Bug Summary

File:tools/clang/lib/CodeGen/CodeGenModule.cpp
Warning:line 709, column 20
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CodeGenModule.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn325874/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn325874/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-23-163436-368-1 -x c++ /build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp

/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp

1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGBlocks.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGCall.h"
19#include "CGDebugInfo.h"
20#include "CGObjCRuntime.h"
21#include "CGOpenCLRuntime.h"
22#include "CGOpenMPRuntime.h"
23#include "CGOpenMPRuntimeNVPTX.h"
24#include "CodeGenFunction.h"
25#include "CodeGenPGO.h"
26#include "ConstantEmitter.h"
27#include "CoverageMappingGen.h"
28#include "TargetInfo.h"
29#include "clang/AST/ASTContext.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/AST/DeclCXX.h"
32#include "clang/AST/DeclObjC.h"
33#include "clang/AST/DeclTemplate.h"
34#include "clang/AST/Mangle.h"
35#include "clang/AST/RecordLayout.h"
36#include "clang/AST/RecursiveASTVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/Diagnostic.h"
40#include "clang/Basic/Module.h"
41#include "clang/Basic/SourceManager.h"
42#include "clang/Basic/TargetInfo.h"
43#include "clang/Basic/Version.h"
44#include "clang/CodeGen/ConstantInitBuilder.h"
45#include "clang/Frontend/CodeGenOptions.h"
46#include "clang/Sema/SemaDiagnostic.h"
47#include "llvm/ADT/Triple.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/IR/CallSite.h"
50#include "llvm/IR/CallingConv.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Module.h"
55#include "llvm/ProfileData/InstrProfReader.h"
56#include "llvm/Support/ConvertUTF.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MD5.h"
59
60using namespace clang;
61using namespace CodeGen;
62
63static llvm::cl::opt<bool> LimitedCoverage(
64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66 llvm::cl::init(false));
67
68static const char AnnotationSection[] = "llvm.metadata";
69
70static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71 switch (CGM.getTarget().getCXXABI().getKind()) {
72 case TargetCXXABI::GenericAArch64:
73 case TargetCXXABI::GenericARM:
74 case TargetCXXABI::iOS:
75 case TargetCXXABI::iOS64:
76 case TargetCXXABI::WatchOS:
77 case TargetCXXABI::GenericMIPS:
78 case TargetCXXABI::GenericItanium:
79 case TargetCXXABI::WebAssembly:
80 return CreateItaniumCXXABI(CGM);
81 case TargetCXXABI::Microsoft:
82 return CreateMicrosoftCXXABI(CGM);
83 }
84
85 llvm_unreachable("invalid C++ ABI kind")::llvm::llvm_unreachable_internal("invalid C++ ABI kind", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 85)
;
86}
87
88CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89 const PreprocessorOptions &PPO,
90 const CodeGenOptions &CGO, llvm::Module &M,
91 DiagnosticsEngine &diags,
92 CoverageSourceInfo *CoverageInfo)
93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96 VMContext(M.getContext()), Types(*this), VTables(*this),
97 SanitizerMD(new SanitizerMetadata(*this)) {
98
99 // Initialize the type cache.
100 llvm::LLVMContext &LLVMContext = M.getContext();
101 VoidTy = llvm::Type::getVoidTy(LLVMContext);
102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106 HalfTy = llvm::Type::getHalfTy(LLVMContext);
107 FloatTy = llvm::Type::getFloatTy(LLVMContext);
108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110 PointerAlignInBytes =
111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112 SizeSizeInBytes =
113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114 IntAlignInBytes =
115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117 IntPtrTy = llvm::IntegerType::get(LLVMContext,
118 C.getTargetInfo().getMaxPointerWidth());
119 Int8PtrTy = Int8Ty->getPointerTo(0);
120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121 AllocaInt8PtrTy = Int8Ty->getPointerTo(
122 M.getDataLayout().getAllocaAddrSpace());
123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124
125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
127
128 if (LangOpts.ObjC1)
129 createObjCRuntime();
130 if (LangOpts.OpenCL)
131 createOpenCLRuntime();
132 if (LangOpts.OpenMP)
133 createOpenMPRuntime();
134 if (LangOpts.CUDA)
135 createCUDARuntime();
136
137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
141 getCXXABI().getMangleContext()));
142
143 // If debug info or coverage generation is enabled, create the CGDebugInfo
144 // object.
145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
147 DebugInfo.reset(new CGDebugInfo(*this));
148
149 Block.GlobalUniqueCount = 0;
150
151 if (C.getLangOpts().ObjC1)
152 ObjCData.reset(new ObjCEntrypoints());
153
154 if (CodeGenOpts.hasProfileClangUse()) {
155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
156 CodeGenOpts.ProfileInstrumentUsePath);
157 if (auto E = ReaderOrErr.takeError()) {
158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
159 "Could not read profile %0: %1");
160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
162 << EI.message();
163 });
164 } else
165 PGOReader = std::move(ReaderOrErr.get());
166 }
167
168 // If coverage mapping generation is enabled, create the
169 // CoverageMappingModuleGen object.
170 if (CodeGenOpts.CoverageMapping)
171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
172}
173
174CodeGenModule::~CodeGenModule() {}
175
176void CodeGenModule::createObjCRuntime() {
177 // This is just isGNUFamily(), but we want to force implementors of
178 // new ABIs to decide how best to do this.
179 switch (LangOpts.ObjCRuntime.getKind()) {
180 case ObjCRuntime::GNUstep:
181 case ObjCRuntime::GCC:
182 case ObjCRuntime::ObjFW:
183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
184 return;
185
186 case ObjCRuntime::FragileMacOSX:
187 case ObjCRuntime::MacOSX:
188 case ObjCRuntime::iOS:
189 case ObjCRuntime::WatchOS:
190 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
191 return;
192 }
193 llvm_unreachable("bad runtime kind")::llvm::llvm_unreachable_internal("bad runtime kind", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 193)
;
194}
195
196void CodeGenModule::createOpenCLRuntime() {
197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
198}
199
200void CodeGenModule::createOpenMPRuntime() {
201 // Select a specialized code generation class based on the target, if any.
202 // If it does not exist use the default implementation.
203 switch (getTriple().getArch()) {
204 case llvm::Triple::nvptx:
205 case llvm::Triple::nvptx64:
206 assert(getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 207, __extension__ __PRETTY_FUNCTION__))
207 "OpenMP NVPTX is only prepared to deal with device code.")(static_cast <bool> (getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.") ?
void (0) : __assert_fail ("getLangOpts().OpenMPIsDevice && \"OpenMP NVPTX is only prepared to deal with device code.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 207, __extension__ __PRETTY_FUNCTION__))
;
208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
209 break;
210 default:
211 if (LangOpts.OpenMPSimd)
212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
213 else
214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
215 break;
216 }
217}
218
219void CodeGenModule::createCUDARuntime() {
220 CUDARuntime.reset(CreateNVCUDARuntime(*this));
221}
222
223void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
224 Replacements[Name] = C;
225}
226
227void CodeGenModule::applyReplacements() {
228 for (auto &I : Replacements) {
229 StringRef MangledName = I.first();
230 llvm::Constant *Replacement = I.second;
231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
232 if (!Entry)
233 continue;
234 auto *OldF = cast<llvm::Function>(Entry);
235 auto *NewF = dyn_cast<llvm::Function>(Replacement);
236 if (!NewF) {
237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
239 } else {
240 auto *CE = cast<llvm::ConstantExpr>(Replacement);
241 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 242, __extension__ __PRETTY_FUNCTION__))
242 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr
) ? void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 242, __extension__ __PRETTY_FUNCTION__))
;
243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
244 }
245 }
246
247 // Replace old with new, but keep the old order.
248 OldF->replaceAllUsesWith(Replacement);
249 if (NewF) {
250 NewF->removeFromParent();
251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
252 NewF);
253 }
254 OldF->eraseFromParent();
255 }
256}
257
258void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
259 GlobalValReplacements.push_back(std::make_pair(GV, C));
260}
261
262void CodeGenModule::applyGlobalValReplacements() {
263 for (auto &I : GlobalValReplacements) {
264 llvm::GlobalValue *GV = I.first;
265 llvm::Constant *C = I.second;
266
267 GV->replaceAllUsesWith(C);
268 GV->eraseFromParent();
269 }
270}
271
272// This is only used in aliases that we created and we know they have a
273// linear structure.
274static const llvm::GlobalObject *getAliasedGlobal(
275 const llvm::GlobalIndirectSymbol &GIS) {
276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
277 const llvm::Constant *C = &GIS;
278 for (;;) {
279 C = C->stripPointerCasts();
280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
281 return GO;
282 // stripPointerCasts will not walk over weak aliases.
283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
284 if (!GIS2)
285 return nullptr;
286 if (!Visited.insert(GIS2).second)
287 return nullptr;
288 C = GIS2->getIndirectSymbol();
289 }
290}
291
292void CodeGenModule::checkAliases() {
293 // Check if the constructed aliases are well formed. It is really unfortunate
294 // that we have to do this in CodeGen, but we only construct mangled names
295 // and aliases during codegen.
296 bool Error = false;
297 DiagnosticsEngine &Diags = getDiags();
298 for (const GlobalDecl &GD : Aliases) {
299 const auto *D = cast<ValueDecl>(GD.getDecl());
300 SourceLocation Location;
301 bool IsIFunc = D->hasAttr<IFuncAttr>();
302 if (const Attr *A = D->getDefiningAttr())
303 Location = A->getLocation();
304 else
305 llvm_unreachable("Not an alias or ifunc?")::llvm::llvm_unreachable_internal("Not an alias or ifunc?", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 305)
;
306 StringRef MangledName = getMangledName(GD);
307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
310 if (!GV) {
311 Error = true;
312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
313 } else if (GV->isDeclaration()) {
314 Error = true;
315 Diags.Report(Location, diag::err_alias_to_undefined)
316 << IsIFunc << IsIFunc;
317 } else if (IsIFunc) {
318 // Check resolver function type.
319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
320 GV->getType()->getPointerElementType());
321 assert(FTy)(static_cast <bool> (FTy) ? void (0) : __assert_fail ("FTy"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
;
322 if (!FTy->getReturnType()->isPointerTy())
323 Diags.Report(Location, diag::err_ifunc_resolver_return);
324 if (FTy->getNumParams())
325 Diags.Report(Location, diag::err_ifunc_resolver_params);
326 }
327
328 llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329 llvm::GlobalValue *AliaseeGV;
330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332 else
333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334
335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336 StringRef AliasSection = SA->getName();
337 if (AliasSection != AliaseeGV->getSection())
338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339 << AliasSection << IsIFunc << IsIFunc;
340 }
341
342 // We have to handle alias to weak aliases in here. LLVM itself disallows
343 // this since the object semantics would not match the IL one. For
344 // compatibility with gcc we implement it by just pointing the alias
345 // to its aliasee's aliasee. We also warn, since the user is probably
346 // expecting the link to be weak.
347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348 if (GA->isInterposable()) {
349 Diags.Report(Location, diag::warn_alias_to_weak_alias)
350 << GV->getName() << GA->getName() << IsIFunc;
351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352 GA->getIndirectSymbol(), Alias->getType());
353 Alias->setIndirectSymbol(Aliasee);
354 }
355 }
356 }
357 if (!Error)
358 return;
359
360 for (const GlobalDecl &GD : Aliases) {
361 StringRef MangledName = getMangledName(GD);
362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365 Alias->eraseFromParent();
366 }
367}
368
369void CodeGenModule::clear() {
370 DeferredDeclsToEmit.clear();
371 if (OpenMPRuntime)
372 OpenMPRuntime->clear();
373}
374
375void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376 StringRef MainFile) {
377 if (!hasDiagnostics())
378 return;
379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380 if (MainFile.empty())
381 MainFile = "<stdin>";
382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383 } else {
384 if (Mismatched > 0)
385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386
387 if (Missing > 0)
388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389 }
390}
391
392void CodeGenModule::Release() {
393 EmitDeferred();
394 EmitVTablesOpportunistically();
395 applyGlobalValReplacements();
396 applyReplacements();
397 checkAliases();
398 emitMultiVersionFunctions();
399 EmitCXXGlobalInitFunc();
400 EmitCXXGlobalDtorFunc();
401 EmitCXXThreadLocalInitFunc();
402 if (ObjCRuntime)
403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404 AddGlobalCtor(ObjCInitFunction);
405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406 CUDARuntime) {
407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408 AddGlobalCtor(CudaCtorFunction);
409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410 AddGlobalDtor(CudaDtorFunction);
411 }
412 if (OpenMPRuntime)
413 if (llvm::Function *OpenMPRegistrationFunction =
414 OpenMPRuntime->emitRegistrationFunction()) {
415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416 OpenMPRegistrationFunction : nullptr;
417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418 }
419 if (PGOReader) {
420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
421 if (PGOStats.hasDiagnostics())
422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
423 }
424 EmitCtorList(GlobalCtors, "llvm.global_ctors");
425 EmitCtorList(GlobalDtors, "llvm.global_dtors");
426 EmitGlobalAnnotations();
427 EmitStaticExternCAliases();
428 EmitDeferredUnusedCoverageMappings();
429 if (CoverageMapping)
430 CoverageMapping->emit();
431 if (CodeGenOpts.SanitizeCfiCrossDso) {
432 CodeGenFunction(*this).EmitCfiCheckFail();
433 CodeGenFunction(*this).EmitCfiCheckStub();
434 }
435 emitAtAvailableLinkGuard();
436 emitLLVMUsed();
437 if (SanStats)
438 SanStats->finish();
439
440 if (CodeGenOpts.Autolink &&
441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
442 EmitModuleLinkOptions();
443 }
444
445 // Record mregparm value now so it is visible through rest of codegen.
446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
448 CodeGenOpts.NumRegisterParameters);
449
450 if (CodeGenOpts.DwarfVersion) {
451 // We actually want the latest version when there are conflicts.
452 // We can change from Warning to Latest if such mode is supported.
453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
454 CodeGenOpts.DwarfVersion);
455 }
456 if (CodeGenOpts.EmitCodeView) {
457 // Indicate that we want CodeView in the metadata.
458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
459 }
460 if (CodeGenOpts.ControlFlowGuard) {
461 // We want function ID tables for Control Flow Guard.
462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
463 }
464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
465 // We don't support LTO with 2 with different StrictVTablePointers
466 // FIXME: we could support it by stripping all the information introduced
467 // by StrictVTablePointers.
468
469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
470
471 llvm::Metadata *Ops[2] = {
472 llvm::MDString::get(VMContext, "StrictVTablePointers"),
473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
474 llvm::Type::getInt32Ty(VMContext), 1))};
475
476 getModule().addModuleFlag(llvm::Module::Require,
477 "StrictVTablePointersRequirement",
478 llvm::MDNode::get(VMContext, Ops));
479 }
480 if (DebugInfo)
481 // We support a single version in the linked module. The LLVM
482 // parser will drop debug info with a different version number
483 // (and warn about it, too).
484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
485 llvm::DEBUG_METADATA_VERSION);
486
487 // We need to record the widths of enums and wchar_t, so that we can generate
488 // the correct build attributes in the ARM backend. wchar_size is also used by
489 // TargetLibraryInfo.
490 uint64_t WCharWidth =
491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
493
494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
495 if ( Arch == llvm::Triple::arm
496 || Arch == llvm::Triple::armeb
497 || Arch == llvm::Triple::thumb
498 || Arch == llvm::Triple::thumbeb) {
499 // The minimum width of an enum in bytes
500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
502 }
503
504 if (CodeGenOpts.SanitizeCfiCrossDso) {
505 // Indicate that we want cross-DSO control flow integrity checks.
506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
507 }
508
509 if (CodeGenOpts.CFProtectionReturn &&
510 Target.checkCFProtectionReturnSupported(getDiags())) {
511 // Indicate that we want to instrument return control flow protection.
512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
513 1);
514 }
515
516 if (CodeGenOpts.CFProtectionBranch &&
517 Target.checkCFProtectionBranchSupported(getDiags())) {
518 // Indicate that we want to instrument branch control flow protection.
519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
520 1);
521 }
522
523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
524 // Indicate whether __nvvm_reflect should be configured to flush denormal
525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
526 // property.)
527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
529 }
530
531 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
532 if (LangOpts.OpenCL) {
533 EmitOpenCLMetadata();
534 // Emit SPIR version.
535 if (getTriple().getArch() == llvm::Triple::spir ||
536 getTriple().getArch() == llvm::Triple::spir64) {
537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
538 // opencl.spir.version named metadata.
539 llvm::Metadata *SPIRVerElts[] = {
540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541 Int32Ty, LangOpts.OpenCLVersion / 100)),
542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
544 llvm::NamedMDNode *SPIRVerMD =
545 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
546 llvm::LLVMContext &Ctx = TheModule.getContext();
547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
548 }
549 }
550
551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
552 assert(PLevel < 3 && "Invalid PIC Level")(static_cast <bool> (PLevel < 3 && "Invalid PIC Level"
) ? void (0) : __assert_fail ("PLevel < 3 && \"Invalid PIC Level\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 552, __extension__ __PRETTY_FUNCTION__))
;
553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
554 if (Context.getLangOpts().PIE)
555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
556 }
557
558 SimplifyPersonality();
559
560 if (getCodeGenOpts().EmitDeclMetadata)
561 EmitDeclMetadata();
562
563 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
564 EmitCoverageFile();
565
566 if (DebugInfo)
567 DebugInfo->finalize();
568
569 EmitVersionIdentMetadata();
570
571 EmitTargetMetadata();
572}
573
574void CodeGenModule::EmitOpenCLMetadata() {
575 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
576 // opencl.ocl.version named metadata node.
577 llvm::Metadata *OCLVerElts[] = {
578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
579 Int32Ty, LangOpts.OpenCLVersion / 100)),
580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
581 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
582 llvm::NamedMDNode *OCLVerMD =
583 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
584 llvm::LLVMContext &Ctx = TheModule.getContext();
585 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
586}
587
588void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
589 // Make sure that this type is translated.
590 Types.UpdateCompletedType(TD);
591}
592
593void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
594 // Make sure that this type is translated.
595 Types.RefreshTypeCacheForClass(RD);
596}
597
598llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
599 if (!TBAA)
600 return nullptr;
601 return TBAA->getTypeInfo(QTy);
602}
603
604TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
605 if (!TBAA)
606 return TBAAAccessInfo();
607 return TBAA->getAccessInfo(AccessType);
608}
609
610TBAAAccessInfo
611CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
612 if (!TBAA)
613 return TBAAAccessInfo();
614 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
615}
616
617llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
618 if (!TBAA)
619 return nullptr;
620 return TBAA->getTBAAStructInfo(QTy);
621}
622
623llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
624 if (!TBAA)
625 return nullptr;
626 return TBAA->getBaseTypeInfo(QTy);
627}
628
629llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
630 if (!TBAA)
631 return nullptr;
632 return TBAA->getAccessTagInfo(Info);
633}
634
635TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
636 TBAAAccessInfo TargetInfo) {
637 if (!TBAA)
638 return TBAAAccessInfo();
639 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
640}
641
642TBAAAccessInfo
643CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
644 TBAAAccessInfo InfoB) {
645 if (!TBAA)
646 return TBAAAccessInfo();
647 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
648}
649
650TBAAAccessInfo
651CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
652 TBAAAccessInfo SrcInfo) {
653 if (!TBAA)
654 return TBAAAccessInfo();
655 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
656}
657
658void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
659 TBAAAccessInfo TBAAInfo) {
660 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
661 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
662}
663
664void CodeGenModule::DecorateInstructionWithInvariantGroup(
665 llvm::Instruction *I, const CXXRecordDecl *RD) {
666 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
667 llvm::MDNode::get(getLLVMContext(), {}));
668}
669
670void CodeGenModule::Error(SourceLocation loc, StringRef message) {
671 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
672 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
673}
674
675/// ErrorUnsupported - Print out an error that codegen doesn't support the
676/// specified stmt yet.
677void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
678 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
679 "cannot compile this %0 yet");
680 std::string Msg = Type;
681 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
682 << Msg << S->getSourceRange();
683}
684
685/// ErrorUnsupported - Print out an error that codegen doesn't support the
686/// specified decl yet.
687void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
688 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
689 "cannot compile this %0 yet");
690 std::string Msg = Type;
691 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
692}
693
694llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
695 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
696}
697
698void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
699 const NamedDecl *D) const {
700 if (GV->hasDLLImportStorageClass())
44
Taking false branch
701 return;
702 // Internal definitions always have default visibility.
703 if (GV->hasLocalLinkage()) {
45
Taking false branch
704 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
705 return;
706 }
707
708 // Set visibility for definitions.
709 LinkageInfo LV = D->getLinkageAndVisibility();
46
Called C++ object pointer is null
710 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
711 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
712}
713
714static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
715 llvm::GlobalValue *GV) {
716 const llvm::Triple &TT = CGM.getTriple();
717 // Only handle ELF for now.
718 if (!TT.isOSBinFormatELF())
719 return false;
720
721 // If this is not an executable, don't assume anything is local.
722 const auto &CGOpts = CGM.getCodeGenOpts();
723 llvm::Reloc::Model RM = CGOpts.RelocationModel;
724 const auto &LOpts = CGM.getLangOpts();
725 if (RM != llvm::Reloc::Static && !LOpts.PIE)
726 return false;
727
728 // A definition cannot be preempted from an executable.
729 if (!GV->isDeclarationForLinker())
730 return true;
731
732 // Most PIC code sequences that assume that a symbol is local cannot produce a
733 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
734 // depended, it seems worth it to handle it here.
735 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
736 return false;
737
738 // PPC has no copy relocations and cannot use a plt entry as a symbol address.
739 llvm::Triple::ArchType Arch = TT.getArch();
740 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
741 Arch == llvm::Triple::ppc64le)
742 return false;
743
744 // If we can use copy relocations we can assume it is local.
745 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
746 if (!Var->isThreadLocal() &&
747 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
748 return true;
749
750 // If we can use a plt entry as the symbol address we can assume it
751 // is local.
752 // FIXME: This should work for PIE, but the gold linker doesn't support it.
753 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
754 return true;
755
756 // Otherwise don't assue it is local.
757 return false;
758}
759
760void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
761 if (shouldAssumeDSOLocal(*this, GV))
762 GV->setDSOLocal(true);
763}
764
765void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
766 const NamedDecl *D) const {
767 setGlobalVisibility(GV, D);
42
Passing null pointer value via 2nd parameter 'D'
43
Calling 'CodeGenModule::setGlobalVisibility'
768 setDSOLocal(GV);
769}
770
771static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
772 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
773 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
774 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
775 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
776 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
777}
778
779static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
780 CodeGenOptions::TLSModel M) {
781 switch (M) {
782 case CodeGenOptions::GeneralDynamicTLSModel:
783 return llvm::GlobalVariable::GeneralDynamicTLSModel;
784 case CodeGenOptions::LocalDynamicTLSModel:
785 return llvm::GlobalVariable::LocalDynamicTLSModel;
786 case CodeGenOptions::InitialExecTLSModel:
787 return llvm::GlobalVariable::InitialExecTLSModel;
788 case CodeGenOptions::LocalExecTLSModel:
789 return llvm::GlobalVariable::LocalExecTLSModel;
790 }
791 llvm_unreachable("Invalid TLS model!")::llvm::llvm_unreachable_internal("Invalid TLS model!", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 791)
;
792}
793
794void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
795 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!")(static_cast <bool> (D.getTLSKind() && "setting TLS mode on non-TLS var!"
) ? void (0) : __assert_fail ("D.getTLSKind() && \"setting TLS mode on non-TLS var!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 795, __extension__ __PRETTY_FUNCTION__))
;
796
797 llvm::GlobalValue::ThreadLocalMode TLM;
798 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
799
800 // Override the TLS model if it is explicitly specified.
801 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
802 TLM = GetLLVMTLSModel(Attr->getModel());
803 }
804
805 GV->setThreadLocalMode(TLM);
806}
807
808static void AppendTargetMangling(const CodeGenModule &CGM,
809 const TargetAttr *Attr, raw_ostream &Out) {
810 if (Attr->isDefaultVersion())
811 return;
812
813 Out << '.';
814 const auto &Target = CGM.getTarget();
815 TargetAttr::ParsedTargetAttr Info =
816 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
817 // Multiversioning doesn't allow "no-${feature}", so we can
818 // only have "+" prefixes here.
