Bug Summary

File:lib/MC/MCParser/DarwinAsmParser.cpp
Warning:line 1085, column 3
3rd function call argument is an uninitialized value

Annotated Source Code

[?] Use j/k keys for keyboard navigation

/build/llvm-toolchain-snapshot-6.0~svn321639/lib/MC/MCParser/DarwinAsmParser.cpp

1//===- DarwinAsmParser.cpp - Darwin (Mach-O) Assembly Parser --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/ADT/STLExtras.h"
11#include "llvm/ADT/SmallVector.h"
12#include "llvm/ADT/StringRef.h"
13#include "llvm/ADT/StringSwitch.h"
14#include "llvm/ADT/Triple.h"
15#include "llvm/ADT/Twine.h"
16#include "llvm/BinaryFormat/MachO.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCDirectives.h"
19#include "llvm/MC/MCObjectFileInfo.h"
20#include "llvm/MC/MCParser/MCAsmLexer.h"
21#include "llvm/MC/MCParser/MCAsmParser.h"
22#include "llvm/MC/MCParser/MCAsmParserExtension.h"
23#include "llvm/MC/MCSectionMachO.h"
24#include "llvm/MC/MCStreamer.h"
25#include "llvm/MC/MCSymbol.h"
26#include "llvm/MC/SectionKind.h"
27#include "llvm/Support/FileSystem.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/Support/SMLoc.h"
30#include "llvm/Support/SourceMgr.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstddef>
34#include <cstdint>
35#include <string>
36#include <system_error>
37#include <utility>
38
39using namespace llvm;
40
41namespace {
42
43/// \brief Implementation of directive handling which is shared across all
44/// Darwin targets.
45class DarwinAsmParser : public MCAsmParserExtension {
46 template<bool (DarwinAsmParser::*HandlerMethod)(StringRef, SMLoc)>
47 void addDirectiveHandler(StringRef Directive) {
48 MCAsmParser::ExtensionDirectiveHandler Handler = std::make_pair(
49 this, HandleDirective<DarwinAsmParser, HandlerMethod>);
50 getParser().addDirectiveHandler(Directive, Handler);
51 }
52
53 bool parseSectionSwitch(StringRef Segment, StringRef Section,
54 unsigned TAA = 0, unsigned ImplicitAlign = 0,
55 unsigned StubSize = 0);
56
57 SMLoc LastVersionDirective;
58
59public:
60 DarwinAsmParser() = default;
61
62 void Initialize(MCAsmParser &Parser) override {
63 // Call the base implementation.
64 this->MCAsmParserExtension::Initialize(Parser);
65
66 addDirectiveHandler<&DarwinAsmParser::parseDirectiveAltEntry>(".alt_entry");
67 addDirectiveHandler<&DarwinAsmParser::parseDirectiveDesc>(".desc");
68 addDirectiveHandler<&DarwinAsmParser::parseDirectiveIndirectSymbol>(
69 ".indirect_symbol");
70 addDirectiveHandler<&DarwinAsmParser::parseDirectiveLsym>(".lsym");
71 addDirectiveHandler<&DarwinAsmParser::parseDirectiveSubsectionsViaSymbols>(
72 ".subsections_via_symbols");
73 addDirectiveHandler<&DarwinAsmParser::parseDirectiveDumpOrLoad>(".dump");
74 addDirectiveHandler<&DarwinAsmParser::parseDirectiveDumpOrLoad>(".load");
75 addDirectiveHandler<&DarwinAsmParser::parseDirectiveSection>(".section");
76 addDirectiveHandler<&DarwinAsmParser::parseDirectivePushSection>(
77 ".pushsection");
78 addDirectiveHandler<&DarwinAsmParser::parseDirectivePopSection>(
79 ".popsection");
80 addDirectiveHandler<&DarwinAsmParser::parseDirectivePrevious>(".previous");
81 addDirectiveHandler<&DarwinAsmParser::parseDirectiveSecureLogUnique>(
82 ".secure_log_unique");
83 addDirectiveHandler<&DarwinAsmParser::parseDirectiveSecureLogReset>(
84 ".secure_log_reset");
85 addDirectiveHandler<&DarwinAsmParser::parseDirectiveTBSS>(".tbss");
86 addDirectiveHandler<&DarwinAsmParser::parseDirectiveZerofill>(".zerofill");
87
88 addDirectiveHandler<&DarwinAsmParser::parseDirectiveDataRegion>(
89 ".data_region");
90 addDirectiveHandler<&DarwinAsmParser::parseDirectiveDataRegionEnd>(
91 ".end_data_region");
92
93 // Special section directives.
94 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveBss>(".bss");
95 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveConst>(".const");
96 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveConstData>(
97 ".const_data");
98 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveConstructor>(
99 ".constructor");
100 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveCString>(
101 ".cstring");
102 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveData>(".data");
103 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveDestructor>(
104 ".destructor");
105 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveDyld>(".dyld");
106 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveFVMLibInit0>(
107 ".fvmlib_init0");
108 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveFVMLibInit1>(
109 ".fvmlib_init1");
110 addDirectiveHandler<
111 &DarwinAsmParser::parseSectionDirectiveLazySymbolPointers>(
112 ".lazy_symbol_pointer");
113 addDirectiveHandler<&DarwinAsmParser::parseDirectiveLinkerOption>(
114 ".linker_option");
115 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveLiteral16>(
116 ".literal16");
117 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveLiteral4>(
118 ".literal4");
119 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveLiteral8>(
120 ".literal8");
121 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveModInitFunc>(
122 ".mod_init_func");
123 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveModTermFunc>(
124 ".mod_term_func");
125 addDirectiveHandler<
126 &DarwinAsmParser::parseSectionDirectiveNonLazySymbolPointers>(
127 ".non_lazy_symbol_pointer");
128 addDirectiveHandler<
129 &DarwinAsmParser::parseSectionDirectiveThreadLocalVariablePointers>(
130 ".thread_local_variable_pointer");
131 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCCatClsMeth>(
132 ".objc_cat_cls_meth");
133 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCCatInstMeth>(
134 ".objc_cat_inst_meth");
135 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCCategory>(
136 ".objc_category");
137 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCClass>(
138 ".objc_class");
139 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCClassNames>(
140 ".objc_class_names");
141 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCClassVars>(
142 ".objc_class_vars");
143 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCClsMeth>(
144 ".objc_cls_meth");
145 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCClsRefs>(
146 ".objc_cls_refs");
147 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCInstMeth>(
148 ".objc_inst_meth");
149 addDirectiveHandler<
150 &DarwinAsmParser::parseSectionDirectiveObjCInstanceVars>(
151 ".objc_instance_vars");
152 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCMessageRefs>(
153 ".objc_message_refs");
154 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCMetaClass>(
155 ".objc_meta_class");
156 addDirectiveHandler<
157 &DarwinAsmParser::parseSectionDirectiveObjCMethVarNames>(
158 ".objc_meth_var_names");
159 addDirectiveHandler<
160 &DarwinAsmParser::parseSectionDirectiveObjCMethVarTypes>(
161 ".objc_meth_var_types");
162 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCModuleInfo>(
163 ".objc_module_info");
164 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCProtocol>(
165 ".objc_protocol");
166 addDirectiveHandler<
167 &DarwinAsmParser::parseSectionDirectiveObjCSelectorStrs>(
168 ".objc_selector_strs");
169 addDirectiveHandler<
170 &DarwinAsmParser::parseSectionDirectiveObjCStringObject>(
171 ".objc_string_object");
172 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveObjCSymbols>(
173 ".objc_symbols");
174 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectivePICSymbolStub>(
175 ".picsymbol_stub");
176 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveStaticConst>(
177 ".static_const");
178 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveStaticData>(
179 ".static_data");
180 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveSymbolStub>(
181 ".symbol_stub");
182 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveTData>(".tdata");
183 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveText>(".text");
184 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveThreadInitFunc>(
185 ".thread_init_func");
186 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveTLV>(".tlv");
187
188 addDirectiveHandler<&DarwinAsmParser::parseSectionDirectiveIdent>(".ident");
189 addDirectiveHandler<&DarwinAsmParser::parseWatchOSVersionMin>(
190 ".watchos_version_min");
191 addDirectiveHandler<&DarwinAsmParser::parseTvOSVersionMin>(
192 ".tvos_version_min");
193 addDirectiveHandler<&DarwinAsmParser::parseIOSVersionMin>(
194 ".ios_version_min");
195 addDirectiveHandler<&DarwinAsmParser::parseMacOSXVersionMin>(
196 ".macosx_version_min");
197 addDirectiveHandler<&DarwinAsmParser::parseBuildVersion>(".build_version");
198
199 LastVersionDirective = SMLoc();
200 }
201
202 bool parseDirectiveAltEntry(StringRef, SMLoc);
203 bool parseDirectiveDesc(StringRef, SMLoc);
204 bool parseDirectiveIndirectSymbol(StringRef, SMLoc);
205 bool parseDirectiveDumpOrLoad(StringRef, SMLoc);
206 bool parseDirectiveLsym(StringRef, SMLoc);
207 bool parseDirectiveLinkerOption(StringRef, SMLoc);
208 bool parseDirectiveSection(StringRef, SMLoc);
209 bool parseDirectivePushSection(StringRef, SMLoc);
210 bool parseDirectivePopSection(StringRef, SMLoc);
211 bool parseDirectivePrevious(StringRef, SMLoc);
212 bool parseDirectiveSecureLogReset(StringRef, SMLoc);
213 bool parseDirectiveSecureLogUnique(StringRef, SMLoc);
214 bool parseDirectiveSubsectionsViaSymbols(StringRef, SMLoc);
215 bool parseDirectiveTBSS(StringRef, SMLoc);
216 bool parseDirectiveZerofill(StringRef, SMLoc);
217 bool parseDirectiveDataRegion(StringRef, SMLoc);
218 bool parseDirectiveDataRegionEnd(StringRef, SMLoc);
219
220 // Named Section Directive
221 bool parseSectionDirectiveBss(StringRef, SMLoc) {
222 return parseSectionSwitch("__DATA", "__bss");
223 }
224
225 bool parseSectionDirectiveConst(StringRef, SMLoc) {
226 return parseSectionSwitch("__TEXT", "__const");
227 }
228
229 bool parseSectionDirectiveStaticConst(StringRef, SMLoc) {
230 return parseSectionSwitch("__TEXT", "__static_const");
231 }
232
233 bool parseSectionDirectiveCString(StringRef, SMLoc) {
234 return parseSectionSwitch("__TEXT","__cstring",
235 MachO::S_CSTRING_LITERALS);
236 }
237
238 bool parseSectionDirectiveLiteral4(StringRef, SMLoc) {
239 return parseSectionSwitch("__TEXT", "__literal4",
240 MachO::S_4BYTE_LITERALS, 4);
241 }
242
243 bool parseSectionDirectiveLiteral8(StringRef, SMLoc) {
244 return parseSectionSwitch("__TEXT", "__literal8",
245 MachO::S_8BYTE_LITERALS, 8);
246 }
247
248 bool parseSectionDirectiveLiteral16(StringRef, SMLoc) {
249 return parseSectionSwitch("__TEXT","__literal16",
250 MachO::S_16BYTE_LITERALS, 16);
251 }
252
253 bool parseSectionDirectiveConstructor(StringRef, SMLoc) {
254 return parseSectionSwitch("__TEXT","__constructor");
255 }
256
257 bool parseSectionDirectiveDestructor(StringRef, SMLoc) {
258 return parseSectionSwitch("__TEXT","__destructor");
259 }
260
261 bool parseSectionDirectiveFVMLibInit0(StringRef, SMLoc) {
262 return parseSectionSwitch("__TEXT","__fvmlib_init0");
263 }
264
265 bool parseSectionDirectiveFVMLibInit1(StringRef, SMLoc) {
266 return parseSectionSwitch("__TEXT","__fvmlib_init1");
267 }
268
269 bool parseSectionDirectiveSymbolStub(StringRef, SMLoc) {
270 return parseSectionSwitch("__TEXT","__symbol_stub",
271 MachO::S_SYMBOL_STUBS |
272 MachO::S_ATTR_PURE_INSTRUCTIONS,
273 // FIXME: Different on PPC and ARM.
