->removeDeadConstantUsers();
2472 }
2473
2474 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2475 F, Entry->getType()->getElementType()->getPointerTo());
2476 addGlobalValReplacement(Entry, BC);
2477 }
2478
2479 assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName &&
"name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2479, __extension__ __PRETTY_FUNCTION__))
;
2480 if (D)
2481 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2482 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2483 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2484 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2485 }
2486
2487 if (!DontDefer) {
2488 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2489 // each other bottoming out with the base dtor. Therefore we emit non-base
2490 // dtors on usage, even if there is no dtor definition in the TU.
2491 if (D && isa<CXXDestructorDecl>(D) &&
2492 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2493 GD.getDtorType()))
2494 addDeferredDeclToEmit(GD);
2495
2496 // This is the first use or definition of a mangled name. If there is a
2497 // deferred decl with this name, remember that we need to emit it at the end
2498 // of the file.
2499 auto DDI = DeferredDecls.find(MangledName);
2500 if (DDI != DeferredDecls.end()) {
2501 // Move the potentially referenced deferred decl to the
2502 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2503 // don't need it anymore).
2504 addDeferredDeclToEmit(DDI->second);
2505 DeferredDecls.erase(DDI);
2506
2507 // Otherwise, there are cases we have to worry about where we're
2508 // using a declaration for which we must emit a definition but where
2509 // we might not find a top-level definition:
2510 // - member functions defined inline in their classes
2511 // - friend functions defined inline in some class
2512 // - special member functions with implicit definitions
2513 // If we ever change our AST traversal to walk into class methods,
2514 // this will be unnecessary.
2515 //
2516 // We also don't emit a definition for a function if it's going to be an
2517 // entry in a vtable, unless it's already marked as used.
2518 } else if (getLangOpts().CPlusPlus && D) {
2519 // Look for a declaration that's lexically in a record.
2520 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2521 FD = FD->getPreviousDecl()) {
2522 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2523 if (FD->doesThisDeclarationHaveABody()) {
2524 addDeferredDeclToEmit(GD.getWithDecl(FD));
2525 break;
2526 }
2527 }
2528 }
2529 }
2530 }
2531
2532 // Make sure the result is of the requested type.
2533 if (!IsIncompleteFunction) {
2534 assert(F->getType()->getElementType() == Ty)(static_cast <bool> (F->getType()->getElementType
() == Ty) ? void (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2534, __extension__ __PRETTY_FUNCTION__))
;
2535 return F;
2536 }
2537
2538 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2539 return llvm::ConstantExpr::getBitCast(F, PTy);
2540}
2541
2542/// GetAddrOfFunction - Return the address of the given function. If Ty is
2543/// non-null, then this function will use the specified type if it has to
2544/// create it (this occurs when we see a definition of the function).
2545llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2546 llvm::Type *Ty,
2547 bool ForVTable,
2548 bool DontDefer,
2549 ForDefinition_t IsForDefinition) {
2550 // If there was no specific requested type, just convert it now.
2551 if (!Ty) {
2552 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2553 auto CanonTy = Context.getCanonicalType(FD->getType());
2554 Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2555 }
2556
2557 // Devirtualized destructor calls may come through here instead of via
2558 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2559 // of the complete destructor when necessary.
2560 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2561 if (getTarget().getCXXABI().isMicrosoft() &&
2562 GD.getDtorType() == Dtor_Complete &&
2563 DD->getParent()->getNumVBases() == 0)
2564 GD = GlobalDecl(DD, Dtor_Base);
2565 }
2566
2567 StringRef MangledName = getMangledName(GD);
2568 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2569 /*IsThunk=*/false, llvm::AttributeList(),
2570 IsForDefinition);
2571}
2572
2573static const FunctionDecl *
2574GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2575 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2576 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2577
2578 IdentifierInfo &CII = C.Idents.get(Name);
2579 for (const auto &Result : DC->lookup(&CII))
2580 if (const auto FD = dyn_cast<FunctionDecl>(Result))
2581 return FD;
2582
2583 if (!C.getLangOpts().CPlusPlus)
2584 return nullptr;
2585
2586 // Demangle the premangled name from getTerminateFn()
2587 IdentifierInfo &CXXII =
2588 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2589 ? C.Idents.get("terminate")
2590 : C.Idents.get(Name);
2591
2592 for (const auto &N : {"__cxxabiv1", "std"}) {
2593 IdentifierInfo &NS = C.Idents.get(N);
2594 for (const auto &Result : DC->lookup(&NS)) {
2595 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2596 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2597 for (const auto &Result : LSD->lookup(&NS))
2598 if ((ND = dyn_cast<NamespaceDecl>(Result)))
2599 break;
2600
2601 if (ND)
2602 for (const auto &Result : ND->lookup(&CXXII))
2603 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2604 return FD;
2605 }
2606 }
2607
2608 return nullptr;
2609}
2610
2611/// CreateRuntimeFunction - Create a new runtime function with the specified
2612/// type and name.
2613llvm::Constant *
2614CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2615 llvm::AttributeList ExtraAttrs,
2616 bool Local) {
2617 llvm::Constant *C =
2618 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2619 /*DontDefer=*/false, /*IsThunk=*/false,
2620 ExtraAttrs);
2621
2622 if (auto *F = dyn_cast<llvm::Function>(C)) {
2623 if (F->empty()) {
2624 F->setCallingConv(getRuntimeCC());
2625
2626 if (!Local && getTriple().isOSBinFormatCOFF() &&
2627 !getCodeGenOpts().LTOVisibilityPublicStd &&
2628 !getTriple().isWindowsGNUEnvironment()) {
2629 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2630 if (!FD || FD->hasAttr<DLLImportAttr>()) {
2631 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2632 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2633 }
2634 }
2635 setDSOLocal(F);
2636 }
2637 }
2638
2639 return C;
2640}
2641
2642/// CreateBuiltinFunction - Create a new builtin function with the specified
2643/// type and name.
2644llvm::Constant *
2645CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2646 llvm::AttributeList ExtraAttrs) {
2647 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2648}
2649
2650/// isTypeConstant - Determine whether an object of this type can be emitted
2651/// as a constant.
2652///
2653/// If ExcludeCtor is true, the duration when the object's constructor runs
2654/// will not be considered. The caller will need to verify that the object is
2655/// not written to during its construction.
2656bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2657 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2658 return false;
2659
2660 if (Context.getLangOpts().CPlusPlus) {
2661 if (const CXXRecordDecl *Record
2662 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2663 return ExcludeCtor && !Record->hasMutableFields() &&
2664 Record->hasTrivialDestructor();
2665 }
2666
2667 return true;
2668}
2669
2670/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2671/// create and return an llvm GlobalVariable with the specified type. If there
2672/// is something in the module with the specified name, return it potentially
2673/// bitcasted to the right type.
2674///
2675/// If D is non-null, it specifies a decl that correspond to this. This is used
2676/// to set the attributes on the global when it is first created.
2677///
2678/// If IsForDefinition is true, it is guaranteed that an actual global with
2679/// type Ty will be returned, not conversion of a variable with the same
2680/// mangled name but some other type.
2681llvm::Constant *
2682CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2683 llvm::PointerType *Ty,
2684 const VarDecl *D,
2685 ForDefinition_t IsForDefinition) {
2686 // Lookup the entry, lazily creating it if necessary.
2687 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2688 if (Entry) {
2689 if (WeakRefReferences.erase(Entry)) {
2690 if (D && !D->hasAttr<WeakAttr>())
2691 Entry->setLinkage(llvm::Function::ExternalLinkage);
2692 }
2693
2694 // Handle dropped DLL attributes.
2695 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2696 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2697
2698 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2699 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2700
2701 if (Entry->getType() == Ty)
2702 return Entry;
2703
2704 // If there are two attempts to define the same mangled name, issue an
2705 // error.
2706 if (IsForDefinition && !Entry->isDeclaration()) {
2707 GlobalDecl OtherGD;
2708 const VarDecl *OtherD;
2709
2710 // Check that D is not yet in DiagnosedConflictingDefinitions is required
2711 // to make sure that we issue an error only once.
2712 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2713 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2714 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2715 OtherD->hasInit() &&
2716 DiagnosedConflictingDefinitions.insert(D).second) {
2717 getDiags().Report(D->getLocation(),
2718 diag::err_duplicate_mangled_name);
2719 getDiags().Report(OtherGD.getDecl()->getLocation(),
2720 diag::note_previous_definition);
2721 }
2722 }
2723
2724 // Make sure the result is of the correct type.
2725 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2726 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2727
2728 // (If global is requested for a definition, we always need to create a new
2729 // global, not just return a bitcast.)
2730 if (!IsForDefinition)
2731 return llvm::ConstantExpr::getBitCast(Entry, Ty);
2732 }
2733
2734 auto AddrSpace = GetGlobalVarAddressSpace(D);
2735 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2736
2737 auto *GV = new llvm::GlobalVariable(
2738 getModule(), Ty->getElementType(), false,
2739 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2740 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2741
2742 // If we already created a global with the same mangled name (but different
2743 // type) before, take its name and remove it from its parent.
2744 if (Entry) {
2745 GV->takeName(Entry);
2746
2747 if (!Entry->use_empty()) {
2748 llvm::Constant *NewPtrForOldDecl =
2749 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2750 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2751 }
2752
2753 Entry->eraseFromParent();
2754 }
2755
2756 // This is the first use or definition of a mangled name. If there is a
2757 // deferred decl with this name, remember that we need to emit it at the end
2758 // of the file.
2759 auto DDI = DeferredDecls.find(MangledName);
2760 if (DDI != DeferredDecls.end()) {
2761 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2762 // list, and remove it from DeferredDecls (since we don't need it anymore).
2763 addDeferredDeclToEmit(DDI->second);
2764 DeferredDecls.erase(DDI);
2765 }
2766
2767 // Handle things which are present even on external declarations.
2768 if (D) {
2769 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2770 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2771
2772 // FIXME: This code is overly simple and should be merged with other global
2773 // handling.
2774 GV->setConstant(isTypeConstant(D->getType(), false));
2775
2776 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2777
2778 setLinkageForGV(GV, D);
2779
2780 if (D->getTLSKind()) {
2781 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2782 CXXThreadLocals.push_back(D);
2783 setTLSMode(GV, *D);
2784 }
2785
2786 setGVProperties(GV, D);
2787
2788 // If required by the ABI, treat declarations of static data members with
2789 // inline initializers as definitions.
2790 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2791 EmitGlobalVarDefinition(D);
2792 }
2793
2794 // Emit section information for extern variables.
2795 if (D->hasExternalStorage()) {
2796 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2797 GV->setSection(SA->getName());
2798 }
2799
2800 // Handle XCore specific ABI requirements.