819 assert(LHS.startswith("+") && RHS.startswith("+") &&(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 820, __extension__ __PRETTY_FUNCTION__))
820 "Features should always have a prefix.")(static_cast <bool> (LHS.startswith("+") && RHS
.startswith("+") && "Features should always have a prefix."
) ? void (0) : __assert_fail ("LHS.startswith(\"+\") && RHS.startswith(\"+\") && \"Features should always have a prefix.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 820, __extension__ __PRETTY_FUNCTION__))
;
821 return Target.multiVersionSortPriority(LHS.substr(1)) >
822 Target.multiVersionSortPriority(RHS.substr(1));
823 });
824
825 bool IsFirst = true;
826
827 if (!Info.Architecture.empty()) {
828 IsFirst = false;
829 Out << "arch_" << Info.Architecture;
830 }
831
832 for (StringRef Feat : Info.Features) {
833 if (!IsFirst)
834 Out << '_';
835 IsFirst = false;
836 Out << Feat.substr(1);
837 }
838}
839
840static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
841 const NamedDecl *ND,
842 bool OmitTargetMangling = false) {
843 SmallString<256> Buffer;
844 llvm::raw_svector_ostream Out(Buffer);
845 MangleContext &MC = CGM.getCXXABI().getMangleContext();
846 if (MC.shouldMangleDeclName(ND)) {
847 llvm::raw_svector_ostream Out(Buffer);
848 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
849 MC.mangleCXXCtor(D, GD.getCtorType(), Out);
850 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
851 MC.mangleCXXDtor(D, GD.getDtorType(), Out);
852 else
853 MC.mangleName(ND, Out);
854 } else {
855 IdentifierInfo *II = ND->getIdentifier();
856 assert(II && "Attempt to mangle unnamed decl.")(static_cast <bool> (II && "Attempt to mangle unnamed decl."
) ? void (0) : __assert_fail ("II && \"Attempt to mangle unnamed decl.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 856, __extension__ __PRETTY_FUNCTION__))
;
857 const auto *FD = dyn_cast<FunctionDecl>(ND);
858
859 if (FD &&
860 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
861 llvm::raw_svector_ostream Out(Buffer);
862 Out << "__regcall3__" << II->getName();
863 } else {
864 Out << II->getName();
865 }
866 }
867
868 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
869 if (FD->isMultiVersion() && !OmitTargetMangling)
870 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
871 return Out.str();
872}
873
874void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
875 const FunctionDecl *FD) {
876 if (!FD->isMultiVersion())
877 return;
878
879 // Get the name of what this would be without the 'target' attribute. This
880 // allows us to lookup the version that was emitted when this wasn't a
881 // multiversion function.
882 std::string NonTargetName =
883 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
884 GlobalDecl OtherGD;
885 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
886 assert(OtherGD.getCanonicalDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
887 .getDecl()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
888 ->getAsFunction()(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
889 ->isMultiVersion() &&(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
890 "Other GD should now be a multiversioned function")(static_cast <bool> (OtherGD.getCanonicalDecl() .getDecl
() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"
) ? void (0) : __assert_fail ("OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && \"Other GD should now be a multiversioned function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
;
891 // OtherFD is the version of this function that was mangled BEFORE
892 // becoming a MultiVersion function. It potentially needs to be updated.
893 const FunctionDecl *OtherFD =
894 OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
895 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
896 // This is so that if the initial version was already the 'default'
897 // version, we don't try to update it.
898 if (OtherName != NonTargetName) {
899 // Remove instead of erase, since others may have stored the StringRef
900 // to this.
901 const auto ExistingRecord = Manglings.find(NonTargetName);
902 if (ExistingRecord != std::end(Manglings))
903 Manglings.remove(&(*ExistingRecord));
904 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
905 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
906 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
907 Entry->setName(OtherName);
908 }
909 }
910}
911
912StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
913 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
914
915 // Some ABIs don't have constructor variants. Make sure that base and
916 // complete constructors get mangled the same.
917 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
918 if (!getTarget().getCXXABI().hasConstructorVariants()) {
919 CXXCtorType OrigCtorType = GD.getCtorType();
920 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete)(static_cast <bool> (OrigCtorType == Ctor_Base || OrigCtorType
== Ctor_Complete) ? void (0) : __assert_fail ("OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 920, __extension__ __PRETTY_FUNCTION__))
;
921 if (OrigCtorType == Ctor_Base)
922 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
923 }
924 }
925
926 auto FoundName = MangledDeclNames.find(CanonicalGD);
927 if (FoundName != MangledDeclNames.end())
928 return FoundName->second;
929
930
931 // Keep the first result in the case of a mangling collision.
932 const auto *ND = cast<NamedDecl>(GD.getDecl());
933 auto Result =
934 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
935 return MangledDeclNames[CanonicalGD] = Result.first->first();
936}
937
938StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
939 const BlockDecl *BD) {
940 MangleContext &MangleCtx = getCXXABI().getMangleContext();
941 const Decl *D = GD.getDecl();
942
943 SmallString<256> Buffer;
944 llvm::raw_svector_ostream Out(Buffer);
945 if (!D)
946 MangleCtx.mangleGlobalBlock(BD,
947 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
948 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
949 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
950 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
951 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
952 else
953 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
954
955 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
956 return Result.first->first();
957}
958
959llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
960 return getModule().getNamedValue(Name);
961}
962
963/// AddGlobalCtor - Add a function to the list that will be called before
964/// main() runs.
965void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
966 llvm::Constant *AssociatedData) {
967 // FIXME: Type coercion of void()* types.
968 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
969}
970
971/// AddGlobalDtor - Add a function to the list that will be called
972/// when the module is unloaded.
973void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
974 // FIXME: Type coercion of void()* types.
975 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
976}
977
978void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
979 if (Fns.empty()) return;
980
981 // Ctor function type is void()*.
982 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
983 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
984
985 // Get the type of a ctor entry, { i32, void ()*, i8* }.
986 llvm::StructType *CtorStructTy = llvm::StructType::get(
987 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
988
989 // Construct the constructor and destructor arrays.
990 ConstantInitBuilder builder(*this);
991 auto ctors = builder.beginArray(CtorStructTy);
992 for (const auto &I : Fns) {
993 auto ctor = ctors.beginStruct(CtorStructTy);
994 ctor.addInt(Int32Ty, I.Priority);
995 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
996 if (I.AssociatedData)
997 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
998 else
999 ctor.addNullPointer(VoidPtrTy);
1000 ctor.finishAndAddTo(ctors);
1001 }
1002
1003 auto list =
1004 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1005 /*constant*/ false,
1006 llvm::GlobalValue::AppendingLinkage);
1007
1008 // The LTO linker doesn't seem to like it when we set an alignment
1009 // on appending variables. Take it off as a workaround.
1010 list->setAlignment(0);
1011
1012 Fns.clear();
1013}
1014
1015llvm::GlobalValue::LinkageTypes
1016CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1017 const auto *D = cast<FunctionDecl>(GD.getDecl());
1018
1019 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1020
1021 if (isa<CXXDestructorDecl>(D) &&
1022 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1023 GD.getDtorType())) {
1024 // Destructor variants in the Microsoft C++ ABI are always internal or
1025 // linkonce_odr thunks emitted on an as-needed basis.
1026 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
1027 : llvm::GlobalValue::LinkOnceODRLinkage;
1028 }
1029
1030 if (isa<CXXConstructorDecl>(D) &&
1031 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1032 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1033 // Our approach to inheriting constructors is fundamentally different from
1034 // that used by the MS ABI, so keep our inheriting constructor thunks
1035 // internal rather than trying to pick an unambiguous mangling for them.
1036 return llvm::GlobalValue::InternalLinkage;
1037 }
1038
1039 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1040}
1041
1042void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
1043 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1044
1045 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
1046 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
1047 // Don't dllexport/import destructor thunks.
1048 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1049 return;
1050 }
1051 }
1052
1053 if (FD->hasAttr<DLLImportAttr>())
1054 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1055 else if (FD->hasAttr<DLLExportAttr>())
1056 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1057 else
1058 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
1059}
1060
1061llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1062 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1063 if (!MDS) return nullptr;
1064
1065 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1066}
1067
1068void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
1069 llvm::Function *F) {
1070 setNonAliasAttributes(D, F);
1071}
1072
1073void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1074 const CGFunctionInfo &Info,
1075 llvm::Function *F) {
1076 unsigned CallingConv;
1077 llvm::AttributeList PAL;
1078 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1079 F->setAttributes(PAL);
1080 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1081}
1082
1083/// Determines whether the language options require us to model
1084/// unwind exceptions. We treat -fexceptions as mandating this
1085/// except under the fragile ObjC ABI with only ObjC exceptions
1086/// enabled. This means, for example, that C with -fexceptions
1087/// enables this.
1088static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1089 // If exceptions are completely disabled, obviously this is false.
1090 if (!LangOpts.Exceptions) return false;
1091
1092 // If C++ exceptions are enabled, this is true.
1093 if (LangOpts.CXXExceptions) return true;
1094
1095 // If ObjC exceptions are enabled, this depends on the ABI.
1096 if (LangOpts.ObjCExceptions) {
1097 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1098 }
1099
1100 return true;
1101}
1102
1103void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1104 llvm::Function *F) {
1105 llvm::AttrBuilder B;
1106
1107 if (CodeGenOpts.UnwindTables)
1108 B.addAttribute(llvm::Attribute::UWTable);
1109
1110 if (!hasUnwindExceptions(LangOpts))
1111 B.addAttribute(llvm::Attribute::NoUnwind);
1112
1113 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1114 B.addAttribute(llvm::Attribute::StackProtect);
1115 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1116 B.addAttribute(llvm::Attribute::StackProtectStrong);
1117 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1118 B.addAttribute(llvm::Attribute::StackProtectReq);
1119
1120 if (!D) {
1121 // If we don't have a declaration to control inlining, the function isn't
1122 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1123 // disabled, mark the function as noinline.
1124 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1125 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1126 B.addAttribute(llvm::Attribute::NoInline);
1127
1128 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1129 return;
1130 }
1131
1132 // Track whether we need to add the optnone LLVM attribute,
1133 // starting with the default for this optimization level.
1134 bool ShouldAddOptNone =
1135 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1136 // We can't add optnone in the following cases, it won't pass the verifier.
1137 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1138 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1139 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1140
1141 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1142 B.addAttribute(llvm::Attribute::OptimizeNone);
1143
1144 // OptimizeNone implies noinline; we should not be inlining such functions.
1145 B.addAttribute(llvm::Attribute::NoInline);
1146 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
1147 "OptimizeNone and AlwaysInline on same function!")(static_cast <bool> (!F->hasFnAttribute(llvm::Attribute
::AlwaysInline) && "OptimizeNone and AlwaysInline on same function!"
) ? void (0) : __assert_fail ("!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && \"OptimizeNone and AlwaysInline on same function!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1147, __extension__ __PRETTY_FUNCTION__))
;
1148
1149 // We still need to handle naked functions even though optnone subsumes
1150 // much of their semantics.
1151 if (D->hasAttr<NakedAttr>())
1152 B.addAttribute(llvm::Attribute::Naked);
1153
1154 // OptimizeNone wins over OptimizeForSize and MinSize.
1155 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1156 F->removeFnAttr(llvm::Attribute::MinSize);
1157 } else if (D->hasAttr<NakedAttr>()) {
1158 // Naked implies noinline: we should not be inlining such functions.
1159 B.addAttribute(llvm::Attribute::Naked);
1160 B.addAttribute(llvm::Attribute::NoInline);
1161 } else if (D->hasAttr<NoDuplicateAttr>()) {
1162 B.addAttribute(llvm::Attribute::NoDuplicate);
1163 } else if (D->hasAttr<NoInlineAttr>()) {
1164 B.addAttribute(llvm::Attribute::NoInline);
1165 } else if (D->hasAttr<AlwaysInlineAttr>() &&
1166 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1167 // (noinline wins over always_inline, and we can't specify both in IR)
1168 B.addAttribute(llvm::Attribute::AlwaysInline);
1169 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1170 // If we're not inlining, then force everything that isn't always_inline to
1171 // carry an explicit noinline attribute.
1172 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1173 B.addAttribute(llvm::Attribute::NoInline);
1174 } else {
1175 // Otherwise, propagate the inline hint attribute and potentially use its
1176 // absence to mark things as noinline.
1177 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1178 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1179 return Redecl->isInlineSpecified();
1180 })) {
1181 B.addAttribute(llvm::Attribute::InlineHint);
1182 } else if (CodeGenOpts.getInlining() ==
1183 CodeGenOptions::OnlyHintInlining &&
1184 !FD->isInlined() &&
1185 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1186 B.addAttribute(llvm::Attribute::NoInline);
1187 }
1188 }
1189 }
1190
1191 // Add other optimization related attributes if we are optimizing this
1192 // function.
1193 if (!D->hasAttr<OptimizeNoneAttr>()) {
1194 if (D->hasAttr<ColdAttr>()) {
1195 if (!ShouldAddOptNone)
1196 B.addAttribute(llvm::Attribute::OptimizeForSize);
1197 B.addAttribute(llvm::Attribute::Cold);
1198 }
1199
1200 if (D->hasAttr<MinSizeAttr>())
1201 B.addAttribute(llvm::Attribute::MinSize);
1202 }
1203
1204 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1205
1206 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1207 if (alignment)
1208 F->setAlignment(alignment);
1209
1210 // Some C++ ABIs require 2-byte alignment for member functions, in order to
1211 // reserve a bit for differentiating between virtual and non-virtual member
1212 // functions. If the current target's C++ ABI requires this and this is a
1213 // member function, set its alignment accordingly.
1214 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1215 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1216 F->setAlignment(2);
1217 }
1218
1219 // In the cross-dso CFI mode, we want !type attributes on definitions only.
1220 if (CodeGenOpts.SanitizeCfiCrossDso)
1221 if (auto *FD = dyn_cast<FunctionDecl>(D))
1222 CreateFunctionTypeMetadata(FD, F);
1223}
1224
1225void CodeGenModule::SetCommonAttributes(const Decl *D,
1226 llvm::GlobalValue *GV) {
1227 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
1228 setGVProperties(GV, ND);
1229 else
1230 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1231
1232 if (D && D->hasAttr<UsedAttr>())
1233 addUsedGlobal(GV);
1234}
1235
1236void CodeGenModule::setAliasAttributes(const Decl *D,
1237 llvm::GlobalValue *GV) {
1238 SetCommonAttributes(D, GV);
1239
1240 // Process the dllexport attribute based on whether the original definition
1241 // (not necessarily the aliasee) was exported.
1242 if (D->hasAttr<DLLExportAttr>())
1243 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1244}
1245
1246bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1247 llvm::AttrBuilder &Attrs) {
1248 // Add target-cpu and target-features attributes to functions. If
1249 // we have a decl for the function and it has a target attribute then
1250 // parse that and add it to the feature set.
1251 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1252 std::vector<std::string> Features;
1253 const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1254 FD = FD ? FD->getMostRecentDecl() : FD;
1255 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1256 bool AddedAttr = false;
1257 if (TD) {
1258 llvm::StringMap<bool> FeatureMap;
1259 getFunctionFeatureMap(FeatureMap, FD);
1260
1261 // Produce the canonical string for this set of features.
1262 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1263 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1264
1265 // Now add the target-cpu and target-features to the function.
1266 // While we populated the feature map above, we still need to
1267 // get and parse the target attribute so we can get the cpu for
1268 // the function.
1269 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1270 if (ParsedAttr.Architecture != "" &&
1271 getTarget().isValidCPUName(ParsedAttr.Architecture))
1272 TargetCPU = ParsedAttr.Architecture;
1273 } else {
1274 // Otherwise just add the existing target cpu and target features to the
1275 // function.
1276 Features = getTarget().getTargetOpts().Features;
1277 }
1278
1279 if (TargetCPU != "") {
1280 Attrs.addAttribute("target-cpu", TargetCPU);
1281 AddedAttr = true;
1282 }
1283 if (!Features.empty()) {
1284 std::sort(Features.begin(), Features.end());
1285 Attrs.addAttribute("target-features", llvm::join(Features, ","));
1286 AddedAttr = true;
1287 }
1288
1289 return AddedAttr;
1290}
1291
1292void CodeGenModule::setNonAliasAttributes(const Decl *D,
1293 llvm::GlobalObject *GO) {
1294 SetCommonAttributes(D, GO);
1295
1296 if (D) {
1297 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1298 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1299 GV->addAttribute("bss-section", SA->getName());
1300 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1301 GV->addAttribute("data-section", SA->getName());
1302 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1303 GV->addAttribute("rodata-section", SA->getName());
1304 }
1305
1306 if (auto *F = dyn_cast<llvm::Function>(GO)) {
1307 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1308 if (!D->getAttr<SectionAttr>())
1309 F->addFnAttr("implicit-section-name", SA->getName());
1310
1311 llvm::AttrBuilder Attrs;
1312 if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1313 // We know that GetCPUAndFeaturesAttributes will always have the
1314 // newest set, since it has the newest possible FunctionDecl, so the
1315 // new ones should replace the old.
1316 F->removeFnAttr("target-cpu");
1317 F->removeFnAttr("target-features");
1318 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1319 }
1320 }
1321
1322 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1323 GO->setSection(SA->getName());
1324 }
1325
1326 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1327}
1328
1329void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1330 llvm::Function *F,
1331 const CGFunctionInfo &FI) {
1332 SetLLVMFunctionAttributes(D, FI, F);
1333 SetLLVMFunctionAttributesForDefinition(D, F);
1334
1335 F->setLinkage(llvm::Function::InternalLinkage);
1336
1337 setNonAliasAttributes(D, F);
1338}
1339
1340static void setLinkageForGV(llvm::GlobalValue *GV,
1341 const NamedDecl *ND) {
1342 // Set linkage and visibility in case we never see a definition.
1343 LinkageInfo LV = ND->getLinkageAndVisibility();
1344 if (!isExternallyVisible(LV.getLinkage())) {
1345 // Don't set internal linkage on declarations.
1346 } else {
1347 if (ND->hasAttr<DLLImportAttr>()) {
1348 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1349 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1350 } else if (ND->hasAttr<DLLExportAttr>()) {
1351 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1352 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1353 // "extern_weak" is overloaded in LLVM; we probably should have
1354 // separate linkage types for this.
1355 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1356 }
1357 }
1358}
1359
1360void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1361 llvm::Function *F) {
1362 // Only if we are checking indirect calls.
1363 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1364 return;
1365
1366 // Non-static class methods are handled via vtable pointer checks elsewhere.
1367 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1368 return;
1369
1370 // Additionally, if building with cross-DSO support...
1371 if (CodeGenOpts.SanitizeCfiCrossDso) {
1372 // Skip available_externally functions. They won't be codegen'ed in the
1373 // current module anyway.
1374 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1375 return;
1376 }
1377
1378 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1379 F->addTypeMetadata(0, MD);
1380 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1381
1382 // Emit a hash-based bit set entry for cross-DSO calls.
1383 if (CodeGenOpts.SanitizeCfiCrossDso)
1384 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1385 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1386}
1387
1388void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1389 bool IsIncompleteFunction,
1390 bool IsThunk) {
1391
1392 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1393 // If this is an intrinsic function, set the function's attributes
1394 // to the intrinsic's attributes.
1395 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1396 return;
1397 }
1398
1399 const auto *FD = cast<FunctionDecl>(GD.getDecl());
1400
1401 if (!IsIncompleteFunction) {
1402 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1403 // Setup target-specific attributes.
1404 if (F->isDeclaration())
1405 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1406 }
1407
1408 // Add the Returned attribute for "this", except for iOS 5 and earlier
1409 // where substantial code, including the libstdc++ dylib, was compiled with
1410 // GCC and does not actually return "this".
1411 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1412 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1413 assert(!F->arg_empty() &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
1414 F->arg_begin()->getType()(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
1415 ->canLosslesslyBitCastTo(F->getReturnType()) &&(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
1416 "unexpected this return")(static_cast <bool> (!F->arg_empty() && F->
arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType
()) && "unexpected this return") ? void (0) : __assert_fail
("!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && \"unexpected this return\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
;
1417 F->addAttribute(1, llvm::Attribute::Returned);
1418 }
1419
1420 // Only a few attributes are set on declarations; these may later be
1421 // overridden by a definition.
1422
1423 setLinkageForGV(F, FD);
1424 setGVProperties(F, FD);
1425
1426 if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1427 F->addFnAttr("implicit-section-name");
1428 }
1429
1430 if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1431 F->setSection(SA->getName());
1432
1433 if (FD->isReplaceableGlobalAllocationFunction()) {
1434 // A replaceable global allocation function does not act like a builtin by
1435 // default, only if it is invoked by a new-expression or delete-expression.
1436 F->addAttribute(llvm::AttributeList::FunctionIndex,
1437 llvm::Attribute::NoBuiltin);
1438
1439 // A sane operator new returns a non-aliasing pointer.
1440 // FIXME: Also add NonNull attribute to the return value
1441 // for the non-nothrow forms?
1442 auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1443 if (getCodeGenOpts().AssumeSaneOperatorNew &&
1444 (Kind == OO_New || Kind == OO_Array_New))
1445 F->addAttribute(llvm::AttributeList::ReturnIndex,
1446 llvm::Attribute::NoAlias);
1447 }
1448
1449 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1450 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1451 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1452 if (MD->isVirtual())
1453 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1454
1455 // Don't emit entries for function declarations in the cross-DSO mode. This
1456 // is handled with better precision by the receiving DSO.
1457 if (!CodeGenOpts.SanitizeCfiCrossDso)
1458 CreateFunctionTypeMetadata(FD, F);
1459
1460 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1461 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1462}
1463
1464void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1465 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1466, __extension__ __PRETTY_FUNCTION__))
1466 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1466, __extension__ __PRETTY_FUNCTION__))
;
1467 LLVMUsed.emplace_back(GV);
1468}
1469
1470void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1471 assert(!GV->isDeclaration() &&(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1472, __extension__ __PRETTY_FUNCTION__))
1472 "Only globals with definition can force usage.")(static_cast <bool> (!GV->isDeclaration() &&
"Only globals with definition can force usage.") ? void (0) :
__assert_fail ("!GV->isDeclaration() && \"Only globals with definition can force usage.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1472, __extension__ __PRETTY_FUNCTION__))
;
1473 LLVMCompilerUsed.emplace_back(GV);
1474}
1475
1476static void emitUsed(CodeGenModule &CGM, StringRef Name,
1477 std::vector<llvm::WeakTrackingVH> &List) {
1478 // Don't create llvm.used if there is no need.
1479 if (List.empty())
1480 return;
1481
1482 // Convert List to what ConstantArray needs.
1483 SmallVector<llvm::Constant*, 8> UsedArray;
1484 UsedArray.resize(List.size());
1485 for (unsigned i = 0, e = List.size(); i != e; ++i) {
1486 UsedArray[i] =
1487 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1488 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1489 }
1490
1491 if (UsedArray.empty())
1492 return;
1493 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1494
1495 auto *GV = new llvm::GlobalVariable(
1496 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1497 llvm::ConstantArray::get(ATy, UsedArray), Name);
1498
1499 GV->setSection("llvm.metadata");
1500}
1501
1502void CodeGenModule::emitLLVMUsed() {
1503 emitUsed(*this, "llvm.used", LLVMUsed);
1504 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1505}
1506
1507void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1508 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1509 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1510}
1511
1512void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1513 llvm::SmallString<32> Opt;
1514 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1515 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1516 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1517}
1518
1519void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1520 auto &C = getLLVMContext();
1521 LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1522 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1523}
1524
1525void CodeGenModule::AddDependentLib(StringRef Lib) {
1526 llvm::SmallString<24> Opt;
1527 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1528 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1529 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1530}
1531
1532/// \brief Add link options implied by the given module, including modules
1533/// it depends on, using a postorder walk.
1534static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1535 SmallVectorImpl<llvm::MDNode *> &Metadata,
1536 llvm::SmallPtrSet<Module *, 16> &Visited) {
1537 // Import this module's parent.
1538 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1539 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1540 }
1541
1542 // Import this module's dependencies.
1543 for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1544 if (Visited.insert(Mod->Imports[I - 1]).second)
1545 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1546 }
1547
1548 // Add linker options to link against the libraries/frameworks
1549 // described by this module.
1550 llvm::LLVMContext &Context = CGM.getLLVMContext();
1551 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1552 // Link against a framework. Frameworks are currently Darwin only, so we
1553 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1554 if (Mod->LinkLibraries[I-1].IsFramework) {
1555 llvm::Metadata *Args[2] = {
1556 llvm::MDString::get(Context, "-framework"),
1557 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1558
1559 Metadata.push_back(llvm::MDNode::get(Context, Args));
1560 continue;
1561 }
1562
1563 // Link against a library.