274 0, 16);
275 }
276
277 bool parseSectionDirectivePICSymbolStub(StringRef, SMLoc) {
278 return parseSectionSwitch("__TEXT","__picsymbol_stub",
279 MachO::S_SYMBOL_STUBS |
280 MachO::S_ATTR_PURE_INSTRUCTIONS, 0, 26);
281 }
282
283 bool parseSectionDirectiveData(StringRef, SMLoc) {
284 return parseSectionSwitch("__DATA", "__data");
285 }
286
287 bool parseSectionDirectiveStaticData(StringRef, SMLoc) {
288 return parseSectionSwitch("__DATA", "__static_data");
289 }
290
291 bool parseSectionDirectiveNonLazySymbolPointers(StringRef, SMLoc) {
292 return parseSectionSwitch("__DATA", "__nl_symbol_ptr",
293 MachO::S_NON_LAZY_SYMBOL_POINTERS, 4);
294 }
295
296 bool parseSectionDirectiveLazySymbolPointers(StringRef, SMLoc) {
297 return parseSectionSwitch("__DATA", "__la_symbol_ptr",
298 MachO::S_LAZY_SYMBOL_POINTERS, 4);
299 }
300
301 bool parseSectionDirectiveThreadLocalVariablePointers(StringRef, SMLoc) {
302 return parseSectionSwitch("__DATA", "__thread_ptr",
303 MachO::S_THREAD_LOCAL_VARIABLE_POINTERS, 4);
304 }
305
306 bool parseSectionDirectiveDyld(StringRef, SMLoc) {
307 return parseSectionSwitch("__DATA", "__dyld");
308 }
309
310 bool parseSectionDirectiveModInitFunc(StringRef, SMLoc) {
311 return parseSectionSwitch("__DATA", "__mod_init_func",
312 MachO::S_MOD_INIT_FUNC_POINTERS, 4);
313 }
314
315 bool parseSectionDirectiveModTermFunc(StringRef, SMLoc) {
316 return parseSectionSwitch("__DATA", "__mod_term_func",
317 MachO::S_MOD_TERM_FUNC_POINTERS, 4);
318 }
319
320 bool parseSectionDirectiveConstData(StringRef, SMLoc) {
321 return parseSectionSwitch("__DATA", "__const");
322 }
323
324 bool parseSectionDirectiveObjCClass(StringRef, SMLoc) {
325 return parseSectionSwitch("__OBJC", "__class",
326 MachO::S_ATTR_NO_DEAD_STRIP);
327 }
328
329 bool parseSectionDirectiveObjCMetaClass(StringRef, SMLoc) {
330 return parseSectionSwitch("__OBJC", "__meta_class",
331 MachO::S_ATTR_NO_DEAD_STRIP);
332 }
333
334 bool parseSectionDirectiveObjCCatClsMeth(StringRef, SMLoc) {
335 return parseSectionSwitch("__OBJC", "__cat_cls_meth",
336 MachO::S_ATTR_NO_DEAD_STRIP);
337 }
338
339 bool parseSectionDirectiveObjCCatInstMeth(StringRef, SMLoc) {
340 return parseSectionSwitch("__OBJC", "__cat_inst_meth",
341 MachO::S_ATTR_NO_DEAD_STRIP);
342 }
343
344 bool parseSectionDirectiveObjCProtocol(StringRef, SMLoc) {
345 return parseSectionSwitch("__OBJC", "__protocol",
346 MachO::S_ATTR_NO_DEAD_STRIP);
347 }
348
349 bool parseSectionDirectiveObjCStringObject(StringRef, SMLoc) {
350 return parseSectionSwitch("__OBJC", "__string_object",
351 MachO::S_ATTR_NO_DEAD_STRIP);
352 }
353
354 bool parseSectionDirectiveObjCClsMeth(StringRef, SMLoc) {
355 return parseSectionSwitch("__OBJC", "__cls_meth",
356 MachO::S_ATTR_NO_DEAD_STRIP);
357 }
358
359 bool parseSectionDirectiveObjCInstMeth(StringRef, SMLoc) {
360 return parseSectionSwitch("__OBJC", "__inst_meth",
361 MachO::S_ATTR_NO_DEAD_STRIP);
362 }
363
364 bool parseSectionDirectiveObjCClsRefs(StringRef, SMLoc) {
365 return parseSectionSwitch("__OBJC", "__cls_refs",
366 MachO::S_ATTR_NO_DEAD_STRIP |
367 MachO::S_LITERAL_POINTERS, 4);
368 }
369
370 bool parseSectionDirectiveObjCMessageRefs(StringRef, SMLoc) {
371 return parseSectionSwitch("__OBJC", "__message_refs",
372 MachO::S_ATTR_NO_DEAD_STRIP |
373 MachO::S_LITERAL_POINTERS, 4);
374 }
375
376 bool parseSectionDirectiveObjCSymbols(StringRef, SMLoc) {
377 return parseSectionSwitch("__OBJC", "__symbols",
378 MachO::S_ATTR_NO_DEAD_STRIP);
379 }
380
381 bool parseSectionDirectiveObjCCategory(StringRef, SMLoc) {
382 return parseSectionSwitch("__OBJC", "__category",
383 MachO::S_ATTR_NO_DEAD_STRIP);
384 }
385
386 bool parseSectionDirectiveObjCClassVars(StringRef, SMLoc) {
387 return parseSectionSwitch("__OBJC", "__class_vars",
388 MachO::S_ATTR_NO_DEAD_STRIP);
389 }
390
391 bool parseSectionDirectiveObjCInstanceVars(StringRef, SMLoc) {
392 return parseSectionSwitch("__OBJC", "__instance_vars",
393 MachO::S_ATTR_NO_DEAD_STRIP);
394 }
395
396 bool parseSectionDirectiveObjCModuleInfo(StringRef, SMLoc) {
397 return parseSectionSwitch("__OBJC", "__module_info",
398 MachO::S_ATTR_NO_DEAD_STRIP);
399 }
400
401 bool parseSectionDirectiveObjCClassNames(StringRef, SMLoc) {
402 return parseSectionSwitch("__TEXT", "__cstring",
403 MachO::S_CSTRING_LITERALS);
404 }
405
406 bool parseSectionDirectiveObjCMethVarTypes(StringRef, SMLoc) {
407 return parseSectionSwitch("__TEXT", "__cstring",
408 MachO::S_CSTRING_LITERALS);
409 }
410
411 bool parseSectionDirectiveObjCMethVarNames(StringRef, SMLoc) {
412 return parseSectionSwitch("__TEXT", "__cstring",
413 MachO::S_CSTRING_LITERALS);
414 }
415
416 bool parseSectionDirectiveObjCSelectorStrs(StringRef, SMLoc) {
417 return parseSectionSwitch("__OBJC", "__selector_strs",
418 MachO::S_CSTRING_LITERALS);
419 }
420
421 bool parseSectionDirectiveTData(StringRef, SMLoc) {
422 return parseSectionSwitch("__DATA", "__thread_data",
423 MachO::S_THREAD_LOCAL_REGULAR);
424 }
425
426 bool parseSectionDirectiveText(StringRef, SMLoc) {
427 return parseSectionSwitch("__TEXT", "__text",
428 MachO::S_ATTR_PURE_INSTRUCTIONS);
429 }
430
431 bool parseSectionDirectiveTLV(StringRef, SMLoc) {
432 return parseSectionSwitch("__DATA", "__thread_vars",
433 MachO::S_THREAD_LOCAL_VARIABLES);
434 }
435
436 bool parseSectionDirectiveIdent(StringRef, SMLoc) {
437 // Darwin silently ignores the .ident directive.
438 getParser().eatToEndOfStatement();
439 return false;
440 }
441
442 bool parseSectionDirectiveThreadInitFunc(StringRef, SMLoc) {
443 return parseSectionSwitch("__DATA", "__thread_init",
444 MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS);
445 }
446
447 bool parseWatchOSVersionMin(StringRef Directive, SMLoc Loc) {
448 return parseVersionMin(Directive, Loc, MCVM_WatchOSVersionMin);
449 }
450 bool parseTvOSVersionMin(StringRef Directive, SMLoc Loc) {
451 return parseVersionMin(Directive, Loc, MCVM_TvOSVersionMin);
452 }
453 bool parseIOSVersionMin(StringRef Directive, SMLoc Loc) {
454 return parseVersionMin(Directive, Loc, MCVM_IOSVersionMin);
455 }
456 bool parseMacOSXVersionMin(StringRef Directive, SMLoc Loc) {
457 return parseVersionMin(Directive, Loc, MCVM_OSXVersionMin);
1
Calling 'DarwinAsmParser::parseVersionMin'
458 }
459
460 bool parseBuildVersion(StringRef Directive, SMLoc Loc);
461 bool parseVersionMin(StringRef Directive, SMLoc Loc, MCVersionMinType Type);
462 bool parseVersion(unsigned *Major, unsigned *Minor, unsigned *Update);
463 void checkVersion(StringRef Directive, StringRef Arg, SMLoc Loc,
464 Triple::OSType ExpectedOS);
465};
466
467} // end anonymous namespace
468
469bool DarwinAsmParser::parseSectionSwitch(StringRef Segment, StringRef Section,
470 unsigned TAA, unsigned Align,
471 unsigned StubSize) {
472 if (getLexer().isNot(AsmToken::EndOfStatement))
473 return TokError("unexpected token in section switching directive");
474 Lex();
475
476 // FIXME: Arch specific.
477 bool isText = TAA & MachO::S_ATTR_PURE_INSTRUCTIONS;
478 getStreamer().SwitchSection(getContext().getMachOSection(
479 Segment, Section, TAA, StubSize,
480 isText ? SectionKind::getText() : SectionKind::getData()));
481
482 // Set the implicit alignment, if any.
483 //
484 // FIXME: This isn't really what 'as' does; I think it just uses the implicit
485 // alignment on the section (e.g., if one manually inserts bytes into the
486 // section, then just issuing the section switch directive will not realign
487 // the section. However, this is arguably more reasonable behavior, and there
488 // is no good reason for someone to intentionally emit incorrectly sized
489 // values into the implicitly aligned sections.
490 if (Align)
491 getStreamer().EmitValueToAlignment(Align);
492
493 return false;
494}
495
496/// parseDirectiveAltEntry
497/// ::= .alt_entry identifier
498bool DarwinAsmParser::parseDirectiveAltEntry(StringRef, SMLoc) {
499 StringRef Name;
500 if (getParser().parseIdentifier(Name))
501 return TokError("expected identifier in directive");
502
503 // Look up symbol.
504 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
505
506 if (Sym->isDefined())
507 return TokError(".alt_entry must preceed symbol definition");
508
509 if (!getStreamer().EmitSymbolAttribute(Sym, MCSA_AltEntry))
510 return TokError("unable to emit symbol attribute");
511
512 Lex();
513 return false;
514}
515
516/// parseDirectiveDesc
517/// ::= .desc identifier , expression
518bool DarwinAsmParser::parseDirectiveDesc(StringRef, SMLoc) {
519 StringRef Name;
520 if (getParser().parseIdentifier(Name))
521 return TokError("expected identifier in directive");
522
523 // Handle the identifier as the key symbol.
524 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
525
526 if (getLexer().isNot(AsmToken::Comma))
527 return TokError("unexpected token in '.desc' directive");
528 Lex();
529
530 int64_t DescValue;
531 if (getParser().parseAbsoluteExpression(DescValue))
532 return true;
533
534 if (getLexer().isNot(AsmToken::EndOfStatement))
535 return TokError("unexpected token in '.desc' directive");
536
537 Lex();
538
539 // Set the n_desc field of this Symbol to this DescValue
540 getStreamer().EmitSymbolDesc(Sym, DescValue);
541
542 return false;
543}
544
545/// parseDirectiveIndirectSymbol
546/// ::= .indirect_symbol identifier
547bool DarwinAsmParser::parseDirectiveIndirectSymbol(StringRef, SMLoc Loc) {
548 const MCSectionMachO *Current = static_cast<const MCSectionMachO *>(
549 getStreamer().getCurrentSectionOnly());
550 MachO::SectionType SectionType = Current->getType();
551 if (SectionType != MachO::S_NON_LAZY_SYMBOL_POINTERS &&
552 SectionType != MachO::S_LAZY_SYMBOL_POINTERS &&
553 SectionType != MachO::S_THREAD_LOCAL_VARIABLE_POINTERS &&
554 SectionType != MachO::S_SYMBOL_STUBS)
555 return Error(Loc, "indirect symbol not in a symbol pointer or stub "
556 "section");
557
558 StringRef Name;
559 if (getParser().parseIdentifier(Name))
560 return TokError("expected identifier in .indirect_symbol directive");
561
562 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
563
564 // Assembler local symbols don't make any sense here. Complain loudly.
565 if (Sym->isTemporary())
566 return TokError("non-local symbol required in directive");
567
568 if (!getStreamer().EmitSymbolAttribute(Sym, MCSA_IndirectSymbol))
569 return TokError("unable to emit indirect symbol attribute for: " + Name);
570
571 if (getLexer().isNot(AsmToken::EndOfStatement))
572 return TokError("unexpected token in '.indirect_symbol' directive");
573
574 Lex();
575
576 return false;
577}
578
579/// parseDirectiveDumpOrLoad
580/// ::= ( .dump | .load ) "filename"
581bool DarwinAsmParser::parseDirectiveDumpOrLoad(StringRef Directive,
582 SMLoc IDLoc) {
583 bool IsDump = Directive == ".dump";
584 if (getLexer().isNot(AsmToken::String))
585 return TokError("expected string in '.dump' or '.load' directive");
586
587 Lex();
588
589 if (getLexer().isNot(AsmToken::EndOfStatement))
590 return TokError("unexpected token in '.dump' or '.load' directive");
591
592 Lex();
593
594 // FIXME: If/when .dump and .load are implemented they will be done in the
595 // the assembly parser and not have any need for an MCStreamer API.
596 if (IsDump)
597 return Warning(IDLoc, "ignoring directive .dump for now");
598 else
599 return Warning(IDLoc, "ignoring directive .load for now");
600}
601
602/// ParseDirectiveLinkerOption
603/// ::= .linker_option "string" ( , "string" )*
604bool DarwinAsmParser::parseDirectiveLinkerOption(StringRef IDVal, SMLoc) {
605 SmallVector<std::string, 4> Args;
606 while (true) {
607 if (getLexer().isNot(AsmToken::String))
608 return TokError("expected string in '" + Twine(IDVal) + "' directive");
609
610 std::string Data;
611 if (getParser().parseEscapedString(Data))
612 return true;
613
614 Args.push_back(Data);
615
616 if (getLexer().is(AsmToken::EndOfStatement))
617 break;
618
619 if (getLexer().isNot(AsmToken::Comma))
620 return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
621 Lex();
622 }
623
624 getStreamer().EmitLinkerOptions(Args);
625 return false;
626}
627
628/// parseDirectiveLsym
629/// ::= .lsym identifier , expression
630bool DarwinAsmParser::parseDirectiveLsym(StringRef, SMLoc) {
631 StringRef Name;
632 if (getParser().parseIdentifier(Name))
633 return TokError("expected identifier in directive");
634
635 // Handle the identifier as the key symbol.