2801 if (getTriple().getArch() == llvm::Triple::xcore &&
2802 D->getLanguageLinkage() == CLanguageLinkage &&
2803 D->getType().isConstant(Context) &&
2804 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2805 GV->setSection(".cp.rodata");
2806
2807 // Check if we a have a const declaration with an initializer, we may be
2808 // able to emit it as available_externally to expose it's value to the
2809 // optimizer.
2810 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2811 D->getType().isConstQualified() && !GV->hasInitializer() &&
2812 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2813 const auto *Record =
2814 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2815 bool HasMutableFields = Record && Record->hasMutableFields();
2816 if (!HasMutableFields) {
2817 const VarDecl *InitDecl;
2818 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2819 if (InitExpr) {
2820 ConstantEmitter emitter(*this);
2821 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2822 if (Init) {
2823 auto *InitType = Init->getType();
2824 if (GV->getType()->getElementType() != InitType) {
2825 // The type of the initializer does not match the definition.
2826 // This happens when an initializer has a different type from
2827 // the type of the global (because of padding at the end of a
2828 // structure for instance).
2829 GV->setName(StringRef());
2830 // Make a new global with the correct type, this is now guaranteed
2831 // to work.
2832 auto *NewGV = cast<llvm::GlobalVariable>(
2833 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2834
2835 // Erase the old global, since it is no longer used.
2836 GV->eraseFromParent();
2837 GV = NewGV;
2838 } else {
2839 GV->setInitializer(Init);
2840 GV->setConstant(true);
2841 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2842 }
2843 emitter.finalize(GV);
2844 }
2845 }
2846 }
2847 }
2848 }
2849
2850 LangAS ExpectedAS =
2851 D ? D->getType().getAddressSpace()
2852 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2853 assert(getContext().getTargetAddressSpace(ExpectedAS) ==(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2854, __extension__ __PRETTY_FUNCTION__))
2854 Ty->getPointerAddressSpace())(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2854, __extension__ __PRETTY_FUNCTION__))
;
2855 if (AddrSpace != ExpectedAS)
2856 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2857 ExpectedAS, Ty);
2858
2859 return GV;
2860}
2861
2862llvm::Constant *
2863CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2864 ForDefinition_t IsForDefinition) {
2865 const Decl *D = GD.getDecl();
2866 if (isa<CXXConstructorDecl>(D))
2867 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2868 getFromCtorType(GD.getCtorType()),
2869 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2870 /*DontDefer=*/false, IsForDefinition);
2871 else if (isa<CXXDestructorDecl>(D))
2872 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2873 getFromDtorType(GD.getDtorType()),
2874 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2875 /*DontDefer=*/false, IsForDefinition);
2876 else if (isa<CXXMethodDecl>(D)) {
2877 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2878 cast<CXXMethodDecl>(D));
2879 auto Ty = getTypes().GetFunctionType(*FInfo);
2880 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2881 IsForDefinition);
2882 } else if (isa<FunctionDecl>(D)) {
2883 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2884 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2885 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2886 IsForDefinition);
2887 } else
2888 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2889 IsForDefinition);
2890}
2891
2892llvm::GlobalVariable *
2893CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2894 llvm::Type *Ty,
2895 llvm::GlobalValue::LinkageTypes Linkage) {
2896 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2897 llvm::GlobalVariable *OldGV = nullptr;
2898
2899 if (GV) {
2900 // Check if the variable has the right type.
2901 if (GV->getType()->getElementType() == Ty)
2902 return GV;
2903
2904 // Because C++ name mangling, the only way we can end up with an already
2905 // existing global with the same name is if it has been declared extern "C".
2906 assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!"
) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2906, __extension__ __PRETTY_FUNCTION__))
;
2907 OldGV = GV;
2908 }
2909
2910 // Create a new variable.
2911 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2912 Linkage, nullptr, Name);
2913
2914 if (OldGV) {
2915 // Replace occurrences of the old variable if needed.
2916 GV->takeName(OldGV);
2917
2918 if (!OldGV->use_empty()) {
2919 llvm::Constant *NewPtrForOldDecl =
2920 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2921 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2922 }
2923
2924 OldGV->eraseFromParent();
2925 }
2926
2927 if (supportsCOMDAT() && GV->isWeakForLinker() &&
2928 !GV->hasAvailableExternallyLinkage())
2929 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2930
2931 return GV;
2932}
2933
2934/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2935/// given global variable. If Ty is non-null and if the global doesn't exist,
2936/// then it will be created with the specified type instead of whatever the
2937/// normal requested type would be. If IsForDefinition is true, it is guaranteed
2938/// that an actual global with type Ty will be returned, not conversion of a
2939/// variable with the same mangled name but some other type.
2940llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2941 llvm::Type *Ty,
2942 ForDefinition_t IsForDefinition) {
2943 assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() &&
"Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2943, __extension__ __PRETTY_FUNCTION__))
;
2944 QualType ASTTy = D->getType();
2945 if (!Ty)
2946 Ty = getTypes().ConvertTypeForMem(ASTTy);
2947
2948 llvm::PointerType *PTy =
2949 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2950
2951 StringRef MangledName = getMangledName(D);
2952 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2953}
2954
2955/// CreateRuntimeVariable - Create a new runtime global variable with the
2956/// specified type and name.
2957llvm::Constant *
2958CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2959 StringRef Name) {
2960 auto *Ret =
2961 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2962 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
2963 return Ret;
2964}
2965
2966void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2967 assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!"
) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2967, __extension__ __PRETTY_FUNCTION__))
;
2968
2969 StringRef MangledName = getMangledName(D);
2970 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2971
2972 // We already have a definition, not declaration, with the same mangled name.
2973 // Emitting of declaration is not required (and actually overwrites emitted
2974 // definition).
2975 if (GV && !GV->isDeclaration())
2976 return;
2977
2978 // If we have not seen a reference to this variable yet, place it into the
2979 // deferred declarations table to be emitted if needed later.
2980 if (!MustBeEmitted(D) && !GV) {
2981 DeferredDecls[MangledName] = D;
2982 return;
2983 }
2984
2985 // The tentative definition is the only definition.
2986 EmitGlobalVarDefinition(D);
2987}
2988
2989CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2990 return Context.toCharUnitsFromBits(
2991 getDataLayout().getTypeStoreSizeInBits(Ty));
2992}
2993
2994LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2995 LangAS AddrSpace = LangAS::Default;
2996 if (LangOpts.OpenCL) {
2997 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2998 assert(AddrSpace == LangAS::opencl_global ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3001, __extension__ __PRETTY_FUNCTION__))
2999 AddrSpace == LangAS::opencl_constant ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3001, __extension__ __PRETTY_FUNCTION__))
3000 AddrSpace == LangAS::opencl_local ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3001, __extension__ __PRETTY_FUNCTION__))
3001 AddrSpace >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3001, __extension__ __PRETTY_FUNCTION__))
;
3002 return AddrSpace;
3003 }
3004
3005 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3006 if (D && D->hasAttr<CUDAConstantAttr>())
3007 return LangAS::cuda_constant;
3008 else if (D && D->hasAttr<CUDASharedAttr>())
3009 return LangAS::cuda_shared;
3010 else
3011 return LangAS::cuda_device;
3012 }
3013
3014 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3015}
3016
3017template<typename SomeDecl>
3018void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3019 llvm::GlobalValue *GV) {
3020 if (!getLangOpts().CPlusPlus)
3021 return;
3022
3023 // Must have 'used' attribute, or else inline assembly can't rely on
3024 // the name existing.
3025 if (!D->template hasAttr<UsedAttr>())
3026 return;
3027
3028 // Must have internal linkage and an ordinary name.
3029 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3030 return;
3031
3032 // Must be in an extern "C" context. Entities declared directly within
3033 // a record are not extern "C" even if the record is in such a context.
3034 const SomeDecl *First = D->getFirstDecl();
3035 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3036 return;
3037
3038 // OK, this is an internal linkage entity inside an extern "C" linkage
3039 // specification. Make a note of that so we can give it the "expected"
3040 // mangled name if nothing else is using that name.
3041 std::pair<StaticExternCMap::iterator, bool> R =
3042 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3043
3044 // If we have multiple internal linkage entities with the same name
3045 // in extern "C" regions, none of them gets that name.
3046 if (!R.second)
3047 R.first->second = nullptr;
3048}
3049
3050static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3051 if (!CGM.supportsCOMDAT())
3052 return false;
3053
3054 if (D.hasAttr<SelectAnyAttr>())
3055 return true;
3056
3057 GVALinkage Linkage;
3058 if (auto *VD = dyn_cast<VarDecl>(&D))
3059 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3060 else
3061 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3062
3063 switch (Linkage) {
3064 case GVA_Internal:
3065 case GVA_AvailableExternally:
3066 case GVA_StrongExternal:
3067 return false;
3068 case GVA_DiscardableODR:
3069 case GVA_StrongODR:
3070 return true;
3071 }
3072 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3072)
;
3073}
3074
3075void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3076 llvm::GlobalObject &GO) {
3077 if (!shouldBeInCOMDAT(*this, D))
3078 return;
3079 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3080}
3081
3082/// Pass IsTentative as true if you want to create a tentative definition.
3083void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3084 bool IsTentative) {
3085 // OpenCL global variables of sampler type are translated to function calls,
3086 // therefore no need to be translated.
3087 QualType ASTTy = D->getType();
3088 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3089 return;
3090
3091 // If this is OpenMP device, check if it is legal to emit this global
3092 // normally.
3093 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3094 OpenMPRuntime->emitTargetGlobalVariable(D))
3095 return;
3096
3097 llvm::Constant *Init = nullptr;
3098 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3099 bool NeedsGlobalCtor = false;
3100 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3101
3102 const VarDecl *InitDecl;
3103 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3104
3105 Optional<ConstantEmitter> emitter;
3106
3107 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3108 // as part of their declaration." Sema has already checked for
3109 // error cases, so we just need to set Init to UndefValue.
3110 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3111 D->hasAttr<CUDASharedAttr>())
3112 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3113 else if (!InitExpr) {
3114 // This is a tentative definition; tentative definitions are
3115 // implicitly initialized with { 0 }.
3116 //
3117 // Note that tentative definitions are only emitted at the end of
3118 // a translation unit, so they should never have incomplete
3119 // type. In addition, EmitTentativeDefinition makes sure that we
3120 // never attempt to emit a tentative definition if a real one
3121 // exists. A use may still exists, however, so we still may need
3122 // to do a RAUW.