1564 llvm::SmallString<24> Opt;
1565 CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1566 Mod->LinkLibraries[I-1].Library, Opt);
1567 auto *OptString = llvm::MDString::get(Context, Opt);
1568 Metadata.push_back(llvm::MDNode::get(Context, OptString));
1569 }
1570}
1571
1572void CodeGenModule::EmitModuleLinkOptions() {
1573 // Collect the set of all of the modules we want to visit to emit link
1574 // options, which is essentially the imported modules and all of their
1575 // non-explicit child modules.
1576 llvm::SetVector<clang::Module *> LinkModules;
1577 llvm::SmallPtrSet<clang::Module *, 16> Visited;
1578 SmallVector<clang::Module *, 16> Stack;
1579
1580 // Seed the stack with imported modules.
1581 for (Module *M : ImportedModules) {
1582 // Do not add any link flags when an implementation TU of a module imports
1583 // a header of that same module.
1584 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1585 !getLangOpts().isCompilingModule())
1586 continue;
1587 if (Visited.insert(M).second)
1588 Stack.push_back(M);
1589 }
1590
1591 // Find all of the modules to import, making a little effort to prune
1592 // non-leaf modules.
1593 while (!Stack.empty()) {
1594 clang::Module *Mod = Stack.pop_back_val();
1595
1596 bool AnyChildren = false;
1597
1598 // Visit the submodules of this module.
1599 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1600 SubEnd = Mod->submodule_end();
1601 Sub != SubEnd; ++Sub) {
1602 // Skip explicit children; they need to be explicitly imported to be
1603 // linked against.
1604 if ((*Sub)->IsExplicit)
1605 continue;
1606
1607 if (Visited.insert(*Sub).second) {
1608 Stack.push_back(*Sub);
1609 AnyChildren = true;
1610 }
1611 }
1612
1613 // We didn't find any children, so add this module to the list of
1614 // modules to link against.
1615 if (!AnyChildren) {
1616 LinkModules.insert(Mod);
1617 }
1618 }
1619
1620 // Add link options for all of the imported modules in reverse topological
1621 // order. We don't do anything to try to order import link flags with respect
1622 // to linker options inserted by things like #pragma comment().
1623 SmallVector<llvm::MDNode *, 16> MetadataArgs;
1624 Visited.clear();
1625 for (Module *M : LinkModules)
1626 if (Visited.insert(M).second)
1627 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1628 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1629 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1630
1631 // Add the linker options metadata flag.
1632 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1633 for (auto *MD : LinkerOptionsMetadata)
1634 NMD->addOperand(MD);
1635}
1636
1637void CodeGenModule::EmitDeferred() {
1638 // Emit code for any potentially referenced deferred decls. Since a
1639 // previously unused static decl may become used during the generation of code
1640 // for a static function, iterate until no changes are made.
1641
1642 if (!DeferredVTables.empty()) {
1643 EmitDeferredVTables();
1644
1645 // Emitting a vtable doesn't directly cause more vtables to
1646 // become deferred, although it can cause functions to be
1647 // emitted that then need those vtables.
1648 assert(DeferredVTables.empty())(static_cast <bool> (DeferredVTables.empty()) ? void (0
) : __assert_fail ("DeferredVTables.empty()", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1648, __extension__ __PRETTY_FUNCTION__))
;
1649 }
1650
1651 // Stop if we're out of both deferred vtables and deferred declarations.
1652 if (DeferredDeclsToEmit.empty())
1653 return;
1654
1655 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1656 // work, it will not interfere with this.
1657 std::vector<GlobalDecl> CurDeclsToEmit;
1658 CurDeclsToEmit.swap(DeferredDeclsToEmit);
1659
1660 for (GlobalDecl &D : CurDeclsToEmit) {
1661 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1662 // to get GlobalValue with exactly the type we need, not something that
1663 // might had been created for another decl with the same mangled name but
1664 // different type.
1665 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1666 GetAddrOfGlobal(D, ForDefinition));
1667
1668 // In case of different address spaces, we may still get a cast, even with
1669 // IsForDefinition equal to true. Query mangled names table to get
1670 // GlobalValue.
1671 if (!GV)
1672 GV = GetGlobalValue(getMangledName(D));
1673
1674 // Make sure GetGlobalValue returned non-null.
1675 assert(GV)(static_cast <bool> (GV) ? void (0) : __assert_fail ("GV"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1675, __extension__ __PRETTY_FUNCTION__))
;
1676
1677 // Check to see if we've already emitted this. This is necessary
1678 // for a couple of reasons: first, decls can end up in the
1679 // deferred-decls queue multiple times, and second, decls can end
1680 // up with definitions in unusual ways (e.g. by an extern inline
1681 // function acquiring a strong function redefinition). Just
1682 // ignore these cases.
1683 if (!GV->isDeclaration())
1684 continue;
1685
1686 // Otherwise, emit the definition and move on to the next one.
1687 EmitGlobalDefinition(D, GV);
1688
1689 // If we found out that we need to emit more decls, do that recursively.
1690 // This has the advantage that the decls are emitted in a DFS and related
1691 // ones are close together, which is convenient for testing.
1692 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1693 EmitDeferred();
1694 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty())(static_cast <bool> (DeferredVTables.empty() &&
DeferredDeclsToEmit.empty()) ? void (0) : __assert_fail ("DeferredVTables.empty() && DeferredDeclsToEmit.empty()"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1694, __extension__ __PRETTY_FUNCTION__))
;
1695 }
1696 }
1697}
1698
1699void CodeGenModule::EmitVTablesOpportunistically() {
1700 // Try to emit external vtables as available_externally if they have emitted
1701 // all inlined virtual functions. It runs after EmitDeferred() and therefore
1702 // is not allowed to create new references to things that need to be emitted
1703 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1704
1705 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1706, __extension__ __PRETTY_FUNCTION__))
1706 && "Only emit opportunistic vtables with optimizations")(static_cast <bool> ((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables
()) && "Only emit opportunistic vtables with optimizations"
) ? void (0) : __assert_fail ("(OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && \"Only emit opportunistic vtables with optimizations\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1706, __extension__ __PRETTY_FUNCTION__))
;
1707
1708 for (const CXXRecordDecl *RD : OpportunisticVTables) {
1709 assert(getVTables().isVTableExternal(RD) &&(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1710, __extension__ __PRETTY_FUNCTION__))
1710 "This queue should only contain external vtables")(static_cast <bool> (getVTables().isVTableExternal(RD) &&
"This queue should only contain external vtables") ? void (0
) : __assert_fail ("getVTables().isVTableExternal(RD) && \"This queue should only contain external vtables\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1710, __extension__ __PRETTY_FUNCTION__))
;
1711 if (getCXXABI().canSpeculativelyEmitVTable(RD))
1712 VTables.GenerateClassData(RD);
1713 }
1714 OpportunisticVTables.clear();
1715}
1716
1717void CodeGenModule::EmitGlobalAnnotations() {
1718 if (Annotations.empty())
1719 return;
1720
1721 // Create a new global variable for the ConstantStruct in the Module.
1722 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1723 Annotations[0]->getType(), Annotations.size()), Annotations);
1724 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1725 llvm::GlobalValue::AppendingLinkage,
1726 Array, "llvm.global.annotations");
1727 gv->setSection(AnnotationSection);
1728}
1729
1730llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1731 llvm::Constant *&AStr = AnnotationStrings[Str];
1732 if (AStr)
1733 return AStr;
1734
1735 // Not found yet, create a new global.
1736 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1737 auto *gv =
1738 new llvm::GlobalVariable(getModule(), s->getType(), true,
1739 llvm::GlobalValue::PrivateLinkage, s, ".str");
1740 gv->setSection(AnnotationSection);
1741 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1742 AStr = gv;
1743 return gv;
1744}
1745
1746llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1747 SourceManager &SM = getContext().getSourceManager();
1748 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1749 if (PLoc.isValid())
1750 return EmitAnnotationString(PLoc.getFilename());
1751 return EmitAnnotationString(SM.getBufferName(Loc));
1752}
1753
1754llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1755 SourceManager &SM = getContext().getSourceManager();
1756 PresumedLoc PLoc = SM.getPresumedLoc(L);
1757 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1758 SM.getExpansionLineNumber(L);
1759 return llvm::ConstantInt::get(Int32Ty, LineNo);
1760}
1761
1762llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1763 const AnnotateAttr *AA,
1764 SourceLocation L) {
1765 // Get the globals for file name, annotation, and the line number.
1766 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1767 *UnitGV = EmitAnnotationUnit(L),
1768 *LineNoCst = EmitAnnotationLineNo(L);
1769
1770 // Create the ConstantStruct for the global annotation.
1771 llvm::Constant *Fields[4] = {
1772 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1773 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1774 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1775 LineNoCst
1776 };
1777 return llvm::ConstantStruct::getAnon(Fields);
1778}
1779
1780void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1781 llvm::GlobalValue *GV) {
1782 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute")(static_cast <bool> (D->hasAttr<AnnotateAttr>(
) && "no annotate attribute") ? void (0) : __assert_fail
("D->hasAttr<AnnotateAttr>() && \"no annotate attribute\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1782, __extension__ __PRETTY_FUNCTION__))
;
1783 // Get the struct elements for these annotations.
1784 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1785 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1786}
1787
1788bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1789 llvm::Function *Fn,
1790 SourceLocation Loc) const {
1791 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1792 // Blacklist by function name.
1793 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1794 return true;
1795 // Blacklist by location.
1796 if (Loc.isValid())
1797 return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1798 // If location is unknown, this may be a compiler-generated function. Assume
1799 // it's located in the main file.
1800 auto &SM = Context.getSourceManager();
1801 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1802 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1803 }
1804 return false;
1805}
1806
1807bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1808 SourceLocation Loc, QualType Ty,
1809 StringRef Category) const {
1810 // For now globals can be blacklisted only in ASan and KASan.
1811 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1812 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress);
1813 if (!EnabledAsanMask)
1814 return false;
1815 const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1816 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1817 return true;
1818 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1819 return true;
1820 // Check global type.
1821 if (!Ty.isNull()) {
1822 // Drill down the array types: if global variable of a fixed type is
1823 // blacklisted, we also don't instrument arrays of them.
1824 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1825 Ty = AT->getElementType();
1826 Ty = Ty.getCanonicalType().getUnqualifiedType();
1827 // We allow to blacklist only record types (classes, structs etc.)
1828 if (Ty->isRecordType()) {
1829 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1830 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1831 return true;
1832 }
1833 }
1834 return false;
1835}
1836
1837bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1838 StringRef Category) const {
1839 if (!LangOpts.XRayInstrument)
1840 return false;
1841 const auto &XRayFilter = getContext().getXRayFilter();
1842 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1843 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1844 if (Loc.isValid())
1845 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1846 if (Attr == ImbueAttr::NONE)
1847 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1848 switch (Attr) {
1849 case ImbueAttr::NONE:
1850 return false;
1851 case ImbueAttr::ALWAYS:
1852 Fn->addFnAttr("function-instrument", "xray-always");
1853 break;
1854 case ImbueAttr::ALWAYS_ARG1:
1855 Fn->addFnAttr("function-instrument", "xray-always");
1856 Fn->addFnAttr("xray-log-args", "1");
1857 break;
1858 case ImbueAttr::NEVER:
1859 Fn->addFnAttr("function-instrument", "xray-never");
1860 break;
1861 }
1862 return true;
1863}
1864
1865bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1866 // Never defer when EmitAllDecls is specified.
1867 if (LangOpts.EmitAllDecls)
1868 return true;
1869
1870 return getContext().DeclMustBeEmitted(Global);
1871}
1872
1873bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1874 if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1875 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1876 // Implicit template instantiations may change linkage if they are later
1877 // explicitly instantiated, so they should not be emitted eagerly.
1878 return false;
1879 if (const auto *VD = dyn_cast<VarDecl>(Global))
1880 if (Context.getInlineVariableDefinitionKind(VD) ==
1881 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1882 // A definition of an inline constexpr static data member may change
1883 // linkage later if it's redeclared outside the class.
1884 return false;
1885 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1886 // codegen for global variables, because they may be marked as threadprivate.
1887 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1888 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1889 return false;
1890
1891 return true;
1892}
1893
1894ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1895 const CXXUuidofExpr* E) {
1896 // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1897 // well-formed.
1898 StringRef Uuid = E->getUuidStr();
1899 std::string Name = "_GUID_" + Uuid.lower();
1900 std::replace(Name.begin(), Name.end(), '-', '_');
1901
1902 // The UUID descriptor should be pointer aligned.
1903 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1904
1905 // Look for an existing global.
1906 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1907 return ConstantAddress(GV, Alignment);
1908
1909 llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1910 assert(Init && "failed to initialize as constant")(static_cast <bool> (Init && "failed to initialize as constant"
) ? void (0) : __assert_fail ("Init && \"failed to initialize as constant\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1910, __extension__ __PRETTY_FUNCTION__))
;
1911
1912 auto *GV = new llvm::GlobalVariable(
1913 getModule(), Init->getType(),
1914 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1915 if (supportsCOMDAT())
1916 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1917 return ConstantAddress(GV, Alignment);
1918}
1919
1920ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1921 const AliasAttr *AA = VD->getAttr<AliasAttr>();
1922 assert(AA && "No alias?")(static_cast <bool> (AA && "No alias?") ? void (
0) : __assert_fail ("AA && \"No alias?\"", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1922, __extension__ __PRETTY_FUNCTION__))
;
1923
1924 CharUnits Alignment = getContext().getDeclAlign(VD);
1925 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1926
1927 // See if there is already something with the target's name in the module.
1928 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1929 if (Entry) {
1930 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1931 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1932 return ConstantAddress(Ptr, Alignment);
1933 }
1934
1935 llvm::Constant *Aliasee;
1936 if (isa<llvm::FunctionType>(DeclTy))
1937 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1938 GlobalDecl(cast<FunctionDecl>(VD)),
1939 /*ForVTable=*/false);
1940 else
1941 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1942 llvm::PointerType::getUnqual(DeclTy),
1943 nullptr);
1944
1945 auto *F = cast<llvm::GlobalValue>(Aliasee);
1946 F->setLinkage(llvm::Function::ExternalWeakLinkage);
1947 WeakRefReferences.insert(F);
1948
1949 return ConstantAddress(Aliasee, Alignment);
1950}
1951
1952void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1953 const auto *Global = cast<ValueDecl>(GD.getDecl());
1954
1955 // Weak references don't produce any output by themselves.
1956 if (Global->hasAttr<WeakRefAttr>())
1957 return;
1958
1959 // If this is an alias definition (which otherwise looks like a declaration)
1960 // emit it now.
1961 if (Global->hasAttr<AliasAttr>())
1962 return EmitAliasDefinition(GD);
1963
1964 // IFunc like an alias whose value is resolved at runtime by calling resolver.
1965 if (Global->hasAttr<IFuncAttr>())
1966 return emitIFuncDefinition(GD);
1967
1968 // If this is CUDA, be selective about which declarations we emit.
1969 if (LangOpts.CUDA) {
1970 if (LangOpts.CUDAIsDevice) {
1971 if (!Global->hasAttr<CUDADeviceAttr>() &&
1972 !Global->hasAttr<CUDAGlobalAttr>() &&
1973 !Global->hasAttr<CUDAConstantAttr>() &&
1974 !Global->hasAttr<CUDASharedAttr>())
1975 return;
1976 } else {
1977 // We need to emit host-side 'shadows' for all global
1978 // device-side variables because the CUDA runtime needs their
1979 // size and host-side address in order to provide access to
1980 // their device-side incarnations.
1981
1982 // So device-only functions are the only things we skip.
1983 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1984 Global->hasAttr<CUDADeviceAttr>())
1985 return;
1986
1987 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1988, __extension__ __PRETTY_FUNCTION__))
1988 "Expected Variable or Function")(static_cast <bool> ((isa<FunctionDecl>(Global) ||
isa<VarDecl>(Global)) && "Expected Variable or Function"
) ? void (0) : __assert_fail ("(isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && \"Expected Variable or Function\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 1988, __extension__ __PRETTY_FUNCTION__))
;
1989 }
1990 }
1991
1992 if (LangOpts.OpenMP) {
1993 // If this is OpenMP device, check if it is legal to emit this global
1994 // normally.
1995 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1996 return;
1997 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1998 if (MustBeEmitted(Global))
1999 EmitOMPDeclareReduction(DRD);
2000 return;
2001 }
2002 }
2003
2004 // Ignore declarations, they will be emitted on their first use.
2005 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2006 // Forward declarations are emitted lazily on first use.
2007 if (!FD->doesThisDeclarationHaveABody()) {
2008 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2009 return;
2010
2011 StringRef MangledName = getMangledName(GD);
2012
2013 // Compute the function info and LLVM type.
2014 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2015 llvm::Type *Ty = getTypes().GetFunctionType(FI);
2016
2017 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2018 /*DontDefer=*/false);
2019 return;
2020 }
2021 } else {
2022 const auto *VD = cast<VarDecl>(Global);
2023 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.")(static_cast <bool> (VD->isFileVarDecl() && "Cannot emit local var decl as global."
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Cannot emit local var decl as global.\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2023, __extension__ __PRETTY_FUNCTION__))
;
2024 // We need to emit device-side global CUDA variables even if a
2025 // variable does not have a definition -- we still need to define
2026 // host-side shadow for it.
2027 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2028 !VD->hasDefinition() &&
2029 (VD->hasAttr<CUDAConstantAttr>() ||
2030 VD->hasAttr<CUDADeviceAttr>());
2031 if (!MustEmitForCuda &&
2032 VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2033 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2034 // If this declaration may have caused an inline variable definition to
2035 // change linkage, make sure that it's emitted.
2036 if (Context.getInlineVariableDefinitionKind(VD) ==
2037 ASTContext::InlineVariableDefinitionKind::Strong)
2038 GetAddrOfGlobalVar(VD);
2039 return;
2040 }
2041 }
2042
2043 // Defer code generation to first use when possible, e.g. if this is an inline
2044 // function. If the global must always be emitted, do it eagerly if possible
2045 // to benefit from cache locality.
2046 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2047 // Emit the definition if it can't be deferred.
2048 EmitGlobalDefinition(GD);
2049 return;
2050 }
2051
2052 // If we're deferring emission of a C++ variable with an
2053 // initializer, remember the order in which it appeared in the file.
2054 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2055 cast<VarDecl>(Global)->hasInit()) {
2056 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2057 CXXGlobalInits.push_back(nullptr);
2058 }
2059
2060 StringRef MangledName = getMangledName(GD);
2061 if (GetGlobalValue(MangledName) != nullptr) {
2062 // The value has already been used and should therefore be emitted.
2063 addDeferredDeclToEmit(GD);
2064 } else if (MustBeEmitted(Global)) {
2065 // The value must be emitted, but cannot be emitted eagerly.
2066 assert(!MayBeEmittedEagerly(Global))(static_cast <bool> (!MayBeEmittedEagerly(Global)) ? void
(0) : __assert_fail ("!MayBeEmittedEagerly(Global)", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2066, __extension__ __PRETTY_FUNCTION__))
;
2067 addDeferredDeclToEmit(GD);
2068 } else {
2069 // Otherwise, remember that we saw a deferred decl with this name. The
2070 // first use of the mangled name will cause it to move into
2071 // DeferredDeclsToEmit.
2072 DeferredDecls[MangledName] = GD;
2073 }
2074}
2075
2076// Check if T is a class type with a destructor that's not dllimport.
2077static bool HasNonDllImportDtor(QualType T) {
2078 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2079 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2080 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2081 return true;
2082
2083 return false;
2084}
2085
2086namespace {
2087 struct FunctionIsDirectlyRecursive :
2088 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2089 const StringRef Name;
2090 const Builtin::Context &BI;
2091 bool Result;
2092 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2093 Name(N), BI(C), Result(false) {
2094 }
2095 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2096
2097 bool TraverseCallExpr(CallExpr *E) {
2098 const FunctionDecl *FD = E->getDirectCallee();
2099 if (!FD)
2100 return true;
2101 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2102 if (Attr && Name == Attr->getLabel()) {
2103 Result = true;
2104 return false;
2105 }
2106 unsigned BuiltinID = FD->getBuiltinID();
2107 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2108 return true;
2109 StringRef BuiltinName = BI.getName(BuiltinID);
2110 if (BuiltinName.startswith("__builtin_") &&
2111 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2112 Result = true;
2113 return false;
2114 }
2115 return true;
2116 }
2117 };
2118
2119 // Make sure we're not referencing non-imported vars or functions.
2120 struct DLLImportFunctionVisitor
2121 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2122 bool SafeToInline = true;
2123
2124 bool shouldVisitImplicitCode() const { return true; }
2125
2126 bool VisitVarDecl(VarDecl *VD) {
2127 if (VD->getTLSKind()) {
2128 // A thread-local variable cannot be imported.
2129 SafeToInline = false;
2130 return SafeToInline;
2131 }
2132
2133 // A variable definition might imply a destructor call.
2134 if (VD->isThisDeclarationADefinition())
2135 SafeToInline = !HasNonDllImportDtor(VD->getType());
2136
2137 return SafeToInline;
2138 }
2139
2140 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2141 if (const auto *D = E->getTemporary()->getDestructor())
2142 SafeToInline = D->hasAttr<DLLImportAttr>();
2143 return SafeToInline;
2144 }
2145
2146 bool VisitDeclRefExpr(DeclRefExpr *E) {
2147 ValueDecl *VD = E->getDecl();
2148 if (isa<FunctionDecl>(VD))
2149 SafeToInline = VD->hasAttr<DLLImportAttr>();
2150 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2151 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2152 return SafeToInline;
2153 }
2154
2155 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2156 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2157 return SafeToInline;
2158 }
2159
2160 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2161 CXXMethodDecl *M = E->getMethodDecl();
2162 if (!M) {
2163 // Call through a pointer to member function. This is safe to inline.
2164 SafeToInline = true;
2165 } else {
2166 SafeToInline = M->hasAttr<DLLImportAttr>();
2167 }
2168 return SafeToInline;
2169 }
2170
2171 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2172 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2173 return SafeToInline;
2174 }
2175
2176 bool VisitCXXNewExpr(CXXNewExpr *E) {
2177 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2178 return SafeToInline;
2179 }
2180 };
2181}
2182
2183// isTriviallyRecursive - Check if this function calls another
2184// decl that, because of the asm attribute or the other decl being a builtin,
2185// ends up pointing to itself.
2186bool
2187CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2188 StringRef Name;
2189 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2190 // asm labels are a special kind of mangling we have to support.
2191 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2192 if (!Attr)
2193 return false;
2194 Name = Attr->getLabel();
2195 } else {
2196 Name = FD->getName();
2197 }
2198
2199 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2200 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2201 return Walker.Result;
2202}
2203
2204bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2205 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2206 return true;
2207 const auto *F = cast<FunctionDecl>(GD.getDecl());
2208 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2209 return false;
2210
2211 if (F->hasAttr<DLLImportAttr>()) {
2212 // Check whether it would be safe to inline this dllimport function.
2213 DLLImportFunctionVisitor Visitor;
2214 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2215 if (!Visitor.SafeToInline)
2216 return false;
2217
2218 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2219 // Implicit destructor invocations aren't captured in the AST, so the
2220 // check above can't see them. Check for them manually here.
2221 for (const Decl *Member : Dtor->getParent()->decls())
2222 if (isa<FieldDecl>(Member))
2223 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2224 return false;
2225 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2226 if (HasNonDllImportDtor(B.getType()))
2227 return false;
2228 }
2229 }
2230
2231 // PR9614. Avoid cases where the source code is lying to us. An available
2232 // externally function should have an equivalent function somewhere else,
2233 // but a function that calls itself is clearly not equivalent to the real
2234 // implementation.
2235 // This happens in glibc's btowc and in some configure checks.
2236 return !isTriviallyRecursive(F);
2237}
2238
2239bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2240 return CodeGenOpts.OptimizationLevel > 0;
2241}
2242
2243void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2244 const auto *D = cast<ValueDecl>(GD.getDecl());
2245
2246 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2247 Context.getSourceManager(),
2248 "Generating code for declaration");
2249
2250 if (isa<FunctionDecl>(D)) {
2251 // At -O0, don't generate IR for functions with available_externally
2252 // linkage.
