Bug Summary

File:llvm/lib/Analysis/ConstantFolding.cpp
Warning:line 2610, column 35
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ConstantFolding.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/lib/Analysis -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-03-15-022507-3198-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp

/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp

1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/Analysis/TargetFolder.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/VectorUtils.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalValue.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/InstrTypes.h"
40#include "llvm/IR/Instruction.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/IntrinsicsAMDGPU.h"
45#include "llvm/IR/IntrinsicsARM.h"
46#include "llvm/IR/IntrinsicsWebAssembly.h"
47#include "llvm/IR/IntrinsicsX86.h"
48#include "llvm/IR/Operator.h"
49#include "llvm/IR/Type.h"
50#include "llvm/IR/Value.h"
51#include "llvm/Support/Casting.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/KnownBits.h"
54#include "llvm/Support/MathExtras.h"
55#include <cassert>
56#include <cerrno>
57#include <cfenv>
58#include <cmath>
59#include <cstddef>
60#include <cstdint>
61
62using namespace llvm;
63
64namespace {
65
66//===----------------------------------------------------------------------===//
67// Constant Folding internal helper functions
68//===----------------------------------------------------------------------===//
69
70static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
71 Constant *C, Type *SrcEltTy,
72 unsigned NumSrcElts,
73 const DataLayout &DL) {
74 // Now that we know that the input value is a vector of integers, just shift
75 // and insert them into our result.
76 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
77 for (unsigned i = 0; i != NumSrcElts; ++i) {
78 Constant *Element;
79 if (DL.isLittleEndian())
80 Element = C->getAggregateElement(NumSrcElts - i - 1);
81 else
82 Element = C->getAggregateElement(i);
83
84 if (Element && isa<UndefValue>(Element)) {
85 Result <<= BitShift;
86 continue;
87 }
88
89 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
90 if (!ElementCI)
91 return ConstantExpr::getBitCast(C, DestTy);
92
93 Result <<= BitShift;
94 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
95 }
96
97 return nullptr;
98}
99
100/// Constant fold bitcast, symbolically evaluating it with DataLayout.
101/// This always returns a non-null constant, but it may be a
102/// ConstantExpr if unfoldable.
103Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
104 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&((CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
"Invalid constantexpr bitcast!") ? static_cast<void> (
0) : __assert_fail ("CastInst::castIsValid(Instruction::BitCast, C, DestTy) && \"Invalid constantexpr bitcast!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 105, __PRETTY_FUNCTION__))
105 "Invalid constantexpr bitcast!")((CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
"Invalid constantexpr bitcast!") ? static_cast<void> (
0) : __assert_fail ("CastInst::castIsValid(Instruction::BitCast, C, DestTy) && \"Invalid constantexpr bitcast!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 105, __PRETTY_FUNCTION__))
;
106
107 // Catch the obvious splat cases.
108 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
109 return Constant::getNullValue(DestTy);
110 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
111 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
112 return Constant::getAllOnesValue(DestTy);
113
114 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
115 // Handle a vector->scalar integer/fp cast.
116 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
117 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
118 Type *SrcEltTy = VTy->getElementType();
119
120 // If the vector is a vector of floating point, convert it to vector of int
121 // to simplify things.
122 if (SrcEltTy->isFloatingPointTy()) {
123 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
124 auto *SrcIVTy = FixedVectorType::get(
125 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
126 // Ask IR to do the conversion now that #elts line up.
127 C = ConstantExpr::getBitCast(C, SrcIVTy);
128 }
129
130 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
131 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
132 SrcEltTy, NumSrcElts, DL))
133 return CE;
134
135 if (isa<IntegerType>(DestTy))
136 return ConstantInt::get(DestTy, Result);
137
138 APFloat FP(DestTy->getFltSemantics(), Result);
139 return ConstantFP::get(DestTy->getContext(), FP);
140 }
141 }
142
143 // The code below only handles casts to vectors currently.
144 auto *DestVTy = dyn_cast<VectorType>(DestTy);
145 if (!DestVTy)
146 return ConstantExpr::getBitCast(C, DestTy);
147
148 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
149 // vector so the code below can handle it uniformly.
150 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
151 Constant *Ops = C; // don't take the address of C!
152 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
153 }
154
155 // If this is a bitcast from constant vector -> vector, fold it.
156 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
157 return ConstantExpr::getBitCast(C, DestTy);
158
159 // If the element types match, IR can fold it.
160 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
161 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
162 if (NumDstElt == NumSrcElt)
163 return ConstantExpr::getBitCast(C, DestTy);
164
165 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
166 Type *DstEltTy = DestVTy->getElementType();
167
168 // Otherwise, we're changing the number of elements in a vector, which
169 // requires endianness information to do the right thing. For example,
170 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
171 // folds to (little endian):
172 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
173 // and to (big endian):
174 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
175
176 // First thing is first. We only want to think about integer here, so if
177 // we have something in FP form, recast it as integer.
178 if (DstEltTy->isFloatingPointTy()) {
179 // Fold to an vector of integers with same size as our FP type.
180 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
181 auto *DestIVTy = FixedVectorType::get(
182 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
183 // Recursively handle this integer conversion, if possible.
184 C = FoldBitCast(C, DestIVTy, DL);
185
186 // Finally, IR can handle this now that #elts line up.
187 return ConstantExpr::getBitCast(C, DestTy);
188 }
189
190 // Okay, we know the destination is integer, if the input is FP, convert
191 // it to integer first.
192 if (SrcEltTy->isFloatingPointTy()) {
193 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
194 auto *SrcIVTy = FixedVectorType::get(
195 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
196 // Ask IR to do the conversion now that #elts line up.
197 C = ConstantExpr::getBitCast(C, SrcIVTy);
198 // If IR wasn't able to fold it, bail out.
199 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
200 !isa<ConstantDataVector>(C))
201 return C;
202 }
203
204 // Now we know that the input and output vectors are both integer vectors
205 // of the same size, and that their #elements is not the same. Do the
206 // conversion here, which depends on whether the input or output has
207 // more elements.
208 bool isLittleEndian = DL.isLittleEndian();
209
210 SmallVector<Constant*, 32> Result;
211 if (NumDstElt < NumSrcElt) {
212 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
213 Constant *Zero = Constant::getNullValue(DstEltTy);
214 unsigned Ratio = NumSrcElt/NumDstElt;
215 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
216 unsigned SrcElt = 0;
217 for (unsigned i = 0; i != NumDstElt; ++i) {
218 // Build each element of the result.
219 Constant *Elt = Zero;
220 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
221 for (unsigned j = 0; j != Ratio; ++j) {
222 Constant *Src = C->getAggregateElement(SrcElt++);
223 if (Src && isa<UndefValue>(Src))
224 Src = Constant::getNullValue(
225 cast<VectorType>(C->getType())->getElementType());
226 else
227 Src = dyn_cast_or_null<ConstantInt>(Src);
228 if (!Src) // Reject constantexpr elements.
229 return ConstantExpr::getBitCast(C, DestTy);
230
231 // Zero extend the element to the right size.
232 Src = ConstantExpr::getZExt(Src, Elt->getType());
233
234 // Shift it to the right place, depending on endianness.
235 Src = ConstantExpr::getShl(Src,
236 ConstantInt::get(Src->getType(), ShiftAmt));
237 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
238
239 // Mix it in.
240 Elt = ConstantExpr::getOr(Elt, Src);
241 }
242 Result.push_back(Elt);
243 }
244 return ConstantVector::get(Result);
245 }
246
247 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
248 unsigned Ratio = NumDstElt/NumSrcElt;
249 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
250
251 // Loop over each source value, expanding into multiple results.
252 for (unsigned i = 0; i != NumSrcElt; ++i) {
253 auto *Element = C->getAggregateElement(i);
254
255 if (!Element) // Reject constantexpr elements.
256 return ConstantExpr::getBitCast(C, DestTy);
257
258 if (isa<UndefValue>(Element)) {
259 // Correctly Propagate undef values.
260 Result.append(Ratio, UndefValue::get(DstEltTy));
261 continue;
262 }
263
264 auto *Src = dyn_cast<ConstantInt>(Element);
265 if (!Src)
266 return ConstantExpr::getBitCast(C, DestTy);
267
268 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
269 for (unsigned j = 0; j != Ratio; ++j) {
270 // Shift the piece of the value into the right place, depending on
271 // endianness.
272 Constant *Elt = ConstantExpr::getLShr(Src,
273 ConstantInt::get(Src->getType(), ShiftAmt));
274 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
275
276 // Truncate the element to an integer with the same pointer size and
277 // convert the element back to a pointer using a inttoptr.
278 if (DstEltTy->isPointerTy()) {
279 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
280 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
281 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
282 continue;
283 }
284
285 // Truncate and remember this piece.
286 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
287 }
288 }
289
290 return ConstantVector::get(Result);
291}
292
293} // end anonymous namespace
294
295/// If this constant is a constant offset from a global, return the global and
296/// the constant. Because of constantexprs, this function is recursive.
297bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
298 APInt &Offset, const DataLayout &DL,
299 DSOLocalEquivalent **DSOEquiv) {
300 if (DSOEquiv)
301 *DSOEquiv = nullptr;
302
303 // Trivial case, constant is the global.
304 if ((GV = dyn_cast<GlobalValue>(C))) {
305 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
306 Offset = APInt(BitWidth, 0);
307 return true;
308 }
309
310 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
311 if (DSOEquiv)
312 *DSOEquiv = FoundDSOEquiv;
313 GV = FoundDSOEquiv->getGlobalValue();
314 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
315 Offset = APInt(BitWidth, 0);
316 return true;
317 }
318
319 // Otherwise, if this isn't a constant expr, bail out.
320 auto *CE = dyn_cast<ConstantExpr>(C);
321 if (!CE) return false;
322
323 // Look through ptr->int and ptr->ptr casts.
324 if (CE->getOpcode() == Instruction::PtrToInt ||
325 CE->getOpcode() == Instruction::BitCast)
326 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
327 DSOEquiv);
328
329 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
330 auto *GEP = dyn_cast<GEPOperator>(CE);
331 if (!GEP)
332 return false;
333
334 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
335 APInt TmpOffset(BitWidth, 0);
336
337 // If the base isn't a global+constant, we aren't either.
338 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
339 DSOEquiv))
340 return false;
341
342 // Otherwise, add any offset that our operands provide.
343 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
344 return false;
345
346 Offset = TmpOffset;
347 return true;
348}
349
350Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
351 const DataLayout &DL) {
352 do {
353 Type *SrcTy = C->getType();
354 uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
355 uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
356 if (SrcSize < DestSize)
357 return nullptr;
358
359 // Catch the obvious splat cases (since all-zeros can coerce non-integral
360 // pointers legally).
361 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
362 return Constant::getNullValue(DestTy);
363 if (C->isAllOnesValue() &&
364 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
365 DestTy->isVectorTy()) &&
366 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
367 !DestTy->isPtrOrPtrVectorTy())
368 // Get ones when the input is trivial, but
369 // only for supported types inside getAllOnesValue.
370 return Constant::getAllOnesValue(DestTy);
371
372 // If the type sizes are the same and a cast is legal, just directly
373 // cast the constant.
374 // But be careful not to coerce non-integral pointers illegally.
375 if (SrcSize == DestSize &&
376 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
377 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
378 Instruction::CastOps Cast = Instruction::BitCast;
379 // If we are going from a pointer to int or vice versa, we spell the cast
380 // differently.
381 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
382 Cast = Instruction::IntToPtr;
383 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
384 Cast = Instruction::PtrToInt;
385
386 if (CastInst::castIsValid(Cast, C, DestTy))
387 return ConstantExpr::getCast(Cast, C, DestTy);
388 }
389
390 // We're simulating a load through a pointer that was bitcast to point to
391 // a different type, so we can try to walk down through the initial
392 // elements of an aggregate to see if some part of the aggregate is
393 // castable to implement the "load" semantic model.
394 if (SrcTy->isStructTy()) {
395 // Struct types might have leading zero-length elements like [0 x i32],
396 // which are certainly not what we are looking for, so skip them.
397 unsigned Elem = 0;
398 Constant *ElemC;
399 do {
400 ElemC = C->getAggregateElement(Elem++);
401 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
402 C = ElemC;
403 } else {
404 C = C->getAggregateElement(0u);
405 }
406 } while (C);
407
408 return nullptr;
409}
410
411namespace {
412
413/// Recursive helper to read bits out of global. C is the constant being copied
414/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
415/// results into and BytesLeft is the number of bytes left in
416/// the CurPtr buffer. DL is the DataLayout.
417bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
418 unsigned BytesLeft, const DataLayout &DL) {
419 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&((ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access") ? static_cast<void> (0) : __assert_fail
("ByteOffset <= DL.getTypeAllocSize(C->getType()) && \"Out of range access\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 420, __PRETTY_FUNCTION__))
420 "Out of range access")((ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access") ? static_cast<void> (0) : __assert_fail
("ByteOffset <= DL.getTypeAllocSize(C->getType()) && \"Out of range access\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 420, __PRETTY_FUNCTION__))
;
421
422 // If this element is zero or undefined, we can just return since *CurPtr is
423 // zero initialized.
424 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
425 return true;
426
427 if (auto *CI = dyn_cast<ConstantInt>(C)) {
428 if (CI->getBitWidth() > 64 ||
429 (CI->getBitWidth() & 7) != 0)
430 return false;
431
432 uint64_t Val = CI->getZExtValue();
433 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
434
435 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
436 int n = ByteOffset;
437 if (!DL.isLittleEndian())
438 n = IntBytes - n - 1;
439 CurPtr[i] = (unsigned char)(Val >> (n * 8));
440 ++ByteOffset;
441 }
442 return true;
443 }
444
445 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
446 if (CFP->getType()->isDoubleTy()) {
447 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
448 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
449 }
450 if (CFP->getType()->isFloatTy()){
451 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
452 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
453 }
454 if (CFP->getType()->isHalfTy()){
455 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
457 }
458 return false;
459 }
460
461 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
462 const StructLayout *SL = DL.getStructLayout(CS->getType());
463 unsigned Index = SL->getElementContainingOffset(ByteOffset);
464 uint64_t CurEltOffset = SL->getElementOffset(Index);
465 ByteOffset -= CurEltOffset;
466
467 while (true) {
468 // If the element access is to the element itself and not to tail padding,
469 // read the bytes from the element.
470 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
471
472 if (ByteOffset < EltSize &&
473 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
474 BytesLeft, DL))
475 return false;
476
477 ++Index;
478
479 // Check to see if we read from the last struct element, if so we're done.
480 if (Index == CS->getType()->getNumElements())
481 return true;
482
483 // If we read all of the bytes we needed from this element we're done.
484 uint64_t NextEltOffset = SL->getElementOffset(Index);
485
486 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
487 return true;
488
489 // Move to the next element of the struct.
490 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
491 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
492 ByteOffset = 0;
493 CurEltOffset = NextEltOffset;
494 }
495 // not reached.
496 }
497
498 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
499 isa<ConstantDataSequential>(C)) {
500 uint64_t NumElts;
501 Type *EltTy;
502 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
503 NumElts = AT->getNumElements();
504 EltTy = AT->getElementType();
505 } else {
506 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
507 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
508 }
509 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
510 uint64_t Index = ByteOffset / EltSize;
511 uint64_t Offset = ByteOffset - Index * EltSize;
512
513 for (; Index != NumElts; ++Index) {
514 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
515 BytesLeft, DL))
516 return false;
517
518 uint64_t BytesWritten = EltSize - Offset;
519 assert(BytesWritten <= EltSize && "Not indexing into this element?")((BytesWritten <= EltSize && "Not indexing into this element?"
) ? static_cast<void> (0) : __assert_fail ("BytesWritten <= EltSize && \"Not indexing into this element?\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 519, __PRETTY_FUNCTION__))
;
520 if (BytesWritten >= BytesLeft)
521 return true;
522
523 Offset = 0;
524 BytesLeft -= BytesWritten;
525 CurPtr += BytesWritten;
526 }
527 return true;
528 }
529
530 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
531 if (CE->getOpcode() == Instruction::IntToPtr &&
532 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
533 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
534 BytesLeft, DL);
535 }
536 }
537
538 // Otherwise, unknown initializer type.
539 return false;
540}
541
542Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
543 const DataLayout &DL) {
544 // Bail out early. Not expect to load from scalable global variable.
545 if (isa<ScalableVectorType>(LoadTy))
546 return nullptr;
547
548 auto *PTy = cast<PointerType>(C->getType());
549 auto *IntType = dyn_cast<IntegerType>(LoadTy);
550
551 // If this isn't an integer load we can't fold it directly.
552 if (!IntType) {
553 unsigned AS = PTy->getAddressSpace();
554
555 // If this is a float/double load, we can try folding it as an int32/64 load
556 // and then bitcast the result. This can be useful for union cases. Note
557 // that address spaces don't matter here since we're not going to result in
558 // an actual new load.
559 Type *MapTy;
560 if (LoadTy->isHalfTy())
561 MapTy = Type::getInt16Ty(C->getContext());
562 else if (LoadTy->isFloatTy())
563 MapTy = Type::getInt32Ty(C->getContext());
564 else if (LoadTy->isDoubleTy())
565 MapTy = Type::getInt64Ty(C->getContext());
566 else if (LoadTy->isVectorTy()) {
567 MapTy = PointerType::getIntNTy(
568 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
569 } else
570 return nullptr;
571
572 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
573 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
574 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
575 !LoadTy->isX86_AMXTy())
576 // Materializing a zero can be done trivially without a bitcast
577 return Constant::getNullValue(LoadTy);
578 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
579 Res = FoldBitCast(Res, CastTy, DL);
580 if (LoadTy->isPtrOrPtrVectorTy()) {
581 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
582 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
583 !LoadTy->isX86_AMXTy())
584 return Constant::getNullValue(LoadTy);
585 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
586 // Be careful not to replace a load of an addrspace value with an inttoptr here
587 return nullptr;
588 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
589 }
590 return Res;
591 }
592 return nullptr;
593 }
594
595 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
596 if (BytesLoaded > 32 || BytesLoaded == 0)
597 return nullptr;
598
599 GlobalValue *GVal;
600 APInt OffsetAI;
601 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
602 return nullptr;
603
604 auto *GV = dyn_cast<GlobalVariable>(GVal);
605 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
606 !GV->getInitializer()->getType()->isSized())
607 return nullptr;
608
609 int64_t Offset = OffsetAI.getSExtValue();
610 int64_t InitializerSize =
611 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
612
613 // If we're not accessing anything in this constant, the result is undefined.
614 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
615 return UndefValue::get(IntType);
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= InitializerSize)
619 return UndefValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
654 const DataLayout &DL) {
655 auto *SrcPtr = CE->getOperand(0);
656 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
657 if (!SrcPtrTy)
658 return nullptr;
659 Type *SrcTy = SrcPtrTy->getPointerElementType();
660
661 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
662 if (!C)
663 return nullptr;
664
665 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
666}
667
668} // end anonymous namespace
669
670Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
671 const DataLayout &DL) {
672 // First, try the easy cases:
673 if (auto *GV = dyn_cast<GlobalVariable>(C))
674 if (GV->isConstant() && GV->hasDefinitiveInitializer())
675 return GV->getInitializer();
676
677 if (auto *GA = dyn_cast<GlobalAlias>(C))
678 if (GA->getAliasee() && !GA->isInterposable())
679 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
680
681 // If the loaded value isn't a constant expr, we can't handle it.
682 auto *CE = dyn_cast<ConstantExpr>(C);
683 if (!CE)
684 return nullptr;
685
686 if (CE->getOpcode() == Instruction::GetElementPtr) {
687 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
688 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
689 if (Constant *V =
690 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
691 return V;
692 }
693 }
694 }
695
696 if (CE->getOpcode() == Instruction::BitCast)
697 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
698 return LoadedC;
699
700 // Instead of loading constant c string, use corresponding integer value
701 // directly if string length is small enough.
702 StringRef Str;
703 if (getConstantStringInfo(CE, Str) && !Str.empty()) {
704 size_t StrLen = Str.size();
705 unsigned NumBits = Ty->getPrimitiveSizeInBits();
706 // Replace load with immediate integer if the result is an integer or fp
707 // value.
708 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
709 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
710 APInt StrVal(NumBits, 0);
711 APInt SingleChar(NumBits, 0);
712 if (DL.isLittleEndian()) {
713 for (unsigned char C : reverse(Str.bytes())) {
714 SingleChar = static_cast<uint64_t>(C);
715 StrVal = (StrVal << 8) | SingleChar;
716 }
717 } else {
718 for (unsigned char C : Str.bytes()) {
719 SingleChar = static_cast<uint64_t>(C);
720 StrVal = (StrVal << 8) | SingleChar;
721 }
722 // Append NULL at the end.