636 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
637
638 if (getLexer().isNot(AsmToken::Comma))
639 return TokError("unexpected token in '.lsym' directive");
640 Lex();
641
642 const MCExpr *Value;
643 if (getParser().parseExpression(Value))
644 return true;
645
646 if (getLexer().isNot(AsmToken::EndOfStatement))
647 return TokError("unexpected token in '.lsym' directive");
648
649 Lex();
650
651 // We don't currently support this directive.
652 //
653 // FIXME: Diagnostic location!
654 (void) Sym;
655 return TokError("directive '.lsym' is unsupported");
656}
657
658/// parseDirectiveSection:
659/// ::= .section identifier (',' identifier)*
660bool DarwinAsmParser::parseDirectiveSection(StringRef, SMLoc) {
661 SMLoc Loc = getLexer().getLoc();
662
663 StringRef SectionName;
664 if (getParser().parseIdentifier(SectionName))
665 return Error(Loc, "expected identifier after '.section' directive");
666
667 // Verify there is a following comma.
668 if (!getLexer().is(AsmToken::Comma))
669 return TokError("unexpected token in '.section' directive");
670
671 std::string SectionSpec = SectionName;
672 SectionSpec += ",";
673
674 // Add all the tokens until the end of the line, ParseSectionSpecifier will
675 // handle this.
676 StringRef EOL = getLexer().LexUntilEndOfStatement();
677 SectionSpec.append(EOL.begin(), EOL.end());
678
679 Lex();
680 if (getLexer().isNot(AsmToken::EndOfStatement))
681 return TokError("unexpected token in '.section' directive");
682 Lex();
683
684 StringRef Segment, Section;
685 unsigned StubSize;
686 unsigned TAA;
687 bool TAAParsed;
688 std::string ErrorStr =
689 MCSectionMachO::ParseSectionSpecifier(SectionSpec, Segment, Section,
690 TAA, TAAParsed, StubSize);
691
692 if (!ErrorStr.empty())
693 return Error(Loc, ErrorStr);
694
695 // Issue a warning if the target is not powerpc and Section is a *coal* section.
696 Triple TT = getParser().getContext().getObjectFileInfo()->getTargetTriple();
697 Triple::ArchType ArchTy = TT.getArch();
698
699 if (ArchTy != Triple::ppc && ArchTy != Triple::ppc64) {
700 StringRef NonCoalSection = StringSwitch<StringRef>(Section)
701 .Case("__textcoal_nt", "__text")
702 .Case("__const_coal", "__const")
703 .Case("__datacoal_nt", "__data")
704 .Default(Section);
705
706 if (!Section.equals(NonCoalSection)) {
707 StringRef SectionVal(Loc.getPointer());
708 size_t B = SectionVal.find(',') + 1, E = SectionVal.find(',', B);
709 SMLoc BLoc = SMLoc::getFromPointer(SectionVal.data() + B);
710 SMLoc ELoc = SMLoc::getFromPointer(SectionVal.data() + E);
711 getParser().Warning(Loc, "section \"" + Section + "\" is deprecated",
712 SMRange(BLoc, ELoc));
713 getParser().Note(Loc, "change section name to \"" + NonCoalSection +
714 "\"", SMRange(BLoc, ELoc));
715 }
716 }
717
718 // FIXME: Arch specific.
719 bool isText = Segment == "__TEXT"; // FIXME: Hack.
720 getStreamer().SwitchSection(getContext().getMachOSection(
721 Segment, Section, TAA, StubSize,
722 isText ? SectionKind::getText() : SectionKind::getData()));
723 return false;
724}
725
726/// ParseDirectivePushSection:
727/// ::= .pushsection identifier (',' identifier)*
728bool DarwinAsmParser::parseDirectivePushSection(StringRef S, SMLoc Loc) {
729 getStreamer().PushSection();
730
731 if (parseDirectiveSection(S, Loc)) {
732 getStreamer().PopSection();
733 return true;
734 }
735
736 return false;
737}
738
739/// ParseDirectivePopSection:
740/// ::= .popsection
741bool DarwinAsmParser::parseDirectivePopSection(StringRef, SMLoc) {
742 if (!getStreamer().PopSection())
743 return TokError(".popsection without corresponding .pushsection");
744 return false;
745}
746
747/// ParseDirectivePrevious:
748/// ::= .previous
749bool DarwinAsmParser::parseDirectivePrevious(StringRef DirName, SMLoc) {
750 MCSectionSubPair PreviousSection = getStreamer().getPreviousSection();
751 if (!PreviousSection.first)
752 return TokError(".previous without corresponding .section");
753 getStreamer().SwitchSection(PreviousSection.first, PreviousSection.second);
754 return false;
755}
756
757/// ParseDirectiveSecureLogUnique
758/// ::= .secure_log_unique ... message ...
759bool DarwinAsmParser::parseDirectiveSecureLogUnique(StringRef, SMLoc IDLoc) {
760 StringRef LogMessage = getParser().parseStringToEndOfStatement();
761 if (getLexer().isNot(AsmToken::EndOfStatement))
762 return TokError("unexpected token in '.secure_log_unique' directive");
763
764 if (getContext().getSecureLogUsed())
765 return Error(IDLoc, ".secure_log_unique specified multiple times");
766
767 // Get the secure log path.
768 const char *SecureLogFile = getContext().getSecureLogFile();
769 if (!SecureLogFile)
770 return Error(IDLoc, ".secure_log_unique used but AS_SECURE_LOG_FILE "
771 "environment variable unset.");
772
773 // Open the secure log file if we haven't already.
774 raw_fd_ostream *OS = getContext().getSecureLog();
775 if (!OS) {
776 std::error_code EC;
777 auto NewOS = llvm::make_unique<raw_fd_ostream>(
778 StringRef(SecureLogFile), EC, sys::fs::F_Append | sys::fs::F_Text);
779 if (EC)
780 return Error(IDLoc, Twine("can't open secure log file: ") +
781 SecureLogFile + " (" + EC.message() + ")");
782 OS = NewOS.get();
783 getContext().setSecureLog(std::move(NewOS));
784 }
785
786 // Write the message.
787 unsigned CurBuf = getSourceManager().FindBufferContainingLoc(IDLoc);
788 *OS << getSourceManager().getBufferInfo(CurBuf).Buffer->getBufferIdentifier()
789 << ":" << getSourceManager().FindLineNumber(IDLoc, CurBuf) << ":"
790 << LogMessage + "\n";
791
792 getContext().setSecureLogUsed(true);
793
794 return false;
795}
796
797/// ParseDirectiveSecureLogReset
798/// ::= .secure_log_reset
799bool DarwinAsmParser::parseDirectiveSecureLogReset(StringRef, SMLoc IDLoc) {
800 if (getLexer().isNot(AsmToken::EndOfStatement))
801 return TokError("unexpected token in '.secure_log_reset' directive");
802
803 Lex();
804
805 getContext().setSecureLogUsed(false);
806
807 return false;
808}
809
810/// parseDirectiveSubsectionsViaSymbols
811/// ::= .subsections_via_symbols
812bool DarwinAsmParser::parseDirectiveSubsectionsViaSymbols(StringRef, SMLoc) {
813 if (getLexer().isNot(AsmToken::EndOfStatement))
814 return TokError("unexpected token in '.subsections_via_symbols' directive");
815
816 Lex();
817
818 getStreamer().EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
819
820 return false;
821}
822
823/// ParseDirectiveTBSS
824/// ::= .tbss identifier, size, align
825bool DarwinAsmParser::parseDirectiveTBSS(StringRef, SMLoc) {
826 SMLoc IDLoc = getLexer().getLoc();
827 StringRef Name;
828 if (getParser().parseIdentifier(Name))
829 return TokError("expected identifier in directive");
830
831 // Handle the identifier as the key symbol.
832 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
833
834 if (getLexer().isNot(AsmToken::Comma))
835 return TokError("unexpected token in directive");
836 Lex();
837
838 int64_t Size;
839 SMLoc SizeLoc = getLexer().getLoc();
840 if (getParser().parseAbsoluteExpression(Size))
841 return true;
842
843 int64_t Pow2Alignment = 0;
844 SMLoc Pow2AlignmentLoc;
845 if (getLexer().is(AsmToken::Comma)) {
846 Lex();
847 Pow2AlignmentLoc = getLexer().getLoc();
848 if (getParser().parseAbsoluteExpression(Pow2Alignment))
849 return true;
850 }
851
852 if (getLexer().isNot(AsmToken::EndOfStatement))
853 return TokError("unexpected token in '.tbss' directive");
854
855 Lex();
856
857 if (Size < 0)
858 return Error(SizeLoc, "invalid '.tbss' directive size, can't be less than"
859 "zero");
860
861 // FIXME: Diagnose overflow.
862 if (Pow2Alignment < 0)
863 return Error(Pow2AlignmentLoc, "invalid '.tbss' alignment, can't be less"
864 "than zero");
865
866 if (!Sym->isUndefined())
867 return Error(IDLoc, "invalid symbol redefinition");
868
869 getStreamer().EmitTBSSSymbol(getContext().getMachOSection(
870 "__DATA", "__thread_bss",
871 MachO::S_THREAD_LOCAL_ZEROFILL,
872 0, SectionKind::getThreadBSS()),
873 Sym, Size, 1 << Pow2Alignment);
874
875 return false;
876}
877
878/// ParseDirectiveZerofill
879/// ::= .zerofill segname , sectname [, identifier , size_expression [
880/// , align_expression ]]
881bool DarwinAsmParser::parseDirectiveZerofill(StringRef, SMLoc) {
882 StringRef Segment;
883 if (getParser().parseIdentifier(Segment))
884 return TokError("expected segment name after '.zerofill' directive");
885
886 if (getLexer().isNot(AsmToken::Comma))
887 return TokError("unexpected token in directive");
888 Lex();
889
890 StringRef Section;
891 if (getParser().parseIdentifier(Section))
892 return TokError("expected section name after comma in '.zerofill' "
893 "directive");
894
895 // If this is the end of the line all that was wanted was to create the
896 // the section but with no symbol.
897 if (getLexer().is(AsmToken::EndOfStatement)) {
898 // Create the zerofill section but no symbol
899 getStreamer().EmitZerofill(getContext().getMachOSection(
900 Segment, Section, MachO::S_ZEROFILL,
901 0, SectionKind::getBSS()));
902 return false;
903 }
904
905 if (getLexer().isNot(AsmToken::Comma))
906 return TokError("unexpected token in directive");
907 Lex();
908
909 SMLoc IDLoc = getLexer().getLoc();
910 StringRef IDStr;
911 if (getParser().parseIdentifier(IDStr))
912 return TokError("expected identifier in directive");
913
914 // handle the identifier as the key symbol.
915 MCSymbol *Sym = getContext().getOrCreateSymbol(IDStr);
916
917 if (getLexer().isNot(AsmToken::Comma))
918 return TokError("unexpected token in directive");
919 Lex();
920
921 int64_t Size;
922 SMLoc SizeLoc = getLexer().getLoc();
923 if (getParser().parseAbsoluteExpression(Size))
924 return true;
925
926 int64_t Pow2Alignment = 0;
927 SMLoc Pow2AlignmentLoc;
928 if (getLexer().is(AsmToken::Comma)) {
929 Lex();
930 Pow2AlignmentLoc = getLexer().getLoc();
931 if (getParser().parseAbsoluteExpression(Pow2Alignment))
932 return true;
933 }
934
935 if (getLexer().isNot(AsmToken::EndOfStatement))
936 return TokError("unexpected token in '.zerofill' directive");
937
938 Lex();
939
940 if (Size < 0)
941 return Error(SizeLoc, "invalid '.zerofill' directive size, can't be less "
942 "than zero");
943
944 // NOTE: The alignment in the directive is a power of 2 value, the assembler
945 // may internally end up wanting an alignment in bytes.
946 // FIXME: Diagnose overflow.
947 if (Pow2Alignment < 0)
948 return Error(Pow2AlignmentLoc, "invalid '.zerofill' directive alignment, "
949 "can't be less than zero");
950
951 if (!Sym->isUndefined())
952 return Error(IDLoc, "invalid symbol redefinition");
953
954 // Create the zerofill Symbol with Size and Pow2Alignment
955 //
956 // FIXME: Arch specific.