2253 if (!shouldEmitFunction(GD))
2254 return;
2255
2256 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2257 // Make sure to emit the definition(s) before we emit the thunks.
2258 // This is necessary for the generation of certain thunks.
2259 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2260 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2261 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2262 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2263 else
2264 EmitGlobalFunctionDefinition(GD, GV);
2265
2266 if (Method->isVirtual())
2267 getVTables().EmitThunks(GD);
2268
2269 return;
2270 }
2271
2272 return EmitGlobalFunctionDefinition(GD, GV);
2273 }
2274
2275 if (const auto *VD = dyn_cast<VarDecl>(D))
2276 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2277
2278 llvm_unreachable("Invalid argument to EmitGlobalDefinition()")::llvm::llvm_unreachable_internal("Invalid argument to EmitGlobalDefinition()"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2278)
;
2279}
2280
2281static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2282 llvm::Function *NewFn);
2283
2284void CodeGenModule::emitMultiVersionFunctions() {
2285 for (GlobalDecl GD : MultiVersionFuncs) {
2286 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2287 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2288 getContext().forEachMultiversionedFunctionVersion(
2289 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2290 GlobalDecl CurGD{
2291 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2292 StringRef MangledName = getMangledName(CurGD);
2293 llvm::Constant *Func = GetGlobalValue(MangledName);
2294 if (!Func) {
2295 if (CurFD->isDefined()) {
2296 EmitGlobalFunctionDefinition(CurGD, nullptr);
2297 Func = GetGlobalValue(MangledName);
2298 } else {
2299 const CGFunctionInfo &FI =
2300 getTypes().arrangeGlobalDeclaration(GD);
2301 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2302 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2303 /*DontDefer=*/false, ForDefinition);
2304 }
2305 assert(Func && "This should have just been created")(static_cast <bool> (Func && "This should have just been created"
) ? void (0) : __assert_fail ("Func && \"This should have just been created\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2305, __extension__ __PRETTY_FUNCTION__))
;
2306 }
2307 Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2308 CurFD->getAttr<TargetAttr>()->parse());
2309 });
2310
2311 llvm::Function *ResolverFunc = cast<llvm::Function>(
2312 GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2313 if (supportsCOMDAT())
2314 ResolverFunc->setComdat(
2315 getModule().getOrInsertComdat(ResolverFunc->getName()));
2316 std::stable_sort(
2317 Options.begin(), Options.end(),
2318 std::greater<CodeGenFunction::MultiVersionResolverOption>());
2319 CodeGenFunction CGF(*this);
2320 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2321 }
2322}
2323
2324/// If an ifunc for the specified mangled name is not in the module, create and
2325/// return an llvm IFunc Function with the specified type.
2326llvm::Constant *
2327CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2328 StringRef MangledName,
2329 const FunctionDecl *FD) {
2330 std::string IFuncName = (MangledName + ".ifunc").str();
2331 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2332 return IFuncGV;
2333
2334 // Since this is the first time we've created this IFunc, make sure
2335 // that we put this multiversioned function into the list to be
2336 // replaced later.
2337 MultiVersionFuncs.push_back(GD);
2338
2339 std::string ResolverName = (MangledName + ".resolver").str();
2340 llvm::Type *ResolverType = llvm::FunctionType::get(
2341 llvm::PointerType::get(DeclTy,
2342 Context.getTargetAddressSpace(FD->getType())),
2343 false);
2344 llvm::Constant *Resolver =
2345 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2346 /*ForVTable=*/false);
2347 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2348 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2349 GIF->setName(IFuncName);
2350 SetCommonAttributes(FD, GIF);
2351
2352 return GIF;
2353}
2354
2355/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2356/// module, create and return an llvm Function with the specified type. If there
2357/// is something in the module with the specified name, return it potentially
2358/// bitcasted to the right type.
2359///
2360/// If D is non-null, it specifies a decl that correspond to this. This is used
2361/// to set the attributes on the function when it is first created.
2362llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2363 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2364 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2365 ForDefinition_t IsForDefinition) {
2366 const Decl *D = GD.getDecl();
2367
2368 // Any attempts to use a MultiVersion function should result in retrieving
2369 // the iFunc instead. Name Mangling will handle the rest of the changes.
2370 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2371 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2372 UpdateMultiVersionNames(GD, FD);
2373 if (!IsForDefinition)
2374 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2375 }
2376 }
2377
2378 // Lookup the entry, lazily creating it if necessary.
2379 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2380 if (Entry) {
2381 if (WeakRefReferences.erase(Entry)) {
2382 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2383 if (FD && !FD->hasAttr<WeakAttr>())
2384 Entry->setLinkage(llvm::Function::ExternalLinkage);
2385 }
2386
2387 // Handle dropped DLL attributes.
2388 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2389 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2390
2391 // If there are two attempts to define the same mangled name, issue an
2392 // error.
2393 if (IsForDefinition && !Entry->isDeclaration()) {
2394 GlobalDecl OtherGD;
2395 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2396 // to make sure that we issue an error only once.
2397 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2398 (GD.getCanonicalDecl().getDecl() !=
2399 OtherGD.getCanonicalDecl().getDecl()) &&
2400 DiagnosedConflictingDefinitions.insert(GD).second) {
2401 getDiags().Report(D->getLocation(),
2402 diag::err_duplicate_mangled_name);
2403 getDiags().Report(OtherGD.getDecl()->getLocation(),
2404 diag::note_previous_definition);
2405 }
2406 }
2407
2408 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2409 (Entry->getType()->getElementType() == Ty)) {
2410 return Entry;
2411 }
2412
2413 // Make sure the result is of the correct type.
2414 // (If function is requested for a definition, we always need to create a new
2415 // function, not just return a bitcast.)
2416 if (!IsForDefinition)
2417 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2418 }
2419
2420 // This function doesn't have a complete type (for example, the return
2421 // type is an incomplete struct). Use a fake type instead, and make
2422 // sure not to try to set attributes.
2423 bool IsIncompleteFunction = false;
2424
2425 llvm::FunctionType *FTy;
2426 if (isa<llvm::FunctionType>(Ty)) {
2427 FTy = cast<llvm::FunctionType>(Ty);
2428 } else {
2429 FTy = llvm::FunctionType::get(VoidTy, false);
2430 IsIncompleteFunction = true;
2431 }
2432
2433 llvm::Function *F =
2434 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2435 Entry ? StringRef() : MangledName, &getModule());
2436
2437 // If we already created a function with the same mangled name (but different
2438 // type) before, take its name and add it to the list of functions to be
2439 // replaced with F at the end of CodeGen.
2440 //
2441 // This happens if there is a prototype for a function (e.g. "int f()") and
2442 // then a definition of a different type (e.g. "int f(int x)").
2443 if (Entry) {
2444 F->takeName(Entry);
2445
2446 // This might be an implementation of a function without a prototype, in
2447 // which case, try to do special replacement of calls which match the new
2448 // prototype. The really key thing here is that we also potentially drop
2449 // arguments from the call site so as to make a direct call, which makes the
2450 // inliner happier and suppresses a number of optimizer warnings (!) about
2451 // dropping arguments.
2452 if (!Entry->use_empty()) {
2453 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2454 Entry->removeDeadConstantUsers();
2455 }
2456
2457 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2458 F, Entry->getType()->getElementType()->getPointerTo());
2459 addGlobalValReplacement(Entry, BC);
2460 }
2461
2462 assert(F->getName() == MangledName && "name was uniqued!")(static_cast <bool> (F->getName() == MangledName &&
"name was uniqued!") ? void (0) : __assert_fail ("F->getName() == MangledName && \"name was uniqued!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2462, __extension__ __PRETTY_FUNCTION__))
;
2463 if (D)
2464 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2465 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2466 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2467 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2468 }
2469
2470 if (!DontDefer) {
2471 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2472 // each other bottoming out with the base dtor. Therefore we emit non-base
2473 // dtors on usage, even if there is no dtor definition in the TU.
2474 if (D && isa<CXXDestructorDecl>(D) &&
2475 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2476 GD.getDtorType()))
2477 addDeferredDeclToEmit(GD);
2478
2479 // This is the first use or definition of a mangled name. If there is a
2480 // deferred decl with this name, remember that we need to emit it at the end
2481 // of the file.
2482 auto DDI = DeferredDecls.find(MangledName);
2483 if (DDI != DeferredDecls.end()) {
2484 // Move the potentially referenced deferred decl to the
2485 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2486 // don't need it anymore).
2487 addDeferredDeclToEmit(DDI->second);
2488 DeferredDecls.erase(DDI);
2489
2490 // Otherwise, there are cases we have to worry about where we're
2491 // using a declaration for which we must emit a definition but where
2492 // we might not find a top-level definition:
2493 // - member functions defined inline in their classes
2494 // - friend functions defined inline in some class
2495 // - special member functions with implicit definitions
2496 // If we ever change our AST traversal to walk into class methods,
2497 // this will be unnecessary.
2498 //
2499 // We also don't emit a definition for a function if it's going to be an
2500 // entry in a vtable, unless it's already marked as used.
2501 } else if (getLangOpts().CPlusPlus && D) {
2502 // Look for a declaration that's lexically in a record.
2503 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2504 FD = FD->getPreviousDecl()) {
2505 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2506 if (FD->doesThisDeclarationHaveABody()) {
2507 addDeferredDeclToEmit(GD.getWithDecl(FD));
2508 break;
2509 }
2510 }
2511 }
2512 }
2513 }
2514
2515 // Make sure the result is of the requested type.
2516 if (!IsIncompleteFunction) {
2517 assert(F->getType()->getElementType() == Ty)(static_cast <bool> (F->getType()->getElementType
() == Ty) ? void (0) : __assert_fail ("F->getType()->getElementType() == Ty"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2517, __extension__ __PRETTY_FUNCTION__))
;
2518 return F;
2519 }
2520
2521 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2522 return llvm::ConstantExpr::getBitCast(F, PTy);
2523}
2524
2525/// GetAddrOfFunction - Return the address of the given function. If Ty is
2526/// non-null, then this function will use the specified type if it has to
2527/// create it (this occurs when we see a definition of the function).
2528llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2529 llvm::Type *Ty,
2530 bool ForVTable,
2531 bool DontDefer,
2532 ForDefinition_t IsForDefinition) {
2533 // If there was no specific requested type, just convert it now.
2534 if (!Ty) {
2535 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2536 auto CanonTy = Context.getCanonicalType(FD->getType());
2537 Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2538 }
2539
2540 StringRef MangledName = getMangledName(GD);
2541 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2542 /*IsThunk=*/false, llvm::AttributeList(),
2543 IsForDefinition);
2544}
2545
2546static const FunctionDecl *
2547GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2548 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2549 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2550
2551 IdentifierInfo &CII = C.Idents.get(Name);
2552 for (const auto &Result : DC->lookup(&CII))
2553 if (const auto FD = dyn_cast<FunctionDecl>(Result))
2554 return FD;
2555
2556 if (!C.getLangOpts().CPlusPlus)
2557 return nullptr;
2558
2559 // Demangle the premangled name from getTerminateFn()
2560 IdentifierInfo &CXXII =
2561 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2562 ? C.Idents.get("terminate")
2563 : C.Idents.get(Name);
2564
2565 for (const auto &N : {"__cxxabiv1", "std"}) {
2566 IdentifierInfo &NS = C.Idents.get(N);
2567 for (const auto &Result : DC->lookup(&NS)) {
2568 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2569 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2570 for (const auto &Result : LSD->lookup(&NS))
2571 if ((ND = dyn_cast<NamespaceDecl>(Result)))
2572 break;
2573
2574 if (ND)
2575 for (const auto &Result : ND->lookup(&CXXII))
2576 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2577 return FD;
2578 }
2579 }
2580
2581 return nullptr;
2582}
2583
2584/// CreateRuntimeFunction - Create a new runtime function with the specified
2585/// type and name.
2586llvm::Constant *
2587CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2588 llvm::AttributeList ExtraAttrs,
2589 bool Local) {
2590 llvm::Constant *C =
2591 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2592 /*DontDefer=*/false, /*IsThunk=*/false,
2593 ExtraAttrs);
2594
2595 if (auto *F = dyn_cast<llvm::Function>(C)) {
2596 if (F->empty()) {
2597 F->setCallingConv(getRuntimeCC());
2598
2599 if (!Local && getTriple().isOSBinFormatCOFF() &&
2600 !getCodeGenOpts().LTOVisibilityPublicStd &&
2601 !getTriple().isWindowsGNUEnvironment()) {
2602 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2603 if (!FD || FD->hasAttr<DLLImportAttr>()) {
2604 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2605 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2606 }
2607 }
2608 }
2609 }
2610
2611 return C;
2612}
2613
2614/// CreateBuiltinFunction - Create a new builtin function with the specified
2615/// type and name.
2616llvm::Constant *
2617CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2618 llvm::AttributeList ExtraAttrs) {
2619 llvm::Constant *C =
2620 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2621 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2622 if (auto *F = dyn_cast<llvm::Function>(C))
2623 if (F->empty())
2624 F->setCallingConv(getBuiltinCC());
2625 return C;
2626}
2627
2628/// isTypeConstant - Determine whether an object of this type can be emitted
2629/// as a constant.
2630///
2631/// If ExcludeCtor is true, the duration when the object's constructor runs
2632/// will not be considered. The caller will need to verify that the object is
2633/// not written to during its construction.
2634bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2635 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2636 return false;
2637
2638 if (Context.getLangOpts().CPlusPlus) {
2639 if (const CXXRecordDecl *Record
2640 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2641 return ExcludeCtor && !Record->hasMutableFields() &&
2642 Record->hasTrivialDestructor();
2643 }
2644
2645 return true;
2646}
2647
2648/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2649/// create and return an llvm GlobalVariable with the specified type. If there
2650/// is something in the module with the specified name, return it potentially
2651/// bitcasted to the right type.
2652///
2653/// If D is non-null, it specifies a decl that correspond to this. This is used
2654/// to set the attributes on the global when it is first created.
2655///
2656/// If IsForDefinition is true, it is guranteed that an actual global with
2657/// type Ty will be returned, not conversion of a variable with the same
2658/// mangled name but some other type.
2659llvm::Constant *
2660CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2661 llvm::PointerType *Ty,
2662 const VarDecl *D,
2663 ForDefinition_t IsForDefinition) {
2664 // Lookup the entry, lazily creating it if necessary.
2665 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2666 if (Entry) {
2667 if (WeakRefReferences.erase(Entry)) {
2668 if (D && !D->hasAttr<WeakAttr>())
2669 Entry->setLinkage(llvm::Function::ExternalLinkage);
2670 }
2671
2672 // Handle dropped DLL attributes.
2673 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2674 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2675
2676 if (Entry->getType() == Ty)
2677 return Entry;
2678
2679 // If there are two attempts to define the same mangled name, issue an
2680 // error.
2681 if (IsForDefinition && !Entry->isDeclaration()) {
2682 GlobalDecl OtherGD;
2683 const VarDecl *OtherD;
2684
2685 // Check that D is not yet in DiagnosedConflictingDefinitions is required
2686 // to make sure that we issue an error only once.
2687 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2688 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2689 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2690 OtherD->hasInit() &&
2691 DiagnosedConflictingDefinitions.insert(D).second) {
2692 getDiags().Report(D->getLocation(),
2693 diag::err_duplicate_mangled_name);
2694 getDiags().Report(OtherGD.getDecl()->getLocation(),
2695 diag::note_previous_definition);
2696 }
2697 }
2698
2699 // Make sure the result is of the correct type.
2700 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2701 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2702
2703 // (If global is requested for a definition, we always need to create a new
2704 // global, not just return a bitcast.)
2705 if (!IsForDefinition)
2706 return llvm::ConstantExpr::getBitCast(Entry, Ty);
2707 }
2708
2709 auto AddrSpace = GetGlobalVarAddressSpace(D);
2710 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2711
2712 auto *GV = new llvm::GlobalVariable(
2713 getModule(), Ty->getElementType(), false,
2714 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2715 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2716
2717 // If we already created a global with the same mangled name (but different
2718 // type) before, take its name and remove it from its parent.
2719 if (Entry) {
2720 GV->takeName(Entry);
2721
2722 if (!Entry->use_empty()) {
2723 llvm::Constant *NewPtrForOldDecl =
2724 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2725 Entry->replaceAllUsesWith(NewPtrForOldDecl);
2726 }
2727
2728 Entry->eraseFromParent();
2729 }
2730
2731 // This is the first use or definition of a mangled name. If there is a
2732 // deferred decl with this name, remember that we need to emit it at the end
2733 // of the file.
2734 auto DDI = DeferredDecls.find(MangledName);
2735 if (DDI != DeferredDecls.end()) {
2736 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2737 // list, and remove it from DeferredDecls (since we don't need it anymore).
2738 addDeferredDeclToEmit(DDI->second);
2739 DeferredDecls.erase(DDI);
2740 }
2741
2742 // Handle things which are present even on external declarations.
2743 if (D) {
2744 // FIXME: This code is overly simple and should be merged with other global
2745 // handling.
2746 GV->setConstant(isTypeConstant(D->getType(), false));
2747
2748 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2749
2750 setLinkageForGV(GV, D);
2751
2752 if (D->getTLSKind()) {
2753 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2754 CXXThreadLocals.push_back(D);
2755 setTLSMode(GV, *D);
2756 }
2757
2758 setGVProperties(GV, D);
2759
2760 // If required by the ABI, treat declarations of static data members with
2761 // inline initializers as definitions.
2762 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2763 EmitGlobalVarDefinition(D);
2764 }
2765
2766 // Emit section information for extern variables.
2767 if (D->hasExternalStorage()) {
2768 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2769 GV->setSection(SA->getName());
2770 }
2771
2772 // Handle XCore specific ABI requirements.
2773 if (getTriple().getArch() == llvm::Triple::xcore &&
2774 D->getLanguageLinkage() == CLanguageLinkage &&
2775 D->getType().isConstant(Context) &&
2776 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2777 GV->setSection(".cp.rodata");
2778
2779 // Check if we a have a const declaration with an initializer, we may be
2780 // able to emit it as available_externally to expose it's value to the
2781 // optimizer.
2782 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2783 D->getType().isConstQualified() && !GV->hasInitializer() &&
2784 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2785 const auto *Record =
2786 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2787 bool HasMutableFields = Record && Record->hasMutableFields();
2788 if (!HasMutableFields) {
2789 const VarDecl *InitDecl;
2790 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2791 if (InitExpr) {
2792 ConstantEmitter emitter(*this);
2793 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2794 if (Init) {
2795 auto *InitType = Init->getType();
2796 if (GV->getType()->getElementType() != InitType) {
2797 // The type of the initializer does not match the definition.
2798 // This happens when an initializer has a different type from
2799 // the type of the global (because of padding at the end of a
2800 // structure for instance).
2801 GV->setName(StringRef());
2802 // Make a new global with the correct type, this is now guaranteed
2803 // to work.
2804 auto *NewGV = cast<llvm::GlobalVariable>(
2805 GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2806
2807 // Erase the old global, since it is no longer used.
2808 cast<llvm::GlobalValue>(GV)->eraseFromParent();
2809 GV = NewGV;
2810 } else {
2811 GV->setInitializer(Init);
2812 GV->setConstant(true);
2813 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2814 }
2815 emitter.finalize(GV);
2816 }
2817 }
2818 }
2819 }
2820 }
2821
2822 LangAS ExpectedAS =
2823 D ? D->getType().getAddressSpace()
2824 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2825 assert(getContext().getTargetAddressSpace(ExpectedAS) ==(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2826, __extension__ __PRETTY_FUNCTION__))
2826 Ty->getPointerAddressSpace())(static_cast <bool> (getContext().getTargetAddressSpace
(ExpectedAS) == Ty->getPointerAddressSpace()) ? void (0) :
__assert_fail ("getContext().getTargetAddressSpace(ExpectedAS) == Ty->getPointerAddressSpace()"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2826, __extension__ __PRETTY_FUNCTION__))
;
2827 if (AddrSpace != ExpectedAS)
2828 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2829 ExpectedAS, Ty);
2830
2831 return GV;
2832}
2833
2834llvm::Constant *
2835CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2836 ForDefinition_t IsForDefinition) {
2837 const Decl *D = GD.getDecl();
2838 if (isa<CXXConstructorDecl>(D))
2839 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2840 getFromCtorType(GD.getCtorType()),
2841 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2842 /*DontDefer=*/false, IsForDefinition);
2843 else if (isa<CXXDestructorDecl>(D))
2844 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2845 getFromDtorType(GD.getDtorType()),
2846 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2847 /*DontDefer=*/false, IsForDefinition);
2848 else if (isa<CXXMethodDecl>(D)) {
2849 auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2850 cast<CXXMethodDecl>(D));
2851 auto Ty = getTypes().GetFunctionType(*FInfo);
2852 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2853 IsForDefinition);
2854 } else if (isa<FunctionDecl>(D)) {
2855 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2856 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2857 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2858 IsForDefinition);
2859 } else
2860 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2861 IsForDefinition);
2862}
2863
2864llvm::GlobalVariable *
2865CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2866 llvm::Type *Ty,
2867 llvm::GlobalValue::LinkageTypes Linkage) {
2868 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2869 llvm::GlobalVariable *OldGV = nullptr;
2870
2871 if (GV) {
2872 // Check if the variable has the right type.
2873 if (GV->getType()->getElementType() == Ty)
2874 return GV;
2875
2876 // Because C++ name mangling, the only way we can end up with an already
2877 // existing global with the same name is if it has been declared extern "C".
2878 assert(GV->isDeclaration() && "Declaration has wrong type!")(static_cast <bool> (GV->isDeclaration() && "Declaration has wrong type!"
) ? void (0) : __assert_fail ("GV->isDeclaration() && \"Declaration has wrong type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2878, __extension__ __PRETTY_FUNCTION__))
;
2879 OldGV = GV;
2880 }
2881
2882 // Create a new variable.
2883 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2884 Linkage, nullptr, Name);
2885
2886 if (OldGV) {
2887 // Replace occurrences of the old variable if needed.
2888 GV->takeName(OldGV);
2889
2890 if (!OldGV->use_empty()) {
2891 llvm::Constant *NewPtrForOldDecl =
2892 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2893 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2894 }
2895
2896 OldGV->eraseFromParent();
2897 }
2898
2899 if (supportsCOMDAT() && GV->isWeakForLinker() &&
2900 !GV->hasAvailableExternallyLinkage())
2901 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2902
2903 return GV;
2904}
2905
2906/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2907/// given global variable. If Ty is non-null and if the global doesn't exist,
2908/// then it will be created with the specified type instead of whatever the
2909/// normal requested type would be. If IsForDefinition is true, it is guranteed
2910/// that an actual global with type Ty will be returned, not conversion of a
2911/// variable with the same mangled name but some other type.
2912llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2913 llvm::Type *Ty,
2914 ForDefinition_t IsForDefinition) {
2915 assert(D->hasGlobalStorage() && "Not a global variable")(static_cast <bool> (D->hasGlobalStorage() &&
"Not a global variable") ? void (0) : __assert_fail ("D->hasGlobalStorage() && \"Not a global variable\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2915, __extension__ __PRETTY_FUNCTION__))
;
2916 QualType ASTTy = D->getType();
2917 if (!Ty)
2918 Ty = getTypes().ConvertTypeForMem(ASTTy);
2919
2920 llvm::PointerType *PTy =
2921 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2922
2923 StringRef MangledName = getMangledName(D);
2924 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2925}
2926
2927/// CreateRuntimeVariable - Create a new runtime global variable with the
2928/// specified type and name.
2929llvm::Constant *
2930CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2931 StringRef Name) {
2932 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2933}
2934
2935void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2936 assert(!D->getInit() && "Cannot emit definite definitions here!")(static_cast <bool> (!D->getInit() && "Cannot emit definite definitions here!"
) ? void (0) : __assert_fail ("!D->getInit() && \"Cannot emit definite definitions here!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2936, __extension__ __PRETTY_FUNCTION__))
;
2937
2938 StringRef MangledName = getMangledName(D);
2939 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2940
2941 // We already have a definition, not declaration, with the same mangled name.
2942 // Emitting of declaration is not required (and actually overwrites emitted
2943 // definition).
2944 if (GV && !GV->isDeclaration())
2945 return;
2946
2947 // If we have not seen a reference to this variable yet, place it into the
2948 // deferred declarations table to be emitted if needed later.
2949 if (!MustBeEmitted(D) && !GV) {
2950 DeferredDecls[MangledName] = D;
2951 return;
2952 }
2953
2954 // The tentative definition is the only definition.