723 SingleChar = 0;
724 StrVal = (StrVal << 8) | SingleChar;
725 }
726
727 Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
728 if (Ty->isFloatingPointTy())
729 Res = ConstantExpr::getBitCast(Res, Ty);
730 return Res;
731 }
732 }
733
734 // If this load comes from anywhere in a constant global, and if the global
735 // is all undef or zero, we know what it loads.
736 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) {
737 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
738 if (GV->getInitializer()->isNullValue())
739 return Constant::getNullValue(Ty);
740 if (isa<UndefValue>(GV->getInitializer()))
741 return UndefValue::get(Ty);
742 }
743 }
744
745 // Try hard to fold loads from bitcasted strange and non-type-safe things.
746 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
747}
748
749namespace {
750
751Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
752 if (LI->isVolatile()) return nullptr;
753
754 if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
755 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
756
757 return nullptr;
758}
759
760/// One of Op0/Op1 is a constant expression.
761/// Attempt to symbolically evaluate the result of a binary operator merging
762/// these together. If target data info is available, it is provided as DL,
763/// otherwise DL is null.
764Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
765 const DataLayout &DL) {
766 // SROA
767
768 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
769 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
770 // bits.
771
772 if (Opc == Instruction::And) {
773 KnownBits Known0 = computeKnownBits(Op0, DL);
774 KnownBits Known1 = computeKnownBits(Op1, DL);
775 if ((Known1.One | Known0.Zero).isAllOnesValue()) {
776 // All the bits of Op0 that the 'and' could be masking are already zero.
777 return Op0;
778 }
779 if ((Known0.One | Known1.Zero).isAllOnesValue()) {
780 // All the bits of Op1 that the 'and' could be masking are already zero.
781 return Op1;
782 }
783
784 Known0 &= Known1;
785 if (Known0.isConstant())
786 return ConstantInt::get(Op0->getType(), Known0.getConstant());
787 }
788
789 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
790 // constant. This happens frequently when iterating over a global array.
791 if (Opc == Instruction::Sub) {
792 GlobalValue *GV1, *GV2;
793 APInt Offs1, Offs2;
794
795 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
796 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
797 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
798
799 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
800 // PtrToInt may change the bitwidth so we have convert to the right size
801 // first.
802 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
803 Offs2.zextOrTrunc(OpSize));
804 }
805 }
806
807 return nullptr;
808}
809
810/// If array indices are not pointer-sized integers, explicitly cast them so
811/// that they aren't implicitly casted by the getelementptr.
812Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
813 Type *ResultTy, Optional<unsigned> InRangeIndex,
814 const DataLayout &DL, const TargetLibraryInfo *TLI) {
815 Type *IntIdxTy = DL.getIndexType(ResultTy);
816 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
817
818 bool Any = false;
819 SmallVector<Constant*, 32> NewIdxs;
820 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
821 if ((i == 1 ||
822 !isa<StructType>(GetElementPtrInst::getIndexedType(
823 SrcElemTy, Ops.slice(1, i - 1)))) &&
824 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
825 Any = true;
826 Type *NewType = Ops[i]->getType()->isVectorTy()
827 ? IntIdxTy
828 : IntIdxScalarTy;
829 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
830 true,
831 NewType,
832 true),
833 Ops[i], NewType));
834 } else
835 NewIdxs.push_back(Ops[i]);
836 }
837
838 if (!Any)
839 return nullptr;
840
841 Constant *C = ConstantExpr::getGetElementPtr(
842 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
843 return ConstantFoldConstant(C, DL, TLI);
844}
845
846/// Strip the pointer casts, but preserve the address space information.
847Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
848 assert(Ptr->getType()->isPointerTy() && "Not a pointer type")((Ptr->getType()->isPointerTy() && "Not a pointer type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Not a pointer type\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 848, __PRETTY_FUNCTION__))
;
849 auto *OldPtrTy = cast<PointerType>(Ptr->getType());
850 Ptr = cast<Constant>(Ptr->stripPointerCasts());
851 auto *NewPtrTy = cast<PointerType>(Ptr->getType());
852
853 ElemTy = NewPtrTy->getPointerElementType();
854
855 // Preserve the address space number of the pointer.
856 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
857 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
858 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
859 }
860 return Ptr;
861}
862
863/// If we can symbolically evaluate the GEP constant expression, do so.
864Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
865 ArrayRef<Constant *> Ops,
866 const DataLayout &DL,
867 const TargetLibraryInfo *TLI) {
868 const GEPOperator *InnermostGEP = GEP;
869 bool InBounds = GEP->isInBounds();
870
871 Type *SrcElemTy = GEP->getSourceElementType();
872 Type *ResElemTy = GEP->getResultElementType();
873 Type *ResTy = GEP->getType();
874 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
875 return nullptr;
876
877 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
878 GEP->getInRangeIndex(), DL, TLI))
879 return C;
880
881 Constant *Ptr = Ops[0];
882 if (!Ptr->getType()->isPointerTy())
883 return nullptr;
884
885 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
886
887 // If this is a constant expr gep that is effectively computing an
888 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
889 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
890 if (!isa<ConstantInt>(Ops[i])) {
891
892 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
893 // "inttoptr (sub (ptrtoint Ptr), V)"
894 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
895 auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
896 assert((!CE || CE->getType() == IntIdxTy) &&(((!CE || CE->getType() == IntIdxTy) && "CastGEPIndices didn't canonicalize index types!"
) ? static_cast<void> (0) : __assert_fail ("(!CE || CE->getType() == IntIdxTy) && \"CastGEPIndices didn't canonicalize index types!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 897, __PRETTY_FUNCTION__))
897 "CastGEPIndices didn't canonicalize index types!")(((!CE || CE->getType() == IntIdxTy) && "CastGEPIndices didn't canonicalize index types!"
) ? static_cast<void> (0) : __assert_fail ("(!CE || CE->getType() == IntIdxTy) && \"CastGEPIndices didn't canonicalize index types!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 897, __PRETTY_FUNCTION__))
;
898 if (CE && CE->getOpcode() == Instruction::Sub &&
899 CE->getOperand(0)->isNullValue()) {
900 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
901 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
902 Res = ConstantExpr::getIntToPtr(Res, ResTy);
903 return ConstantFoldConstant(Res, DL, TLI);
904 }
905 }
906 return nullptr;
907 }
908
909 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
910 APInt Offset =
911 APInt(BitWidth,
912 DL.getIndexedOffsetInType(
913 SrcElemTy,
914 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
915 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
916
917 // If this is a GEP of a GEP, fold it all into a single GEP.
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 InnermostGEP = GEP;
920 InBounds &= GEP->isInBounds();
921
922 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
923
924 // Do not try the incorporate the sub-GEP if some index is not a number.
925 bool AllConstantInt = true;
926 for (Value *NestedOp : NestedOps)
927 if (!isa<ConstantInt>(NestedOp)) {
928 AllConstantInt = false;
929 break;
930 }
931 if (!AllConstantInt)
932 break;
933
934 Ptr = cast<Constant>(GEP->getOperand(0));
935 SrcElemTy = GEP->getSourceElementType();
936 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
937 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
938 }
939
940 // If the base value for this address is a literal integer value, fold the
941 // getelementptr to the resulting integer value casted to the pointer type.
942 APInt BasePtr(BitWidth, 0);
943 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
944 if (CE->getOpcode() == Instruction::IntToPtr) {
945 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
946 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
947 }
948 }
949
950 auto *PTy = cast<PointerType>(Ptr->getType());
951 if ((Ptr->isNullValue() || BasePtr != 0) &&
952 !DL.isNonIntegralPointerType(PTy)) {
953 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
954 return ConstantExpr::getIntToPtr(C, ResTy);
955 }
956
957 // Otherwise form a regular getelementptr. Recompute the indices so that
958 // we eliminate over-indexing of the notional static type array bounds.
959 // This makes it easy to determine if the getelementptr is "inbounds".
960 // Also, this helps GlobalOpt do SROA on GlobalVariables.
961 Type *Ty = PTy;
962 SmallVector<Constant *, 32> NewIdxs;
963
964 do {
965 if (!Ty->isStructTy()) {
966 if (Ty->isPointerTy()) {
967 // The only pointer indexing we'll do is on the first index of the GEP.
968 if (!NewIdxs.empty())
969 break;
970
971 Ty = SrcElemTy;
972
973 // Only handle pointers to sized types, not pointers to functions.
974 if (!Ty->isSized())
975 return nullptr;
976 } else {
977 Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
978 if (!NextTy)
979 break;
980 Ty = NextTy;
981 }
982
983 // Determine which element of the array the offset points into.
984 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
985 if (ElemSize == 0) {
986 // The element size is 0. This may be [0 x Ty]*, so just use a zero
987 // index for this level and proceed to the next level to see if it can
988 // accommodate the offset.
989 NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
990 } else {
991 // The element size is non-zero divide the offset by the element
992 // size (rounding down), to compute the index at this level.
993 bool Overflow;
994 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
995 if (Overflow)
996 break;
997 Offset -= NewIdx * ElemSize;
998 NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
999 }
1000 } else {
1001 auto *STy = cast<StructType>(Ty);
1002 // If we end up with an offset that isn't valid for this struct type, we
1003 // can't re-form this GEP in a regular form, so bail out. The pointer
1004 // operand likely went through casts that are necessary to make the GEP
1005 // sensible.
1006 const StructLayout &SL = *DL.getStructLayout(STy);
1007 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
1008 break;
1009
1010 // Determine which field of the struct the offset points into. The
1011 // getZExtValue is fine as we've already ensured that the offset is
1012 // within the range representable by the StructLayout API.
1013 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
1014 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1015 ElIdx));
1016 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
1017 Ty = STy->getTypeAtIndex(ElIdx);
1018 }
1019 } while (Ty != ResElemTy);
1020
1021 // If we haven't used up the entire offset by descending the static
1022 // type, then the offset is pointing into the middle of an indivisible
1023 // member, so we can't simplify it.
1024 if (Offset != 0)
1025 return nullptr;
1026
1027 // Preserve the inrange index from the innermost GEP if possible. We must
1028 // have calculated the same indices up to and including the inrange index.
1029 Optional<unsigned> InRangeIndex;
1030 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
1031 if (SrcElemTy == InnermostGEP->getSourceElementType() &&
1032 NewIdxs.size() > *LastIRIndex) {
1033 InRangeIndex = LastIRIndex;
1034 for (unsigned I = 0; I <= *LastIRIndex; ++I)
1035 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1036 return nullptr;
1037 }
1038
1039 // Create a GEP.
1040 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1041 InBounds, InRangeIndex);
1042 assert(C->getType()->getPointerElementType() == Ty &&((C->getType()->getPointerElementType() == Ty &&
"Computed GetElementPtr has unexpected type!") ? static_cast
<void> (0) : __assert_fail ("C->getType()->getPointerElementType() == Ty && \"Computed GetElementPtr has unexpected type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1043, __PRETTY_FUNCTION__))
1043 "Computed GetElementPtr has unexpected type!")((C->getType()->getPointerElementType() == Ty &&
"Computed GetElementPtr has unexpected type!") ? static_cast
<void> (0) : __assert_fail ("C->getType()->getPointerElementType() == Ty && \"Computed GetElementPtr has unexpected type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1043, __PRETTY_FUNCTION__))
;
1044
1045 // If we ended up indexing a member with a type that doesn't match
1046 // the type of what the original indices indexed, add a cast.
1047 if (Ty != ResElemTy)
1048 C = FoldBitCast(C, ResTy, DL);
1049
1050 return C;
1051}
1052
1053/// Attempt to constant fold an instruction with the
1054/// specified opcode and operands. If successful, the constant result is
1055/// returned, if not, null is returned. Note that this function can fail when
1056/// attempting to fold instructions like loads and stores, which have no
1057/// constant expression form.
1058Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1059 ArrayRef<Constant *> Ops,
1060 const DataLayout &DL,
1061 const TargetLibraryInfo *TLI) {
1062 Type *DestTy = InstOrCE->getType();
1063
1064 if (Instruction::isUnaryOp(Opcode))
1065 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1066
1067 if (Instruction::isBinaryOp(Opcode))
1068 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1069
1070 if (Instruction::isCast(Opcode))
1071 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1072
1073 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1074 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1075 return C;
1076
1077 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1078 Ops.slice(1), GEP->isInBounds(),
1079 GEP->getInRangeIndex());
1080 }
1081
1082 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1083 return CE->getWithOperands(Ops);
1084
1085 switch (Opcode) {
1086 default: return nullptr;
1087 case Instruction::ICmp:
1088 case Instruction::FCmp: llvm_unreachable("Invalid for compares")::llvm::llvm_unreachable_internal("Invalid for compares", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1088)
;
1089 case Instruction::Freeze:
1090 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1091 case Instruction::Call:
1092 if (auto *F = dyn_cast<Function>(Ops.back())) {
1093 const auto *Call = cast<CallBase>(InstOrCE);
1094 if (canConstantFoldCallTo(Call, F))
1095 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1096 }
1097 return nullptr;
1098 case Instruction::Select:
1099 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1100 case Instruction::ExtractElement:
1101 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1102 case Instruction::ExtractValue:
1103 return ConstantExpr::getExtractValue(
1104 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1105 case Instruction::InsertElement:
1106 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1107 case Instruction::ShuffleVector:
1108 return ConstantExpr::getShuffleVector(
1109 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1110 }
1111}
1112
1113} // end anonymous namespace
1114
1115//===----------------------------------------------------------------------===//
1116// Constant Folding public APIs
1117//===----------------------------------------------------------------------===//
1118
1119namespace {
1120
1121Constant *
1122ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1123 const TargetLibraryInfo *TLI,
1124 SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1125 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1126 return const_cast<Constant *>(C);
1127
1128 SmallVector<Constant *, 8> Ops;
1129 for (const Use &OldU : C->operands()) {
1130 Constant *OldC = cast<Constant>(&OldU);
1131 Constant *NewC = OldC;
1132 // Recursively fold the ConstantExpr's operands. If we have already folded
1133 // a ConstantExpr, we don't have to process it again.
1134 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1135 auto It = FoldedOps.find(OldC);
1136 if (It == FoldedOps.end()) {
1137 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1138 FoldedOps.insert({OldC, NewC});
1139 } else {
1140 NewC = It->second;
1141 }
1142 }
1143 Ops.push_back(NewC);
1144 }
1145
1146 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1147 if (CE->isCompare())
1148 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1149 DL, TLI);
1150
1151 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1152 }
1153
1154 assert(isa<ConstantVector>(C))((isa<ConstantVector>(C)) ? static_cast<void> (0)
: __assert_fail ("isa<ConstantVector>(C)", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1154, __PRETTY_FUNCTION__))
;
1155 return ConstantVector::get(Ops);
1156}
1157
1158} // end anonymous namespace
1159
1160Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1161 const TargetLibraryInfo *TLI) {
1162 // Handle PHI nodes quickly here...
1163 if (auto *PN = dyn_cast<PHINode>(I)) {
1164 Constant *CommonValue = nullptr;
1165
1166 SmallDenseMap<Constant *, Constant *> FoldedOps;
1167 for (Value *Incoming : PN->incoming_values()) {
1168 // If the incoming value is undef then skip it. Note that while we could
1169 // skip the value if it is equal to the phi node itself we choose not to
1170 // because that would break the rule that constant folding only applies if
1171 // all operands are constants.
1172 if (isa<UndefValue>(Incoming))
1173 continue;
1174 // If the incoming value is not a constant, then give up.
1175 auto *C = dyn_cast<Constant>(Incoming);
1176 if (!C)
1177 return nullptr;
1178 // Fold the PHI's operands.
1179 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1180 // If the incoming value is a different constant to
1181 // the one we saw previously, then give up.
1182 if (CommonValue && C != CommonValue)
1183 return nullptr;
1184 CommonValue = C;
1185 }
1186
1187 // If we reach here, all incoming values are the same constant or undef.
1188 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1189 }
1190
1191 // Scan the operand list, checking to see if they are all constants, if so,
1192 // hand off to ConstantFoldInstOperandsImpl.
1193 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1194 return nullptr;
1195
1196 SmallDenseMap<Constant *, Constant *> FoldedOps;
1197 SmallVector<Constant *, 8> Ops;
1198 for (const Use &OpU : I->operands()) {
1199 auto *Op = cast<Constant>(&OpU);
1200 // Fold the Instruction's operands.
1201 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1202 Ops.push_back(Op);
1203 }
1204
1205 if (const auto *CI = dyn_cast<CmpInst>(I))
1206 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1207 DL, TLI);
1208
1209 if (const auto *LI = dyn_cast<LoadInst>(I))
1210 return ConstantFoldLoadInst(LI, DL);
1211
1212 if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1213 return ConstantExpr::getInsertValue(
1214 cast<Constant>(IVI->getAggregateOperand()),
1215 cast<Constant>(IVI->getInsertedValueOperand()),
1216 IVI->getIndices());
1217 }
1218
1219 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1220 return ConstantExpr::getExtractValue(
1221 cast<Constant>(EVI->getAggregateOperand()),
1222 EVI->getIndices());
1223 }
1224
1225 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1226}
1227
1228Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1229 const TargetLibraryInfo *TLI) {
1230 SmallDenseMap<Constant *, Constant *> FoldedOps;
1231 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1232}
1233
1234Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1235 ArrayRef<Constant *> Ops,
1236 const DataLayout &DL,
1237 const TargetLibraryInfo *TLI) {
1238 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1239}
1240
1241Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1242 Constant *Ops0, Constant *Ops1,
1243 const DataLayout &DL,
1244 const TargetLibraryInfo *TLI) {
1245 // fold: icmp (inttoptr x), null -> icmp x, 0
1246 // fold: icmp null, (inttoptr x) -> icmp 0, x
1247 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1248 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1249 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1250 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1251 //
1252 // FIXME: The following comment is out of data and the DataLayout is here now.
1253 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1254 // around to know if bit truncation is happening.
1255 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1256 if (Ops1->isNullValue()) {
1257 if (CE0->getOpcode() == Instruction::IntToPtr) {
1258 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1259 // Convert the integer value to the right size to ensure we get the
1260 // proper extension or truncation.
1261 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1262 IntPtrTy, false);
1263 Constant *Null = Constant::getNullValue(C->getType());
1264 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1265 }
1266
1267 // Only do this transformation if the int is intptrty in size, otherwise
1268 // there is a truncation or extension that we aren't modeling.
1269 if (CE0->getOpcode() == Instruction::PtrToInt) {
1270 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1271 if (CE0->getType() == IntPtrTy) {
1272 Constant *C = CE0->getOperand(0);
1273 Constant *Null = Constant::getNullValue(C->getType());
1274 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1275 }
1276 }
1277 }
1278
1279 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1280 if (CE0->getOpcode() == CE1->getOpcode()) {
1281 if (CE0->getOpcode() == Instruction::IntToPtr) {
1282 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1283
1284 // Convert the integer value to the right size to ensure we get the
1285 // proper extension or truncation.
1286 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1287 IntPtrTy, false);
1288 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1289 IntPtrTy, false);
1290 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1291 }
1292
1293 // Only do this transformation if the int is intptrty in size, otherwise
1294 // there is a truncation or extension that we aren't modeling.
1295 if (CE0->getOpcode() == Instruction::PtrToInt) {
1296 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1297 if (CE0->getType() == IntPtrTy &&
1298 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1299 return ConstantFoldCompareInstOperands(
1300 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1301 }
1302 }
1303 }
1304 }
1305
1306 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1307 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1308 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1309 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1310 Constant *LHS = ConstantFoldCompareInstOperands(
1311 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1312 Constant *RHS = ConstantFoldCompareInstOperands(
1313 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1314 unsigned OpC =
1315 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1316 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1317 }
1318 } else if (isa<ConstantExpr>(Ops1)) {
1319 // If RHS is a constant expression, but the left side isn't, swap the
1320 // operands and try again.