957 getStreamer().EmitZerofill(getContext().getMachOSection(
958 Segment, Section, MachO::S_ZEROFILL,
959 0, SectionKind::getBSS()),
960 Sym, Size, 1 << Pow2Alignment);
961
962 return false;
963}
964
965/// ParseDirectiveDataRegion
966/// ::= .data_region [ ( jt8 | jt16 | jt32 ) ]
967bool DarwinAsmParser::parseDirectiveDataRegion(StringRef, SMLoc) {
968 if (getLexer().is(AsmToken::EndOfStatement)) {
969 Lex();
970 getStreamer().EmitDataRegion(MCDR_DataRegion);
971 return false;
972 }
973 StringRef RegionType;
974 SMLoc Loc = getParser().getTok().getLoc();
975 if (getParser().parseIdentifier(RegionType))
976 return TokError("expected region type after '.data_region' directive");
977 int Kind = StringSwitch<int>(RegionType)
978 .Case("jt8", MCDR_DataRegionJT8)
979 .Case("jt16", MCDR_DataRegionJT16)
980 .Case("jt32", MCDR_DataRegionJT32)
981 .Default(-1);
982 if (Kind == -1)
983 return Error(Loc, "unknown region type in '.data_region' directive");
984 Lex();
985
986 getStreamer().EmitDataRegion((MCDataRegionType)Kind);
987 return false;
988}
989
990/// ParseDirectiveDataRegionEnd
991/// ::= .end_data_region
992bool DarwinAsmParser::parseDirectiveDataRegionEnd(StringRef, SMLoc) {
993 if (getLexer().isNot(AsmToken::EndOfStatement))
994 return TokError("unexpected token in '.end_data_region' directive");
995
996 Lex();
997 getStreamer().EmitDataRegion(MCDR_DataRegionEnd);
998 return false;
999}
1000
1001/// parseVersion ::= major, minor [, update]
1002bool DarwinAsmParser::parseVersion(unsigned *Major, unsigned *Minor,
1003 unsigned *Update) {
1004 // Get the major version number.
1005 if (getLexer().isNot(AsmToken::Integer))
4
Calling 'MCAsmParserExtension::getLexer'
7
Returning from 'MCAsmParserExtension::getLexer'
8
Calling 'MCAsmLexer::isNot'
14
Returning from 'MCAsmLexer::isNot'
15
Taking false branch
1006 return TokError("invalid OS major version number, integer expected");
1007 int64_t MajorVal = getLexer().getTok().getIntVal();
16
Calling 'MCAsmParserExtension::getLexer'
19
Returning from 'MCAsmParserExtension::getLexer'
20
Calling 'MCAsmLexer::getTok'
21
Returning from 'MCAsmLexer::getTok'
22
Calling 'AsmToken::getIntVal'
30
Returning from 'AsmToken::getIntVal'
1008 if (MajorVal > 65535 || MajorVal <= 0)
31
Assuming 'MajorVal' is <= 65535
32
Assuming 'MajorVal' is > 0
33
Taking false branch
1009 return TokError("invalid OS major version number");
1010 *Major = (unsigned)MajorVal;
1011 Lex();
34
Calling 'MCAsmParserExtension::Lex'
37
Returning from 'MCAsmParserExtension::Lex'
1012 if (getLexer().isNot(AsmToken::Comma))
38
Calling 'MCAsmParserExtension::getLexer'
41
Returning from 'MCAsmParserExtension::getLexer'
42
Calling 'MCAsmLexer::isNot'
48
Returning from 'MCAsmLexer::isNot'
49
Taking true branch
1013 return TokError("OS minor version number required, comma expected");
50
Calling constructor for 'Twine'
57
Returning from constructor for 'Twine'
58
Calling 'MCAsmParserExtension::TokError'
61
Returning from 'MCAsmParserExtension::TokError'
1014 Lex();
1015 // Get the minor version number.
1016 if (getLexer().isNot(AsmToken::Integer))
1017 return TokError("invalid OS minor version number, integer expected");
1018 int64_t MinorVal = getLexer().getTok().getIntVal();
1019 if (MinorVal > 255 || MinorVal < 0)
1020 return TokError("invalid OS minor version number");
1021 *Minor = MinorVal;
1022 Lex();
1023
1024 // Get the update level, if specified
1025 *Update = 0;
1026 if (getLexer().is(AsmToken::EndOfStatement))
1027 return false;
1028 if (getLexer().isNot(AsmToken::Comma))
1029 return TokError("invalid OS update specifier, comma expected");
1030 Lex();
1031 if (getLexer().isNot(AsmToken::Integer))
1032 return TokError("invalid OS update version number, integer expected");
1033 int64_t UpdateVal = getLexer().getTok().getIntVal();
1034 if (UpdateVal > 255 || UpdateVal < 0)
1035 return TokError("invalid OS update version number");
1036 *Update = UpdateVal;
1037 Lex();
1038 return false;
1039}
1040
1041void DarwinAsmParser::checkVersion(StringRef Directive, StringRef Arg,
1042 SMLoc Loc, Triple::OSType ExpectedOS) {
1043 const Triple &Target = getContext().getObjectFileInfo()->getTargetTriple();
1044 if (Target.getOS() != ExpectedOS)
1045 Warning(Loc, Twine(Directive) +
1046 (Arg.empty() ? Twine() : Twine(' ') + Arg) +
1047 " used while targeting " + Target.getOSName());
1048
1049 if (LastVersionDirective.isValid()) {
1050 Warning(Loc, "overriding previous version directive");
1051 Note(LastVersionDirective, "previous definition is here");
1052 }
1053 LastVersionDirective = Loc;
1054}
1055
1056static Triple::OSType getOSTypeFromMCVM(MCVersionMinType Type) {
1057 switch (Type) {
1058 case MCVM_WatchOSVersionMin: return Triple::WatchOS;
1059 case MCVM_TvOSVersionMin: return Triple::TvOS;
1060 case MCVM_IOSVersionMin: return Triple::IOS;
1061 case MCVM_OSXVersionMin: return Triple::MacOSX;
1062 }
1063 llvm_unreachable("Invalid mc version min type")::llvm::llvm_unreachable_internal("Invalid mc version min type"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/MC/MCParser/DarwinAsmParser.cpp"
, 1063)
;
1064}
1065
1066/// parseVersionMin
1067/// ::= .ios_version_min parseVersion
1068/// | .macosx_version_min parseVersion
1069/// | .tvos_version_min parseVersion
1070/// | .watchos_version_min parseVersion
1071bool DarwinAsmParser::parseVersionMin(StringRef Directive, SMLoc Loc,
1072 MCVersionMinType Type) {
1073 unsigned Major;
1074 unsigned Minor;
2
'Minor' declared without an initial value
1075 unsigned Update;
1076 if (parseVersion(&Major, &Minor, &Update))
3
Calling 'DarwinAsmParser::parseVersion'
62
Returning from 'DarwinAsmParser::parseVersion'
63
Assuming the condition is false
64
Taking false branch
1077 return true;
1078
1079 if (parseToken(AsmToken::EndOfStatement))
65
Assuming the condition is false
66
Taking false branch
1080 return addErrorSuffix(Twine(" in '") + Directive + "' directive");
1081
1082 Triple::OSType ExpectedOS = getOSTypeFromMCVM(Type);
1083 checkVersion(Directive, StringRef(), Loc, ExpectedOS);
1084
1085 getStreamer().EmitVersionMin(Type, Major, Minor, Update);
67
3rd function call argument is an uninitialized value
1086 return false;
1087}
1088
1089static Triple::OSType getOSTypeFromPlatform(MachO::PlatformType Type) {
1090 switch (Type) {
1091 case MachO::PLATFORM_MACOS: return Triple::MacOSX;
1092 case MachO::PLATFORM_IOS: return Triple::IOS;
1093 case MachO::PLATFORM_TVOS: return Triple::TvOS;
1094 case MachO::PLATFORM_WATCHOS: return Triple::WatchOS;
1095 case MachO::PLATFORM_BRIDGEOS: /* silence warning */break;
1096 }
1097 llvm_unreachable("Invalid mach-o platform type")::llvm::llvm_unreachable_internal("Invalid mach-o platform type"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/MC/MCParser/DarwinAsmParser.cpp"
, 1097)
;
1098}
1099
1100/// parseBuildVersion
1101/// ::= .build_version (macos|ios|tvos|watchos), parseVersion
1102bool DarwinAsmParser::parseBuildVersion(StringRef Directive, SMLoc Loc) {
1103 StringRef PlatformName;
1104 SMLoc PlatformLoc = getTok().getLoc();
1105 if (getParser().parseIdentifier(PlatformName))
1106 return TokError("platform name expected");
1107
1108 unsigned Platform = StringSwitch<unsigned>(PlatformName)
1109 .Case("macos", MachO::PLATFORM_MACOS)
1110 .Case("ios", MachO::PLATFORM_IOS)
1111 .Case("tvos", MachO::PLATFORM_TVOS)
1112 .Case("watchos", MachO::PLATFORM_WATCHOS)
1113 .Default(0);
1114 if (Platform == 0)
1115 return Error(PlatformLoc, "unknown platform name");
1116
1117 if (getLexer().isNot(AsmToken::Comma))
1118 return TokError("version number required, comma expected");
1119 Lex();
1120
1121 unsigned Major;
1122 unsigned Minor;
1123 unsigned Update;
1124 if (parseVersion(&Major, &Minor, &Update))
1125 return true;
1126
1127 if (parseToken(AsmToken::EndOfStatement))
1128 return addErrorSuffix(" in '.build_version' directive");
1129
1130 Triple::OSType ExpectedOS
1131 = getOSTypeFromPlatform((MachO::PlatformType)Platform);
1132 checkVersion(Directive, PlatformName, Loc, ExpectedOS);
1133
1134 getStreamer().EmitBuildVersion(Platform, Major, Minor, Update);
1135 return false;
1136}
1137
1138
1139namespace llvm {
1140
1141MCAsmParserExtension *createDarwinAsmParser() {
1142 return new DarwinAsmParser;
1143}
1144
1145} // end llvm namespace

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmParserExtension.h

1//===- llvm/MC/MCAsmParserExtension.h - Asm Parser Hooks --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCPARSER_MCASMPARSEREXTENSION_H
11#define LLVM_MC_MCPARSER_MCASMPARSEREXTENSION_H
12
13#include "llvm/ADT/STLExtras.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/MC/MCParser/MCAsmLexer.h"
16#include "llvm/MC/MCParser/MCAsmParser.h"
17#include "llvm/Support/SMLoc.h"
18
19namespace llvm {
20
21class Twine;
22
23/// \brief Generic interface for extending the MCAsmParser,
24/// which is implemented by target and object file assembly parser
25/// implementations.
26class MCAsmParserExtension {
27 MCAsmParser *Parser;
28
29protected:
30 MCAsmParserExtension();
31
32 // Helper template for implementing static dispatch functions.
33 template<typename T, bool (T::*Handler)(StringRef, SMLoc)>
34 static bool HandleDirective(MCAsmParserExtension *Target,
35 StringRef Directive,
36 SMLoc DirectiveLoc) {
37 T *Obj = static_cast<T*>(Target);
38 return (Obj->*Handler)(Directive, DirectiveLoc);
39 }
40
41 bool BracketExpressionsSupported = false;
42
43public:
44 MCAsmParserExtension(const MCAsmParserExtension &) = delete;
45 MCAsmParserExtension &operator=(const MCAsmParserExtension &) = delete;
46 virtual ~MCAsmParserExtension();
47
48 /// \brief Initialize the extension for parsing using the given \p Parser.
49 /// The extension should use the AsmParser interfaces to register its
50 /// parsing routines.
51 virtual void Initialize(MCAsmParser &Parser);
52
53 /// \name MCAsmParser Proxy Interfaces
54 /// @{
55
56 MCContext &getContext() { return getParser().getContext(); }
57
58 MCAsmLexer &getLexer() { return getParser().getLexer(); }
5
Calling 'MCAsmParserExtension::getParser'
6
Returning from 'MCAsmParserExtension::getParser'
17
Calling 'MCAsmParserExtension::getParser'
18
Returning from 'MCAsmParserExtension::getParser'
39
Calling 'MCAsmParserExtension::getParser'
40
Returning from 'MCAsmParserExtension::getParser'
59 const MCAsmLexer &getLexer() const {
60 return const_cast<MCAsmParserExtension *>(this)->getLexer();
61 }
62
63 MCAsmParser &getParser() { return *Parser; }
64 const MCAsmParser &getParser() const {
65 return const_cast<MCAsmParserExtension*>(this)->getParser();
66 }
67
68 SourceMgr &getSourceManager() { return getParser().getSourceManager(); }
69 MCStreamer &getStreamer() { return getParser().getStreamer(); }
70
71 bool Warning(SMLoc L, const Twine &Msg) {
72 return getParser().Warning(L, Msg);
73 }
74
75 bool Error(SMLoc L, const Twine &Msg, SMRange Range = SMRange()) {
76 return getParser().Error(L, Msg, Range);
77 }
78
79 void Note(SMLoc L, const Twine &Msg) {
80 getParser().Note(L, Msg);
81 }
82
83 bool TokError(const Twine &Msg) {
84 return getParser().TokError(Msg);
59
Calling 'MCAsmParserExtension::getParser'
60
Returning from 'MCAsmParserExtension::getParser'
85 }
86
87 const AsmToken &Lex() { return getParser().Lex(); }
35
Calling 'MCAsmParserExtension::getParser'
36
Returning from 'MCAsmParserExtension::getParser'
88 const AsmToken &getTok() { return getParser().getTok(); }
89 bool parseToken(AsmToken::TokenKind T,
90 const Twine &Msg = "unexpected token") {
91 return getParser().parseToken(T, Msg);
92 }
93
94 bool parseMany(function_ref<bool()> parseOne, bool hasComma = true) {
95 return getParser().parseMany(parseOne, hasComma);
96 }
97
98 bool parseOptionalToken(AsmToken::TokenKind T) {
99 return getParser().parseOptionalToken(T);
100 }
101
102 bool check(bool P, const Twine &Msg) {
103 return getParser().check(P, Msg);
104 }
105
106 bool check(bool P, SMLoc Loc, const Twine &Msg) {
107 return getParser().check(P, Loc, Msg);
108 }
109
110 bool addErrorSuffix(const Twine &Suffix) {
111 return getParser().addErrorSuffix(Suffix);
112 }
113
114 bool HasBracketExpressions() const { return BracketExpressionsSupported; }
115
116 /// @}
117};
118
119} // end namespace llvm
120
121#endif // LLVM_MC_MCPARSER_MCASMPARSEREXTENSION_H

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h

1//===- llvm/MC/MCAsmLexer.h - Abstract Asm Lexer Interface ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_MC_MCPARSER_MCASMLEXER_H
11#define LLVM_MC_MCPARSER_MCASMLEXER_H
12
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/StringRef.h"
17#include "llvm/Support/SMLoc.h"
18#include <algorithm>
19#include <cassert>
20#include <cstddef>
21#include <cstdint>
22#include <string>
23
24namespace llvm {
25
26/// Target independent representation for an assembler token.