2955 EmitGlobalVarDefinition(D);
2956}
2957
2958CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2959 return Context.toCharUnitsFromBits(
2960 getDataLayout().getTypeStoreSizeInBits(Ty));
2961}
2962
2963LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
2964 LangAS AddrSpace = LangAS::Default;
2965 if (LangOpts.OpenCL) {
2966 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
2967 assert(AddrSpace == LangAS::opencl_global ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2970, __extension__ __PRETTY_FUNCTION__))
2968 AddrSpace == LangAS::opencl_constant ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2970, __extension__ __PRETTY_FUNCTION__))
2969 AddrSpace == LangAS::opencl_local ||(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2970, __extension__ __PRETTY_FUNCTION__))
2970 AddrSpace >= LangAS::FirstTargetAddressSpace)(static_cast <bool> (AddrSpace == LangAS::opencl_global
|| AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS
::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace
) ? void (0) : __assert_fail ("AddrSpace == LangAS::opencl_global || AddrSpace == LangAS::opencl_constant || AddrSpace == LangAS::opencl_local || AddrSpace >= LangAS::FirstTargetAddressSpace"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 2970, __extension__ __PRETTY_FUNCTION__))
;
2971 return AddrSpace;
2972 }
2973
2974 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2975 if (D && D->hasAttr<CUDAConstantAttr>())
2976 return LangAS::cuda_constant;
2977 else if (D && D->hasAttr<CUDASharedAttr>())
2978 return LangAS::cuda_shared;
2979 else
2980 return LangAS::cuda_device;
2981 }
2982
2983 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
2984}
2985
2986template<typename SomeDecl>
2987void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2988 llvm::GlobalValue *GV) {
2989 if (!getLangOpts().CPlusPlus)
2990 return;
2991
2992 // Must have 'used' attribute, or else inline assembly can't rely on
2993 // the name existing.
2994 if (!D->template hasAttr<UsedAttr>())
2995 return;
2996
2997 // Must have internal linkage and an ordinary name.
2998 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2999 return;
3000
3001 // Must be in an extern "C" context. Entities declared directly within
3002 // a record are not extern "C" even if the record is in such a context.
3003 const SomeDecl *First = D->getFirstDecl();
3004 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3005 return;
3006
3007 // OK, this is an internal linkage entity inside an extern "C" linkage
3008 // specification. Make a note of that so we can give it the "expected"
3009 // mangled name if nothing else is using that name.
3010 std::pair<StaticExternCMap::iterator, bool> R =
3011 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3012
3013 // If we have multiple internal linkage entities with the same name
3014 // in extern "C" regions, none of them gets that name.
3015 if (!R.second)
3016 R.first->second = nullptr;
3017}
3018
3019static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3020 if (!CGM.supportsCOMDAT())
3021 return false;
3022
3023 if (D.hasAttr<SelectAnyAttr>())
3024 return true;
3025
3026 GVALinkage Linkage;
3027 if (auto *VD = dyn_cast<VarDecl>(&D))
3028 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3029 else
3030 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3031
3032 switch (Linkage) {
3033 case GVA_Internal:
3034 case GVA_AvailableExternally:
3035 case GVA_StrongExternal:
3036 return false;
3037 case GVA_DiscardableODR:
3038 case GVA_StrongODR:
3039 return true;
3040 }
3041 llvm_unreachable("No such linkage")::llvm::llvm_unreachable_internal("No such linkage", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3041)
;
3042}
3043
3044void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3045 llvm::GlobalObject &GO) {
3046 if (!shouldBeInCOMDAT(*this, D))
3047 return;
3048 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3049}
3050
3051/// Pass IsTentative as true if you want to create a tentative definition.
3052void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3053 bool IsTentative) {
3054 // OpenCL global variables of sampler type are translated to function calls,
3055 // therefore no need to be translated.
3056 QualType ASTTy = D->getType();
3057 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3058 return;
3059
3060 llvm::Constant *Init = nullptr;
3061 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3062 bool NeedsGlobalCtor = false;
3063 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3064
3065 const VarDecl *InitDecl;
3066 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3067
3068 Optional<ConstantEmitter> emitter;
3069
3070 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3071 // as part of their declaration." Sema has already checked for
3072 // error cases, so we just need to set Init to UndefValue.
3073 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3074 D->hasAttr<CUDASharedAttr>())
3075 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3076 else if (!InitExpr) {
3077 // This is a tentative definition; tentative definitions are
3078 // implicitly initialized with { 0 }.
3079 //
3080 // Note that tentative definitions are only emitted at the end of
3081 // a translation unit, so they should never have incomplete
3082 // type. In addition, EmitTentativeDefinition makes sure that we
3083 // never attempt to emit a tentative definition if a real one
3084 // exists. A use may still exists, however, so we still may need
3085 // to do a RAUW.
3086 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type")(static_cast <bool> (!ASTTy->isIncompleteType() &&
"Unexpected incomplete type") ? void (0) : __assert_fail ("!ASTTy->isIncompleteType() && \"Unexpected incomplete type\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3086, __extension__ __PRETTY_FUNCTION__))
;
3087 Init = EmitNullConstant(D->getType());
3088 } else {
3089 initializedGlobalDecl = GlobalDecl(D);
3090 emitter.emplace(*this);
3091 Init = emitter->tryEmitForInitializer(*InitDecl);
3092
3093 if (!Init) {
3094 QualType T = InitExpr->getType();
3095 if (D->getType()->isReferenceType())
3096 T = D->getType();
3097
3098 if (getLangOpts().CPlusPlus) {
3099 Init = EmitNullConstant(T);
3100 NeedsGlobalCtor = true;
3101 } else {
3102 ErrorUnsupported(D, "static initializer");
3103 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3104 }
3105 } else {
3106 // We don't need an initializer, so remove the entry for the delayed
3107 // initializer position (just in case this entry was delayed) if we
3108 // also don't need to register a destructor.
3109 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3110 DelayedCXXInitPosition.erase(D);
3111 }
3112 }
3113
3114 llvm::Type* InitType = Init->getType();
3115 llvm::Constant *Entry =
3116 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3117
3118 // Strip off a bitcast if we got one back.
3119 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3120 assert(CE->getOpcode() == llvm::Instruction::BitCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3123, __extension__ __PRETTY_FUNCTION__))
3121 CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3123, __extension__ __PRETTY_FUNCTION__))
3122 // All zero index gep.(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3123, __extension__ __PRETTY_FUNCTION__))
3123 CE->getOpcode() == llvm::Instruction::GetElementPtr)(static_cast <bool> (CE->getOpcode() == llvm::Instruction
::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast
|| CE->getOpcode() == llvm::Instruction::GetElementPtr) ?
void (0) : __assert_fail ("CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::AddrSpaceCast || CE->getOpcode() == llvm::Instruction::GetElementPtr"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3123, __extension__ __PRETTY_FUNCTION__))
;
3124 Entry = CE->getOperand(0);
3125 }
3126
3127 // Entry is now either a Function or GlobalVariable.
3128 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3129
3130 // We have a definition after a declaration with the wrong type.
3131 // We must make a new GlobalVariable* and update everything that used OldGV
3132 // (a declaration or tentative definition) with the new GlobalVariable*
3133 // (which will be a definition).
3134 //
3135 // This happens if there is a prototype for a global (e.g.
3136 // "extern int x[];") and then a definition of a different type (e.g.
3137 // "int x[10];"). This also happens when an initializer has a different type
3138 // from the type of the global (this happens with unions).
3139 if (!GV || GV->getType()->getElementType() != InitType ||
3140 GV->getType()->getAddressSpace() !=
3141 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3142
3143 // Move the old entry aside so that we'll create a new one.
3144 Entry->setName(StringRef());
3145
3146 // Make a new global with the correct type, this is now guaranteed to work.
3147 GV = cast<llvm::GlobalVariable>(
3148 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3149
3150 // Replace all uses of the old global with the new global
3151 llvm::Constant *NewPtrForOldDecl =
3152 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3153 Entry->replaceAllUsesWith(NewPtrForOldDecl);
3154
3155 // Erase the old global, since it is no longer used.
3156 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3157 }
3158
3159 MaybeHandleStaticInExternC(D, GV);
3160
3161 if (D->hasAttr<AnnotateAttr>())
3162 AddGlobalAnnotations(D, GV);
3163
3164 // Set the llvm linkage type as appropriate.
3165 llvm::GlobalValue::LinkageTypes Linkage =
3166 getLLVMLinkageVarDefinition(D, GV->isConstant());
3167
3168 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3169 // the device. [...]"
3170 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3171 // __device__, declares a variable that: [...]
3172 // Is accessible from all the threads within the grid and from the host
3173 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3174 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3175 if (GV && LangOpts.CUDA) {
3176 if (LangOpts.CUDAIsDevice) {
3177 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3178 GV->setExternallyInitialized(true);
3179 } else {
3180 // Host-side shadows of external declarations of device-side
3181 // global variables become internal definitions. These have to
3182 // be internal in order to prevent name conflicts with global
3183 // host variables with the same name in a different TUs.
3184 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3185 Linkage = llvm::GlobalValue::InternalLinkage;
3186
3187 // Shadow variables and their properties must be registered
3188 // with CUDA runtime.
3189 unsigned Flags = 0;
3190 if (!D->hasDefinition())
3191 Flags |= CGCUDARuntime::ExternDeviceVar;
3192 if (D->hasAttr<CUDAConstantAttr>())
3193 Flags |= CGCUDARuntime::ConstantDeviceVar;
3194 getCUDARuntime().registerDeviceVar(*GV, Flags);
3195 } else if (D->hasAttr<CUDASharedAttr>())
3196 // __shared__ variables are odd. Shadows do get created, but
3197 // they are not registered with the CUDA runtime, so they
3198 // can't really be used to access their device-side
3199 // counterparts. It's not clear yet whether it's nvcc's bug or
3200 // a feature, but we've got to do the same for compatibility.
3201 Linkage = llvm::GlobalValue::InternalLinkage;
3202 }
3203 }
3204
3205 GV->setInitializer(Init);
3206 if (emitter) emitter->finalize(GV);
3207
3208 // If it is safe to mark the global 'constant', do so now.
3209 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3210 isTypeConstant(D->getType(), true));
3211
3212 // If it is in a read-only section, mark it 'constant'.
3213 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3214 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3215 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3216 GV->setConstant(true);
3217 }
3218
3219 GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3220
3221
3222 // On Darwin, if the normal linkage of a C++ thread_local variable is
3223 // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3224 // copies within a linkage unit; otherwise, the backing variable has
3225 // internal linkage and all accesses should just be calls to the
3226 // Itanium-specified entry point, which has the normal linkage of the
3227 // variable. This is to preserve the ability to change the implementation
3228 // behind the scenes.
3229 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3230 Context.getTargetInfo().getTriple().isOSDarwin() &&
3231 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3232 !llvm::GlobalVariable::isWeakLinkage(Linkage))
3233 Linkage = llvm::GlobalValue::InternalLinkage;
3234
3235 GV->setLinkage(Linkage);
3236 if (D->hasAttr<DLLImportAttr>())
3237 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3238 else if (D->hasAttr<DLLExportAttr>())
3239 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3240 else
3241 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3242
3243 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3244 // common vars aren't constant even if declared const.
3245 GV->setConstant(false);
3246 // Tentative definition of global variables may be initialized with
3247 // non-zero null pointers. In this case they should have weak linkage
3248 // since common linkage must have zero initializer and must not have
3249 // explicit section therefore cannot have non-zero initial value.
3250 if (!GV->getInitializer()->isNullValue())
3251 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3252 }
3253
3254 setNonAliasAttributes(D, GV);
3255
3256 if (D->getTLSKind() && !GV->isThreadLocal()) {
3257 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3258 CXXThreadLocals.push_back(D);
3259 setTLSMode(GV, *D);
3260 }
3261
3262 maybeSetTrivialComdat(*D, *GV);
3263
3264 // Emit the initializer function if necessary.
3265 if (NeedsGlobalCtor || NeedsGlobalDtor)
3266 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3267
3268 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3269
3270 // Emit global variable debug information.
3271 if (CGDebugInfo *DI = getModuleDebugInfo())
3272 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3273 DI->EmitGlobalVariable(GV, D);
3274}
3275
3276static bool isVarDeclStrongDefinition(const ASTContext &Context,
3277 CodeGenModule &CGM, const VarDecl *D,
3278 bool NoCommon) {
3279 // Don't give variables common linkage if -fno-common was specified unless it
3280 // was overridden by a NoCommon attribute.
3281 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3282 return true;
3283
3284 // C11 6.9.2/2:
3285 // A declaration of an identifier for an object that has file scope without
3286 // an initializer, and without a storage-class specifier or with the
3287 // storage-class specifier static, constitutes a tentative definition.
3288 if (D->getInit() || D->hasExternalStorage())
3289 return true;
3290
3291 // A variable cannot be both common and exist in a section.
3292 if (D->hasAttr<SectionAttr>())
3293 return true;
3294
3295 // A variable cannot be both common and exist in a section.
3296 // We dont try to determine which is the right section in the front-end.
3297 // If no specialized section name is applicable, it will resort to default.
3298 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3299 D->hasAttr<PragmaClangDataSectionAttr>() ||
3300 D->hasAttr<PragmaClangRodataSectionAttr>())
3301 return true;
3302
3303 // Thread local vars aren't considered common linkage.
3304 if (D->getTLSKind())
3305 return true;
3306
3307 // Tentative definitions marked with WeakImportAttr are true definitions.
3308 if (D->hasAttr<WeakImportAttr>())
3309 return true;
3310
3311 // A variable cannot be both common and exist in a comdat.
3312 if (shouldBeInCOMDAT(CGM, *D))
3313 return true;
3314
3315 // Declarations with a required alignment do not have common linkage in MSVC
3316 // mode.
3317 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3318 if (D->hasAttr<AlignedAttr>())
3319 return true;
3320 QualType VarType = D->getType();
3321 if (Context.isAlignmentRequired(VarType))
3322 return true;
3323
3324 if (const auto *RT = VarType->getAs<RecordType>()) {
3325 const RecordDecl *RD = RT->getDecl();
3326 for (const FieldDecl *FD : RD->fields()) {
3327 if (FD->isBitField())
3328 continue;
3329 if (FD->hasAttr<AlignedAttr>())
3330 return true;
3331 if (Context.isAlignmentRequired(FD->getType()))
3332 return true;
3333 }
3334 }
3335 }
3336
3337 return false;
3338}
3339
3340llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3341 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3342 if (Linkage == GVA_Internal)
3343 return llvm::Function::InternalLinkage;
3344
3345 if (D->hasAttr<WeakAttr>()) {
3346 if (IsConstantVariable)
3347 return llvm::GlobalVariable::WeakODRLinkage;
3348 else
3349 return llvm::GlobalVariable::WeakAnyLinkage;
3350 }
3351
3352 // We are guaranteed to have a strong definition somewhere else,
3353 // so we can use available_externally linkage.
3354 if (Linkage == GVA_AvailableExternally)
3355 return llvm::GlobalValue::AvailableExternallyLinkage;
3356
3357 // Note that Apple's kernel linker doesn't support symbol
3358 // coalescing, so we need to avoid linkonce and weak linkages there.
3359 // Normally, this means we just map to internal, but for explicit
3360 // instantiations we'll map to external.
3361
3362 // In C++, the compiler has to emit a definition in every translation unit
3363 // that references the function. We should use linkonce_odr because
3364 // a) if all references in this translation unit are optimized away, we
3365 // don't need to codegen it. b) if the function persists, it needs to be
3366 // merged with other definitions. c) C++ has the ODR, so we know the
3367 // definition is dependable.
3368 if (Linkage == GVA_DiscardableODR)
3369 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3370 : llvm::Function::InternalLinkage;
3371
3372 // An explicit instantiation of a template has weak linkage, since
3373 // explicit instantiations can occur in multiple translation units
3374 // and must all be equivalent. However, we are not allowed to
3375 // throw away these explicit instantiations.
3376 //
3377 // We don't currently support CUDA device code spread out across multiple TUs,
3378 // so say that CUDA templates are either external (for kernels) or internal.
3379 // This lets llvm perform aggressive inter-procedural optimizations.
3380 if (Linkage == GVA_StrongODR) {
3381 if (Context.getLangOpts().AppleKext)
3382 return llvm::Function::ExternalLinkage;
3383 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3384 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3385 : llvm::Function::InternalLinkage;
3386 return llvm::Function::WeakODRLinkage;
3387 }
3388
3389 // C++ doesn't have tentative definitions and thus cannot have common
3390 // linkage.
3391 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3392 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3393 CodeGenOpts.NoCommon))
3394 return llvm::GlobalVariable::CommonLinkage;
3395
3396 // selectany symbols are externally visible, so use weak instead of
3397 // linkonce. MSVC optimizes away references to const selectany globals, so
3398 // all definitions should be the same and ODR linkage should be used.
3399 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3400 if (D->hasAttr<SelectAnyAttr>())
3401 return llvm::GlobalVariable::WeakODRLinkage;
3402
3403 // Otherwise, we have strong external linkage.
3404 assert(Linkage == GVA_StrongExternal)(static_cast <bool> (Linkage == GVA_StrongExternal) ? void
(0) : __assert_fail ("Linkage == GVA_StrongExternal", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3404, __extension__ __PRETTY_FUNCTION__))
;
3405 return llvm::GlobalVariable::ExternalLinkage;
3406}
3407
3408llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3409 const VarDecl *VD, bool IsConstant) {
3410 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3411 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3412}
3413
3414/// Replace the uses of a function that was declared with a non-proto type.
3415/// We want to silently drop extra arguments from call sites
3416static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3417 llvm::Function *newFn) {
3418 // Fast path.
3419 if (old->use_empty()) return;
3420
3421 llvm::Type *newRetTy = newFn->getReturnType();
3422 SmallVector<llvm::Value*, 4> newArgs;
3423 SmallVector<llvm::OperandBundleDef, 1> newBundles;
3424
3425 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3426 ui != ue; ) {
3427 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3428 llvm::User *user = use->getUser();
3429
3430 // Recognize and replace uses of bitcasts. Most calls to
3431 // unprototyped functions will use bitcasts.
3432 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3433 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3434 replaceUsesOfNonProtoConstant(bitcast, newFn);
3435 continue;
3436 }
3437
3438 // Recognize calls to the function.
3439 llvm::CallSite callSite(user);
3440 if (!callSite) continue;
3441 if (!callSite.isCallee(&*use)) continue;
3442
3443 // If the return types don't match exactly, then we can't
3444 // transform this call unless it's dead.
3445 if (callSite->getType() != newRetTy && !callSite->use_empty())
3446 continue;
3447
3448 // Get the call site's attribute list.
3449 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3450 llvm::AttributeList oldAttrs = callSite.getAttributes();
3451
3452 // If the function was passed too few arguments, don't transform.
3453 unsigned newNumArgs = newFn->arg_size();
3454 if (callSite.arg_size() < newNumArgs) continue;
3455
3456 // If extra arguments were passed, we silently drop them.
3457 // If any of the types mismatch, we don't transform.
3458 unsigned argNo = 0;
3459 bool dontTransform = false;
3460 for (llvm::Argument &A : newFn->args()) {
3461 if (callSite.getArgument(argNo)->getType() != A.getType()) {
3462 dontTransform = true;
3463 break;
3464 }
3465
3466 // Add any parameter attributes.
3467 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3468 argNo++;
3469 }
3470 if (dontTransform)
3471 continue;
3472
3473 // Okay, we can transform this. Create the new call instruction and copy
3474 // over the required information.
3475 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3476
3477 // Copy over any operand bundles.
3478 callSite.getOperandBundlesAsDefs(newBundles);
3479
3480 llvm::CallSite newCall;
3481 if (callSite.isCall()) {
3482 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3483 callSite.getInstruction());
3484 } else {
3485 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3486 newCall = llvm::InvokeInst::Create(newFn,
3487 oldInvoke->getNormalDest(),
3488 oldInvoke->getUnwindDest(),
3489 newArgs, newBundles, "",
3490 callSite.getInstruction());
3491 }
3492 newArgs.clear(); // for the next iteration
3493
3494 if (!newCall->getType()->isVoidTy())
3495 newCall->takeName(callSite.getInstruction());
3496 newCall.setAttributes(llvm::AttributeList::get(
3497 newFn->getContext(), oldAttrs.getFnAttributes(),
3498 oldAttrs.getRetAttributes(), newArgAttrs));
3499 newCall.setCallingConv(callSite.getCallingConv());
3500
3501 // Finally, remove the old call, replacing any uses with the new one.
3502 if (!callSite->use_empty())
3503 callSite->replaceAllUsesWith(newCall.getInstruction());
3504
3505 // Copy debug location attached to CI.
3506 if (callSite->getDebugLoc())
3507 newCall->setDebugLoc(callSite->getDebugLoc());
3508
3509 callSite->eraseFromParent();
3510 }
3511}
3512
3513/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3514/// implement a function with no prototype, e.g. "int foo() {}". If there are
3515/// existing call uses of the old function in the module, this adjusts them to
3516/// call the new function directly.
3517///
3518/// This is not just a cleanup: the always_inline pass requires direct calls to
3519/// functions to be able to inline them. If there is a bitcast in the way, it
3520/// won't inline them. Instcombine normally deletes these calls, but it isn't
3521/// run at -O0.
3522static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3523 llvm::Function *NewFn) {
3524 // If we're redefining a global as a function, don't transform it.
3525 if (!isa<llvm::Function>(Old)) return;
3526
3527 replaceUsesOfNonProtoConstant(Old, NewFn);
3528}
3529
3530void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3531 auto DK = VD->isThisDeclarationADefinition();
3532 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3533 return;
3534
3535 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3536 // If we have a definition, this might be a deferred decl. If the
3537 // instantiation is explicit, make sure we emit it at the end.
3538 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3539 GetAddrOfGlobalVar(VD);
3540
3541 EmitTopLevelDecl(VD);
3542}
3543
3544void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3545 llvm::GlobalValue *GV) {
3546 const auto *D = cast<FunctionDecl>(GD.getDecl());
3547
3548 // Compute the function info and LLVM type.
3549 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3550 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3551
3552 // Get or create the prototype for the function.
3553 if (!GV || (GV->getType()->getElementType() != Ty))
3554 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3555 /*DontDefer=*/true,
3556 ForDefinition));
3557
3558 // Already emitted.
3559 if (!GV->isDeclaration())
3560 return;
3561
3562 // We need to set linkage and visibility on the function before
3563 // generating code for it because various parts of IR generation
3564 // want to propagate this information down (e.g. to local static
3565 // declarations).
3566 auto *Fn = cast<llvm::Function>(GV);
3567 setFunctionLinkage(GD, Fn);
3568 setFunctionDLLStorageClass(GD, Fn);
3569
3570 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3571 setGVProperties(Fn, D);
3572
3573 MaybeHandleStaticInExternC(D, Fn);
3574
3575 maybeSetTrivialComdat(*D, *Fn);
3576
3577 CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3578
3579 setFunctionDefinitionAttributes(D, Fn);
3580 SetLLVMFunctionAttributesForDefinition(D, Fn);
3581
3582 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3583 AddGlobalCtor(Fn, CA->getPriority());
3584 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3585 AddGlobalDtor(Fn, DA->getPriority());
3586 if (D->hasAttr<AnnotateAttr>())
3587 AddGlobalAnnotations(D, Fn);
3588}
3589
3590void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3591 const auto *D = cast<ValueDecl>(GD.getDecl());
3592 const AliasAttr *AA = D->getAttr<AliasAttr>();
3593 assert(AA && "Not an alias?")(static_cast <bool> (AA && "Not an alias?") ? void
(0) : __assert_fail ("AA && \"Not an alias?\"", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3593, __extension__ __PRETTY_FUNCTION__))
;
3594
3595 StringRef MangledName = getMangledName(GD);
3596
3597 if (AA->getAliasee() == MangledName) {
3598 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3599 return;
3600 }
3601
3602 // If there is a definition in the module, then it wins over the alias.
3603 // This is dubious, but allow it to be safe. Just ignore the alias.
3604 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3605 if (Entry && !Entry->isDeclaration())
3606 return;
3607
3608 Aliases.push_back(GD);
3609
3610 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3611
3612 // Create a reference to the named value. This ensures that it is emitted
3613 // if a deferred decl.
3614 llvm::Constant *Aliasee;
3615 if (isa<llvm::FunctionType>(DeclTy))
3616 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3617 /*ForVTable=*/false);
3618 else
3619 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3620 llvm::PointerType::getUnqual(DeclTy),
3621 /*D=*/nullptr);
3622
3623 // Create the new alias itself, but don't set a name yet.