1321 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1322 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1323 }
1324
1325 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1326}
1327
1328Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1329 const DataLayout &DL) {
1330 assert(Instruction::isUnaryOp(Opcode))((Instruction::isUnaryOp(Opcode)) ? static_cast<void> (
0) : __assert_fail ("Instruction::isUnaryOp(Opcode)", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1330, __PRETTY_FUNCTION__))
;
1331
1332 return ConstantExpr::get(Opcode, Op);
1333}
1334
1335Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1336 Constant *RHS,
1337 const DataLayout &DL) {
1338 assert(Instruction::isBinaryOp(Opcode))((Instruction::isBinaryOp(Opcode)) ? static_cast<void> (
0) : __assert_fail ("Instruction::isBinaryOp(Opcode)", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1338, __PRETTY_FUNCTION__))
;
1339 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1340 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1341 return C;
1342
1343 return ConstantExpr::get(Opcode, LHS, RHS);
1344}
1345
1346Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1347 Type *DestTy, const DataLayout &DL) {
1348 assert(Instruction::isCast(Opcode))((Instruction::isCast(Opcode)) ? static_cast<void> (0) :
__assert_fail ("Instruction::isCast(Opcode)", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1348, __PRETTY_FUNCTION__))
;
1349 switch (Opcode) {
1350 default:
1351 llvm_unreachable("Missing case")::llvm::llvm_unreachable_internal("Missing case", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1351)
;
1352 case Instruction::PtrToInt:
1353 // If the input is a inttoptr, eliminate the pair. This requires knowing
1354 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1355 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1356 if (CE->getOpcode() == Instruction::IntToPtr) {
1357 Constant *Input = CE->getOperand(0);
1358 unsigned InWidth = Input->getType()->getScalarSizeInBits();
1359 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1360 if (PtrWidth < InWidth) {
1361 Constant *Mask =
1362 ConstantInt::get(CE->getContext(),
1363 APInt::getLowBitsSet(InWidth, PtrWidth));
1364 Input = ConstantExpr::getAnd(Input, Mask);
1365 }
1366 // Do a zext or trunc to get to the dest size.
1367 return ConstantExpr::getIntegerCast(Input, DestTy, false);
1368 }
1369 }
1370 return ConstantExpr::getCast(Opcode, C, DestTy);
1371 case Instruction::IntToPtr:
1372 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1373 // the int size is >= the ptr size and the address spaces are the same.
1374 // This requires knowing the width of a pointer, so it can't be done in
1375 // ConstantExpr::getCast.
1376 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1377 if (CE->getOpcode() == Instruction::PtrToInt) {
1378 Constant *SrcPtr = CE->getOperand(0);
1379 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1380 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1381
1382 if (MidIntSize >= SrcPtrSize) {
1383 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1384 if (SrcAS == DestTy->getPointerAddressSpace())
1385 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1386 }
1387 }
1388 }
1389
1390 return ConstantExpr::getCast(Opcode, C, DestTy);
1391 case Instruction::Trunc:
1392 case Instruction::ZExt:
1393 case Instruction::SExt:
1394 case Instruction::FPTrunc:
1395 case Instruction::FPExt:
1396 case Instruction::UIToFP:
1397 case Instruction::SIToFP:
1398 case Instruction::FPToUI:
1399 case Instruction::FPToSI:
1400 case Instruction::AddrSpaceCast:
1401 return ConstantExpr::getCast(Opcode, C, DestTy);
1402 case Instruction::BitCast:
1403 return FoldBitCast(C, DestTy, DL);
1404 }
1405}
1406
1407Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1408 ConstantExpr *CE) {
1409 if (!CE->getOperand(1)->isNullValue())
1410 return nullptr; // Do not allow stepping over the value!
1411
1412 // Loop over all of the operands, tracking down which value we are
1413 // addressing.
1414 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1415 C = C->getAggregateElement(CE->getOperand(i));
1416 if (!C)
1417 return nullptr;
1418 }
1419 return C;
1420}
1421
1422Constant *
1423llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1424 ArrayRef<Constant *> Indices) {
1425 // Loop over all of the operands, tracking down which value we are
1426 // addressing.
1427 for (Constant *Index : Indices) {
1428 C = C->getAggregateElement(Index);
1429 if (!C)
1430 return nullptr;
1431 }
1432 return C;
1433}
1434
1435//===----------------------------------------------------------------------===//
1436// Constant Folding for Calls
1437//
1438
1439bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1440 if (Call->isNoBuiltin())
1441 return false;
1442 switch (F->getIntrinsicID()) {
1443 // Operations that do not operate floating-point numbers and do not depend on
1444 // FP environment can be folded even in strictfp functions.
1445 case Intrinsic::bswap:
1446 case Intrinsic::ctpop:
1447 case Intrinsic::ctlz:
1448 case Intrinsic::cttz:
1449 case Intrinsic::fshl:
1450 case Intrinsic::fshr:
1451 case Intrinsic::launder_invariant_group:
1452 case Intrinsic::strip_invariant_group:
1453 case Intrinsic::masked_load:
1454 case Intrinsic::get_active_lane_mask:
1455 case Intrinsic::abs:
1456 case Intrinsic::smax:
1457 case Intrinsic::smin:
1458 case Intrinsic::umax:
1459 case Intrinsic::umin:
1460 case Intrinsic::sadd_with_overflow:
1461 case Intrinsic::uadd_with_overflow:
1462 case Intrinsic::ssub_with_overflow:
1463 case Intrinsic::usub_with_overflow:
1464 case Intrinsic::smul_with_overflow:
1465 case Intrinsic::umul_with_overflow:
1466 case Intrinsic::sadd_sat:
1467 case Intrinsic::uadd_sat:
1468 case Intrinsic::ssub_sat:
1469 case Intrinsic::usub_sat:
1470 case Intrinsic::smul_fix:
1471 case Intrinsic::smul_fix_sat:
1472 case Intrinsic::bitreverse:
1473 case Intrinsic::is_constant:
1474 case Intrinsic::vector_reduce_add:
1475 case Intrinsic::vector_reduce_mul:
1476 case Intrinsic::vector_reduce_and:
1477 case Intrinsic::vector_reduce_or:
1478 case Intrinsic::vector_reduce_xor:
1479 case Intrinsic::vector_reduce_smin:
1480 case Intrinsic::vector_reduce_smax:
1481 case Intrinsic::vector_reduce_umin:
1482 case Intrinsic::vector_reduce_umax:
1483 // Target intrinsics
1484 case Intrinsic::arm_mve_vctp8:
1485 case Intrinsic::arm_mve_vctp16:
1486 case Intrinsic::arm_mve_vctp32:
1487 case Intrinsic::arm_mve_vctp64:
1488 // WebAssembly float semantics are always known
1489 case Intrinsic::wasm_trunc_signed:
1490 case Intrinsic::wasm_trunc_unsigned:
1491 case Intrinsic::wasm_trunc_saturate_signed:
1492 case Intrinsic::wasm_trunc_saturate_unsigned:
1493 return true;
1494
1495 // Floating point operations cannot be folded in strictfp functions in
1496 // general case. They can be folded if FP environment is known to compiler.
1497 case Intrinsic::minnum:
1498 case Intrinsic::maxnum:
1499 case Intrinsic::minimum:
1500 case Intrinsic::maximum:
1501 case Intrinsic::log:
1502 case Intrinsic::log2:
1503 case Intrinsic::log10:
1504 case Intrinsic::exp:
1505 case Intrinsic::exp2:
1506 case Intrinsic::sqrt:
1507 case Intrinsic::sin:
1508 case Intrinsic::cos:
1509 case Intrinsic::pow:
1510 case Intrinsic::powi:
1511 case Intrinsic::fma:
1512 case Intrinsic::fmuladd:
1513 case Intrinsic::fptoui_sat:
1514 case Intrinsic::fptosi_sat:
1515 case Intrinsic::convert_from_fp16:
1516 case Intrinsic::convert_to_fp16:
1517 case Intrinsic::amdgcn_cos:
1518 case Intrinsic::amdgcn_cubeid:
1519 case Intrinsic::amdgcn_cubema:
1520 case Intrinsic::amdgcn_cubesc:
1521 case Intrinsic::amdgcn_cubetc:
1522 case Intrinsic::amdgcn_fmul_legacy:
1523 case Intrinsic::amdgcn_fma_legacy:
1524 case Intrinsic::amdgcn_fract:
1525 case Intrinsic::amdgcn_ldexp:
1526 case Intrinsic::amdgcn_sin:
1527 // The intrinsics below depend on rounding mode in MXCSR.
1528 case Intrinsic::x86_sse_cvtss2si:
1529 case Intrinsic::x86_sse_cvtss2si64:
1530 case Intrinsic::x86_sse_cvttss2si:
1531 case Intrinsic::x86_sse_cvttss2si64:
1532 case Intrinsic::x86_sse2_cvtsd2si:
1533 case Intrinsic::x86_sse2_cvtsd2si64:
1534 case Intrinsic::x86_sse2_cvttsd2si:
1535 case Intrinsic::x86_sse2_cvttsd2si64:
1536 case Intrinsic::x86_avx512_vcvtss2si32:
1537 case Intrinsic::x86_avx512_vcvtss2si64:
1538 case Intrinsic::x86_avx512_cvttss2si:
1539 case Intrinsic::x86_avx512_cvttss2si64:
1540 case Intrinsic::x86_avx512_vcvtsd2si32:
1541 case Intrinsic::x86_avx512_vcvtsd2si64:
1542 case Intrinsic::x86_avx512_cvttsd2si:
1543 case Intrinsic::x86_avx512_cvttsd2si64:
1544 case Intrinsic::x86_avx512_vcvtss2usi32:
1545 case Intrinsic::x86_avx512_vcvtss2usi64:
1546 case Intrinsic::x86_avx512_cvttss2usi:
1547 case Intrinsic::x86_avx512_cvttss2usi64:
1548 case Intrinsic::x86_avx512_vcvtsd2usi32:
1549 case Intrinsic::x86_avx512_vcvtsd2usi64:
1550 case Intrinsic::x86_avx512_cvttsd2usi:
1551 case Intrinsic::x86_avx512_cvttsd2usi64:
1552 return !Call->isStrictFP();
1553
1554 // Sign operations are actually bitwise operations, they do not raise
1555 // exceptions even for SNANs.
1556 case Intrinsic::fabs:
1557 case Intrinsic::copysign:
1558 // Non-constrained variants of rounding operations means default FP
1559 // environment, they can be folded in any case.
1560 case Intrinsic::ceil:
1561 case Intrinsic::floor:
1562 case Intrinsic::round:
1563 case Intrinsic::roundeven:
1564 case Intrinsic::trunc:
1565 case Intrinsic::nearbyint:
1566 case Intrinsic::rint:
1567 // Constrained intrinsics can be folded if FP environment is known
1568 // to compiler.
1569 case Intrinsic::experimental_constrained_ceil:
1570 case Intrinsic::experimental_constrained_floor:
1571 case Intrinsic::experimental_constrained_round:
1572 case Intrinsic::experimental_constrained_roundeven:
1573 case Intrinsic::experimental_constrained_trunc:
1574 case Intrinsic::experimental_constrained_nearbyint:
1575 case Intrinsic::experimental_constrained_rint:
1576 return true;
1577 default:
1578 return false;
1579 case Intrinsic::not_intrinsic: break;
1580 }
1581
1582 if (!F->hasName() || Call->isStrictFP())
1583 return false;
1584
1585 // In these cases, the check of the length is required. We don't want to
1586 // return true for a name like "cos\0blah" which strcmp would return equal to
1587 // "cos", but has length 8.
1588 StringRef Name = F->getName();
1589 switch (Name[0]) {
1590 default:
1591 return false;
1592 case 'a':
1593 return Name == "acos" || Name == "acosf" ||
1594 Name == "asin" || Name == "asinf" ||
1595 Name == "atan" || Name == "atanf" ||
1596 Name == "atan2" || Name == "atan2f";
1597 case 'c':
1598 return Name == "ceil" || Name == "ceilf" ||
1599 Name == "cos" || Name == "cosf" ||
1600 Name == "cosh" || Name == "coshf";
1601 case 'e':
1602 return Name == "exp" || Name == "expf" ||
1603 Name == "exp2" || Name == "exp2f";
1604 case 'f':
1605 return Name == "fabs" || Name == "fabsf" ||
1606 Name == "floor" || Name == "floorf" ||
1607 Name == "fmod" || Name == "fmodf";
1608 case 'l':
1609 return Name == "log" || Name == "logf" ||
1610 Name == "log2" || Name == "log2f" ||
1611 Name == "log10" || Name == "log10f";
1612 case 'n':
1613 return Name == "nearbyint" || Name == "nearbyintf";
1614 case 'p':
1615 return Name == "pow" || Name == "powf";
1616 case 'r':
1617 return Name == "remainder" || Name == "remainderf" ||
1618 Name == "rint" || Name == "rintf" ||
1619 Name == "round" || Name == "roundf";
1620 case 's':
1621 return Name == "sin" || Name == "sinf" ||
1622 Name == "sinh" || Name == "sinhf" ||
1623 Name == "sqrt" || Name == "sqrtf";
1624 case 't':
1625 return Name == "tan" || Name == "tanf" ||
1626 Name == "tanh" || Name == "tanhf" ||
1627 Name == "trunc" || Name == "truncf";
1628 case '_':
1629 // Check for various function names that get used for the math functions
1630 // when the header files are preprocessed with the macro
1631 // __FINITE_MATH_ONLY__ enabled.
1632 // The '12' here is the length of the shortest name that can match.
1633 // We need to check the size before looking at Name[1] and Name[2]
1634 // so we may as well check a limit that will eliminate mismatches.
1635 if (Name.size() < 12 || Name[1] != '_')
1636 return false;
1637 switch (Name[2]) {
1638 default:
1639 return false;
1640 case 'a':
1641 return Name == "__acos_finite" || Name == "__acosf_finite" ||
1642 Name == "__asin_finite" || Name == "__asinf_finite" ||
1643 Name == "__atan2_finite" || Name == "__atan2f_finite";
1644 case 'c':
1645 return Name == "__cosh_finite" || Name == "__coshf_finite";
1646 case 'e':
1647 return Name == "__exp_finite" || Name == "__expf_finite" ||
1648 Name == "__exp2_finite" || Name == "__exp2f_finite";
1649 case 'l':
1650 return Name == "__log_finite" || Name == "__logf_finite" ||
1651 Name == "__log10_finite" || Name == "__log10f_finite";
1652 case 'p':
1653 return Name == "__pow_finite" || Name == "__powf_finite";
1654 case 's':
1655 return Name == "__sinh_finite" || Name == "__sinhf_finite";
1656 }
1657 }
1658}
1659
1660namespace {
1661
1662Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1663 if (Ty->isHalfTy() || Ty->isFloatTy()) {
1664 APFloat APF(V);
1665 bool unused;
1666 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1667 return ConstantFP::get(Ty->getContext(), APF);
1668 }
1669 if (Ty->isDoubleTy())
1670 return ConstantFP::get(Ty->getContext(), APFloat(V));
1671 llvm_unreachable("Can only constant fold half/float/double")::llvm::llvm_unreachable_internal("Can only constant fold half/float/double"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1671)
;
1672}
1673
1674/// Clear the floating-point exception state.
1675inline void llvm_fenv_clearexcept() {
1676#if defined(HAVE_FENV_H1) && HAVE_DECL_FE_ALL_EXCEPT1
1677 feclearexcept(FE_ALL_EXCEPT(0x20 | 0x04 | 0x10 | 0x08 | 0x01));
1678#endif
1679 errno(*__errno_location ()) = 0;
1680}
1681
1682/// Test if a floating-point exception was raised.
1683inline bool llvm_fenv_testexcept() {
1684 int errno_val = errno(*__errno_location ());
1685 if (errno_val == ERANGE34 || errno_val == EDOM33)
1686 return true;
1687#if defined(HAVE_FENV_H1) && HAVE_DECL_FE_ALL_EXCEPT1 && HAVE_DECL_FE_INEXACT1
1688 if (fetestexcept(FE_ALL_EXCEPT(0x20 | 0x04 | 0x10 | 0x08 | 0x01) & ~FE_INEXACT0x20))
1689 return true;
1690#endif
1691 return false;
1692}
1693
1694Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1695 llvm_fenv_clearexcept();
1696 V = NativeFP(V);
1697 if (llvm_fenv_testexcept()) {
1698 llvm_fenv_clearexcept();
1699 return nullptr;
1700 }
1701
1702 return GetConstantFoldFPValue(V, Ty);
1703}
1704
1705Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1706 double W, Type *Ty) {
1707 llvm_fenv_clearexcept();
1708 V = NativeFP(V, W);
1709 if (llvm_fenv_testexcept()) {
1710 llvm_fenv_clearexcept();
1711 return nullptr;
1712 }
1713
1714 return GetConstantFoldFPValue(V, Ty);
1715}
1716
1717Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1718 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1719 if (!VT)
1720 return nullptr;
1721 ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1722 if (!CI)
1723 return nullptr;
1724 APInt Acc = CI->getValue();
1725
1726 for (unsigned I = 1; I < VT->getNumElements(); I++) {
1727 if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1728 return nullptr;
1729 const APInt &X = CI->getValue();
1730 switch (IID) {
1731 case Intrinsic::vector_reduce_add:
1732 Acc = Acc + X;
1733 break;
1734 case Intrinsic::vector_reduce_mul:
1735 Acc = Acc * X;
1736 break;
1737 case Intrinsic::vector_reduce_and:
1738 Acc = Acc & X;
1739 break;
1740 case Intrinsic::vector_reduce_or:
1741 Acc = Acc | X;
1742 break;
1743 case Intrinsic::vector_reduce_xor:
1744 Acc = Acc ^ X;
1745 break;
1746 case Intrinsic::vector_reduce_smin:
1747 Acc = APIntOps::smin(Acc, X);
1748 break;
1749 case Intrinsic::vector_reduce_smax:
1750 Acc = APIntOps::smax(Acc, X);
1751 break;
1752 case Intrinsic::vector_reduce_umin:
1753 Acc = APIntOps::umin(Acc, X);
1754 break;
1755 case Intrinsic::vector_reduce_umax:
1756 Acc = APIntOps::umax(Acc, X);
1757 break;
1758 }
1759 }
1760
1761 return ConstantInt::get(Op->getContext(), Acc);
1762}
1763
1764/// Attempt to fold an SSE floating point to integer conversion of a constant
1765/// floating point. If roundTowardZero is false, the default IEEE rounding is
1766/// used (toward nearest, ties to even). This matches the behavior of the
1767/// non-truncating SSE instructions in the default rounding mode. The desired
1768/// integer type Ty is used to select how many bits are available for the
1769/// result. Returns null if the conversion cannot be performed, otherwise
1770/// returns the Constant value resulting from the conversion.
1771Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1772 Type *Ty, bool IsSigned) {
1773 // All of these conversion intrinsics form an integer of at most 64bits.
1774 unsigned ResultWidth = Ty->getIntegerBitWidth();
1775 assert(ResultWidth <= 64 &&((ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"
) ? static_cast<void> (0) : __assert_fail ("ResultWidth <= 64 && \"Can only constant fold conversions to 64 and 32 bit ints\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1776, __PRETTY_FUNCTION__))
1776 "Can only constant fold conversions to 64 and 32 bit ints")((ResultWidth <= 64 && "Can only constant fold conversions to 64 and 32 bit ints"
) ? static_cast<void> (0) : __assert_fail ("ResultWidth <= 64 && \"Can only constant fold conversions to 64 and 32 bit ints\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1776, __PRETTY_FUNCTION__))
;
1777
1778 uint64_t UIntVal;
1779 bool isExact = false;
1780 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1781 : APFloat::rmNearestTiesToEven;
1782 APFloat::opStatus status =
1783 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1784 IsSigned, mode, &isExact);
1785 if (status != APFloat::opOK &&
1786 (!roundTowardZero || status != APFloat::opInexact))
1787 return nullptr;
1788 return ConstantInt::get(Ty, UIntVal, IsSigned);
1789}
1790
1791double getValueAsDouble(ConstantFP *Op) {
1792 Type *Ty = Op->getType();
1793
1794 if (Ty->isFloatTy())
1795 return Op->getValueAPF().convertToFloat();
1796
1797 if (Ty->isDoubleTy())
1798 return Op->getValueAPF().convertToDouble();
1799
1800 bool unused;
1801 APFloat APF = Op->getValueAPF();
1802 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1803 return APF.convertToDouble();
1804}
1805
1806static bool isManifestConstant(const Constant *c) {
1807 if (isa<ConstantData>(c)) {
1808 return true;
1809 } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1810 for (const Value *subc : c->operand_values()) {
1811 if (!isManifestConstant(cast<Constant>(subc)))
1812 return false;
1813 }
1814 return true;
1815 }
1816 return false;
1817}
1818
1819static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1820 if (auto *CI
26.1
'CI' is null
34.1
'CI' is non-null
26.1
'CI' is null
34.1
'CI' is non-null
26.1
'CI' is null
34.1
'CI' is non-null
= dyn_cast<ConstantInt>(Op)) {
26
Assuming 'Op' is not a 'ConstantInt'
27
Taking false branch
34
Assuming 'Op' is a 'ConstantInt'
35
Taking true branch
1821 C = &CI->getValue();
1822 return true;
36
Returning the value 1, which participates in a condition later
1823 }
1824 if (isa<UndefValue>(Op)) {
28
Assuming 'Op' is a 'UndefValue'
29
Taking true branch
1825 C = nullptr;
30
Null pointer value stored to 'C0'
1826 return true;
31
Returning the value 1, which participates in a condition later
1827 }
1828 return false;
1829}
1830
1831static Constant *ConstantFoldScalarCall1(StringRef Name,
1832 Intrinsic::ID IntrinsicID,
1833 Type *Ty,
1834 ArrayRef<Constant *> Operands,
1835 const TargetLibraryInfo *TLI,
1836 const CallBase *Call) {
1837 assert(Operands.size() == 1 && "Wrong number of operands.")((Operands.size() == 1 && "Wrong number of operands."
