Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Core.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/lib/ExecutionEngine/Orc -I /build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc -I /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn345461/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn345461/build-llvm/lib/ExecutionEngine/Orc -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-10-27-211344-32123-1 -x c++ /build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp

1//===--- Core.cpp - Core ORC APIs (MaterializationUnit, JITDylib, etc.) ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/ExecutionEngine/Orc/Core.h"
11#include "llvm/Config/llvm-config.h"
12#include "llvm/ExecutionEngine/Orc/OrcError.h"
13#include "llvm/IR/Mangler.h"
14#include "llvm/Support/CommandLine.h"
15#include "llvm/Support/Debug.h"
16#include "llvm/Support/Format.h"
17
18#if LLVM_ENABLE_THREADS1
19#include <future>
20#endif
21
22#define DEBUG_TYPE"orc" "orc"
23
24using namespace llvm;
25
26namespace {
27
28#ifndef NDEBUG
29
30cl::opt<bool> PrintHidden("debug-orc-print-hidden", cl::init(false),
31 cl::desc("debug print hidden symbols defined by "
32 "materialization units"),
33 cl::Hidden);
34
35cl::opt<bool> PrintCallable("debug-orc-print-callable", cl::init(false),
36 cl::desc("debug print callable symbols defined by "
37 "materialization units"),
38 cl::Hidden);
39
40cl::opt<bool> PrintData("debug-orc-print-data", cl::init(false),
41 cl::desc("debug print data symbols defined by "
42 "materialization units"),
43 cl::Hidden);
44
45#endif // NDEBUG
46
47// SetPrinter predicate that prints every element.
48template <typename T> struct PrintAll {
49 bool operator()(const T &E) { return true; }
50};
51
52bool anyPrintSymbolOptionSet() {
53#ifndef NDEBUG
54 return PrintHidden || PrintCallable || PrintData;
55#else
56 return false;
57#endif // NDEBUG
58}
59
60bool flagsMatchCLOpts(const JITSymbolFlags &Flags) {
61#ifndef NDEBUG
62 // Bail out early if this is a hidden symbol and we're not printing hiddens.
63 if (!PrintHidden && !Flags.isExported())
64 return false;
65
66 // Return true if this is callable and we're printing callables.
67 if (PrintCallable && Flags.isCallable())
68 return true;
69
70 // Return true if this is data and we're printing data.
71 if (PrintData && !Flags.isCallable())
72 return true;
73
74 // otherwise return false.
75 return false;
76#else
77 return false;
78#endif // NDEBUG
79}
80
81// Prints a set of items, filtered by an user-supplied predicate.
82template <typename Set, typename Pred = PrintAll<typename Set::value_type>>
83class SetPrinter {
84public:
85 SetPrinter(const Set &S, Pred ShouldPrint = Pred())
86 : S(S), ShouldPrint(std::move(ShouldPrint)) {}
87
88 void printTo(llvm::raw_ostream &OS) const {
89 bool PrintComma = false;
90 OS << "{";
91 for (auto &E : S) {
92 if (ShouldPrint(E)) {
93 if (PrintComma)
94 OS << ',';
95 OS << ' ' << E;
96 PrintComma = true;
97 }
98 }
99 OS << " }";
100 }
101
102private:
103 const Set &S;
104 mutable Pred ShouldPrint;
105};
106
107template <typename Set, typename Pred>
108SetPrinter<Set, Pred> printSet(const Set &S, Pred P = Pred()) {
109 return SetPrinter<Set, Pred>(S, std::move(P));
110}
111
112// Render a SetPrinter by delegating to its printTo method.
113template <typename Set, typename Pred>
114llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
115 const SetPrinter<Set, Pred> &Printer) {
116 Printer.printTo(OS);
117 return OS;
118}
119
120struct PrintSymbolFlagsMapElemsMatchingCLOpts {
121 bool operator()(const orc::SymbolFlagsMap::value_type &KV) {
122 return flagsMatchCLOpts(KV.second);
123 }
124};
125
126struct PrintSymbolMapElemsMatchingCLOpts {
127 bool operator()(const orc::SymbolMap::value_type &KV) {
128 return flagsMatchCLOpts(KV.second.getFlags());
129 }
130};
131
132} // end anonymous namespace
133
134namespace llvm {
135namespace orc {
136
137 SymbolStringPool::PoolMapEntry SymbolStringPtr::Tombstone(0);
138
139char FailedToMaterialize::ID = 0;
140char SymbolsNotFound::ID = 0;
141char SymbolsCouldNotBeRemoved::ID = 0;
142
143RegisterDependenciesFunction NoDependenciesToRegister =
144 RegisterDependenciesFunction();
145
146void MaterializationUnit::anchor() {}
147
148raw_ostream &operator<<(raw_ostream &OS, const SymbolStringPtr &Sym) {
149 return OS << *Sym;
150}
151
152raw_ostream &operator<<(raw_ostream &OS, const SymbolNameSet &Symbols) {
153 return OS << printSet(Symbols, PrintAll<SymbolStringPtr>());
154}
155
156raw_ostream &operator<<(raw_ostream &OS, const JITSymbolFlags &Flags) {
157 if (Flags.isCallable())
158 OS << "[Callable]";
159 else
160 OS << "[Data]";
161 if (Flags.isWeak())
162 OS << "[Weak]";
163 else if (Flags.isCommon())
164 OS << "[Common]";
165
166 if (!Flags.isExported())
167 OS << "[Hidden]";
168
169 return OS;
170}
171
172raw_ostream &operator<<(raw_ostream &OS, const JITEvaluatedSymbol &Sym) {
173 return OS << format("0x%016x", Sym.getAddress()) << " " << Sym.getFlags();
174}
175
176raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap::value_type &KV) {
177 return OS << "(\"" << KV.first << "\", " << KV.second << ")";
178}
179
180raw_ostream &operator<<(raw_ostream &OS, const SymbolMap::value_type &KV) {
181 return OS << "(\"" << KV.first << "\": " << KV.second << ")";
182}
183
184raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap &SymbolFlags) {
185 return OS << printSet(SymbolFlags, PrintSymbolFlagsMapElemsMatchingCLOpts());
186}
187
188raw_ostream &operator<<(raw_ostream &OS, const SymbolMap &Symbols) {
189 return OS << printSet(Symbols, PrintSymbolMapElemsMatchingCLOpts());
190}
191
192raw_ostream &operator<<(raw_ostream &OS,
193 const SymbolDependenceMap::value_type &KV) {
194 return OS << "(" << KV.first << ", " << KV.second << ")";
195}
196
197raw_ostream &operator<<(raw_ostream &OS, const SymbolDependenceMap &Deps) {
198 return OS << printSet(Deps, PrintAll<SymbolDependenceMap::value_type>());
199}
200
201raw_ostream &operator<<(raw_ostream &OS, const MaterializationUnit &MU) {
202 OS << "MU@" << &MU << " (\"" << MU.getName() << "\"";
203 if (anyPrintSymbolOptionSet())
204 OS << ", " << MU.getSymbols();
205 return OS << ")";
206}
207
208raw_ostream &operator<<(raw_ostream &OS, const JITDylibSearchList &JDs) {
209 OS << "[";
210 if (!JDs.empty()) {
211 assert(JDs.front().first && "JITDylibList entries must not be null")((JDs.front().first && "JITDylibList entries must not be null"
) ? static_cast<void> (0) : __assert_fail ("JDs.front().first && \"JITDylibList entries must not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 211, __PRETTY_FUNCTION__))
;
212 OS << " (\"" << JDs.front().first->getName() << "\", "
213 << (JDs.front().second ? "true" : "false") << ")";
214 for (auto &KV : make_range(std::next(JDs.begin()), JDs.end())) {
215 assert(KV.first && "JITDylibList entries must not be null")((KV.first && "JITDylibList entries must not be null"
) ? static_cast<void> (0) : __assert_fail ("KV.first && \"JITDylibList entries must not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 215, __PRETTY_FUNCTION__))
;
216 OS << ", (\"" << KV.first->getName() << "\", "
217 << (KV.second ? "true" : "false") << ")";
218 }
219 }
220 OS << " ]";
221 return OS;
222}
223
224FailedToMaterialize::FailedToMaterialize(SymbolNameSet Symbols)
225 : Symbols(std::move(Symbols)) {
226 assert(!this->Symbols.empty() && "Can not fail to resolve an empty set")((!this->Symbols.empty() && "Can not fail to resolve an empty set"
) ? static_cast<void> (0) : __assert_fail ("!this->Symbols.empty() && \"Can not fail to resolve an empty set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 226, __PRETTY_FUNCTION__))
;
227}
228
229std::error_code FailedToMaterialize::convertToErrorCode() const {
230 return orcError(OrcErrorCode::UnknownORCError);
231}
232
233void FailedToMaterialize::log(raw_ostream &OS) const {
234 OS << "Failed to materialize symbols: " << Symbols;
235}
236
237SymbolsNotFound::SymbolsNotFound(SymbolNameSet Symbols)
238 : Symbols(std::move(Symbols)) {
239 assert(!this->Symbols.empty() && "Can not fail to resolve an empty set")((!this->Symbols.empty() && "Can not fail to resolve an empty set"
) ? static_cast<void> (0) : __assert_fail ("!this->Symbols.empty() && \"Can not fail to resolve an empty set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 239, __PRETTY_FUNCTION__))
;
240}
241
242std::error_code SymbolsNotFound::convertToErrorCode() const {
243 return orcError(OrcErrorCode::UnknownORCError);
244}
245
246void SymbolsNotFound::log(raw_ostream &OS) const {
247 OS << "Symbols not found: " << Symbols;
248}
249
250SymbolsCouldNotBeRemoved::SymbolsCouldNotBeRemoved(SymbolNameSet Symbols)
251 : Symbols(std::move(Symbols)) {
252 assert(!this->Symbols.empty() && "Can not fail to resolve an empty set")((!this->Symbols.empty() && "Can not fail to resolve an empty set"
) ? static_cast<void> (0) : __assert_fail ("!this->Symbols.empty() && \"Can not fail to resolve an empty set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 252, __PRETTY_FUNCTION__))
;
253}
254
255std::error_code SymbolsCouldNotBeRemoved::convertToErrorCode() const {
256 return orcError(OrcErrorCode::UnknownORCError);
257}
258
259void SymbolsCouldNotBeRemoved::log(raw_ostream &OS) const {
260 OS << "Symbols could not be removed: " << Symbols;
261}
262
263AsynchronousSymbolQuery::AsynchronousSymbolQuery(
264 const SymbolNameSet &Symbols, SymbolsResolvedCallback NotifySymbolsResolved,
265 SymbolsReadyCallback NotifySymbolsReady)
266 : NotifySymbolsResolved(std::move(NotifySymbolsResolved)),
267 NotifySymbolsReady(std::move(NotifySymbolsReady)) {
268 NotYetResolvedCount = NotYetReadyCount = Symbols.size();
269
270 for (auto &S : Symbols)
271 ResolvedSymbols[S] = nullptr;
272}
273
274void AsynchronousSymbolQuery::resolve(const SymbolStringPtr &Name,
275 JITEvaluatedSymbol Sym) {
276 auto I = ResolvedSymbols.find(Name);
277 assert(I != ResolvedSymbols.end() &&((I != ResolvedSymbols.end() && "Resolving symbol outside the requested set"
) ? static_cast<void> (0) : __assert_fail ("I != ResolvedSymbols.end() && \"Resolving symbol outside the requested set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 278, __PRETTY_FUNCTION__))
278 "Resolving symbol outside the requested set")((I != ResolvedSymbols.end() && "Resolving symbol outside the requested set"
) ? static_cast<void> (0) : __assert_fail ("I != ResolvedSymbols.end() && \"Resolving symbol outside the requested set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 278, __PRETTY_FUNCTION__))
;
279 assert(I->second.getAddress() == 0 && "Redundantly resolving symbol Name")((I->second.getAddress() == 0 && "Redundantly resolving symbol Name"
) ? static_cast<void> (0) : __assert_fail ("I->second.getAddress() == 0 && \"Redundantly resolving symbol Name\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 279, __PRETTY_FUNCTION__))
;
280 I->second = std::move(Sym);
281 --NotYetResolvedCount;
282}
283
284void AsynchronousSymbolQuery::handleFullyResolved() {
285 assert(NotYetResolvedCount == 0 && "Not fully resolved?")((NotYetResolvedCount == 0 && "Not fully resolved?") ?
static_cast<void> (0) : __assert_fail ("NotYetResolvedCount == 0 && \"Not fully resolved?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 285, __PRETTY_FUNCTION__))
;
286
287 if (!NotifySymbolsResolved) {
288 // handleFullyResolved may be called by handleFullyReady (see comments in
289 // that method), in which case this is a no-op, so bail out.
290 assert(!NotifySymbolsReady &&((!NotifySymbolsReady && "NotifySymbolsResolved already called or an error occurred"
) ? static_cast<void> (0) : __assert_fail ("!NotifySymbolsReady && \"NotifySymbolsResolved already called or an error occurred\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 291, __PRETTY_FUNCTION__))
291 "NotifySymbolsResolved already called or an error occurred")((!NotifySymbolsReady && "NotifySymbolsResolved already called or an error occurred"
) ? static_cast<void> (0) : __assert_fail ("!NotifySymbolsReady && \"NotifySymbolsResolved already called or an error occurred\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 291, __PRETTY_FUNCTION__))
;
292 return;
293 }
294
295 auto TmpNotifySymbolsResolved = std::move(NotifySymbolsResolved);
296 NotifySymbolsResolved = SymbolsResolvedCallback();
297 TmpNotifySymbolsResolved(std::move(ResolvedSymbols));
298}
299
300void AsynchronousSymbolQuery::notifySymbolReady() {
301 assert(NotYetReadyCount != 0 && "All symbols already emitted")((NotYetReadyCount != 0 && "All symbols already emitted"
) ? static_cast<void> (0) : __assert_fail ("NotYetReadyCount != 0 && \"All symbols already emitted\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 301, __PRETTY_FUNCTION__))
;
302 --NotYetReadyCount;
303}
304
305void AsynchronousSymbolQuery::handleFullyReady() {
306 assert(NotifySymbolsReady &&((NotifySymbolsReady && "NotifySymbolsReady already called or an error occurred"
) ? static_cast<void> (0) : __assert_fail ("NotifySymbolsReady && \"NotifySymbolsReady already called or an error occurred\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 307, __PRETTY_FUNCTION__))
307 "NotifySymbolsReady already called or an error occurred")((NotifySymbolsReady && "NotifySymbolsReady already called or an error occurred"
) ? static_cast<void> (0) : __assert_fail ("NotifySymbolsReady && \"NotifySymbolsReady already called or an error occurred\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 307, __PRETTY_FUNCTION__))
;
308
309 auto TmpNotifySymbolsReady = std::move(NotifySymbolsReady);
310 NotifySymbolsReady = SymbolsReadyCallback();
311
312 if (NotYetResolvedCount == 0 && NotifySymbolsResolved) {
313 // The NotifyResolved callback of one query must have caused this query to
314 // become ready (i.e. there is still a handleFullyResolved callback waiting
315 // to be made back up the stack). Fold the handleFullyResolved call into
316 // this one before proceeding. This will cause the call further up the
317 // stack to become a no-op.
318 handleFullyResolved();
319 }
320
321 assert(QueryRegistrations.empty() &&((QueryRegistrations.empty() && "Query is still registered with some symbols"
) ? static_cast<void> (0) : __assert_fail ("QueryRegistrations.empty() && \"Query is still registered with some symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 322, __PRETTY_FUNCTION__))
322 "Query is still registered with some symbols")((QueryRegistrations.empty() && "Query is still registered with some symbols"
) ? static_cast<void> (0) : __assert_fail ("QueryRegistrations.empty() && \"Query is still registered with some symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 322, __PRETTY_FUNCTION__))
;
323 assert(!NotifySymbolsResolved && "Resolution not applied yet")((!NotifySymbolsResolved && "Resolution not applied yet"
) ? static_cast<void> (0) : __assert_fail ("!NotifySymbolsResolved && \"Resolution not applied yet\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 323, __PRETTY_FUNCTION__))
;
324 TmpNotifySymbolsReady(Error::success());
325}
326
327bool AsynchronousSymbolQuery::canStillFail() {
328 return (NotifySymbolsResolved || NotifySymbolsReady);
329}
330
331void AsynchronousSymbolQuery::handleFailed(Error Err) {
332 assert(QueryRegistrations.empty() && ResolvedSymbols.empty() &&((QueryRegistrations.empty() && ResolvedSymbols.empty
() && NotYetResolvedCount == 0 && NotYetReadyCount
== 0 && "Query should already have been abandoned") ?
static_cast<void> (0) : __assert_fail ("QueryRegistrations.empty() && ResolvedSymbols.empty() && NotYetResolvedCount == 0 && NotYetReadyCount == 0 && \"Query should already have been abandoned\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 334, __PRETTY_FUNCTION__))
333 NotYetResolvedCount == 0 && NotYetReadyCount == 0 &&((QueryRegistrations.empty() && ResolvedSymbols.empty
() && NotYetResolvedCount == 0 && NotYetReadyCount
== 0 && "Query should already have been abandoned") ?
static_cast<void> (0) : __assert_fail ("QueryRegistrations.empty() && ResolvedSymbols.empty() && NotYetResolvedCount == 0 && NotYetReadyCount == 0 && \"Query should already have been abandoned\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 334, __PRETTY_FUNCTION__))
334 "Query should already have been abandoned")((QueryRegistrations.empty() && ResolvedSymbols.empty
() && NotYetResolvedCount == 0 && NotYetReadyCount
== 0 && "Query should already have been abandoned") ?
static_cast<void> (0) : __assert_fail ("QueryRegistrations.empty() && ResolvedSymbols.empty() && NotYetResolvedCount == 0 && NotYetReadyCount == 0 && \"Query should already have been abandoned\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 334, __PRETTY_FUNCTION__))
;
335 if (NotifySymbolsResolved) {
336 NotifySymbolsResolved(std::move(Err));
337 NotifySymbolsResolved = SymbolsResolvedCallback();
338 } else {
339 assert(NotifySymbolsReady && "Failed after both callbacks issued?")((NotifySymbolsReady && "Failed after both callbacks issued?"
) ? static_cast<void> (0) : __assert_fail ("NotifySymbolsReady && \"Failed after both callbacks issued?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 339, __PRETTY_FUNCTION__))
;
340 NotifySymbolsReady(std::move(Err));
341 }
342 NotifySymbolsReady = SymbolsReadyCallback();
343}
344
345void AsynchronousSymbolQuery::addQueryDependence(JITDylib &JD,
346 SymbolStringPtr Name) {
347 bool Added = QueryRegistrations[&JD].insert(std::move(Name)).second;
348 (void)Added;
349 assert(Added && "Duplicate dependence notification?")((Added && "Duplicate dependence notification?") ? static_cast
<void> (0) : __assert_fail ("Added && \"Duplicate dependence notification?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 349, __PRETTY_FUNCTION__))
;
350}
351
352void AsynchronousSymbolQuery::removeQueryDependence(
353 JITDylib &JD, const SymbolStringPtr &Name) {
354 auto QRI = QueryRegistrations.find(&JD);
355 assert(QRI != QueryRegistrations.end() &&((QRI != QueryRegistrations.end() && "No dependencies registered for JD"
) ? static_cast<void> (0) : __assert_fail ("QRI != QueryRegistrations.end() && \"No dependencies registered for JD\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 356, __PRETTY_FUNCTION__))
356 "No dependencies registered for JD")((QRI != QueryRegistrations.end() && "No dependencies registered for JD"
) ? static_cast<void> (0) : __assert_fail ("QRI != QueryRegistrations.end() && \"No dependencies registered for JD\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 356, __PRETTY_FUNCTION__))
;
357 assert(QRI->second.count(Name) && "No dependency on Name in JD")((QRI->second.count(Name) && "No dependency on Name in JD"
) ? static_cast<void> (0) : __assert_fail ("QRI->second.count(Name) && \"No dependency on Name in JD\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 357, __PRETTY_FUNCTION__))
;
358 QRI->second.erase(Name);
359 if (QRI->second.empty())
360 QueryRegistrations.erase(QRI);
361}
362
363void AsynchronousSymbolQuery::detach() {
364 ResolvedSymbols.clear();
365 NotYetResolvedCount = 0;
366 NotYetReadyCount = 0;
367 for (auto &KV : QueryRegistrations)
368 KV.first->detachQueryHelper(*this, KV.second);
369 QueryRegistrations.clear();
370}
371
372MaterializationResponsibility::MaterializationResponsibility(
373 JITDylib &JD, SymbolFlagsMap SymbolFlags, VModuleKey K)
374 : JD(JD), SymbolFlags(std::move(SymbolFlags)), K(std::move(K)) {
375 assert(!this->SymbolFlags.empty() && "Materializing nothing?")((!this->SymbolFlags.empty() && "Materializing nothing?"
) ? static_cast<void> (0) : __assert_fail ("!this->SymbolFlags.empty() && \"Materializing nothing?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 375, __PRETTY_FUNCTION__))
;
376
377#ifndef NDEBUG
378 for (auto &KV : this->SymbolFlags)
379 KV.second |= JITSymbolFlags::Materializing;
380#endif
381}
382
383MaterializationResponsibility::~MaterializationResponsibility() {
384 assert(SymbolFlags.empty() &&((SymbolFlags.empty() && "All symbols should have been explicitly materialized or failed"
) ? static_cast<void> (0) : __assert_fail ("SymbolFlags.empty() && \"All symbols should have been explicitly materialized or failed\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 385, __PRETTY_FUNCTION__))
385 "All symbols should have been explicitly materialized or failed")((SymbolFlags.empty() && "All symbols should have been explicitly materialized or failed"
) ? static_cast<void> (0) : __assert_fail ("SymbolFlags.empty() && \"All symbols should have been explicitly materialized or failed\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 385, __PRETTY_FUNCTION__))
;
386}
387
388SymbolNameSet MaterializationResponsibility::getRequestedSymbols() const {
389 return JD.getRequestedSymbols(SymbolFlags);
390}
391
392void MaterializationResponsibility::resolve(const SymbolMap &Symbols) {
393 LLVM_DEBUG(dbgs() << "In " << JD.getName() << " resolving " << Symbolsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { dbgs() << "In " << JD.getName() <<
" resolving " << Symbols << "\n"; } } while (false
)
394 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { dbgs() << "In " << JD.getName() <<
" resolving " << Symbols << "\n"; } } while (false
)
;
395#ifndef NDEBUG
396 for (auto &KV : Symbols) {
397 auto I = SymbolFlags.find(KV.first);
398 assert(I != SymbolFlags.end() &&((I != SymbolFlags.end() && "Resolving symbol outside this responsibility set"
) ? static_cast<void> (0) : __assert_fail ("I != SymbolFlags.end() && \"Resolving symbol outside this responsibility set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 399, __PRETTY_FUNCTION__))
399 "Resolving symbol outside this responsibility set")((I != SymbolFlags.end() && "Resolving symbol outside this responsibility set"
) ? static_cast<void> (0) : __assert_fail ("I != SymbolFlags.end() && \"Resolving symbol outside this responsibility set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 399, __PRETTY_FUNCTION__))
;
400 assert(I->second.isMaterializing() && "Duplicate resolution")((I->second.isMaterializing() && "Duplicate resolution"
) ? static_cast<void> (0) : __assert_fail ("I->second.isMaterializing() && \"Duplicate resolution\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 400, __PRETTY_FUNCTION__))
;
401 I->second &= ~JITSymbolFlags::Materializing;
402 if (I->second.isWeak())
403 assert(I->second == (KV.second.getFlags() | JITSymbolFlags::Weak) &&((I->second == (KV.second.getFlags() | JITSymbolFlags::Weak
) && "Resolving symbol with incorrect flags") ? static_cast
<void> (0) : __assert_fail ("I->second == (KV.second.getFlags() | JITSymbolFlags::Weak) && \"Resolving symbol with incorrect flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 404, __PRETTY_FUNCTION__))
404 "Resolving symbol with incorrect flags")((I->second == (KV.second.getFlags() | JITSymbolFlags::Weak
) && "Resolving symbol with incorrect flags") ? static_cast
<void> (0) : __assert_fail ("I->second == (KV.second.getFlags() | JITSymbolFlags::Weak) && \"Resolving symbol with incorrect flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 404, __PRETTY_FUNCTION__))
;
405 else
406 assert(I->second == KV.second.getFlags() &&((I->second == KV.second.getFlags() && "Resolving symbol with incorrect flags"
) ? static_cast<void> (0) : __assert_fail ("I->second == KV.second.getFlags() && \"Resolving symbol with incorrect flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 407, __PRETTY_FUNCTION__))
407 "Resolving symbol with incorrect flags")((I->second == KV.second.getFlags() && "Resolving symbol with incorrect flags"
) ? static_cast<void> (0) : __assert_fail ("I->second == KV.second.getFlags() && \"Resolving symbol with incorrect flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 407, __PRETTY_FUNCTION__))
;
408 }
409#endif
410
411 JD.resolve(Symbols);
412}
413
414void MaterializationResponsibility::emit() {
415#ifndef NDEBUG
416 for (auto &KV : SymbolFlags)
417 assert(!KV.second.isMaterializing() &&((!KV.second.isMaterializing() && "Failed to resolve symbol before emission"
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isMaterializing() && \"Failed to resolve symbol before emission\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 418, __PRETTY_FUNCTION__))
418 "Failed to resolve symbol before emission")((!KV.second.isMaterializing() && "Failed to resolve symbol before emission"
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isMaterializing() && \"Failed to resolve symbol before emission\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 418, __PRETTY_FUNCTION__))
;
419#endif // NDEBUG
420
421 JD.emit(SymbolFlags);
422 SymbolFlags.clear();
423}
424
425Error MaterializationResponsibility::defineMaterializing(
426 const SymbolFlagsMap &NewSymbolFlags) {
427 // Add the given symbols to this responsibility object.
428 // It's ok if we hit a duplicate here: In that case the new version will be
429 // discarded, and the JITDylib::defineMaterializing method will return a
430 // duplicate symbol error.