3624 auto *GA = llvm::GlobalAlias::create(
3625 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3626
3627 if (Entry) {
3628 if (GA->getAliasee() == Entry) {
3629 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3630 return;
3631 }
3632
3633 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3633, __extension__ __PRETTY_FUNCTION__))
;
3634
3635 // If there is a declaration in the module, then we had an extern followed
3636 // by the alias, as in:
3637 // extern int test6();
3638 // ...
3639 // int test6() __attribute__((alias("test7")));
3640 //
3641 // Remove it and replace uses of it with the alias.
3642 GA->takeName(Entry);
3643
3644 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3645 Entry->getType()));
3646 Entry->eraseFromParent();
3647 } else {
3648 GA->setName(MangledName);
3649 }
3650
3651 // Set attributes which are particular to an alias; this is a
3652 // specialization of the attributes which may be set on a global
3653 // variable/function.
3654 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3655 D->isWeakImported()) {
3656 GA->setLinkage(llvm::Function::WeakAnyLinkage);
3657 }
3658
3659 if (const auto *VD = dyn_cast<VarDecl>(D))
3660 if (VD->getTLSKind())
3661 setTLSMode(GA, *VD);
3662
3663 setAliasAttributes(D, GA);
3664}
3665
3666void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3667 const auto *D = cast<ValueDecl>(GD.getDecl());
3668 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3669 assert(IFA && "Not an ifunc?")(static_cast <bool> (IFA && "Not an ifunc?") ? void
(0) : __assert_fail ("IFA && \"Not an ifunc?\"", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3669, __extension__ __PRETTY_FUNCTION__))
;
3670
3671 StringRef MangledName = getMangledName(GD);
3672
3673 if (IFA->getResolver() == MangledName) {
3674 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3675 return;
3676 }
3677
3678 // Report an error if some definition overrides ifunc.
3679 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3680 if (Entry && !Entry->isDeclaration()) {
3681 GlobalDecl OtherGD;
3682 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3683 DiagnosedConflictingDefinitions.insert(GD).second) {
3684 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3685 Diags.Report(OtherGD.getDecl()->getLocation(),
3686 diag::note_previous_definition);
3687 }
3688 return;
3689 }
3690
3691 Aliases.push_back(GD);
3692
3693 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3694 llvm::Constant *Resolver =
3695 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3696 /*ForVTable=*/false);
3697 llvm::GlobalIFunc *GIF =
3698 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3699 "", Resolver, &getModule());
3700 if (Entry) {
3701 if (GIF->getResolver() == Entry) {
3702 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3703 return;
3704 }
3705 assert(Entry->isDeclaration())(static_cast <bool> (Entry->isDeclaration()) ? void (
0) : __assert_fail ("Entry->isDeclaration()", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3705, __extension__ __PRETTY_FUNCTION__))
;
3706
3707 // If there is a declaration in the module, then we had an extern followed
3708 // by the ifunc, as in:
3709 // extern int test();
3710 // ...
3711 // int test() __attribute__((ifunc("resolver")));
3712 //
3713 // Remove it and replace uses of it with the ifunc.
3714 GIF->takeName(Entry);
3715
3716 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3717 Entry->getType()));
3718 Entry->eraseFromParent();
3719 } else
3720 GIF->setName(MangledName);
3721
3722 SetCommonAttributes(D, GIF);
3723}
3724
3725llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3726 ArrayRef<llvm::Type*> Tys) {
3727 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3728 Tys);
3729}
3730
3731static llvm::StringMapEntry<llvm::GlobalVariable *> &
3732GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3733 const StringLiteral *Literal, bool TargetIsLSB,
3734 bool &IsUTF16, unsigned &StringLength) {
3735 StringRef String = Literal->getString();
3736 unsigned NumBytes = String.size();
3737
3738 // Check for simple case.
3739 if (!Literal->containsNonAsciiOrNull()) {
3740 StringLength = NumBytes;
3741 return *Map.insert(std::make_pair(String, nullptr)).first;
3742 }
3743
3744 // Otherwise, convert the UTF8 literals into a string of shorts.
3745 IsUTF16 = true;
3746
3747 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3748 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3749 llvm::UTF16 *ToPtr = &ToBuf[0];
3750
3751 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3752 ToPtr + NumBytes, llvm::strictConversion);
3753
3754 // ConvertUTF8toUTF16 returns the length in ToPtr.
3755 StringLength = ToPtr - &ToBuf[0];
3756
3757 // Add an explicit null.
3758 *ToPtr = 0;
3759 return *Map.insert(std::make_pair(
3760 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3761 (StringLength + 1) * 2),
3762 nullptr)).first;
3763}
3764
3765ConstantAddress
3766CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3767 unsigned StringLength = 0;
3768 bool isUTF16 = false;
3769 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3770 GetConstantCFStringEntry(CFConstantStringMap, Literal,
3771 getDataLayout().isLittleEndian(), isUTF16,
3772 StringLength);
3773
3774 if (auto *C = Entry.second)
3775 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3776
3777 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3778 llvm::Constant *Zeros[] = { Zero, Zero };
3779
3780 // If we don't already have it, get __CFConstantStringClassReference.
3781 if (!CFConstantStringClassRef) {
3782 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3783 Ty = llvm::ArrayType::get(Ty, 0);
3784 llvm::Constant *GV =
3785 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3786
3787 if (getTriple().isOSBinFormatCOFF()) {
3788 IdentifierInfo &II = getContext().Idents.get(GV->getName());
3789 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3790 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3791 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3792
3793 const VarDecl *VD = nullptr;
3794 for (const auto &Result : DC->lookup(&II))
3795 if ((VD = dyn_cast<VarDecl>(Result)))
3796 break;
3797
3798 if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3799 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3800 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3801 } else {
3802 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3803 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3804 }
3805 }
3806
3807 // Decay array -> ptr
3808 CFConstantStringClassRef =
3809 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3810 }
3811
3812 QualType CFTy = getContext().getCFConstantStringType();
3813
3814 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3815
3816 ConstantInitBuilder Builder(*this);
3817 auto Fields = Builder.beginStruct(STy);
3818
3819 // Class pointer.
3820 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3821
3822 // Flags.
3823 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3824
3825 // String pointer.
3826 llvm::Constant *C = nullptr;
3827 if (isUTF16) {
3828 auto Arr = llvm::makeArrayRef(
3829 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3830 Entry.first().size() / 2);
3831 C = llvm::ConstantDataArray::get(VMContext, Arr);
3832 } else {
3833 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3834 }
3835
3836 // Note: -fwritable-strings doesn't make the backing store strings of
3837 // CFStrings writable. (See <rdar://problem/10657500>)
3838 auto *GV =
3839 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3840 llvm::GlobalValue::PrivateLinkage, C, ".str");
3841 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3842 // Don't enforce the target's minimum global alignment, since the only use
3843 // of the string is via this class initializer.
3844 CharUnits Align = isUTF16
3845 ? getContext().getTypeAlignInChars(getContext().ShortTy)
3846 : getContext().getTypeAlignInChars(getContext().CharTy);
3847 GV->setAlignment(Align.getQuantity());
3848
3849 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3850 // Without it LLVM can merge the string with a non unnamed_addr one during
3851 // LTO. Doing that changes the section it ends in, which surprises ld64.
3852 if (getTriple().isOSBinFormatMachO())
3853 GV->setSection(isUTF16 ? "__TEXT,__ustring"
3854 : "__TEXT,__cstring,cstring_literals");
3855
3856 // String.
3857 llvm::Constant *Str =
3858 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3859
3860 if (isUTF16)
3861 // Cast the UTF16 string to the correct type.
3862 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3863 Fields.add(Str);
3864
3865 // String length.
3866 auto Ty = getTypes().ConvertType(getContext().LongTy);
3867 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3868
3869 CharUnits Alignment = getPointerAlign();
3870
3871 // The struct.
3872 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3873 /*isConstant=*/false,
3874 llvm::GlobalVariable::PrivateLinkage);
3875 switch (getTriple().getObjectFormat()) {
3876 case llvm::Triple::UnknownObjectFormat:
3877 llvm_unreachable("unknown file format")::llvm::llvm_unreachable_internal("unknown file format", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3877)
;
3878 case llvm::Triple::COFF:
3879 case llvm::Triple::ELF:
3880 case llvm::Triple::Wasm:
3881 GV->setSection("cfstring");
3882 break;
3883 case llvm::Triple::MachO:
3884 GV->setSection("__DATA,__cfstring");
3885 break;
3886 }
3887 Entry.second = GV;
3888
3889 return ConstantAddress(GV, Alignment);
3890}
3891
3892bool CodeGenModule::getExpressionLocationsEnabled() const {
3893 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
3894}
3895
3896QualType CodeGenModule::getObjCFastEnumerationStateType() {
3897 if (ObjCFastEnumerationStateType.isNull()) {
3898 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3899 D->startDefinition();
3900
3901 QualType FieldTypes[] = {
3902 Context.UnsignedLongTy,
3903 Context.getPointerType(Context.getObjCIdType()),
3904 Context.getPointerType(Context.UnsignedLongTy),
3905 Context.getConstantArrayType(Context.UnsignedLongTy,
3906 llvm::APInt(32, 5), ArrayType::Normal, 0)
3907 };
3908
3909 for (size_t i = 0; i < 4; ++i) {
3910 FieldDecl *Field = FieldDecl::Create(Context,
3911 D,
3912 SourceLocation(),
3913 SourceLocation(), nullptr,
3914 FieldTypes[i], /*TInfo=*/nullptr,
3915 /*BitWidth=*/nullptr,
3916 /*Mutable=*/false,
3917 ICIS_NoInit);
3918 Field->setAccess(AS_public);
3919 D->addDecl(Field);
3920 }
3921
3922 D->completeDefinition();
3923 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3924 }
3925
3926 return ObjCFastEnumerationStateType;
3927}
3928
3929llvm::Constant *
3930CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3931 assert(!E->getType()->isPointerType() && "Strings are always arrays")(static_cast <bool> (!E->getType()->isPointerType
() && "Strings are always arrays") ? void (0) : __assert_fail
("!E->getType()->isPointerType() && \"Strings are always arrays\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3931, __extension__ __PRETTY_FUNCTION__))
;
3932
3933 // Don't emit it as the address of the string, emit the string data itself
3934 // as an inline array.
3935 if (E->getCharByteWidth() == 1) {
3936 SmallString<64> Str(E->getString());
3937
3938 // Resize the string to the right size, which is indicated by its type.
3939 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3940 Str.resize(CAT->getSize().getZExtValue());
3941 return llvm::ConstantDataArray::getString(VMContext, Str, false);
3942 }
3943
3944 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3945 llvm::Type *ElemTy = AType->getElementType();
3946 unsigned NumElements = AType->getNumElements();
3947
3948 // Wide strings have either 2-byte or 4-byte elements.
3949 if (ElemTy->getPrimitiveSizeInBits() == 16) {
3950 SmallVector<uint16_t, 32> Elements;
3951 Elements.reserve(NumElements);
3952
3953 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3954 Elements.push_back(E->getCodeUnit(i));
3955 Elements.resize(NumElements);
3956 return llvm::ConstantDataArray::get(VMContext, Elements);
3957 }
3958
3959 assert(ElemTy->getPrimitiveSizeInBits() == 32)(static_cast <bool> (ElemTy->getPrimitiveSizeInBits(
) == 32) ? void (0) : __assert_fail ("ElemTy->getPrimitiveSizeInBits() == 32"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3959, __extension__ __PRETTY_FUNCTION__))
;
3960 SmallVector<uint32_t, 32> Elements;
3961 Elements.reserve(NumElements);
3962
3963 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3964 Elements.push_back(E->getCodeUnit(i));
3965 Elements.resize(NumElements);
3966 return llvm::ConstantDataArray::get(VMContext, Elements);
3967}
3968
3969static llvm::GlobalVariable *
3970GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3971 CodeGenModule &CGM, StringRef GlobalName,
3972 CharUnits Alignment) {
3973 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3974 unsigned AddrSpace = 0;
3975 if (CGM.getLangOpts().OpenCL)
3976 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3977
3978 llvm::Module &M = CGM.getModule();
3979 // Create a global variable for this string
3980 auto *GV = new llvm::GlobalVariable(
3981 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3982 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3983 GV->setAlignment(Alignment.getQuantity());
3984 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3985 if (GV->isWeakForLinker()) {
3986 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals")(static_cast <bool> (CGM.supportsCOMDAT() && "Only COFF uses weak string literals"
) ? void (0) : __assert_fail ("CGM.supportsCOMDAT() && \"Only COFF uses weak string literals\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 3986, __extension__ __PRETTY_FUNCTION__))
;
3987 GV->setComdat(M.getOrInsertComdat(GV->getName()));
3988 }
3989
3990 return GV;
3991}
3992
3993/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3994/// constant array for the given string literal.
3995ConstantAddress
3996CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3997 StringRef Name) {
3998 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3999
4000 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4001 llvm::GlobalVariable **Entry = nullptr;
4002 if (!LangOpts.WritableStrings) {
4003 Entry = &ConstantStringMap[C];
4004 if (auto GV = *Entry) {
4005 if (Alignment.getQuantity() > GV->getAlignment())
4006 GV->setAlignment(Alignment.getQuantity());
4007 return ConstantAddress(GV, Alignment);
4008 }
4009 }
4010
4011 SmallString<256> MangledNameBuffer;
4012 StringRef GlobalVariableName;
4013 llvm::GlobalValue::LinkageTypes LT;
4014
4015 // Mangle the string literal if the ABI allows for it. However, we cannot
4016 // do this if we are compiling with ASan or -fwritable-strings because they
4017 // rely on strings having normal linkage.
4018 if (!LangOpts.WritableStrings &&
4019 !LangOpts.Sanitize.has(SanitizerKind::Address) &&
4020 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
4021 llvm::raw_svector_ostream Out(MangledNameBuffer);
4022 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4023
4024 LT = llvm::GlobalValue::LinkOnceODRLinkage;
4025 GlobalVariableName = MangledNameBuffer;
4026 } else {
4027 LT = llvm::GlobalValue::PrivateLinkage;
4028 GlobalVariableName = Name;
4029 }
4030
4031 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4032 if (Entry)
4033 *Entry = GV;
4034
4035 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4036 QualType());
4037 return ConstantAddress(GV, Alignment);
4038}
4039
4040/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4041/// array for the given ObjCEncodeExpr node.
4042ConstantAddress
4043CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4044 std::string Str;
4045 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4046
4047 return GetAddrOfConstantCString(Str);
4048}
4049
4050/// GetAddrOfConstantCString - Returns a pointer to a character array containing
4051/// the literal and a terminating '\0' character.
4052/// The result has pointer to array type.
4053ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4054 const std::string &Str, const char *GlobalName) {
4055 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4056 CharUnits Alignment =
4057 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4058
4059 llvm::Constant *C =
4060 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4061
4062 // Don't share any string literals if strings aren't constant.
4063 llvm::GlobalVariable **Entry = nullptr;
4064 if (!LangOpts.WritableStrings) {
4065 Entry = &ConstantStringMap[C];
4066 if (auto GV = *Entry) {
4067 if (Alignment.getQuantity() > GV->getAlignment())
4068 GV->setAlignment(Alignment.getQuantity());
4069 return ConstantAddress(GV, Alignment);
4070 }
4071 }
4072
4073 // Get the default prefix if a name wasn't specified.
4074 if (!GlobalName)
4075 GlobalName = ".str";
4076 // Create a global variable for this.
4077 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4078 GlobalName, Alignment);
4079 if (Entry)
4080 *Entry = GV;
4081 return ConstantAddress(GV, Alignment);
4082}
4083
4084ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4085 const MaterializeTemporaryExpr *E, const Expr *Init) {
4086 assert((E->getStorageDuration() == SD_Static ||(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4087, __extension__ __PRETTY_FUNCTION__))
4087 E->getStorageDuration() == SD_Thread) && "not a global temporary")(static_cast <bool> ((E->getStorageDuration() == SD_Static
|| E->getStorageDuration() == SD_Thread) && "not a global temporary"
) ? void (0) : __assert_fail ("(E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && \"not a global temporary\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4087, __extension__ __PRETTY_FUNCTION__))
;
4088 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
1
Calling 'cast'
26
Returning from 'cast'
27
'VD' initialized here
4089
4090 // If we're not materializing a subobject of the temporary, keep the
4091 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4092 QualType MaterializedType = Init->getType();
4093 if (Init == E->GetTemporaryExpr())
28
Assuming the condition is false
29
Taking false branch
4094 MaterializedType = E->getType();
4095
4096 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4097
4098 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
30
Assuming 'Slot' is null
31
Taking false branch
4099 return ConstantAddress(Slot, Align);
4100
4101 // FIXME: If an externally-visible declaration extends multiple temporaries,
4102 // we need to give each temporary the same name in every translation unit (and
4103 // we also need to make the temporaries externally-visible).
4104 SmallString<256> Name;
4105 llvm::raw_svector_ostream Out(Name);
4106 getCXXABI().getMangleContext().mangleReferenceTemporary(
4107 VD, E->getManglingNumber(), Out);
4108
4109 APValue *Value = nullptr;
4110 if (E->getStorageDuration() == SD_Static) {
32
Taking true branch
4111 // We might have a cached constant initializer for this temporary. Note
4112 // that this might have a different value from the value computed by
4113 // evaluating the initializer if the surrounding constant expression
4114 // modifies the temporary.
4115 Value = getContext().getMaterializedTemporaryValue(E, false);
4116 if (Value && Value->isUninit())
33
Assuming 'Value' is null
4117 Value = nullptr;
4118 }
4119
4120 // Try evaluating it now, it might have a constant initializer.
4121 Expr::EvalResult EvalResult;
4122 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
34
Assuming the condition is false
4123 !EvalResult.hasSideEffects())
4124 Value = &EvalResult.Val;
4125
4126 LangAS AddrSpace =
4127 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
35
Assuming 'VD' is null
36
'?' condition is false
4128
4129 Optional<ConstantEmitter> emitter;
4130 llvm::Constant *InitialValue = nullptr;
4131 bool Constant = false;
4132 llvm::Type *Type;
4133 if (Value) {
37
Taking false branch
4134 // The temporary has a constant initializer, use it.
4135 emitter.emplace(*this);
4136 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4137 MaterializedType);
4138 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4139 Type = InitialValue->getType();
4140 } else {
4141 // No initializer, the initialization will be provided when we
4142 // initialize the declaration which performed lifetime extension.
4143 Type = getTypes().ConvertTypeForMem(MaterializedType);
4144 }
4145
4146 // Create a global variable for this lifetime-extended temporary.
4147 llvm::GlobalValue::LinkageTypes Linkage =
4148 getLLVMLinkageVarDefinition(VD, Constant);
4149 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
38
Taking false branch
4150 const VarDecl *InitVD;
4151 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4152 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4153 // Temporaries defined inside a class get linkonce_odr linkage because the
4154 // class can be defined in multipe translation units.
4155 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4156 } else {
4157 // There is no need for this temporary to have external linkage if the
4158 // VarDecl has external linkage.
4159 Linkage = llvm::GlobalVariable::InternalLinkage;
4160 }
4161 }
4162 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4163 auto *GV = new llvm::GlobalVariable(
4164 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4165 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4166 if (emitter) emitter->finalize(GV);
39
Taking false branch
4167 setGVProperties(GV, VD);
40
Passing null pointer value via 2nd parameter 'D'
41
Calling 'CodeGenModule::setGVProperties'
4168 GV->setAlignment(Align.getQuantity());
4169 if (supportsCOMDAT() && GV->isWeakForLinker())
4170 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4171 if (VD->getTLSKind())
4172 setTLSMode(GV, *VD);
4173 llvm::Constant *CV = GV;
4174 if (AddrSpace != LangAS::Default)
4175 CV = getTargetCodeGenInfo().performAddrSpaceCast(
4176 *this, GV, AddrSpace, LangAS::Default,
4177 Type->getPointerTo(
4178 getContext().getTargetAddressSpace(LangAS::Default)));
4179 MaterializedGlobalTemporaryMap[E] = CV;
4180 return ConstantAddress(CV, Align);
4181}
4182
4183/// EmitObjCPropertyImplementations - Emit information for synthesized
4184/// properties for an implementation.
4185void CodeGenModule::EmitObjCPropertyImplementations(const
4186 ObjCImplementationDecl *D) {
4187 for (const auto *PID : D->property_impls()) {
4188 // Dynamic is just for type-checking.
4189 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4190 ObjCPropertyDecl *PD = PID->getPropertyDecl();
4191
4192 // Determine which methods need to be implemented, some may have
4193 // been overridden. Note that ::isPropertyAccessor is not the method
4194 // we want, that just indicates if the decl came from a
4195 // property. What we want to know is if the method is defined in
4196 // this implementation.
4197 if (!D->getInstanceMethod(PD->getGetterName()))
4198 CodeGenFunction(*this).GenerateObjCGetter(
4199 const_cast<ObjCImplementationDecl *>(D), PID);
4200 if (!PD->isReadOnly() &&
4201 !D->getInstanceMethod(PD->getSetterName()))
4202 CodeGenFunction(*this).GenerateObjCSetter(
4203 const_cast<ObjCImplementationDecl *>(D), PID);
4204 }
4205 }
4206}
4207
4208static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4209 const ObjCInterfaceDecl *iface = impl->getClassInterface();
4210 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4211 ivar; ivar = ivar->getNextIvar())
4212 if (ivar->getType().isDestructedType())
4213 return true;
4214
4215 return false;
4216}
4217
4218static bool AllTrivialInitializers(CodeGenModule &CGM,
4219 ObjCImplementationDecl *D) {
4220 CodeGenFunction CGF(CGM);
4221 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4222 E = D->init_end(); B != E; ++B) {
4223 CXXCtorInitializer *CtorInitExp = *B;
4224 Expr *Init = CtorInitExp->getInit();
4225 if (!CGF.isTrivialInitializer(Init))
4226 return false;
4227 }
4228 return true;
4229}
4230
4231/// EmitObjCIvarInitializations - Emit information for ivar initialization
4232/// for an implementation.
4233void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4234 // We might need a .cxx_destruct even if we don't have any ivar initializers.
4235 if (needsDestructMethod(D)) {
4236 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4237 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4238 ObjCMethodDecl *DTORMethod =
4239 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4240 cxxSelector, getContext().VoidTy, nullptr, D,
4241 /*isInstance=*/true, /*isVariadic=*/false,
4242 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4243 /*isDefined=*/false, ObjCMethodDecl::Required);
4244 D->addInstanceMethod(DTORMethod);
4245 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4246 D->setHasDestructors(true);
4247 }
4248
4249 // If the implementation doesn't have any ivar initializers, we don't need
4250 // a .cxx_construct.
4251 if (D->getNumIvarInitializers() == 0 ||
4252 AllTrivialInitializers(*this, D))
4253 return;
4254
4255 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4256 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4257 // The constructor returns 'self'.
4258 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4259 D->getLocation(),
4260 D->getLocation(),
4261 cxxSelector,
4262 getContext().getObjCIdType(),
4263 nullptr, D, /*isInstance=*/true,
4264 /*isVariadic=*/false,
4265 /*isPropertyAccessor=*/true,
4266 /*isImplicitlyDeclared=*/true,
4267 /*isDefined=*/false,
4268 ObjCMethodDecl::Required);
4269 D->addInstanceMethod(CTORMethod);
4270 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4271 D->setHasNonZeroConstructors(true);
4272}
4273
4274// EmitLinkageSpec - Emit all declarations in a linkage spec.
4275void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4276 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4277 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4278 ErrorUnsupported(LSD, "linkage spec");
4279 return;
4280 }
4281
4282 EmitDeclContext(LSD);
4283}
4284
4285void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4286 for (auto *I : DC->decls()) {
4287 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4288 // are themselves considered "top-level", so EmitTopLevelDecl on an
4289 // ObjCImplDecl does not recursively visit them. We need to do that in
4290 // case they're nested inside another construct (LinkageSpecDecl /
4291 // ExportDecl) that does stop them from being considered "top-level".
4292 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4293 for (auto *M : OID->methods())
4294 EmitTopLevelDecl(M);
4295 }
4296
4297 EmitTopLevelDecl(I);
4298 }
4299}
4300
4301/// EmitTopLevelDecl - Emit code for a single top level declaration.
4302void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4303 // Ignore dependent declarations.