) ? static_cast<void> (0) : __assert_fail ("Operands.size() == 1 && \"Wrong number of operands.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 1837, __PRETTY_FUNCTION__))
;
1838
1839 if (IntrinsicID == Intrinsic::is_constant) {
1840 // We know we have a "Constant" argument. But we want to only
1841 // return true for manifest constants, not those that depend on
1842 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1843 if (isManifestConstant(Operands[0]))
1844 return ConstantInt::getTrue(Ty->getContext());
1845 return nullptr;
1846 }
1847 if (isa<UndefValue>(Operands[0])) {
1848 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1849 // ctpop() is between 0 and bitwidth, pick 0 for undef.
1850 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1851 if (IntrinsicID == Intrinsic::cos ||
1852 IntrinsicID == Intrinsic::ctpop ||
1853 IntrinsicID == Intrinsic::fptoui_sat ||
1854 IntrinsicID == Intrinsic::fptosi_sat)
1855 return Constant::getNullValue(Ty);
1856 if (IntrinsicID == Intrinsic::bswap ||
1857 IntrinsicID == Intrinsic::bitreverse ||
1858 IntrinsicID == Intrinsic::launder_invariant_group ||
1859 IntrinsicID == Intrinsic::strip_invariant_group)
1860 return Operands[0];
1861 }
1862
1863 if (isa<ConstantPointerNull>(Operands[0])) {
1864 // launder(null) == null == strip(null) iff in addrspace 0
1865 if (IntrinsicID == Intrinsic::launder_invariant_group ||
1866 IntrinsicID == Intrinsic::strip_invariant_group) {
1867 // If instruction is not yet put in a basic block (e.g. when cloning
1868 // a function during inlining), Call's caller may not be available.
1869 // So check Call's BB first before querying Call->getCaller.
1870 const Function *Caller =
1871 Call->getParent() ? Call->getCaller() : nullptr;
1872 if (Caller &&
1873 !NullPointerIsDefined(
1874 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1875 return Operands[0];
1876 }
1877 return nullptr;
1878 }
1879 }
1880
1881 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1882 if (IntrinsicID == Intrinsic::convert_to_fp16) {
1883 APFloat Val(Op->getValueAPF());
1884
1885 bool lost = false;
1886 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1887
1888 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1889 }
1890
1891 APFloat U = Op->getValueAPF();
1892
1893 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1894 IntrinsicID == Intrinsic::wasm_trunc_unsigned ||
1895 IntrinsicID == Intrinsic::wasm_trunc_saturate_signed ||
1896 IntrinsicID == Intrinsic::wasm_trunc_saturate_unsigned) {
1897
1898 bool Saturating = IntrinsicID == Intrinsic::wasm_trunc_saturate_signed ||
1899 IntrinsicID == Intrinsic::wasm_trunc_saturate_unsigned;
1900 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed ||
1901 IntrinsicID == Intrinsic::wasm_trunc_saturate_signed;
1902
1903 if (U.isNaN())
1904 return Saturating ? ConstantInt::get(Ty, 0) : nullptr;
1905
1906 unsigned Width = Ty->getIntegerBitWidth();
1907 APSInt Int(Width, !Signed);
1908 bool IsExact = false;
1909 APFloat::opStatus Status =
1910 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1911
1912 if (Status == APFloat::opOK || Status == APFloat::opInexact)
1913 return ConstantInt::get(Ty, Int);
1914
1915 if (!Saturating)
1916 return nullptr;
1917
1918 if (U.isNegative())
1919 return Signed ? ConstantInt::get(Ty, APInt::getSignedMinValue(Width))
1920 : ConstantInt::get(Ty, APInt::getMinValue(Width));
1921 else
1922 return Signed ? ConstantInt::get(Ty, APInt::getSignedMaxValue(Width))
1923 : ConstantInt::get(Ty, APInt::getMaxValue(Width));
1924 }
1925
1926 if (IntrinsicID == Intrinsic::fptoui_sat ||
1927 IntrinsicID == Intrinsic::fptosi_sat) {
1928 // convertToInteger() already has the desired saturation semantics.
1929 APSInt Int(Ty->getIntegerBitWidth(),
1930 IntrinsicID == Intrinsic::fptoui_sat);
1931 bool IsExact;
1932 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1933 return ConstantInt::get(Ty, Int);
1934 }
1935
1936 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1937 return nullptr;
1938
1939 // Use internal versions of these intrinsics.
1940
1941 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1942 U.roundToIntegral(APFloat::rmNearestTiesToEven);
1943 return ConstantFP::get(Ty->getContext(), U);
1944 }
1945
1946 if (IntrinsicID == Intrinsic::round) {
1947 U.roundToIntegral(APFloat::rmNearestTiesToAway);
1948 return ConstantFP::get(Ty->getContext(), U);
1949 }
1950
1951 if (IntrinsicID == Intrinsic::roundeven) {
1952 U.roundToIntegral(APFloat::rmNearestTiesToEven);
1953 return ConstantFP::get(Ty->getContext(), U);
1954 }
1955
1956 if (IntrinsicID == Intrinsic::ceil) {
1957 U.roundToIntegral(APFloat::rmTowardPositive);
1958 return ConstantFP::get(Ty->getContext(), U);
1959 }
1960
1961 if (IntrinsicID == Intrinsic::floor) {
1962 U.roundToIntegral(APFloat::rmTowardNegative);
1963 return ConstantFP::get(Ty->getContext(), U);
1964 }
1965
1966 if (IntrinsicID == Intrinsic::trunc) {
1967 U.roundToIntegral(APFloat::rmTowardZero);
1968 return ConstantFP::get(Ty->getContext(), U);
1969 }
1970
1971 if (IntrinsicID == Intrinsic::fabs) {
1972 U.clearSign();
1973 return ConstantFP::get(Ty->getContext(), U);
1974 }
1975
1976 if (IntrinsicID == Intrinsic::amdgcn_fract) {
1977 // The v_fract instruction behaves like the OpenCL spec, which defines
1978 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1979 // there to prevent fract(-small) from returning 1.0. It returns the
1980 // largest positive floating-point number less than 1.0."
1981 APFloat FloorU(U);
1982 FloorU.roundToIntegral(APFloat::rmTowardNegative);
1983 APFloat FractU(U - FloorU);
1984 APFloat AlmostOne(U.getSemantics(), 1);
1985 AlmostOne.next(/*nextDown*/ true);
1986 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1987 }
1988
1989 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1990 // raise FP exceptions, unless the argument is signaling NaN.
1991
1992 Optional<APFloat::roundingMode> RM;
1993 switch (IntrinsicID) {
1994 default:
1995 break;
1996 case Intrinsic::experimental_constrained_nearbyint:
1997 case Intrinsic::experimental_constrained_rint: {
1998 auto CI = cast<ConstrainedFPIntrinsic>(Call);
1999 RM = CI->getRoundingMode();
2000 if (!RM || RM.getValue() == RoundingMode::Dynamic)
2001 return nullptr;
2002 break;
2003 }
2004 case Intrinsic::experimental_constrained_round:
2005 RM = APFloat::rmNearestTiesToAway;
2006 break;
2007 case Intrinsic::experimental_constrained_ceil:
2008 RM = APFloat::rmTowardPositive;
2009 break;
2010 case Intrinsic::experimental_constrained_floor:
2011 RM = APFloat::rmTowardNegative;
2012 break;
2013 case Intrinsic::experimental_constrained_trunc:
2014 RM = APFloat::rmTowardZero;
2015 break;
2016 }
2017 if (RM) {
2018 auto CI = cast<ConstrainedFPIntrinsic>(Call);
2019 if (U.isFinite()) {
2020 APFloat::opStatus St = U.roundToIntegral(*RM);
2021 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2022 St == APFloat::opInexact) {
2023 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2024 if (EB && *EB == fp::ebStrict)
2025 return nullptr;
2026 }
2027 } else if (U.isSignaling()) {
2028 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2029 if (EB && *EB != fp::ebIgnore)
2030 return nullptr;
2031 U = APFloat::getQNaN(U.getSemantics());
2032 }
2033 return ConstantFP::get(Ty->getContext(), U);
2034 }
2035
2036 /// We only fold functions with finite arguments. Folding NaN and inf is
2037 /// likely to be aborted with an exception anyway, and some host libms
2038 /// have known errors raising exceptions.
2039 if (!U.isFinite())
2040 return nullptr;
2041
2042 /// Currently APFloat versions of these functions do not exist, so we use
2043 /// the host native double versions. Float versions are not called
2044 /// directly but for all these it is true (float)(f((double)arg)) ==
2045 /// f(arg). Long double not supported yet.
2046 double V = getValueAsDouble(Op);
2047
2048 switch (IntrinsicID) {
2049 default: break;
2050 case Intrinsic::log:
2051 return ConstantFoldFP(log, V, Ty);
2052 case Intrinsic::log2:
2053 // TODO: What about hosts that lack a C99 library?
2054 return ConstantFoldFP(Log2, V, Ty);
2055 case Intrinsic::log10:
2056 // TODO: What about hosts that lack a C99 library?
2057 return ConstantFoldFP(log10, V, Ty);
2058 case Intrinsic::exp:
2059 return ConstantFoldFP(exp, V, Ty);
2060 case Intrinsic::exp2:
2061 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2062 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
2063 case Intrinsic::sin:
2064 return ConstantFoldFP(sin, V, Ty);
2065 case Intrinsic::cos:
2066 return ConstantFoldFP(cos, V, Ty);
2067 case Intrinsic::sqrt:
2068 return ConstantFoldFP(sqrt, V, Ty);
2069 case Intrinsic::amdgcn_cos:
2070 case Intrinsic::amdgcn_sin:
2071 if (V < -256.0 || V > 256.0)
2072 // The gfx8 and gfx9 architectures handle arguments outside the range
2073 // [-256, 256] differently. This should be a rare case so bail out
2074 // rather than trying to handle the difference.
2075 return nullptr;
2076 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2077 double V4 = V * 4.0;
2078 if (V4 == floor(V4)) {
2079 // Force exact results for quarter-integer inputs.
2080 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2081 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2082 } else {
2083 if (IsCos)
2084 V = cos(V * 2.0 * numbers::pi);
2085 else
2086 V = sin(V * 2.0 * numbers::pi);
2087 }
2088 return GetConstantFoldFPValue(V, Ty);
2089 }
2090
2091 if (!TLI)
2092 return nullptr;
2093
2094 LibFunc Func = NotLibFunc;
2095 TLI->getLibFunc(Name, Func);
2096 switch (Func) {
2097 default:
2098 break;
2099 case LibFunc_acos:
2100 case LibFunc_acosf:
2101 case LibFunc_acos_finite:
2102 case LibFunc_acosf_finite:
2103 if (TLI->has(Func))
2104 return ConstantFoldFP(acos, V, Ty);
2105 break;
2106 case LibFunc_asin:
2107 case LibFunc_asinf:
2108 case LibFunc_asin_finite:
2109 case LibFunc_asinf_finite:
2110 if (TLI->has(Func))
2111 return ConstantFoldFP(asin, V, Ty);
2112 break;
2113 case LibFunc_atan:
2114 case LibFunc_atanf:
2115 if (TLI->has(Func))
2116 return ConstantFoldFP(atan, V, Ty);
2117 break;
2118 case LibFunc_ceil:
2119 case LibFunc_ceilf:
2120 if (TLI->has(Func)) {
2121 U.roundToIntegral(APFloat::rmTowardPositive);
2122 return ConstantFP::get(Ty->getContext(), U);
2123 }
2124 break;
2125 case LibFunc_cos:
2126 case LibFunc_cosf:
2127 if (TLI->has(Func))
2128 return ConstantFoldFP(cos, V, Ty);
2129 break;
2130 case LibFunc_cosh:
2131 case LibFunc_coshf:
2132 case LibFunc_cosh_finite:
2133 case LibFunc_coshf_finite:
2134 if (TLI->has(Func))
2135 return ConstantFoldFP(cosh, V, Ty);
2136 break;
2137 case LibFunc_exp:
2138 case LibFunc_expf:
2139 case LibFunc_exp_finite:
2140 case LibFunc_expf_finite:
2141 if (TLI->has(Func))
2142 return ConstantFoldFP(exp, V, Ty);
2143 break;
2144 case LibFunc_exp2:
2145 case LibFunc_exp2f:
2146 case LibFunc_exp2_finite:
2147 case LibFunc_exp2f_finite:
2148 if (TLI->has(Func))
2149 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2150 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
2151 break;
2152 case LibFunc_fabs:
2153 case LibFunc_fabsf:
2154 if (TLI->has(Func)) {
2155 U.clearSign();
2156 return ConstantFP::get(Ty->getContext(), U);
2157 }
2158 break;
2159 case LibFunc_floor:
2160 case LibFunc_floorf:
2161 if (TLI->has(Func)) {
2162 U.roundToIntegral(APFloat::rmTowardNegative);
2163 return ConstantFP::get(Ty->getContext(), U);
2164 }
2165 break;
2166 case LibFunc_log:
2167 case LibFunc_logf:
2168 case LibFunc_log_finite:
2169 case LibFunc_logf_finite:
2170 if (V > 0.0 && TLI->has(Func))
2171 return ConstantFoldFP(log, V, Ty);
2172 break;
2173 case LibFunc_log2:
2174 case LibFunc_log2f:
2175 case LibFunc_log2_finite:
2176 case LibFunc_log2f_finite:
2177 if (V > 0.0 && TLI->has(Func))
2178 // TODO: What about hosts that lack a C99 library?
2179 return ConstantFoldFP(Log2, V, Ty);
2180 break;
2181 case LibFunc_log10:
2182 case LibFunc_log10f:
2183 case LibFunc_log10_finite:
2184 case LibFunc_log10f_finite:
2185 if (V > 0.0 && TLI->has(Func))
2186 // TODO: What about hosts that lack a C99 library?
2187 return ConstantFoldFP(log10, V, Ty);
2188 break;
2189 case LibFunc_nearbyint:
2190 case LibFunc_nearbyintf:
2191 case LibFunc_rint:
2192 case LibFunc_rintf:
2193 if (TLI->has(Func)) {
2194 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2195 return ConstantFP::get(Ty->getContext(), U);
2196 }
2197 break;
2198 case LibFunc_round:
2199 case LibFunc_roundf:
2200 if (TLI->has(Func)) {
2201 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2202 return ConstantFP::get(Ty->getContext(), U);
2203 }
2204 break;
2205 case LibFunc_sin:
2206 case LibFunc_sinf:
2207 if (TLI->has(Func))
2208 return ConstantFoldFP(sin, V, Ty);
2209 break;
2210 case LibFunc_sinh:
2211 case LibFunc_sinhf:
2212 case LibFunc_sinh_finite:
2213 case LibFunc_sinhf_finite:
2214 if (TLI->has(Func))
2215 return ConstantFoldFP(sinh, V, Ty);
2216 break;
2217 case LibFunc_sqrt:
2218 case LibFunc_sqrtf:
2219 if (V >= 0.0 && TLI->has(Func))
2220 return ConstantFoldFP(sqrt, V, Ty);
2221 break;
2222 case LibFunc_tan:
2223 case LibFunc_tanf:
2224 if (TLI->has(Func))
2225 return ConstantFoldFP(tan, V, Ty);
2226 break;
2227 case LibFunc_tanh:
2228 case LibFunc_tanhf:
2229 if (TLI->has(Func))
2230 return ConstantFoldFP(tanh, V, Ty);
2231 break;
2232 case LibFunc_trunc:
2233 case LibFunc_truncf:
2234 if (TLI->has(Func)) {
2235 U.roundToIntegral(APFloat::rmTowardZero);
2236 return ConstantFP::get(Ty->getContext(), U);
2237 }
2238 break;
2239 }
2240 return nullptr;
2241 }
2242
2243 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2244 switch (IntrinsicID) {
2245 case Intrinsic::bswap:
2246 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2247 case Intrinsic::ctpop:
2248 return ConstantInt::get(Ty, Op->getValue().countPopulation());
2249 case Intrinsic::bitreverse:
2250 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2251 case Intrinsic::convert_from_fp16: {
2252 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2253
2254 bool lost = false;
2255 APFloat::opStatus status = Val.convert(
2256 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2257
2258 // Conversion is always precise.
2259 (void)status;
2260 assert(status == APFloat::opOK && !lost &&((status == APFloat::opOK && !lost && "Precision lost during fp16 constfolding"
) ? static_cast<void> (0) : __assert_fail ("status == APFloat::opOK && !lost && \"Precision lost during fp16 constfolding\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2261, __PRETTY_FUNCTION__))
2261 "Precision lost during fp16 constfolding")((status == APFloat::opOK && !lost && "Precision lost during fp16 constfolding"
) ? static_cast<void> (0) : __assert_fail ("status == APFloat::opOK && !lost && \"Precision lost during fp16 constfolding\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2261, __PRETTY_FUNCTION__))
;
2262
2263 return ConstantFP::get(Ty->getContext(), Val);
2264 }
2265 default:
2266 return nullptr;
2267 }
2268 }
2269
2270 if (isa<ConstantAggregateZero>(Operands[0])) {
2271 switch (IntrinsicID) {
2272 default: break;
2273 case Intrinsic::vector_reduce_add:
2274 case Intrinsic::vector_reduce_mul:
2275 case Intrinsic::vector_reduce_and:
2276 case Intrinsic::vector_reduce_or:
2277 case Intrinsic::vector_reduce_xor:
2278 case Intrinsic::vector_reduce_smin:
2279 case Intrinsic::vector_reduce_smax:
2280 case Intrinsic::vector_reduce_umin:
2281 case Intrinsic::vector_reduce_umax:
2282 return ConstantInt::get(Ty, 0);
2283 }
2284 }
2285
2286 // Support ConstantVector in case we have an Undef in the top.
2287 if (isa<ConstantVector>(Operands[0]) ||
2288 isa<ConstantDataVector>(Operands[0])) {
2289 auto *Op = cast<Constant>(Operands[0]);
2290 switch (IntrinsicID) {
2291 default: break;
2292 case Intrinsic::vector_reduce_add:
2293 case Intrinsic::vector_reduce_mul:
2294 case Intrinsic::vector_reduce_and:
2295 case Intrinsic::vector_reduce_or:
2296 case Intrinsic::vector_reduce_xor:
2297 case Intrinsic::vector_reduce_smin:
2298 case Intrinsic::vector_reduce_smax:
2299 case Intrinsic::vector_reduce_umin:
2300 case Intrinsic::vector_reduce_umax:
2301 if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op))
2302 return C;
2303 break;
2304 case Intrinsic::x86_sse_cvtss2si:
2305 case Intrinsic::x86_sse_cvtss2si64:
2306 case Intrinsic::x86_sse2_cvtsd2si:
2307 case Intrinsic::x86_sse2_cvtsd2si64:
2308 if (ConstantFP *FPOp =
2309 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2310 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2311 /*roundTowardZero=*/false, Ty,
2312 /*IsSigned*/true);
2313 break;
2314 case Intrinsic::x86_sse_cvttss2si:
2315 case Intrinsic::x86_sse_cvttss2si64:
2316 case Intrinsic::x86_sse2_cvttsd2si:
2317 case Intrinsic::x86_sse2_cvttsd2si64:
2318 if (ConstantFP *FPOp =
2319 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2320 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2321 /*roundTowardZero=*/true, Ty,
2322 /*IsSigned*/true);
2323 break;
2324 }
2325 }
2326
2327 return nullptr;
2328}
2329
2330static Constant *ConstantFoldScalarCall2(StringRef Name,
2331 Intrinsic::ID IntrinsicID,
2332 Type *Ty,
2333 ArrayRef<Constant *> Operands,
2334 const TargetLibraryInfo *TLI,
2335 const CallBase *Call) {
2336 assert(Operands.size() == 2 && "Wrong number of operands.")((Operands.size() == 2 && "Wrong number of operands."
) ? static_cast<void> (0) : __assert_fail ("Operands.size() == 2 && \"Wrong number of operands.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2336, __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
'?' condition is true
2337
2338 if (Ty->isFloatingPointTy()) {
3
Calling 'Type::isFloatingPointTy'
12
Returning from 'Type::isFloatingPointTy'
13
Taking false branch
2339 // TODO: We should have undef handling for all of the FP intrinsics that
2340 // are attempted to be folded in this function.