27class AsmToken {
28public:
29 enum TokenKind {
30 // Markers
31 Eof, Error,
32
33 // String values.
34 Identifier,
35 String,
36
37 // Integer values.
38 Integer,
39 BigNum, // larger than 64 bits
40
41 // Real values.
42 Real,
43
44 // Comments
45 Comment,
46 HashDirective,
47 // No-value.
48 EndOfStatement,
49 Colon,
50 Space,
51 Plus, Minus, Tilde,
52 Slash, // '/'
53 BackSlash, // '\'
54 LParen, RParen, LBrac, RBrac, LCurly, RCurly,
55 Star, Dot, Comma, Dollar, Equal, EqualEqual,
56
57 Pipe, PipePipe, Caret,
58 Amp, AmpAmp, Exclaim, ExclaimEqual, Percent, Hash,
59 Less, LessEqual, LessLess, LessGreater,
60 Greater, GreaterEqual, GreaterGreater, At,
61
62 // MIPS unary expression operators such as %neg.
63 PercentCall16, PercentCall_Hi, PercentCall_Lo, PercentDtprel_Hi,
64 PercentDtprel_Lo, PercentGot, PercentGot_Disp, PercentGot_Hi, PercentGot_Lo,
65 PercentGot_Ofst, PercentGot_Page, PercentGottprel, PercentGp_Rel, PercentHi,
66 PercentHigher, PercentHighest, PercentLo, PercentNeg, PercentPcrel_Hi,
67 PercentPcrel_Lo, PercentTlsgd, PercentTlsldm, PercentTprel_Hi,
68 PercentTprel_Lo
69 };
70
71private:
72 TokenKind Kind;
73
74 /// A reference to the entire token contents; this is always a pointer into
75 /// a memory buffer owned by the source manager.
76 StringRef Str;
77
78 APInt IntVal;
79
80public:
81 AsmToken() = default;
82 AsmToken(TokenKind Kind, StringRef Str, APInt IntVal)
83 : Kind(Kind), Str(Str), IntVal(std::move(IntVal)) {}
84 AsmToken(TokenKind Kind, StringRef Str, int64_t IntVal = 0)
85 : Kind(Kind), Str(Str), IntVal(64, IntVal, true) {}
86
87 TokenKind getKind() const { return Kind; }
88 bool is(TokenKind K) const { return Kind == K; }
89 bool isNot(TokenKind K) const { return Kind != K; }
12
Assuming the condition is false
46
Assuming the condition is true
90
91 SMLoc getLoc() const;
92 SMLoc getEndLoc() const;
93 SMRange getLocRange() const;
94
95 /// Get the contents of a string token (without quotes).
96 StringRef getStringContents() const {
97 assert(Kind == String && "This token isn't a string!")(static_cast <bool> (Kind == String && "This token isn't a string!"
) ? void (0) : __assert_fail ("Kind == String && \"This token isn't a string!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h"
, 97, __extension__ __PRETTY_FUNCTION__))
;
98 return Str.slice(1, Str.size() - 1);
99 }
100
101 /// Get the identifier string for the current token, which should be an
102 /// identifier or a string. This gets the portion of the string which should
103 /// be used as the identifier, e.g., it does not include the quotes on
104 /// strings.
105 StringRef getIdentifier() const {
106 if (Kind == Identifier)
107 return getString();
108 return getStringContents();
109 }
110
111 /// Get the string for the current token, this includes all characters (for
112 /// example, the quotes on strings) in the token.
113 ///
114 /// The returned StringRef points into the source manager's memory buffer, and
115 /// is safe to store across calls to Lex().
116 StringRef getString() const { return Str; }
117
118 // FIXME: Don't compute this in advance, it makes every token larger, and is
119 // also not generally what we want (it is nicer for recovery etc. to lex 123br
120 // as a single token, then diagnose as an invalid number).
121 int64_t getIntVal() const {
122 assert(Kind == Integer && "This token isn't an integer!")(static_cast <bool> (Kind == Integer && "This token isn't an integer!"
) ? void (0) : __assert_fail ("Kind == Integer && \"This token isn't an integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h"
, 122, __extension__ __PRETTY_FUNCTION__))
;
23
Within the expansion of the macro 'assert':
a
Assuming the condition is true
123 return IntVal.getZExtValue();
24
Calling 'APInt::getZExtValue'
29
Returning from 'APInt::getZExtValue'
124 }
125
126 APInt getAPIntVal() const {
127 assert((Kind == Integer || Kind == BigNum) &&(static_cast <bool> ((Kind == Integer || Kind == BigNum
) && "This token isn't an integer!") ? void (0) : __assert_fail
("(Kind == Integer || Kind == BigNum) && \"This token isn't an integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h"
, 128, __extension__ __PRETTY_FUNCTION__))
128 "This token isn't an integer!")(static_cast <bool> ((Kind == Integer || Kind == BigNum
) && "This token isn't an integer!") ? void (0) : __assert_fail
("(Kind == Integer || Kind == BigNum) && \"This token isn't an integer!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h"
, 128, __extension__ __PRETTY_FUNCTION__))
;
129 return IntVal;
130 }
131};
132
133/// A callback class which is notified of each comment in an assembly file as
134/// it is lexed.
135class AsmCommentConsumer {
136public:
137 virtual ~AsmCommentConsumer() = default;
138
139 /// Callback function for when a comment is lexed. Loc is the start of the
140 /// comment text (excluding the comment-start marker). CommentText is the text
141 /// of the comment, excluding the comment start and end markers, and the
142 /// newline for single-line comments.
143 virtual void HandleComment(SMLoc Loc, StringRef CommentText) = 0;
144};
145
146
147/// Generic assembler lexer interface, for use by target specific assembly
148/// lexers.
149class MCAsmLexer {
150 /// The current token, stored in the base class for faster access.
151 SmallVector<AsmToken, 1> CurTok;
152
153 /// The location and description of the current error
154 SMLoc ErrLoc;
155 std::string Err;
156
157protected: // Can only create subclasses.
158 const char *TokStart = nullptr;
159 bool SkipSpace = true;
160 bool AllowAtInIdentifier;
161 bool IsAtStartOfStatement = true;
162 AsmCommentConsumer *CommentConsumer = nullptr;
163
164 bool AltMacroMode;
165 MCAsmLexer();
166
167 virtual AsmToken LexToken() = 0;
168
169 void SetError(SMLoc errLoc, const std::string &err) {
170 ErrLoc = errLoc;
171 Err = err;
172 }
173
174public:
175 MCAsmLexer(const MCAsmLexer &) = delete;
176 MCAsmLexer &operator=(const MCAsmLexer &) = delete;
177 virtual ~MCAsmLexer();
178
179 bool IsaAltMacroMode() {
180 return AltMacroMode;
181 }
182
183 void SetAltMacroMode(bool AltMacroSet) {
184 AltMacroMode = AltMacroSet;
185 }
186
187 /// Consume the next token from the input stream and return it.
188 ///
189 /// The lexer will continuosly return the end-of-file token once the end of
190 /// the main input file has been reached.
191 const AsmToken &Lex() {
192 assert(!CurTok.empty())(static_cast <bool> (!CurTok.empty()) ? void (0) : __assert_fail
("!CurTok.empty()", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h"
, 192, __extension__ __PRETTY_FUNCTION__))
;
193 // Mark if we parsing out a EndOfStatement.
194 IsAtStartOfStatement = CurTok.front().getKind() == AsmToken::EndOfStatement;
195 CurTok.erase(CurTok.begin());
196 // LexToken may generate multiple tokens via UnLex but will always return
197 // the first one. Place returned value at head of CurTok vector.
198 if (CurTok.empty()) {
199 AsmToken T = LexToken();
200 CurTok.insert(CurTok.begin(), T);
201 }
202 return CurTok.front();
203 }
204
205 void UnLex(AsmToken const &Token) {
206 IsAtStartOfStatement = false;
207 CurTok.insert(CurTok.begin(), Token);
208 }
209
210 bool isAtStartOfStatement() { return IsAtStartOfStatement; }
211
212 virtual StringRef LexUntilEndOfStatement() = 0;
213
214 /// Get the current source location.
215 SMLoc getLoc() const;
216
217 /// Get the current (last) lexed token.
218 const AsmToken &getTok() const {
219 return CurTok[0];
220 }
221
222 /// Look ahead at the next token to be lexed.
223 const AsmToken peekTok(bool ShouldSkipSpace = true) {
224 AsmToken Tok;
225
226 MutableArrayRef<AsmToken> Buf(Tok);
227 size_t ReadCount = peekTokens(Buf, ShouldSkipSpace);
228
229 assert(ReadCount == 1)(static_cast <bool> (ReadCount == 1) ? void (0) : __assert_fail
("ReadCount == 1", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/MC/MCParser/MCAsmLexer.h"
, 229, __extension__ __PRETTY_FUNCTION__))
;
230 (void)ReadCount;
231
232 return Tok;
233 }
234
235 /// Look ahead an arbitrary number of tokens.
236 virtual size_t peekTokens(MutableArrayRef<AsmToken> Buf,
237 bool ShouldSkipSpace = true) = 0;
238
239 /// Get the current error location
240 SMLoc getErrLoc() {
241 return ErrLoc;
242 }
243
244 /// Get the current error string
245 const std::string &getErr() {
246 return Err;
247 }
248
249 /// Get the kind of current token.
250 AsmToken::TokenKind getKind() const { return getTok().getKind(); }
251
252 /// Check if the current token has kind \p K.
253 bool is(AsmToken::TokenKind K) const { return getTok().is(K); }
254
255 /// Check if the current token has kind \p K.
256 bool isNot(AsmToken::TokenKind K) const { return getTok().isNot(K); }
9
Calling 'MCAsmLexer::getTok'
10
Returning from 'MCAsmLexer::getTok'
11
Calling 'AsmToken::isNot'
13
Returning from 'AsmToken::isNot'
43
Calling 'MCAsmLexer::getTok'
44
Returning from 'MCAsmLexer::getTok'
45
Calling 'AsmToken::isNot'
47
Returning from 'AsmToken::isNot'
257
258 /// Set whether spaces should be ignored by the lexer
259 void setSkipSpace(bool val) { SkipSpace = val; }
260
261 bool getAllowAtInIdentifier() { return AllowAtInIdentifier; }
262 void setAllowAtInIdentifier(bool v) { AllowAtInIdentifier = v; }
263
264 void setCommentConsumer(AsmCommentConsumer *CommentConsumer) {
265 this->CommentConsumer = CommentConsumer;
266 }
267};
268
269} // end namespace llvm
270
271#endif // LLVM_MC_MCPARSER_MCASMLEXER_H

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// \brief Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
79 };
80
81 static const WordType WORD_MAX = ~WordType(0);
82
83private:
84 /// This union is used to store the integer value. When the
85 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86 union {
87 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
88 uint64_t *pVal; ///< Used to store the >64 bits integer value.
89 } U;
90
91 unsigned BitWidth; ///< The number of bits in this APInt.
92
93 friend struct DenseMapAPIntKeyInfo;
94
95 friend class APSInt;
96
97 /// \brief Fast internal constructor
98 ///
99 /// This constructor is used only internally for speed of construction of
100 /// temporaries. It is unsafe for general use so it is not public.
101 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102 U.pVal = val;
103 }
104
105 /// \brief Determine if this APInt just has one word to store value.
106 ///
107 /// \returns true if the number of bits <= 64, false otherwise.
108 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
26
Assuming the condition is true
109
110 /// \brief Determine which word a bit is in.
111 ///
112 /// \returns the word position for the specified bit position.
113 static unsigned whichWord(unsigned bitPosition) {
114 return bitPosition / APINT_BITS_PER_WORD;
115 }
116
117 /// \brief Determine which bit in a word a bit is in.
118 ///
119 /// \returns the bit position in a word for the specified bit position
120 /// in the APInt.
121 static unsigned whichBit(unsigned bitPosition) {
122 return bitPosition % APINT_BITS_PER_WORD;
123 }
124
125 /// \brief Get a single bit mask.
126 ///
127 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128 /// This method generates and returns a uint64_t (word) mask for a single
129 /// bit at a specific bit position. This is used to mask the bit in the
130 /// corresponding word.