3123 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() &&
"Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3123, __extension__ __PRETTY_FUNCTION__))
;
3124 Init = EmitNullConstant(D->getType());
3125 } else {
3126 initializedGlobalDecl = GlobalDecl(D);
3127 emitter.emplace(*this);
3128 Init = emitter->tryEmitForInitializer(*InitDecl);
3129
3130 if (!Init) {
3131 QualType T = InitExpr->getType();
3132 if (D->getType()->isReferenceType())
3133 T = D->getType();
3134
3135 if (getLangOpts().CPlusPlus) {
3136 Init = EmitNullConstant(T);
3137 NeedsGlobalCtor = true;
3138 } else {
3139 ErrorUnsupported(D, "static initializer");
3140 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3141 }
3142 } else {
3143 // We don't need an initializer, so remove the entry for the delayed
3144 // initializer position (just in case this entry was delayed) if we
3145 // also don't need to register a destructor.
3146 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3147 DelayedCXXInitPosition.erase(D);
3148 }
3149 }
3150
3151 llvm::Type* InitType = Init->getType();
3152 llvm::Constant *Entry =
3153 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3154
3155 // Strip off a bitcast if we got one back.
3156 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3157 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3160, __extension__ __PRETTY_FUNCTION__))
3158 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3160, __extension__ __PRETTY_FUNCTION__))
3159 // All zero index gep.(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3160, __extension__ __PRETTY_FUNCTION__))
3160 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3160, __extension__ __PRETTY_FUNCTION__))
;
3161 Entry = CE->getOperand(0);
3162 }
3163
3164 // Entry is now either a Function or GlobalVariable.
3165 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3166
3167 // We have a definition after a declaration with the wrong type.
3168 // We must make a new GlobalVariable* and update everything that used OldGV
3169 // (a declaration or tentative definition) with the new GlobalVariable*
3170 // (which will be a definition).
3171 //
3172 // This happens if there is a prototype for a global (e.g.
3173 // "extern int x[];") and then a definition of a different type (e.g.
3174 // "int x[10];"). This also happens when an initializer has a different type
3175 // from the type of the global (this happens with unions).
3176 if (!GV || GV->getType()->getElementType() != InitType ||
3177 GV->getType()->getAddressSpace() !=
3178 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3179
3180 // Move the old entry aside so that we'll create a new one.
3181 Entry->setName(StringRef());
3182
3183 // Make a new global with the correct type, this is now guaranteed to work.
3184 GV = cast<llvm::GlobalVariable>(
3185 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3186
3187 // Replace all uses of the old global with the new global
3188 llvm::Constant *NewPtrForOldDecl =
3189 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3190 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3191
3192 // Erase the old global, since it is no longer used.
3193 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3194 }
3195
3196 MaybeHandleStaticInExternC(D, GV);
3197
3198 if (D->hasAttr<AnnotateAttr>())
3199 AddGlobalAnnotations(D, GV);
3200
3201 // Set the llvm linkage type as appropriate.
3202 llvm::GlobalValue::LinkageTypes Linkage =
3203 getLLVMLinkageVarDefinition(D, GV->isConstant());
3204
3205 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3206 // the device. [...]"
3207 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3208 // __device__, declares a variable that: [...]
3209 // Is accessible from all the threads within the grid and from the host
3210 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3211 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3212 if (GV && LangOpts.CUDA) {
3213 if (LangOpts.CUDAIsDevice) {
3214 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3215 GV->setExternallyInitialized(true);
3216 } else {
3217 // Host-side shadows of external declarations of device-side
3218 // global variables become internal definitions. These have to
3219 // be internal in order to prevent name conflicts with global
3220 // host variables with the same name in a different TUs.
3221 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3222 Linkage = llvm::GlobalValue::InternalLinkage;
3223
3224 // Shadow variables and their properties must be registered
3225 // with CUDA runtime.
3226 unsigned Flags = 0;
3227 if (!D->hasDefinition())
3228 Flags |= CGCUDARuntime::ExternDeviceVar;
3229 if (D->hasAttr<CUDAConstantAttr>())
3230 Flags |= CGCUDARuntime::ConstantDeviceVar;
3231 getCUDARuntime().registerDeviceVar(*GV, Flags);
3232 } else if (D->hasAttr<CUDASharedAttr>())
3233 // __shared__ variables are odd. Shadows do get created, but
3234 // they are not registered with the CUDA runtime, so they
3235 // can't really be used to access their device-side
3236 // counterparts. It's not clear yet whether it's nvcc's bug or
3237 // a feature, but we've got to do the same for compatibility.
3238 Linkage = llvm::GlobalValue::InternalLinkage;
3239 }
3240 }
3241
3242 GV->setInitializer(Init);
3243 if (emitter) emitter->finalize(GV);
3244
3245 // If it is safe to mark the global 'constant', do so now.
3246 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3247 isTypeConstant(D->getType(), true));
3248
3249 // If it is in a read-only section, mark it 'constant'.
3250 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3251 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3252 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3253 GV->setConstant(true);
3254 }
3255
3256 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3257
3258
3259 // On Darwin, if the normal linkage of a C++ thread_local variable is
3260 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3261 // copies within a linkage unit; otherwise, the backing variable has
3262 // internal linkage and all accesses should just be calls to the
3263 // Itanium-specified entry point, which has the normal linkage of the
3264 // variable. This is to preserve the ability to change the implementation
3265 // behind the scenes.
3266 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3267 Context.getTargetInfo().getTriple().isOSDarwin() &&
3268 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3269 !llvm::GlobalVariable::isWeakLinkage(Linkage))
3270 Linkage = llvm::GlobalValue::InternalLinkage;
3271
3272 GV->setLinkage(Linkage);
3273 if (D->hasAttr<DLLImportAttr>())
3274 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3275 else if (D->hasAttr<DLLExportAttr>())
3276 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3277 else
3278 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3279
3280 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3281 // common vars aren't constant even if declared const.
3282 GV->setConstant(false);
3283 // Tentative definition of global variables may be initialized with
3284 // non-zero null pointers. In this case they should have weak linkage
3285 // since common linkage must have zero initializer and must not have
3286 // explicit section therefore cannot have non-zero initial value.
3287 if (!GV->getInitializer()->isNullValue())
3288 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3289 }
3290
3291 setNonAliasAttributes(D, GV);
3292
3293 if (D->getTLSKind() && !GV->isThreadLocal()) {
3294 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3295 CXXThreadLocals.push_back(D);
3296 setTLSMode(GV, *D);
3297 }
3298
3299 maybeSetTrivialComdat(*D, *GV);
3300
3301 // Emit the initializer function if necessary.
3302 if (NeedsGlobalCtor || NeedsGlobalDtor)
3303 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3304
3305 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3306
3307 // Emit global variable debug information.
3308 if (CGDebugInfo *DI = getModuleDebugInfo())
3309 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3310 DI->EmitGlobalVariable(GV, D);
3311}
3312
3313static bool isVarDeclStrongDefinition(const ASTContext &Context,
3314 CodeGenModule &CGM, const VarDecl *D,
3315 bool NoCommon) {
3316 // Don't give variables common linkage if -fno-common was specified unless it
3317 // was overridden by a NoCommon attribute.
3318 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3319 return true;
3320
3321 // C11 6.9.2/2:
3322 // A declaration of an identifier for an object that has file scope without
3323 // an initializer, and without a storage-class specifier or with the
3324 // storage-class specifier static, constitutes a tentative definition.
3325 if (D->getInit() || D->hasExternalStorage())
3326 return true;
3327
3328 // A variable cannot be both common and exist in a section.
3329 if (D->hasAttr<SectionAttr>())
3330 return true;
3331
3332 // A variable cannot be both common and exist in a section.
3333 // We don't try to determine which is the right section in the front-end.
3334 // If no specialized section name is applicable, it will resort to default.
3335 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3336 D->hasAttr<PragmaClangDataSectionAttr>() ||
3337 D->hasAttr<PragmaClangRodataSectionAttr>())
3338 return true;
3339
3340 // Thread local vars aren't considered common linkage.
3341 if (D->getTLSKind())
3342 return true;
3343
3344 // Tentative definitions marked with WeakImportAttr are true definitions.
3345 if (D->hasAttr<WeakImportAttr>())
3346 return true;
3347
3348 // A variable cannot be both common and exist in a comdat.
3349 if (shouldBeInCOMDAT(CGM, *D))
3350 return true;
3351
3352 // Declarations with a required alignment do not have common linkage in MSVC
3353 // mode.
3354 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3355 if (D->hasAttr<AlignedAttr>())
3356 return true;
3357 QualType VarType = D->getType();
3358 if (Context.isAlignmentRequired(VarType))
3359 return true;
3360
3361 if (const auto *RT = VarType->getAs<RecordType>()) {
3362 const RecordDecl *RD = RT->getDecl();
3363 for (const FieldDecl *FD : RD->fields()) {
3364 if (FD->isBitField())
3365 continue;
3366 if (FD->hasAttr<AlignedAttr>())
3367 return true;
3368 if (Context.isAlignmentRequired(FD->getType()))
3369 return true;
3370 }
3371 }
3372 }
3373
3374 return false;
3375}
3376
3377llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3378 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3379 if (Linkage == GVA_Internal)
20
Assuming 'Linkage' is not equal to GVA_Internal
21
Taking false branch
3380 return llvm::Function::InternalLinkage;
3381
3382 if (D->hasAttr<WeakAttr>()) {
22
Called C++ object pointer is null
3383 if (IsConstantVariable)
3384 return llvm::GlobalVariable::WeakODRLinkage;
3385 else
3386 return llvm::GlobalVariable::WeakAnyLinkage;
3387 }
3388
3389 // We are guaranteed to have a strong definition somewhere else,
3390 // so we can use available_externally linkage.
3391 if (Linkage == GVA_AvailableExternally)
3392 return llvm::GlobalValue::AvailableExternallyLinkage;
3393
3394 // Note that Apple's kernel linker doesn't support symbol
3395 // coalescing, so we need to avoid linkonce and weak linkages there.
3396 // Normally, this means we just map to internal, but for explicit
3397 // instantiations we'll map to external.
3398
3399 // In C++, the compiler has to emit a definition in every translation unit
3400 // that references the function. We should use linkonce_odr because
3401 // a) if all references in this translation unit are optimized away, we
3402 // don't need to codegen it. b) if the function persists, it needs to be
3403 // merged with other definitions. c) C++ has the ODR, so we know the
3404 // definition is dependable.
3405 if (Linkage == GVA_DiscardableODR)
3406 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3407 : llvm::Function::InternalLinkage;
3408
3409 // An explicit instantiation of a template has weak linkage, since
3410 // explicit instantiations can occur in multiple translation units
3411 // and must all be equivalent. However, we are not allowed to
3412 // throw away these explicit instantiations.
3413 //
3414 // We don't currently support CUDA device code spread out across multiple TUs,
3415 // so say that CUDA templates are either external (for kernels) or internal.
3416 // This lets llvm perform aggressive inter-procedural optimizations.