2341 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2342 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2343 switch (IntrinsicID) {
2344 case Intrinsic::maxnum:
2345 case Intrinsic::minnum:
2346 case Intrinsic::maximum:
2347 case Intrinsic::minimum:
2348 // If one argument is undef, return the other argument.
2349 if (IsOp0Undef)
2350 return Operands[1];
2351 if (IsOp1Undef)
2352 return Operands[0];
2353 break;
2354 }
2355 }
2356
2357 if (auto *Op1
14.1
'Op1' is null
14.1
'Op1' is null
14.1
'Op1' is null
= dyn_cast<ConstantFP>(Operands[0])) {
14
Assuming the object is not a 'ConstantFP'
15
Taking false branch
2358 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2359 return nullptr;
2360 double Op1V = getValueAsDouble(Op1);
2361
2362 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2363 if (Op2->getType() != Op1->getType())
2364 return nullptr;
2365
2366 double Op2V = getValueAsDouble(Op2);
2367 if (IntrinsicID == Intrinsic::pow) {
2368 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2369 }
2370 if (IntrinsicID == Intrinsic::copysign) {
2371 APFloat V1 = Op1->getValueAPF();
2372 const APFloat &V2 = Op2->getValueAPF();
2373 V1.copySign(V2);
2374 return ConstantFP::get(Ty->getContext(), V1);
2375 }
2376
2377 if (IntrinsicID == Intrinsic::minnum) {
2378 const APFloat &C1 = Op1->getValueAPF();
2379 const APFloat &C2 = Op2->getValueAPF();
2380 return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
2381 }
2382
2383 if (IntrinsicID == Intrinsic::maxnum) {
2384 const APFloat &C1 = Op1->getValueAPF();
2385 const APFloat &C2 = Op2->getValueAPF();
2386 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
2387 }
2388
2389 if (IntrinsicID == Intrinsic::minimum) {
2390 const APFloat &C1 = Op1->getValueAPF();
2391 const APFloat &C2 = Op2->getValueAPF();
2392 return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
2393 }
2394
2395 if (IntrinsicID == Intrinsic::maximum) {
2396 const APFloat &C1 = Op1->getValueAPF();
2397 const APFloat &C2 = Op2->getValueAPF();
2398 return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2399 }
2400
2401 if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) {
2402 const APFloat &C1 = Op1->getValueAPF();
2403 const APFloat &C2 = Op2->getValueAPF();
2404 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2405 // NaN or infinity, gives +0.0.
2406 if (C1.isZero() || C2.isZero())
2407 return ConstantFP::getNullValue(Ty);
2408 return ConstantFP::get(Ty->getContext(), C1 * C2);
2409 }
2410
2411 if (!TLI)
2412 return nullptr;
2413
2414 LibFunc Func = NotLibFunc;
2415 TLI->getLibFunc(Name, Func);
2416 switch (Func) {
2417 default:
2418 break;
2419 case LibFunc_pow:
2420 case LibFunc_powf:
2421 case LibFunc_pow_finite:
2422 case LibFunc_powf_finite:
2423 if (TLI->has(Func))
2424 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2425 break;
2426 case LibFunc_fmod:
2427 case LibFunc_fmodf:
2428 if (TLI->has(Func)) {
2429 APFloat V = Op1->getValueAPF();
2430 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2431 return ConstantFP::get(Ty->getContext(), V);
2432 }
2433 break;
2434 case LibFunc_remainder:
2435 case LibFunc_remainderf:
2436 if (TLI->has(Func)) {
2437 APFloat V = Op1->getValueAPF();
2438 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2439 return ConstantFP::get(Ty->getContext(), V);
2440 }
2441 break;
2442 case LibFunc_atan2:
2443 case LibFunc_atan2f:
2444 case LibFunc_atan2_finite:
2445 case LibFunc_atan2f_finite:
2446 if (TLI->has(Func))
2447 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2448 break;
2449 }
2450 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2451 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2452 return ConstantFP::get(Ty->getContext(),
2453 APFloat((float)std::pow((float)Op1V,
2454 (int)Op2C->getZExtValue())));
2455 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2456 return ConstantFP::get(Ty->getContext(),
2457 APFloat((float)std::pow((float)Op1V,
2458 (int)Op2C->getZExtValue())));
2459 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2460 return ConstantFP::get(Ty->getContext(),
2461 APFloat((double)std::pow((double)Op1V,
2462 (int)Op2C->getZExtValue())));
2463
2464 if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2465 // FIXME: Should flush denorms depending on FP mode, but that's ignored
2466 // everywhere else.
2467
2468 // scalbn is equivalent to ldexp with float radix 2
2469 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2470 APFloat::rmNearestTiesToEven);
2471 return ConstantFP::get(Ty->getContext(), Result);
2472 }
2473 }
2474 return nullptr;
2475 }
2476
2477 if (Operands[0]->getType()->isIntegerTy() &&
16
Calling 'Type::isIntegerTy'
19
Returning from 'Type::isIntegerTy'
24
Taking true branch
2478 Operands[1]->getType()->isIntegerTy()) {
20
Calling 'Type::isIntegerTy'
23
Returning from 'Type::isIntegerTy'
2479 const APInt *C0, *C1;
2480 if (!getConstIntOrUndef(Operands[0], C0) ||
25
Calling 'getConstIntOrUndef'
32
Returning from 'getConstIntOrUndef'
38
Taking false branch
2481 !getConstIntOrUndef(Operands[1], C1))
33
Calling 'getConstIntOrUndef'
37
Returning from 'getConstIntOrUndef'
2482 return nullptr;
2483
2484 unsigned BitWidth = Ty->getScalarSizeInBits();
2485 switch (IntrinsicID) {
39
Control jumps to 'case abs:' at line 2600
2486 default: break;
2487 case Intrinsic::smax:
2488 if (!C0 && !C1)
2489 return UndefValue::get(Ty);
2490 if (!C0 || !C1)
2491 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2492 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2493
2494 case Intrinsic::smin:
2495 if (!C0 && !C1)
2496 return UndefValue::get(Ty);
2497 if (!C0 || !C1)
2498 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2499 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2500
2501 case Intrinsic::umax:
2502 if (!C0 && !C1)
2503 return UndefValue::get(Ty);
2504 if (!C0 || !C1)
2505 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2506 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2507
2508 case Intrinsic::umin:
2509 if (!C0 && !C1)
2510 return UndefValue::get(Ty);
2511 if (!C0 || !C1)
2512 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2513 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2514
2515 case Intrinsic::usub_with_overflow:
2516 case Intrinsic::ssub_with_overflow:
2517 case Intrinsic::uadd_with_overflow:
2518 case Intrinsic::sadd_with_overflow:
2519 // X - undef -> { undef, false }
2520 // undef - X -> { undef, false }
2521 // X + undef -> { undef, false }
2522 // undef + x -> { undef, false }
2523 if (!C0 || !C1) {
2524 return ConstantStruct::get(
2525 cast<StructType>(Ty),
2526 {UndefValue::get(Ty->getStructElementType(0)),
2527 Constant::getNullValue(Ty->getStructElementType(1))});
2528 }
2529 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2530 case Intrinsic::smul_with_overflow:
2531 case Intrinsic::umul_with_overflow: {
2532 // undef * X -> { 0, false }
2533 // X * undef -> { 0, false }
2534 if (!C0 || !C1)
2535 return Constant::getNullValue(Ty);
2536
2537 APInt Res;
2538 bool Overflow;
2539 switch (IntrinsicID) {
2540 default: llvm_unreachable("Invalid case")::llvm::llvm_unreachable_internal("Invalid case", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2540)
;
2541 case Intrinsic::sadd_with_overflow:
2542 Res = C0->sadd_ov(*C1, Overflow);
2543 break;
2544 case Intrinsic::uadd_with_overflow:
2545 Res = C0->uadd_ov(*C1, Overflow);
2546 break;
2547 case Intrinsic::ssub_with_overflow:
2548 Res = C0->ssub_ov(*C1, Overflow);
2549 break;
2550 case Intrinsic::usub_with_overflow:
2551 Res = C0->usub_ov(*C1, Overflow);
2552 break;
2553 case Intrinsic::smul_with_overflow:
2554 Res = C0->smul_ov(*C1, Overflow);
2555 break;
2556 case Intrinsic::umul_with_overflow:
2557 Res = C0->umul_ov(*C1, Overflow);
2558 break;
2559 }
2560 Constant *Ops[] = {
2561 ConstantInt::get(Ty->getContext(), Res),
2562 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2563 };
2564 return ConstantStruct::get(cast<StructType>(Ty), Ops);
2565 }
2566 case Intrinsic::uadd_sat:
2567 case Intrinsic::sadd_sat:
2568 if (!C0 && !C1)
2569 return UndefValue::get(Ty);
2570 if (!C0 || !C1)
2571 return Constant::getAllOnesValue(Ty);
2572 if (IntrinsicID == Intrinsic::uadd_sat)
2573 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2574 else
2575 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2576 case Intrinsic::usub_sat:
2577 case Intrinsic::ssub_sat:
2578 if (!C0 && !C1)
2579 return UndefValue::get(Ty);
2580 if (!C0 || !C1)
2581 return Constant::getNullValue(Ty);
2582 if (IntrinsicID == Intrinsic::usub_sat)
2583 return ConstantInt::get(Ty, C0->usub_sat(*C1));
2584 else
2585 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2586 case Intrinsic::cttz:
2587 case Intrinsic::ctlz:
2588 assert(C1 && "Must be constant int")((C1 && "Must be constant int") ? static_cast<void
> (0) : __assert_fail ("C1 && \"Must be constant int\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2588, __PRETTY_FUNCTION__))
;
2589
2590 // cttz(0, 1) and ctlz(0, 1) are undef.
2591 if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2592 return UndefValue::get(Ty);
2593 if (!C0)
2594 return Constant::getNullValue(Ty);
2595 if (IntrinsicID == Intrinsic::cttz)
2596 return ConstantInt::get(Ty, C0->countTrailingZeros());
2597 else
2598 return ConstantInt::get(Ty, C0->countLeadingZeros());
2599
2600 case Intrinsic::abs:
2601 // Undef or minimum val operand with poison min --> undef
2602 assert(C1 && "Must be constant int")((C1 && "Must be constant int") ? static_cast<void
> (0) : __assert_fail ("C1 && \"Must be constant int\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2602, __PRETTY_FUNCTION__))
;
40
'?' condition is true
2603 if (C1->isOneValue() && (!C0 || C0->isMinSignedValue()))
41
Calling 'APInt::isOneValue'
49
Returning from 'APInt::isOneValue'
2604 return UndefValue::get(Ty);
2605
2606 // Undef operand with no poison min --> 0 (sign bit must be clear)
2607 if (C1->isNullValue() && !C0)
50
Calling 'APInt::isNullValue'
60
Returning from 'APInt::isNullValue'
2608 return Constant::getNullValue(Ty);
2609
2610 return ConstantInt::get(Ty, C0->abs());
61
Called C++ object pointer is null
2611 }
2612
2613 return nullptr;
2614 }
2615
2616 // Support ConstantVector in case we have an Undef in the top.
2617 if ((isa<ConstantVector>(Operands[0]) ||
2618 isa<ConstantDataVector>(Operands[0])) &&
2619 // Check for default rounding mode.
2620 // FIXME: Support other rounding modes?
2621 isa<ConstantInt>(Operands[1]) &&
2622 cast<ConstantInt>(Operands[1])->getValue() == 4) {
2623 auto *Op = cast<Constant>(Operands[0]);
2624 switch (IntrinsicID) {
2625 default: break;
2626 case Intrinsic::x86_avx512_vcvtss2si32:
2627 case Intrinsic::x86_avx512_vcvtss2si64:
2628 case Intrinsic::x86_avx512_vcvtsd2si32:
2629 case Intrinsic::x86_avx512_vcvtsd2si64:
2630 if (ConstantFP *FPOp =
2631 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2632 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2633 /*roundTowardZero=*/false, Ty,
2634 /*IsSigned*/true);
2635 break;
2636 case Intrinsic::x86_avx512_vcvtss2usi32:
2637 case Intrinsic::x86_avx512_vcvtss2usi64:
2638 case Intrinsic::x86_avx512_vcvtsd2usi32:
2639 case Intrinsic::x86_avx512_vcvtsd2usi64:
2640 if (ConstantFP *FPOp =
2641 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2642 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2643 /*roundTowardZero=*/false, Ty,
2644 /*IsSigned*/false);
2645 break;
2646 case Intrinsic::x86_avx512_cvttss2si:
2647 case Intrinsic::x86_avx512_cvttss2si64:
2648 case Intrinsic::x86_avx512_cvttsd2si:
2649 case Intrinsic::x86_avx512_cvttsd2si64:
2650 if (ConstantFP *FPOp =
2651 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2652 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2653 /*roundTowardZero=*/true, Ty,
2654 /*IsSigned*/true);
2655 break;
2656 case Intrinsic::x86_avx512_cvttss2usi:
2657 case Intrinsic::x86_avx512_cvttss2usi64:
2658 case Intrinsic::x86_avx512_cvttsd2usi:
2659 case Intrinsic::x86_avx512_cvttsd2usi64:
2660 if (ConstantFP *FPOp =
2661 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2662 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2663 /*roundTowardZero=*/true, Ty,
2664 /*IsSigned*/false);
2665 break;
2666 }
2667 }
2668 return nullptr;
2669}
2670
2671static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2672 const APFloat &S0,
2673 const APFloat &S1,
2674 const APFloat &S2) {
2675 unsigned ID;
2676 const fltSemantics &Sem = S0.getSemantics();
2677 APFloat MA(Sem), SC(Sem), TC(Sem);
2678 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2679 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2680 // S2 < 0
2681 ID = 5;
2682 SC = -S0;
2683 } else {
2684 ID = 4;
2685 SC = S0;
2686 }
2687 MA = S2;
2688 TC = -S1;
2689 } else if (abs(S1) >= abs(S0)) {
2690 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2691 // S1 < 0
2692 ID = 3;
2693 TC = -S2;
2694 } else {
2695 ID = 2;
2696 TC = S2;
2697 }
2698 MA = S1;
2699 SC = S0;
2700 } else {
2701 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2702 // S0 < 0
2703 ID = 1;
2704 SC = S2;
2705 } else {
2706 ID = 0;
2707 SC = -S2;
2708 }
2709 MA = S0;
2710 TC = -S1;
2711 }
2712 switch (IntrinsicID) {
2713 default:
2714 llvm_unreachable("unhandled amdgcn cube intrinsic")::llvm::llvm_unreachable_internal("unhandled amdgcn cube intrinsic"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2714)
;
2715 case Intrinsic::amdgcn_cubeid:
2716 return APFloat(Sem, ID);
2717 case Intrinsic::amdgcn_cubema:
2718 return MA + MA;
2719 case Intrinsic::amdgcn_cubesc:
2720 return SC;
2721 case Intrinsic::amdgcn_cubetc:
2722 return TC;
2723 }
2724}
2725
2726static Constant *ConstantFoldScalarCall3(StringRef Name,
2727 Intrinsic::ID IntrinsicID,
2728 Type *Ty,
2729 ArrayRef<Constant *> Operands,
2730 const TargetLibraryInfo *TLI,
2731 const CallBase *Call) {
2732 assert(Operands.size() == 3 && "Wrong number of operands.")((Operands.size() == 3 && "Wrong number of operands."
) ? static_cast<void> (0) : __assert_fail ("Operands.size() == 3 && \"Wrong number of operands.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2732, __PRETTY_FUNCTION__))
;
2733
2734 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2735 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2736 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2737 switch (IntrinsicID) {
2738 default: break;
2739 case Intrinsic::amdgcn_fma_legacy: {
2740 const APFloat &C1 = Op1->getValueAPF();
2741 const APFloat &C2 = Op2->getValueAPF();
2742 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2743 // NaN or infinity, gives +0.0.
2744 if (C1.isZero() || C2.isZero()) {
2745 const APFloat &C3 = Op3->getValueAPF();
2746 // It's tempting to just return C3 here, but that would give the
2747 // wrong result if C3 was -0.0.
2748 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2749 }
2750 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2751 }
2752 case Intrinsic::fma:
2753 case Intrinsic::fmuladd: {
2754 APFloat V = Op1->getValueAPF();
2755 V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
2756 APFloat::rmNearestTiesToEven);
2757 return ConstantFP::get(Ty->getContext(), V);
2758 }
2759 case Intrinsic::amdgcn_cubeid:
2760 case Intrinsic::amdgcn_cubema:
2761 case Intrinsic::amdgcn_cubesc:
2762 case Intrinsic::amdgcn_cubetc: {
2763 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(
2764 IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(),
2765 Op3->getValueAPF());
2766 return ConstantFP::get(Ty->getContext(), V);
2767 }
2768 }
2769 }
2770 }
2771 }
2772
2773 if (IntrinsicID == Intrinsic::smul_fix ||
2774 IntrinsicID == Intrinsic::smul_fix_sat) {
2775 // poison * C -> poison
2776 // C * poison -> poison
2777 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2778 return PoisonValue::get(Ty);
2779
2780 const APInt *C0, *C1;
2781 if (!getConstIntOrUndef(Operands[0], C0) ||
2782 !getConstIntOrUndef(Operands[1], C1))
2783 return nullptr;
2784
2785 // undef * C -> 0
2786 // C * undef -> 0
2787 if (!C0 || !C1)
2788 return Constant::getNullValue(Ty);
2789
2790 // This code performs rounding towards negative infinity in case the result
2791 // cannot be represented exactly for the given scale. Targets that do care
2792 // about rounding should use a target hook for specifying how rounding
2793 // should be done, and provide their own folding to be consistent with
2794 // rounding. This is the same approach as used by
2795 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2796 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2797 unsigned Width = C0->getBitWidth();
2798 assert(Scale < Width && "Illegal scale.")((Scale < Width && "Illegal scale.") ? static_cast
<void> (0) : __assert_fail ("Scale < Width && \"Illegal scale.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Analysis/ConstantFolding.cpp"
, 2798, __PRETTY_FUNCTION__))
;
2799 unsigned ExtendedWidth = Width * 2;
2800 APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2801 C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2802 if (IntrinsicID == Intrinsic::smul_fix_sat) {
2803 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2804 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2805 Product = APIntOps::smin(Product, Max);
2806 Product = APIntOps::smax(Product, Min);
2807 }
2808 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2809 }
2810
2811 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2812 const APInt *C0, *C1, *C2;
2813 if (!getConstIntOrUndef(Operands[0], C0) ||
2814 !getConstIntOrUndef(Operands[1], C1) ||
2815 !getConstIntOrUndef(Operands[2], C2))
2816 return nullptr;
2817
2818 bool IsRight = IntrinsicID == Intrinsic::fshr;
2819 if (!C2)
2820 return Operands[IsRight ? 1 : 0];
2821 if (!C0 && !C1)
2822 return UndefValue::get(Ty);
2823
2824 // The shift amount is interpreted as modulo the bitwidth. If the shift
2825 // amount is effectively 0, avoid UB due to oversized inverse shift below.
2826 unsigned BitWidth = C2->getBitWidth();
2827 unsigned ShAmt = C2->urem(BitWidth);
2828 if (!ShAmt)
2829 return Operands[IsRight ? 1 : 0];
2830
2831 // (C0 << ShlAmt) | (C1 >> LshrAmt)
2832 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2833 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2834 if (!C0)
2835 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2836 if (!C1)
2837 return ConstantInt::get(Ty, C0->shl(ShlAmt));
2838 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2839 }
2840
2841 return nullptr;
2842}
2843
2844static Constant *ConstantFoldScalarCall(StringRef Name,
2845 Intrinsic::ID IntrinsicID,
2846 Type *Ty,
2847 ArrayRef<Constant *> Operands,
2848 const TargetLibraryInfo *TLI,
2849 const CallBase *Call) {
2850 if (Operands.size() == 1)
2851 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2852
2853 if (Operands.size() == 2)
2854 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2855
2856 if (Operands.size() == 3)
2857 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2858
2859 return nullptr;
2860}
2861
2862static Constant *ConstantFoldVectorCall(StringRef Name,
2863 Intrinsic::ID IntrinsicID,
2864 VectorType *VTy,
2865 ArrayRef<Constant *> Operands,
2866 const DataLayout &DL,
2867 const TargetLibraryInfo *TLI,
2868 const CallBase *Call) {
2869 // Do not iterate on scalable vector. The number of elements is unknown at
2870 // compile-time.