131 static uint64_t maskBit(unsigned bitPosition) {
132 return 1ULL << whichBit(bitPosition);
133 }
134
135 /// \brief Clear unused high order bits
136 ///
137 /// This method is used internally to clear the top "N" bits in the high order
138 /// word that are not used by the APInt. This is needed after the most
139 /// significant word is assigned a value to ensure that those bits are
140 /// zero'd out.
141 APInt &clearUnusedBits() {
142 // Compute how many bits are used in the final word
143 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
145 // Mask out the high bits.
146 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147 if (isSingleWord())
148 U.VAL &= mask;
149 else
150 U.pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
158 }
159
160 /// Utility method to change the bit width of this APInt to new bit width,
161 /// allocating and/or deallocating as necessary. There is no guarantee on the
162 /// value of any bits upon return. Caller should populate the bits after.
163 void reallocate(unsigned NewBitWidth);
164
165 /// \brief Convert a char array into an APInt
166 ///
167 /// \param radix 2, 8, 10, 16, or 36
168 /// Converts a string into a number. The string must be non-empty
169 /// and well-formed as a number of the given base. The bit-width
170 /// must be sufficient to hold the result.
171 ///
172 /// This is used by the constructors that take string arguments.
173 ///
174 /// StringRef::getAsInteger is superficially similar but (1) does
175 /// not assume that the string is well-formed and (2) grows the
176 /// result to hold the input.
177 void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179 /// \brief An internal division function for dividing APInts.
180 ///
181 /// This is used by the toString method to divide by the radix. It simply
182 /// provides a more convenient form of divide for internal use since KnuthDiv
183 /// has specific constraints on its inputs. If those constraints are not met
184 /// then it provides a simpler form of divide.
185 static void divide(const WordType *LHS, unsigned lhsWords,
186 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187 WordType *Remainder);
188
189 /// out-of-line slow case for inline constructor
190 void initSlowCase(uint64_t val, bool isSigned);
191
192 /// shared code between two array constructors
193 void initFromArray(ArrayRef<uint64_t> array);
194
195 /// out-of-line slow case for inline copy constructor
196 void initSlowCase(const APInt &that);
197
198 /// out-of-line slow case for shl
199 void shlSlowCase(unsigned ShiftAmt);
200
201 /// out-of-line slow case for lshr.
202 void lshrSlowCase(unsigned ShiftAmt);
203
204 /// out-of-line slow case for ashr.
205 void ashrSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for operator=
208 void AssignSlowCase(const APInt &RHS);
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
215
216 /// out-of-line slow case for countLeadingOnes.
217 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
218
219 /// out-of-line slow case for countTrailingZeros.
220 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
221
222 /// out-of-line slow case for countTrailingOnes
223 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
224
225 /// out-of-line slow case for countPopulation
226 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
227
228 /// out-of-line slow case for intersects.
229 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
230
231 /// out-of-line slow case for isSubsetOf.
232 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
233
234 /// out-of-line slow case for setBits.
235 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237 /// out-of-line slow case for flipAllBits.
238 void flipAllBitsSlowCase();
239
240 /// out-of-line slow case for operator&=.
241 void AndAssignSlowCase(const APInt& RHS);
242
243 /// out-of-line slow case for operator|=.
244 void OrAssignSlowCase(const APInt& RHS);
245
246 /// out-of-line slow case for operator^=.
247 void XorAssignSlowCase(const APInt& RHS);
248
249 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250 /// to, or greater than RHS.
251 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
252
253 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254 /// to, or greater than RHS.
255 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
256
257public:
258 /// \name Constructors
259 /// @{
260
261 /// \brief Create a new APInt of numBits width, initialized as val.
262 ///
263 /// If isSigned is true then val is treated as if it were a signed value
264 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266 /// the range of val are zero filled).
267 ///
268 /// \param numBits the bit width of the constructed APInt
269 /// \param val the initial value of the APInt
270 /// \param isSigned how to treat signedness of val
271 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272 : BitWidth(numBits) {
273 assert(BitWidth && "bitwidth too small")(static_cast <bool> (BitWidth && "bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 273, __extension__ __PRETTY_FUNCTION__))
;
274 if (isSingleWord()) {
275 U.VAL = val;
276 clearUnusedBits();
277 } else {
278 initSlowCase(val, isSigned);
279 }
280 }
281
282 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283 ///
284 /// Note that bigVal.size() can be smaller or larger than the corresponding
285 /// bit width but any extraneous bits will be dropped.
286 ///
287 /// \param numBits the bit width of the constructed APInt
288 /// \param bigVal a sequence of words to form the initial value of the APInt
289 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292 /// deprecated because this constructor is prone to ambiguity with the
293 /// APInt(unsigned, uint64_t, bool) constructor.
294 ///
295 /// If this overload is ever deleted, care should be taken to prevent calls
296 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297 /// constructor.
298 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300 /// \brief Construct an APInt from a string representation.
301 ///
302 /// This constructor interprets the string \p str in the given radix. The
303 /// interpretation stops when the first character that is not suitable for the
304 /// radix is encountered, or the end of the string. Acceptable radix values
305 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306 /// string to require more bits than numBits.
307 ///
308 /// \param numBits the bit width of the constructed APInt
309 /// \param str the string to be interpreted
310 /// \param radix the radix to use for the conversion
311 APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313 /// Simply makes *this a copy of that.
314 /// @brief Copy Constructor.
315 APInt(const APInt &that) : BitWidth(that.BitWidth) {
316 if (isSingleWord())
317 U.VAL = that.U.VAL;
318 else
319 initSlowCase(that);
320 }
321
322 /// \brief Move Constructor.
323 APInt(APInt &&that) : BitWidth(that.BitWidth) {
324 memcpy(&U, &that.U, sizeof(U));
325 that.BitWidth = 0;
326 }
327
328 /// \brief Destructor.
329 ~APInt() {
330 if (needsCleanup())
331 delete[] U.pVal;
332 }
333
334 /// \brief Default constructor that creates an uninteresting APInt
335 /// representing a 1-bit zero value.
336 ///
337 /// This is useful for object deserialization (pair this with the static
338 /// method Read).
339 explicit APInt() : BitWidth(1) { U.VAL = 0; }
340
341 /// \brief Returns whether this instance allocated memory.
342 bool needsCleanup() const { return !isSingleWord(); }
343
344 /// Used to insert APInt objects, or objects that contain APInt objects, into
345 /// FoldingSets.
346 void Profile(FoldingSetNodeID &id) const;
347
348 /// @}
349 /// \name Value Tests
350 /// @{
351
352 /// \brief Determine sign of this APInt.
353 ///
354 /// This tests the high bit of this APInt to determine if it is set.
355 ///
356 /// \returns true if this APInt is negative, false otherwise
357 bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359 /// \brief Determine if this APInt Value is non-negative (>= 0)
360 ///
361 /// This tests the high bit of the APInt to determine if it is unset.
362 bool isNonNegative() const { return !isNegative(); }
363
364 /// \brief Determine if sign bit of this APInt is set.
365 ///
366 /// This tests the high bit of this APInt to determine if it is set.
367 ///
368 /// \returns true if this APInt has its sign bit set, false otherwise.
369 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371 /// \brief Determine if sign bit of this APInt is clear.
372 ///
373 /// This tests the high bit of this APInt to determine if it is clear.
374 ///
375 /// \returns true if this APInt has its sign bit clear, false otherwise.
376 bool isSignBitClear() const { return !isSignBitSet(); }
377
378 /// \brief Determine if this APInt Value is positive.
379 ///
380 /// This tests if the value of this APInt is positive (> 0). Note
381 /// that 0 is not a positive value.
382 ///
383 /// \returns true if this APInt is positive.
384 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
385
386 /// \brief Determine if all bits are set
387 ///
388 /// This checks to see if the value has all bits of the APInt are set or not.
389 bool isAllOnesValue() const {
390 if (isSingleWord())
391 return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392 return countTrailingOnesSlowCase() == BitWidth;
393 }
394
395 /// \brief Determine if all bits are clear
396 ///
397 /// This checks to see if the value has all bits of the APInt are clear or
398 /// not.
399 bool isNullValue() const { return !*this; }
400
401 /// \brief Determine if this is a value of 1.
402 ///
403 /// This checks to see if the value of this APInt is one.
404 bool isOneValue() const {
405 if (isSingleWord())
406 return U.VAL == 1;
407 return countLeadingZerosSlowCase() == BitWidth - 1;
408 }
409
410 /// \brief Determine if this is the largest unsigned value.
411 ///
412 /// This checks to see if the value of this APInt is the maximum unsigned
413 /// value for the APInt's bit width.
414 bool isMaxValue() const { return isAllOnesValue(); }
415
416 /// \brief Determine if this is the largest signed value.
417 ///
418 /// This checks to see if the value of this APInt is the maximum signed
419 /// value for the APInt's bit width.
420 bool isMaxSignedValue() const {
421 if (isSingleWord())
422 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
424 }
425
426 /// \brief Determine if this is the smallest unsigned value.
427 ///
428 /// This checks to see if the value of this APInt is the minimum unsigned
429 /// value for the APInt's bit width.
430 bool isMinValue() const { return isNullValue(); }
431
432 /// \brief Determine if this is the smallest signed value.
433 ///
434 /// This checks to see if the value of this APInt is the minimum signed
435 /// value for the APInt's bit width.
436 bool isMinSignedValue() const {
437 if (isSingleWord())
438 return U.VAL == (WordType(1) << (BitWidth - 1));
439 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
440 }
441
442 /// \brief Check if this APInt has an N-bits unsigned integer value.
443 bool isIntN(unsigned N) const {
444 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 444, __extension__ __PRETTY_FUNCTION__))
;
445 return getActiveBits() <= N;
446 }
447
448 /// \brief Check if this APInt has an N-bits signed integer value.
449 bool isSignedIntN(unsigned N) const {
450 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 450, __extension__ __PRETTY_FUNCTION__))
;
451 return getMinSignedBits() <= N;
452 }
453
454 /// \brief Check if this APInt's value is a power of two greater than zero.
455 ///
456 /// \returns true if the argument APInt value is a power of two > 0.
457 bool isPowerOf2() const {
458 if (isSingleWord())
459 return isPowerOf2_64(U.VAL);
460 return countPopulationSlowCase() == 1;
461 }
462
463 /// \brief Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466 bool isSignMask() const { return isMinSignedValue(); }
467
468 /// \brief Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471 bool getBoolValue() const { return !!*this; }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
475 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
476 return ugt(Limit) ? Limit : getZExtValue();
477 }
478
479 /// \brief Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484 bool isSplat(unsigned SplatSizeInBits) const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488 bool isMask(unsigned numBits) const {
489 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 489, __extension__ __PRETTY_FUNCTION__))
;
490 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 if (isSingleWord())
492 return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501 bool isMask() const {
502 if (isSingleWord())
503 return isMask_64(U.VAL);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506 }
507
508 /// \brief Return true if this APInt value contains a sequence of ones with
509 /// the remainder zero.
510 bool isShiftedMask() const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516 }
517
518 /// @}
519 /// \name Value Generators
520 /// @{
521
522 /// \brief Gets maximum unsigned value of APInt for specific bit width.
523 static APInt getMaxValue(unsigned numBits) {
524 return getAllOnesValue(numBits);
525 }
526
527 /// \brief Gets maximum signed value of APInt for a specific bit width.
528 static APInt getSignedMaxValue(unsigned numBits) {
529 APInt API = getAllOnesValue(numBits);
530 API.clearBit(numBits - 1);
531 return API;
532 }
533
534 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537 /// \brief Gets minimum signed value of APInt for a specific bit width.
538 static APInt getSignedMinValue(unsigned numBits) {
539 APInt API(numBits, 0);
540 API.setBit(numBits - 1);
541 return API;
542 }
543
544 /// \brief Get the SignMask for a specific bit width.
545 ///
546 /// This is just a wrapper function of getSignedMinValue(), and it helps code
547 /// readability when we want to get a SignMask.
548 static APInt getSignMask(unsigned BitWidth) {
549 return getSignedMinValue(BitWidth);
550 }
551
552 /// \brief Get the all-ones value.
553 ///
554 /// \returns the all-ones value for an APInt of the specified bit-width.
555 static APInt getAllOnesValue(unsigned numBits) {
556 return APInt(numBits, WORD_MAX, true);
557 }
558
559 /// \brief Get the '0' value.
560 ///
561 /// \returns the '0' value for an APInt of the specified bit-width.
562 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564 /// \brief Compute an APInt containing numBits highbits from this APInt.
565 ///
566 /// Get an APInt with the same BitWidth as this APInt, just zero mask
567 /// the low bits and right shift to the least significant bit.
568 ///
569 /// \returns the high "numBits" bits of this APInt.
570 APInt getHiBits(unsigned numBits) const;
571
572 /// \brief Compute an APInt containing numBits lowbits from this APInt.
573 ///
574 /// Get an APInt with the same BitWidth as this APInt, just zero mask
575 /// the high bits.
576 ///
577 /// \returns the low "numBits" bits of this APInt.
578 APInt getLoBits(unsigned numBits) const;
579
580 /// \brief Return an APInt with exactly one bit set in the result.
581 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582 APInt Res(numBits, 0);
583 Res.setBit(BitNo);
584 return Res;
585 }
586
587 /// \brief Get a value with a block of bits set.
588 ///
589 /// Constructs an APInt value that has a contiguous range of bits set. The
590 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594 ///
595 /// \param numBits the intended bit width of the result
596 /// \param loBit the index of the lowest bit set.
597 /// \param hiBit the index of the highest bit set.