3417 if (Linkage == GVA_StrongODR) {
3418 if (Context.getLangOpts().AppleKext)
3419 return llvm::Function::ExternalLinkage;
3420 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3421 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3422 : llvm::Function::InternalLinkage;
3423 return llvm::Function::WeakODRLinkage;
3424 }
3425
3426 // C++ doesn't have tentative definitions and thus cannot have common
3427 // linkage.
3428 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3429 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3430 CodeGenOpts.NoCommon))
3431 return llvm::GlobalVariable::CommonLinkage;
3432
3433 // selectany symbols are externally visible, so use weak instead of
3434 // linkonce. MSVC optimizes away references to const selectany globals, so
3435 // all definitions should be the same and ODR linkage should be used.
3436 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3437 if (D->hasAttr<SelectAnyAttr>())
3438 return llvm::GlobalVariable::WeakODRLinkage;
3439
3440 // Otherwise, we have strong external linkage.
3441 assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void
(0) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3441, __extension__ __PRETTY_FUNCTION__))
;
3442 return llvm::GlobalVariable::ExternalLinkage;
3443}
3444
3445llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3446 const VarDecl *VD, bool IsConstant) {
3447 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3448 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
18
Passing null pointer value via 1st parameter 'D'
19
Calling 'CodeGenModule::getLLVMLinkageForDeclarator'
3449}
3450
3451/// Replace the uses of a function that was declared with a non-proto type.
3452/// We want to silently drop extra arguments from call sites
3453static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3454 llvm::Function *newFn) {
3455 // Fast path.
3456 if (old->use_empty()) return;
3457
3458 llvm::Type *newRetTy = newFn->getReturnType();
3459 SmallVector<llvm::Value*, 4> newArgs;
3460 SmallVector<llvm::OperandBundleDef, 1> newBundles;
3461
3462 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3463 ui != ue; ) {
3464 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3465 llvm::User *user = use->getUser();
3466
3467 // Recognize and replace uses of bitcasts. Most calls to
3468 // unprototyped functions will use bitcasts.
3469 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3470 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3471 replaceUsesOfNonProtoConstant(bitcast, newFn);
3472 continue;
3473 }
3474
3475 // Recognize calls to the function.
3476 llvm::CallSite callSite(user);
3477 if (!callSite) continue;
3478 if (!callSite.isCallee(&*use)) continue;
3479
3480 // If the return types don't match exactly, then we can't
3481 // transform this call unless it's dead.
3482 if (callSite->getType() != newRetTy && !callSite->use_empty())
3483 continue;
3484
3485 // Get the call site's attribute list.
3486 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3487 llvm::AttributeList oldAttrs = callSite.getAttributes();
3488
3489 // If the function was passed too few arguments, don't transform.
3490 unsigned newNumArgs = newFn->arg_size();
3491 if (callSite.arg_size() < newNumArgs) continue;
3492
3493 // If extra arguments were passed, we silently drop them.
3494 // If any of the types mismatch, we don't transform.
3495 unsigned argNo = 0;
3496 bool dontTransform = false;
3497 for (llvm::Argument &A : newFn->args()) {
3498 if (callSite.getArgument(argNo)->getType() != A.getType()) {
3499 dontTransform = true;
3500 break;
3501 }
3502
3503 // Add any parameter attributes.
3504 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3505 argNo++;
3506 }
3507 if (dontTransform)
3508 continue;
3509
3510 // Okay, we can transform this. Create the new call instruction and copy
3511 // over the required information.
3512 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3513
3514 // Copy over any operand bundles.
3515 callSite.getOperandBundlesAsDefs(newBundles);
3516
3517 llvm::CallSite newCall;
3518 if (callSite.isCall()) {
3519 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3520 callSite.getInstruction());
3521 } else {
3522 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3523 newCall = llvm::InvokeInst::Create(newFn,
3524 oldInvoke->getNormalDest(),
3525 oldInvoke->getUnwindDest(),
3526 newArgs, newBundles, "",
3527 callSite.getInstruction());
3528 }
3529 newArgs.clear(); // for the next iteration
3530
3531 if (!newCall->getType()->isVoidTy())
3532 newCall->takeName(callSite.getInstruction());
3533 newCall.setAttributes(llvm::AttributeList::get(
3534 newFn->getContext(), oldAttrs.getFnAttributes(),
3535 oldAttrs.getRetAttributes(), newArgAttrs));
3536 newCall.setCallingConv(callSite.getCallingConv());
3537
3538 // Finally, remove the old call, replacing any uses with the new one.
3539 if (!callSite->use_empty())
3540 callSite->replaceAllUsesWith(newCall.getInstruction());
3541
3542 // Copy debug location attached to CI.
3543 if (callSite->getDebugLoc())
3544 newCall->setDebugLoc(callSite->getDebugLoc());
3545
3546 callSite->eraseFromParent();
3547 }
3548}
3549
3550/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3551/// implement a function with no prototype, e.g. "int foo() {}". If there are
3552/// existing call uses of the old function in the module, this adjusts them to
3553/// call the new function directly.
3554///
3555/// This is not just a cleanup: the always_inline pass requires direct calls to
3556/// functions to be able to inline them. If there is a bitcast in the way, it
3557/// won't inline them. Instcombine normally deletes these calls, but it isn't
3558/// run at -O0.
3559static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3560 llvm::Function *NewFn) {
3561 // If we're redefining a global as a function, don't transform it.
3562 if (!isa<llvm::Function>(Old)) return;
3563
3564 replaceUsesOfNonProtoConstant(Old, NewFn);
3565}
3566
3567void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3568 auto DK = VD->isThisDeclarationADefinition();
3569 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3570 return;
3571
3572 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3573 // If we have a definition, this might be a deferred decl. If the
3574 // instantiation is explicit, make sure we emit it at the end.
3575 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3576 GetAddrOfGlobalVar(VD);
3577
3578 EmitTopLevelDecl(VD);
3579}
3580
3581void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3582 llvm::GlobalValue *GV) {
3583 const auto *D = cast<FunctionDecl>(GD.getDecl());
3584
3585 // Compute the function info and LLVM type.
3586 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3587 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3588
3589 // Get or create the prototype for the function.
3590 if (!GV || (GV->getType()->getElementType() != Ty))
3591 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3592 /*DontDefer=*/true,
3593 ForDefinition));
3594
3595 // Already emitted.
3596 if (!GV->isDeclaration())
3597 return;
3598
3599 // We need to set linkage and visibility on the function before
3600 // generating code for it because various parts of IR generation
3601 // want to propagate this information down (e.g. to local static
3602 // declarations).
3603 auto *Fn = cast<llvm::Function>(GV);
3604 setFunctionLinkage(GD, Fn);
3605
3606 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3607 setGVProperties(Fn, GD);
3608
3609 MaybeHandleStaticInExternC(D, Fn);
3610
3611 maybeSetTrivialComdat(*D, *Fn);
3612
3613 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3614
3615 setNonAliasAttributes(GD, Fn);
3616 SetLLVMFunctionAttributesForDefinition(D, Fn);
3617
3618 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3619 AddGlobalCtor(Fn, CA->getPriority());
3620 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3621 AddGlobalDtor(Fn, DA->getPriority());
3622 if (D->hasAttr<AnnotateAttr>())
3623 AddGlobalAnnotations(D, Fn);
3624}
3625
3626void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3627 const auto *D = cast<ValueDecl>(GD.getDecl());
3628 const AliasAttr *AA = D->getAttr<AliasAttr>();
3629 assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void
(0) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3629, __extension__ __PRETTY_FUNCTION__))
;
3630
3631 StringRef MangledName = getMangledName(GD);
3632
3633 if (AA->getAliasee() == MangledName) {
3634 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3635 return;
3636 }
3637
3638 // If there is a definition in the module, then it wins over the alias.
3639 // This is dubious, but allow it to be safe. Just ignore the alias.
3640 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3641 if (Entry && !Entry->isDeclaration())
3642 return;
3643
3644 Aliases.push_back(GD);
3645
3646 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3647
3648 // Create a reference to the named value. This ensures that it is emitted
3649 // if a deferred decl.
3650 llvm::Constant *Aliasee;
3651 if (isa<llvm::FunctionType>(DeclTy))
3652 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3653 /*ForVTable=*/false);
3654 else
3655 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3656 llvm::PointerType::getUnqual(DeclTy),
3657 /*D=*/nullptr);
3658
3659 // Create the new alias itself, but don't set a name yet.
3660 auto *GA = llvm::GlobalAlias::create(
3661 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3662
3663 if (Entry) {
3664 if (GA->getAliasee() == Entry) {
3665 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3666 return;
3667 }
3668
3669 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3669, __extension__ __PRETTY_FUNCTION__))
;
3670
3671 // If there is a declaration in the module, then we had an extern followed
3672 // by the alias, as in:
3673 // extern int test6();
3674 // ...
3675 // int test6() __attribute__((alias("test7")));
3676 //
3677 // Remove it and replace uses of it with the alias.
3678 GA->takeName(Entry);
3679
3680 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3681 Entry->getType()));
3682 Entry->eraseFromParent();
3683 } else {
3684 GA->setName(MangledName);
3685 }
3686
3687 // Set attributes which are particular to an alias; this is a
3688 // specialization of the attributes which may be set on a global
3689 // variable/function.
3690 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3691 D->isWeakImported()) {
3692 GA->setLinkage(llvm::Function::WeakAnyLinkage);
3693 }
3694
3695 if (const auto *VD = dyn_cast<VarDecl>(D))
3696 if (VD->getTLSKind())
3697 setTLSMode(GA, *VD);
3698
3699 SetCommonAttributes(GD, GA);
3700}
3701
3702void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3703 const auto *D = cast<ValueDecl>(GD.getDecl());
3704 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3705 assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void
(0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3705, __extension__ __PRETTY_FUNCTION__))
;
3706
3707 StringRef MangledName = getMangledName(GD);
3708
3709 if (IFA->getResolver() == MangledName) {
3710 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3711 return;
3712 }
3713
3714 // Report an error if some definition overrides ifunc.
3715 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3716 if (Entry && !Entry->isDeclaration()) {
3717 GlobalDecl OtherGD;
3718 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3719 DiagnosedConflictingDefinitions.insert(GD).second) {
3720 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3721 Diags.Report(OtherGD.getDecl()->getLocation(),
3722 diag::note_previous_definition);
3723 }
3724 return;
3725 }
3726
3727 Aliases.push_back(GD);
3728
3729 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3730 llvm::Constant *Resolver =
3731 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3732 /*ForVTable=*/false);
3733 llvm::GlobalIFunc *GIF =
3734 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3735 "", Resolver, &getModule());
3736 if (Entry) {
3737 if (GIF->getResolver() == Entry) {
3738 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3739 return;
3740 }
3741 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
;
3742
3743 // If there is a declaration in the module, then we had an extern followed
3744 // by the ifunc, as in:
3745 // extern int test();
3746 // ...