431 for (auto &KV : NewSymbolFlags) {
432 auto I = SymbolFlags.insert(KV).first;
433 (void)I;
434#ifndef NDEBUG
435 I->second |= JITSymbolFlags::Materializing;
436#endif
437 }
438
439 return JD.defineMaterializing(NewSymbolFlags);
1
Calling 'JITDylib::defineMaterializing'
440}
441
442void MaterializationResponsibility::failMaterialization() {
443
444 SymbolNameSet FailedSymbols;
445 for (auto &KV : SymbolFlags)
446 FailedSymbols.insert(KV.first);
447
448 JD.notifyFailed(FailedSymbols);
449 SymbolFlags.clear();
450}
451
452void MaterializationResponsibility::replace(
453 std::unique_ptr<MaterializationUnit> MU) {
454 for (auto &KV : MU->getSymbols())
455 SymbolFlags.erase(KV.first);
456
457 LLVM_DEBUG(JD.getExecutionSession().runSessionLocked([&]() {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { JD.getExecutionSession().runSessionLocked([&](
) { dbgs() << "In " << JD.getName() << " replacing symbols with "
<< *MU << "\n"; });; } } while (false)
458 dbgs() << "In " << JD.getName() << " replacing symbols with " << *MUdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { JD.getExecutionSession().runSessionLocked([&](
) { dbgs() << "In " << JD.getName() << " replacing symbols with "
<< *MU << "\n"; });; } } while (false)
459 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { JD.getExecutionSession().runSessionLocked([&](
) { dbgs() << "In " << JD.getName() << " replacing symbols with "
<< *MU << "\n"; });; } } while (false)
460 });)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { JD.getExecutionSession().runSessionLocked([&](
) { dbgs() << "In " << JD.getName() << " replacing symbols with "
<< *MU << "\n"; });; } } while (false)
;
461
462 JD.replace(std::move(MU));
463}
464
465MaterializationResponsibility
466MaterializationResponsibility::delegate(const SymbolNameSet &Symbols,
467 VModuleKey NewKey) {
468
469 if (NewKey == VModuleKey())
470 NewKey = K;
471
472 SymbolFlagsMap DelegatedFlags;
473
474 for (auto &Name : Symbols) {
475 auto I = SymbolFlags.find(Name);
476 assert(I != SymbolFlags.end() &&((I != SymbolFlags.end() && "Symbol is not tracked by this MaterializationResponsibility "
"instance") ? static_cast<void> (0) : __assert_fail ("I != SymbolFlags.end() && \"Symbol is not tracked by this MaterializationResponsibility \" \"instance\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 478, __PRETTY_FUNCTION__))
477 "Symbol is not tracked by this MaterializationResponsibility "((I != SymbolFlags.end() && "Symbol is not tracked by this MaterializationResponsibility "
"instance") ? static_cast<void> (0) : __assert_fail ("I != SymbolFlags.end() && \"Symbol is not tracked by this MaterializationResponsibility \" \"instance\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 478, __PRETTY_FUNCTION__))
478 "instance")((I != SymbolFlags.end() && "Symbol is not tracked by this MaterializationResponsibility "
"instance") ? static_cast<void> (0) : __assert_fail ("I != SymbolFlags.end() && \"Symbol is not tracked by this MaterializationResponsibility \" \"instance\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 478, __PRETTY_FUNCTION__))
;
479
480 DelegatedFlags[Name] = std::move(I->second);
481 SymbolFlags.erase(I);
482 }
483
484 return MaterializationResponsibility(JD, std::move(DelegatedFlags),
485 std::move(NewKey));
486}
487
488void MaterializationResponsibility::addDependencies(
489 const SymbolStringPtr &Name, const SymbolDependenceMap &Dependencies) {
490 assert(SymbolFlags.count(Name) &&((SymbolFlags.count(Name) && "Symbol not covered by this MaterializationResponsibility instance"
) ? static_cast<void> (0) : __assert_fail ("SymbolFlags.count(Name) && \"Symbol not covered by this MaterializationResponsibility instance\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 491, __PRETTY_FUNCTION__))
491 "Symbol not covered by this MaterializationResponsibility instance")((SymbolFlags.count(Name) && "Symbol not covered by this MaterializationResponsibility instance"
) ? static_cast<void> (0) : __assert_fail ("SymbolFlags.count(Name) && \"Symbol not covered by this MaterializationResponsibility instance\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 491, __PRETTY_FUNCTION__))
;
492 JD.addDependencies(Name, Dependencies);
493}
494
495void MaterializationResponsibility::addDependenciesForAll(
496 const SymbolDependenceMap &Dependencies) {
497 for (auto &KV : SymbolFlags)
498 JD.addDependencies(KV.first, Dependencies);
499}
500
501AbsoluteSymbolsMaterializationUnit::AbsoluteSymbolsMaterializationUnit(
502 SymbolMap Symbols, VModuleKey K)
503 : MaterializationUnit(extractFlags(Symbols), std::move(K)),
504 Symbols(std::move(Symbols)) {}
505
506StringRef AbsoluteSymbolsMaterializationUnit::getName() const {
507 return "<Absolute Symbols>";
508}
509
510void AbsoluteSymbolsMaterializationUnit::materialize(
511 MaterializationResponsibility R) {
512 R.resolve(Symbols);
513 R.emit();
514}
515
516void AbsoluteSymbolsMaterializationUnit::discard(const JITDylib &JD,
517 const SymbolStringPtr &Name) {
518 assert(Symbols.count(Name) && "Symbol is not part of this MU")((Symbols.count(Name) && "Symbol is not part of this MU"
) ? static_cast<void> (0) : __assert_fail ("Symbols.count(Name) && \"Symbol is not part of this MU\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 518, __PRETTY_FUNCTION__))
;
519 Symbols.erase(Name);
520}
521
522SymbolFlagsMap
523AbsoluteSymbolsMaterializationUnit::extractFlags(const SymbolMap &Symbols) {
524 SymbolFlagsMap Flags;
525 for (const auto &KV : Symbols)
526 Flags[KV.first] = KV.second.getFlags();
527 return Flags;
528}
529
530ReExportsMaterializationUnit::ReExportsMaterializationUnit(
531 JITDylib *SourceJD, bool MatchNonExported, SymbolAliasMap Aliases,
532 VModuleKey K)
533 : MaterializationUnit(extractFlags(Aliases), std::move(K)),
534 SourceJD(SourceJD), MatchNonExported(MatchNonExported),
535 Aliases(std::move(Aliases)) {}
536
537StringRef ReExportsMaterializationUnit::getName() const {
538 return "<Reexports>";
539}
540
541void ReExportsMaterializationUnit::materialize(
542 MaterializationResponsibility R) {
543
544 auto &ES = R.getTargetJITDylib().getExecutionSession();
545 JITDylib &TgtJD = R.getTargetJITDylib();
546 JITDylib &SrcJD = SourceJD ? *SourceJD : TgtJD;
547
548 // Find the set of requested aliases and aliasees. Return any unrequested
549 // aliases back to the JITDylib so as to not prematurely materialize any
550 // aliasees.
551 auto RequestedSymbols = R.getRequestedSymbols();
552 SymbolAliasMap RequestedAliases;
553
554 for (auto &Name : RequestedSymbols) {
555 auto I = Aliases.find(Name);
556 assert(I != Aliases.end() && "Symbol not found in aliases map?")((I != Aliases.end() && "Symbol not found in aliases map?"
) ? static_cast<void> (0) : __assert_fail ("I != Aliases.end() && \"Symbol not found in aliases map?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 556, __PRETTY_FUNCTION__))
;
557 RequestedAliases[Name] = std::move(I->second);
558 Aliases.erase(I);
559 }
560
561 if (!Aliases.empty()) {
562 if (SourceJD)
563 R.replace(reexports(*SourceJD, std::move(Aliases), MatchNonExported));
564 else
565 R.replace(symbolAliases(std::move(Aliases)));
566 }
567
568 // The OnResolveInfo struct will hold the aliases and responsibilty for each
569 // query in the list.
570 struct OnResolveInfo {
571 OnResolveInfo(MaterializationResponsibility R, SymbolAliasMap Aliases)
572 : R(std::move(R)), Aliases(std::move(Aliases)) {}
573
574 MaterializationResponsibility R;
575 SymbolAliasMap Aliases;
576 };
577
578 // Build a list of queries to issue. In each round we build the largest set of
579 // aliases that we can resolve without encountering a chain definition of the
580 // form Foo -> Bar, Bar -> Baz. Such a form would deadlock as the query would
581 // be waitin on a symbol that it itself had to resolve. Usually this will just
582 // involve one round and a single query.
583
584 std::vector<std::pair<SymbolNameSet, std::shared_ptr<OnResolveInfo>>>
585 QueryInfos;
586 while (!RequestedAliases.empty()) {
587 SymbolNameSet ResponsibilitySymbols;
588 SymbolNameSet QuerySymbols;
589 SymbolAliasMap QueryAliases;
590
591 // Collect as many aliases as we can without including a chain.
592 for (auto &KV : RequestedAliases) {
593 // Chain detected. Skip this symbol for this round.
594 if (&SrcJD == &TgtJD && (QueryAliases.count(KV.second.Aliasee) ||
595 RequestedAliases.count(KV.second.Aliasee)))
596 continue;
597
598 ResponsibilitySymbols.insert(KV.first);
599 QuerySymbols.insert(KV.second.Aliasee);
600 QueryAliases[KV.first] = std::move(KV.second);
601 }
602
603 // Remove the aliases collected this round from the RequestedAliases map.
604 for (auto &KV : QueryAliases)
605 RequestedAliases.erase(KV.first);
606
607 assert(!QuerySymbols.empty() && "Alias cycle detected!")((!QuerySymbols.empty() && "Alias cycle detected!") ?
static_cast<void> (0) : __assert_fail ("!QuerySymbols.empty() && \"Alias cycle detected!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 607, __PRETTY_FUNCTION__))
;
608
609 auto QueryInfo = std::make_shared<OnResolveInfo>(
610 R.delegate(ResponsibilitySymbols), std::move(QueryAliases));
611 QueryInfos.push_back(
612 make_pair(std::move(QuerySymbols), std::move(QueryInfo)));
613 }
614
615 // Issue the queries.
616 while (!QueryInfos.empty()) {
617 auto QuerySymbols = std::move(QueryInfos.back().first);
618 auto QueryInfo = std::move(QueryInfos.back().second);
619
620 QueryInfos.pop_back();
621
622 auto RegisterDependencies = [QueryInfo,
623 &SrcJD](const SymbolDependenceMap &Deps) {
624 // If there were no materializing symbols, just bail out.
625 if (Deps.empty())
626 return;
627
628 // Otherwise the only deps should be on SrcJD.
629 assert(Deps.size() == 1 && Deps.count(&SrcJD) &&((Deps.size() == 1 && Deps.count(&SrcJD) &&
"Unexpected dependencies for reexports") ? static_cast<void
> (0) : __assert_fail ("Deps.size() == 1 && Deps.count(&SrcJD) && \"Unexpected dependencies for reexports\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 630, __PRETTY_FUNCTION__))
630 "Unexpected dependencies for reexports")((Deps.size() == 1 && Deps.count(&SrcJD) &&
"Unexpected dependencies for reexports") ? static_cast<void
> (0) : __assert_fail ("Deps.size() == 1 && Deps.count(&SrcJD) && \"Unexpected dependencies for reexports\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 630, __PRETTY_FUNCTION__))
;
631
632 auto &SrcJDDeps = Deps.find(&SrcJD)->second;
633 SymbolDependenceMap PerAliasDepsMap;
634 auto &PerAliasDeps = PerAliasDepsMap[&SrcJD];
635
636 for (auto &KV : QueryInfo->Aliases)
637 if (SrcJDDeps.count(KV.second.Aliasee)) {
638 PerAliasDeps = {KV.second.Aliasee};
639 QueryInfo->R.addDependencies(KV.first, PerAliasDepsMap);
640 }
641 };
642
643 auto OnResolve = [QueryInfo](Expected<SymbolMap> Result) {
644 if (Result) {
645 SymbolMap ResolutionMap;
646 for (auto &KV : QueryInfo->Aliases) {
647 assert(Result->count(KV.second.Aliasee) &&((Result->count(KV.second.Aliasee) && "Result map missing entry?"
) ? static_cast<void> (0) : __assert_fail ("Result->count(KV.second.Aliasee) && \"Result map missing entry?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 648, __PRETTY_FUNCTION__))
648 "Result map missing entry?")((Result->count(KV.second.Aliasee) && "Result map missing entry?"
) ? static_cast<void> (0) : __assert_fail ("Result->count(KV.second.Aliasee) && \"Result map missing entry?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 648, __PRETTY_FUNCTION__))
;
649 ResolutionMap[KV.first] = JITEvaluatedSymbol(
650 (*Result)[KV.second.Aliasee].getAddress(), KV.second.AliasFlags);
651 }
652 QueryInfo->R.resolve(ResolutionMap);
653 QueryInfo->R.emit();
654 } else {
655 auto &ES = QueryInfo->R.getTargetJITDylib().getExecutionSession();
656 ES.reportError(Result.takeError());
657 QueryInfo->R.failMaterialization();
658 }
659 };
660
661 auto OnReady = [&ES](Error Err) { ES.reportError(std::move(Err)); };
662
663 ES.lookup(JITDylibSearchList({{&SrcJD, MatchNonExported}}), QuerySymbols,
664 std::move(OnResolve), std::move(OnReady),
665 std::move(RegisterDependencies));
666 }
667}
668
669void ReExportsMaterializationUnit::discard(const JITDylib &JD,
670 const SymbolStringPtr &Name) {
671 assert(Aliases.count(Name) &&((Aliases.count(Name) && "Symbol not covered by this MaterializationUnit"
) ? static_cast<void> (0) : __assert_fail ("Aliases.count(Name) && \"Symbol not covered by this MaterializationUnit\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 672, __PRETTY_FUNCTION__))
672 "Symbol not covered by this MaterializationUnit")((Aliases.count(Name) && "Symbol not covered by this MaterializationUnit"
) ? static_cast<void> (0) : __assert_fail ("Aliases.count(Name) && \"Symbol not covered by this MaterializationUnit\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 672, __PRETTY_FUNCTION__))
;
673 Aliases.erase(Name);
674}
675
676SymbolFlagsMap
677ReExportsMaterializationUnit::extractFlags(const SymbolAliasMap &Aliases) {
678 SymbolFlagsMap SymbolFlags;
679 for (auto &KV : Aliases)
680 SymbolFlags[KV.first] = KV.second.AliasFlags;
681
682 return SymbolFlags;
683}
684
685Expected<SymbolAliasMap>
686buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols) {
687 auto Flags = SourceJD.lookupFlags(Symbols);
688
689 if (Flags.size() != Symbols.size()) {
690 SymbolNameSet Unresolved = Symbols;
691 for (auto &KV : Flags)
692 Unresolved.erase(KV.first);
693 return make_error<SymbolsNotFound>(std::move(Unresolved));
694 }
695
696 SymbolAliasMap Result;
697 for (auto &Name : Symbols) {
698 assert(Flags.count(Name) && "Missing entry in flags map")((Flags.count(Name) && "Missing entry in flags map") ?
static_cast<void> (0) : __assert_fail ("Flags.count(Name) && \"Missing entry in flags map\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 698, __PRETTY_FUNCTION__))
;
699 Result[Name] = SymbolAliasMapEntry(Name, Flags[Name]);
700 }
701
702 return Result;
703}
704
705ReexportsGenerator::ReexportsGenerator(JITDylib &SourceJD,
706 bool MatchNonExported,
707 SymbolPredicate Allow)
708 : SourceJD(SourceJD), MatchNonExported(MatchNonExported),
709 Allow(std::move(Allow)) {}
710
711SymbolNameSet ReexportsGenerator::operator()(JITDylib &JD,
712 const SymbolNameSet &Names) {
713 orc::SymbolNameSet Added;
714 orc::SymbolAliasMap AliasMap;
715
716 auto Flags = SourceJD.lookupFlags(Names);
717
718 for (auto &KV : Flags) {
719 if (Allow && !Allow(KV.first))
720 continue;
721 AliasMap[KV.first] = SymbolAliasMapEntry(KV.first, KV.second);
722 Added.insert(KV.first);
723 }
724
725 if (!Added.empty())
726 cantFail(JD.define(reexports(SourceJD, AliasMap, MatchNonExported)));
727
728 return Added;
729}
730
731Error JITDylib::defineMaterializing(const SymbolFlagsMap &SymbolFlags) {
732 return ES.runSessionLocked([&]() -> Error {
2
Calling 'ExecutionSession::runSessionLocked'
733 std::vector<SymbolMap::iterator> AddedSyms;
734
735 for (auto &KV : SymbolFlags) {
736 SymbolMap::iterator EntryItr;
737 bool Added;
738
739 auto NewFlags = KV.second;
740 NewFlags |= JITSymbolFlags::Materializing;
741
742 std::tie(EntryItr, Added) = Symbols.insert(
743 std::make_pair(KV.first, JITEvaluatedSymbol(0, NewFlags)));
744
745 if (Added)
4
Assuming 'Added' is 0
5
Taking false branch
746 AddedSyms.push_back(EntryItr);
747 else {
748 // Remove any symbols already added.
749 for (auto &SI : AddedSyms)
750 Symbols.erase(SI);
751
752 // FIXME: Return all duplicates.
753 return make_error<DuplicateDefinition>(*KV.first);
6
Calling 'make_error<llvm::orc::DuplicateDefinition, llvm::StringRef>'
754 }
755 }
756
757 return Error::success();
758 });
759}
760
761void JITDylib::replace(std::unique_ptr<MaterializationUnit> MU) {
762 assert(MU != nullptr && "Can not replace with a null MaterializationUnit")((MU != nullptr && "Can not replace with a null MaterializationUnit"
) ? static_cast<void> (0) : __assert_fail ("MU != nullptr && \"Can not replace with a null MaterializationUnit\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 762, __PRETTY_FUNCTION__))
;
763
764 auto MustRunMU =
765 ES.runSessionLocked([&, this]() -> std::unique_ptr<MaterializationUnit> {
766
767#ifndef NDEBUG
768 for (auto &KV : MU->getSymbols()) {
769 auto SymI = Symbols.find(KV.first);
770 assert(SymI != Symbols.end() && "Replacing unknown symbol")((SymI != Symbols.end() && "Replacing unknown symbol"
) ? static_cast<void> (0) : __assert_fail ("SymI != Symbols.end() && \"Replacing unknown symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 770, __PRETTY_FUNCTION__))
;
771 assert(!SymI->second.getFlags().isLazy() &&((!SymI->second.getFlags().isLazy() && SymI->second
.getFlags().isMaterializing() && "Can not replace symbol that is not materializing"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isLazy() && SymI->second.getFlags().isMaterializing() && \"Can not replace symbol that is not materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 773, __PRETTY_FUNCTION__))
772 SymI->second.getFlags().isMaterializing() &&((!SymI->second.getFlags().isLazy() && SymI->second
.getFlags().isMaterializing() && "Can not replace symbol that is not materializing"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isLazy() && SymI->second.getFlags().isMaterializing() && \"Can not replace symbol that is not materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 773, __PRETTY_FUNCTION__))
773 "Can not replace symbol that is not materializing")((!SymI->second.getFlags().isLazy() && SymI->second
.getFlags().isMaterializing() && "Can not replace symbol that is not materializing"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isLazy() && SymI->second.getFlags().isMaterializing() && \"Can not replace symbol that is not materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 773, __PRETTY_FUNCTION__))
;
774 assert(UnmaterializedInfos.count(KV.first) == 0 &&((UnmaterializedInfos.count(KV.first) == 0 && "Symbol being replaced should have no UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UnmaterializedInfos.count(KV.first) == 0 && \"Symbol being replaced should have no UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 775, __PRETTY_FUNCTION__))
775 "Symbol being replaced should have no UnmaterializedInfo")((UnmaterializedInfos.count(KV.first) == 0 && "Symbol being replaced should have no UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UnmaterializedInfos.count(KV.first) == 0 && \"Symbol being replaced should have no UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 775, __PRETTY_FUNCTION__))
;
776 }
777#endif // NDEBUG
778
779 // If any symbol has pending queries against it then we need to
780 // materialize MU immediately.
781 for (auto &KV : MU->getSymbols()) {
782 auto MII = MaterializingInfos.find(KV.first);
783 if (MII != MaterializingInfos.end()) {
784 if (!MII->second.PendingQueries.empty())
785 return std::move(MU);
786 }
787 }
788
789 // Otherwise, make MU responsible for all the symbols.
790 auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU));
791 for (auto &KV : UMI->MU->getSymbols()) {
792 assert(!KV.second.isLazy() &&((!KV.second.isLazy() && "Lazy flag should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isLazy() && \"Lazy flag should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 793, __PRETTY_FUNCTION__))
793 "Lazy flag should be managed internally.")((!KV.second.isLazy() && "Lazy flag should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isLazy() && \"Lazy flag should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 793, __PRETTY_FUNCTION__))
;
794 assert(!KV.second.isMaterializing() &&((!KV.second.isMaterializing() && "Materializing flags should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isMaterializing() && \"Materializing flags should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 795, __PRETTY_FUNCTION__))
795 "Materializing flags should be managed internally.")((!KV.second.isMaterializing() && "Materializing flags should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isMaterializing() && \"Materializing flags should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 795, __PRETTY_FUNCTION__))
;
796
797 auto SymI = Symbols.find(KV.first);
798 JITSymbolFlags ReplaceFlags = KV.second;
799 ReplaceFlags |= JITSymbolFlags::Lazy;
800 SymI->second = JITEvaluatedSymbol(SymI->second.getAddress(),
801 std::move(ReplaceFlags));
802 UnmaterializedInfos[KV.first] = UMI;
803 }
804
805 return nullptr;
806 });
807
808 if (MustRunMU)
809 ES.dispatchMaterialization(*this, std::move(MustRunMU));
810}
811
812SymbolNameSet
813JITDylib::getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const {
814 return ES.runSessionLocked([&]() {
815 SymbolNameSet RequestedSymbols;
816
817 for (auto &KV : SymbolFlags) {
818 assert(Symbols.count(KV.first) && "JITDylib does not cover this symbol?")((Symbols.count(KV.first) && "JITDylib does not cover this symbol?"
) ? static_cast<void> (0) : __assert_fail ("Symbols.count(KV.first) && \"JITDylib does not cover this symbol?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 818, __PRETTY_FUNCTION__))
;
819 assert(Symbols.find(KV.first)->second.getFlags().isMaterializing() &&((Symbols.find(KV.first)->second.getFlags().isMaterializing
() && "getRequestedSymbols can only be called for materializing "
"symbols") ? static_cast<void> (0) : __assert_fail ("Symbols.find(KV.first)->second.getFlags().isMaterializing() && \"getRequestedSymbols can only be called for materializing \" \"symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 821, __PRETTY_FUNCTION__))
820 "getRequestedSymbols can only be called for materializing "((Symbols.find(KV.first)->second.getFlags().isMaterializing
() && "getRequestedSymbols can only be called for materializing "
"symbols") ? static_cast<void> (0) : __assert_fail ("Symbols.find(KV.first)->second.getFlags().isMaterializing() && \"getRequestedSymbols can only be called for materializing \" \"symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 821, __PRETTY_FUNCTION__))
821 "symbols")((Symbols.find(KV.first)->second.getFlags().isMaterializing
() && "getRequestedSymbols can only be called for materializing "
"symbols") ? static_cast<void> (0) : __assert_fail ("Symbols.find(KV.first)->second.getFlags().isMaterializing() && \"getRequestedSymbols can only be called for materializing \" \"symbols\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 821, __PRETTY_FUNCTION__))
;
822 auto I = MaterializingInfos.find(KV.first);
823 if (I == MaterializingInfos.end())
824 continue;
825
826 if (!I->second.PendingQueries.empty())
827 RequestedSymbols.insert(KV.first);
828 }
829
830 return RequestedSymbols;
831 });
832}
833
834void JITDylib::addDependencies(const SymbolStringPtr &Name,
835 const SymbolDependenceMap &Dependencies) {
836 assert(Symbols.count(Name) && "Name not in symbol table")((Symbols.count(Name) && "Name not in symbol table") ?
static_cast<void> (0) : __assert_fail ("Symbols.count(Name) && \"Name not in symbol table\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 836, __PRETTY_FUNCTION__))
;
837 assert((Symbols[Name].getFlags().isLazy() ||(((Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags
().isMaterializing()) && "Symbol is not lazy or materializing"
) ? static_cast<void> (0) : __assert_fail ("(Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags().isMaterializing()) && \"Symbol is not lazy or materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 839, __PRETTY_FUNCTION__))
838 Symbols[Name].getFlags().isMaterializing()) &&(((Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags
().isMaterializing()) && "Symbol is not lazy or materializing"
) ? static_cast<void> (0) : __assert_fail ("(Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags().isMaterializing()) && \"Symbol is not lazy or materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 839, __PRETTY_FUNCTION__))
839 "Symbol is not lazy or materializing")(((Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags
().isMaterializing()) && "Symbol is not lazy or materializing"
) ? static_cast<void> (0) : __assert_fail ("(Symbols[Name].getFlags().isLazy() || Symbols[Name].getFlags().isMaterializing()) && \"Symbol is not lazy or materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 839, __PRETTY_FUNCTION__))
;
840
841 auto &MI = MaterializingInfos[Name];
842 assert(!MI.IsEmitted && "Can not add dependencies to an emitted symbol")((!MI.IsEmitted && "Can not add dependencies to an emitted symbol"
) ? static_cast<void> (0) : __assert_fail ("!MI.IsEmitted && \"Can not add dependencies to an emitted symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 842, __PRETTY_FUNCTION__))
;
843
844 for (auto &KV : Dependencies) {
845 assert(KV.first && "Null JITDylib in dependency?")((KV.first && "Null JITDylib in dependency?") ? static_cast
<void> (0) : __assert_fail ("KV.first && \"Null JITDylib in dependency?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 845, __PRETTY_FUNCTION__))
;
846 auto &OtherJITDylib = *KV.first;
847 auto &DepsOnOtherJITDylib = MI.UnemittedDependencies[&OtherJITDylib];
848
849 for (auto &OtherSymbol : KV.second) {
850#ifndef NDEBUG
851 // Assert that this symbol exists and has not been emitted already.