598 ///
599 /// \returns An APInt value with the requested bits set.
600 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601 APInt Res(numBits, 0);
602 Res.setBits(loBit, hiBit);
603 return Res;
604 }
605
606 /// \brief Get a value with upper bits starting at loBit set.
607 ///
608 /// Constructs an APInt value that has a contiguous range of bits set. The
609 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610 /// bits will be zero. For example, with parameters(32, 12) you would get
611 /// 0xFFFFF000.
612 ///
613 /// \param numBits the intended bit width of the result
614 /// \param loBit the index of the lowest bit to set.
615 ///
616 /// \returns An APInt value with the requested bits set.
617 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618 APInt Res(numBits, 0);
619 Res.setBitsFrom(loBit);
620 return Res;
621 }
622
623 /// \brief Get a value with high bits set
624 ///
625 /// Constructs an APInt value that has the top hiBitsSet bits set.
626 ///
627 /// \param numBits the bitwidth of the result
628 /// \param hiBitsSet the number of high-order bits set in the result.
629 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630 APInt Res(numBits, 0);
631 Res.setHighBits(hiBitsSet);
632 return Res;
633 }
634
635 /// \brief Get a value with low bits set
636 ///
637 /// Constructs an APInt value that has the bottom loBitsSet bits set.
638 ///
639 /// \param numBits the bitwidth of the result
640 /// \param loBitsSet the number of low-order bits set in the result.
641 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642 APInt Res(numBits, 0);
643 Res.setLowBits(loBitsSet);
644 return Res;
645 }
646
647 /// \brief Return a value containing V broadcasted over NewLen bits.
648 static APInt getSplat(unsigned NewLen, const APInt &V);
649
650 /// \brief Determine if two APInts have the same value, after zero-extending
651 /// one of them (if needed!) to ensure that the bit-widths match.
652 static bool isSameValue(const APInt &I1, const APInt &I2) {
653 if (I1.getBitWidth() == I2.getBitWidth())
654 return I1 == I2;
655
656 if (I1.getBitWidth() > I2.getBitWidth())
657 return I1 == I2.zext(I1.getBitWidth());
658
659 return I1.zext(I2.getBitWidth()) == I2;
660 }
661
662 /// \brief Overload to compute a hash_code for an APInt value.
663 friend hash_code hash_value(const APInt &Arg);
664
665 /// This function returns a pointer to the internal storage of the APInt.
666 /// This is useful for writing out the APInt in binary form without any
667 /// conversions.
668 const uint64_t *getRawData() const {
669 if (isSingleWord())
670 return &U.VAL;
671 return &U.pVal[0];
672 }
673
674 /// @}
675 /// \name Unary Operators
676 /// @{
677
678 /// \brief Postfix increment operator.
679 ///
680 /// Increments *this by 1.
681 ///
682 /// \returns a new APInt value representing the original value of *this.
683 const APInt operator++(int) {
684 APInt API(*this);
685 ++(*this);
686 return API;
687 }
688
689 /// \brief Prefix increment operator.
690 ///
691 /// \returns *this incremented by one
692 APInt &operator++();
693
694 /// \brief Postfix decrement operator.
695 ///
696 /// Decrements *this by 1.
697 ///
698 /// \returns a new APInt value representing the original value of *this.
699 const APInt operator--(int) {
700 APInt API(*this);
701 --(*this);
702 return API;
703 }
704
705 /// \brief Prefix decrement operator.
706 ///
707 /// \returns *this decremented by one.
708 APInt &operator--();
709
710 /// \brief Logical negation operator.
711 ///
712 /// Performs logical negation operation on this APInt.
713 ///
714 /// \returns true if *this is zero, false otherwise.
715 bool operator!() const {
716 if (isSingleWord())
717 return U.VAL == 0;
718 return countLeadingZerosSlowCase() == BitWidth;
719 }
720
721 /// @}
722 /// \name Assignment Operators
723 /// @{
724
725 /// \brief Copy assignment operator.
726 ///
727 /// \returns *this after assignment of RHS.
728 APInt &operator=(const APInt &RHS) {
729 // If the bitwidths are the same, we can avoid mucking with memory
730 if (isSingleWord() && RHS.isSingleWord()) {
731 U.VAL = RHS.U.VAL;
732 BitWidth = RHS.BitWidth;
733 return clearUnusedBits();
734 }
735
736 AssignSlowCase(RHS);
737 return *this;
738 }
739
740 /// @brief Move assignment operator.
741 APInt &operator=(APInt &&that) {
742 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 742, __extension__ __PRETTY_FUNCTION__))
;
743 if (!isSingleWord())
744 delete[] U.pVal;
745
746 // Use memcpy so that type based alias analysis sees both VAL and pVal
747 // as modified.
748 memcpy(&U, &that.U, sizeof(U));
749
750 BitWidth = that.BitWidth;
751 that.BitWidth = 0;
752
753 return *this;
754 }
755
756 /// \brief Assignment operator.
757 ///
758 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759 /// the bit width, the excess bits are truncated. If the bit width is larger
760 /// than 64, the value is zero filled in the unspecified high order bits.
761 ///
762 /// \returns *this after assignment of RHS value.
763 APInt &operator=(uint64_t RHS) {
764 if (isSingleWord()) {
765 U.VAL = RHS;
766 clearUnusedBits();
767 } else {
768 U.pVal[0] = RHS;
769 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770 }
771 return *this;
772 }
773
774 /// \brief Bitwise AND assignment operator.
775 ///
776 /// Performs a bitwise AND operation on this APInt and RHS. The result is
777 /// assigned to *this.
778 ///
779 /// \returns *this after ANDing with RHS.
780 APInt &operator&=(const APInt &RHS) {
781 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 781, __extension__ __PRETTY_FUNCTION__))
;
782 if (isSingleWord())
783 U.VAL &= RHS.U.VAL;
784 else
785 AndAssignSlowCase(RHS);
786 return *this;
787 }
788
789 /// \brief Bitwise AND assignment operator.
790 ///
791 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792 /// logically zero-extended or truncated to match the bit-width of
793 /// the LHS.
794 APInt &operator&=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL &= RHS;
797 return *this;
798 }
799 U.pVal[0] &= RHS;
800 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// \brief Bitwise OR assignment operator.
805 ///
806 /// Performs a bitwise OR operation on this APInt and RHS. The result is
807 /// assigned *this;
808 ///
809 /// \returns *this after ORing with RHS.
810 APInt &operator|=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 811, __extension__ __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL |= RHS.U.VAL;
814 else
815 OrAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// \brief Bitwise OR assignment operator.
820 ///
821 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator|=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL |= RHS;
827 clearUnusedBits();
828 } else {
829 U.pVal[0] |= RHS;
830 }
831 return *this;
832 }
833
834 /// \brief Bitwise XOR assignment operator.
835 ///
836 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837 /// assigned to *this.
838 ///
839 /// \returns *this after XORing with RHS.
840 APInt &operator^=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL ^= RHS.U.VAL;
844 else
845 XorAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// \brief Bitwise XOR assignment operator.
850 ///
851 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator^=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL ^= RHS;
857 clearUnusedBits();
858 } else {
859 U.pVal[0] ^= RHS;
860 }
861 return *this;
862 }
863
864 /// \brief Multiplication assignment operator.
865 ///
866 /// Multiplies this APInt by RHS and assigns the result to *this.
867 ///
868 /// \returns *this
869 APInt &operator*=(const APInt &RHS);
870 APInt &operator*=(uint64_t RHS);
871
872 /// \brief Addition assignment operator.
873 ///
874 /// Adds RHS to *this and assigns the result to *this.
875 ///
876 /// \returns *this
877 APInt &operator+=(const APInt &RHS);
878 APInt &operator+=(uint64_t RHS);
879
880 /// \brief Subtraction assignment operator.
881 ///
882 /// Subtracts RHS from *this and assigns the result to *this.
883 ///
884 /// \returns *this
885 APInt &operator-=(const APInt &RHS);
886 APInt &operator-=(uint64_t RHS);
887
888 /// \brief Left-shift assignment function.
889 ///
890 /// Shifts *this left by shiftAmt and assigns the result to *this.
891 ///
892 /// \returns *this after shifting left by ShiftAmt
893 APInt &operator<<=(unsigned ShiftAmt) {
894 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 894, __extension__ __PRETTY_FUNCTION__))
;
895 if (isSingleWord()) {
896 if (ShiftAmt == BitWidth)
897 U.VAL = 0;
898 else
899 U.VAL <<= ShiftAmt;
900 return clearUnusedBits();
901 }
902 shlSlowCase(ShiftAmt);
903 return *this;
904 }
905
906 /// \brief Left-shift assignment function.
907 ///
908 /// Shifts *this left by shiftAmt and assigns the result to *this.
909 ///
910 /// \returns *this after shifting left by ShiftAmt
911 APInt &operator<<=(const APInt &ShiftAmt);
912
913 /// @}
914 /// \name Binary Operators
915 /// @{
916
917 /// \brief Multiplication operator.
918 ///
919 /// Multiplies this APInt by RHS and returns the result.
920 APInt operator*(const APInt &RHS) const;
921
922 /// \brief Left logical shift operator.
923 ///
924 /// Shifts this APInt left by \p Bits and returns the result.
925 APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927 /// \brief Left logical shift operator.
928 ///
929 /// Shifts this APInt left by \p Bits and returns the result.
930 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932 /// \brief Arithmetic right-shift function.
933 ///
934 /// Arithmetic right-shift this APInt by shiftAmt.
935 APInt ashr(unsigned ShiftAmt) const {
936 APInt R(*this);
937 R.ashrInPlace(ShiftAmt);
938 return R;
939 }
940
941 /// Arithmetic right-shift this APInt by ShiftAmt in place.
942 void ashrInPlace(unsigned ShiftAmt) {
943 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 943, __extension__ __PRETTY_FUNCTION__))
;
944 if (isSingleWord()) {
945 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946 if (ShiftAmt == BitWidth)
947 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948 else
949 U.VAL = SExtVAL >> ShiftAmt;
950 clearUnusedBits();
951 return;
952 }
953 ashrSlowCase(ShiftAmt);
954 }
955
956 /// \brief Logical right-shift function.
957 ///
958 /// Logical right-shift this APInt by shiftAmt.
959 APInt lshr(unsigned shiftAmt) const {
960 APInt R(*this);
961 R.lshrInPlace(shiftAmt);
962 return R;
963 }
964
965 /// Logical right-shift this APInt by ShiftAmt in place.
966 void lshrInPlace(unsigned ShiftAmt) {
967 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 967, __extension__ __PRETTY_FUNCTION__))
;
968 if (isSingleWord()) {
969 if (ShiftAmt == BitWidth)
970 U.VAL = 0;
971 else
972 U.VAL >>= ShiftAmt;
973 return;
974 }
975 lshrSlowCase(ShiftAmt);
976 }
977
978 /// \brief Left-shift function.
979 ///
980 /// Left-shift this APInt by shiftAmt.
981 APInt shl(unsigned shiftAmt) const {
982 APInt R(*this);
983 R <<= shiftAmt;
984 return R;
985 }
986
987 /// \brief Rotate left by rotateAmt.
988 APInt rotl(unsigned rotateAmt) const;
989
990 /// \brief Rotate right by rotateAmt.
991 APInt rotr(unsigned rotateAmt) const;
992
993 /// \brief Arithmetic right-shift function.
994 ///
995 /// Arithmetic right-shift this APInt by shiftAmt.
996 APInt ashr(const APInt &ShiftAmt) const {
997 APInt R(*this);
998 R.ashrInPlace(ShiftAmt);
999 return R;
1000 }
1001
1002 /// Arithmetic right-shift this APInt by shiftAmt in place.
1003 void ashrInPlace(const APInt &shiftAmt);
1004
1005 /// \brief Logical right-shift function.
1006 ///
1007 /// Logical right-shift this APInt by shiftAmt.
1008 APInt lshr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.lshrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Logical right-shift this APInt by ShiftAmt in place.
1015 void lshrInPlace(const APInt &ShiftAmt);
1016
1017 /// \brief Left-shift function.
1018 ///
1019 /// Left-shift this APInt by shiftAmt.
1020 APInt shl(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R <<= ShiftAmt;
1023 return R;
1024 }
1025
1026 /// \brief Rotate left by rotateAmt.
1027 APInt rotl(const APInt &rotateAmt) const;
1028
1029 /// \brief Rotate right by rotateAmt.
1030 APInt rotr(const APInt &rotateAmt) const;
1031
1032 /// \brief Unsigned division operation.
1033 ///
1034 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035 /// RHS are treated as unsigned quantities for purposes of this division.
1036 ///
1037 /// \returns a new APInt value containing the division result
1038 APInt udiv(const APInt &RHS) const;
1039 APInt udiv(uint64_t RHS) const;
1040
1041 /// \brief Signed division function for APInt.
1042 ///
1043 /// Signed divide this APInt by APInt RHS.
1044 APInt sdiv(const APInt &RHS) const;
1045 APInt sdiv(int64_t RHS) const;
1046
1047 /// \brief Unsigned remainder operation.
1048 ///
1049 /// Perform an unsigned remainder operation on this APInt with RHS being the
1050 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051 /// of this operation. Note that this is a true remainder operation and not a
1052 /// modulo operation because the sign follows the sign of the dividend which
1053 /// is *this.