3747 // int test() __attribute__((ifunc("resolver")));
3748 //
3749 // Remove it and replace uses of it with the ifunc.
3750 GIF->takeName(Entry);
3751
3752 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3753 Entry->getType()));
3754 Entry->eraseFromParent();
3755 } else
3756 GIF->setName(MangledName);
3757
3758 SetCommonAttributes(GD, GIF);
3759}
3760
3761llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3762 ArrayRef<llvm::Type*> Tys) {
3763 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3764 Tys);
3765}
3766
3767static llvm::StringMapEntry<llvm::GlobalVariable *> &
3768GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3769 const StringLiteral *Literal, bool TargetIsLSB,
3770 bool &IsUTF16, unsigned &StringLength) {
3771 StringRef String = Literal->getString();
3772 unsigned NumBytes = String.size();
3773
3774 // Check for simple case.
3775 if (!Literal->containsNonAsciiOrNull()) {
3776 StringLength = NumBytes;
3777 return *Map.insert(std::make_pair(String, nullptr)).first;
3778 }
3779
3780 // Otherwise, convert the UTF8 literals into a string of shorts.
3781 IsUTF16 = true;
3782
3783 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3784 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3785 llvm::UTF16 *ToPtr = &ToBuf[0];
3786
3787 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3788 ToPtr + NumBytes, llvm::strictConversion);
3789
3790 // ConvertUTF8toUTF16 returns the length in ToPtr.
3791 StringLength = ToPtr - &ToBuf[0];
3792
3793 // Add an explicit null.
3794 *ToPtr = 0;
3795 return *Map.insert(std::make_pair(
3796 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3797 (StringLength + 1) * 2),
3798 nullptr)).first;
3799}
3800
3801ConstantAddress
3802CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3803 unsigned StringLength = 0;
3804 bool isUTF16 = false;
3805 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3806 GetConstantCFStringEntry(CFConstantStringMap, Literal,
3807 getDataLayout().isLittleEndian(), isUTF16,
3808 StringLength);
3809
3810 if (auto *C = Entry.second)
3811 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3812
3813 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3814 llvm::Constant *Zeros[] = { Zero, Zero };
3815
3816 // If we don't already have it, get __CFConstantStringClassReference.
3817 if (!CFConstantStringClassRef) {
3818 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3819 Ty = llvm::ArrayType::get(Ty, 0);
3820 llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3821 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3822
3823 if (getTriple().isOSBinFormatCOFF()) {
3824 IdentifierInfo &II = getContext().Idents.get(GV->getName());
3825 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3826 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3827
3828 const VarDecl *VD = nullptr;
3829 for (const auto &Result : DC->lookup(&II))
3830 if ((VD = dyn_cast<VarDecl>(Result)))
3831 break;
3832
3833 if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3834 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3835 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3836 } else {
3837 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3838 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3839 }
3840 }
3841 setDSOLocal(GV);
3842
3843 // Decay array -> ptr
3844 CFConstantStringClassRef =
3845 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3846 }
3847
3848 QualType CFTy = getContext().getCFConstantStringType();
3849
3850 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3851
3852 ConstantInitBuilder Builder(*this);
3853 auto Fields = Builder.beginStruct(STy);
3854
3855 // Class pointer.
3856 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3857
3858 // Flags.
3859 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3860
3861 // String pointer.
3862 llvm::Constant *C = nullptr;
3863 if (isUTF16) {
3864 auto Arr = llvm::makeArrayRef(
3865 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3866 Entry.first().size() / 2);
3867 C = llvm::ConstantDataArray::get(VMContext, Arr);
3868 } else {
3869 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3870 }
3871
3872 // Note: -fwritable-strings doesn't make the backing store strings of
3873 // CFStrings writable. (See <rdar://problem/10657500>)
3874 auto *GV =
3875 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3876 llvm::GlobalValue::PrivateLinkage, C, ".str");
3877 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3878 // Don't enforce the target's minimum global alignment, since the only use
3879 // of the string is via this class initializer.
3880 CharUnits Align = isUTF16
3881 ? getContext().getTypeAlignInChars(getContext().ShortTy)
3882 : getContext().getTypeAlignInChars(getContext().CharTy);
3883 GV->setAlignment(Align.getQuantity());
3884
3885 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3886 // Without it LLVM can merge the string with a non unnamed_addr one during
3887 // LTO. Doing that changes the section it ends in, which surprises ld64.
3888 if (getTriple().isOSBinFormatMachO())
3889 GV->setSection(isUTF16 ? "__TEXT,__ustring"
3890 : "__TEXT,__cstring,cstring_literals");
3891
3892 // String.
3893 llvm::Constant *Str =
3894 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3895
3896 if (isUTF16)
3897 // Cast the UTF16 string to the correct type.
3898 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3899 Fields.add(Str);
3900
3901 // String length.
3902 auto Ty = getTypes().ConvertType(getContext().LongTy);
3903 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3904
3905 CharUnits Alignment = getPointerAlign();
3906
3907 // The struct.
3908 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3909 /*isConstant=*/false,
3910 llvm::GlobalVariable::PrivateLinkage);
3911 switch (getTriple().getObjectFormat()) {
3912 case llvm::Triple::UnknownObjectFormat:
3913 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3913)
;
3914 case llvm::Triple::COFF:
3915 case llvm::Triple::ELF:
3916 case llvm::Triple::Wasm:
3917 GV->setSection("cfstring");
3918 break;
3919 case llvm::Triple::MachO:
3920 GV->setSection("__DATA,__cfstring");
3921 break;
3922 }
3923 Entry.second = GV;
3924
3925 return ConstantAddress(GV, Alignment);
3926}
3927
3928bool CodeGenModule::getExpressionLocationsEnabled() const {
3929 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3930}
3931
3932QualType CodeGenModule::getObjCFastEnumerationStateType() {
3933 if (ObjCFastEnumerationStateType.isNull()) {
3934 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3935 D->startDefinition();
3936
3937 QualType FieldTypes[] = {
3938 Context.UnsignedLongTy,
3939 Context.getPointerType(Context.getObjCIdType()),
3940 Context.getPointerType(Context.UnsignedLongTy),
3941 Context.getConstantArrayType(Context.UnsignedLongTy,
3942 llvm::APInt(32, 5), ArrayType::Normal, 0)
3943 };
3944
3945 for (size_t i = 0; i < 4; ++i) {
3946 FieldDecl *Field = FieldDecl::Create(Context,
3947 D,
3948 SourceLocation(),
3949 SourceLocation(), nullptr,
3950 FieldTypes[i], /*TInfo=*/nullptr,
3951 /*BitWidth=*/nullptr,
3952 /*Mutable=*/false,
3953 ICIS_NoInit);
3954 Field->setAccess(AS_public);
3955 D->addDecl(Field);
3956 }
3957
3958 D->completeDefinition();
3959 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3960 }
3961
3962 return ObjCFastEnumerationStateType;
3963}
3964
3965llvm::Constant *
3966CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3967 assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast <bool> (!E->getType()->isPointerType
() && "Strings are always arrays") ? void (0) : __assert_fail
("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3967, __extension__ __PRETTY_FUNCTION__))
;
3968
3969 // Don't emit it as the address of the string, emit the string data itself
3970 // as an inline array.
3971 if (E->getCharByteWidth() == 1) {
3972 SmallString<64> Str(E->getString());
3973
3974 // Resize the string to the right size, which is indicated by its type.
3975 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3976 Str.resize(CAT->getSize().getZExtValue());
3977 return llvm::ConstantDataArray::getString(VMContext, Str, false);
3978 }
3979
3980 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3981 llvm::Type *ElemTy = AType->getElementType();
3982 unsigned NumElements = AType->getNumElements();
3983
3984 // Wide strings have either 2-byte or 4-byte elements.
3985 if (ElemTy->getPrimitiveSizeInBits() == 16) {
3986 SmallVector<uint16_t, 32> Elements;
3987 Elements.reserve(NumElements);
3988
3989 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3990 Elements.push_back(E->getCodeUnit(i));
3991 Elements.resize(NumElements);
3992 return llvm::ConstantDataArray::get(VMContext, Elements);
3993 }
3994
3995 assert(ElemTy->getPrimitiveSizeInBits() == 32)(static_cast <bool> (ElemTy->getPrimitiveSizeInBits(
) == 32) ? void (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3995, __extension__ __PRETTY_FUNCTION__))
;
3996 SmallVector<uint32_t, 32> Elements;
3997 Elements.reserve(NumElements);
3998
3999 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4000 Elements.push_back(E->getCodeUnit(i));
4001 Elements.resize(NumElements);
4002 return llvm::ConstantDataArray::get(VMContext, Elements);
4003}
4004
4005static llvm::GlobalVariable *
4006GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4007 CodeGenModule &CGM, StringRef GlobalName,
4008 CharUnits Alignment) {
4009 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4010 unsigned AddrSpace = 0;
4011 if (CGM.getLangOpts().OpenCL)
4012 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
4013
4014 llvm::Module &M = CGM.getModule();
4015 // Create a global variable for this string
4016 auto *GV = new llvm::GlobalVariable(
4017 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4018 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4019 GV->setAlignment(Alignment.getQuantity());
4020 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4021 if (GV->isWeakForLinker()) {
4022 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")(static_cast <bool> (CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? void (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4022, __extension__ __PRETTY_FUNCTION__))
;
4023 GV->setComdat(M.getOrInsertComdat(GV->getName()));
4024 }
4025 CGM.setDSOLocal(GV);
4026
4027 return GV;
4028}
4029
4030/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4031/// constant array for the given string literal.
4032ConstantAddress
4033CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4034 StringRef Name) {
4035 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4036
4037 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4038 llvm::GlobalVariable **Entry = nullptr;
4039 if (!LangOpts.WritableStrings) {
4040 Entry = &ConstantStringMap[C];
4041 if (auto GV = *Entry) {
4042 if (Alignment.getQuantity() > GV->getAlignment())
4043 GV->setAlignment(Alignment.getQuantity());
4044 return ConstantAddress(GV, Alignment);
4045 }
4046 }
4047
4048 SmallString<256> MangledNameBuffer;
4049 StringRef GlobalVariableName;
4050 llvm::GlobalValue::LinkageTypes LT;
4051
4052 // Mangle the string literal if the ABI allows for it. However, we cannot
4053 // do this if we are compiling with ASan or -fwritable-strings because they
4054 // rely on strings having normal linkage.