852 auto SymI = OtherJITDylib.Symbols.find(OtherSymbol);
853 assert(SymI != OtherJITDylib.Symbols.end() &&((SymI != OtherJITDylib.Symbols.end() && (SymI->second
.getFlags().isLazy() || SymI->second.getFlags().isMaterializing
()) && "Dependency on emitted symbol") ? static_cast<
void> (0) : __assert_fail ("SymI != OtherJITDylib.Symbols.end() && (SymI->second.getFlags().isLazy() || SymI->second.getFlags().isMaterializing()) && \"Dependency on emitted symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 856, __PRETTY_FUNCTION__))
854 (SymI->second.getFlags().isLazy() ||((SymI != OtherJITDylib.Symbols.end() && (SymI->second
.getFlags().isLazy() || SymI->second.getFlags().isMaterializing
()) && "Dependency on emitted symbol") ? static_cast<
void> (0) : __assert_fail ("SymI != OtherJITDylib.Symbols.end() && (SymI->second.getFlags().isLazy() || SymI->second.getFlags().isMaterializing()) && \"Dependency on emitted symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 856, __PRETTY_FUNCTION__))
855 SymI->second.getFlags().isMaterializing()) &&((SymI != OtherJITDylib.Symbols.end() && (SymI->second
.getFlags().isLazy() || SymI->second.getFlags().isMaterializing
()) && "Dependency on emitted symbol") ? static_cast<
void> (0) : __assert_fail ("SymI != OtherJITDylib.Symbols.end() && (SymI->second.getFlags().isLazy() || SymI->second.getFlags().isMaterializing()) && \"Dependency on emitted symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 856, __PRETTY_FUNCTION__))
856 "Dependency on emitted symbol")((SymI != OtherJITDylib.Symbols.end() && (SymI->second
.getFlags().isLazy() || SymI->second.getFlags().isMaterializing
()) && "Dependency on emitted symbol") ? static_cast<
void> (0) : __assert_fail ("SymI != OtherJITDylib.Symbols.end() && (SymI->second.getFlags().isLazy() || SymI->second.getFlags().isMaterializing()) && \"Dependency on emitted symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 856, __PRETTY_FUNCTION__))
;
857#endif
858
859 auto &OtherMI = OtherJITDylib.MaterializingInfos[OtherSymbol];
860
861 if (OtherMI.IsEmitted)
862 transferEmittedNodeDependencies(MI, Name, OtherMI);
863 else if (&OtherJITDylib != this || OtherSymbol != Name) {
864 OtherMI.Dependants[this].insert(Name);
865 DepsOnOtherJITDylib.insert(OtherSymbol);
866 }
867 }
868
869 if (DepsOnOtherJITDylib.empty())
870 MI.UnemittedDependencies.erase(&OtherJITDylib);
871 }
872}
873
874void JITDylib::resolve(const SymbolMap &Resolved) {
875 auto FullyResolvedQueries = ES.runSessionLocked([&, this]() {
876 AsynchronousSymbolQuerySet FullyResolvedQueries;
877 for (const auto &KV : Resolved) {
878 auto &Name = KV.first;
879 auto Sym = KV.second;
880
881 assert(!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing() &&((!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing
() && "Materializing flags should be managed internally"
) ? static_cast<void> (0) : __assert_fail ("!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing() && \"Materializing flags should be managed internally\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 882, __PRETTY_FUNCTION__))
882 "Materializing flags should be managed internally")((!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing
() && "Materializing flags should be managed internally"
) ? static_cast<void> (0) : __assert_fail ("!Sym.getFlags().isLazy() && !Sym.getFlags().isMaterializing() && \"Materializing flags should be managed internally\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 882, __PRETTY_FUNCTION__))
;
883
884 auto I = Symbols.find(Name);
885
886 assert(I != Symbols.end() && "Symbol not found")((I != Symbols.end() && "Symbol not found") ? static_cast
<void> (0) : __assert_fail ("I != Symbols.end() && \"Symbol not found\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 886, __PRETTY_FUNCTION__))
;
887 assert(!I->second.getFlags().isLazy() &&((!I->second.getFlags().isLazy() && I->second.getFlags
().isMaterializing() && "Symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("!I->second.getFlags().isLazy() && I->second.getFlags().isMaterializing() && \"Symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 889, __PRETTY_FUNCTION__))
888 I->second.getFlags().isMaterializing() &&((!I->second.getFlags().isLazy() && I->second.getFlags
().isMaterializing() && "Symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("!I->second.getFlags().isLazy() && I->second.getFlags().isMaterializing() && \"Symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 889, __PRETTY_FUNCTION__))
889 "Symbol should be materializing")((!I->second.getFlags().isLazy() && I->second.getFlags
().isMaterializing() && "Symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("!I->second.getFlags().isLazy() && I->second.getFlags().isMaterializing() && \"Symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 889, __PRETTY_FUNCTION__))
;
890 assert(I->second.getAddress() == 0 && "Symbol has already been resolved")((I->second.getAddress() == 0 && "Symbol has already been resolved"
) ? static_cast<void> (0) : __assert_fail ("I->second.getAddress() == 0 && \"Symbol has already been resolved\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 890, __PRETTY_FUNCTION__))
;
891
892 assert((Sym.getFlags() & ~JITSymbolFlags::Weak) ==(((Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags
::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags
::Weak) && "Resolved flags should match the declared flags"
) ? static_cast<void> (0) : __assert_fail ("(Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags::Weak) && \"Resolved flags should match the declared flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 895, __PRETTY_FUNCTION__))
893 (JITSymbolFlags::stripTransientFlags(I->second.getFlags()) &(((Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags
::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags
::Weak) && "Resolved flags should match the declared flags"
) ? static_cast<void> (0) : __assert_fail ("(Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags::Weak) && \"Resolved flags should match the declared flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 895, __PRETTY_FUNCTION__))
894 ~JITSymbolFlags::Weak) &&(((Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags
::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags
::Weak) && "Resolved flags should match the declared flags"
) ? static_cast<void> (0) : __assert_fail ("(Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags::Weak) && \"Resolved flags should match the declared flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 895, __PRETTY_FUNCTION__))
895 "Resolved flags should match the declared flags")(((Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags
::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags
::Weak) && "Resolved flags should match the declared flags"
) ? static_cast<void> (0) : __assert_fail ("(Sym.getFlags() & ~JITSymbolFlags::Weak) == (JITSymbolFlags::stripTransientFlags(I->second.getFlags()) & ~JITSymbolFlags::Weak) && \"Resolved flags should match the declared flags\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 895, __PRETTY_FUNCTION__))
;
896
897 // Once resolved, symbols can never be weak.
898 JITSymbolFlags ResolvedFlags = Sym.getFlags();
899 ResolvedFlags &= ~JITSymbolFlags::Weak;
900 ResolvedFlags |= JITSymbolFlags::Materializing;
901 I->second = JITEvaluatedSymbol(Sym.getAddress(), ResolvedFlags);
902
903 auto &MI = MaterializingInfos[Name];
904 for (auto &Q : MI.PendingQueries) {
905 Q->resolve(Name, Sym);
906 if (Q->isFullyResolved())
907 FullyResolvedQueries.insert(Q);
908 }
909 }
910
911 return FullyResolvedQueries;
912 });
913
914 for (auto &Q : FullyResolvedQueries) {
915 assert(Q->isFullyResolved() && "Q not fully resolved")((Q->isFullyResolved() && "Q not fully resolved") ?
static_cast<void> (0) : __assert_fail ("Q->isFullyResolved() && \"Q not fully resolved\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 915, __PRETTY_FUNCTION__))
;
916 Q->handleFullyResolved();
917 }
918}
919
920void JITDylib::emit(const SymbolFlagsMap &Emitted) {
921 auto FullyReadyQueries = ES.runSessionLocked([&, this]() {
922 AsynchronousSymbolQuerySet ReadyQueries;
923
924 for (const auto &KV : Emitted) {
925 const auto &Name = KV.first;
926
927 auto MII = MaterializingInfos.find(Name);
928 assert(MII != MaterializingInfos.end() &&((MII != MaterializingInfos.end() && "Missing MaterializingInfo entry"
) ? static_cast<void> (0) : __assert_fail ("MII != MaterializingInfos.end() && \"Missing MaterializingInfo entry\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 929, __PRETTY_FUNCTION__))
929 "Missing MaterializingInfo entry")((MII != MaterializingInfos.end() && "Missing MaterializingInfo entry"
) ? static_cast<void> (0) : __assert_fail ("MII != MaterializingInfos.end() && \"Missing MaterializingInfo entry\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 929, __PRETTY_FUNCTION__))
;
930
931 auto &MI = MII->second;
932
933 // For each dependant, transfer this node's emitted dependencies to
934 // it. If the dependant node is ready (i.e. has no unemitted
935 // dependencies) then notify any pending queries.
936 for (auto &KV : MI.Dependants) {
937 auto &DependantJD = *KV.first;
938 for (auto &DependantName : KV.second) {
939 auto DependantMII =
940 DependantJD.MaterializingInfos.find(DependantName);
941 assert(DependantMII != DependantJD.MaterializingInfos.end() &&((DependantMII != DependantJD.MaterializingInfos.end() &&
"Dependant should have MaterializingInfo") ? static_cast<
void> (0) : __assert_fail ("DependantMII != DependantJD.MaterializingInfos.end() && \"Dependant should have MaterializingInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 942, __PRETTY_FUNCTION__))
942 "Dependant should have MaterializingInfo")((DependantMII != DependantJD.MaterializingInfos.end() &&
"Dependant should have MaterializingInfo") ? static_cast<
void> (0) : __assert_fail ("DependantMII != DependantJD.MaterializingInfos.end() && \"Dependant should have MaterializingInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 942, __PRETTY_FUNCTION__))
;
943
944 auto &DependantMI = DependantMII->second;
945
946 // Remove the dependant's dependency on this node.
947 assert(DependantMI.UnemittedDependencies[this].count(Name) &&((DependantMI.UnemittedDependencies[this].count(Name) &&
"Dependant does not count this symbol as a dependency?") ? static_cast
<void> (0) : __assert_fail ("DependantMI.UnemittedDependencies[this].count(Name) && \"Dependant does not count this symbol as a dependency?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 948, __PRETTY_FUNCTION__))
948 "Dependant does not count this symbol as a dependency?")((DependantMI.UnemittedDependencies[this].count(Name) &&
"Dependant does not count this symbol as a dependency?") ? static_cast
<void> (0) : __assert_fail ("DependantMI.UnemittedDependencies[this].count(Name) && \"Dependant does not count this symbol as a dependency?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 948, __PRETTY_FUNCTION__))
;
949 DependantMI.UnemittedDependencies[this].erase(Name);
950 if (DependantMI.UnemittedDependencies[this].empty())
951 DependantMI.UnemittedDependencies.erase(this);
952
953 // Transfer unemitted dependencies from this node to the dependant.
954 DependantJD.transferEmittedNodeDependencies(DependantMI,
955 DependantName, MI);
956
957 // If the dependant is emitted and this node was the last of its
958 // unemitted dependencies then the dependant node is now ready, so
959 // notify any pending queries on the dependant node.
960 if (DependantMI.IsEmitted &&
961 DependantMI.UnemittedDependencies.empty()) {
962 assert(DependantMI.Dependants.empty() &&((DependantMI.Dependants.empty() && "Dependants should be empty by now"
) ? static_cast<void> (0) : __assert_fail ("DependantMI.Dependants.empty() && \"Dependants should be empty by now\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 963, __PRETTY_FUNCTION__))
963 "Dependants should be empty by now")((DependantMI.Dependants.empty() && "Dependants should be empty by now"
) ? static_cast<void> (0) : __assert_fail ("DependantMI.Dependants.empty() && \"Dependants should be empty by now\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 963, __PRETTY_FUNCTION__))
;
964 for (auto &Q : DependantMI.PendingQueries) {
965 Q->notifySymbolReady();
966 if (Q->isFullyReady())
967 ReadyQueries.insert(Q);
968 Q->removeQueryDependence(DependantJD, DependantName);
969 }
970
971 // Since this dependant is now ready, we erase its MaterializingInfo
972 // and update its materializing state.
973 assert(DependantJD.Symbols.count(DependantName) &&((DependantJD.Symbols.count(DependantName) && "Dependant has no entry in the Symbols table"
) ? static_cast<void> (0) : __assert_fail ("DependantJD.Symbols.count(DependantName) && \"Dependant has no entry in the Symbols table\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 974, __PRETTY_FUNCTION__))
974 "Dependant has no entry in the Symbols table")((DependantJD.Symbols.count(DependantName) && "Dependant has no entry in the Symbols table"
) ? static_cast<void> (0) : __assert_fail ("DependantJD.Symbols.count(DependantName) && \"Dependant has no entry in the Symbols table\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 974, __PRETTY_FUNCTION__))
;
975 auto &DependantSym = DependantJD.Symbols[DependantName];
976 DependantSym.setFlags(DependantSym.getFlags() &
977 ~JITSymbolFlags::Materializing);
978 DependantJD.MaterializingInfos.erase(DependantMII);
979 }
980 }
981 }
982 MI.Dependants.clear();
983 MI.IsEmitted = true;
984
985 if (MI.UnemittedDependencies.empty()) {
986 for (auto &Q : MI.PendingQueries) {
987 Q->notifySymbolReady();
988 if (Q->isFullyReady())
989 ReadyQueries.insert(Q);
990 Q->removeQueryDependence(*this, Name);
991 }
992 assert(Symbols.count(Name) &&((Symbols.count(Name) && "Symbol has no entry in the Symbols table"
) ? static_cast<void> (0) : __assert_fail ("Symbols.count(Name) && \"Symbol has no entry in the Symbols table\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 993, __PRETTY_FUNCTION__))
993 "Symbol has no entry in the Symbols table")((Symbols.count(Name) && "Symbol has no entry in the Symbols table"
) ? static_cast<void> (0) : __assert_fail ("Symbols.count(Name) && \"Symbol has no entry in the Symbols table\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 993, __PRETTY_FUNCTION__))
;
994 auto &Sym = Symbols[Name];
995 Sym.setFlags(Sym.getFlags() & ~JITSymbolFlags::Materializing);
996 MaterializingInfos.erase(MII);
997 }
998 }
999
1000 return ReadyQueries;
1001 });
1002
1003 for (auto &Q : FullyReadyQueries) {
1004 assert(Q->isFullyReady() && "Q is not fully ready")((Q->isFullyReady() && "Q is not fully ready") ? static_cast
<void> (0) : __assert_fail ("Q->isFullyReady() && \"Q is not fully ready\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1004, __PRETTY_FUNCTION__))
;
1005 Q->handleFullyReady();
1006 }
1007}
1008
1009void JITDylib::notifyFailed(const SymbolNameSet &FailedSymbols) {
1010
1011 // FIXME: This should fail any transitively dependant symbols too.
1012
1013 auto FailedQueriesToNotify = ES.runSessionLocked([&, this]() {
1014 AsynchronousSymbolQuerySet FailedQueries;
1015
1016 for (auto &Name : FailedSymbols) {
1017 auto I = Symbols.find(Name);
1018 assert(I != Symbols.end() && "Symbol not present in this JITDylib")((I != Symbols.end() && "Symbol not present in this JITDylib"
) ? static_cast<void> (0) : __assert_fail ("I != Symbols.end() && \"Symbol not present in this JITDylib\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1018, __PRETTY_FUNCTION__))
;
1019 Symbols.erase(I);
1020
1021 auto MII = MaterializingInfos.find(Name);
1022
1023 // If we have not created a MaterializingInfo for this symbol yet then
1024 // there is nobody to notify.
1025 if (MII == MaterializingInfos.end())
1026 continue;
1027
1028 // Copy all the queries to the FailedQueries list, then abandon them.
1029 // This has to be a copy, and the copy has to come before the abandon
1030 // operation: Each Q.detach() call will reach back into this
1031 // PendingQueries list to remove Q.
1032 for (auto &Q : MII->second.PendingQueries)
1033 FailedQueries.insert(Q);
1034
1035 for (auto &Q : FailedQueries)
1036 Q->detach();
1037
1038 assert(MII->second.PendingQueries.empty() &&((MII->second.PendingQueries.empty() && "Queries remain after symbol was failed"
) ? static_cast<void> (0) : __assert_fail ("MII->second.PendingQueries.empty() && \"Queries remain after symbol was failed\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1039, __PRETTY_FUNCTION__))
1039 "Queries remain after symbol was failed")((MII->second.PendingQueries.empty() && "Queries remain after symbol was failed"
) ? static_cast<void> (0) : __assert_fail ("MII->second.PendingQueries.empty() && \"Queries remain after symbol was failed\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1039, __PRETTY_FUNCTION__))
;
1040
1041 MaterializingInfos.erase(MII);
1042 }
1043
1044 return FailedQueries;
1045 });
1046
1047 for (auto &Q : FailedQueriesToNotify)
1048 Q->handleFailed(make_error<FailedToMaterialize>(FailedSymbols));
1049}
1050
1051void JITDylib::setSearchOrder(JITDylibSearchList NewSearchOrder,
1052 bool SearchThisJITDylibFirst,
1053 bool MatchNonExportedInThisDylib) {
1054 if (SearchThisJITDylibFirst && NewSearchOrder.front().first != this)
1055 NewSearchOrder.insert(NewSearchOrder.begin(),
1056 {this, MatchNonExportedInThisDylib});
1057
1058 ES.runSessionLocked([&]() { SearchOrder = std::move(NewSearchOrder); });
1059}
1060
1061void JITDylib::addToSearchOrder(JITDylib &JD, bool MatchNonExported) {
1062 ES.runSessionLocked([&]() {
1063 SearchOrder.push_back({&JD, MatchNonExported});
1064 });
1065}
1066
1067void JITDylib::replaceInSearchOrder(JITDylib &OldJD, JITDylib &NewJD,
1068 bool MatchNonExported) {
1069 ES.runSessionLocked([&]() {
1070 auto I = std::find_if(SearchOrder.begin(), SearchOrder.end(),
1071 [&](const JITDylibSearchList::value_type &KV) {
1072 return KV.first == &OldJD;
1073 });
1074
1075 if (I != SearchOrder.end())
1076 *I = {&NewJD, MatchNonExported};
1077 });
1078}
1079
1080void JITDylib::removeFromSearchOrder(JITDylib &JD) {
1081 ES.runSessionLocked([&]() {
1082 auto I = std::find_if(SearchOrder.begin(), SearchOrder.end(),
1083 [&](const JITDylibSearchList::value_type &KV) {
1084 return KV.first == &JD;
1085 });
1086 if (I != SearchOrder.end())
1087 SearchOrder.erase(I);
1088 });
1089}
1090
1091Error JITDylib::remove(const SymbolNameSet &Names) {
1092 return ES.runSessionLocked([&]() -> Error {
1093 using SymbolMaterializerItrPair =
1094 std::pair<SymbolMap::iterator, UnmaterializedInfosMap::iterator>;
1095 std::vector<SymbolMaterializerItrPair> SymbolsToRemove;
1096 SymbolNameSet Missing;
1097 SymbolNameSet Materializing;
1098
1099 for (auto &Name : Names) {
1100 auto I = Symbols.find(Name);
1101
1102 // Note symbol missing.
1103 if (I == Symbols.end()) {
1104 Missing.insert(Name);
1105 continue;
1106 }
1107
1108 // Note symbol materializing.
1109 if (I->second.getFlags().isMaterializing()) {
1110 Materializing.insert(Name);
1111 continue;
1112 }
1113
1114 auto UMII = I->second.getFlags().isLazy() ? UnmaterializedInfos.find(Name)
1115 : UnmaterializedInfos.end();
1116 SymbolsToRemove.push_back(std::make_pair(I, UMII));
1117 }
1118
1119 // If any of the symbols are not defined, return an error.
1120 if (!Missing.empty())
1121 return make_error<SymbolsNotFound>(std::move(Missing));
1122
1123 // If any of the symbols are currently materializing, return an error.
1124 if (!Materializing.empty())
1125 return make_error<SymbolsCouldNotBeRemoved>(std::move(Materializing));
1126
1127 // Remove the symbols.
1128 for (auto &SymbolMaterializerItrPair : SymbolsToRemove) {
1129 auto UMII = SymbolMaterializerItrPair.second;
1130
1131 // If there is a materializer attached, call discard.
1132 if (UMII != UnmaterializedInfos.end()) {
1133 UMII->second->MU->doDiscard(*this, UMII->first);
1134 UnmaterializedInfos.erase(UMII);
1135 }
1136
1137 auto SymI = SymbolMaterializerItrPair.first;
1138 Symbols.erase(SymI);
1139 }
1140
1141 return Error::success();
1142 });
1143}
1144
1145SymbolFlagsMap JITDylib::lookupFlags(const SymbolNameSet &Names) {
1146 return ES.runSessionLocked([&, this]() {
1147 SymbolFlagsMap Result;
1148 auto Unresolved = lookupFlagsImpl(Result, Names);
1149 if (DefGenerator && !Unresolved.empty()) {
1150 auto NewDefs = DefGenerator(*this, Unresolved);
1151 if (!NewDefs.empty()) {
1152 auto Unresolved2 = lookupFlagsImpl(Result, NewDefs);
1153 (void)Unresolved2;
1154 assert(Unresolved2.empty() &&((Unresolved2.empty() && "All fallback defs should have been found by lookupFlagsImpl"
) ? static_cast<void> (0) : __assert_fail ("Unresolved2.empty() && \"All fallback defs should have been found by lookupFlagsImpl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1155, __PRETTY_FUNCTION__))
1155 "All fallback defs should have been found by lookupFlagsImpl")((Unresolved2.empty() && "All fallback defs should have been found by lookupFlagsImpl"
) ? static_cast<void> (0) : __assert_fail ("Unresolved2.empty() && \"All fallback defs should have been found by lookupFlagsImpl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1155, __PRETTY_FUNCTION__))
;
1156 }
1157 };
1158 return Result;
1159 });
1160}
1161
1162SymbolNameSet JITDylib::lookupFlagsImpl(SymbolFlagsMap &Flags,
1163 const SymbolNameSet &Names) {
1164 SymbolNameSet Unresolved;
1165
1166 for (auto &Name : Names) {
1167 auto I = Symbols.find(Name);
1168
1169 if (I == Symbols.end()) {
1170 Unresolved.insert(Name);
1171 continue;
1172 }
1173
1174 assert(!Flags.count(Name) && "Symbol already present in Flags map")((!Flags.count(Name) && "Symbol already present in Flags map"
) ? static_cast<void> (0) : __assert_fail ("!Flags.count(Name) && \"Symbol already present in Flags map\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1174, __PRETTY_FUNCTION__))
;
1175 Flags[Name] = JITSymbolFlags::stripTransientFlags(I->second.getFlags());
1176 }
1177
1178 return Unresolved;
1179}
1180
1181void JITDylib::lodgeQuery(std::shared_ptr<AsynchronousSymbolQuery> &Q,
1182 SymbolNameSet &Unresolved, bool MatchNonExported,
1183 MaterializationUnitList &MUs) {
1184 assert(Q && "Query can not be null")((Q && "Query can not be null") ? static_cast<void
> (0) : __assert_fail ("Q && \"Query can not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1184, __PRETTY_FUNCTION__))
;
1185
1186 lodgeQueryImpl(Q, Unresolved, MatchNonExported, MUs);
1187 if (DefGenerator && !Unresolved.empty()) {
1188 auto NewDefs = DefGenerator(*this, Unresolved);
1189 if (!NewDefs.empty()) {
1190 for (auto &D : NewDefs)
1191 Unresolved.erase(D);
1192 lodgeQueryImpl(Q, NewDefs, MatchNonExported, MUs);
1193 assert(NewDefs.empty() &&((NewDefs.empty() && "All fallback defs should have been found by lookupImpl"
) ? static_cast<void> (0) : __assert_fail ("NewDefs.empty() && \"All fallback defs should have been found by lookupImpl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1194, __PRETTY_FUNCTION__))
1194 "All fallback defs should have been found by lookupImpl")((NewDefs.empty() && "All fallback defs should have been found by lookupImpl"
) ? static_cast<void> (0) : __assert_fail ("NewDefs.empty() && \"All fallback defs should have been found by lookupImpl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1194, __PRETTY_FUNCTION__))
;
1195 }
1196 }
1197}
1198
1199void JITDylib::lodgeQueryImpl(
1200 std::shared_ptr<AsynchronousSymbolQuery> &Q, SymbolNameSet &Unresolved,
1201 bool MatchNonExported,
1202 std::vector<std::unique_ptr<MaterializationUnit>> &MUs) {
1203
1204 std::vector<SymbolStringPtr> ToRemove;
1205 for (auto Name : Unresolved) {
1206 // Search for the name in Symbols. Skip it if not found.
1207 auto SymI = Symbols.find(Name);
1208 if (SymI == Symbols.end())
1209 continue;
1210
1211 // If this is a non exported symbol and we're skipping those then skip it.
1212 if (!SymI->second.getFlags().isExported() && !MatchNonExported)
1213 continue;
1214
1215 // If we matched against Name in JD, mark it to be removed from the Unresolved
1216 // set.
1217 ToRemove.push_back(Name);
1218
1219 // If the symbol has an address then resolve it.
1220 if (SymI->second.getAddress() != 0)
1221 Q->resolve(Name, SymI->second);
1222
1223 // If the symbol is lazy, get the MaterialiaztionUnit for it.