2871 if (isa<ScalableVectorType>(VTy))
2872 return nullptr;
2873
2874 auto *FVTy = cast<FixedVectorType>(VTy);
2875
2876 SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2877 SmallVector<Constant *, 4> Lane(Operands.size());
2878 Type *Ty = FVTy->getElementType();
2879
2880 switch (IntrinsicID) {
2881 case Intrinsic::masked_load: {
2882 auto *SrcPtr = Operands[0];
2883 auto *Mask = Operands[2];
2884 auto *Passthru = Operands[3];
2885
2886 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2887
2888 SmallVector<Constant *, 32> NewElements;
2889 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2890 auto *MaskElt = Mask->getAggregateElement(I);
2891 if (!MaskElt)
2892 break;
2893 auto *PassthruElt = Passthru->getAggregateElement(I);
2894 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2895 if (isa<UndefValue>(MaskElt)) {
2896 if (PassthruElt)
2897 NewElements.push_back(PassthruElt);
2898 else if (VecElt)
2899 NewElements.push_back(VecElt);
2900 else
2901 return nullptr;
2902 }
2903 if (MaskElt->isNullValue()) {
2904 if (!PassthruElt)
2905 return nullptr;
2906 NewElements.push_back(PassthruElt);
2907 } else if (MaskElt->isOneValue()) {
2908 if (!VecElt)
2909 return nullptr;
2910 NewElements.push_back(VecElt);
2911 } else {
2912 return nullptr;
2913 }
2914 }
2915 if (NewElements.size() != FVTy->getNumElements())
2916 return nullptr;
2917 return ConstantVector::get(NewElements);
2918 }
2919 case Intrinsic::arm_mve_vctp8:
2920 case Intrinsic::arm_mve_vctp16:
2921 case Intrinsic::arm_mve_vctp32:
2922 case Intrinsic::arm_mve_vctp64: {
2923 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2924 unsigned Lanes = FVTy->getNumElements();
2925 uint64_t Limit = Op->getZExtValue();
2926 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
2927 // sure we get the limit right in that case and set all relevant lanes.
2928 if (IntrinsicID == Intrinsic::arm_mve_vctp64)
2929 Limit *= 2;
2930
2931 SmallVector<Constant *, 16> NCs;
2932 for (unsigned i = 0; i < Lanes; i++) {
2933 if (i < Limit)
2934 NCs.push_back(ConstantInt::getTrue(Ty));
2935 else
2936 NCs.push_back(ConstantInt::getFalse(Ty));
2937 }
2938 return ConstantVector::get(NCs);
2939 }
2940 break;
2941 }
2942 case Intrinsic::get_active_lane_mask: {
2943 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
2944 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
2945 if (Op0 && Op1) {
2946 unsigned Lanes = FVTy->getNumElements();
2947 uint64_t Base = Op0->getZExtValue();
2948 uint64_t Limit = Op1->getZExtValue();
2949
2950 SmallVector<Constant *, 16> NCs;
2951 for (unsigned i = 0; i < Lanes; i++) {
2952 if (Base + i < Limit)
2953 NCs.push_back(ConstantInt::getTrue(Ty));
2954 else
2955 NCs.push_back(ConstantInt::getFalse(Ty));
2956 }
2957 return ConstantVector::get(NCs);
2958 }
2959 break;
2960 }
2961 default:
2962 break;
2963 }
2964
2965 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2966 // Gather a column of constants.
2967 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2968 // Some intrinsics use a scalar type for certain arguments.
2969 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2970 Lane[J] = Operands[J];
2971 continue;
2972 }
2973
2974 Constant *Agg = Operands[J]->getAggregateElement(I);
2975 if (!Agg)
2976 return nullptr;
2977
2978 Lane[J] = Agg;
2979 }
2980
2981 // Use the regular scalar folding to simplify this column.
2982 Constant *Folded =
2983 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2984 if (!Folded)
2985 return nullptr;
2986 Result[I] = Folded;
2987 }
2988
2989 return ConstantVector::get(Result);
2990}
2991
2992} // end anonymous namespace
2993
2994Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2995 ArrayRef<Constant *> Operands,
2996 const TargetLibraryInfo *TLI) {
2997 if (Call->isNoBuiltin())
2998 return nullptr;
2999 if (!F->hasName())
3000 return nullptr;
3001 StringRef Name = F->getName();
3002
3003 Type *Ty = F->getReturnType();
3004
3005 if (auto *VTy = dyn_cast<VectorType>(Ty))
3006 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
3007 F->getParent()->getDataLayout(), TLI, Call);
3008
3009 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3010 Call);
3011}
3012
3013bool llvm::isMathLibCallNoop(const CallBase *Call,
3014 const TargetLibraryInfo *TLI) {
3015 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3016 // (and to some extent ConstantFoldScalarCall).
3017 if (Call->isNoBuiltin() || Call->isStrictFP())
3018 return false;
3019 Function *F = Call->getCalledFunction();
3020 if (!F)
3021 return false;
3022
3023 LibFunc Func;
3024 if (!TLI || !TLI->getLibFunc(*F, Func))
3025 return false;
3026
3027 if (Call->getNumArgOperands() == 1) {
3028 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3029 const APFloat &Op = OpC->getValueAPF();
3030 switch (Func) {
3031 case LibFunc_logl:
3032 case LibFunc_log:
3033 case LibFunc_logf:
3034 case LibFunc_log2l:
3035 case LibFunc_log2:
3036 case LibFunc_log2f:
3037 case LibFunc_log10l:
3038 case LibFunc_log10:
3039 case LibFunc_log10f:
3040 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3041
3042 case LibFunc_expl:
3043 case LibFunc_exp:
3044 case LibFunc_expf:
3045 // FIXME: These boundaries are slightly conservative.
3046 if (OpC->getType()->isDoubleTy())
3047 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3048 if (OpC->getType()->isFloatTy())
3049 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3050 break;
3051
3052 case LibFunc_exp2l:
3053 case LibFunc_exp2:
3054 case LibFunc_exp2f:
3055 // FIXME: These boundaries are slightly conservative.
3056 if (OpC->getType()->isDoubleTy())
3057 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3058 if (OpC->getType()->isFloatTy())
3059 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3060 break;
3061
3062 case LibFunc_sinl:
3063 case LibFunc_sin:
3064 case LibFunc_sinf:
3065 case LibFunc_cosl:
3066 case LibFunc_cos:
3067 case LibFunc_cosf:
3068 return !Op.isInfinity();
3069
3070 case LibFunc_tanl:
3071 case LibFunc_tan:
3072 case LibFunc_tanf: {
3073 // FIXME: Stop using the host math library.
3074 // FIXME: The computation isn't done in the right precision.
3075 Type *Ty = OpC->getType();
3076 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3077 double OpV = getValueAsDouble(OpC);
3078 return ConstantFoldFP(tan, OpV, Ty) != nullptr;
3079 }
3080 break;
3081 }
3082
3083 case LibFunc_asinl:
3084 case LibFunc_asin:
3085 case LibFunc_asinf:
3086 case LibFunc_acosl:
3087 case LibFunc_acos:
3088 case LibFunc_acosf:
3089 return !(Op < APFloat(Op.getSemantics(), "-1") ||
3090 Op > APFloat(Op.getSemantics(), "1"));
3091
3092 case LibFunc_sinh:
3093 case LibFunc_cosh:
3094 case LibFunc_sinhf:
3095 case LibFunc_coshf:
3096 case LibFunc_sinhl:
3097 case LibFunc_coshl:
3098 // FIXME: These boundaries are slightly conservative.
3099 if (OpC->getType()->isDoubleTy())
3100 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3101 if (OpC->getType()->isFloatTy())
3102 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3103 break;
3104
3105 case LibFunc_sqrtl:
3106 case LibFunc_sqrt:
3107 case LibFunc_sqrtf:
3108 return Op.isNaN() || Op.isZero() || !Op.isNegative();
3109
3110 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3111 // maybe others?
3112 default:
3113 break;
3114 }
3115 }
3116 }
3117
3118 if (Call->getNumArgOperands() == 2) {
3119 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3120 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3121 if (Op0C && Op1C) {
3122 const APFloat &Op0 = Op0C->getValueAPF();
3123 const APFloat &Op1 = Op1C->getValueAPF();
3124
3125 switch (Func) {
3126 case LibFunc_powl:
3127 case LibFunc_pow:
3128 case LibFunc_powf: {
3129 // FIXME: Stop using the host math library.
3130 // FIXME: The computation isn't done in the right precision.
3131 Type *Ty = Op0C->getType();
3132 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3133 if (Ty == Op1C->getType()) {
3134 double Op0V = getValueAsDouble(Op0C);
3135 double Op1V = getValueAsDouble(Op1C);
3136 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
3137 }
3138 }
3139 break;
3140 }
3141
3142 case LibFunc_fmodl:
3143 case LibFunc_fmod:
3144 case LibFunc_fmodf:
3145 case LibFunc_remainderl:
3146 case LibFunc_remainder:
3147 case LibFunc_remainderf:
3148 return Op0.isNaN() || Op1.isNaN() ||
3149 (!Op0.isInfinity() && !Op1.isZero());
3150
3151 default:
3152 break;
3153 }
3154 }
3155 }
3156
3157 return false;
3158}
3159
3160void TargetFolder::anchor() {}

/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h

1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/CBindingWrapping.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/TypeSize.h"
25#include <cassert>
26#include <cstdint>
27#include <iterator>
28
29namespace llvm {
30
31template<class GraphType> struct GraphTraits;
32class IntegerType;
33class LLVMContext;
34class PointerType;
35class raw_ostream;
36class StringRef;
37
38/// The instances of the Type class are immutable: once they are created,
39/// they are never changed. Also note that only one instance of a particular
40/// type is ever created. Thus seeing if two types are equal is a matter of
41/// doing a trivial pointer comparison. To enforce that no two equal instances
42/// are created, Type instances can only be created via static factory methods
43/// in class Type and in derived classes. Once allocated, Types are never
44/// free'd.
45///
46class Type {
47public:
48 //===--------------------------------------------------------------------===//
49 /// Definitions of all of the base types for the Type system. Based on this
50 /// value, you can cast to a class defined in DerivedTypes.h.
51 /// Note: If you add an element to this, you need to add an element to the
52 /// Type::getPrimitiveType function, or else things will break!
53 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54 ///
55 enum TypeID {
56 // PrimitiveTypes
57 HalfTyID = 0, ///< 16-bit floating point type
58 BFloatTyID, ///< 16-bit floating point type (7-bit significand)
59 FloatTyID, ///< 32-bit floating point type
60 DoubleTyID, ///< 64-bit floating point type
61 X86_FP80TyID, ///< 80-bit floating point type (X87)
62 FP128TyID, ///< 128-bit floating point type (112-bit significand)
63 PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
64 VoidTyID, ///< type with no size
65 LabelTyID, ///< Labels
66 MetadataTyID, ///< Metadata
67 X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific)
68 X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific)
69 TokenTyID, ///< Tokens
70
71 // Derived types... see DerivedTypes.h file.
72 IntegerTyID, ///< Arbitrary bit width integers
73 FunctionTyID, ///< Functions
74 PointerTyID, ///< Pointers
75 StructTyID, ///< Structures
76 ArrayTyID, ///< Arrays
77 FixedVectorTyID, ///< Fixed width SIMD vector type
78 ScalableVectorTyID ///< Scalable SIMD vector type
79 };
80
81private:
82 /// This refers to the LLVMContext in which this type was uniqued.
83 LLVMContext &Context;
84
85 TypeID ID : 8; // The current base type of this type.
86 unsigned SubclassData : 24; // Space for subclasses to store data.
87 // Note that this should be synchronized with
88 // MAX_INT_BITS value in IntegerType class.
89
90protected:
91 friend class LLVMContextImpl;
92
93 explicit Type(LLVMContext &C, TypeID tid)
94 : Context(C), ID(tid), SubclassData(0) {}
95 ~Type() = default;
96
97 unsigned getSubclassData() const { return SubclassData; }
98
99 void setSubclassData(unsigned val) {
100 SubclassData = val;
101 // Ensure we don't have any accidental truncation.
102 assert(getSubclassData() == val && "Subclass data too large for field")((getSubclassData() == val && "Subclass data too large for field"
) ? static_cast<void> (0) : __assert_fail ("getSubclassData() == val && \"Subclass data too large for field\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 102, __PRETTY_FUNCTION__))
;
103 }
104
105 /// Keeps track of how many Type*'s there are in the ContainedTys list.
106 unsigned NumContainedTys = 0;
107
108 /// A pointer to the array of Types contained by this Type. For example, this
109 /// includes the arguments of a function type, the elements of a structure,
110 /// the pointee of a pointer, the element type of an array, etc. This pointer
111 /// may be 0 for types that don't contain other types (Integer, Double,
112 /// Float).
113 Type * const *ContainedTys = nullptr;
114
115public:
116 /// Print the current type.
117 /// Omit the type details if \p NoDetails == true.
118 /// E.g., let %st = type { i32, i16 }
119 /// When \p NoDetails is true, we only print %st.
120 /// Put differently, \p NoDetails prints the type as if
121 /// inlined with the operands when printing an instruction.
122 void print(raw_ostream &O, bool IsForDebug = false,
123 bool NoDetails = false) const;
124
125 void dump() const;
126
127 /// Return the LLVMContext in which this type was uniqued.
128 LLVMContext &getContext() const { return Context; }
129
130 //===--------------------------------------------------------------------===//
131 // Accessors for working with types.
132 //
133
134 /// Return the type id for the type. This will return one of the TypeID enum
135 /// elements defined above.
136 TypeID getTypeID() const { return ID; }
137
138 /// Return true if this is 'void'.
139 bool isVoidTy() const { return getTypeID() == VoidTyID; }
140
141 /// Return true if this is 'half', a 16-bit IEEE fp type.
142 bool isHalfTy() const { return getTypeID() == HalfTyID; }
143
144 /// Return true if this is 'bfloat', a 16-bit bfloat type.
145 bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
146
147 /// Return true if this is 'float', a 32-bit IEEE fp type.
148 bool isFloatTy() const { return getTypeID() == FloatTyID; }
149
150 /// Return true if this is 'double', a 64-bit IEEE fp type.
151 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
152
153 /// Return true if this is x86 long double.
154 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
155
156 /// Return true if this is 'fp128'.
157 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
158
159 /// Return true if this is powerpc long double.
160 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
161
162 /// Return true if this is one of the six floating-point types
163 bool isFloatingPointTy() const {
164 return getTypeID() == HalfTyID || getTypeID() == BFloatTyID ||
4
Assuming the condition is false
5
Assuming the condition is false
11
Returning zero, which participates in a condition later
165 getTypeID() == FloatTyID || getTypeID() == DoubleTyID ||
6
Assuming the condition is false
7
Assuming the condition is false
166 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
8
Assuming the condition is false
9
Assuming the condition is false
167 getTypeID() == PPC_FP128TyID;
10
Assuming the condition is false
168 }
169
170 const fltSemantics &getFltSemantics() const {
171 switch (getTypeID()) {
172 case HalfTyID: return APFloat::IEEEhalf();
173 case BFloatTyID: return APFloat::BFloat();
174 case FloatTyID: return APFloat::IEEEsingle();
175 case DoubleTyID: return APFloat::IEEEdouble();
176 case X86_FP80TyID: return APFloat::x87DoubleExtended();
177 case FP128TyID: return APFloat::IEEEquad();
178 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
179 default: llvm_unreachable("Invalid floating type")::llvm::llvm_unreachable_internal("Invalid floating type", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 179)
;
180 }
181 }
182
183 /// Return true if this is X86 MMX.
184 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
185
186 /// Return true if this is X86 AMX.
187 bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
188
189 /// Return true if this is a FP type or a vector of FP.
190 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
191
192 /// Return true if this is 'label'.
193 bool isLabelTy() const { return getTypeID() == LabelTyID; }
194
195 /// Return true if this is 'metadata'.
196 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
197
198 /// Return true if this is 'token'.
199 bool isTokenTy() const { return getTypeID() == TokenTyID; }
200
201 /// True if this is an instance of IntegerType.
202 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
17
Assuming the condition is true
18
Returning the value 1, which participates in a condition later
21
Assuming the condition is true
22
Returning the value 1, which participates in a condition later
203
204 /// Return true if this is an IntegerType of the given width.
205 bool isIntegerTy(unsigned Bitwidth) const;
206
207 /// Return true if this is an integer type or a vector of integer types.
208 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
209
210 /// Return true if this is an integer type or a vector of integer types of
211 /// the given width.
212 bool isIntOrIntVectorTy(unsigned BitWidth) const {
213 return getScalarType()->isIntegerTy(BitWidth);
214 }
215
216 /// Return true if this is an integer type or a pointer type.
217 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
218
219 /// True if this is an instance of FunctionType.
220 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
221
222 /// True if this is an instance of StructType.
223 bool isStructTy() const { return getTypeID() == StructTyID; }
224
225 /// True if this is an instance of ArrayType.
226 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
227
228 /// True if this is an instance of PointerType.
229 bool isPointerTy() const { return getTypeID() == PointerTyID; }
230
231 /// Return true if this is a pointer type or a vector of pointer types.
232 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
233
234 /// True if this is an instance of VectorType.
235 inline bool isVectorTy() const {
236 return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
237 }
238
239 /// Return true if this type could be converted with a lossless BitCast to
240 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
241 /// same size only where no re-interpretation of the bits is done.
242 /// Determine if this type could be losslessly bitcast to Ty
243 bool canLosslesslyBitCastTo(Type *Ty) const;
244
245 /// Return true if this type is empty, that is, it has no elements or all of
246 /// its elements are empty.
247 bool isEmptyTy() const;
248
249 /// Return true if the type is "first class", meaning it is a valid type for a
250 /// Value.
251 bool isFirstClassType() const {
252 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
253 }
254
255 /// Return true if the type is a valid type for a register in codegen. This
256 /// includes all first-class types except struct and array types.
257 bool isSingleValueType() const {
258 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
259 isPointerTy() || isVectorTy() || isX86_AMXTy();
260 }
261
262 /// Return true if the type is an aggregate type. This means it is valid as
263 /// the first operand of an insertvalue or extractvalue instruction. This
264 /// includes struct and array types, but does not include vector types.
265 bool isAggregateType() const {
266 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
267 }
268
269 /// Return true if it makes sense to take the size of this type. To get the
270 /// actual size for a particular target, it is reasonable to use the
271 /// DataLayout subsystem to do this.
272 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
273 // If it's a primitive, it is always sized.
274 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
275 getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
276 getTypeID() == X86_AMXTyID)
277 return true;
278 // If it is not something that can have a size (e.g. a function or label),
279 // it doesn't have a size.
280 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy())
281 return false;
282 // Otherwise we have to try harder to decide.
283 return isSizedDerivedType(Visited);
284 }
285
286 /// Return the basic size of this type if it is a primitive type. These are
287 /// fixed by LLVM and are not target-dependent.
288 /// This will return zero if the type does not have a size or is not a
289 /// primitive type.
290 ///
291 /// If this is a scalable vector type, the scalable property will be set and
292 /// the runtime size will be a positive integer multiple of the base size.
293 ///
294 /// Note that this may not reflect the size of memory allocated for an
295 /// instance of the type or the number of bytes that are written when an
296 /// instance of the type is stored to memory. The DataLayout class provides
297 /// additional query functions to provide this information.
298 ///
299 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__));
300
301 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
302 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
303 /// type.
304 unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__));
305
306 /// Return the width of the mantissa of this type. This is only valid on
307 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
308 /// ppc long double), this method returns -1.
309 int getFPMantissaWidth() const;
310
311 /// Return whether the type is IEEE compatible, as defined by the eponymous
312 /// method in APFloat.
313 bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); }
314
315 /// If this is a vector type, return the element type, otherwise return
316 /// 'this'.
317 inline Type *getScalarType() const {
318 if (isVectorTy())
319 return getContainedType(0);
320 return const_cast<Type *>(this);
321 }
322
323 //===--------------------------------------------------------------------===//
324 // Type Iteration support.
325 //
326 using subtype_iterator = Type * const *;
327
328 subtype_iterator subtype_begin() const { return ContainedTys; }
329 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
330 ArrayRef<Type*> subtypes() const {
331 return makeArrayRef(subtype_begin(), subtype_end());
332 }
333
334 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
335
336 subtype_reverse_iterator subtype_rbegin() const {
337 return subtype_reverse_iterator(subtype_end());
338 }
339 subtype_reverse_iterator subtype_rend() const {
340 return subtype_reverse_iterator(subtype_begin());
341 }
342
343 /// This method is used to implement the type iterator (defined at the end of
344 /// the file). For derived types, this returns the types 'contained' in the
345 /// derived type.
346 Type *getContainedType(unsigned i) const {
347 assert(i < NumContainedTys && "Index out of range!")((i < NumContainedTys && "Index out of range!") ? static_cast
<void> (0) : __assert_fail ("i < NumContainedTys && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 347, __PRETTY_FUNCTION__))
;
348 return ContainedTys[i];
349 }
350
351 /// Return the number of types in the derived type.