4055 if (!LangOpts.WritableStrings &&
4056 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4057 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4058 llvm::raw_svector_ostream Out(MangledNameBuffer);
4059 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4060
4061 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4062 GlobalVariableName = MangledNameBuffer;
4063 } else {
4064 LT = llvm::GlobalValue::PrivateLinkage;
4065 GlobalVariableName = Name;
4066 }
4067
4068 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4069 if (Entry)
4070 *Entry = GV;
4071
4072 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4073 QualType());
4074 return ConstantAddress(GV, Alignment);
4075}
4076
4077/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4078/// array for the given ObjCEncodeExpr node.
4079ConstantAddress
4080CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4081 std::string Str;
4082 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4083
4084 return GetAddrOfConstantCString(Str);
4085}
4086
4087/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4088/// the literal and a terminating '\0' character.
4089/// The result has pointer to array type.
4090ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4091 const std::string &Str, const char *GlobalName) {
4092 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4093 CharUnits Alignment =
4094 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4095
4096 llvm::Constant *C =
4097 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4098
4099 // Don't share any string literals if strings aren't constant.
4100 llvm::GlobalVariable **Entry = nullptr;
4101 if (!LangOpts.WritableStrings) {
4102 Entry = &ConstantStringMap[C];
4103 if (auto GV = *Entry) {
4104 if (Alignment.getQuantity() > GV->getAlignment())
4105 GV->setAlignment(Alignment.getQuantity());
4106 return ConstantAddress(GV, Alignment);
4107 }
4108 }
4109
4110 // Get the default prefix if a name wasn't specified.
4111 if (!GlobalName)
4112 GlobalName = ".str";
4113 // Create a global variable for this.
4114 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4115 GlobalName, Alignment);
4116 if (Entry)
4117 *Entry = GV;
4118 return ConstantAddress(GV, Alignment);
4119}
4120
4121ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4122 const MaterializeTemporaryExpr *E, const Expr *Init) {
4123 assert((E->getStorageDuration() == SD_Static ||(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4124, __extension__ __PRETTY_FUNCTION__))
4124 E->getStorageDuration() == SD_Thread) && "not a global temporary")(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4124, __extension__ __PRETTY_FUNCTION__))
;
4125 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
1
Calling 'cast'
5
Returning from 'cast'
6
'VD' initialized here
4126
4127 // If we're not materializing a subobject of the temporary, keep the
4128 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4129 QualType MaterializedType = Init->getType();
4130 if (Init == E->GetTemporaryExpr())
7
Assuming the condition is false
8
Taking false branch
4131 MaterializedType = E->getType();
4132
4133 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4134
4135 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
9
Assuming 'Slot' is null
10
Taking false branch
4136 return ConstantAddress(Slot, Align);
4137
4138 // FIXME: If an externally-visible declaration extends multiple temporaries,
4139 // we need to give each temporary the same name in every translation unit (and
4140 // we also need to make the temporaries externally-visible).
4141 SmallString<256> Name;
4142 llvm::raw_svector_ostream Out(Name);
4143 getCXXABI().getMangleContext().mangleReferenceTemporary(
4144 VD, E->getManglingNumber(), Out);
4145
4146 APValue *Value = nullptr;
4147 if (E->getStorageDuration() == SD_Static) {
11
Taking false branch
4148 // We might have a cached constant initializer for this temporary. Note
4149 // that this might have a different value from the value computed by
4150 // evaluating the initializer if the surrounding constant expression
4151 // modifies the temporary.
4152 Value = getContext().getMaterializedTemporaryValue(E, false);
4153 if (Value && Value->isUninit())
4154 Value = nullptr;
4155 }
4156
4157 // Try evaluating it now, it might have a constant initializer.
4158 Expr::EvalResult EvalResult;
4159 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
12
Assuming the condition is false
4160 !EvalResult.hasSideEffects())
4161 Value = &EvalResult.Val;
4162
4163 LangAS AddrSpace =
4164 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
13
Assuming 'VD' is null
14
'?' condition is false
4165
4166 Optional<ConstantEmitter> emitter;
4167 llvm::Constant *InitialValue = nullptr;
4168 bool Constant = false;
4169 llvm::Type *Type;
4170 if (Value) {
15
Taking false branch
4171 // The temporary has a constant initializer, use it.
4172 emitter.emplace(*this);
4173 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4174 MaterializedType);
4175 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4176 Type = InitialValue->getType();
4177 } else {
4178 // No initializer, the initialization will be provided when we
4179 // initialize the declaration which performed lifetime extension.
4180 Type = getTypes().ConvertTypeForMem(MaterializedType);
4181 }
4182
4183 // Create a global variable for this lifetime-extended temporary.
4184 llvm::GlobalValue::LinkageTypes Linkage =
4185 getLLVMLinkageVarDefinition(VD, Constant);
16
Passing null pointer value via 1st parameter 'VD'
17
Calling 'CodeGenModule::getLLVMLinkageVarDefinition'
4186 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4187 const VarDecl *InitVD;
4188 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4189 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4190 // Temporaries defined inside a class get linkonce_odr linkage because the
4191 // class can be defined in multiple translation units.
4192 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4193 } else {
4194 // There is no need for this temporary to have external linkage if the
4195 // VarDecl has external linkage.
4196 Linkage = llvm::GlobalVariable::InternalLinkage;
4197 }
4198 }
4199 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4200 auto *GV = new llvm::GlobalVariable(
4201 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4202 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4203 if (emitter) emitter->finalize(GV);
4204 setGVProperties(GV, VD);
4205 GV->setAlignment(Align.getQuantity());
4206 if (supportsCOMDAT() && GV->isWeakForLinker())
4207 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4208 if (VD->getTLSKind())
4209 setTLSMode(GV, *VD);
4210 llvm::Constant *CV = GV;
4211 if (AddrSpace != LangAS::Default)
4212 CV = getTargetCodeGenInfo().performAddrSpaceCast(
4213 *this, GV, AddrSpace, LangAS::Default,
4214 Type->getPointerTo(
4215 getContext().getTargetAddressSpace(LangAS::Default)));
4216 MaterializedGlobalTemporaryMap[E] = CV;
4217 return ConstantAddress(CV, Align);
4218}
4219
4220/// EmitObjCPropertyImplementations - Emit information for synthesized
4221/// properties for an implementation.
4222void CodeGenModule::EmitObjCPropertyImplementations(const
4223 ObjCImplementationDecl *D) {
4224 for (const auto *PID : D->property_impls()) {
4225 // Dynamic is just for type-checking.
4226 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4227 ObjCPropertyDecl *PD = PID->getPropertyDecl();
4228
4229 // Determine which methods need to be implemented, some may have
4230 // been overridden. Note that ::isPropertyAccessor is not the method
4231 // we want, that just indicates if the decl came from a
4232 // property. What we want to know is if the method is defined in
4233 // this implementation.
4234 if (!D->getInstanceMethod(PD->getGetterName()))
4235 CodeGenFunction(*this).GenerateObjCGetter(
4236 const_cast<ObjCImplementationDecl *>(D), PID);
4237 if (!PD->isReadOnly() &&
4238 !D->getInstanceMethod(PD->getSetterName()))
4239 CodeGenFunction(*this).GenerateObjCSetter(
4240 const_cast<ObjCImplementationDecl *>(D), PID);
4241 }
4242 }
4243}
4244
4245static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4246 const ObjCInterfaceDecl *iface = impl->getClassInterface();
4247 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4248 ivar; ivar = ivar->getNextIvar())
4249 if (ivar->getType().isDestructedType())
4250 return true;
4251
4252 return false;
4253}
4254
4255static bool AllTrivialInitializers(CodeGenModule &CGM,
4256 ObjCImplementationDecl *D) {
4257 CodeGenFunction CGF(CGM);
4258 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4259 E = D->init_end(); B != E; ++B) {
4260 CXXCtorInitializer *CtorInitExp = *B;
4261 Expr *Init = CtorInitExp->getInit();
4262 if (!CGF.isTrivialInitializer(Init))
4263 return false;
4264 }
4265 return true;
4266}
4267
4268/// EmitObjCIvarInitializations - Emit information for ivar initialization
4269/// for an implementation.
4270void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4271 // We might need a .cxx_destruct even if we don't have any ivar initializers.
4272 if (needsDestructMethod(D)) {
4273 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4274 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4275 ObjCMethodDecl *DTORMethod =
4276 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4277 cxxSelector, getContext().VoidTy, nullptr, D,
4278 /*isInstance=*/true, /*isVariadic=*/false,
4279 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4280 /*isDefined=*/false, ObjCMethodDecl::Required);
4281 D->addInstanceMethod(DTORMethod);
4282 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4283 D->setHasDestructors(true);
4284 }
4285
4286 // If the implementation doesn't have any ivar initializers, we don't need
4287 // a .cxx_construct.
4288 if (D->getNumIvarInitializers() == 0 ||
4289 AllTrivialInitializers(*this, D))
4290 return;
4291
4292 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4293 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4294 // The constructor returns 'self'.
4295 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4296 D->getLocation(),
4297 D->getLocation(),
4298 cxxSelector,
4299 getContext().getObjCIdType(),
4300 nullptr, D, /*isInstance=*/true,
4301 /*isVariadic=*/false,
4302 /*isPropertyAccessor=*/true,
4303 /*isImplicitlyDeclared=*/true,
4304 /*isDefined=*/false,
4305 ObjCMethodDecl::Required);
4306 D->addInstanceMethod(CTORMethod);
4307 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4308 D->setHasNonZeroConstructors(true);
4309}
4310
4311// EmitLinkageSpec - Emit all declarations in a linkage spec.
4312void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4313 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4314 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4315 ErrorUnsupported(LSD, "linkage spec");
4316 return;
4317 }
4318
4319 EmitDeclContext(LSD);
4320}
4321
4322void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4323 for (auto *I : DC->decls()) {
4324 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4325 // are themselves considered "top-level", so EmitTopLevelDecl on an
4326 // ObjCImplDecl does not recursively visit them. We need to do that in
4327 // case they're nested inside another construct (LinkageSpecDecl /
4328 // ExportDecl) that does stop them from being considered "top-level".
4329 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4330 for (auto *M : OID->methods())
4331 EmitTopLevelDecl(M);
4332 }
4333
4334 EmitTopLevelDecl(I);
4335 }
4336}
4337
4338/// EmitTopLevelDecl - Emit code for a single top level declaration.
4339void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4340 // Ignore dependent declarations.
4341 if (D->isTemplated())
4342 return;
4343
4344 switch (D->getKind()) {
4345 case Decl::CXXConversion:
4346 case Decl::CXXMethod:
4347 case Decl::Function:
4348 EmitGlobal(cast<FunctionDecl>(D));
4349 // Always provide some coverage mapping
4350 // even for the functions that aren't emitted.
4351 AddDeferredUnusedCoverageMapping(D);
4352 break;
4353
4354 case Decl::CXXDeductionGuide:
4355 // Function-like, but does not result in code emission.