1224 if (SymI->second.getFlags().isLazy()) {
1225 assert(SymI->second.getAddress() == 0 &&((SymI->second.getAddress() == 0 && "Lazy symbol should not have a resolved address"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getAddress() == 0 && \"Lazy symbol should not have a resolved address\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1226, __PRETTY_FUNCTION__))
1226 "Lazy symbol should not have a resolved address")((SymI->second.getAddress() == 0 && "Lazy symbol should not have a resolved address"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getAddress() == 0 && \"Lazy symbol should not have a resolved address\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1226, __PRETTY_FUNCTION__))
;
1227 assert(!SymI->second.getFlags().isMaterializing() &&((!SymI->second.getFlags().isMaterializing() && "Materializing and lazy should not both be set"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isMaterializing() && \"Materializing and lazy should not both be set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1228, __PRETTY_FUNCTION__))
1228 "Materializing and lazy should not both be set")((!SymI->second.getFlags().isMaterializing() && "Materializing and lazy should not both be set"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isMaterializing() && \"Materializing and lazy should not both be set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1228, __PRETTY_FUNCTION__))
;
1229 auto UMII = UnmaterializedInfos.find(Name);
1230 assert(UMII != UnmaterializedInfos.end() &&((UMII != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UMII != UnmaterializedInfos.end() && \"Lazy symbol should have UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1231, __PRETTY_FUNCTION__))
1231 "Lazy symbol should have UnmaterializedInfo")((UMII != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UMII != UnmaterializedInfos.end() && \"Lazy symbol should have UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1231, __PRETTY_FUNCTION__))
;
1232 auto MU = std::move(UMII->second->MU);
1233 assert(MU != nullptr && "Materializer should not be null")((MU != nullptr && "Materializer should not be null")
? static_cast<void> (0) : __assert_fail ("MU != nullptr && \"Materializer should not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1233, __PRETTY_FUNCTION__))
;
1234
1235 // Move all symbols associated with this MaterializationUnit into
1236 // materializing state.
1237 for (auto &KV : MU->getSymbols()) {
1238 auto SymK = Symbols.find(KV.first);
1239 auto Flags = SymK->second.getFlags();
1240 Flags &= ~JITSymbolFlags::Lazy;
1241 Flags |= JITSymbolFlags::Materializing;
1242 SymK->second.setFlags(Flags);
1243 UnmaterializedInfos.erase(KV.first);
1244 }
1245
1246 // Add MU to the list of MaterializationUnits to be materialized.
1247 MUs.push_back(std::move(MU));
1248 } else if (!SymI->second.getFlags().isMaterializing()) {
1249 // The symbol is neither lazy nor materializing, so it must be
1250 // ready. Notify the query and continue.
1251 Q->notifySymbolReady();
1252 continue;
1253 }
1254
1255 // Add the query to the PendingQueries list.
1256 assert(SymI->second.getFlags().isMaterializing() &&((SymI->second.getFlags().isMaterializing() && "By this line the symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getFlags().isMaterializing() && \"By this line the symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1257, __PRETTY_FUNCTION__))
1257 "By this line the symbol should be materializing")((SymI->second.getFlags().isMaterializing() && "By this line the symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getFlags().isMaterializing() && \"By this line the symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1257, __PRETTY_FUNCTION__))
;
1258 auto &MI = MaterializingInfos[Name];
1259 MI.PendingQueries.push_back(Q);
1260 Q->addQueryDependence(*this, Name);
1261 }
1262
1263 // Remove any symbols that we found.
1264 for (auto &Name : ToRemove)
1265 Unresolved.erase(Name);
1266}
1267
1268SymbolNameSet JITDylib::legacyLookup(std::shared_ptr<AsynchronousSymbolQuery> Q,
1269 SymbolNameSet Names) {
1270 assert(Q && "Query can not be null")((Q && "Query can not be null") ? static_cast<void
> (0) : __assert_fail ("Q && \"Query can not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1270, __PRETTY_FUNCTION__))
;
1271
1272 ES.runOutstandingMUs();
1273
1274 LookupImplActionFlags ActionFlags = None;
1275 std::vector<std::unique_ptr<MaterializationUnit>> MUs;
1276
1277 SymbolNameSet Unresolved = std::move(Names);
1278 ES.runSessionLocked([&, this]() {
1279 ActionFlags = lookupImpl(Q, MUs, Unresolved);
1280 if (DefGenerator && !Unresolved.empty()) {
1281 assert(ActionFlags == None &&((ActionFlags == None && "ActionFlags set but unresolved symbols remain?"
) ? static_cast<void> (0) : __assert_fail ("ActionFlags == None && \"ActionFlags set but unresolved symbols remain?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1282, __PRETTY_FUNCTION__))
1282 "ActionFlags set but unresolved symbols remain?")((ActionFlags == None && "ActionFlags set but unresolved symbols remain?"
) ? static_cast<void> (0) : __assert_fail ("ActionFlags == None && \"ActionFlags set but unresolved symbols remain?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1282, __PRETTY_FUNCTION__))
;
1283 auto NewDefs = DefGenerator(*this, Unresolved);
1284 if (!NewDefs.empty()) {
1285 for (auto &D : NewDefs)
1286 Unresolved.erase(D);
1287 ActionFlags = lookupImpl(Q, MUs, NewDefs);
1288 assert(NewDefs.empty() &&((NewDefs.empty() && "All fallback defs should have been found by lookupImpl"
) ? static_cast<void> (0) : __assert_fail ("NewDefs.empty() && \"All fallback defs should have been found by lookupImpl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1289, __PRETTY_FUNCTION__))
1289 "All fallback defs should have been found by lookupImpl")((NewDefs.empty() && "All fallback defs should have been found by lookupImpl"
) ? static_cast<void> (0) : __assert_fail ("NewDefs.empty() && \"All fallback defs should have been found by lookupImpl\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1289, __PRETTY_FUNCTION__))
;
1290 }
1291 }
1292 });
1293
1294 assert((MUs.empty() || ActionFlags == None) &&(((MUs.empty() || ActionFlags == None) && "If action flags are set, there should be no work to do (so no MUs)"
) ? static_cast<void> (0) : __assert_fail ("(MUs.empty() || ActionFlags == None) && \"If action flags are set, there should be no work to do (so no MUs)\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1295, __PRETTY_FUNCTION__))
1295 "If action flags are set, there should be no work to do (so no MUs)")(((MUs.empty() || ActionFlags == None) && "If action flags are set, there should be no work to do (so no MUs)"
) ? static_cast<void> (0) : __assert_fail ("(MUs.empty() || ActionFlags == None) && \"If action flags are set, there should be no work to do (so no MUs)\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1295, __PRETTY_FUNCTION__))
;
1296
1297 if (ActionFlags & NotifyFullyResolved)
1298 Q->handleFullyResolved();
1299
1300 if (ActionFlags & NotifyFullyReady)
1301 Q->handleFullyReady();
1302
1303 // FIXME: Swap back to the old code below once RuntimeDyld works with
1304 // callbacks from asynchronous queries.
1305 // Add MUs to the OutstandingMUs list.
1306 {
1307 std::lock_guard<std::recursive_mutex> Lock(ES.OutstandingMUsMutex);
1308 for (auto &MU : MUs)
1309 ES.OutstandingMUs.push_back(make_pair(this, std::move(MU)));
1310 }
1311 ES.runOutstandingMUs();
1312
1313 // Dispatch any required MaterializationUnits for materialization.
1314 // for (auto &MU : MUs)
1315 // ES.dispatchMaterialization(*this, std::move(MU));
1316
1317 return Unresolved;
1318}
1319
1320JITDylib::LookupImplActionFlags
1321JITDylib::lookupImpl(std::shared_ptr<AsynchronousSymbolQuery> &Q,
1322 std::vector<std::unique_ptr<MaterializationUnit>> &MUs,
1323 SymbolNameSet &Unresolved) {
1324 LookupImplActionFlags ActionFlags = None;
1325 std::vector<SymbolStringPtr> ToRemove;
1326
1327 for (auto Name : Unresolved) {
1328
1329 // Search for the name in Symbols. Skip it if not found.
1330 auto SymI = Symbols.find(Name);
1331 if (SymI == Symbols.end())
1332 continue;
1333
1334 // If we found Name, mark it to be removed from the Unresolved set.
1335 ToRemove.push_back(Name);
1336
1337 // If the symbol has an address then resolve it.
1338 if (SymI->second.getAddress() != 0) {
1339 Q->resolve(Name, SymI->second);
1340 if (Q->isFullyResolved())
1341 ActionFlags |= NotifyFullyResolved;
1342 }
1343
1344 // If the symbol is lazy, get the MaterialiaztionUnit for it.
1345 if (SymI->second.getFlags().isLazy()) {
1346 assert(SymI->second.getAddress() == 0 &&((SymI->second.getAddress() == 0 && "Lazy symbol should not have a resolved address"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getAddress() == 0 && \"Lazy symbol should not have a resolved address\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1347, __PRETTY_FUNCTION__))
1347 "Lazy symbol should not have a resolved address")((SymI->second.getAddress() == 0 && "Lazy symbol should not have a resolved address"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getAddress() == 0 && \"Lazy symbol should not have a resolved address\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1347, __PRETTY_FUNCTION__))
;
1348 assert(!SymI->second.getFlags().isMaterializing() &&((!SymI->second.getFlags().isMaterializing() && "Materializing and lazy should not both be set"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isMaterializing() && \"Materializing and lazy should not both be set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1349, __PRETTY_FUNCTION__))
1349 "Materializing and lazy should not both be set")((!SymI->second.getFlags().isMaterializing() && "Materializing and lazy should not both be set"
) ? static_cast<void> (0) : __assert_fail ("!SymI->second.getFlags().isMaterializing() && \"Materializing and lazy should not both be set\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1349, __PRETTY_FUNCTION__))
;
1350 auto UMII = UnmaterializedInfos.find(Name);
1351 assert(UMII != UnmaterializedInfos.end() &&((UMII != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UMII != UnmaterializedInfos.end() && \"Lazy symbol should have UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1352, __PRETTY_FUNCTION__))
1352 "Lazy symbol should have UnmaterializedInfo")((UMII != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UMII != UnmaterializedInfos.end() && \"Lazy symbol should have UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1352, __PRETTY_FUNCTION__))
;
1353 auto MU = std::move(UMII->second->MU);
1354 assert(MU != nullptr && "Materializer should not be null")((MU != nullptr && "Materializer should not be null")
? static_cast<void> (0) : __assert_fail ("MU != nullptr && \"Materializer should not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1354, __PRETTY_FUNCTION__))
;
1355
1356 // Kick all symbols associated with this MaterializationUnit into
1357 // materializing state.
1358 for (auto &KV : MU->getSymbols()) {
1359 auto SymK = Symbols.find(KV.first);
1360 auto Flags = SymK->second.getFlags();
1361 Flags &= ~JITSymbolFlags::Lazy;
1362 Flags |= JITSymbolFlags::Materializing;
1363 SymK->second.setFlags(Flags);
1364 UnmaterializedInfos.erase(KV.first);
1365 }
1366
1367 // Add MU to the list of MaterializationUnits to be materialized.
1368 MUs.push_back(std::move(MU));
1369 } else if (!SymI->second.getFlags().isMaterializing()) {
1370 // The symbol is neither lazy nor materializing, so it must be ready.
1371 // Notify the query and continue.
1372 Q->notifySymbolReady();
1373 if (Q->isFullyReady())
1374 ActionFlags |= NotifyFullyReady;
1375 continue;
1376 }
1377
1378 // Add the query to the PendingQueries list.
1379 assert(SymI->second.getFlags().isMaterializing() &&((SymI->second.getFlags().isMaterializing() && "By this line the symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getFlags().isMaterializing() && \"By this line the symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1380, __PRETTY_FUNCTION__))
1380 "By this line the symbol should be materializing")((SymI->second.getFlags().isMaterializing() && "By this line the symbol should be materializing"
) ? static_cast<void> (0) : __assert_fail ("SymI->second.getFlags().isMaterializing() && \"By this line the symbol should be materializing\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1380, __PRETTY_FUNCTION__))
;
1381 auto &MI = MaterializingInfos[Name];
1382 MI.PendingQueries.push_back(Q);
1383 Q->addQueryDependence(*this, Name);
1384 }
1385
1386 // Remove any marked symbols from the Unresolved set.
1387 for (auto &Name : ToRemove)
1388 Unresolved.erase(Name);
1389
1390 return ActionFlags;
1391}
1392
1393void JITDylib::dump(raw_ostream &OS) {
1394 ES.runSessionLocked([&, this]() {
1395 OS << "JITDylib \"" << JITDylibName
1396 << "\" (ES: " << format("0x%016x", reinterpret_cast<uintptr_t>(&ES))
1397 << "):\n"
1398 << "Search order: [";
1399 for (auto &KV : SearchOrder)
1400 OS << " (\"" << KV.first->getName() << "\", "
1401 << (KV.second ? "all" : "exported only") << ")";
1402 OS << " ]\n"
1403 << "Symbol table:\n";
1404
1405 for (auto &KV : Symbols) {
1406 OS << " \"" << *KV.first << "\": ";
1407 if (auto Addr = KV.second.getAddress())
1408 OS << format("0x%016x", Addr) << ", " << KV.second.getFlags();
1409 else
1410 OS << "<not resolved>";
1411 if (KV.second.getFlags().isLazy() ||
1412 KV.second.getFlags().isMaterializing()) {
1413 OS << " (";
1414 if (KV.second.getFlags().isLazy()) {
1415 auto I = UnmaterializedInfos.find(KV.first);
1416 assert(I != UnmaterializedInfos.end() &&((I != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("I != UnmaterializedInfos.end() && \"Lazy symbol should have UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1417, __PRETTY_FUNCTION__))
1417 "Lazy symbol should have UnmaterializedInfo")((I != UnmaterializedInfos.end() && "Lazy symbol should have UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("I != UnmaterializedInfos.end() && \"Lazy symbol should have UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1417, __PRETTY_FUNCTION__))
;
1418 OS << " Lazy (MU=" << I->second->MU.get() << ")";
1419 }
1420 if (KV.second.getFlags().isMaterializing())
1421 OS << " Materializing";
1422 OS << ", " << KV.second.getFlags() << " )\n";
1423 } else
1424 OS << "\n";
1425 }
1426
1427 if (!MaterializingInfos.empty())
1428 OS << " MaterializingInfos entries:\n";
1429 for (auto &KV : MaterializingInfos) {
1430 OS << " \"" << *KV.first << "\":\n"
1431 << " IsEmitted = " << (KV.second.IsEmitted ? "true" : "false")
1432 << "\n"
1433 << " " << KV.second.PendingQueries.size()
1434 << " pending queries: { ";
1435 for (auto &Q : KV.second.PendingQueries)
1436 OS << Q.get() << " ";
1437 OS << "}\n Dependants:\n";
1438 for (auto &KV2 : KV.second.Dependants)
1439 OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
1440 OS << " Unemitted Dependencies:\n";
1441 for (auto &KV2 : KV.second.UnemittedDependencies)
1442 OS << " " << KV2.first->getName() << ": " << KV2.second << "\n";
1443 }
1444 });
1445}
1446
1447JITDylib::JITDylib(ExecutionSession &ES, std::string Name)
1448 : ES(ES), JITDylibName(std::move(Name)) {
1449 SearchOrder.push_back({this, true});
1450}
1451
1452Error JITDylib::defineImpl(MaterializationUnit &MU) {
1453 SymbolNameSet Duplicates;
1454 SymbolNameSet MUDefsOverridden;
1455
1456 struct ExistingDefOverriddenEntry {
1457 SymbolMap::iterator ExistingDefItr;
1458 JITSymbolFlags NewFlags;
1459 };
1460 std::vector<ExistingDefOverriddenEntry> ExistingDefsOverridden;
1461
1462 for (auto &KV : MU.getSymbols()) {
1463 assert(!KV.second.isLazy() && "Lazy flag should be managed internally.")((!KV.second.isLazy() && "Lazy flag should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isLazy() && \"Lazy flag should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1463, __PRETTY_FUNCTION__))
;
1464 assert(!KV.second.isMaterializing() &&((!KV.second.isMaterializing() && "Materializing flags should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isMaterializing() && \"Materializing flags should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1465, __PRETTY_FUNCTION__))
1465 "Materializing flags should be managed internally.")((!KV.second.isMaterializing() && "Materializing flags should be managed internally."
) ? static_cast<void> (0) : __assert_fail ("!KV.second.isMaterializing() && \"Materializing flags should be managed internally.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1465, __PRETTY_FUNCTION__))
;
1466
1467 SymbolMap::iterator EntryItr;
1468 bool Added;
1469
1470 auto NewFlags = KV.second;
1471 NewFlags |= JITSymbolFlags::Lazy;
1472
1473 std::tie(EntryItr, Added) = Symbols.insert(
1474 std::make_pair(KV.first, JITEvaluatedSymbol(0, NewFlags)));
1475
1476 if (!Added) {
1477 if (KV.second.isStrong()) {
1478 if (EntryItr->second.getFlags().isStrong() ||
1479 (EntryItr->second.getFlags() & JITSymbolFlags::Materializing))
1480 Duplicates.insert(KV.first);
1481 else
1482 ExistingDefsOverridden.push_back({EntryItr, NewFlags});
1483 } else
1484 MUDefsOverridden.insert(KV.first);
1485 }
1486 }
1487
1488 if (!Duplicates.empty()) {
1489 // We need to remove the symbols we added.
1490 for (auto &KV : MU.getSymbols()) {
1491 if (Duplicates.count(KV.first))
1492 continue;
1493
1494 bool Found = false;
1495 for (const auto &EDO : ExistingDefsOverridden)
1496 if (EDO.ExistingDefItr->first == KV.first)
1497 Found = true;
1498
1499 if (!Found)
1500 Symbols.erase(KV.first);
1501 }
1502
1503 // FIXME: Return all duplicates.
1504 return make_error<DuplicateDefinition>(**Duplicates.begin());
1505 }
1506
1507 // Update flags on existing defs and call discard on their materializers.
1508 for (auto &EDO : ExistingDefsOverridden) {
1509 assert(EDO.ExistingDefItr->second.getFlags().isLazy() &&((EDO.ExistingDefItr->second.getFlags().isLazy() &&
!EDO.ExistingDefItr->second.getFlags().isMaterializing() &&
"Overridden existing def should be in the Lazy state") ? static_cast
<void> (0) : __assert_fail ("EDO.ExistingDefItr->second.getFlags().isLazy() && !EDO.ExistingDefItr->second.getFlags().isMaterializing() && \"Overridden existing def should be in the Lazy state\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1511, __PRETTY_FUNCTION__))
1510 !EDO.ExistingDefItr->second.getFlags().isMaterializing() &&((EDO.ExistingDefItr->second.getFlags().isLazy() &&
!EDO.ExistingDefItr->second.getFlags().isMaterializing() &&
"Overridden existing def should be in the Lazy state") ? static_cast
<void> (0) : __assert_fail ("EDO.ExistingDefItr->second.getFlags().isLazy() && !EDO.ExistingDefItr->second.getFlags().isMaterializing() && \"Overridden existing def should be in the Lazy state\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1511, __PRETTY_FUNCTION__))
1511 "Overridden existing def should be in the Lazy state")((EDO.ExistingDefItr->second.getFlags().isLazy() &&
!EDO.ExistingDefItr->second.getFlags().isMaterializing() &&
"Overridden existing def should be in the Lazy state") ? static_cast
<void> (0) : __assert_fail ("EDO.ExistingDefItr->second.getFlags().isLazy() && !EDO.ExistingDefItr->second.getFlags().isMaterializing() && \"Overridden existing def should be in the Lazy state\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1511, __PRETTY_FUNCTION__))
;
1512
1513 EDO.ExistingDefItr->second.setFlags(EDO.NewFlags);
1514
1515 auto UMII = UnmaterializedInfos.find(EDO.ExistingDefItr->first);
1516 assert(UMII != UnmaterializedInfos.end() &&((UMII != UnmaterializedInfos.end() && "Overridden existing def should have an UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UMII != UnmaterializedInfos.end() && \"Overridden existing def should have an UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1517, __PRETTY_FUNCTION__))
1517 "Overridden existing def should have an UnmaterializedInfo")((UMII != UnmaterializedInfos.end() && "Overridden existing def should have an UnmaterializedInfo"
) ? static_cast<void> (0) : __assert_fail ("UMII != UnmaterializedInfos.end() && \"Overridden existing def should have an UnmaterializedInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1517, __PRETTY_FUNCTION__))
;
1518
1519 UMII->second->MU->doDiscard(*this, EDO.ExistingDefItr->first);
1520 }
1521
1522 // Discard overridden symbols povided by MU.
1523 for (auto &Sym : MUDefsOverridden)
1524 MU.doDiscard(*this, Sym);
1525
1526 return Error::success();
1527}
1528
1529void JITDylib::detachQueryHelper(AsynchronousSymbolQuery &Q,
1530 const SymbolNameSet &QuerySymbols) {
1531 for (auto &QuerySymbol : QuerySymbols) {
1532 assert(MaterializingInfos.count(QuerySymbol) &&((MaterializingInfos.count(QuerySymbol) && "QuerySymbol does not have MaterializingInfo"
) ? static_cast<void> (0) : __assert_fail ("MaterializingInfos.count(QuerySymbol) && \"QuerySymbol does not have MaterializingInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1533, __PRETTY_FUNCTION__))
1533 "QuerySymbol does not have MaterializingInfo")((MaterializingInfos.count(QuerySymbol) && "QuerySymbol does not have MaterializingInfo"
) ? static_cast<void> (0) : __assert_fail ("MaterializingInfos.count(QuerySymbol) && \"QuerySymbol does not have MaterializingInfo\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1533, __PRETTY_FUNCTION__))
;
1534 auto &MI = MaterializingInfos[QuerySymbol];
1535
1536 auto IdenticalQuery =
1537 [&](const std::shared_ptr<AsynchronousSymbolQuery> &R) {
1538 return R.get() == &Q;
1539 };
1540
1541 auto I = std::find_if(MI.PendingQueries.begin(), MI.PendingQueries.end(),
1542 IdenticalQuery);
1543 assert(I != MI.PendingQueries.end() &&((I != MI.PendingQueries.end() && "Query Q should be in the PendingQueries list for QuerySymbol"
) ? static_cast<void> (0) : __assert_fail ("I != MI.PendingQueries.end() && \"Query Q should be in the PendingQueries list for QuerySymbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1544, __PRETTY_FUNCTION__))
1544 "Query Q should be in the PendingQueries list for QuerySymbol")((I != MI.PendingQueries.end() && "Query Q should be in the PendingQueries list for QuerySymbol"
) ? static_cast<void> (0) : __assert_fail ("I != MI.PendingQueries.end() && \"Query Q should be in the PendingQueries list for QuerySymbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1544, __PRETTY_FUNCTION__))
;
1545 MI.PendingQueries.erase(I);
1546 }
1547}
1548
1549void JITDylib::transferEmittedNodeDependencies(
1550 MaterializingInfo &DependantMI, const SymbolStringPtr &DependantName,
1551 MaterializingInfo &EmittedMI) {
1552 for (auto &KV : EmittedMI.UnemittedDependencies) {
1553 auto &DependencyJD = *KV.first;
1554 SymbolNameSet *UnemittedDependenciesOnDependencyJD = nullptr;
1555
1556 for (auto &DependencyName : KV.second) {
1557 auto &DependencyMI = DependencyJD.MaterializingInfos[DependencyName];
1558
1559 // Do not add self dependencies.
1560 if (&DependencyMI == &DependantMI)
1561 continue;
1562
1563 // If we haven't looked up the dependencies for DependencyJD yet, do it
1564 // now and cache the result.
1565 if (!UnemittedDependenciesOnDependencyJD)
1566 UnemittedDependenciesOnDependencyJD =
1567 &DependantMI.UnemittedDependencies[&DependencyJD];
1568
1569 DependencyMI.Dependants[this].insert(DependantName);
1570 UnemittedDependenciesOnDependencyJD->insert(DependencyName);
1571 }
1572 }
1573}
1574
1575ExecutionSession::ExecutionSession(std::shared_ptr<SymbolStringPool> SSP)
1576 : SSP(SSP ? std::move(SSP) : std::make_shared<SymbolStringPool>()) {
1577 // Construct the main dylib.
1578 JDs.push_back(std::unique_ptr<JITDylib>(new JITDylib(*this, "<main>")));
1579}
1580
1581JITDylib &ExecutionSession::getMainJITDylib() {
1582 return runSessionLocked([this]() -> JITDylib & { return *JDs.front(); });
1583}
1584
1585JITDylib &ExecutionSession::createJITDylib(std::string Name,
1586 bool AddToMainDylibSearchOrder) {
1587 return runSessionLocked([&, this]() -> JITDylib & {
1588 JDs.push_back(
1589 std::unique_ptr<JITDylib>(new JITDylib(*this, std::move(Name))));
1590 if (AddToMainDylibSearchOrder)
1591 JDs.front()->addToSearchOrder(*JDs.back());
1592 return *JDs.back();
1593 });
1594}
1595
1596void ExecutionSession::legacyFailQuery(AsynchronousSymbolQuery &Q, Error Err) {
1597 assert(!!Err && "Error should be in failure state")((!!Err && "Error should be in failure state") ? static_cast
<void> (0) : __assert_fail ("!!Err && \"Error should be in failure state\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1597, __PRETTY_FUNCTION__))
;
1598
1599 bool SendErrorToQuery;
1600 runSessionLocked([&]() {
1601 Q.detach();
1602 SendErrorToQuery = Q.canStillFail();
1603 });
1604
1605 if (SendErrorToQuery)
1606 Q.handleFailed(std::move(Err));
1607 else
1608 reportError(std::move(Err));
1609}
1610
1611Expected<SymbolMap> ExecutionSession::legacyLookup(
1612 LegacyAsyncLookupFunction AsyncLookup, SymbolNameSet Names,
1613 bool WaitUntilReady, RegisterDependenciesFunction RegisterDependencies) {
1614#if LLVM_ENABLE_THREADS1
1615 // In the threaded case we use promises to return the results.