352 unsigned getNumContainedTypes() const { return NumContainedTys; }
353
354 //===--------------------------------------------------------------------===//
355 // Helper methods corresponding to subclass methods. This forces a cast to
356 // the specified subclass and calls its accessor. "getArrayNumElements" (for
357 // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is
358 // only intended to cover the core methods that are frequently used, helper
359 // methods should not be added here.
360
361 inline unsigned getIntegerBitWidth() const;
362
363 inline Type *getFunctionParamType(unsigned i) const;
364 inline unsigned getFunctionNumParams() const;
365 inline bool isFunctionVarArg() const;
366
367 inline StringRef getStructName() const;
368 inline unsigned getStructNumElements() const;
369 inline Type *getStructElementType(unsigned N) const;
370
371 inline uint64_t getArrayNumElements() const;
372
373 Type *getArrayElementType() const {
374 assert(getTypeID() == ArrayTyID)((getTypeID() == ArrayTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == ArrayTyID", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 return ContainedTys[0];
376 }
377
378 Type *getPointerElementType() const {
379 assert(getTypeID() == PointerTyID)((getTypeID() == PointerTyID) ? static_cast<void> (0) :
__assert_fail ("getTypeID() == PointerTyID", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 379, __PRETTY_FUNCTION__))
;
380 return ContainedTys[0];
381 }
382
383 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
384 /// whilst keeping the old number of lanes.
385 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
386
387 /// Given scalar/vector integer type, returns a type with elements twice as
388 /// wide as in the original type. For vectors, preserves element count.
389 inline Type *getExtendedType() const;
390
391 /// Get the address space of this pointer or pointer vector type.
392 inline unsigned getPointerAddressSpace() const;
393
394 //===--------------------------------------------------------------------===//
395 // Static members exported by the Type class itself. Useful for getting
396 // instances of Type.
397 //
398
399 /// Return a type based on an identifier.
400 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
401
402 //===--------------------------------------------------------------------===//
403 // These are the builtin types that are always available.
404 //
405 static Type *getVoidTy(LLVMContext &C);
406 static Type *getLabelTy(LLVMContext &C);
407 static Type *getHalfTy(LLVMContext &C);
408 static Type *getBFloatTy(LLVMContext &C);
409 static Type *getFloatTy(LLVMContext &C);
410 static Type *getDoubleTy(LLVMContext &C);
411 static Type *getMetadataTy(LLVMContext &C);
412 static Type *getX86_FP80Ty(LLVMContext &C);
413 static Type *getFP128Ty(LLVMContext &C);
414 static Type *getPPC_FP128Ty(LLVMContext &C);
415 static Type *getX86_MMXTy(LLVMContext &C);
416 static Type *getX86_AMXTy(LLVMContext &C);
417 static Type *getTokenTy(LLVMContext &C);
418 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
419 static IntegerType *getInt1Ty(LLVMContext &C);
420 static IntegerType *getInt8Ty(LLVMContext &C);
421 static IntegerType *getInt16Ty(LLVMContext &C);
422 static IntegerType *getInt32Ty(LLVMContext &C);
423 static IntegerType *getInt64Ty(LLVMContext &C);
424 static IntegerType *getInt128Ty(LLVMContext &C);
425 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
426 int noOfBits = sizeof(ScalarTy) * CHAR_BIT8;
427 if (std::is_integral<ScalarTy>::value) {
428 return (Type*) Type::getIntNTy(C, noOfBits);
429 } else if (std::is_floating_point<ScalarTy>::value) {
430 switch (noOfBits) {
431 case 32:
432 return Type::getFloatTy(C);
433 case 64:
434 return Type::getDoubleTy(C);
435 }
436 }
437 llvm_unreachable("Unsupported type in Type::getScalarTy")::llvm::llvm_unreachable_internal("Unsupported type in Type::getScalarTy"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 437)
;
438 }
439 static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
440 Type *Ty;
441 if (&S == &APFloat::IEEEhalf())
442 Ty = Type::getHalfTy(C);
443 else if (&S == &APFloat::BFloat())
444 Ty = Type::getBFloatTy(C);
445 else if (&S == &APFloat::IEEEsingle())
446 Ty = Type::getFloatTy(C);
447 else if (&S == &APFloat::IEEEdouble())
448 Ty = Type::getDoubleTy(C);
449 else if (&S == &APFloat::x87DoubleExtended())
450 Ty = Type::getX86_FP80Ty(C);
451 else if (&S == &APFloat::IEEEquad())
452 Ty = Type::getFP128Ty(C);
453 else {
454 assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format")((&S == &APFloat::PPCDoubleDouble() && "Unknown FP format"
) ? static_cast<void> (0) : __assert_fail ("&S == &APFloat::PPCDoubleDouble() && \"Unknown FP format\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Type.h"
, 454, __PRETTY_FUNCTION__))
;
455 Ty = Type::getPPC_FP128Ty(C);
456 }
457 return Ty;
458 }
459
460 //===--------------------------------------------------------------------===//
461 // Convenience methods for getting pointer types with one of the above builtin
462 // types as pointee.
463 //
464 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
465 static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
466 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
467 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
468 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
469 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
470 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
471 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
472 static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
473 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
474 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
475 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
476 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
477 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
478 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
479
480 /// Return a pointer to the current type. This is equivalent to
481 /// PointerType::get(Foo, AddrSpace).
482 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
483
484private:
485 /// Derived types like structures and arrays are sized iff all of the members
486 /// of the type are sized as well. Since asking for their size is relatively
487 /// uncommon, move this operation out-of-line.
488 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
489};
490
491// Printing of types.
492inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
493 T.print(OS);
494 return OS;
495}
496
497// allow isa<PointerType>(x) to work without DerivedTypes.h included.
498template <> struct isa_impl<PointerType, Type> {
499 static inline bool doit(const Type &Ty) {
500 return Ty.getTypeID() == Type::PointerTyID;
501 }
502};
503
504// Create wrappers for C Binding types (see CBindingWrapping.h).
505DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast<
Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return
reinterpret_cast<LLVMTypeRef>(const_cast<Type*>(
P)); } template<typename T> inline T *unwrap(LLVMTypeRef
P) { return cast<T>(unwrap(P)); }
506
507/* Specialized opaque type conversions.
508 */
509inline Type **unwrap(LLVMTypeRef* Tys) {
510 return reinterpret_cast<Type**>(Tys);
511}
512
513inline LLVMTypeRef *wrap(Type **Tys) {
514 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
515}
516
517} // end namespace llvm
518
519#endif // LLVM_IR_TYPE_H

/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapInfo<APInt>;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine if this APInt just has one word to store value.
113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth
52.1
Field 'BitWidth' is > APINT_BITS_PER_WORD
52.1
Field 'BitWidth' is > APINT_BITS_PER_WORD
52.1
Field 'BitWidth' is > APINT_BITS_PER_WORD
<= APINT_BITS_PER_WORD
; }
43
Assuming field 'BitWidth' is > APINT_BITS_PER_WORD
44
Returning zero, which participates in a condition later
53
Returning zero, which participates in a condition later
116
117 /// Determine which word a bit is in.
118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
124 /// Determine which bit in a word a bit is in.
125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
132 /// Get a single bit mask.
133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
142 /// Clear unused high order bits
143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
161 /// Get the word corresponding to a bit position
162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
172 /// Convert a char array into an APInt
173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
186 /// An internal division function for dividing APInts.
187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
263
264public:
265 /// \name Constructors
266 /// @{
267
268 /// Create a new APInt of numBits width, initialized as val.
269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small")((BitWidth && "bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 280, __PRETTY_FUNCTION__))
;
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
289 /// Construct an APInt of numBits width, initialized as bigVal[].
290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
307 /// Construct an APInt from a string representation.
308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
321 /// Copy Constructor.
322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
327 }
328
329 /// Move Constructor.
330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
335 /// Destructor.
336 ~APInt() {
337 if (needsCleanup())
338 delete[] U.pVal;
339 }
340
341 /// Default constructor that creates an uninteresting APInt
342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
348 /// Returns whether this instance allocated memory.
349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
398 /// Determine if all bits are set
399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
407 /// Determine if all bits are clear
408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
51
Calling 'APInt::operator!'
58
Returning from 'APInt::operator!'
59
Returning zero, which participates in a condition later
412
413 /// Determine if this is a value of 1.
414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
42
Calling 'APInt::isSingleWord'
45
Returning from 'APInt::isSingleWord'
46
Taking false branch
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
47
Assuming the condition is false
48
Returning zero, which participates in a condition later
420 }
421
422 /// Determine if this is the largest unsigned value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
428 /// Determine if this is the largest signed value.
429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
438 /// Determine if this is the smallest unsigned value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
444 /// Determine if this is the smallest signed value.
445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
450 return U.VAL == (WordType(1) << (BitWidth - 1));
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
454 /// Check if this APInt has an N-bits unsigned integer value.
455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 456, __PRETTY_FUNCTION__))
;
457 return getActiveBits() <= N;
458 }
459
460 /// Check if this APInt has an N-bits signed integer value.
461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 462, __PRETTY_FUNCTION__))
;
463 return getMinSignedBits() <= N;
464 }
465
466 /// Check if this APInt's value is a power of two greater than zero.
467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
475 /// Check if the APInt's value is returned by getSignMask.
476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
480 /// Convert APInt to a boolean value.
481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
491 /// Check if the APInt consists of a repeated bit pattern.
492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero")((numBits != 0 && "numBits must be non-zero") ? static_cast
<void> (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 501, __PRETTY_FUNCTION__))
;
502 assert(numBits <= BitWidth && "numBits out of range")((numBits <= BitWidth && "numBits out of range") ?
static_cast<void> (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 502, __PRETTY_FUNCTION__))
;
503 if (isSingleWord())
504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
520 /// Return true if this APInt value contains a sequence of ones with
521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
534 /// Gets maximum unsigned value of APInt for specific bit width.
535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
539 /// Gets maximum signed value of APInt for a specific bit width.
540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
546 /// Gets minimum unsigned value of APInt for a specific bit width.
547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
549 /// Gets minimum signed value of APInt for a specific bit width.
550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
556 /// Get the SignMask for a specific bit width.
557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
564 /// Get the all-ones value.
565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
568 return APInt(numBits, WORDTYPE_MAX, true);
569 }
570
571 /// Get the '0' value.
572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
576 /// Compute an APInt containing numBits highbits from this APInt.
577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
584 /// Compute an APInt containing numBits lowbits from this APInt.
585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
592 /// Return an APInt with exactly one bit set in the result.
593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
599 /// Get a value with a block of bits set.
600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 613, __PRETTY_FUNCTION__))
;
614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
632 /// Get a value with upper bits starting at loBit set.
633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
649 /// Get a value with high bits set
650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
661 /// Get a value with low bits set
662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
673 /// Return a value containing V broadcasted over NewLen bits.
674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
676 /// Determine if two APInts have the same value, after zero-extending
677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
688 /// Overload to compute a hash_code for an APInt value.
689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
704 /// Postfix increment operator.
705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 const APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
715 /// Prefix increment operator.
716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
720 /// Postfix decrement operator.
721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 const APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
731 /// Prefix decrement operator.
732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
736 /// Logical negation operator.
737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
52
Calling 'APInt::isSingleWord'
54
Returning from 'APInt::isSingleWord'
55
Taking false branch
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
56
Assuming the condition is false
57
Returning zero, which participates in a condition later
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
751 /// Copy assignment operator.
752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
766 /// Move assignment operator.
767 APInt &operator=(APInt &&that) {
768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
770 if (this == &that)
771 return *this;
772#endif
773 assert(this != &that && "Self-move not supported")((this != &that && "Self-move not supported") ? static_cast
<void> (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 773, __PRETTY_FUNCTION__))
;
774 if (!isSingleWord())
775 delete[] U.pVal;
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
787 /// Assignment operator.
788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
797 return clearUnusedBits();
798 }
799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// Bitwise AND assignment operator.
805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 811, __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// Bitwise AND assignment operator.
820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
834 /// Bitwise OR assignment operator.
835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 841, __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// Bitwise OR assignment operator.
850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
857 return clearUnusedBits();
858 }
859 U.pVal[0] |= RHS;
860 return *this;
861 }
862
863 /// Bitwise XOR assignment operator.
864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 870, __PRETTY_FUNCTION__))
;
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
878 /// Bitwise XOR assignment operator.
879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
886 return clearUnusedBits();
887 }
888 U.pVal[0] ^= RHS;
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 922, __PRETTY_FUNCTION__))
;
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 971, __PRETTY_FUNCTION__))
;
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 995, __PRETTY_FUNCTION__))
;
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((bitPosition < getBitWidth() && "Bit position out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1138, __PRETTY_FUNCTION__))
;
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1151, __PRETTY_FUNCTION__))
;
1152 if (isSingleWord())
1153 return U.VAL == RHS.U.VAL;
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1342, __PRETTY_FUNCTION__))
;
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is
1409 /// truncated or left alone to make it that width.
1410 APInt truncOrSelf(unsigned width) const;
1411
1412 /// Sign extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is sign
1415 /// extended, or left alone to make it that width.
1416 APInt sextOrSelf(unsigned width) const;
1417
1418 /// Zero extend or truncate to width
1419 ///
1420 /// Make this APInt have the bit width given by \p width. The value is zero
1421 /// extended, or left alone to make it that width.
1422 APInt zextOrSelf(unsigned width) const;
1423
1424 /// @}
1425 /// \name Bit Manipulation Operators
1426 /// @{
1427
1428 /// Set every bit to 1.
1429 void setAllBits() {
1430 if (isSingleWord())
1431 U.VAL = WORDTYPE_MAX;
1432 else
1433 // Set all the bits in all the words.
1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435 // Clear the unused ones
1436 clearUnusedBits();
1437 }
1438
1439 /// Set a given bit to 1.
1440 ///
1441 /// Set the given bit to 1 whose position is given as "bitPosition".
1442 void setBit(unsigned BitPosition) {
1443 assert(BitPosition < BitWidth && "BitPosition out of range")((BitPosition < BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1443, __PRETTY_FUNCTION__))
;
1444 WordType Mask = maskBit(BitPosition);
1445 if (isSingleWord())
1446 U.VAL |= Mask;
1447 else
1448 U.pVal[whichWord(BitPosition)] |= Mask;
1449 }
1450
1451 /// Set the sign bit to 1.
1452 void setSignBit() {
1453 setBit(BitWidth - 1);
1454 }
1455
1456 /// Set a given bit to a given value.
1457 void setBitVal(unsigned BitPosition, bool BitValue) {
1458 if (BitValue)
1459 setBit(BitPosition);
1460 else
1461 clearBit(BitPosition);
1462 }
1463
1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466 /// setBits when \p loBit < \p hiBit.
1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1469, __PRETTY_FUNCTION__))
;
1470 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1470, __PRETTY_FUNCTION__))
;
1471 if (loBit < hiBit) {
1472 setBits(loBit, hiBit);
1473 return;
1474 }
1475 setLowBits(hiBit);
1476 setHighBits(BitWidth - loBit);
1477 }
1478
1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480 /// This function handles case when \p loBit <= \p hiBit.
1481 void setBits(unsigned loBit, unsigned hiBit) {
1482 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1482, __PRETTY_FUNCTION__))
;
1483 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1483, __PRETTY_FUNCTION__))
;
1484 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1484, __PRETTY_FUNCTION__))
;
1485 if (loBit == hiBit)
1486 return;
1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1489 mask <<= loBit;
1490 if (isSingleWord())
1491 U.VAL |= mask;
1492 else
1493 U.pVal[0] |= mask;
1494 } else {
1495 setBitsSlowCase(loBit, hiBit);
1496 }
1497 }
1498
1499 /// Set the top bits starting from loBit.
1500 void setBitsFrom(unsigned loBit) {
1501 return setBits(loBit, BitWidth);
1502 }
1503
1504 /// Set the bottom loBits bits.
1505 void setLowBits(unsigned loBits) {
1506 return setBits(0, loBits);
1507 }
1508
1509 /// Set the top hiBits bits.
1510 void setHighBits(unsigned hiBits) {
1511 return setBits(BitWidth - hiBits, BitWidth);
1512 }
1513
1514 /// Set every bit to 0.
1515 void clearAllBits() {
1516 if (isSingleWord())
1517 U.VAL = 0;
1518 else
1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520 }
1521
1522 /// Set a given bit to 0.
1523 ///
1524 /// Set the given bit to 0 whose position is given as "bitPosition".
1525 void clearBit(unsigned BitPosition) {
1526 assert(BitPosition < BitWidth && "BitPosition out of range")((BitPosition < BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1526, __PRETTY_FUNCTION__))
;
1527 WordType Mask = ~maskBit(BitPosition);
1528 if (isSingleWord())
1529 U.VAL &= Mask;
1530 else
1531 U.pVal[whichWord(BitPosition)] &= Mask;
1532 }
1533
1534 /// Set bottom loBits bits to 0.
1535 void clearLowBits(unsigned loBits) {
1536 assert(loBits <= BitWidth && "More bits than bitwidth")((loBits <= BitWidth && "More bits than bitwidth")
? static_cast<void> (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1536, __PRETTY_FUNCTION__))
;
1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538 *this &= Keep;
1539 }
1540
1541 /// Set the sign bit to 0.
1542 void clearSignBit() {
1543 clearBit(BitWidth - 1);
1544 }
1545
1546 /// Toggle every bit to its opposite value.
1547 void flipAllBits() {
1548 if (isSingleWord()) {
1549 U.VAL ^= WORDTYPE_MAX;
1550 clearUnusedBits();
1551 } else {
1552 flipAllBitsSlowCase();
1553 }
1554 }
1555
1556 /// Toggles a given bit to its opposite value.
1557 ///
1558 /// Toggle a given bit to its opposite value whose position is given
1559 /// as "bitPosition".
1560 void flipBit(unsigned bitPosition);
1561
1562 /// Negate this APInt in place.
1563 void negate() {
1564 flipAllBits();
1565 ++(*this);
1566 }
1567
1568 /// Insert the bits from a smaller APInt starting at bitPosition.
1569 void insertBits(const APInt &SubBits, unsigned bitPosition);
1570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1571
1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1575
1576 /// @}
1577 /// \name Value Characterization Functions
1578 /// @{
1579
1580 /// Return the number of bits in the APInt.
1581 unsigned getBitWidth() const { return BitWidth; }
1582
1583 /// Get the number of words.
1584 ///
1585 /// Here one word's bitwidth equals to that of uint64_t.
1586 ///
1587 /// \returns the number of words to hold the integer value of this APInt.
1588 unsigned getNumWords() const { return getNumWords(BitWidth); }
1589
1590 /// Get the number of words.
1591 ///
1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593 ///
1594 /// \returns the number of words to hold the integer value with a given bit
1595 /// width.
1596 static unsigned getNumWords(unsigned BitWidth) {
1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598 }
1599
1600 /// Compute the number of active bits in the value
1601 ///
1602 /// This function returns the number of active bits which is defined as the
1603 /// bit width minus the number of leading zeros. This is used in several
1604 /// computations to see how "wide" the value is.
1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606
1607 /// Compute the number of active words in the value of this APInt.
1608 ///
1609 /// This is used in conjunction with getActiveData to extract the raw value of
1610 /// the APInt.
1611 unsigned getActiveWords() const {
1612 unsigned numActiveBits = getActiveBits();
1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614 }
1615
1616 /// Get the minimum bit size for this signed APInt
1617 ///
1618 /// Computes the minimum bit width for this APInt while considering it to be a
1619 /// signed (and probably negative) value. If the value is not negative, this
1620 /// function returns the same value as getActiveBits()+1. Otherwise, it
1621 /// returns the smallest bit width that will retain the negative value. For
1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623 /// for -1, this function will always return 1.
1624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1625
1626 /// Get zero extended value
1627 ///
1628 /// This method attempts to return the value of this APInt as a zero extended
1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630 /// uint64_t. Otherwise an assertion will result.
1631 uint64_t getZExtValue() const {
1632 if (isSingleWord())
1633 return U.VAL;
1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((getActiveBits() <= 64 && "Too many bits for uint64_t"
) ? static_cast<void> (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1634, __PRETTY_FUNCTION__))
;
1635 return U.pVal[0];
1636 }
1637
1638 /// Get sign extended value
1639 ///
1640 /// This method attempts to return the value of this APInt as a sign extended
1641 /// int64_t. The bit width must be <= 64 or the value must fit within an
1642 /// int64_t. Otherwise an assertion will result.
1643 int64_t getSExtValue() const {
1644 if (isSingleWord())
1645 return SignExtend64(U.VAL, BitWidth);
1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((getMinSignedBits() <= 64 && "Too many bits for int64_t"
) ? static_cast<void> (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/ADT/APInt.h"
, 1646, __PRETTY_FUNCTION__))
;
1647 return int64_t(U.pVal[0]);
1648 }
1649
1650 /// Get bits required for string value.