4304 if (D->isTemplated())
4305 return;
4306
4307 switch (D->getKind()) {
4308 case Decl::CXXConversion:
4309 case Decl::CXXMethod:
4310 case Decl::Function:
4311 EmitGlobal(cast<FunctionDecl>(D));
4312 // Always provide some coverage mapping
4313 // even for the functions that aren't emitted.
4314 AddDeferredUnusedCoverageMapping(D);
4315 break;
4316
4317 case Decl::CXXDeductionGuide:
4318 // Function-like, but does not result in code emission.
4319 break;
4320
4321 case Decl::Var:
4322 case Decl::Decomposition:
4323 case Decl::VarTemplateSpecialization:
4324 EmitGlobal(cast<VarDecl>(D));
4325 if (auto *DD = dyn_cast<DecompositionDecl>(D))
4326 for (auto *B : DD->bindings())
4327 if (auto *HD = B->getHoldingVar())
4328 EmitGlobal(HD);
4329 break;
4330
4331 // Indirect fields from global anonymous structs and unions can be
4332 // ignored; only the actual variable requires IR gen support.
4333 case Decl::IndirectField:
4334 break;
4335
4336 // C++ Decls
4337 case Decl::Namespace:
4338 EmitDeclContext(cast<NamespaceDecl>(D));
4339 break;
4340 case Decl::ClassTemplateSpecialization: {
4341 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4342 if (DebugInfo &&
4343 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4344 Spec->hasDefinition())
4345 DebugInfo->completeTemplateDefinition(*Spec);
4346 } LLVM_FALLTHROUGH[[clang::fallthrough]];
4347 case Decl::CXXRecord:
4348 if (DebugInfo) {
4349 if (auto *ES = D->getASTContext().getExternalSource())
4350 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4351 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4352 }
4353 // Emit any static data members, they may be definitions.
4354 for (auto *I : cast<CXXRecordDecl>(D)->decls())
4355 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4356 EmitTopLevelDecl(I);
4357 break;
4358 // No code generation needed.
4359 case Decl::UsingShadow:
4360 case Decl::ClassTemplate:
4361 case Decl::VarTemplate:
4362 case Decl::VarTemplatePartialSpecialization:
4363 case Decl::FunctionTemplate:
4364 case Decl::TypeAliasTemplate:
4365 case Decl::Block:
4366 case Decl::Empty:
4367 break;
4368 case Decl::Using: // using X; [C++]
4369 if (CGDebugInfo *DI = getModuleDebugInfo())
4370 DI->EmitUsingDecl(cast<UsingDecl>(*D));
4371 return;
4372 case Decl::NamespaceAlias:
4373 if (CGDebugInfo *DI = getModuleDebugInfo())
4374 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4375 return;
4376 case Decl::UsingDirective: // using namespace X; [C++]
4377 if (CGDebugInfo *DI = getModuleDebugInfo())
4378 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4379 return;
4380 case Decl::CXXConstructor:
4381 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4382 break;
4383 case Decl::CXXDestructor:
4384 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4385 break;
4386
4387 case Decl::StaticAssert:
4388 // Nothing to do.
4389 break;
4390
4391 // Objective-C Decls
4392
4393 // Forward declarations, no (immediate) code generation.
4394 case Decl::ObjCInterface:
4395 case Decl::ObjCCategory:
4396 break;
4397
4398 case Decl::ObjCProtocol: {
4399 auto *Proto = cast<ObjCProtocolDecl>(D);
4400 if (Proto->isThisDeclarationADefinition())
4401 ObjCRuntime->GenerateProtocol(Proto);
4402 break;
4403 }
4404
4405 case Decl::ObjCCategoryImpl:
4406 // Categories have properties but don't support synthesize so we
4407 // can ignore them here.
4408 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4409 break;
4410
4411 case Decl::ObjCImplementation: {
4412 auto *OMD = cast<ObjCImplementationDecl>(D);
4413 EmitObjCPropertyImplementations(OMD);
4414 EmitObjCIvarInitializations(OMD);
4415 ObjCRuntime->GenerateClass(OMD);
4416 // Emit global variable debug information.
4417 if (CGDebugInfo *DI = getModuleDebugInfo())
4418 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4419 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4420 OMD->getClassInterface()), OMD->getLocation());
4421 break;
4422 }
4423 case Decl::ObjCMethod: {
4424 auto *OMD = cast<ObjCMethodDecl>(D);
4425 // If this is not a prototype, emit the body.
4426 if (OMD->getBody())
4427 CodeGenFunction(*this).GenerateObjCMethod(OMD);
4428 break;
4429 }
4430 case Decl::ObjCCompatibleAlias:
4431 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4432 break;
4433
4434 case Decl::PragmaComment: {
4435 const auto *PCD = cast<PragmaCommentDecl>(D);
4436 switch (PCD->getCommentKind()) {
4437 case PCK_Unknown:
4438 llvm_unreachable("unexpected pragma comment kind")::llvm::llvm_unreachable_internal("unexpected pragma comment kind"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4438)
;
4439 case PCK_Linker:
4440 AppendLinkerOptions(PCD->getArg());
4441 break;
4442 case PCK_Lib:
4443 if (getTarget().getTriple().isOSBinFormatELF() &&
4444 !getTarget().getTriple().isPS4())
4445 AddELFLibDirective(PCD->getArg());
4446 else
4447 AddDependentLib(PCD->getArg());
4448 break;
4449 case PCK_Compiler:
4450 case PCK_ExeStr:
4451 case PCK_User:
4452 break; // We ignore all of these.
4453 }
4454 break;
4455 }
4456
4457 case Decl::PragmaDetectMismatch: {
4458 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4459 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4460 break;
4461 }
4462
4463 case Decl::LinkageSpec:
4464 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4465 break;
4466
4467 case Decl::FileScopeAsm: {
4468 // File-scope asm is ignored during device-side CUDA compilation.
4469 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4470 break;
4471 // File-scope asm is ignored during device-side OpenMP compilation.
4472 if (LangOpts.OpenMPIsDevice)
4473 break;
4474 auto *AD = cast<FileScopeAsmDecl>(D);
4475 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4476 break;
4477 }
4478
4479 case Decl::Import: {
4480 auto *Import = cast<ImportDecl>(D);
4481
4482 // If we've already imported this module, we're done.
4483 if (!ImportedModules.insert(Import->getImportedModule()))
4484 break;
4485
4486 // Emit debug information for direct imports.
4487 if (!Import->getImportedOwningModule()) {
4488 if (CGDebugInfo *DI = getModuleDebugInfo())
4489 DI->EmitImportDecl(*Import);
4490 }
4491
4492 // Find all of the submodules and emit the module initializers.
4493 llvm::SmallPtrSet<clang::Module *, 16> Visited;
4494 SmallVector<clang::Module *, 16> Stack;
4495 Visited.insert(Import->getImportedModule());
4496 Stack.push_back(Import->getImportedModule());
4497
4498 while (!Stack.empty()) {
4499 clang::Module *Mod = Stack.pop_back_val();
4500 if (!EmittedModuleInitializers.insert(Mod).second)
4501 continue;
4502
4503 for (auto *D : Context.getModuleInitializers(Mod))
4504 EmitTopLevelDecl(D);
4505
4506 // Visit the submodules of this module.
4507 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4508 SubEnd = Mod->submodule_end();
4509 Sub != SubEnd; ++Sub) {
4510 // Skip explicit children; they need to be explicitly imported to emit
4511 // the initializers.
4512 if ((*Sub)->IsExplicit)
4513 continue;
4514
4515 if (Visited.insert(*Sub).second)
4516 Stack.push_back(*Sub);
4517 }
4518 }
4519 break;
4520 }
4521
4522 case Decl::Export:
4523 EmitDeclContext(cast<ExportDecl>(D));
4524 break;
4525
4526 case Decl::OMPThreadPrivate:
4527 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4528 break;
4529
4530 case Decl::OMPDeclareReduction:
4531 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4532 break;
4533
4534 default:
4535 // Make sure we handled everything we should, every other kind is a
4536 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
4537 // function. Need to recode Decl::Kind to do that easily.
4538 assert(isa<TypeDecl>(D) && "Unsupported decl kind")(static_cast <bool> (isa<TypeDecl>(D) && "Unsupported decl kind"
) ? void (0) : __assert_fail ("isa<TypeDecl>(D) && \"Unsupported decl kind\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4538, __extension__ __PRETTY_FUNCTION__))
;
4539 break;
4540 }
4541}
4542
4543void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4544 // Do we need to generate coverage mapping?
4545 if (!CodeGenOpts.CoverageMapping)
4546 return;
4547 switch (D->getKind()) {
4548 case Decl::CXXConversion:
4549 case Decl::CXXMethod:
4550 case Decl::Function:
4551 case Decl::ObjCMethod:
4552 case Decl::CXXConstructor:
4553 case Decl::CXXDestructor: {
4554 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4555 return;
4556 SourceManager &SM = getContext().getSourceManager();
4557 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4558 return;
4559 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4560 if (I == DeferredEmptyCoverageMappingDecls.end())
4561 DeferredEmptyCoverageMappingDecls[D] = true;
4562 break;
4563 }
4564 default:
4565 break;
4566 };
4567}
4568
4569void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4570 // Do we need to generate coverage mapping?
4571 if (!CodeGenOpts.CoverageMapping)
4572 return;
4573 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4574 if (Fn->isTemplateInstantiation())
4575 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4576 }
4577 auto I = DeferredEmptyCoverageMappingDecls.find(D);
4578 if (I == DeferredEmptyCoverageMappingDecls.end())
4579 DeferredEmptyCoverageMappingDecls[D] = false;
4580 else
4581 I->second = false;
4582}
4583
4584void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4585 // We call takeVector() here to avoid use-after-free.
4586 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4587 // we deserialize function bodies to emit coverage info for them, and that
4588 // deserializes more declarations. How should we handle that case?
4589 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4590 if (!Entry.second)
4591 continue;
4592 const Decl *D = Entry.first;
4593 switch (D->getKind()) {
4594 case Decl::CXXConversion:
4595 case Decl::CXXMethod:
4596 case Decl::Function:
4597 case Decl::ObjCMethod: {
4598 CodeGenPGO PGO(*this);
4599 GlobalDecl GD(cast<FunctionDecl>(D));
4600 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4601 getFunctionLinkage(GD));
4602 break;
4603 }
4604 case Decl::CXXConstructor: {
4605 CodeGenPGO PGO(*this);
4606 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4607 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4608 getFunctionLinkage(GD));
4609 break;
4610 }
4611 case Decl::CXXDestructor: {
4612 CodeGenPGO PGO(*this);
4613 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4614 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4615 getFunctionLinkage(GD));
4616 break;
4617 }
4618 default:
4619 break;
4620 };
4621 }
4622}
4623
4624/// Turns the given pointer into a constant.
4625static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4626 const void *Ptr) {
4627 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4628 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4629 return llvm::ConstantInt::get(i64, PtrInt);
4630}
4631
4632static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4633 llvm::NamedMDNode *&GlobalMetadata,
4634 GlobalDecl D,
4635 llvm::GlobalValue *Addr) {
4636 if (!GlobalMetadata)
4637 GlobalMetadata =
4638 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4639
4640 // TODO: should we report variant information for ctors/dtors?
4641 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4642 llvm::ConstantAsMetadata::get(GetPointerConstant(
4643 CGM.getLLVMContext(), D.getDecl()))};
4644 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4645}
4646
4647/// For each function which is declared within an extern "C" region and marked
4648/// as 'used', but has internal linkage, create an alias from the unmangled
4649/// name to the mangled name if possible. People expect to be able to refer
4650/// to such functions with an unmangled name from inline assembly within the
4651/// same translation unit.
4652void CodeGenModule::EmitStaticExternCAliases() {
4653 // Don't do anything if we're generating CUDA device code -- the NVPTX
4654 // assembly target doesn't support aliases.
4655 if (Context.getTargetInfo().getTriple().isNVPTX())
4656 return;
4657 for (auto &I : StaticExternCValues) {
4658 IdentifierInfo *Name = I.first;
4659 llvm::GlobalValue *Val = I.second;
4660 if (Val && !getModule().getNamedValue(Name->getName()))
4661 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4662 }
4663}
4664
4665bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4666 GlobalDecl &Result) const {
4667 auto Res = Manglings.find(MangledName);
4668 if (Res == Manglings.end())
4669 return false;
4670 Result = Res->getValue();
4671 return true;
4672}
4673
4674/// Emits metadata nodes associating all the global values in the
4675/// current module with the Decls they came from. This is useful for
4676/// projects using IR gen as a subroutine.
4677///
4678/// Since there's currently no way to associate an MDNode directly
4679/// with an llvm::GlobalValue, we create a global named metadata
4680/// with the name 'clang.global.decl.ptrs'.
4681void CodeGenModule::EmitDeclMetadata() {
4682 llvm::NamedMDNode *GlobalMetadata = nullptr;
4683
4684 for (auto &I : MangledDeclNames) {
4685 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4686 // Some mangled names don't necessarily have an associated GlobalValue
4687 // in this module, e.g. if we mangled it for DebugInfo.
4688 if (Addr)
4689 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4690 }
4691}
4692
4693/// Emits metadata nodes for all the local variables in the current
4694/// function.
4695void CodeGenFunction::EmitDeclMetadata() {
4696 if (LocalDeclMap.empty()) return;
4697
4698 llvm::LLVMContext &Context = getLLVMContext();
4699
4700 // Find the unique metadata ID for this name.
4701 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4702
4703 llvm::NamedMDNode *GlobalMetadata = nullptr;
4704
4705 for (auto &I : LocalDeclMap) {
4706 const Decl *D = I.first;
4707 llvm::Value *Addr = I.second.getPointer();
4708 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4709 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4710 Alloca->setMetadata(
4711 DeclPtrKind, llvm::MDNode::get(
4712 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4713 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4714 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4715 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4716 }
4717 }
4718}
4719
4720void CodeGenModule::EmitVersionIdentMetadata() {
4721 llvm::NamedMDNode *IdentMetadata =
4722 TheModule.getOrInsertNamedMetadata("llvm.ident");
4723 std::string Version = getClangFullVersion();
4724 llvm::LLVMContext &Ctx = TheModule.getContext();
4725
4726 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4727 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4728}
4729
4730void CodeGenModule::EmitTargetMetadata() {
4731 // Warning, new MangledDeclNames may be appended within this loop.
4732 // We rely on MapVector insertions adding new elements to the end
4733 // of the container.
4734 // FIXME: Move this loop into the one target that needs it, and only
4735 // loop over those declarations for which we couldn't emit the target
4736 // metadata when we emitted the declaration.
4737 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4738 auto Val = *(MangledDeclNames.begin() + I);
4739 const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4740 llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4741 getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4742 }
4743}
4744
4745void CodeGenModule::EmitCoverageFile() {
4746 if (getCodeGenOpts().CoverageDataFile.empty() &&
4747 getCodeGenOpts().CoverageNotesFile.empty())
4748 return;
4749
4750 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4751 if (!CUNode)
4752 return;
4753
4754 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4755 llvm::LLVMContext &Ctx = TheModule.getContext();
4756 auto *CoverageDataFile =
4757 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4758 auto *CoverageNotesFile =
4759 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4760 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4761 llvm::MDNode *CU = CUNode->getOperand(i);
4762 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4763 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4764 }
4765}
4766
4767llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4768 // Sema has checked that all uuid strings are of the form
4769 // "12345678-1234-1234-1234-1234567890ab".
4770 assert(Uuid.size() == 36)(static_cast <bool> (Uuid.size() == 36) ? void (0) : __assert_fail
("Uuid.size() == 36", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4770, __extension__ __PRETTY_FUNCTION__))
;
4771 for (unsigned i = 0; i < 36; ++i) {
4772 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-')(static_cast <bool> (Uuid[i] == '-') ? void (0) : __assert_fail
("Uuid[i] == '-'", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4772, __extension__ __PRETTY_FUNCTION__))
;
4773 else assert(isHexDigit(Uuid[i]))(static_cast <bool> (isHexDigit(Uuid[i])) ? void (0) : __assert_fail
("isHexDigit(Uuid[i])", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4773, __extension__ __PRETTY_FUNCTION__))
;
4774 }
4775
4776 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4777 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4778
4779 llvm::Constant *Field3[8];
4780 for (unsigned Idx = 0; Idx < 8; ++Idx)
4781 Field3[Idx] = llvm::ConstantInt::get(
4782 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4783
4784 llvm::Constant *Fields[4] = {
4785 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16),
4786 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16),
4787 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4788 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4789 };
4790
4791 return llvm::ConstantStruct::getAnon(Fields);
4792}
4793
4794llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4795 bool ForEH) {
4796 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4797 // FIXME: should we even be calling this method if RTTI is disabled
4798 // and it's not for EH?
4799 if (!ForEH && !getLangOpts().RTTI)
4800 return llvm::Constant::getNullValue(Int8PtrTy);
4801
4802 if (ForEH && Ty->isObjCObjectPointerType() &&
4803 LangOpts.ObjCRuntime.isGNUFamily())
4804 return ObjCRuntime->GetEHType(Ty);
4805
4806 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4807}
4808
4809void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4810 // Do not emit threadprivates in simd-only mode.
4811 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4812 return;
4813 for (auto RefExpr : D->varlists()) {
4814 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4815 bool PerformInit =
4816 VD->getAnyInitializer() &&
4817 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4818 /*ForRef=*/false);
4819
4820 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4821 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4822 VD, Addr, RefExpr->getLocStart(), PerformInit))
4823 CXXGlobalInits.push_back(InitFunction);
4824 }
4825}
4826
4827llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4828 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4829 if (InternalId)
4830 return InternalId;
4831
4832 if (isExternallyVisible(T->getLinkage())) {
4833 std::string OutName;
4834 llvm::raw_string_ostream Out(OutName);
4835 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4836
4837 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4838 } else {
4839 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4840 llvm::ArrayRef<llvm::Metadata *>());
4841 }
4842
4843 return InternalId;
4844}
4845
4846// Generalize pointer types to a void pointer with the qualifiers of the
4847// originally pointed-to type, e.g. 'const char *' and 'char * const *'
4848// generalize to 'const void *' while 'char *' and 'const char **' generalize to
4849// 'void *'.
4850static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
4851 if (!Ty->isPointerType())
4852 return Ty;
4853
4854 return Ctx.getPointerType(
4855 QualType(Ctx.VoidTy).withCVRQualifiers(
4856 Ty->getPointeeType().getCVRQualifiers()));
4857}
4858
4859// Apply type generalization to a FunctionType's return and argument types
4860static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
4861 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
4862 SmallVector<QualType, 8> GeneralizedParams;
4863 for (auto &Param : FnType->param_types())
4864 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
4865
4866 return Ctx.getFunctionType(
4867 GeneralizeType(Ctx, FnType->getReturnType()),
4868 GeneralizedParams, FnType->getExtProtoInfo());
4869 }
4870
4871 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
4872 return Ctx.getFunctionNoProtoType(
4873 GeneralizeType(Ctx, FnType->getReturnType()));
4874
4875 llvm_unreachable("Encountered unknown FunctionType")::llvm::llvm_unreachable_internal("Encountered unknown FunctionType"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/CodeGen/CodeGenModule.cpp"
, 4875)
;
4876}
4877
4878llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
4879 T = GeneralizeFunctionType(getContext(), T);
4880
4881 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()];
4882 if (InternalId)
4883 return InternalId;
4884
4885 if (isExternallyVisible(T->getLinkage())) {
4886 std::string OutName;
4887 llvm::raw_string_ostream Out(OutName);
4888 getCXXABI().getMangleContext().mangleTypeName(T, Out);
4889 Out << ".generalized";
4890
4891 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4892 } else {
4893 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4894 llvm::ArrayRef<llvm::Metadata *>());
4895 }
4896
4897 return InternalId;
4898}
4899
4900/// Returns whether this module needs the "all-vtables" type identifier.
4901bool CodeGenModule::NeedAllVtablesTypeId() const {
4902 // Returns true if at least one of vtable-based CFI checkers is enabled and
4903 // is not in the trapping mode.
4904 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4905 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4906 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4907 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4908 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4909 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4910 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4911 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4912}
4913
4914void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4915 CharUnits Offset,
4916 const CXXRecordDecl *RD) {
4917 llvm::Metadata *MD =
4918 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4919 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4920
4921 if (CodeGenOpts.SanitizeCfiCrossDso)
4922 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4923 VTable->addTypeMetadata(Offset.getQuantity(),
4924 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4925
4926 if (NeedAllVtablesTypeId()) {
4927 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4928 VTable->addTypeMetadata(Offset.getQuantity(), MD);
4929 }
4930}
4931
4932// Fills in the supplied string map with the set of target features for the
4933// passed in function.
4934void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4935 const FunctionDecl *FD) {
4936 StringRef TargetCPU = Target.getTargetOpts().CPU;
4937 if (const auto *TD = FD->getAttr<TargetAttr>()) {
4938 // If we have a TargetAttr build up the feature map based on that.
4939 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4940
4941 ParsedAttr.Features.erase(
4942 llvm::remove_if(ParsedAttr.Features,
4943 [&](const std::string &Feat) {
4944 return !Target.isValidFeatureName(
4945 StringRef{Feat}.substr(1));
4946 }),
4947 ParsedAttr.Features.end());
4948
4949 // Make a copy of the features as passed on the command line into the
4950 // beginning of the additional features from the function to override.
4951 ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
4952 Target.getTargetOpts().FeaturesAsWritten.begin(),
4953 Target.getTargetOpts().FeaturesAsWritten.end());
4954
4955 if (ParsedAttr.Architecture != "" &&
4956 Target.isValidCPUName(ParsedAttr.Architecture))
4957 TargetCPU = ParsedAttr.Architecture;
4958
4959 // Now populate the feature map, first with the TargetCPU which is either
4960 // the default or a new one from the target attribute string. Then we'll use
4961 // the passed in features (FeaturesAsWritten) along with the new ones from
4962 // the attribute.
4963 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4964 ParsedAttr.Features);
4965 } else {
4966 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4967 Target.getTargetOpts().Features);
4968 }
4969}
4970
4971llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4972 if (!SanStats)
4973 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4974
4975 return *SanStats;
4976}
4977llvm::Value *
4978CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4979 CodeGenFunction &CGF) {
4980 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
4981 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
4982 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4983 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4984 "__translate_sampler_initializer"),
4985 {C});
4986}

/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
11// and dyn_cast_or_null<X>() templates.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_CASTING_H
16#define LLVM_SUPPORT_CASTING_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/type_traits.h"
20#include <cassert>
21#include <memory>
22#include <type_traits>
23
24namespace llvm {
25
26//===----------------------------------------------------------------------===//
27// isa<x> Support Templates
28//===----------------------------------------------------------------------===//
29
30// Define a template that can be specialized by smart pointers to reflect the
31// fact that they are automatically dereferenced, and are not involved with the
32// template selection process... the default implementation is a noop.
33//
34template<typename From> struct simplify_type {
35 using SimpleType = From; // The real type this represents...
36
37 // An accessor to get the real value...
38 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39};
40
41template<typename From> struct simplify_type<const From> {
42 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43 using SimpleType =
44 typename add_const_past_pointer<NonConstSimpleType>::type;
45 using RetType =
46 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
47
48 static RetType getSimplifiedValue(const From& Val) {
49 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
5
Calling 'simplify_type::getSimplifiedValue'
6
Returning from 'simplify_type::getSimplifiedValue'
50 }
51};
52
53// The core of the implementation of isa<X> is here; To and From should be
54// the names of classes. This template can be specialized to customize the
55// implementation of isa<> without rewriting it from scratch.
56template <typename To, typename From, typename Enabler = void>
57struct isa_impl {
58 static inline bool doit(const From &Val) {
59 return To::classof(&Val);
12
Calling 'VarDecl::classof'
19
Returning from 'VarDecl::classof'
60 }
61};
62
63/// \brief Always allow upcasts, and perform no dynamic check for them.