1616 std::promise<SymbolMap> PromisedResult;
1617 std::mutex ErrMutex;
1618 Error ResolutionError = Error::success();
1619 std::promise<void> PromisedReady;
1620 Error ReadyError = Error::success();
1621 auto OnResolve = [&](Expected<SymbolMap> R) {
1622 if (R)
1623 PromisedResult.set_value(std::move(*R));
1624 else {
1625 {
1626 ErrorAsOutParameter _(&ResolutionError);
1627 std::lock_guard<std::mutex> Lock(ErrMutex);
1628 ResolutionError = R.takeError();
1629 }
1630 PromisedResult.set_value(SymbolMap());
1631 }
1632 };
1633
1634 std::function<void(Error)> OnReady;
1635 if (WaitUntilReady) {
1636 OnReady = [&](Error Err) {
1637 if (Err) {
1638 ErrorAsOutParameter _(&ReadyError);
1639 std::lock_guard<std::mutex> Lock(ErrMutex);
1640 ReadyError = std::move(Err);
1641 }
1642 PromisedReady.set_value();
1643 };
1644 } else {
1645 OnReady = [&](Error Err) {
1646 if (Err)
1647 reportError(std::move(Err));
1648 };
1649 }
1650
1651#else
1652 SymbolMap Result;
1653 Error ResolutionError = Error::success();
1654 Error ReadyError = Error::success();
1655
1656 auto OnResolve = [&](Expected<SymbolMap> R) {
1657 ErrorAsOutParameter _(&ResolutionError);
1658 if (R)
1659 Result = std::move(*R);
1660 else
1661 ResolutionError = R.takeError();
1662 };
1663
1664 std::function<void(Error)> OnReady;
1665 if (WaitUntilReady) {
1666 OnReady = [&](Error Err) {
1667 ErrorAsOutParameter _(&ReadyError);
1668 if (Err)
1669 ReadyError = std::move(Err);
1670 };
1671 } else {
1672 OnReady = [&](Error Err) {
1673 if (Err)
1674 reportError(std::move(Err));
1675 };
1676 }
1677#endif
1678
1679 auto Query = std::make_shared<AsynchronousSymbolQuery>(
1680 Names, std::move(OnResolve), std::move(OnReady));
1681 // FIXME: This should be run session locked along with the registration code
1682 // and error reporting below.
1683 SymbolNameSet UnresolvedSymbols = AsyncLookup(Query, std::move(Names));
1684
1685 // If the query was lodged successfully then register the dependencies,
1686 // otherwise fail it with an error.
1687 if (UnresolvedSymbols.empty())
1688 RegisterDependencies(Query->QueryRegistrations);
1689 else {
1690 bool DeliverError = runSessionLocked([&]() {
1691 Query->detach();
1692 return Query->canStillFail();
1693 });
1694 auto Err = make_error<SymbolsNotFound>(std::move(UnresolvedSymbols));
1695 if (DeliverError)
1696 Query->handleFailed(std::move(Err));
1697 else
1698 reportError(std::move(Err));
1699 }
1700
1701#if LLVM_ENABLE_THREADS1
1702 auto ResultFuture = PromisedResult.get_future();
1703 auto Result = ResultFuture.get();
1704
1705 {
1706 std::lock_guard<std::mutex> Lock(ErrMutex);
1707 if (ResolutionError) {
1708 // ReadyError will never be assigned. Consume the success value.
1709 cantFail(std::move(ReadyError));
1710 return std::move(ResolutionError);
1711 }
1712 }
1713
1714 if (WaitUntilReady) {
1715 auto ReadyFuture = PromisedReady.get_future();
1716 ReadyFuture.get();
1717
1718 {
1719 std::lock_guard<std::mutex> Lock(ErrMutex);
1720 if (ReadyError)
1721 return std::move(ReadyError);
1722 }
1723 } else
1724 cantFail(std::move(ReadyError));
1725
1726 return std::move(Result);
1727
1728#else
1729 if (ResolutionError) {
1730 // ReadyError will never be assigned. Consume the success value.
1731 cantFail(std::move(ReadyError));
1732 return std::move(ResolutionError);
1733 }
1734
1735 if (ReadyError)
1736 return std::move(ReadyError);
1737
1738 return Result;
1739#endif
1740}
1741
1742void ExecutionSession::lookup(
1743 const JITDylibSearchList &SearchOrder, SymbolNameSet Symbols,
1744 SymbolsResolvedCallback OnResolve, SymbolsReadyCallback OnReady,
1745 RegisterDependenciesFunction RegisterDependencies) {
1746
1747 // lookup can be re-entered recursively if running on a single thread. Run any
1748 // outstanding MUs in case this query depends on them, otherwise this lookup
1749 // will starve waiting for a result from an MU that is stuck in the queue.
1750 runOutstandingMUs();
1751
1752 auto Unresolved = std::move(Symbols);
1753 std::map<JITDylib *, MaterializationUnitList> CollectedMUsMap;
1754 auto Q = std::make_shared<AsynchronousSymbolQuery>(
1755 Unresolved, std::move(OnResolve), std::move(OnReady));
1756 bool QueryIsFullyResolved = false;
1757 bool QueryIsFullyReady = false;
1758 bool QueryFailed = false;
1759
1760 runSessionLocked([&]() {
1761 for (auto &KV : SearchOrder) {
1762 assert(KV.first && "JITDylibList entries must not be null")((KV.first && "JITDylibList entries must not be null"
) ? static_cast<void> (0) : __assert_fail ("KV.first && \"JITDylibList entries must not be null\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1762, __PRETTY_FUNCTION__))
;
1763 assert(!CollectedMUsMap.count(KV.first) &&((!CollectedMUsMap.count(KV.first) && "JITDylibList should not contain duplicate entries"
) ? static_cast<void> (0) : __assert_fail ("!CollectedMUsMap.count(KV.first) && \"JITDylibList should not contain duplicate entries\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1764, __PRETTY_FUNCTION__))
1764 "JITDylibList should not contain duplicate entries")((!CollectedMUsMap.count(KV.first) && "JITDylibList should not contain duplicate entries"
) ? static_cast<void> (0) : __assert_fail ("!CollectedMUsMap.count(KV.first) && \"JITDylibList should not contain duplicate entries\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1764, __PRETTY_FUNCTION__))
;
1765
1766 auto &JD = *KV.first;
1767 auto MatchNonExported = KV.second;
1768 JD.lodgeQuery(Q, Unresolved, MatchNonExported, CollectedMUsMap[&JD]);
1769 }
1770
1771 if (Unresolved.empty()) {
1772 // Query lodged successfully.
1773
1774 // Record whether this query is fully ready / resolved. We will use
1775 // this to call handleFullyResolved/handleFullyReady outside the session
1776 // lock.
1777 QueryIsFullyResolved = Q->isFullyResolved();
1778 QueryIsFullyReady = Q->isFullyReady();
1779
1780 // Call the register dependencies function.
1781 if (RegisterDependencies && !Q->QueryRegistrations.empty())
1782 RegisterDependencies(Q->QueryRegistrations);
1783 } else {
1784 // Query failed due to unresolved symbols.
1785 QueryFailed = true;
1786
1787 // Disconnect the query from its dependencies.
1788 Q->detach();
1789
1790 // Replace the MUs.
1791 for (auto &KV : CollectedMUsMap)
1792 for (auto &MU : KV.second)
1793 KV.first->replace(std::move(MU));
1794 }
1795 });
1796
1797 if (QueryFailed) {
1798 Q->handleFailed(make_error<SymbolsNotFound>(std::move(Unresolved)));
1799 return;
1800 } else {
1801 if (QueryIsFullyResolved)
1802 Q->handleFullyResolved();
1803 if (QueryIsFullyReady)
1804 Q->handleFullyReady();
1805 }
1806
1807 // Move the MUs to the OutstandingMUs list, then materialize.
1808 {
1809 std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
1810
1811 for (auto &KV : CollectedMUsMap)
1812 for (auto &MU : KV.second)
1813 OutstandingMUs.push_back(std::make_pair(KV.first, std::move(MU)));
1814 }
1815
1816 runOutstandingMUs();
1817}
1818
1819Expected<SymbolMap> ExecutionSession::lookup(
1820 const JITDylibSearchList &SearchOrder, const SymbolNameSet &Symbols,
1821 RegisterDependenciesFunction RegisterDependencies, bool WaitUntilReady) {
1822#if LLVM_ENABLE_THREADS1
1823 // In the threaded case we use promises to return the results.
1824 std::promise<SymbolMap> PromisedResult;
1825 std::mutex ErrMutex;
1826 Error ResolutionError = Error::success();
1827 std::promise<void> PromisedReady;
1828 Error ReadyError = Error::success();
1829 auto OnResolve = [&](Expected<SymbolMap> R) {
1830 if (R)
1831 PromisedResult.set_value(std::move(*R));
1832 else {
1833 {
1834 ErrorAsOutParameter _(&ResolutionError);
1835 std::lock_guard<std::mutex> Lock(ErrMutex);
1836 ResolutionError = R.takeError();
1837 }
1838 PromisedResult.set_value(SymbolMap());
1839 }
1840 };
1841
1842 std::function<void(Error)> OnReady;
1843 if (WaitUntilReady) {
1844 OnReady = [&](Error Err) {
1845 if (Err) {
1846 ErrorAsOutParameter _(&ReadyError);
1847 std::lock_guard<std::mutex> Lock(ErrMutex);
1848 ReadyError = std::move(Err);
1849 }
1850 PromisedReady.set_value();
1851 };
1852 } else {
1853 OnReady = [&](Error Err) {
1854 if (Err)
1855 reportError(std::move(Err));
1856 };
1857 }
1858
1859#else
1860 SymbolMap Result;
1861 Error ResolutionError = Error::success();
1862 Error ReadyError = Error::success();
1863
1864 auto OnResolve = [&](Expected<SymbolMap> R) {
1865 ErrorAsOutParameter _(&ResolutionError);
1866 if (R)
1867 Result = std::move(*R);
1868 else
1869 ResolutionError = R.takeError();
1870 };
1871
1872 std::function<void(Error)> OnReady;
1873 if (WaitUntilReady) {
1874 OnReady = [&](Error Err) {
1875 ErrorAsOutParameter _(&ReadyError);
1876 if (Err)
1877 ReadyError = std::move(Err);
1878 };
1879 } else {
1880 OnReady = [&](Error Err) {
1881 if (Err)
1882 reportError(std::move(Err));
1883 };
1884 }
1885#endif
1886
1887 // Perform the asynchronous lookup.
1888 lookup(SearchOrder, Symbols, OnResolve, OnReady, RegisterDependencies);
1889
1890#if LLVM_ENABLE_THREADS1
1891 auto ResultFuture = PromisedResult.get_future();
1892 auto Result = ResultFuture.get();
1893
1894 {
1895 std::lock_guard<std::mutex> Lock(ErrMutex);
1896 if (ResolutionError) {
1897 // ReadyError will never be assigned. Consume the success value.
1898 cantFail(std::move(ReadyError));
1899 return std::move(ResolutionError);
1900 }
1901 }
1902
1903 if (WaitUntilReady) {
1904 auto ReadyFuture = PromisedReady.get_future();
1905 ReadyFuture.get();
1906
1907 {
1908 std::lock_guard<std::mutex> Lock(ErrMutex);
1909 if (ReadyError)
1910 return std::move(ReadyError);
1911 }
1912 } else
1913 cantFail(std::move(ReadyError));
1914
1915 return std::move(Result);
1916
1917#else
1918 if (ResolutionError) {
1919 // ReadyError will never be assigned. Consume the success value.
1920 cantFail(std::move(ReadyError));
1921 return std::move(ResolutionError);
1922 }
1923
1924 if (ReadyError)
1925 return std::move(ReadyError);
1926
1927 return Result;
1928#endif
1929}
1930
1931Expected<JITEvaluatedSymbol>
1932ExecutionSession::lookup(const JITDylibSearchList &SearchOrder,
1933 SymbolStringPtr Name) {
1934 SymbolNameSet Names({Name});
1935
1936 if (auto ResultMap = lookup(SearchOrder, std::move(Names),
1937 NoDependenciesToRegister, true)) {
1938 assert(ResultMap->size() == 1 && "Unexpected number of results")((ResultMap->size() == 1 && "Unexpected number of results"
) ? static_cast<void> (0) : __assert_fail ("ResultMap->size() == 1 && \"Unexpected number of results\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1938, __PRETTY_FUNCTION__))
;
1939 assert(ResultMap->count(Name) && "Missing result for symbol")((ResultMap->count(Name) && "Missing result for symbol"
) ? static_cast<void> (0) : __assert_fail ("ResultMap->count(Name) && \"Missing result for symbol\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1939, __PRETTY_FUNCTION__))
;
1940 return std::move(ResultMap->begin()->second);
1941 } else
1942 return ResultMap.takeError();
1943}
1944
1945Expected<JITEvaluatedSymbol>
1946ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder,
1947 SymbolStringPtr Name) {
1948 SymbolNameSet Names({Name});
1949
1950 JITDylibSearchList FullSearchOrder(SearchOrder.size());
1951 for (auto *JD : SearchOrder)
1952 FullSearchOrder.push_back({JD, false});
1953
1954 return lookup(FullSearchOrder, Name);
1955}
1956
1957Expected<JITEvaluatedSymbol>
1958ExecutionSession::lookup(ArrayRef<JITDylib *> SearchOrder, StringRef Name) {
1959 return lookup(SearchOrder, intern(Name));
1960}
1961
1962void ExecutionSession::dump(raw_ostream &OS) {
1963 runSessionLocked([this, &OS]() {
1964 for (auto &JD : JDs)
1965 JD->dump(OS);
1966 });
1967}
1968
1969void ExecutionSession::runOutstandingMUs() {
1970 while (1) {
1971 std::pair<JITDylib *, std::unique_ptr<MaterializationUnit>> JITDylibAndMU;
1972
1973 {
1974 std::lock_guard<std::recursive_mutex> Lock(OutstandingMUsMutex);
1975 if (!OutstandingMUs.empty()) {
1976 JITDylibAndMU = std::move(OutstandingMUs.back());
1977 OutstandingMUs.pop_back();
1978 }
1979 }
1980
1981 if (JITDylibAndMU.first) {
1982 assert(JITDylibAndMU.second && "JITDylib, but no MU?")((JITDylibAndMU.second && "JITDylib, but no MU?") ? static_cast
<void> (0) : __assert_fail ("JITDylibAndMU.second && \"JITDylib, but no MU?\""
, "/build/llvm-toolchain-snapshot-8~svn345461/lib/ExecutionEngine/Orc/Core.cpp"
, 1982, __PRETTY_FUNCTION__))
;
1983 dispatchMaterialization(*JITDylibAndMU.first,
1984 std::move(JITDylibAndMU.second));
1985 } else
1986 break;
1987 }
1988}
1989
1990MangleAndInterner::MangleAndInterner(ExecutionSession &ES, const DataLayout &DL)
1991 : ES(ES), DL(DL) {}
1992
1993SymbolStringPtr MangleAndInterner::operator()(StringRef Name) {
1994 std::string MangledName;
1995 {
1996 raw_string_ostream MangledNameStream(MangledName);
1997 Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
1998 }
1999 return ES.intern(MangledName);
2000}
2001
2002} // End namespace orc.
2003} // End namespace llvm.

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ExecutionEngine/Orc/Core.h

1//===------ Core.h -- Core ORC APIs (Layer, JITDylib, etc.) -----*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Contains core ORC APIs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_EXECUTIONENGINE_ORC_CORE_H
15#define LLVM_EXECUTIONENGINE_ORC_CORE_H
16
17#include "llvm/ADT/BitmaskEnum.h"
18#include "llvm/ExecutionEngine/JITSymbol.h"
19#include "llvm/ExecutionEngine/Orc/SymbolStringPool.h"
20#include "llvm/IR/Module.h"
21#include "llvm/Support/Debug.h"
22
23#include <memory>
24#include <vector>
25
26#define DEBUG_TYPE"orc" "orc"
27
28namespace llvm {
29namespace orc {
30
31// Forward declare some classes.
32class AsynchronousSymbolQuery;
33class ExecutionSession;
34class MaterializationUnit;
35class MaterializationResponsibility;
36class JITDylib;
37
38/// VModuleKey provides a unique identifier (allocated and managed by
39/// ExecutionSessions) for a module added to the JIT.
40using VModuleKey = uint64_t;
41
42/// A set of symbol names (represented by SymbolStringPtrs for
43// efficiency).
44using SymbolNameSet = DenseSet<SymbolStringPtr>;
45
46/// A map from symbol names (as SymbolStringPtrs) to JITSymbols
47/// (address/flags pairs).
48using SymbolMap = DenseMap<SymbolStringPtr, JITEvaluatedSymbol>;
49
50/// A map from symbol names (as SymbolStringPtrs) to JITSymbolFlags.
51using SymbolFlagsMap = DenseMap<SymbolStringPtr, JITSymbolFlags>;
52
53/// A base class for materialization failures that allows the failing
54/// symbols to be obtained for logging.
55using SymbolDependenceMap = DenseMap<JITDylib *, SymbolNameSet>;
56
57/// A list of (JITDylib*, bool) pairs.
58using JITDylibSearchList = std::vector<std::pair<JITDylib *, bool>>;
59
60/// Render a SymbolStringPtr.
61raw_ostream &operator<<(raw_ostream &OS, const SymbolStringPtr &Sym);
62
63/// Render a SymbolNameSet.
64raw_ostream &operator<<(raw_ostream &OS, const SymbolNameSet &Symbols);
65
66/// Render a SymbolFlagsMap entry.
67raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap::value_type &KV);
68
69/// Render a SymbolMap entry.
70raw_ostream &operator<<(raw_ostream &OS, const SymbolMap::value_type &KV);
71
72/// Render a SymbolFlagsMap.
73raw_ostream &operator<<(raw_ostream &OS, const SymbolFlagsMap &SymbolFlags);
74
75/// Render a SymbolMap.
76raw_ostream &operator<<(raw_ostream &OS, const SymbolMap &Symbols);
77
78/// Render a SymbolDependenceMap entry.
79raw_ostream &operator<<(raw_ostream &OS,
80 const SymbolDependenceMap::value_type &KV);
81
82/// Render a SymbolDependendeMap.
83raw_ostream &operator<<(raw_ostream &OS, const SymbolDependenceMap &Deps);
84
85/// Render a MaterializationUnit.
86raw_ostream &operator<<(raw_ostream &OS, const MaterializationUnit &MU);
87
88/// Render a JITDylibSearchList.
89raw_ostream &operator<<(raw_ostream &OS, const JITDylibSearchList &JDs);
90
91/// Callback to notify client that symbols have been resolved.
92using SymbolsResolvedCallback = std::function<void(Expected<SymbolMap>)>;
93
94/// Callback to notify client that symbols are ready for execution.
95using SymbolsReadyCallback = std::function<void(Error)>;
96
97/// Callback to register the dependencies for a given query.
98using RegisterDependenciesFunction =
99 std::function<void(const SymbolDependenceMap &)>;
100
101/// This can be used as the value for a RegisterDependenciesFunction if there
102/// are no dependants to register with.
103extern RegisterDependenciesFunction NoDependenciesToRegister;
104
105/// Used to notify a JITDylib that the given set of symbols failed to
106/// materialize.
107class FailedToMaterialize : public ErrorInfo<FailedToMaterialize> {
108public:
109 static char ID;
110
111 FailedToMaterialize(SymbolNameSet Symbols);
112 std::error_code convertToErrorCode() const override;
113 void log(raw_ostream &OS) const override;
114 const SymbolNameSet &getSymbols() const { return Symbols; }
115
116private:
117 SymbolNameSet Symbols;
118};
119
120/// Used to notify clients when symbols can not be found during a lookup.
121class SymbolsNotFound : public ErrorInfo<SymbolsNotFound> {
122public:
123 static char ID;
124
125 SymbolsNotFound(SymbolNameSet Symbols);
126 std::error_code convertToErrorCode() const override;
127 void log(raw_ostream &OS) const override;
128 const SymbolNameSet &getSymbols() const { return Symbols; }
129
130private:
131 SymbolNameSet Symbols;
132};
133
134/// Used to notify clients that a set of symbols could not be removed.
135class SymbolsCouldNotBeRemoved : public ErrorInfo<SymbolsCouldNotBeRemoved> {
136public:
137 static char ID;
138
139 SymbolsCouldNotBeRemoved(SymbolNameSet Symbols);
140 std::error_code convertToErrorCode() const override;
141 void log(raw_ostream &OS) const override;
142 const SymbolNameSet &getSymbols() const { return Symbols; }
143
144private:
145 SymbolNameSet Symbols;
146};
147
148/// Tracks responsibility for materialization, and mediates interactions between
149/// MaterializationUnits and JDs.
150///
151/// An instance of this class is passed to MaterializationUnits when their
152/// materialize method is called. It allows MaterializationUnits to resolve and
153/// emit symbols, or abandon materialization by notifying any unmaterialized
154/// symbols of an error.
155class MaterializationResponsibility {
156 friend class MaterializationUnit;
157public:
158 MaterializationResponsibility(MaterializationResponsibility &&) = default;
159 MaterializationResponsibility &
160 operator=(MaterializationResponsibility &&) = delete;
161
162 /// Destruct a MaterializationResponsibility instance. In debug mode
163 /// this asserts that all symbols being tracked have been either
164 /// emitted or notified of an error.
165 ~MaterializationResponsibility();
166
167 /// Returns the target JITDylib that these symbols are being materialized
168 /// into.
169 JITDylib &getTargetJITDylib() const { return JD; }
170
171 /// Returns the VModuleKey for this instance.
172 VModuleKey getVModuleKey() const { return K; }
173
174 /// Returns the symbol flags map for this responsibility instance.
175 /// Note: The returned flags may have transient flags (Lazy, Materializing)
176 /// set. These should be stripped with JITSymbolFlags::stripTransientFlags
177 /// before using.
178 const SymbolFlagsMap &getSymbols() { return SymbolFlags; }
179
180 /// Returns the names of any symbols covered by this
181 /// MaterializationResponsibility object that have queries pending. This
182 /// information can be used to return responsibility for unrequested symbols
183 /// back to the JITDylib via the delegate method.
184 SymbolNameSet getRequestedSymbols() const;
185
186 /// Notifies the target JITDylib that the given symbols have been resolved.
187 /// This will update the given symbols' addresses in the JITDylib, and notify
188 /// any pending queries on the given symbols of their resolution. The given
189 /// symbols must be ones covered by this MaterializationResponsibility
190 /// instance. Individual calls to this method may resolve a subset of the
191 /// symbols, but all symbols must have been resolved prior to calling emit.
192 void resolve(const SymbolMap &Symbols);
193
194 /// Notifies the target JITDylib (and any pending queries on that JITDylib)
195 /// that all symbols covered by this MaterializationResponsibility instance
196 /// have been emitted.
197 void emit();
198
199 /// Adds new symbols to the JITDylib and this responsibility instance.
200 /// JITDylib entries start out in the materializing state.
201 ///
202 /// This method can be used by materialization units that want to add
203 /// additional symbols at materialization time (e.g. stubs, compile
204 /// callbacks, metadata).
205 Error defineMaterializing(const SymbolFlagsMap &SymbolFlags);
206
207 /// Notify all not-yet-emitted covered by this MaterializationResponsibility
208 /// instance that an error has occurred.
209 /// This will remove all symbols covered by this MaterializationResponsibilty
210 /// from the target JITDylib, and send an error to any queries waiting on
211 /// these symbols.
212 void failMaterialization();
213
214 /// Transfers responsibility to the given MaterializationUnit for all
215 /// symbols defined by that MaterializationUnit. This allows
216 /// materializers to break up work based on run-time information (e.g.
217 /// by introspecting which symbols have actually been looked up and
218 /// materializing only those).
219 void replace(std::unique_ptr<MaterializationUnit> MU);
220
221 /// Delegates responsibility for the given symbols to the returned
222 /// materialization responsibility. Useful for breaking up work between
223 /// threads, or different kinds of materialization processes.
224 MaterializationResponsibility delegate(const SymbolNameSet &Symbols,
225 VModuleKey NewKey = VModuleKey());
226
227 void addDependencies(const SymbolStringPtr &Name,
228 const SymbolDependenceMap &Dependencies);
229
230 /// Add dependencies that apply to all symbols covered by this instance.
231 void addDependenciesForAll(const SymbolDependenceMap &Dependencies);
232
233private:
234 /// Create a MaterializationResponsibility for the given JITDylib and
235 /// initial symbols.
236 MaterializationResponsibility(JITDylib &JD, SymbolFlagsMap SymbolFlags,
237 VModuleKey K);
238
239 JITDylib &JD;
240 SymbolFlagsMap SymbolFlags;
241 VModuleKey K;
242};
243
244/// A MaterializationUnit represents a set of symbol definitions that can
245/// be materialized as a group, or individually discarded (when
246/// overriding definitions are encountered).
247///
248/// MaterializationUnits are used when providing lazy definitions of symbols to
249/// JITDylibs. The JITDylib will call materialize when the address of a symbol
250/// is requested via the lookup method. The JITDylib will call discard if a
251/// stronger definition is added or already present.
252class MaterializationUnit {
253public:
254 MaterializationUnit(SymbolFlagsMap InitalSymbolFlags, VModuleKey K)
255 : SymbolFlags(std::move(InitalSymbolFlags)), K(std::move(K)) {}
256
257 virtual ~MaterializationUnit() {}
258
259 /// Return the name of this materialization unit. Useful for debugging
260 /// output.
261 virtual StringRef getName() const = 0;
262
263 /// Return the set of symbols that this source provides.
264 const SymbolFlagsMap &getSymbols() const { return SymbolFlags; }
265
266 /// Called by materialization dispatchers (see
267 /// ExecutionSession::DispatchMaterializationFunction) to trigger
268 /// materialization of this MaterializationUnit.
269 void doMaterialize(JITDylib &JD) {
270 materialize(MaterializationResponsibility(JD, std::move(SymbolFlags),
271 std::move(K)));
272 }
273
274 /// Called by JITDylibs to notify MaterializationUnits that the given symbol
275 /// has been overridden.