4356 break;
4357
4358 case Decl::Var:
4359 case Decl::Decomposition:
4360 case Decl::VarTemplateSpecialization:
4361 EmitGlobal(cast<VarDecl>(D));
4362 if (auto *DD = dyn_cast<DecompositionDecl>(D))
4363 for (auto *B : DD->bindings())
4364 if (auto *HD = B->getHoldingVar())
4365 EmitGlobal(HD);
4366 break;
4367
4368 // Indirect fields from global anonymous structs and unions can be
4369 // ignored; only the actual variable requires IR gen support.
4370 case Decl::IndirectField:
4371 break;
4372
4373 // C++ Decls
4374 case Decl::Namespace:
4375 EmitDeclContext(cast<NamespaceDecl>(D));
4376 break;
4377 case Decl::ClassTemplateSpecialization: {
4378 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4379 if (DebugInfo &&
4380 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4381 Spec->hasDefinition())
4382 DebugInfo->completeTemplateDefinition(*Spec);
4383 } LLVM_FALLTHROUGH[[clang::fallthrough]];
4384 case Decl::CXXRecord:
4385 if (DebugInfo) {
4386 if (auto *ES = D->getASTContext().getExternalSource())
4387 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4388 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4389 }
4390 // Emit any static data members, they may be definitions.
4391 for (auto *I : cast<CXXRecordDecl>(D)->decls())
4392 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4393 EmitTopLevelDecl(I);
4394 break;
4395 // No code generation needed.
4396 case Decl::UsingShadow:
4397 case Decl::ClassTemplate:
4398 case Decl::VarTemplate:
4399 case Decl::VarTemplatePartialSpecialization:
4400 case Decl::FunctionTemplate:
4401 case Decl::TypeAliasTemplate:
4402 case Decl::Block:
4403 case Decl::Empty:
4404 break;
4405 case Decl::Using: // using X; [C++]
4406 if (CGDebugInfo *DI = getModuleDebugInfo())
4407 DI->EmitUsingDecl(cast<UsingDecl>(*D));
4408 return;
4409 case Decl::NamespaceAlias:
4410 if (CGDebugInfo *DI = getModuleDebugInfo())
4411 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4412 return;
4413 case Decl::UsingDirective: // using namespace X; [C++]
4414 if (CGDebugInfo *DI = getModuleDebugInfo())
4415 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4416 return;
4417 case Decl::CXXConstructor:
4418 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4419 break;
4420 case Decl::CXXDestructor:
4421 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4422 break;
4423
4424 case Decl::StaticAssert:
4425 // Nothing to do.
4426 break;
4427
4428 // Objective-C Decls
4429
4430 // Forward declarations, no (immediate) code generation.
4431 case Decl::ObjCInterface:
4432 case Decl::ObjCCategory:
4433 break;
4434
4435 case Decl::ObjCProtocol: {
4436 auto *Proto = cast<ObjCProtocolDecl>(D);
4437 if (Proto->isThisDeclarationADefinition())
4438 ObjCRuntime->GenerateProtocol(Proto);
4439 break;
4440 }
4441
4442 case Decl::ObjCCategoryImpl:
4443 // Categories have properties but don't support synthesize so we
4444 // can ignore them here.
4445 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4446 break;
4447
4448 case Decl::ObjCImplementation: {
4449 auto *OMD = cast<ObjCImplementationDecl>(D);
4450 EmitObjCPropertyImplementations(OMD);
4451 EmitObjCIvarInitializations(OMD);
4452 ObjCRuntime->GenerateClass(OMD);
4453 // Emit global variable debug information.
4454 if (CGDebugInfo *DI = getModuleDebugInfo())
4455 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4456 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4457 OMD->getClassInterface()), OMD->getLocation());
4458 break;
4459 }
4460 case Decl::ObjCMethod: {
4461 auto *OMD = cast<ObjCMethodDecl>(D);
4462 // If this is not a prototype, emit the body.
4463 if (OMD->getBody())
4464 CodeGenFunction(*this).GenerateObjCMethod(OMD);
4465 break;
4466 }
4467 case Decl::ObjCCompatibleAlias:
4468 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4469 break;
4470
4471 case Decl::PragmaComment: {
4472 const auto *PCD = cast<PragmaCommentDecl>(D);
4473 switch (PCD->getCommentKind()) {
4474 case PCK_Unknown:
4475 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4475)
;
4476 case PCK_Linker:
4477 AppendLinkerOptions(PCD->getArg());
4478 break;
4479 case PCK_Lib:
4480 if (getTarget().getTriple().isOSBinFormatELF() &&
4481 !getTarget().getTriple().isPS4())
4482 AddELFLibDirective(PCD->getArg());
4483 else
4484 AddDependentLib(PCD->getArg());
4485 break;
4486 case PCK_Compiler:
4487 case PCK_ExeStr:
4488 case PCK_User:
4489 break; // We ignore all of these.
4490 }
4491 break;
4492 }
4493
4494 case Decl::PragmaDetectMismatch: {
4495 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4496 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4497 break;
4498 }
4499
4500 case Decl::LinkageSpec:
4501 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4502 break;
4503
4504 case Decl::FileScopeAsm: {
4505 // File-scope asm is ignored during device-side CUDA compilation.
4506 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4507 break;
4508 // File-scope asm is ignored during device-side OpenMP compilation.
4509 if (LangOpts.OpenMPIsDevice)
4510 break;
4511 auto *AD = cast<FileScopeAsmDecl>(D);
4512 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4513 break;
4514 }
4515
4516 case Decl::Import: {
4517 auto *Import = cast<ImportDecl>(D);
4518
4519 // If we've already imported this module, we're done.
4520 if (!ImportedModules.insert(Import->getImportedModule()))
4521 break;
4522
4523 // Emit debug information for direct imports.
4524 if (!Import->getImportedOwningModule()) {
4525 if (CGDebugInfo *DI = getModuleDebugInfo())
4526 DI->EmitImportDecl(*Import);
4527 }
4528
4529 // Find all of the submodules and emit the module initializers.
4530 llvm::SmallPtrSet<clang::Module *, 16> Visited;
4531 SmallVector<clang::Module *, 16> Stack;
4532 Visited.insert(Import->getImportedModule());
4533 Stack.push_back(Import->getImportedModule());
4534
4535 while (!Stack.empty()) {
4536 clang::Module *Mod = Stack.pop_back_val();
4537 if (!EmittedModuleInitializers.insert(Mod).second)
4538 continue;
4539
4540 for (auto *D : Context.getModuleInitializers(Mod))
4541 EmitTopLevelDecl(D);
4542
4543 // Visit the submodules of this module.
4544 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4545 SubEnd = Mod->submodule_end();
4546 Sub != SubEnd; ++Sub) {
4547 // Skip explicit children; they need to be explicitly imported to emit
4548 // the initializers.
4549 if ((*Sub)->IsExplicit)
4550 continue;
4551
4552 if (Visited.insert(*Sub).second)
4553 Stack.push_back(*Sub);
4554 }
4555 }
4556 break;
4557 }
4558
4559 case Decl::Export:
4560 EmitDeclContext(cast<ExportDecl>(D));
4561 break;
4562
4563 case Decl::OMPThreadPrivate:
4564 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4565 break;
4566
4567 case Decl::OMPDeclareReduction:
4568 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4569 break;
4570
4571 default:
4572 // Make sure we handled everything we should, every other kind is a
4573 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
4574 // function. Need to recode Decl::Kind to do that easily.
4575 assert(isa<TypeDecl>(D) && "Unsupported decl kind")(static_cast <bool> (isa<TypeDecl>(D) && "Unsupported decl kind"
) ? void (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4575, __extension__ __PRETTY_FUNCTION__))
;
4576 break;
4577 }
4578}
4579
4580void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4581 // Do we need to generate coverage mapping?
4582 if (!CodeGenOpts.CoverageMapping)
4583 return;
4584 switch (D->getKind()) {
4585 case Decl::CXXConversion:
4586 case Decl::CXXMethod:
4587 case Decl::Function:
4588 case Decl::ObjCMethod:
4589 case Decl::CXXConstructor:
4590 case Decl::CXXDestructor: {
4591 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4592 return;
4593 SourceManager &SM = getContext().getSourceManager();
4594 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4595 return;
4596 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4597 if (I == DeferredEmptyCoverageMappingDecls.end())
4598 DeferredEmptyCoverageMappingDecls[D] = true;
4599 break;
4600 }
4601 default:
4602 break;
4603 };
4604}
4605
4606void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4607 // Do we need to generate coverage mapping?
4608 if (!CodeGenOpts.CoverageMapping)
4609 return;
4610 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4611 if (Fn->isTemplateInstantiation())
4612 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4613 }
4614 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4615 if (I == DeferredEmptyCoverageMappingDecls.end())
4616 DeferredEmptyCoverageMappingDecls[D] = false;
4617 else
4618 I->second = false;
4619}
4620
4621void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4622 // We call takeVector() here to avoid use-after-free.
4623 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4624 // we deserialize function bodies to emit coverage info for them, and that
4625 // deserializes more declarations. How should we handle that case?
4626 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4627 if (!Entry.second)
4628 continue;
4629 const Decl *D = Entry.first;
4630 switch (D->getKind()) {
4631 case Decl::CXXConversion:
4632 case Decl::CXXMethod:
4633 case Decl::Function:
4634 case Decl::ObjCMethod: {
4635 CodeGenPGO PGO(*this);
4636 GlobalDecl GD(cast<FunctionDecl>(D));
4637 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4638 getFunctionLinkage(GD));
4639 break;
4640 }
4641 case Decl::CXXConstructor: {
4642 CodeGenPGO PGO(*this);
4643 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4644 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4645 getFunctionLinkage(GD));
4646 break;
4647 }
4648 case Decl::CXXDestructor: {
4649 CodeGenPGO PGO(*this);
4650 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4651 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4652 getFunctionLinkage(GD));
4653 break;
4654 }
4655 default:
4656 break;
4657 };
4658 }
4659}
4660
4661/// Turns the given pointer into a constant.
4662static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4663 const void *Ptr) {
4664 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4665 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4666 return llvm::ConstantInt::get(i64, PtrInt);
4667}
4668
4669static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4670 llvm::NamedMDNode *&GlobalMetadata,
4671 GlobalDecl D,
4672 llvm::GlobalValue *Addr) {
4673 if (!GlobalMetadata)
4674 GlobalMetadata =
4675 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4676
4677 // TODO: should we report variant information for ctors/dtors?