64template <typename To, typename From>
65struct isa_impl<
66 To, From, typename std::enable_if<std::is_base_of<To, From>::value>::type> {
67 static inline bool doit(const From &) { return true; }
68};
69
70template <typename To, typename From> struct isa_impl_cl {
71 static inline bool doit(const From &Val) {
72 return isa_impl<To, From>::doit(Val);
73 }
74};
75
76template <typename To, typename From> struct isa_impl_cl<To, const From> {
77 static inline bool doit(const From &Val) {
78 return isa_impl<To, From>::doit(Val);
79 }
80};
81
82template <typename To, typename From>
83struct isa_impl_cl<To, const std::unique_ptr<From>> {
84 static inline bool doit(const std::unique_ptr<From> &Val) {
85 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return isa_impl_cl<To, From>::doit(*Val);
87 }
88};
89
90template <typename To, typename From> struct isa_impl_cl<To, From*> {
91 static inline bool doit(const From *Val) {
92 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 92, __extension__ __PRETTY_FUNCTION__))
;
93 return isa_impl<To, From>::doit(*Val);
94 }
95};
96
97template <typename To, typename From> struct isa_impl_cl<To, From*const> {
98 static inline bool doit(const From *Val) {
99 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 99, __extension__ __PRETTY_FUNCTION__))
;
100 return isa_impl<To, From>::doit(*Val);
101 }
102};
103
104template <typename To, typename From> struct isa_impl_cl<To, const From*> {
105 static inline bool doit(const From *Val) {
106 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 106, __extension__ __PRETTY_FUNCTION__))
;
10
Within the expansion of the macro 'assert':
a
Assuming 'Val' is non-null
107 return isa_impl<To, From>::doit(*Val);
11
Calling 'isa_impl::doit'
20
Returning from 'isa_impl::doit'
108 }
109};
110
111template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
112 static inline bool doit(const From *Val) {
113 assert(Val && "isa<> used on a null pointer")(static_cast <bool> (Val && "isa<> used on a null pointer"
) ? void (0) : __assert_fail ("Val && \"isa<> used on a null pointer\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 113, __extension__ __PRETTY_FUNCTION__))
;
114 return isa_impl<To, From>::doit(*Val);
115 }
116};
117
118template<typename To, typename From, typename SimpleFrom>
119struct isa_impl_wrap {
120 // When From != SimplifiedType, we can simplify the type some more by using
121 // the simplify_type template.
122 static bool doit(const From &Val) {
123 return isa_impl_wrap<To, SimpleFrom,
8
Calling 'isa_impl_wrap::doit'
22
Returning from 'isa_impl_wrap::doit'
124 typename simplify_type<SimpleFrom>::SimpleType>::doit(
125 simplify_type<const From>::getSimplifiedValue(Val));
4
Calling 'simplify_type::getSimplifiedValue'
7
Returning from 'simplify_type::getSimplifiedValue'
126 }
127};
128
129template<typename To, typename FromTy>
130struct isa_impl_wrap<To, FromTy, FromTy> {
131 // When From == SimpleType, we are as simple as we are going to get.
132 static bool doit(const FromTy &Val) {
133 return isa_impl_cl<To,FromTy>::doit(Val);
9
Calling 'isa_impl_cl::doit'
21
Returning from 'isa_impl_cl::doit'
134 }
135};
136
137// isa<X> - Return true if the parameter to the template is an instance of the
138// template type argument. Used like this:
139//
140// if (isa<Type>(myVal)) { ... }
141//
142template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
143 return isa_impl_wrap<X, const Y,
3
Calling 'isa_impl_wrap::doit'
23
Returning from 'isa_impl_wrap::doit'
144 typename simplify_type<const Y>::SimpleType>::doit(Val);
145}
146
147//===----------------------------------------------------------------------===//
148// cast<x> Support Templates
149//===----------------------------------------------------------------------===//
150
151template<class To, class From> struct cast_retty;
152
153// Calculate what type the 'cast' function should return, based on a requested
154// type of To and a source type of From.
155template<class To, class From> struct cast_retty_impl {
156 using ret_type = To &; // Normal case, return Ty&
157};
158template<class To, class From> struct cast_retty_impl<To, const From> {
159 using ret_type = const To &; // Normal case, return Ty&
160};
161
162template<class To, class From> struct cast_retty_impl<To, From*> {
163 using ret_type = To *; // Pointer arg case, return Ty*
164};
165
166template<class To, class From> struct cast_retty_impl<To, const From*> {
167 using ret_type = const To *; // Constant pointer arg case, return const Ty*
168};
169
170template<class To, class From> struct cast_retty_impl<To, const From*const> {
171 using ret_type = const To *; // Constant pointer arg case, return const Ty*
172};
173
174template <class To, class From>
175struct cast_retty_impl<To, std::unique_ptr<From>> {
176private:
177 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
178 using ResultType = typename std::remove_pointer<PointerType>::type;
179
180public:
181 using ret_type = std::unique_ptr<ResultType>;
182};
183
184template<class To, class From, class SimpleFrom>
185struct cast_retty_wrap {
186 // When the simplified type and the from type are not the same, use the type
187 // simplifier to reduce the type, then reuse cast_retty_impl to get the
188 // resultant type.
189 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
190};
191
192template<class To, class FromTy>
193struct cast_retty_wrap<To, FromTy, FromTy> {
194 // When the simplified type is equal to the from type, use it directly.
195 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
196};
197
198template<class To, class From>
199struct cast_retty {
200 using ret_type = typename cast_retty_wrap<
201 To, From, typename simplify_type<From>::SimpleType>::ret_type;
202};
203
204// Ensure the non-simple values are converted using the simplify_type template
205// that may be specialized by smart pointers...
206//
207template<class To, class From, class SimpleFrom> struct cast_convert_val {
208 // This is not a simple type, use the template to simplify it...
209 static typename cast_retty<To, From>::ret_type doit(From &Val) {
210 return cast_convert_val<To, SimpleFrom,
211 typename simplify_type<SimpleFrom>::SimpleType>::doit(
212 simplify_type<From>::getSimplifiedValue(Val));
213 }
214};
215
216template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
217 // This _is_ a simple type, just cast it.
218 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
219 typename cast_retty<To, FromTy>::ret_type Res2
220 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
221 return Res2;
222 }
223};
224
225template <class X> struct is_simple_type {
226 static const bool value =
227 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
228};
229
230// cast<X> - Return the argument parameter cast to the specified type. This
231// casting operator asserts that the type is correct, so it does not return null
232// on failure. It does not allow a null argument (use cast_or_null for that).
233// It is typically used like this:
234//
235// cast<Instruction>(myVal)->getParent()
236//
237template <class X, class Y>
238inline typename std::enable_if<!is_simple_type<Y>::value,
239 typename cast_retty<X, const Y>::ret_type>::type
240cast(const Y &Val) {
241 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 241, __extension__ __PRETTY_FUNCTION__))
;
242 return cast_convert_val<
243 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
244}
245
246template <class X, class Y>
247inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
248 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 248, __extension__ __PRETTY_FUNCTION__))
;
249 return cast_convert_val<X, Y,
250 typename simplify_type<Y>::SimpleType>::doit(Val);
251}
252
253template <class X, class Y>
254inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 255, __extension__ __PRETTY_FUNCTION__))
;
2
Within the expansion of the macro 'assert':
a
Calling 'isa'
b
Returning from 'isa'
256 return cast_convert_val<X, Y*,
24
Calling 'cast_convert_val::doit'
25
Returning from 'cast_convert_val::doit'
257 typename simplify_type<Y*>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
262cast(std::unique_ptr<Y> &&Val) {
263 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val.get()) &&
"cast<Ty>() argument of incompatible type!") ? void (0
) : __assert_fail ("isa<X>(Val.get()) && \"cast<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
265 return ret_type(
266 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
267 Val.release()));
268}
269
270// cast_or_null<X> - Functionally identical to cast, except that a null value is
271// accepted.
272//
273template <class X, class Y>
274LLVM_NODISCARD[[clang::warn_unused_result]] inline
275 typename std::enable_if<!is_simple_type<Y>::value,
276 typename cast_retty<X, const Y>::ret_type>::type
277 cast_or_null(const Y &Val) {
278 if (!Val)
279 return nullptr;
280 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 280, __extension__ __PRETTY_FUNCTION__))
;
281 return cast<X>(Val);
282}
283
284template <class X, class Y>
285LLVM_NODISCARD[[clang::warn_unused_result]] inline
286 typename std::enable_if<!is_simple_type<Y>::value,
287 typename cast_retty<X, Y>::ret_type>::type
288 cast_or_null(Y &Val) {
289 if (!Val)
290 return nullptr;
291 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 291, __extension__ __PRETTY_FUNCTION__))
;
292 return cast<X>(Val);
293}
294
295template <class X, class Y>
296LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
297cast_or_null(Y *Val) {
298 if (!Val) return nullptr;
299 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")(static_cast <bool> (isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!"
) ? void (0) : __assert_fail ("isa<X>(Val) && \"cast_or_null<Ty>() argument of incompatible type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/include/llvm/Support/Casting.h"
, 299, __extension__ __PRETTY_FUNCTION__))
;
300 return cast<X>(Val);
301}
302
303template <class X, class Y>
304inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
305cast_or_null(std::unique_ptr<Y> &&Val) {
306 if (!Val)
307 return nullptr;
308 return cast<X>(std::move(Val));
309}
310
311// dyn_cast<X> - Return the argument parameter cast to the specified type. This
312// casting operator returns null if the argument is of the wrong type, so it can
313// be used to test for a type as well as cast if successful. This should be
314// used in the context of an if statement like this:
315//
316// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
317//
318
319template <class X, class Y>
320LLVM_NODISCARD[[clang::warn_unused_result]] inline
321 typename std::enable_if<!is_simple_type<Y>::value,
322 typename cast_retty<X, const Y>::ret_type>::type
323 dyn_cast(const Y &Val) {
324 return isa<X>(Val) ? cast<X>(Val) : nullptr;
325}
326
327template <class X, class Y>
328LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
329 return isa<X>(Val) ? cast<X>(Val) : nullptr;
330}
331
332template <class X, class Y>
333LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
334 return isa<X>(Val) ? cast<X>(Val) : nullptr;
335}
336
337// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
338// value is accepted.
339//
340template <class X, class Y>
341LLVM_NODISCARD[[clang::warn_unused_result]] inline
342 typename std::enable_if<!is_simple_type<Y>::value,
343 typename cast_retty<X, const Y>::ret_type>::type
344 dyn_cast_or_null(const Y &Val) {
345 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
346}
347
348template <class X, class Y>
349LLVM_NODISCARD[[clang::warn_unused_result]] inline
350 typename std::enable_if<!is_simple_type<Y>::value,
351 typename cast_retty<X, Y>::ret_type>::type
352 dyn_cast_or_null(Y &Val) {
353 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
354}
355
356template <class X, class Y>
357LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
358dyn_cast_or_null(Y *Val) {
359 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
360}
361
362// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
363// taking ownership of the input pointer iff isa<X>(Val) is true. If the
364// cast is successful, From refers to nullptr on exit and the casted value
365// is returned. If the cast is unsuccessful, the function returns nullptr
366// and From is unchanged.
367template <class X, class Y>
368LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
369 -> decltype(cast<X>(Val)) {
370 if (!isa<X>(Val))
371 return nullptr;
372 return cast<X>(std::move(Val));
373}
374
375template <class X, class Y>
376LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val)
377 -> decltype(cast<X>(Val)) {
378 return unique_dyn_cast<X, Y>(Val);
379}
380
381// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
382// a null value is accepted.
383template <class X, class Y>
384LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
385 -> decltype(cast<X>(Val)) {
386 if (!Val)
387 return nullptr;
388 return unique_dyn_cast<X, Y>(Val);
389}
390
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val)
393 -> decltype(cast<X>(Val)) {
394 return unique_dyn_cast_or_null<X, Y>(Val);
395}
396
397} // end namespace llvm
398
399#endif // LLVM_SUPPORT_CASTING_H

/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/Redeclarable.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/AddressSpaces.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/IdentifierTable.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/PragmaKinds.h"
32#include "clang/Basic/SourceLocation.h"
33#include "clang/Basic/Specifiers.h"
34#include "clang/Basic/Visibility.h"
35#include "llvm/ADT/APSInt.h"
36#include "llvm/ADT/ArrayRef.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/iterator_range.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/TrailingObjects.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <string>
49#include <utility>
50
51namespace clang {
52
53class ASTContext;
54struct ASTTemplateArgumentListInfo;
55class Attr;
56class CompoundStmt;
57class DependentFunctionTemplateSpecializationInfo;
58class EnumDecl;
59class Expr;
60class FunctionTemplateDecl;
61class FunctionTemplateSpecializationInfo;
62class LabelStmt;
63class MemberSpecializationInfo;
64class Module;
65class NamespaceDecl;
66class ParmVarDecl;
67class RecordDecl;
68class Stmt;
69class StringLiteral;
70class TagDecl;
71class TemplateArgumentList;
72class TemplateArgumentListInfo;
73class TemplateParameterList;
74class TypeAliasTemplateDecl;
75class TypeLoc;
76class UnresolvedSetImpl;
77class VarTemplateDecl;
78
79/// A container of type source information.
80///
81/// A client can read the relevant info using TypeLoc wrappers, e.g:
82/// @code
83/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
84/// TL.getStartLoc().print(OS, SrcMgr);
85/// @endcode
86class LLVM_ALIGNAS(8)alignas(8) TypeSourceInfo {
87 // Contains a memory block after the class, used for type source information,
88 // allocated by ASTContext.
89 friend class ASTContext;
90
91 QualType Ty;
92
93 TypeSourceInfo(QualType ty) : Ty(ty) {}
94
95public:
96 /// Return the type wrapped by this type source info.
97 QualType getType() const { return Ty; }
98
99 /// Return the TypeLoc wrapper for the type source info.
100 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
101
102 /// Override the type stored in this TypeSourceInfo. Use with caution!
103 void overrideType(QualType T) { Ty = T; }
104};
105
106/// The top declaration context.
107class TranslationUnitDecl : public Decl, public DeclContext {
108 ASTContext &Ctx;
109
110 /// The (most recently entered) anonymous namespace for this
111 /// translation unit, if one has been created.
112 NamespaceDecl *AnonymousNamespace = nullptr;
113
114 explicit TranslationUnitDecl(ASTContext &ctx);
115
116 virtual void anchor();
117
118public:
119 ASTContext &getASTContext() const { return Ctx; }
120
121 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
122 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
123
124 static TranslationUnitDecl *Create(ASTContext &C);
125
126 // Implement isa/cast/dyncast/etc.
127 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
128 static bool classofKind(Kind K) { return K == TranslationUnit; }
129 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
130 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
131 }
132 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
133 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
134 }
135};
136
137/// Represents a `#pragma comment` line. Always a child of
138/// TranslationUnitDecl.
139class PragmaCommentDecl final
140 : public Decl,
141 private llvm::TrailingObjects<PragmaCommentDecl, char> {
142 friend class ASTDeclReader;
143 friend class ASTDeclWriter;
144 friend TrailingObjects;
145
146 PragmaMSCommentKind CommentKind;
147
148 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
149 PragmaMSCommentKind CommentKind)
150 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
151
152 virtual void anchor();
153
154public:
155 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
156 SourceLocation CommentLoc,
157 PragmaMSCommentKind CommentKind,
158 StringRef Arg);
159 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
160 unsigned ArgSize);
161
162 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
163
164 StringRef getArg() const { return getTrailingObjects<char>(); }
165
166 // Implement isa/cast/dyncast/etc.
167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
168 static bool classofKind(Kind K) { return K == PragmaComment; }
169};
170
171/// Represents a `#pragma detect_mismatch` line. Always a child of
172/// TranslationUnitDecl.
173class PragmaDetectMismatchDecl final
174 : public Decl,
175 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
176 friend class ASTDeclReader;
177 friend class ASTDeclWriter;
178 friend TrailingObjects;
179
180 size_t ValueStart;
181
182 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
183 size_t ValueStart)
184 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
185
186 virtual void anchor();
187
188public:
189 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
190 TranslationUnitDecl *DC,
191 SourceLocation Loc, StringRef Name,
192 StringRef Value);
193 static PragmaDetectMismatchDecl *
194 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
195
196 StringRef getName() const { return getTrailingObjects<char>(); }
197 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
198
199 // Implement isa/cast/dyncast/etc.
200 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
201 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
202};
203
204/// Declaration context for names declared as extern "C" in C++. This
205/// is neither the semantic nor lexical context for such declarations, but is
206/// used to check for conflicts with other extern "C" declarations. Example:
207///
208/// \code
209/// namespace N { extern "C" void f(); } // #1
210/// void N::f() {} // #2
211/// namespace M { extern "C" void f(); } // #3
212/// \endcode
213///
214/// The semantic context of #1 is namespace N and its lexical context is the
215/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
216/// context is the TU. However, both declarations are also visible in the
217/// extern "C" context.
218///
219/// The declaration at #3 finds it is a redeclaration of \c N::f through
220/// lookup in the extern "C" context.
221class ExternCContextDecl : public Decl, public DeclContext {
222 explicit ExternCContextDecl(TranslationUnitDecl *TU)
223 : Decl(ExternCContext, TU, SourceLocation()),
224 DeclContext(ExternCContext) {}
225
226 virtual void anchor();
227
228public:
229 static ExternCContextDecl *Create(const ASTContext &C,
230 TranslationUnitDecl *TU);
231
232 // Implement isa/cast/dyncast/etc.
233 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
234 static bool classofKind(Kind K) { return K == ExternCContext; }
235 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
236 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
237 }
238 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
239 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
240 }
241};
242
243/// This represents a decl that may have a name. Many decls have names such
244/// as ObjCMethodDecl, but not \@class, etc.
245///
246/// Note that not every NamedDecl is actually named (e.g., a struct might
247/// be anonymous), and not every name is an identifier.
248class NamedDecl : public Decl {
249 /// The name of this declaration, which is typically a normal
250 /// identifier but may also be a special kind of name (C++
251 /// constructor, Objective-C selector, etc.)
252 DeclarationName Name;
253
254 virtual void anchor();
255
256private:
257 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
258
259protected:
260 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
261 : Decl(DK, DC, L), Name(N) {}
262
263public:
264 /// Get the identifier that names this declaration, if there is one.
265 ///
266 /// This will return NULL if this declaration has no name (e.g., for
267 /// an unnamed class) or if the name is a special name (C++ constructor,
268 /// Objective-C selector, etc.).
269 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
270
271 /// Get the name of identifier for this declaration as a StringRef.
272 ///
273 /// This requires that the declaration have a name and that it be a simple
274 /// identifier.
275 StringRef getName() const {
276 assert(Name.isIdentifier() && "Name is not a simple identifier")(static_cast <bool> (Name.isIdentifier() && "Name is not a simple identifier"
) ? void (0) : __assert_fail ("Name.isIdentifier() && \"Name is not a simple identifier\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/include/clang/AST/Decl.h"
, 276, __extension__ __PRETTY_FUNCTION__))
;
277 return getIdentifier() ? getIdentifier()->getName() : "";
278 }
279
280 /// Get a human-readable name for the declaration, even if it is one of the
281 /// special kinds of names (C++ constructor, Objective-C selector, etc).
282 ///
283 /// Creating this name requires expensive string manipulation, so it should
284 /// be called only when performance doesn't matter. For simple declarations,
285 /// getNameAsCString() should suffice.
286 //
287 // FIXME: This function should be renamed to indicate that it is not just an
288 // alternate form of getName(), and clients should move as appropriate.
289 //
290 // FIXME: Deprecated, move clients to getName().
291 std::string getNameAsString() const { return Name.getAsString(); }
292
293 virtual void printName(raw_ostream &os) const;
294
295 /// Get the actual, stored name of the declaration, which may be a special
296 /// name.
297 DeclarationName getDeclName() const { return Name; }
298
299 /// Set the name of this declaration.
300 void setDeclName(DeclarationName N) { Name = N; }
301
302 /// Returns a human-readable qualified name for this declaration, like
303 /// A::B::i, for i being member of namespace A::B.
304 ///
305 /// If the declaration is not a member of context which can be named (record,
306 /// namespace), it will return the same result as printName().
307 ///
308 /// Creating this name is expensive, so it should be called only when
309 /// performance doesn't matter.
310 void printQualifiedName(raw_ostream &OS) const;
311 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
312
313 // FIXME: Remove string version.
314 std::string getQualifiedNameAsString() const;
315
316 /// Appends a human-readable name for this declaration into the given stream.
317 ///
318 /// This is the method invoked by Sema when displaying a NamedDecl
319 /// in a diagnostic. It does not necessarily produce the same
320 /// result as printName(); for example, class template
321 /// specializations are printed with their template arguments.
322 virtual void getNameForDiagnostic(raw_ostream &OS,
323 const PrintingPolicy &Policy,
324 bool Qualified) const;
325
326 /// Determine whether this declaration, if known to be well-formed within
327 /// its context, will replace the declaration OldD if introduced into scope.
328 ///
329 /// A declaration will replace another declaration if, for example, it is
330 /// a redeclaration of the same variable or function, but not if it is a
331 /// declaration of a different kind (function vs. class) or an overloaded
332 /// function.
333 ///
334 /// \param IsKnownNewer \c true if this declaration is known to be newer
335 /// than \p OldD (for instance, if this declaration is newly-created).
336 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
337
338 /// Determine whether this declaration has linkage.
339 bool hasLinkage() const;
340
341 using Decl::isModulePrivate;
342 using Decl::setModulePrivate;
343
344 /// Determine whether this declaration is a C++ class member.
345 bool isCXXClassMember() const {
346 const DeclContext *DC = getDeclContext();
347
348 // C++0x [class.mem]p1:
349 // The enumerators of an unscoped enumeration defined in
350 // the class are members of the class.
351 if (isa<EnumDecl>(DC))
352 DC = DC->getRedeclContext();
353
354 return DC->isRecord();
355 }
356
357 /// Determine whether the given declaration is an instance member of
358 /// a C++ class.
359 bool isCXXInstanceMember() const;
360
361 /// Determine what kind of linkage this entity has.
362 ///
363 /// This is not the linkage as defined by the standard or the codegen notion
364 /// of linkage. It is just an implementation detail that is used to compute
365 /// those.
366 Linkage getLinkageInternal() const;
367
368 /// Get the linkage from a semantic point of view. Entities in
369 /// anonymous namespaces are external (in c++98).
370 Linkage getFormalLinkage() const {
371 return clang::getFormalLinkage(getLinkageInternal());
372 }
373
374 /// True if this decl has external linkage.
375 bool hasExternalFormalLinkage() const {
376 return isExternalFormalLinkage(getLinkageInternal());
377 }
378
379 bool isExternallyVisible() const {
380 return clang::isExternallyVisible(getLinkageInternal());
381 }
382
383 /// Determine whether this declaration can be redeclared in a
384 /// different translation unit.
385 bool isExternallyDeclarable() const {
386 return isExternallyVisible() && !getOwningModuleForLinkage();
387 }
388
389 /// Determines the visibility of this entity.
390 Visibility getVisibility() const {
391 return getLinkageAndVisibility().getVisibility();
392 }
393
394 /// Determines the linkage and visibility of this entity.
395 LinkageInfo getLinkageAndVisibility() const;
396
397 /// Kinds of explicit visibility.
398 enum ExplicitVisibilityKind {
399 /// Do an LV computation for, ultimately, a type.
400 /// Visibility may be restricted by type visibility settings and
401 /// the visibility of template arguments.
402 VisibilityForType,
403
404 /// Do an LV computation for, ultimately, a non-type declaration.
405 /// Visibility may be restricted by value visibility settings and
406 /// the visibility of template arguments.
407 VisibilityForValue
408 };
409
410 /// If visibility was explicitly specified for this
411 /// declaration, return that visibility.
412 Optional<Visibility>
413 getExplicitVisibility(ExplicitVisibilityKind kind) const;
414
415 /// True if the computed linkage is valid. Used for consistency
416 /// checking. Should always return true.
417 bool isLinkageValid() const;
418
419 /// True if something has required us to compute the linkage
420 /// of this declaration.
421 ///
422 /// Language features which can retroactively change linkage (like a
423 /// typedef name for linkage purposes) may need to consider this,
424 /// but hopefully only in transitory ways during parsing.
425 bool hasLinkageBeenComputed() const {
426 return hasCachedLinkage();
427 }
428
429 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
430 /// the underlying named decl.
431 NamedDecl *getUnderlyingDecl() {
432 // Fast-path the common case.
433 if (this->getKind() != UsingShadow &&
434 this->getKind() != ConstructorUsingShadow &&
435 this->getKind() != ObjCCompatibleAlias &&
436 this->getKind() != NamespaceAlias)
437 return this;
438
439 return getUnderlyingDeclImpl();
440 }
441 const NamedDecl *getUnderlyingDecl() const {
442 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
443 }
444
445 NamedDecl *getMostRecentDecl() {
446 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
447 }
448 const NamedDecl *getMostRecentDecl() const {
449 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
450 }
451