276 void doDiscard(const JITDylib &JD, const SymbolStringPtr &Name) {
277 SymbolFlags.erase(Name);
278 discard(JD, std::move(Name));
279 }
280
281protected:
282 SymbolFlagsMap SymbolFlags;
283 VModuleKey K;
284
285private:
286 virtual void anchor();
287
288 /// Implementations of this method should materialize all symbols
289 /// in the materialzation unit, except for those that have been
290 /// previously discarded.
291 virtual void materialize(MaterializationResponsibility R) = 0;
292
293 /// Implementations of this method should discard the given symbol
294 /// from the source (e.g. if the source is an LLVM IR Module and the
295 /// symbol is a function, delete the function body or mark it available
296 /// externally).
297 virtual void discard(const JITDylib &JD, const SymbolStringPtr &Name) = 0;
298};
299
300using MaterializationUnitList =
301 std::vector<std::unique_ptr<MaterializationUnit>>;
302
303/// A MaterializationUnit implementation for pre-existing absolute symbols.
304///
305/// All symbols will be resolved and marked ready as soon as the unit is
306/// materialized.
307class AbsoluteSymbolsMaterializationUnit : public MaterializationUnit {
308public:
309 AbsoluteSymbolsMaterializationUnit(SymbolMap Symbols, VModuleKey K);
310
311 StringRef getName() const override;
312
313private:
314 void materialize(MaterializationResponsibility R) override;
315 void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
316 static SymbolFlagsMap extractFlags(const SymbolMap &Symbols);
317
318 SymbolMap Symbols;
319};
320
321/// Create an AbsoluteSymbolsMaterializationUnit with the given symbols.
322/// Useful for inserting absolute symbols into a JITDylib. E.g.:
323/// \code{.cpp}
324/// JITDylib &JD = ...;
325/// SymbolStringPtr Foo = ...;
326/// JITEvaluatedSymbol FooSym = ...;
327/// if (auto Err = JD.define(absoluteSymbols({{Foo, FooSym}})))
328/// return Err;
329/// \endcode
330///
331inline std::unique_ptr<AbsoluteSymbolsMaterializationUnit>
332absoluteSymbols(SymbolMap Symbols, VModuleKey K = VModuleKey()) {
333 return llvm::make_unique<AbsoluteSymbolsMaterializationUnit>(
334 std::move(Symbols), std::move(K));
335}
336
337struct SymbolAliasMapEntry {
338 SymbolAliasMapEntry() = default;
339 SymbolAliasMapEntry(SymbolStringPtr Aliasee, JITSymbolFlags AliasFlags)
340 : Aliasee(std::move(Aliasee)), AliasFlags(AliasFlags) {}
341
342 SymbolStringPtr Aliasee;
343 JITSymbolFlags AliasFlags;
344};
345
346/// A map of Symbols to (Symbol, Flags) pairs.
347using SymbolAliasMap = DenseMap<SymbolStringPtr, SymbolAliasMapEntry>;
348
349/// A materialization unit for symbol aliases. Allows existing symbols to be
350/// aliased with alternate flags.
351class ReExportsMaterializationUnit : public MaterializationUnit {
352public:
353 /// SourceJD is allowed to be nullptr, in which case the source JITDylib is
354 /// taken to be whatever JITDylib these definitions are materialized in (and
355 /// MatchNonExported has no effect). This is useful for defining aliases
356 /// within a JITDylib.
357 ///
358 /// Note: Care must be taken that no sets of aliases form a cycle, as such
359 /// a cycle will result in a deadlock when any symbol in the cycle is
360 /// resolved.
361 ReExportsMaterializationUnit(JITDylib *SourceJD, bool MatchNonExported,
362 SymbolAliasMap Aliases, VModuleKey K);
363
364 StringRef getName() const override;
365
366private:
367 void materialize(MaterializationResponsibility R) override;
368 void discard(const JITDylib &JD, const SymbolStringPtr &Name) override;
369 static SymbolFlagsMap extractFlags(const SymbolAliasMap &Aliases);
370
371 JITDylib *SourceJD = nullptr;
372 bool MatchNonExported = false;
373 SymbolAliasMap Aliases;
374};
375
376/// Create a ReExportsMaterializationUnit with the given aliases.
377/// Useful for defining symbol aliases.: E.g., given a JITDylib JD containing
378/// symbols "foo" and "bar", we can define aliases "baz" (for "foo") and "qux"
379/// (for "bar") with: \code{.cpp}
380/// SymbolStringPtr Baz = ...;
381/// SymbolStringPtr Qux = ...;
382/// if (auto Err = JD.define(symbolAliases({
383/// {Baz, { Foo, JITSymbolFlags::Exported }},
384/// {Qux, { Bar, JITSymbolFlags::Weak }}}))
385/// return Err;
386/// \endcode
387inline std::unique_ptr<ReExportsMaterializationUnit>
388symbolAliases(SymbolAliasMap Aliases, VModuleKey K = VModuleKey()) {
389 return llvm::make_unique<ReExportsMaterializationUnit>(
390 nullptr, true, std::move(Aliases), std::move(K));
391}
392
393/// Create a materialization unit for re-exporting symbols from another JITDylib
394/// with alternative names/flags.
395/// If MatchNonExported is true then non-exported symbols from SourceJD can be
396/// re-exported. If it is false, attempts to re-export a non-exported symbol
397/// will result in a "symbol not found" error.
398inline std::unique_ptr<ReExportsMaterializationUnit>
399reexports(JITDylib &SourceJD, SymbolAliasMap Aliases,
400 bool MatchNonExported = false, VModuleKey K = VModuleKey()) {
401 return llvm::make_unique<ReExportsMaterializationUnit>(
402 &SourceJD, MatchNonExported, std::move(Aliases), std::move(K));
403}
404
405/// Build a SymbolAliasMap for the common case where you want to re-export
406/// symbols from another JITDylib with the same linkage/flags.
407Expected<SymbolAliasMap>
408buildSimpleReexportsAliasMap(JITDylib &SourceJD, const SymbolNameSet &Symbols);
409
410/// ReexportsGenerator can be used with JITDylib::setGenerator to automatically
411/// re-export a subset of the source JITDylib's symbols in the target.
412class ReexportsGenerator {
413public:
414 using SymbolPredicate = std::function<bool(SymbolStringPtr)>;
415
416 /// Create a reexports generator. If an Allow predicate is passed, only
417 /// symbols for which the predicate returns true will be reexported. If no
418 /// Allow predicate is passed, all symbols will be exported.
419 ReexportsGenerator(JITDylib &SourceJD, bool MatchNonExported = false,
420 SymbolPredicate Allow = SymbolPredicate());
421
422 SymbolNameSet operator()(JITDylib &JD, const SymbolNameSet &Names);
423
424private:
425 JITDylib &SourceJD;
426 bool MatchNonExported = false;
427 SymbolPredicate Allow;
428};
429
430/// A symbol query that returns results via a callback when results are
431/// ready.
432///
433/// makes a callback when all symbols are available.
434class AsynchronousSymbolQuery {
435 friend class ExecutionSession;
436 friend class JITDylib;
437 friend class JITSymbolResolverAdapter;
438
439public:
440
441 /// Create a query for the given symbols, notify-resolved and
442 /// notify-ready callbacks.
443 AsynchronousSymbolQuery(const SymbolNameSet &Symbols,
444 SymbolsResolvedCallback NotifySymbolsResolved,
445 SymbolsReadyCallback NotifySymbolsReady);
446
447 /// Set the resolved symbol information for the given symbol name.
448 void resolve(const SymbolStringPtr &Name, JITEvaluatedSymbol Sym);
449
450 /// Returns true if all symbols covered by this query have been
451 /// resolved.
452 bool isFullyResolved() const { return NotYetResolvedCount == 0; }
453
454 /// Call the NotifySymbolsResolved callback.
455 ///
456 /// This should only be called if all symbols covered by the query have been
457 /// resolved.
458 void handleFullyResolved();
459
460 /// Notify the query that a requested symbol is ready for execution.
461 void notifySymbolReady();
462
463 /// Returns true if all symbols covered by this query are ready.
464 bool isFullyReady() const { return NotYetReadyCount == 0; }
465
466 /// Calls the NotifySymbolsReady callback.
467 ///
468 /// This should only be called if all symbols covered by this query are ready.
469 void handleFullyReady();
470
471private:
472 void addQueryDependence(JITDylib &JD, SymbolStringPtr Name);
473
474 void removeQueryDependence(JITDylib &JD, const SymbolStringPtr &Name);
475
476 bool canStillFail();
477
478 void handleFailed(Error Err);
479
480 void detach();
481
482 SymbolsResolvedCallback NotifySymbolsResolved;
483 SymbolsReadyCallback NotifySymbolsReady;
484 SymbolDependenceMap QueryRegistrations;
485 SymbolMap ResolvedSymbols;
486 size_t NotYetResolvedCount;
487 size_t NotYetReadyCount;
488};
489
490/// A symbol table that supports asynchoronous symbol queries.
491///
492/// Represents a virtual shared object. Instances can not be copied or moved, so
493/// their addresses may be used as keys for resource management.
494/// JITDylib state changes must be made via an ExecutionSession to guarantee
495/// that they are synchronized with respect to other JITDylib operations.
496class JITDylib {
497 friend class AsynchronousSymbolQuery;
498 friend class ExecutionSession;
499 friend class MaterializationResponsibility;
500public:
501 using GeneratorFunction = std::function<SymbolNameSet(
502 JITDylib &Parent, const SymbolNameSet &Names)>;
503
504 using AsynchronousSymbolQuerySet =
505 std::set<std::shared_ptr<AsynchronousSymbolQuery>>;
506
507 JITDylib(const JITDylib &) = delete;
508 JITDylib &operator=(const JITDylib &) = delete;
509 JITDylib(JITDylib &&) = delete;
510 JITDylib &operator=(JITDylib &&) = delete;
511
512 /// Get the name for this JITDylib.
513 const std::string &getName() const { return JITDylibName; }
514
515 /// Get a reference to the ExecutionSession for this JITDylib.
516 ExecutionSession &getExecutionSession() const { return ES; }
517
518 /// Set a definition generator. If set, whenever a symbol fails to resolve
519 /// within this JITDylib, lookup and lookupFlags will pass the unresolved
520 /// symbols set to the definition generator. The generator can optionally
521 /// add a definition for the unresolved symbols to the dylib.
522 void setGenerator(GeneratorFunction DefGenerator) {
523 this->DefGenerator = std::move(DefGenerator);
524 }
525
526 /// Set the search order to be used when fixing up definitions in JITDylib.
527 /// This will replace the previous search order, and apply to any symbol
528 /// resolutions made for definitions in this JITDylib after the call to
529 /// setSearchOrder (even if the definition itself was added before the
530 /// call).
531 ///
532 /// If SearchThisJITDylibFirst is set, which by default it is, then this
533 /// JITDylib will add itself to the beginning of the SearchOrder (Clients
534 /// should *not* put this JITDylib in the list in this case, to avoid
535 /// redundant lookups).
536 ///
537 /// If SearchThisJITDylibFirst is false then the search order will be used as
538 /// given. The main motivation for this feature is to support deliberate
539 /// shadowing of symbols in this JITDylib by a facade JITDylib. For example,
540 /// the facade may resolve function names to stubs, and the stubs may compile
541 /// lazily by looking up symbols in this dylib. Adding the facade dylib
542 /// as the first in the search order (instead of this dylib) ensures that
543 /// definitions within this dylib resolve to the lazy-compiling stubs,
544 /// rather than immediately materializing the definitions in this dylib.
545 void setSearchOrder(JITDylibSearchList NewSearchOrder,
546 bool SearchThisJITDylibFirst = true,
547 bool MatchNonExportedInThisDylib = true);
548
549 /// Add the given JITDylib to the search order for definitions in this
550 /// JITDylib.
551 void addToSearchOrder(JITDylib &JD, bool MatcNonExported = false);
552
553 /// Replace OldJD with NewJD in the search order if OldJD is present.
554 /// Otherwise this operation is a no-op.
555 void replaceInSearchOrder(JITDylib &OldJD, JITDylib &NewJD,
556 bool MatchNonExported = false);
557
558 /// Remove the given JITDylib from the search order for this JITDylib if it is
559 /// present. Otherwise this operation is a no-op.
560 void removeFromSearchOrder(JITDylib &JD);
561
562 /// Do something with the search order (run under the session lock).
563 template <typename Func>
564 auto withSearchOrderDo(Func &&F)
565 -> decltype(F(std::declval<const JITDylibSearchList &>()));
566
567 /// Define all symbols provided by the materialization unit to be part of this
568 /// JITDylib.
569 ///
570 /// This overload always takes ownership of the MaterializationUnit. If any
571 /// errors occur, the MaterializationUnit consumed.
572 template <typename MaterializationUnitType>
573 Error define(std::unique_ptr<MaterializationUnitType> &&MU);
574
575 /// Define all symbols provided by the materialization unit to be part of this
576 /// JITDylib.
577 ///
578 /// This overload only takes ownership of the MaterializationUnit no error is
579 /// generated. If an error occurs, ownership remains with the caller. This
580 /// may allow the caller to modify the MaterializationUnit to correct the
581 /// issue, then re-call define.
582 template <typename MaterializationUnitType>
583 Error define(std::unique_ptr<MaterializationUnitType> &MU);
584
585 /// Tries to remove the given symbols.
586 ///
587 /// If any symbols are not defined in this JITDylib this method will return
588 /// a SymbolsNotFound error covering the missing symbols.
589 ///
590 /// If all symbols are found but some symbols are in the process of being
591 /// materialized this method will return a SymbolsCouldNotBeRemoved error.
592 ///
593 /// On success, all symbols are removed. On failure, the JITDylib state is
594 /// left unmodified (no symbols are removed).
595 Error remove(const SymbolNameSet &Names);
596
597 /// Search the given JITDylib for the symbols in Symbols. If found, store
598 /// the flags for each symbol in Flags. Returns any unresolved symbols.
599 SymbolFlagsMap lookupFlags(const SymbolNameSet &Names);
600
601 /// Dump current JITDylib state to OS.
602 void dump(raw_ostream &OS);
603
604 /// FIXME: Remove this when we remove the old ORC layers.
605 /// Search the given JITDylibs in order for the symbols in Symbols. Results
606 /// (once they become available) will be returned via the given Query.
607 ///
608 /// If any symbol is not found then the unresolved symbols will be returned,
609 /// and the query will not be applied. The Query is not failed and can be
610 /// re-used in a subsequent lookup once the symbols have been added, or
611 /// manually failed.
612 SymbolNameSet legacyLookup(std::shared_ptr<AsynchronousSymbolQuery> Q,
613 SymbolNameSet Names);
614
615private:
616 using AsynchronousSymbolQueryList =
617 std::vector<std::shared_ptr<AsynchronousSymbolQuery>>;
618
619 struct UnmaterializedInfo {
620 UnmaterializedInfo(std::unique_ptr<MaterializationUnit> MU)
621 : MU(std::move(MU)) {}
622
623 std::unique_ptr<MaterializationUnit> MU;
624 };
625
626 using UnmaterializedInfosMap =
627 DenseMap<SymbolStringPtr, std::shared_ptr<UnmaterializedInfo>>;
628
629 struct MaterializingInfo {
630 AsynchronousSymbolQueryList PendingQueries;
631 SymbolDependenceMap Dependants;
632 SymbolDependenceMap UnemittedDependencies;
633 bool IsEmitted = false;
634 };
635
636 using MaterializingInfosMap = DenseMap<SymbolStringPtr, MaterializingInfo>;
637
638 using LookupImplActionFlags = enum {
639 None = 0,
640 NotifyFullyResolved = 1 << 0U,
641 NotifyFullyReady = 1 << 1U,
642 LLVM_MARK_AS_BITMASK_ENUM(NotifyFullyReady)LLVM_BITMASK_LARGEST_ENUMERATOR = NotifyFullyReady
643 };
644
645 JITDylib(ExecutionSession &ES, std::string Name);
646
647 Error defineImpl(MaterializationUnit &MU);
648
649 SymbolNameSet lookupFlagsImpl(SymbolFlagsMap &Flags,
650 const SymbolNameSet &Names);
651
652 void lodgeQuery(std::shared_ptr<AsynchronousSymbolQuery> &Q,
653 SymbolNameSet &Unresolved, bool MatchNonExported,
654 MaterializationUnitList &MUs);
655
656 void lodgeQueryImpl(std::shared_ptr<AsynchronousSymbolQuery> &Q,
657 SymbolNameSet &Unresolved, bool MatchNonExported,
658 MaterializationUnitList &MUs);
659
660 LookupImplActionFlags
661 lookupImpl(std::shared_ptr<AsynchronousSymbolQuery> &Q,
662 std::vector<std::unique_ptr<MaterializationUnit>> &MUs,
663 SymbolNameSet &Unresolved);
664
665 void detachQueryHelper(AsynchronousSymbolQuery &Q,
666 const SymbolNameSet &QuerySymbols);
667
668 void transferEmittedNodeDependencies(MaterializingInfo &DependantMI,
669 const SymbolStringPtr &DependantName,
670 MaterializingInfo &EmittedMI);
671
672 Error defineMaterializing(const SymbolFlagsMap &SymbolFlags);
673
674 void replace(std::unique_ptr<MaterializationUnit> MU);
675
676 SymbolNameSet getRequestedSymbols(const SymbolFlagsMap &SymbolFlags) const;
677
678 void addDependencies(const SymbolStringPtr &Name,
679 const SymbolDependenceMap &Dependants);
680
681 void resolve(const SymbolMap &Resolved);
682
683 void emit(const SymbolFlagsMap &Emitted);
684
685 void notifyFailed(const SymbolNameSet &FailedSymbols);
686
687 ExecutionSession &ES;
688 std::string JITDylibName;
689 SymbolMap Symbols;
690 UnmaterializedInfosMap UnmaterializedInfos;
691 MaterializingInfosMap MaterializingInfos;
692 GeneratorFunction DefGenerator;
693 JITDylibSearchList SearchOrder;
694};
695
696/// An ExecutionSession represents a running JIT program.
697class ExecutionSession {
698 // FIXME: Remove this when we remove the old ORC layers.
699 friend class JITDylib;
700
701public:
702 /// For reporting errors.
703 using ErrorReporter = std::function<void(Error)>;
704
705 /// For dispatching MaterializationUnit::materialize calls.
706 using DispatchMaterializationFunction = std::function<void(
707 JITDylib &JD, std::unique_ptr<MaterializationUnit> MU)>;
708
709 /// Construct an ExecutionSession.
710 ///
711 /// SymbolStringPools may be shared between ExecutionSessions.
712 ExecutionSession(std::shared_ptr<SymbolStringPool> SSP = nullptr);
713
714 /// Add a symbol name to the SymbolStringPool and return a pointer to it.
715 SymbolStringPtr intern(StringRef SymName) { return SSP->intern(SymName); }
716
717 /// Returns a shared_ptr to the SymbolStringPool for this ExecutionSession.
718 std::shared_ptr<SymbolStringPool> getSymbolStringPool() const { return SSP; }
719
720 /// Run the given lambda with the session mutex locked.
721 template <typename Func> auto runSessionLocked(Func &&F) -> decltype(F()) {
722 std::lock_guard<std::recursive_mutex> Lock(SessionMutex);
723 return F();
3
Calling 'operator()'
724 }
725
726 /// Get the "main" JITDylib, which is created automatically on construction of
727 /// the ExecutionSession.
728 JITDylib &getMainJITDylib();
729
730 /// Add a new JITDylib to this ExecutionSession.
731 JITDylib &createJITDylib(std::string Name,
732 bool AddToMainDylibSearchOrder = true);
733
734 /// Allocate a module key for a new module to add to the JIT.
735 VModuleKey allocateVModule() {
736 return runSessionLocked([this]() { return ++LastKey; });
737 }
738
739 /// Return a module key to the ExecutionSession so that it can be
740 /// re-used. This should only be done once all resources associated
741 /// with the original key have been released.
742 void releaseVModule(VModuleKey Key) { /* FIXME: Recycle keys */
743 }
744
745 /// Set the error reporter function.
746 ExecutionSession &setErrorReporter(ErrorReporter ReportError) {
747 this->ReportError = std::move(ReportError);
748 return *this;
749 }
750
751 /// Report a error for this execution session.
752 ///
753 /// Unhandled errors can be sent here to log them.
754 void reportError(Error Err) { ReportError(std::move(Err)); }
755
756 /// Set the materialization dispatch function.
757 ExecutionSession &setDispatchMaterialization(
758 DispatchMaterializationFunction DispatchMaterialization) {
759 this->DispatchMaterialization = std::move(DispatchMaterialization);
760 return *this;
761 }
762
763 void legacyFailQuery(AsynchronousSymbolQuery &Q, Error Err);
764
765 using LegacyAsyncLookupFunction = std::function<SymbolNameSet(
766 std::shared_ptr<AsynchronousSymbolQuery> Q, SymbolNameSet Names)>;
767
768 /// A legacy lookup function for JITSymbolResolverAdapter.
769 /// Do not use -- this will be removed soon.
770 Expected<SymbolMap>
771 legacyLookup(LegacyAsyncLookupFunction AsyncLookup, SymbolNameSet Names,
772 bool WaiUntilReady,
773 RegisterDependenciesFunction RegisterDependencies);
774
775 /// Search the given JITDylib list for the given symbols.
776 ///
777 /// SearchOrder lists the JITDylibs to search. For each dylib, the associated
778 /// boolean indicates whether the search should match against non-exported
779 /// (hidden visibility) symbols in that dylib (true means match against
780 /// non-exported symbols, false means do not match).
781 ///
782 /// The OnResolve callback will be called once all requested symbols are
783 /// resolved, or if an error occurs prior to resolution.
784 ///
785 /// The OnReady callback will be called once all requested symbols are ready,
786 /// or if an error occurs after resolution but before all symbols are ready.
787 ///
788 /// If all symbols are found, the RegisterDependencies function will be called
789 /// while the session lock is held. This gives clients a chance to register
790 /// dependencies for on the queried symbols for any symbols they are
791 /// materializing (if a MaterializationResponsibility instance is present,
792 /// this can be implemented by calling
793 /// MaterializationResponsibility::addDependencies). If there are no
794 /// dependenant symbols for this query (e.g. it is being made by a top level
795 /// client to get an address to call) then the value NoDependenciesToRegister
796 /// can be used.
797 void lookup(const JITDylibSearchList &SearchOrder, SymbolNameSet Symbols,
798 SymbolsResolvedCallback OnResolve, SymbolsReadyCallback OnReady,
799 RegisterDependenciesFunction RegisterDependencies);
800
801 /// Blocking version of lookup above. Returns the resolved symbol map.
802 /// If WaitUntilReady is true (the default), will not return until all
803 /// requested symbols are ready (or an error occurs). If WaitUntilReady is
804 /// false, will return as soon as all requested symbols are resolved,
805 /// or an error occurs. If WaitUntilReady is false and an error occurs
806 /// after resolution, the function will return a success value, but the
807 /// error will be reported via reportErrors.
808 Expected<SymbolMap> lookup(const JITDylibSearchList &SearchOrder,
809 const SymbolNameSet &Symbols,
810 RegisterDependenciesFunction RegisterDependencies =
811 NoDependenciesToRegister,
812 bool WaitUntilReady = true);
813
814 /// Convenience version of blocking lookup.
815 /// Searches each of the JITDylibs in the search order in turn for the given
816 /// symbol.
817 Expected<JITEvaluatedSymbol> lookup(const JITDylibSearchList &SearchOrder,
818 SymbolStringPtr Symbol);
819
820 /// Convenience version of blocking lookup.
821 /// Searches each of the JITDylibs in the search order in turn for the given
822 /// symbol. The search will not find non-exported symbols.
823 Expected<JITEvaluatedSymbol> lookup(ArrayRef<JITDylib *> SearchOrder,
824 SymbolStringPtr Symbol);
825
826 /// Convenience version of blocking lookup.
827 /// Searches each of the JITDylibs in the search order in turn for the given
828 /// symbol. The search will not find non-exported symbols.
829 Expected<JITEvaluatedSymbol> lookup(ArrayRef<JITDylib *> SearchOrder,
830 StringRef Symbol);
831
832 /// Materialize the given unit.
833 void dispatchMaterialization(JITDylib &JD,
834 std::unique_ptr<MaterializationUnit> MU) {
835 LLVM_DEBUG(runSessionLocked([&]() {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { runSessionLocked([&]() { dbgs() << "Compiling, for "
<< JD.getName() << ", " << *MU << "\n"
; });; } } while (false)
836 dbgs() << "Compiling, for " << JD.getName() << ", " << *MUdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { runSessionLocked([&]() { dbgs() << "Compiling, for "
<< JD.getName() << ", " << *MU << "\n"
; });; } } while (false)
837 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { runSessionLocked([&]() { dbgs() << "Compiling, for "
<< JD.getName() << ", " << *MU << "\n"
; });; } } while (false)
838 });)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("orc")) { runSessionLocked([&]() { dbgs() << "Compiling, for "
<< JD.getName() << ", " << *MU << "\n"
; });; } } while (false)
;
839 DispatchMaterialization(JD, std::move(MU));
840 }
841
842 /// Dump the state of all the JITDylibs in this session.
843 void dump(raw_ostream &OS);
844
845private:
846 static void logErrorsToStdErr(Error Err) {
847 logAllUnhandledErrors(std::move(Err), errs(), "JIT session error: ");
848 }
849
850 static void
851 materializeOnCurrentThread(JITDylib &JD,
852 std::unique_ptr<MaterializationUnit> MU) {
853 MU->doMaterialize(JD);
854 }
855
856 void runOutstandingMUs();
857
858 mutable std::recursive_mutex SessionMutex;
859 std::shared_ptr<SymbolStringPool> SSP;
860 VModuleKey LastKey = 0;
861 ErrorReporter ReportError = logErrorsToStdErr;
862 DispatchMaterializationFunction DispatchMaterialization =
863 materializeOnCurrentThread;
864
865 std::vector<std::unique_ptr<JITDylib>> JDs;
866
867 // FIXME: Remove this (and runOutstandingMUs) once the linking layer works
868 // with callbacks from asynchronous queries.