1651 ///
1652 /// This method determines how many bits are required to hold the APInt
1653 /// equivalent of the string given by \p str.
1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655
1656 /// The APInt version of the countLeadingZeros functions in
1657 /// MathExtras.h.
1658 ///
1659 /// It counts the number of zeros from the most significant bit to the first
1660 /// one bit.
1661 ///
1662 /// \returns BitWidth if the value is zero, otherwise returns the number of
1663 /// zeros from the most significant bit to the first one bits.
1664 unsigned countLeadingZeros() const {
1665 if (isSingleWord()) {
1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668 }
1669 return countLeadingZerosSlowCase();
1670 }
1671
1672 /// Count the number of leading one bits.
1673 ///
1674 /// This function is an APInt version of the countLeadingOnes
1675 /// functions in MathExtras.h. It counts the number of ones from the most
1676 /// significant bit to the first zero bit.
1677 ///
1678 /// \returns 0 if the high order bit is not set, otherwise returns the number
1679 /// of 1 bits from the most significant to the least
1680 unsigned countLeadingOnes() const {
1681 if (isSingleWord())
1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683 return countLeadingOnesSlowCase();
1684 }
1685
1686 /// Computes the number of leading bits of this APInt that are equal to its
1687 /// sign bit.
1688 unsigned getNumSignBits() const {
1689 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690 }
1691
1692 /// Count the number of trailing zero bits.
1693 ///
1694 /// This function is an APInt version of the countTrailingZeros
1695 /// functions in MathExtras.h. It counts the number of zeros from the least
1696 /// significant bit to the first set bit.
1697 ///
1698 /// \returns BitWidth if the value is zero, otherwise returns the number of
1699 /// zeros from the least significant bit to the first one bit.
1700 unsigned countTrailingZeros() const {
1701 if (isSingleWord())
1702 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1703 return countTrailingZerosSlowCase();
1704 }
1705
1706 /// Count the number of trailing one bits.
1707 ///
1708 /// This function is an APInt version of the countTrailingOnes
1709 /// functions in MathExtras.h. It counts the number of ones from the least
1710 /// significant bit to the first zero bit.
1711 ///
1712 /// \returns BitWidth if the value is all ones, otherwise returns the number
1713 /// of ones from the least significant bit to the first zero bit.
1714 unsigned countTrailingOnes() const {
1715 if (isSingleWord())
1716 return llvm::countTrailingOnes(U.VAL);
1717 return countTrailingOnesSlowCase();
1718 }
1719
1720 /// Count the number of bits set.
1721 ///
1722 /// This function is an APInt version of the countPopulation functions
1723 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1724 ///
1725 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1726 unsigned countPopulation() const {
1727 if (isSingleWord())
1728 return llvm::countPopulation(U.VAL);
1729 return countPopulationSlowCase();
1730 }
1731
1732 /// @}
1733 /// \name Conversion Functions
1734 /// @{
1735 void print(raw_ostream &OS, bool isSigned) const;
1736
1737 /// Converts an APInt to a string and append it to Str. Str is commonly a
1738 /// SmallString.
1739 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1740 bool formatAsCLiteral = false) const;
1741
1742 /// Considers the APInt to be unsigned and converts it into a string in the
1743 /// radix given. The radix can be 2, 8, 10 16, or 36.
1744 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1745 toString(Str, Radix, false, false);
1746 }
1747
1748 /// Considers the APInt to be signed and converts it into a string in the
1749 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1750 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1751 toString(Str, Radix, true, false);
1752 }
1753
1754 /// Return the APInt as a std::string.
1755 ///
1756 /// Note that this is an inefficient method. It is better to pass in a
1757 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1758 /// for the string.
1759 std::string toString(unsigned Radix, bool Signed) const;
1760
1761 /// \returns a byte-swapped representation of this APInt Value.
1762 APInt byteSwap() const;
1763
1764 /// \returns the value with the bit representation reversed of this APInt
1765 /// Value.
1766 APInt reverseBits() const;
1767
1768 /// Converts this APInt to a double value.
1769 double roundToDouble(bool isSigned) const;
1770
1771 /// Converts this unsigned APInt to a double value.
1772 double roundToDouble() const { return roundToDouble(false); }
1773
1774 /// Converts this signed APInt to a double value.
1775 double signedRoundToDouble() const { return roundToDouble(true); }
1776
1777 /// Converts APInt bits to a double
1778 ///
1779 /// The conversion does not do a translation from integer to double, it just
1780 /// re-interprets the bits as a double. Note that it is valid to do this on
1781 /// any bit width. Exactly 64 bits will be translated.
1782 double bitsToDouble() const {
1783 return BitsToDouble(getWord(0));
1784 }
1785
1786 /// Converts APInt bits to a float
1787 ///
1788 /// The conversion does not do a translation from integer to float, it just
1789 /// re-interprets the bits as a float. Note that it is valid to do this on
1790 /// any bit width. Exactly 32 bits will be translated.
1791 float bitsToFloat() const {
1792 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1793 }
1794
1795 /// Converts a double to APInt bits.
1796 ///
1797 /// The conversion does not do a translation from double to integer, it just
1798 /// re-interprets the bits of the double.
1799 static APInt doubleToBits(double V) {
1800 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1801 }
1802
1803 /// Converts a float to APInt bits.
1804 ///
1805 /// The conversion does not do a translation from float to integer, it just
1806 /// re-interprets the bits of the float.
1807 static APInt floatToBits(float V) {
1808 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1809 }
1810
1811 /// @}
1812 /// \name Mathematics Operations
1813 /// @{
1814
1815 /// \returns the floor log base 2 of this APInt.
1816 unsigned logBase2() const { return getActiveBits() - 1; }
1817
1818 /// \returns the ceil log base 2 of this APInt.
1819 unsigned ceilLogBase2() const {
1820 APInt temp(*this);
1821 --temp;
1822 return temp.getActiveBits();
1823 }
1824
1825 /// \returns the nearest log base 2 of this APInt. Ties round up.
1826 ///
1827 /// NOTE: When we have a BitWidth of 1, we define:
1828 ///
1829 /// log2(0) = UINT32_MAX
1830 /// log2(1) = 0
1831 ///
1832 /// to get around any mathematical concerns resulting from
1833 /// referencing 2 in a space where 2 does no exist.
1834 unsigned nearestLogBase2() const {
1835 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1836 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1837 // UINT32_MAX.
1838 if (BitWidth == 1)
1839 return U.VAL - 1;
1840
1841 // Handle the zero case.
1842 if (isNullValue())
1843 return UINT32_MAX(4294967295U);
1844
1845 // The non-zero case is handled by computing:
1846 //
1847 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1848 //
1849 // where x[i] is referring to the value of the ith bit of x.
1850 unsigned lg = logBase2();
1851 return lg + unsigned((*this)[lg - 1]);
1852 }
1853
1854 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1855 /// otherwise
1856 int32_t exactLogBase2() const {
1857 if (!isPowerOf2())
1858 return -1;
1859 return logBase2();
1860 }
1861
1862 /// Compute the square root
1863 APInt sqrt() const;
1864
1865 /// Get the absolute value;
1866 ///
1867 /// If *this is < 0 then return -(*this), otherwise *this;
1868 APInt abs() const {
1869 if (isNegative())
1870 return -(*this);
1871 return *this;
1872 }
1873
1874 /// \returns the multiplicative inverse for a given modulo.
1875 APInt multiplicativeInverse(const APInt &modulo) const;
1876
1877 /// @}
1878 /// \name Support for division by constant
1879 /// @{
1880
1881 /// Calculate the magic number for signed division by a constant.
1882 struct ms;
1883 ms magic() const;
1884
1885 /// Calculate the magic number for unsigned division by a constant.
1886 struct mu;
1887 mu magicu(unsigned LeadingZeros = 0) const;
1888
1889 /// @}
1890 /// \name Building-block Operations for APInt and APFloat
1891 /// @{
1892
1893 // These building block operations operate on a representation of arbitrary
1894 // precision, two's-complement, bignum integer values. They should be
1895 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1896 // generally a pointer to the base of an array of integer parts, representing
1897 // an unsigned bignum, and a count of how many parts there are.
1898
1899 /// Sets the least significant part of a bignum to the input value, and zeroes
1900 /// out higher parts.
1901 static void tcSet(WordType *, WordType, unsigned);
1902
1903 /// Assign one bignum to another.
1904 static void tcAssign(WordType *, const WordType *, unsigned);
1905
1906 /// Returns true if a bignum is zero, false otherwise.
1907 static bool tcIsZero(const WordType *, unsigned);
1908
1909 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1910 static int tcExtractBit(const WordType *, unsigned bit);
1911
1912 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1913 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1914 /// significant bit of DST. All high bits above srcBITS in DST are
1915 /// zero-filled.
1916 static void tcExtract(WordType *, unsigned dstCount,
1917 const WordType *, unsigned srcBits,
1918 unsigned srcLSB);
1919
1920 /// Set the given bit of a bignum. Zero-based.
1921 static void tcSetBit(WordType *, unsigned bit);
1922
1923 /// Clear the given bit of a bignum. Zero-based.
1924 static void tcClearBit(WordType *, unsigned bit);
1925
1926 /// Returns the bit number of the least or most significant set bit of a
1927 /// number. If the input number has no bits set -1U is returned.
1928 static unsigned tcLSB(const WordType *, unsigned n);
1929 static unsigned tcMSB(const WordType *parts, unsigned n);
1930
1931 /// Negate a bignum in-place.
1932 static void tcNegate(WordType *, unsigned);
1933
1934 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1935 static WordType tcAdd(WordType *, const WordType *,
1936 WordType carry, unsigned);
1937 /// DST += RHS. Returns the carry flag.
1938 static WordType tcAddPart(WordType *, WordType, unsigned);
1939
1940 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1941 static WordType tcSubtract(WordType *, const WordType *,
1942 WordType carry, unsigned);
1943 /// DST -= RHS. Returns the carry flag.
1944 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1945
1946 /// DST += SRC * MULTIPLIER + PART if add is true
1947 /// DST = SRC * MULTIPLIER + PART if add is false
1948 ///
1949 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1950 /// start at the same point, i.e. DST == SRC.
1951 ///
1952 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1953 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1954 /// result, and if all of the omitted higher parts were zero return zero,
1955 /// otherwise overflow occurred and return one.
1956 static int tcMultiplyPart(WordType *dst, const WordType *src,
1957 WordType multiplier, WordType carry,
1958 unsigned srcParts, unsigned dstParts,
1959 bool add);
1960
1961 /// DST = LHS * RHS, where DST has the same width as the operands and is
1962 /// filled with the least significant parts of the result. Returns one if
1963 /// overflow occurred, otherwise zero. DST must be disjoint from both
1964 /// operands.
1965 static int tcMultiply(WordType *, const WordType *, const WordType *,
1966 unsigned);
1967
1968 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1969 /// operands. No overflow occurs. DST must be disjoint from both operands.
1970 static void tcFullMultiply(WordType *, const WordType *,
1971 const WordType *, unsigned, unsigned);
1972
1973 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1974 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1975 /// REMAINDER to the remainder, return zero. i.e.
1976 ///
1977 /// OLD_LHS = RHS * LHS + REMAINDER
1978 ///
1979 /// SCRATCH is a bignum of the same size as the operands and result for use by
1980 /// the routine; its contents need not be initialized and are destroyed. LHS,
1981 /// REMAINDER and SCRATCH must be distinct.
1982 static int tcDivide(WordType *lhs, const WordType *rhs,
1983 WordType *remainder, WordType *scratch,
1984 unsigned parts);
1985
1986 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1987 /// restrictions on Count.
1988 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1989
1990 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1991 /// restrictions on Count.
1992 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1993
1994 /// The obvious AND, OR and XOR and complement operations.
1995 static void tcAnd(WordType *, const WordType *, unsigned);
1996 static void tcOr(WordType *, const WordType *, unsigned);
1997 static void tcXor(WordType *, const WordType *, unsigned);
1998 static void tcComplement(WordType *, unsigned);
1999
2000 /// Comparison (unsigned) of two bignums.
2001 static int tcCompare(const WordType *, const WordType *, unsigned);
2002
2003 /// Increment a bignum in-place. Return the carry flag.
2004 static WordType tcIncrement(WordType *dst, unsigned parts) {
2005 return tcAddPart(dst, 1, parts);
2006 }
2007
2008 /// Decrement a bignum in-place. Return the borrow flag.
2009 static WordType tcDecrement(WordType *dst, unsigned parts) {
2010 return tcSubtractPart(dst, 1, parts);
2011 }
2012
2013 /// Set the least significant BITS and clear the rest.
2014 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2015
2016 /// debug method
2017 void dump() const;
2018
2019 /// @}
2020};
2021
2022/// Magic data for optimising signed division by a constant.
2023struct APInt::ms {
2024 APInt m; ///< magic number
2025 unsigned s; ///< shift amount
2026};
2027
2028/// Magic data for optimising unsigned division by a constant.
2029struct APInt::mu {
2030 APInt m; ///< magic number
2031 bool a; ///< add indicator
2032 unsigned s; ///< shift amount
2033};
2034
2035inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2036
2037inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2038
2039/// Unary bitwise complement operator.
2040///
2041/// \returns an APInt that is the bitwise complement of \p v.
2042inline APInt operator~(APInt v) {
2043 v.flipAllBits();
2044 return v;
2045}
2046
2047inline APInt operator&(APInt a, const APInt &b) {
2048 a &= b;
2049 return a;
2050}
2051
2052inline APInt operator&(const APInt &a, APInt &&b) {
2053 b &= a;
2054 return std::move(b);
2055}
2056
2057inline APInt operator&(APInt a, uint64_t RHS) {
2058 a &= RHS;
2059 return a;
2060}
2061
2062inline APInt operator&(uint64_t LHS, APInt b) {
2063 b &= LHS;
2064 return b;
2065}
2066
2067inline APInt operator|(APInt a, const APInt &b) {
2068 a |= b;
2069 return a;
2070}
2071
2072inline APInt operator|(const APInt &a, APInt &&b) {
2073 b |= a;
2074 return std::move(b);
2075}
2076
2077inline APInt operator|(APInt a, uint64_t RHS) {
2078 a |= RHS;
2079 return a;
2080}
2081
2082inline APInt operator|(uint64_t LHS, APInt b) {
2083 b |= LHS;
2084 return b;
2085}
2086
2087inline APInt operator^(APInt a, const APInt &b) {
2088 a ^= b;
2089 return a;
2090}
2091
2092inline APInt operator^(const APInt &a, APInt &&b) {
2093 b ^= a;
2094 return std::move(b);
2095}
2096
2097inline APInt operator^(APInt a, uint64_t RHS) {
2098 a ^= RHS;
2099 return a;
2100}
2101
2102inline APInt operator^(uint64_t LHS, APInt b) {
2103 b ^= LHS;
2104 return b;
2105}
2106
2107inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2108 I.print(OS, true);
2109 return OS;
2110}
2111
2112inline APInt operator-(APInt v) {
2113 v.negate();
2114 return v;
2115}
2116
2117inline APInt operator+(APInt a, const APInt &b) {
2118 a += b;
2119 return a;
2120}
2121
2122inline APInt operator+(const APInt &a, APInt &&b) {
2123 b += a;
2124 return std::move(b);
2125}
2126
2127inline APInt operator+(APInt a, uint64_t RHS) {
2128 a += RHS;
2129 return a;
2130}
2131
2132inline APInt operator+(uint64_t LHS, APInt b) {
2133 b += LHS;
2134 return b;
2135}
2136
2137inline APInt operator-(APInt a, const APInt &b) {
2138 a -= b;
2139 return a;
2140}
2141
2142inline APInt operator-(const APInt &a, APInt &&b) {
2143 b.negate();
2144 b += a;
2145 return std::move(b);
2146}
2147
2148inline APInt operator-(APInt a, uint64_t RHS) {
2149 a -= RHS;
2150 return a;
2151}
2152
2153inline APInt operator-(uint64_t LHS, APInt b) {
2154 b.negate();
2155 b += LHS;
2156 return b;
2157}
2158
2159inline APInt operator*(APInt a, uint64_t RHS) {
2160 a *= RHS;
2161 return a;
2162}
2163
2164inline APInt operator*(uint64_t LHS, APInt b) {
2165 b *= LHS;
2166 return b;
2167}
2168
2169
2170namespace APIntOps {
2171
2172/// Determine the smaller of two APInts considered to be signed.
2173inline const APInt &smin(const APInt &A, const APInt &B) {
2174 return A.slt(B) ? A : B;
2175}
2176
2177/// Determine the larger of two APInts considered to be signed.
2178inline const APInt &smax(const APInt &A, const APInt &B) {
2179 return A.sgt(B) ? A : B;
2180}
2181
2182/// Determine the smaller of two APInts considered to be signed.
2183inline const APInt &umin(const APInt &A, const APInt &B) {
2184 return A.ult(B) ? A : B;
2185}
2186
2187/// Determine the larger of two APInts considered to be unsigned.
2188inline const APInt &umax(const APInt &A, const APInt &B) {
2189 return A.ugt(B) ? A : B;
2190}
2191
2192/// Compute GCD of two unsigned APInt values.
2193///
2194/// This function returns the greatest common divisor of the two APInt values
2195/// using Stein's algorithm.
2196///
2197/// \returns the greatest common divisor of A and B.
2198APInt GreatestCommonDivisor(APInt A, APInt B);
2199
2200/// Converts the given APInt to a double value.
2201///
2202/// Treats the APInt as an unsigned value for conversion purposes.
2203inline double RoundAPIntToDouble(const APInt &APIVal) {
2204 return APIVal.roundToDouble();
2205}
2206
2207/// Converts the given APInt to a double value.
2208///
2209/// Treats the APInt as a signed value for conversion purposes.
2210inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2211 return APIVal.signedRoundToDouble();
2212}
2213
2214/// Converts the given APInt to a float vlalue.
2215inline float RoundAPIntToFloat(const APInt &APIVal) {
2216 return float(RoundAPIntToDouble(APIVal));
2217}
2218
2219/// Converts the given APInt to a float value.
2220///
2221/// Treats the APInt as a signed value for conversion purposes.
2222inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2223 return float(APIVal.signedRoundToDouble());
2224}
2225
2226/// Converts the given double value into a APInt.
2227///
2228/// This function convert a double value to an APInt value.
2229APInt RoundDoubleToAPInt(double Double, unsigned width);
2230
2231/// Converts a float value into a APInt.
2232///
2233/// Converts a float value into an APInt value.
2234inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2235 return RoundDoubleToAPInt(double(Float), width);
2236}
2237
2238/// Return A unsign-divided by B, rounded by the given rounding mode.
2239APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2240
2241/// Return A sign-divided by B, rounded by the given rounding mode.
2242APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2243
2244/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2245/// (e.g. 32 for i32).
2246/// This function finds the smallest number n, such that
2247/// (a) n >= 0 and q(n) = 0, or
2248/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2249/// integers, belong to two different intervals [Rk, Rk+R),
2250/// where R = 2^BW, and k is an integer.
2251/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2252/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2253/// subtraction (treated as addition of negated numbers) would always
2254/// count as an overflow, but here we want to allow values to decrease
2255/// and increase as long as they are within the same interval.
2256/// Specifically, adding of two negative numbers should not cause an
2257/// overflow (as long as the magnitude does not exceed the bit width).
2258/// On the other hand, given a positive number, adding a negative
2259/// number to it can give a negative result, which would cause the
2260/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2261/// treated as a special case of an overflow.
2262///
2263/// This function returns None if after finding k that minimizes the
2264/// positive solution to q(n) = kR, both solutions are contained between
2265/// two consecutive integers.
2266///
2267/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2268/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2269/// virtue of *signed* overflow. This function will *not* find such an n,
2270/// however it may find a value of n satisfying the inequalities due to
2271/// an *unsigned* overflow (if the values are treated as unsigned).
2272/// To find a solution for a signed overflow, treat it as a problem of
2273/// finding an unsigned overflow with a range with of BW-1.
2274///
2275/// The returned value may have a different bit width from the input
2276/// coefficients.
2277Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2278 unsigned RangeWidth);
2279
2280/// Compare two values, and if they are different, return the position of the
2281/// most significant bit that is different in the values.
2282Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2283 const APInt &B);
2284
2285} // End of APIntOps namespace
2286
2287// See friend declaration above. This additional declaration is required in
2288// order to compile LLVM with IBM xlC compiler.
2289hash_code hash_value(const APInt &Arg);
2290
2291/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2292/// with the integer held in IntVal.
2293void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2294
2295/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2296/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2297void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2298
2299} // namespace llvm
2300
2301#endif