4678 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4679 llvm::ConstantAsMetadata::get(GetPointerConstant(
4680 CGM.getLLVMContext(), D.getDecl()))};
4681 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4682}
4683
4684/// For each function which is declared within an extern "C" region and marked
4685/// as 'used', but has internal linkage, create an alias from the unmangled
4686/// name to the mangled name if possible. People expect to be able to refer
4687/// to such functions with an unmangled name from inline assembly within the
4688/// same translation unit.
4689void CodeGenModule::EmitStaticExternCAliases() {
4690 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4691 return;
4692 for (auto &I : StaticExternCValues) {
4693 IdentifierInfo *Name = I.first;
4694 llvm::GlobalValue *Val = I.second;
4695 if (Val && !getModule().getNamedValue(Name->getName()))
4696 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4697 }
4698}
4699
4700bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4701 GlobalDecl &Result) const {
4702 auto Res = Manglings.find(MangledName);
4703 if (Res == Manglings.end())
4704 return false;
4705 Result = Res->getValue();
4706 return true;
4707}
4708
4709/// Emits metadata nodes associating all the global values in the
4710/// current module with the Decls they came from. This is useful for
4711/// projects using IR gen as a subroutine.
4712///
4713/// Since there's currently no way to associate an MDNode directly
4714/// with an llvm::GlobalValue, we create a global named metadata
4715/// with the name 'clang.global.decl.ptrs'.
4716void CodeGenModule::EmitDeclMetadata() {
4717 llvm::NamedMDNode *GlobalMetadata = nullptr;
4718
4719 for (auto &I : MangledDeclNames) {
4720 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4721 // Some mangled names don't necessarily have an associated GlobalValue
4722 // in this module, e.g. if we mangled it for DebugInfo.
4723 if (Addr)
4724 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4725 }
4726}
4727
4728/// Emits metadata nodes for all the local variables in the current
4729/// function.
4730void CodeGenFunction::EmitDeclMetadata() {
4731 if (LocalDeclMap.empty()) return;
4732
4733 llvm::LLVMContext &Context = getLLVMContext();
4734
4735 // Find the unique metadata ID for this name.
4736 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4737
4738 llvm::NamedMDNode *GlobalMetadata = nullptr;
4739
4740 for (auto &I : LocalDeclMap) {
4741 const Decl *D = I.first;
4742 llvm::Value *Addr = I.second.getPointer();
4743 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4744 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4745 Alloca->setMetadata(
4746 DeclPtrKind, llvm::MDNode::get(
4747 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4748 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4749 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4750 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4751 }
4752 }
4753}
4754
4755void CodeGenModule::EmitVersionIdentMetadata() {
4756 llvm::NamedMDNode *IdentMetadata =
4757 TheModule.getOrInsertNamedMetadata("llvm.ident");
4758 std::string Version = getClangFullVersion();
4759 llvm::LLVMContext &Ctx = TheModule.getContext();
4760
4761 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4762 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4763}
4764
4765void CodeGenModule::EmitTargetMetadata() {
4766 // Warning, new MangledDeclNames may be appended within this loop.
4767 // We rely on MapVector insertions adding new elements to the end
4768 // of the container.
4769 // FIXME: Move this loop into the one target that needs it, and only
4770 // loop over those declarations for which we couldn't emit the target
4771 // metadata when we emitted the declaration.
4772 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4773 auto Val = *(MangledDeclNames.begin() + I);
4774 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4775 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4776 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4777 }
4778}
4779
4780void CodeGenModule::EmitCoverageFile() {
4781 if (getCodeGenOpts().CoverageDataFile.empty() &&
4782 getCodeGenOpts().CoverageNotesFile.empty())
4783 return;
4784
4785 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4786 if (!CUNode)
4787 return;
4788
4789 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4790 llvm::LLVMContext &Ctx = TheModule.getContext();
4791 auto *CoverageDataFile =
4792 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4793 auto *CoverageNotesFile =
4794 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4795 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4796 llvm::MDNode *CU = CUNode->getOperand(i);
4797 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4798 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4799 }
4800}
4801
4802llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4803 // Sema has checked that all uuid strings are of the form
4804 // "12345678-1234-1234-1234-1234567890ab".
4805 assert(Uuid.size() == 36)(static_cast <bool> (Uuid.size() == 36) ? void (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4805, __extension__ __PRETTY_FUNCTION__))
;
4806 for (unsigned i = 0; i < 36; ++i) {
4807 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')(static_cast <bool> (Uuid[i] == '-') ? void (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4807, __extension__ __PRETTY_FUNCTION__))
;
4808 else assert(isHexDigit(Uuid[i]))(static_cast <bool> (isHexDigit(Uuid[i])) ? void (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4808, __extension__ __PRETTY_FUNCTION__))
;
4809 }
4810
4811 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4812 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4813
4814 llvm::Constant *Field3[8];
4815 for (unsigned Idx = 0; Idx < 8; ++Idx)
4816 Field3[Idx] = llvm::ConstantInt::get(
4817 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4818
4819 llvm::Constant *Fields[4] = {
4820 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
4821 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
4822 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4823 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4824 };
4825
4826 return llvm::ConstantStruct::getAnon(Fields);
4827}
4828
4829llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4830 bool ForEH) {
4831 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4832 // FIXME: should we even be calling this method if RTTI is disabled
4833 // and it's not for EH?
4834 if (!ForEH && !getLangOpts().RTTI)
4835 return llvm::Constant::getNullValue(Int8PtrTy);
4836
4837 if (ForEH && Ty->isObjCObjectPointerType() &&
4838 LangOpts.ObjCRuntime.isGNUFamily())
4839 return ObjCRuntime->GetEHType(Ty);
4840
4841 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4842}
4843
4844void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4845 // Do not emit threadprivates in simd-only mode.
4846 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4847 return;
4848 for (auto RefExpr : D->varlists()) {
4849 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4850 bool PerformInit =
4851 VD->getAnyInitializer() &&
4852 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4853 /*ForRef=*/false);
4854
4855 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4856 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4857 VD, Addr, RefExpr->getLocStart(), PerformInit))
4858 CXXGlobalInits.push_back(InitFunction);
4859 }
4860}
4861
4862llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4863 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4864 if (InternalId)
4865 return InternalId;
4866
4867 if (isExternallyVisible(T->getLinkage())) {
4868 std::string OutName;
4869 llvm::raw_string_ostream Out(OutName);
4870 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4871
4872 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4873 } else {
4874 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4875 llvm::ArrayRef<llvm::Metadata *>());
4876 }
4877
4878 return InternalId;
4879}
4880
4881// Generalize pointer types to a void pointer with the qualifiers of the
4882// originally pointed-to type, e.g. 'const char *' and 'char * const *'
4883// generalize to 'const void *' while 'char *' and 'const char **' generalize to
4884// 'void *'.
4885static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4886 if (!Ty->isPointerType())
4887 return Ty;
4888
4889 return Ctx.getPointerType(
4890 QualType(Ctx.VoidTy).withCVRQualifiers(
4891 Ty->getPointeeType().getCVRQualifiers()));
4892}
4893
4894// Apply type generalization to a FunctionType's return and argument types
4895static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4896 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4897 SmallVector<QualType, 8> GeneralizedParams;
4898 for (auto &Param : FnType->param_types())
4899 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4900
4901 return Ctx.getFunctionType(
4902 GeneralizeType(Ctx, FnType->getReturnType()),
4903 GeneralizedParams, FnType->getExtProtoInfo());
4904 }
4905
4906 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4907 return Ctx.getFunctionNoProtoType(
4908 GeneralizeType(Ctx, FnType->getReturnType()));
4909
4910 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4910)
;
4911}
4912
4913llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4914 T = GeneralizeFunctionType(getContext(), T);
4915
4916 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4917 if (InternalId)
4918 return InternalId;
4919
4920 if (isExternallyVisible(T->getLinkage())) {
4921 std::string OutName;
4922 llvm::raw_string_ostream Out(OutName);
4923 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4924 Out << ".generalized";
4925
4926 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4927 } else {
4928 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4929 llvm::ArrayRef<llvm::Metadata *>());
4930 }
4931
4932 return InternalId;
4933}
4934
4935/// Returns whether this module needs the "all-vtables" type identifier.
4936bool CodeGenModule::NeedAllVtablesTypeId() const {
4937 // Returns true if at least one of vtable-based CFI checkers is enabled and
4938 // is not in the trapping mode.
4939 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4940 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4941 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4942 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4943 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4944 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4945 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4946 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4947}
4948
4949void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4950 CharUnits Offset,
4951 const CXXRecordDecl *RD) {
4952 llvm::Metadata *MD =
4953 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4954 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4955
4956 if (CodeGenOpts.SanitizeCfiCrossDso)
4957 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4958 VTable->addTypeMetadata(Offset.getQuantity(),
4959 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4960
4961 if (NeedAllVtablesTypeId()) {
4962 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4963 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4964 }
4965}
4966
4967// Fills in the supplied string map with the set of target features for the
4968// passed in function.
4969void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4970 const FunctionDecl *FD) {
4971 StringRef TargetCPU = Target.getTargetOpts().CPU;
4972 if (const auto *TD = FD->getAttr<TargetAttr>()) {
4973 // If we have a TargetAttr build up the feature map based on that.
4974 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4975
4976 ParsedAttr.Features.erase(
4977 llvm::remove_if(ParsedAttr.Features,
4978 [&](const std::string &Feat) {
4979 return !Target.isValidFeatureName(
4980 StringRef{Feat}.substr(1));
4981 }),
4982 ParsedAttr.Features.end());
4983
4984 // Make a copy of the features as passed on the command line into the
4985 // beginning of the additional features from the function to override.
4986 ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4987 Target.getTargetOpts().FeaturesAsWritten.begin(),
4988 Target.getTargetOpts().FeaturesAsWritten.end());
4989
4990 if (ParsedAttr.Architecture != "" &&
4991 Target.isValidCPUName(ParsedAttr.Architecture))
4992 TargetCPU = ParsedAttr.Architecture;
4993
4994 // Now populate the feature map, first with the TargetCPU which is either
4995 // the default or a new one from the target attribute string. Then we'll use
4996 // the passed in features (FeaturesAsWritten) along with the new ones from
4997 // the attribute.
4998 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4999 ParsedAttr.Features);
5000 } else {
5001 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5002 Target.getTargetOpts().Features);
5003 }
5004}
5005
5006llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5007 if (!SanStats)
5008 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5009
5010 return *SanStats;
5011}
5012llvm::Value *
5013CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5014 CodeGenFunction &CGF) {
5015 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5016 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5017 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5018 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5019 "__translate_sampler_initializer"),
5020 {C});
5021}

/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
60 }
61};
62
63/// \brief Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
107 return isa_impl<To, From>::doit(*Val);
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
2
Within the expansion of the macro 'assert':
256 return cast_convert_val<X, Y*,
3
Calling 'cast_convert_val::doit'
4
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H