869 mutable std::recursive_mutex OutstandingMUsMutex;
870 std::vector<std::pair<JITDylib *, std::unique_ptr<MaterializationUnit>>>
871 OutstandingMUs;
872};
873
874template <typename Func>
875auto JITDylib::withSearchOrderDo(Func &&F)
876 -> decltype(F(std::declval<const JITDylibSearchList &>())) {
877 return ES.runSessionLocked([&]() { return F(SearchOrder); });
878}
879
880template <typename MaterializationUnitType>
881Error JITDylib::define(std::unique_ptr<MaterializationUnitType> &&MU) {
882 assert(MU && "Can not define with a null MU")((MU && "Can not define with a null MU") ? static_cast
<void> (0) : __assert_fail ("MU && \"Can not define with a null MU\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ExecutionEngine/Orc/Core.h"
, 882, __PRETTY_FUNCTION__))
;
883 return ES.runSessionLocked([&, this]() -> Error {
884 if (auto Err = defineImpl(*MU))
885 return Err;
886
887 /// defineImpl succeeded.
888 auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU));
889 for (auto &KV : UMI->MU->getSymbols())
890 UnmaterializedInfos[KV.first] = UMI;
891
892 return Error::success();
893 });
894}
895
896template <typename MaterializationUnitType>
897Error JITDylib::define(std::unique_ptr<MaterializationUnitType> &MU) {
898 assert(MU && "Can not define with a null MU")((MU && "Can not define with a null MU") ? static_cast
<void> (0) : __assert_fail ("MU && \"Can not define with a null MU\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ExecutionEngine/Orc/Core.h"
, 898, __PRETTY_FUNCTION__))
;
899
900 return ES.runSessionLocked([&, this]() -> Error {
901 if (auto Err = defineImpl(*MU))
902 return Err;
903
904 /// defineImpl succeeded.
905 auto UMI = std::make_shared<UnmaterializedInfo>(std::move(MU));
906 for (auto &KV : UMI->MU->getSymbols())
907 UnmaterializedInfos[KV.first] = UMI;
908
909 return Error::success();
910 });
911}
912
913/// Mangles symbol names then uniques them in the context of an
914/// ExecutionSession.
915class MangleAndInterner {
916public:
917 MangleAndInterner(ExecutionSession &ES, const DataLayout &DL);
918 SymbolStringPtr operator()(StringRef Name);
919
920private:
921 ExecutionSession &ES;
922 const DataLayout &DL;
923};
924
925} // End namespace orc
926} // End namespace llvm
927
928#undef DEBUG_TYPE"orc" // "orc"
929
930#endif // LLVM_EXECUTIONENGINE_ORC_CORE_H

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
11
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
7
Calling 'make_unique<llvm::orc::DuplicateDefinition, llvm::StringRef>'
9
Returned allocated memory
10
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This is useful in the base level of your program to allow clean termination
957/// (allowing clean deallocation of resources, etc.), while reporting error
958/// information to the user.
959void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner);
960
961/// Write all error messages (if any) in E to a string. The newline character
962/// is used to separate error messages.
963inline std::string toString(Error E) {
964 SmallVector<std::string, 2> Errors;
965 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
966 Errors.push_back(EI.message());
967 });
968 return join(Errors.begin(), Errors.end(), "\n");
969}
970
971/// Consume a Error without doing anything. This method should be used
972/// only where an error can be considered a reasonable and expected return
973/// value.
974///
975/// Uses of this method are potentially indicative of design problems: If it's
976/// legitimate to do nothing while processing an "error", the error-producer
977/// might be more clearly refactored to return an Optional<T>.
978inline void consumeError(Error Err) {
979 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
980}
981
982/// Helper for converting an Error to a bool.
983///
984/// This method returns true if Err is in an error state, or false if it is
985/// in a success state. Puts Err in a checked state in both cases (unlike
986/// Error::operator bool(), which only does this for success states).
987inline bool errorToBool(Error Err) {
988 bool IsError = static_cast<bool>(Err);
989 if (IsError)
990 consumeError(std::move(Err));
991 return IsError;
992}
993
994/// Helper for Errors used as out-parameters.
995///
996/// This helper is for use with the Error-as-out-parameter idiom, where an error
997/// is passed to a function or method by reference, rather than being returned.
998/// In such cases it is helpful to set the checked bit on entry to the function
999/// so that the error can be written to (unchecked Errors abort on assignment)
1000/// and clear the checked bit on exit so that clients cannot accidentally forget
1001/// to check the result. This helper performs these actions automatically using
1002/// RAII:
1003///
1004/// @code{.cpp}
1005/// Result foo(Error &Err) {
1006/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1007/// // <body of foo>
1008/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1009/// }
1010/// @endcode
1011///
1012/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1013/// used with optional Errors (Error pointers that are allowed to be null). If
1014/// ErrorAsOutParameter took an Error reference, an instance would have to be
1015/// created inside every condition that verified that Error was non-null. By
1016/// taking an Error pointer we can just create one instance at the top of the
1017/// function.
1018class ErrorAsOutParameter {
1019public:
1020 ErrorAsOutParameter(Error *Err) : Err(Err) {
1021 // Raise the checked bit if Err is success.
1022 if (Err)
1023 (void)!!*Err;
1024 }
1025
1026 ~ErrorAsOutParameter() {
1027 // Clear the checked bit.
1028 if (Err && !*Err)
1029 *Err = Error::success();
1030 }
1031
1032private:
1033 Error *Err;
1034};
1035
1036/// Helper for Expected<T>s used as out-parameters.
1037///
1038/// See ErrorAsOutParameter.
1039template <typename T>
1040class ExpectedAsOutParameter {
1041public:
1042 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1043 : ValOrErr(ValOrErr) {
1044 if (ValOrErr)
1045 (void)!!*ValOrErr;
1046 }
1047
1048 ~ExpectedAsOutParameter() {
1049 if (ValOrErr)
1050 ValOrErr->setUnchecked();
1051 }
1052
1053private:
1054 Expected<T> *ValOrErr;
1055};
1056
1057/// This class wraps a std::error_code in a Error.
1058///
1059/// This is useful if you're writing an interface that returns a Error
1060/// (or Expected) and you want to call code that still returns
1061/// std::error_codes.
1062class ECError : public ErrorInfo<ECError> {
1063 friend Error errorCodeToError(std::error_code);
1064
1065public:
1066 void setErrorCode(std::error_code EC) { this->EC = EC; }
1067 std::error_code convertToErrorCode() const override { return EC; }
1068 void log(raw_ostream &OS) const override { OS << EC.message(); }
1069
1070 // Used by ErrorInfo::classID.
1071 static char ID;
1072
1073protected:
1074 ECError() = default;
1075 ECError(std::error_code EC) : EC(EC) {}
1076
1077 std::error_code EC;
1078};
1079
1080/// The value returned by this function can be returned from convertToErrorCode
1081/// for Error values where no sensible translation to std::error_code exists.
1082/// It should only be used in this situation, and should never be used where a
1083/// sensible conversion to std::error_code is available, as attempts to convert
1084/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1085///error to try to convert such a value).
1086std::error_code inconvertibleErrorCode();
1087
1088/// Helper for converting an std::error_code to a Error.
1089Error errorCodeToError(std::error_code EC);
1090
1091/// Helper for converting an ECError to a std::error_code.
1092///
1093/// This method requires that Err be Error() or an ECError, otherwise it
1094/// will trigger a call to abort().
1095std::error_code errorToErrorCode(Error Err);
1096
1097/// Convert an ErrorOr<T> to an Expected<T>.
1098template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1099 if (auto EC = EO.getError())
1100 return errorCodeToError(EC);
1101 return std::move(*EO);
1102}
1103
1104/// Convert an Expected<T> to an ErrorOr<T>.
1105template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1106 if (auto Err = E.takeError())
1107 return errorToErrorCode(std::move(Err));
1108 return std::move(*E);
1109}
1110
1111/// This class wraps a string in an Error.
1112///
1113/// StringError is useful in cases where the client is not expected to be able
1114/// to consume the specific error message programmatically (for example, if the
1115/// error message is to be presented to the user).
1116///
1117/// StringError can also be used when additional information is to be printed
1118/// along with a error_code message. Depending on the constructor called, this
1119/// class can either display:
1120/// 1. the error_code message (ECError behavior)
1121/// 2. a string
1122/// 3. the error_code message and a string
1123///
1124/// These behaviors are useful when subtyping is required; for example, when a
1125/// specific library needs an explicit error type. In the example below,
1126/// PDBError is derived from StringError:
1127///
1128/// @code{.cpp}
1129/// Expected<int> foo() {
1130/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1131/// "Additional information");
1132/// }
1133/// @endcode
1134///
1135class StringError : public ErrorInfo<StringError> {
1136public:
1137 static char ID;
1138
1139 // Prints EC + S and converts to EC
1140 StringError(std::error_code EC, const Twine &S = Twine());
1141
1142 // Prints S and converts to EC
1143 StringError(const Twine &S, std::error_code EC);
1144
1145 void log(raw_ostream &OS) const override;
1146 std::error_code convertToErrorCode() const override;
1147
1148 const std::string &getMessage() const { return Msg; }
1149
1150private:
1151 std::string Msg;
1152 std::error_code EC;
1153 const bool PrintMsgOnly = false;
1154};
1155
1156/// Create formatted StringError object.
1157template <typename... Ts>
1158Error createStringError(std::error_code EC, char const *Fmt,
1159 const Ts &... Vals) {
1160 std::string Buffer;
1161 raw_string_ostream Stream(Buffer);
1162 Stream << format(Fmt, Vals...);
1163 return make_error<StringError>(Stream.str(), EC);
1164}
1165
1166Error createStringError(std::error_code EC, char const *Msg);
1167
1168/// This class wraps a filename and another Error.
1169///
1170/// In some cases, an error needs to live along a 'source' name, in order to
1171/// show more detailed information to the user.
1172class FileError final : public ErrorInfo<FileError> {
1173
1174 friend Error createFileError(std::string, Error);
1175
1176public:
1177 void log(raw_ostream &OS) const override {
1178 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1178, __PRETTY_FUNCTION__))
;
1179 OS << "'" << FileName << "': ";
1180 Err->log(OS);
1181 }
1182
1183 Error takeError() { return Error(std::move(Err)); }
1184
1185 std::error_code convertToErrorCode() const override;
1186
1187 // Used by ErrorInfo::classID.
1188 static char ID;
1189
1190private:
1191 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1192 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1192, __PRETTY_FUNCTION__))
;
1193 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
1194 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/Support/Error.h"
, 1194, __PRETTY_FUNCTION__))
;
1195 FileName = F;
1196 Err = std::move(E);
1197 }
1198
1199 static Error build(std::string F, Error E) {
1200 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1201 }
1202
1203 std::string FileName;
1204 std::unique_ptr<ErrorInfoBase> Err;
1205};
1206
1207/// Concatenate a source file path and/or name with an Error. The resulting
1208/// Error is unchecked.
1209inline Error createFileError(std::string F, Error E) {
1210 return FileError::build(F, std::move(E));
1211}
1212
1213Error createFileError(std::string F, ErrorSuccess) = delete;
1214
1215/// Helper for check-and-exit error handling.
1216///
1217/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1218///
1219class ExitOnError {
1220public:
1221 /// Create an error on exit helper.
1222 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1223 : Banner(std::move(Banner)),
1224 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1225
1226 /// Set the banner string for any errors caught by operator().
1227 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1228
1229 /// Set the exit-code mapper function.
1230 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1231 this->GetExitCode = std::move(GetExitCode);
1232 }
1233
1234 /// Check Err. If it's in a failure state log the error(s) and exit.
1235 void operator()(Error Err) const { checkError(std::move(Err)); }
1236
1237 /// Check E. If it's in a success state then return the contained value. If
1238 /// it's in a failure state log the error(s) and exit.
1239 template <typename T> T operator()(Expected<T> &&E) const {
1240 checkError(E.takeError());
1241 return std::move(*E);
1242 }
1243
1244 /// Check E. If it's in a success state then return the contained reference. If
1245 /// it's in a failure state log the error(s) and exit.
1246 template <typename T> T& operator()(Expected<T&> &&E) const {
1247 checkError(E.takeError());
1248 return *E;
1249 }
1250
1251private:
1252 void checkError(Error Err) const {
1253 if (Err) {
1254 int ExitCode = GetExitCode(Err);
1255 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1256 exit(ExitCode);
1257 }
1258 }
1259
1260 std::string Banner;
1261 std::function<int(const Error &)> GetExitCode;
1262};
1263
1264/// Conversion from Error to LLVMErrorRef for C error bindings.
1265inline LLVMErrorRef wrap(Error Err) {
1266 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1267}
1268
1269/// Conversion from LLVMErrorRef to Error for C error bindings.
1270inline Error unwrap(LLVMErrorRef ErrRef) {
1271 return Error(std::unique_ptr<ErrorInfoBase>(
1272 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1273}
1274
1275} // end namespace llvm
1276
1277#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74//===----------------------------------------------------------------------===//
75// Extra additions to <functional>
76//===----------------------------------------------------------------------===//
77
78template <class Ty> struct identity {
79 using argument_type = Ty;
80
81 Ty &operator()(Ty &self) const {
82 return self;
83 }
84 const Ty &operator()(const Ty &self) const {
85 return self;
86 }
87};
88
89template <class Ty> struct less_ptr {
90 bool operator()(const Ty* left, const Ty* right) const {
91 return *left < *right;
92 }
93};
94
95template <class Ty> struct greater_ptr {
96 bool operator()(const Ty* left, const Ty* right) const {
97 return *right < *left;
98 }
99};
100
101/// An efficient, type-erasing, non-owning reference to a callable. This is
102/// intended for use as the type of a function parameter that is not used
103/// after the function in question returns.
104///
105/// This class does not own the callable, so it is not in general safe to store
106/// a function_ref.
107template<typename Fn> class function_ref;
108
109template<typename Ret, typename ...Params>
110class function_ref<Ret(Params...)> {
111 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
112 intptr_t callable;
113
114 template<typename Callable>
115 static Ret callback_fn(intptr_t callable, Params ...params) {
116 return (*reinterpret_cast<Callable*>(callable))(
117 std::forward<Params>(params)...);
118 }
119
120public:
121 function_ref() = default;
122 function_ref(std::nullptr_t) {}
123
124 template <typename Callable>
125 function_ref(Callable &&callable,
126 typename std::enable_if<
127 !std::is_same<typename std::remove_reference<Callable>::type,
128 function_ref>::value>::type * = nullptr)
129 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
130 callable(reinterpret_cast<intptr_t>(&callable)) {}
131
132 Ret operator()(Params ...params) const {
133 return callback(callable, std::forward<Params>(params)...);
134 }
135
136 operator bool() const { return callback; }
137};
138
139// deleter - Very very very simple method that is used to invoke operator
140// delete on something. It is used like this:
141//
142// for_each(V.begin(), B.end(), deleter<Interval>);
143template <class T>
144inline void deleter(T *Ptr) {
145 delete Ptr;
146}
147
148//===----------------------------------------------------------------------===//
149// Extra additions to <iterator>
150//===----------------------------------------------------------------------===//
151
152namespace adl_detail {
153
154using std::begin;
155
156template <typename ContainerTy>
157auto adl_begin(ContainerTy &&container)
158 -> decltype(begin(std::forward<ContainerTy>(container))) {
159 return begin(std::forward<ContainerTy>(container));
160}
161
162using std::end;
163
164template <typename ContainerTy>
165auto adl_end(ContainerTy &&container)
166 -> decltype(end(std::forward<ContainerTy>(container))) {
167 return end(std::forward<ContainerTy>(container));
168}
169
170using std::swap;
171
172template <typename T>
173void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
174 std::declval<T>()))) {
175 swap(std::forward<T>(lhs), std::forward<T>(rhs));
176}
177
178} // end namespace adl_detail
179
180template <typename ContainerTy>
181auto adl_begin(ContainerTy &&container)
182 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
183 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
184}
185
186template <typename ContainerTy>
187auto adl_end(ContainerTy &&container)
188 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
189 return adl_detail::adl_end(std::forward<ContainerTy>(container));
190}
191
192template <typename T>
193void adl_swap(T &&lhs, T &&rhs) noexcept(
194 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
195 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
196}
197
198// mapped_iterator - This is a simple iterator adapter that causes a function to
199// be applied whenever operator* is invoked on the iterator.
200
201template <typename ItTy, typename FuncTy,
202 typename FuncReturnTy =
203 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
204class mapped_iterator
205 : public iterator_adaptor_base<
206 mapped_iterator<ItTy, FuncTy>, ItTy,
207 typename std::iterator_traits<ItTy>::iterator_category,
208 typename std::remove_reference<FuncReturnTy>::type> {
209public:
210 mapped_iterator(ItTy U, FuncTy F)
211 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
212
213 ItTy getCurrent() { return this->I; }
214
215 FuncReturnTy operator*() { return F(*this->I); }
216
217private:
218 FuncTy F;
219};
220
221// map_iterator - Provide a convenient way to create mapped_iterators, just like
222// make_pair is useful for creating pairs...
223template <class ItTy, class FuncTy>
224inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
225 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
226}
227
228/// Helper to determine if type T has a member called rbegin().
229template <typename Ty> class has_rbegin_impl {
230 using yes = char[1];
231 using no = char[2];
232
233 template <typename Inner>
234 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
235
236 template <typename>
237 static no& test(...);
238
239public:
240 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
241};
242
243/// Metafunction to determine if T& or T has a member called rbegin().
244template <typename Ty>
245struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
246};
247
248// Returns an iterator_range over the given container which iterates in reverse.
249// Note that the container must have rbegin()/rend() methods for this to work.
250template <typename ContainerTy>
251auto reverse(ContainerTy &&C,
252 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
253 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
254 return make_range(C.rbegin(), C.rend());
255}
256
257// Returns a std::reverse_iterator wrapped around the given iterator.
258template <typename IteratorTy>
259std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
260 return std::reverse_iterator<IteratorTy>(It);
261}
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have begin()/end() methods which return
265// bidirectional iterators for this to work.
266template <typename ContainerTy>
267auto reverse(
268 ContainerTy &&C,
269 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
270 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
271 llvm::make_reverse_iterator(std::begin(C)))) {
272 return make_range(llvm::make_reverse_iterator(std::end(C)),
273 llvm::make_reverse_iterator(std::begin(C)));
274}
275
276/// An iterator adaptor that filters the elements of given inner iterators.
277///
278/// The predicate parameter should be a callable object that accepts the wrapped
279/// iterator's reference type and returns a bool. When incrementing or
280/// decrementing the iterator, it will call the predicate on each element and
281/// skip any where it returns false.
282///
283/// \code
284/// int A[] = { 1, 2, 3, 4 };
285/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
286/// // R contains { 1, 3 }.
287/// \endcode
288///
289/// Note: filter_iterator_base implements support for forward iteration.
290/// filter_iterator_impl exists to provide support for bidirectional iteration,
291/// conditional on whether the wrapped iterator supports it.
292template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
293class filter_iterator_base
294 : public iterator_adaptor_base<
295 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
296 WrappedIteratorT,
297 typename std::common_type<
298 IterTag, typename std::iterator_traits<
299 WrappedIteratorT>::iterator_category>::type> {
300 using BaseT = iterator_adaptor_base<
301 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
302 WrappedIteratorT,
303 typename std::common_type<
304 IterTag, typename std::iterator_traits<
305 WrappedIteratorT>::iterator_category>::type>;
306
307protected:
308 WrappedIteratorT End;
309 PredicateT Pred;
310
311 void findNextValid() {
312 while (this->I != End && !Pred(*this->I))
313 BaseT::operator++();
314 }
315
316 // Construct the iterator. The begin iterator needs to know where the end
317 // is, so that it can properly stop when it gets there. The end iterator only
318 // needs the predicate to support bidirectional iteration.
319 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
320 PredicateT Pred)
321 : BaseT(Begin), End(End), Pred(Pred) {
322 findNextValid();
323 }
324
325public:
326 using BaseT::operator++;
327
328 filter_iterator_base &operator++() {
329 BaseT::operator++();
330 findNextValid();
331 return *this;
332 }
333};
334
335/// Specialization of filter_iterator_base for forward iteration only.
336template <typename WrappedIteratorT, typename PredicateT,
337 typename IterTag = std::forward_iterator_tag>
338class filter_iterator_impl
339 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
340 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
341
342public:
343 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
344 PredicateT Pred)
345 : BaseT(Begin, End, Pred) {}
346};
347
348/// Specialization of filter_iterator_base for bidirectional iteration.
349template <typename WrappedIteratorT, typename PredicateT>
350class filter_iterator_impl<WrappedIteratorT, PredicateT,
351 std::bidirectional_iterator_tag>
352 : public filter_iterator_base<WrappedIteratorT, PredicateT,
353 std::bidirectional_iterator_tag> {
354 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
355 std::bidirectional_iterator_tag>;
356 void findPrevValid() {
357 while (!this->Pred(*this->I))
358 BaseT::operator--();
359 }
360
361public:
362 using BaseT::operator--;
363
364 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
365 PredicateT Pred)
366 : BaseT(Begin, End, Pred) {}
367
368 filter_iterator_impl &operator--() {
369 BaseT::operator--();
370 findPrevValid();
371 return *this;
372 }
373};
374
375namespace detail {
376
377template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
378 using type = std::forward_iterator_tag;
379};
380
381template <> struct fwd_or_bidi_tag_impl<true> {
382 using type = std::bidirectional_iterator_tag;
383};
384
385/// Helper which sets its type member to forward_iterator_tag if the category
386/// of \p IterT does not derive from bidirectional_iterator_tag, and to
387/// bidirectional_iterator_tag otherwise.
388template <typename IterT> struct fwd_or_bidi_tag {
389 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
390 std::bidirectional_iterator_tag,
391 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
392};
393
394} // namespace detail
395
396/// Defines filter_iterator to a suitable specialization of
397/// filter_iterator_impl, based on the underlying iterator's category.
398template <typename WrappedIteratorT, typename PredicateT>
399using filter_iterator = filter_iterator_impl<
400 WrappedIteratorT, PredicateT,
401 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
402
403/// Convenience function that takes a range of elements and a predicate,
404/// and return a new filter_iterator range.
405///
406/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
407/// lifetime of that temporary is not kept by the returned range object, and the
408/// temporary is going to be dropped on the floor after the make_iterator_range
409/// full expression that contains this function call.
410template <typename RangeT, typename PredicateT>
411iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
412make_filter_range(RangeT &&Range, PredicateT Pred) {
413 using FilterIteratorT =
414 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
415 return make_range(
416 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
417 std::end(std::forward<RangeT>(Range)), Pred),
418 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
419 std::end(std::forward<RangeT>(Range)), Pred));
420}
421
422/// A pseudo-iterator adaptor that is designed to implement "early increment"
423/// style loops.
424///
425/// This is *not a normal iterator* and should almost never be used directly. It
426/// is intended primarily to be used with range based for loops and some range
427/// algorithms.
428///
429/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
430/// somewhere between them. The constraints of these iterators are:
431///
432/// - On construction or after being incremented, it is comparable and
433/// dereferencable. It is *not* incrementable.
434/// - After being dereferenced, it is neither comparable nor dereferencable, it
435/// is only incrementable.
436///
437/// This means you can only dereference the iterator once, and you can only
438/// increment it once between dereferences.
439template <typename WrappedIteratorT>
440class early_inc_iterator_impl
441 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
442 WrappedIteratorT, std::input_iterator_tag> {
443 using BaseT =
444 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
445 WrappedIteratorT, std::input_iterator_tag>;
446
447 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
448
449protected:
450#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
451 bool IsEarlyIncremented = false;
452#endif
453
454public:
455 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
456
457 using BaseT::operator*;
458 typename BaseT::reference operator*() {
459#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
460 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 460, __PRETTY_FUNCTION__))
;
461 IsEarlyIncremented = true;
462#endif
463 return *(this->I)++;
464 }
465
466 using BaseT::operator++;
467 early_inc_iterator_impl &operator++() {
468#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
469 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 469, __PRETTY_FUNCTION__))
;
470 IsEarlyIncremented = false;
471#endif
472 return *this;
473 }
474
475 using BaseT::operator==;
476 bool operator==(const early_inc_iterator_impl &RHS) const {
477#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
478 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 478, __PRETTY_FUNCTION__))
;
479#endif
480 return BaseT::operator==(RHS);
481 }
482};
483
484/// Make a range that does early increment to allow mutation of the underlying
485/// range without disrupting iteration.
486///
487/// The underlying iterator will be incremented immediately after it is
488/// dereferenced, allowing deletion of the current node or insertion of nodes to
489/// not disrupt iteration provided they do not invalidate the *next* iterator --
490/// the current iterator can be invalidated.
491///
492/// This requires a very exact pattern of use that is only really suitable to
493/// range based for loops and other range algorithms that explicitly guarantee
494/// to dereference exactly once each element, and to increment exactly once each
495/// element.
496template <typename RangeT>
497iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
498make_early_inc_range(RangeT &&Range) {
499 using EarlyIncIteratorT =
500 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
501 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
502 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
503}
504
505// forward declarations required by zip_shortest/zip_first
506template <typename R, typename UnaryPredicate>
507bool all_of(R &&range, UnaryPredicate P);
508
509template <size_t... I> struct index_sequence;
510
511template <class... Ts> struct index_sequence_for;
512
513namespace detail {
514
515using std::declval;
516
517// We have to alias this since inlining the actual type at the usage site
518// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
519template<typename... Iters> struct ZipTupleType {
520 using type = std::tuple<decltype(*declval<Iters>())...>;
521};
522
523template <typename ZipType, typename... Iters>
524using zip_traits = iterator_facade_base<
525 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
526 typename std::iterator_traits<
527 Iters>::iterator_category...>::type,
528 // ^ TODO: Implement random access methods.
529 typename ZipTupleType<Iters...>::type,
530 typename std::iterator_traits<typename std::tuple_element<
531 0, std::tuple<Iters...>>::type>::difference_type,
532 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
533 // inner iterators have the same difference_type. It would fail if, for
534 // instance, the second field's difference_type were non-numeric while the
535 // first is.
536 typename ZipTupleType<Iters...>::type *,
537 typename ZipTupleType<Iters...>::type>;
538
539template <typename ZipType, typename... Iters>
540struct zip_common : public zip_traits<ZipType, Iters...> {
541 using Base = zip_traits<ZipType, Iters...>;
542 using value_type = typename Base::value_type;
543
544 std::tuple<Iters...> iterators;
545
546protected:
547 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
548 return value_type(*std::get<Ns>(iterators)...);
549 }
550
551 template <size_t... Ns>
552 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
553 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
554 }
555
556 template <size_t... Ns>
557 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
558 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
559 }
560
561public:
562 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
563
564 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
565
566 const value_type operator*() const {
567 return deref(index_sequence_for<Iters...>{});
568 }
569
570 ZipType &operator++() {
571 iterators = tup_inc(index_sequence_for<Iters...>{});
572 return *reinterpret_cast<ZipType *>(this);
573 }
574
575 ZipType &operator--() {
576 static_assert(Base::IsBidirectional,
577 "All inner iterators must be at least bidirectional.");
578 iterators = tup_dec(index_sequence_for<Iters...>{});
579 return *reinterpret_cast<ZipType *>(this);
580 }
581};
582
583template <typename... Iters>
584struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
585 using Base = zip_common<zip_first<Iters...>, Iters...>;
586
587 bool operator==(const zip_first<Iters...> &other) const {
588 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
589 }
590
591 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
592};
593
594template <typename... Iters>
595class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
596 template <size_t... Ns>
597 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
598 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
599 std::get<Ns>(other.iterators)...},
600 identity<bool>{});
601 }
602
603public:
604 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
605
606 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
607
608 bool operator==(const zip_shortest<Iters...> &other) const {
609 return !test(other, index_sequence_for<Iters...>{});
610 }
611};
612
613template <template <typename...> class ItType, typename... Args> class zippy {
614public:
615 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
616 using iterator_category = typename iterator::iterator_category;
617 using value_type = typename iterator::value_type;
618 using difference_type = typename iterator::difference_type;
619 using pointer = typename iterator::pointer;
620 using reference = typename iterator::reference;
621
622private:
623 std::tuple<Args...> ts;
624
625 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
626 return iterator(std::begin(std::get<Ns>(ts))...);
627 }
628 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
629 return iterator(std::end(std::get<Ns>(ts))...);
630 }
631
632public:
633 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
634
635 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
636 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
637};
638
639} // end namespace detail
640
641/// zip iterator for two or more iteratable types.
642template <typename T, typename U, typename... Args>
643detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
644 Args &&... args) {
645 return detail::zippy<detail::zip_shortest, T, U, Args...>(
646 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
647}
648
649/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
650/// be the shortest.
651template <typename T, typename U, typename... Args>
652detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
653 Args &&... args) {
654 return detail::zippy<detail::zip_first, T, U, Args...>(
655 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
656}
657
658/// Iterator wrapper that concatenates sequences together.
659///
660/// This can concatenate different iterators, even with different types, into
661/// a single iterator provided the value types of all the concatenated
662/// iterators expose `reference` and `pointer` types that can be converted to
663/// `ValueT &` and `ValueT *` respectively. It doesn't support more
664/// interesting/customized pointer or reference types.
665///
666/// Currently this only supports forward or higher iterator categories as
667/// inputs and always exposes a forward iterator interface.
668template <typename ValueT, typename... IterTs>
669class concat_iterator
670 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
671 std::forward_iterator_tag, ValueT> {
672 using BaseT = typename concat_iterator::iterator_facade_base;
673
674 /// We store both the current and end iterators for each concatenated
675 /// sequence in a tuple of pairs.
676 ///
677 /// Note that something like iterator_range seems nice at first here, but the
678 /// range properties are of little benefit and end up getting in the way
679 /// because we need to do mutation on the current iterators.
680 std::tuple<IterTs...> Begins;
681 std::tuple<IterTs...> Ends;
682
683 /// Attempts to increment a specific iterator.
684 ///
685 /// Returns true if it was able to increment the iterator. Returns false if
686 /// the iterator is already at the end iterator.
687 template <size_t Index> bool incrementHelper() {
688 auto &Begin = std::get<Index>(Begins);
689 auto &End = std::get<Index>(Ends);
690 if (Begin == End)
691 return false;
692
693 ++Begin;
694 return true;
695 }
696
697 /// Increments the first non-end iterator.
698 ///
699 /// It is an error to call this with all iterators at the end.
700 template <size_t... Ns> void increment(index_sequence<Ns...>) {
701 // Build a sequence of functions to increment each iterator if possible.
702 bool (concat_iterator::*IncrementHelperFns[])() = {
703 &concat_iterator::incrementHelper<Ns>...};
704
705 // Loop over them, and stop as soon as we succeed at incrementing one.
706 for (auto &IncrementHelperFn : IncrementHelperFns)
707 if ((this->*IncrementHelperFn)())
708 return;
709
710 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 710)
;
711 }
712
713 /// Returns null if the specified iterator is at the end. Otherwise,
714 /// dereferences the iterator and returns the address of the resulting
715 /// reference.
716 template <size_t Index> ValueT *getHelper() const {
717 auto &Begin = std::get<Index>(Begins);
718 auto &End = std::get<Index>(Ends);
719 if (Begin == End)
720 return nullptr;
721
722 return &*Begin;
723 }
724
725 /// Finds the first non-end iterator, dereferences, and returns the resulting
726 /// reference.
727 ///
728 /// It is an error to call this with all iterators at the end.
729 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
730 // Build a sequence of functions to get from iterator if possible.
731 ValueT *(concat_iterator::*GetHelperFns[])() const = {
732 &concat_iterator::getHelper<Ns>...};
733
734 // Loop over them, and return the first result we find.
735 for (auto &GetHelperFn : GetHelperFns)
736 if (ValueT *P = (this->*GetHelperFn)())
737 return *P;
738
739 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 739)
;
740 }
741
742public:
743 /// Constructs an iterator from a squence of ranges.
744 ///
745 /// We need the full range to know how to switch between each of the
746 /// iterators.
747 template <typename... RangeTs>
748 explicit concat_iterator(RangeTs &&... Ranges)
749 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
750
751 using BaseT::operator++;
752
753 concat_iterator &operator++() {
754 increment(index_sequence_for<IterTs...>());
755 return *this;
756 }
757
758 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
759
760 bool operator==(const concat_iterator &RHS) const {
761 return Begins == RHS.Begins && Ends == RHS.Ends;
762 }
763};
764
765namespace detail {
766
767/// Helper to store a sequence of ranges being concatenated and access them.
768///
769/// This is designed to facilitate providing actual storage when temporaries
770/// are passed into the constructor such that we can use it as part of range
771/// based for loops.
772template <typename ValueT, typename... RangeTs> class concat_range {
773public:
774 using iterator =
775 concat_iterator<ValueT,
776 decltype(std::begin(std::declval<RangeTs &>()))...>;
777
778private:
779 std::tuple<RangeTs...> Ranges;
780
781 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
782 return iterator(std::get<Ns>(Ranges)...);
783 }
784 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
785 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
786 std::end(std::get<Ns>(Ranges)))...);
787 }
788
789public:
790 concat_range(RangeTs &&... Ranges)
791 : Ranges(std::forward<RangeTs>(Ranges)...) {}
792
793 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
794 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
795};
796
797} // end namespace detail
798
799/// Concatenated range across two or more ranges.
800///
801/// The desired value type must be explicitly specified.
802template <typename ValueT, typename... RangeTs>
803detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
804 static_assert(sizeof...(RangeTs) > 1,
805 "Need more than one range to concatenate!");
806 return detail::concat_range<ValueT, RangeTs...>(
807 std::forward<RangeTs>(Ranges)...);
808}
809
810//===----------------------------------------------------------------------===//
811// Extra additions to <utility>
812//===----------------------------------------------------------------------===//
813
814/// Function object to check whether the first component of a std::pair
815/// compares less than the first component of another std::pair.
816struct less_first {
817 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
818 return lhs.first < rhs.first;
819 }
820};
821
822/// Function object to check whether the second component of a std::pair
823/// compares less than the second component of another std::pair.
824struct less_second {
825 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
826 return lhs.second < rhs.second;
827 }
828};
829
830/// \brief Function object to apply a binary function to the first component of
831/// a std::pair.
832template<typename FuncTy>
833struct on_first {
834 FuncTy func;
835
836 template <typename T>
837 auto operator()(const T &lhs, const T &rhs) const
838 -> decltype(func(lhs.first, rhs.first)) {
839 return func(lhs.first, rhs.first);
840 }
841};
842
843// A subset of N3658. More stuff can be added as-needed.
844
845/// Represents a compile-time sequence of integers.
846template <class T, T... I> struct integer_sequence {
847 using value_type = T;
848
849 static constexpr size_t size() { return sizeof...(I); }
850};
851
852/// Alias for the common case of a sequence of size_ts.
853template <size_t... I>
854struct index_sequence : integer_sequence<std::size_t, I...> {};
855
856template <std::size_t N, std::size_t... I>
857struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
858template <std::size_t... I>
859struct build_index_impl<0, I...> : index_sequence<I...> {};
860
861/// Creates a compile-time integer sequence for a parameter pack.
862template <class... Ts>
863struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
864
865/// Utility type to build an inheritance chain that makes it easy to rank
866/// overload candidates.
867template <int N> struct rank : rank<N - 1> {};
868template <> struct rank<0> {};
869
870/// traits class for checking whether type T is one of any of the given
871/// types in the variadic list.
872template <typename T, typename... Ts> struct is_one_of {
873 static const bool value = false;
874};
875
876template <typename T, typename U, typename... Ts>
877struct is_one_of<T, U, Ts...> {
878 static const bool value =
879 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
880};
881
882/// traits class for checking whether type T is a base class for all
883/// the given types in the variadic list.
884template <typename T, typename... Ts> struct are_base_of {
885 static const bool value = true;
886};
887
888template <typename T, typename U, typename... Ts>
889struct are_base_of<T, U, Ts...> {
890 static const bool value =
891 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
892};
893
894//===----------------------------------------------------------------------===//
895// Extra additions for arrays
896//===----------------------------------------------------------------------===//
897
898/// Find the length of an array.
899template <class T, std::size_t N>
900constexpr inline size_t array_lengthof(T (&)[N]) {
901 return N;
902}
903
904/// Adapt std::less<T> for array_pod_sort.
905template<typename T>
906inline int array_pod_sort_comparator(const void *P1, const void *P2) {
907 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
908 *reinterpret_cast<const T*>(P2)))
909 return -1;
910 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
911 *reinterpret_cast<const T*>(P1)))
912 return 1;
913 return 0;
914}
915
916/// get_array_pod_sort_comparator - This is an internal helper function used to
917/// get type deduction of T right.
918template<typename T>
919inline int (*get_array_pod_sort_comparator(const T &))
920 (const void*, const void*) {
921 return array_pod_sort_comparator<T>;
922}
923
924/// array_pod_sort - This sorts an array with the specified start and end
925/// extent. This is just like std::sort, except that it calls qsort instead of
926/// using an inlined template. qsort is slightly slower than std::sort, but
927/// most sorts are not performance critical in LLVM and std::sort has to be
928/// template instantiated for each type, leading to significant measured code
929/// bloat. This function should generally be used instead of std::sort where
930/// possible.
931///
932/// This function assumes that you have simple POD-like types that can be
933/// compared with std::less and can be moved with memcpy. If this isn't true,
934/// you should use std::sort.
935///
936/// NOTE: If qsort_r were portable, we could allow a custom comparator and
937/// default to std::less.
938template<class IteratorTy>
939inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
940 // Don't inefficiently call qsort with one element or trigger undefined
941 // behavior with an empty sequence.
942 auto NElts = End - Start;
943 if (NElts <= 1) return;
944#ifdef EXPENSIVE_CHECKS
945 std::mt19937 Generator(std::random_device{}());
946 std::shuffle(Start, End, Generator);
947#endif
948 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
949}
950
951template <class IteratorTy>
952inline void array_pod_sort(
953 IteratorTy Start, IteratorTy End,
954 int (*Compare)(
955 const typename std::iterator_traits<IteratorTy>::value_type *,
956 const typename std::iterator_traits<IteratorTy>::value_type *)) {
957 // Don't inefficiently call qsort with one element or trigger undefined
958 // behavior with an empty sequence.
959 auto NElts = End - Start;
960 if (NElts <= 1) return;
961#ifdef EXPENSIVE_CHECKS
962 std::mt19937 Generator(std::random_device{}());
963 std::shuffle(Start, End, Generator);
964#endif
965 qsort(&*Start, NElts, sizeof(*Start),
966 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
967}
968
969// Provide wrappers to std::sort which shuffle the elements before sorting
970// to help uncover non-deterministic behavior (PR35135).
971template <typename IteratorTy>
972inline void sort(IteratorTy Start, IteratorTy End) {
973#ifdef EXPENSIVE_CHECKS
974 std::mt19937 Generator(std::random_device{}());
975 std::shuffle(Start, End, Generator);
976#endif
977 std::sort(Start, End);
978}
979
980template <typename Container> inline void sort(Container &&C) {
981 llvm::sort(adl_begin(C), adl_end(C));
982}
983
984template <typename IteratorTy, typename Compare>
985inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
986#ifdef EXPENSIVE_CHECKS
987 std::mt19937 Generator(std::random_device{}());
988 std::shuffle(Start, End, Generator);
989#endif
990 std::sort(Start, End, Comp);
991}
992
993template <typename Container, typename Compare>
994inline void sort(Container &&C, Compare Comp) {
995 llvm::sort(adl_begin(C), adl_end(C), Comp);
996}
997
998//===----------------------------------------------------------------------===//
999// Extra additions to <algorithm>
1000//===----------------------------------------------------------------------===//
1001
1002/// For a container of pointers, deletes the pointers and then clears the
1003/// container.
1004template<typename Container>
1005void DeleteContainerPointers(Container &C) {
1006 for (auto V : C)
1007 delete V;
1008 C.clear();
1009}
1010
1011/// In a container of pairs (usually a map) whose second element is a pointer,
1012/// deletes the second elements and then clears the container.
1013template<typename Container>
1014void DeleteContainerSeconds(Container &C) {
1015 for (auto &V : C)
1016 delete V.second;
1017 C.clear();
1018}
1019
1020/// Get the size of a range. This is a wrapper function around std::distance
1021/// which is only enabled when the operation is O(1).
1022template <typename R>
1023auto size(R &&Range, typename std::enable_if<
1024 std::is_same<typename std::iterator_traits<decltype(
1025 Range.begin())>::iterator_category,
1026 std::random_access_iterator_tag>::value,
1027 void>::type * = nullptr)
1028 -> decltype(std::distance(Range.begin(), Range.end())) {
1029 return std::distance(Range.begin(), Range.end());
1030}
1031
1032/// Provide wrappers to std::for_each which take ranges instead of having to
1033/// pass begin/end explicitly.
1034template <typename R, typename UnaryPredicate>
1035UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1036 return std::for_each(adl_begin(Range), adl_end(Range), P);
1037}
1038
1039/// Provide wrappers to std::all_of which take ranges instead of having to pass
1040/// begin/end explicitly.
1041template <typename R, typename UnaryPredicate>
1042bool all_of(R &&Range, UnaryPredicate P) {
1043 return std::all_of(adl_begin(Range), adl_end(Range), P);
1044}
1045
1046/// Provide wrappers to std::any_of which take ranges instead of having to pass
1047/// begin/end explicitly.
1048template <typename R, typename UnaryPredicate>
1049bool any_of(R &&Range, UnaryPredicate P) {
1050 return std::any_of(adl_begin(Range), adl_end(Range), P);
1051}
1052
1053/// Provide wrappers to std::none_of which take ranges instead of having to pass
1054/// begin/end explicitly.
1055template <typename R, typename UnaryPredicate>
1056bool none_of(R &&Range, UnaryPredicate P) {
1057 return std::none_of(adl_begin(Range), adl_end(Range), P);
1058}
1059
1060/// Provide wrappers to std::find which take ranges instead of having to pass
1061/// begin/end explicitly.
1062template <typename R, typename T>
1063auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1064 return std::find(adl_begin(Range), adl_end(Range), Val);
1065}
1066
1067/// Provide wrappers to std::find_if which take ranges instead of having to pass
1068/// begin/end explicitly.
1069template <typename R, typename UnaryPredicate>
1070auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1071 return std::find_if(adl_begin(Range), adl_end(Range), P);
1072}
1073
1074template <typename R, typename UnaryPredicate>
1075auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1076 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1077}
1078
1079/// Provide wrappers to std::remove_if which take ranges instead of having to
1080/// pass begin/end explicitly.
1081template <typename R, typename UnaryPredicate>
1082auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1083 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1084}
1085
1086/// Provide wrappers to std::copy_if which take ranges instead of having to
1087/// pass begin/end explicitly.
1088template <typename R, typename OutputIt, typename UnaryPredicate>
1089OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1090 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1091}
1092
1093template <typename R, typename OutputIt>
1094OutputIt copy(R &&Range, OutputIt Out) {
1095 return std::copy(adl_begin(Range), adl_end(Range), Out);
1096}
1097
1098/// Wrapper function around std::find to detect if an element exists
1099/// in a container.
1100template <typename R, typename E>
1101bool is_contained(R &&Range, const E &Element) {
1102 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1103}
1104
1105/// Wrapper function around std::count to count the number of times an element
1106/// \p Element occurs in the given range \p Range.
1107template <typename R, typename E>
1108auto count(R &&Range, const E &Element) ->
1109 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1110 return std::count(adl_begin(Range), adl_end(Range), Element);
1111}
1112
1113/// Wrapper function around std::count_if to count the number of times an
1114/// element satisfying a given predicate occurs in a range.
1115template <typename R, typename UnaryPredicate>
1116auto count_if(R &&Range, UnaryPredicate P) ->
1117 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1118 return std::count_if(adl_begin(Range), adl_end(Range), P);
1119}
1120
1121/// Wrapper function around std::transform to apply a function to a range and
1122/// store the result elsewhere.
1123template <typename R, typename OutputIt, typename UnaryPredicate>
1124OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1125 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1126}
1127
1128/// Provide wrappers to std::partition which take ranges instead of having to
1129/// pass begin/end explicitly.
1130template <typename R, typename UnaryPredicate>
1131auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1132 return std::partition(adl_begin(Range), adl_end(Range), P);
1133}
1134
1135/// Provide wrappers to std::lower_bound which take ranges instead of having to
1136/// pass begin/end explicitly.
1137template <typename R, typename ForwardIt>
1138auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1139 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1140}
1141
1142template <typename R, typename ForwardIt, typename Compare>
1143auto lower_bound(R &&Range, ForwardIt I, Compare C)
1144 -> decltype(adl_begin(Range)) {
1145 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1146}
1147
1148/// Provide wrappers to std::upper_bound which take ranges instead of having to
1149/// pass begin/end explicitly.
1150template <typename R, typename ForwardIt>
1151auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1152 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1153}
1154
1155template <typename R, typename ForwardIt, typename Compare>
1156auto upper_bound(R &&Range, ForwardIt I, Compare C)
1157 -> decltype(adl_begin(Range)) {
1158 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1159}
1160/// Wrapper function around std::equal to detect if all elements
1161/// in a container are same.
1162template <typename R>
1163bool is_splat(R &&Range) {
1164 size_t range_size = size(Range);
1165 return range_size != 0 && (range_size == 1 ||
1166 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1167}
1168
1169/// Given a range of type R, iterate the entire range and return a
1170/// SmallVector with elements of the vector. This is useful, for example,
1171/// when you want to iterate a range and then sort the results.
1172template <unsigned Size, typename R>
1173SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1174to_vector(R &&Range) {
1175 return {adl_begin(Range), adl_end(Range)};
1176}
1177
1178/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1179/// `erase_if` which is equivalent to:
1180///
1181/// C.erase(remove_if(C, pred), C.end());
1182///
1183/// This version works for any container with an erase method call accepting
1184/// two iterators.
1185template <typename Container, typename UnaryPredicate>
1186void erase_if(Container &C, UnaryPredicate P) {
1187 C.erase(remove_if(C, P), C.end());
1188}
1189
1190//===----------------------------------------------------------------------===//
1191// Extra additions to <memory>
1192//===----------------------------------------------------------------------===//
1193
1194// Implement make_unique according to N3656.
1195
1196/// Constructs a `new T()` with the given args and returns a
1197/// `unique_ptr<T>` which owns the object.
1198///
1199/// Example:
1200///
1201/// auto p = make_unique<int>();
1202/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1203template <class T, class... Args>
1204typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1205make_unique(Args &&... args) {
1206 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
8
Memory is allocated
1207}
1208
1209/// Constructs a `new T[n]` with the given args and returns a
1210/// `unique_ptr<T[]>` which owns the object.
1211///
1212/// \param n size of the new array.
1213///
1214/// Example:
1215///
1216/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1217template <class T>
1218typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1219 std::unique_ptr<T>>::type
1220make_unique(size_t n) {
1221 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1222}
1223
1224/// This function isn't used and is only here to provide better compile errors.
1225template <class T, class... Args>
1226typename std::enable_if<std::extent<T>::value != 0>::type
1227make_unique(Args &&...) = delete;
1228
1229struct FreeDeleter {
1230 void operator()(void* v) {
1231 ::free(v);
1232 }
1233};
1234
1235template<typename First, typename Second>
1236struct pair_hash {
1237 size_t operator()(const std::pair<First, Second> &P) const {
1238 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1239 }
1240};
1241
1242/// A functor like C++14's std::less<void> in its absence.
1243struct less {
1244 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1245 return std::forward<A>(a) < std::forward<B>(b);
1246 }
1247};
1248
1249/// A functor like C++14's std::equal<void> in its absence.
1250struct equal {
1251 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1252 return std::forward<A>(a) == std::forward<B>(b);
1253 }
1254};
1255
1256/// Binary functor that adapts to any other binary functor after dereferencing
1257/// operands.
1258template <typename T> struct deref {
1259 T func;
1260
1261 // Could be further improved to cope with non-derivable functors and
1262 // non-binary functors (should be a variadic template member function
1263 // operator()).
1264 template <typename A, typename B>
1265 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1266 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1266, __PRETTY_FUNCTION__))
;
1267 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1267, __PRETTY_FUNCTION__))
;
1268 return func(*lhs, *rhs);
1269 }
1270};
1271
1272namespace detail {
1273
1274template <typename R> class enumerator_iter;
1275
1276template <typename R> struct result_pair {
1277 friend class enumerator_iter<R>;
1278
1279 result_pair() = default;
1280 result_pair(std::size_t Index, IterOfRange<R> Iter)
1281 : Index(Index), Iter(Iter) {}
1282
1283 result_pair<R> &operator=(const result_pair<R> &Other) {
1284 Index = Other.Index;
1285 Iter = Other.Iter;
1286 return *this;
1287 }
1288
1289 std::size_t index() const { return Index; }
1290 const ValueOfRange<R> &value() const { return *Iter; }
1291 ValueOfRange<R> &value() { return *Iter; }
1292
1293private:
1294 std::size_t Index = std::numeric_limits<std::size_t>::max();
1295 IterOfRange<R> Iter;
1296};
1297
1298template <typename R>
1299class enumerator_iter
1300 : public iterator_facade_base<
1301 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1302 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1303 typename std::iterator_traits<IterOfRange<R>>::pointer,
1304 typename std::iterator_traits<IterOfRange<R>>::reference> {
1305 using result_type = result_pair<R>;
1306
1307public:
1308 explicit enumerator_iter(IterOfRange<R> EndIter)
1309 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1310
1311 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1312 : Result(Index, Iter) {}
1313
1314 result_type &operator*() { return Result; }
1315 const result_type &operator*() const { return Result; }
1316
1317 enumerator_iter<R> &operator++() {
1318 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn345461/include/llvm/ADT/STLExtras.h"
, 1318, __PRETTY_FUNCTION__))
;
1319 ++Result.Iter;
1320 ++Result.Index;
1321 return *this;
1322 }
1323
1324 bool operator==(const enumerator_iter<R> &RHS) const {
1325 // Don't compare indices here, only iterators. It's possible for an end
1326 // iterator to have different indices depending on whether it was created
1327 // by calling std::end() versus incrementing a valid iterator.
1328 return Result.Iter == RHS.Result.Iter;
1329 }
1330
1331 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1332 Result = Other.Result;
1333 return *this;
1334 }
1335
1336private:
1337 result_type Result;
1338};
1339
1340template <typename R> class enumerator {
1341public:
1342 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1343
1344 enumerator_iter<R> begin() {
1345 return enumerator_iter<R>(0, std::begin(TheRange));
1346 }
1347
1348 enumerator_iter<R> end() {
1349 return enumerator_iter<R>(std::end(TheRange));
1350 }
1351
1352private:
1353 R TheRange;
1354};
1355
1356} // end namespace detail
1357
1358/// Given an input range, returns a new range whose values are are pair (A,B)
1359/// such that A is the 0-based index of the item in the sequence, and B is
1360/// the value from the original sequence. Example:
1361///
1362/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1363/// for (auto X : enumerate(Items)) {
1364/// printf("Item %d - %c\n", X.index(), X.value());
1365/// }
1366///
1367/// Output:
1368/// Item 0 - A
1369/// Item 1 - B
1370/// Item 2 - C
1371/// Item 3 - D
1372///
1373template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1374 return detail::enumerator<R>(std::forward<R>(TheRange));
1375}
1376
1377namespace detail {
1378
1379template <typename F, typename Tuple, std::size_t... I>
1380auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1381 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1382 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1383}
1384
1385} // end namespace detail
1386
1387/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1388/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1389/// return the result.
1390template <typename F, typename Tuple>
1391auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1392 std::forward<F>(f), std::forward<Tuple>(t),
1393 build_index_impl<
1394 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1395 using Indices = build_index_impl<
1396 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1397
1398 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1399 Indices{});
1400}
1401
1402} // end namespace llvm
1403
1404#endif // LLVM_ADT_STLEXTRAS_H