1054 ///
1055 /// \returns a new APInt value containing the remainder result
1056 APInt urem(const APInt &RHS) const;
1057 uint64_t urem(uint64_t RHS) const;
1058
1059 /// \brief Function for signed remainder operation.
1060 ///
1061 /// Signed remainder operation on APInt.
1062 APInt srem(const APInt &RHS) const;
1063 int64_t srem(int64_t RHS) const;
1064
1065 /// \brief Dual division/remainder interface.
1066 ///
1067 /// Sometimes it is convenient to divide two APInt values and obtain both the
1068 /// quotient and remainder. This function does both operations in the same
1069 /// computation making it a little more efficient. The pair of input arguments
1070 /// may overlap with the pair of output arguments. It is safe to call
1071 /// udivrem(X, Y, X, Y), for example.
1072 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073 APInt &Remainder);
1074 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075 uint64_t &Remainder);
1076
1077 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078 APInt &Remainder);
1079 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080 int64_t &Remainder);
1081
1082 // Operations that return overflow indicators.
1083 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093 /// \brief Array-indexing support.
1094 ///
1095 /// \returns the bit value at bitPosition
1096 bool operator[](unsigned bitPosition) const {
1097 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1097, __extension__ __PRETTY_FUNCTION__))
;
1098 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099 }
1100
1101 /// @}
1102 /// \name Comparison Operators
1103 /// @{
1104
1105 /// \brief Equality operator.
1106 ///
1107 /// Compares this APInt with RHS for the validity of the equality
1108 /// relationship.
1109 bool operator==(const APInt &RHS) const {
1110 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1110, __extension__ __PRETTY_FUNCTION__))
;
1111 if (isSingleWord())
1112 return U.VAL == RHS.U.VAL;
1113 return EqualSlowCase(RHS);
1114 }
1115
1116 /// \brief Equality operator.
1117 ///
1118 /// Compares this APInt with a uint64_t for the validity of the equality
1119 /// relationship.
1120 ///
1121 /// \returns true if *this == Val
1122 bool operator==(uint64_t Val) const {
1123 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1124 }
1125
1126 /// \brief Equality comparison.
1127 ///
1128 /// Compares this APInt with RHS for the validity of the equality
1129 /// relationship.
1130 ///
1131 /// \returns true if *this == Val
1132 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134 /// \brief Inequality operator.
1135 ///
1136 /// Compares this APInt with RHS for the validity of the inequality
1137 /// relationship.
1138 ///
1139 /// \returns true if *this != Val
1140 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142 /// \brief Inequality operator.
1143 ///
1144 /// Compares this APInt with a uint64_t for the validity of the inequality
1145 /// relationship.
1146 ///
1147 /// \returns true if *this != Val
1148 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150 /// \brief Inequality comparison
1151 ///
1152 /// Compares this APInt with RHS for the validity of the inequality
1153 /// relationship.
1154 ///
1155 /// \returns true if *this != Val
1156 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158 /// \brief Unsigned less than comparison
1159 ///
1160 /// Regards both *this and RHS as unsigned quantities and compares them for
1161 /// the validity of the less-than relationship.
1162 ///
1163 /// \returns true if *this < RHS when both are considered unsigned.
1164 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166 /// \brief Unsigned less than comparison
1167 ///
1168 /// Regards both *this as an unsigned quantity and compares it with RHS for
1169 /// the validity of the less-than relationship.
1170 ///
1171 /// \returns true if *this < RHS when considered unsigned.
1172 bool ult(uint64_t RHS) const {
1173 // Only need to check active bits if not a single word.
1174 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1175 }
1176
1177 /// \brief Signed less than comparison
1178 ///
1179 /// Regards both *this and RHS as signed quantities and compares them for
1180 /// validity of the less-than relationship.
1181 ///
1182 /// \returns true if *this < RHS when both are considered signed.
1183 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185 /// \brief Signed less than comparison
1186 ///
1187 /// Regards both *this as a signed quantity and compares it with RHS for
1188 /// the validity of the less-than relationship.
1189 ///
1190 /// \returns true if *this < RHS when considered signed.
1191 bool slt(int64_t RHS) const {
1192 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1193 : getSExtValue() < RHS;
1194 }
1195
1196 /// \brief Unsigned less or equal comparison
1197 ///
1198 /// Regards both *this and RHS as unsigned quantities and compares them for
1199 /// validity of the less-or-equal relationship.
1200 ///
1201 /// \returns true if *this <= RHS when both are considered unsigned.
1202 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204 /// \brief Unsigned less or equal comparison
1205 ///
1206 /// Regards both *this as an unsigned quantity and compares it with RHS for
1207 /// the validity of the less-or-equal relationship.
1208 ///
1209 /// \returns true if *this <= RHS when considered unsigned.
1210 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212 /// \brief Signed less or equal comparison
1213 ///
1214 /// Regards both *this and RHS as signed quantities and compares them for
1215 /// validity of the less-or-equal relationship.
1216 ///
1217 /// \returns true if *this <= RHS when both are considered signed.
1218 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220 /// \brief Signed less or equal comparison
1221 ///
1222 /// Regards both *this as a signed quantity and compares it with RHS for the
1223 /// validity of the less-or-equal relationship.
1224 ///
1225 /// \returns true if *this <= RHS when considered signed.
1226 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228 /// \brief Unsigned greather than comparison
1229 ///
1230 /// Regards both *this and RHS as unsigned quantities and compares them for
1231 /// the validity of the greater-than relationship.
1232 ///
1233 /// \returns true if *this > RHS when both are considered unsigned.
1234 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236 /// \brief Unsigned greater than comparison
1237 ///
1238 /// Regards both *this as an unsigned quantity and compares it with RHS for
1239 /// the validity of the greater-than relationship.
1240 ///
1241 /// \returns true if *this > RHS when considered unsigned.
1242 bool ugt(uint64_t RHS) const {
1243 // Only need to check active bits if not a single word.
1244 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1245 }
1246
1247 /// \brief Signed greather than comparison
1248 ///
1249 /// Regards both *this and RHS as signed quantities and compares them for the
1250 /// validity of the greater-than relationship.
1251 ///
1252 /// \returns true if *this > RHS when both are considered signed.
1253 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255 /// \brief Signed greater than comparison
1256 ///
1257 /// Regards both *this as a signed quantity and compares it with RHS for
1258 /// the validity of the greater-than relationship.
1259 ///
1260 /// \returns true if *this > RHS when considered signed.
1261 bool sgt(int64_t RHS) const {
1262 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1263 : getSExtValue() > RHS;
1264 }
1265
1266 /// \brief Unsigned greater or equal comparison
1267 ///
1268 /// Regards both *this and RHS as unsigned quantities and compares them for
1269 /// validity of the greater-or-equal relationship.
1270 ///
1271 /// \returns true if *this >= RHS when both are considered unsigned.
1272 bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274 /// \brief Unsigned greater or equal comparison
1275 ///
1276 /// Regards both *this as an unsigned quantity and compares it with RHS for
1277 /// the validity of the greater-or-equal relationship.
1278 ///
1279 /// \returns true if *this >= RHS when considered unsigned.
1280 bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282 /// \brief Signed greather or equal comparison
1283 ///
1284 /// Regards both *this and RHS as signed quantities and compares them for
1285 /// validity of the greater-or-equal relationship.
1286 ///
1287 /// \returns true if *this >= RHS when both are considered signed.
1288 bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290 /// \brief Signed greater or equal comparison
1291 ///
1292 /// Regards both *this as a signed quantity and compares it with RHS for
1293 /// the validity of the greater-or-equal relationship.
1294 ///
1295 /// \returns true if *this >= RHS when considered signed.
1296 bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298 /// This operation tests if there are any pairs of corresponding bits
1299 /// between this APInt and RHS that are both set.
1300 bool intersects(const APInt &RHS) const {
1301 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1301, __extension__ __PRETTY_FUNCTION__))
;
1302 if (isSingleWord())
1303 return (U.VAL & RHS.U.VAL) != 0;
1304 return intersectsSlowCase(RHS);
1305 }
1306
1307 /// This operation checks that all bits set in this APInt are also set in RHS.
1308 bool isSubsetOf(const APInt &RHS) const {
1309 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1309, __extension__ __PRETTY_FUNCTION__))
;
1310 if (isSingleWord())
1311 return (U.VAL & ~RHS.U.VAL) == 0;
1312 return isSubsetOfSlowCase(RHS);
1313 }
1314
1315 /// @}
1316 /// \name Resizing Operators
1317 /// @{
1318
1319 /// \brief Truncate to new width.
1320 ///
1321 /// Truncate the APInt to a specified width. It is an error to specify a width
1322 /// that is greater than or equal to the current width.
1323 APInt trunc(unsigned width) const;
1324
1325 /// \brief Sign extend to a new width.
1326 ///
1327 /// This operation sign extends the APInt to a new width. If the high order
1328 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329 /// It is an error to specify a width that is less than or equal to the
1330 /// current width.
1331 APInt sext(unsigned width) const;
1332
1333 /// \brief Zero extend to a new width.
1334 ///
1335 /// This operation zero extends the APInt to a new width. The high order bits
1336 /// are filled with 0 bits. It is an error to specify a width that is less
1337 /// than or equal to the current width.
1338 APInt zext(unsigned width) const;
1339
1340 /// \brief Sign extend or truncate to width
1341 ///
1342 /// Make this APInt have the bit width given by \p width. The value is sign
1343 /// extended, truncated, or left alone to make it that width.
1344 APInt sextOrTrunc(unsigned width) const;
1345
1346 /// \brief Zero extend or truncate to width
1347 ///
1348 /// Make this APInt have the bit width given by \p width. The value is zero
1349 /// extended, truncated, or left alone to make it that width.
1350 APInt zextOrTrunc(unsigned width) const;
1351
1352 /// \brief Sign extend or truncate to width
1353 ///
1354 /// Make this APInt have the bit width given by \p width. The value is sign
1355 /// extended, or left alone to make it that width.
1356 APInt sextOrSelf(unsigned width) const;
1357
1358 /// \brief Zero extend or truncate to width
1359 ///
1360 /// Make this APInt have the bit width given by \p width. The value is zero
1361 /// extended, or left alone to make it that width.
1362 APInt zextOrSelf(unsigned width) const;
1363
1364 /// @}
1365 /// \name Bit Manipulation Operators
1366 /// @{
1367
1368 /// \brief Set every bit to 1.
1369 void setAllBits() {
1370 if (isSingleWord())
1371 U.VAL = WORD_MAX;
1372 else
1373 // Set all the bits in all the words.
1374 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375 // Clear the unused ones
1376 clearUnusedBits();
1377 }
1378
1379 /// \brief Set a given bit to 1.
1380 ///
1381 /// Set the given bit to 1 whose position is given as "bitPosition".
1382 void setBit(unsigned BitPosition) {
1383 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1383, __extension__ __PRETTY_FUNCTION__))
;
1384 WordType Mask = maskBit(BitPosition);
1385 if (isSingleWord())
1386 U.VAL |= Mask;
1387 else
1388 U.pVal[whichWord(BitPosition)] |= Mask;
1389 }
1390
1391 /// Set the sign bit to 1.
1392 void setSignBit() {
1393 setBit(BitWidth - 1);
1394 }
1395
1396 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397 void setBits(unsigned loBit, unsigned hiBit) {
1398 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1398, __extension__ __PRETTY_FUNCTION__))
;
1399 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1399, __extension__ __PRETTY_FUNCTION__))
;
1400 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1400, __extension__ __PRETTY_FUNCTION__))
;
1401 if (loBit == hiBit)
1402 return;
1403 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1404 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405 mask <<= loBit;
1406 if (isSingleWord())
1407 U.VAL |= mask;
1408 else
1409 U.pVal[0] |= mask;
1410 } else {
1411 setBitsSlowCase(loBit, hiBit);
1412 }
1413 }
1414
1415 /// Set the top bits starting from loBit.
1416 void setBitsFrom(unsigned loBit) {
1417 return setBits(loBit, BitWidth);
1418 }
1419
1420 /// Set the bottom loBits bits.
1421 void setLowBits(unsigned loBits) {
1422 return setBits(0, loBits);
1423 }
1424
1425 /// Set the top hiBits bits.
1426 void setHighBits(unsigned hiBits) {
1427 return setBits(BitWidth - hiBits, BitWidth);
1428 }
1429
1430 /// \brief Set every bit to 0.
1431 void clearAllBits() {
1432 if (isSingleWord())
1433 U.VAL = 0;
1434 else
1435 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436 }
1437
1438 /// \brief Set a given bit to 0.
1439 ///
1440 /// Set the given bit to 0 whose position is given as "bitPosition".
1441 void clearBit(unsigned BitPosition) {
1442 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1442, __extension__ __PRETTY_FUNCTION__))
;
1443 WordType Mask = ~maskBit(BitPosition);
1444 if (isSingleWord())
1445 U.VAL &= Mask;
1446 else
1447 U.pVal[whichWord(BitPosition)] &= Mask;
1448 }
1449
1450 /// Set the sign bit to 0.
1451 void clearSignBit() {
1452 clearBit(BitWidth - 1);
1453 }
1454
1455 /// \brief Toggle every bit to its opposite value.
1456 void flipAllBits() {
1457 if (isSingleWord()) {
1458 U.VAL ^= WORD_MAX;
1459 clearUnusedBits();
1460 } else {
1461 flipAllBitsSlowCase();
1462 }
1463 }
1464
1465 /// \brief Toggles a given bit to its opposite value.
1466 ///
1467 /// Toggle a given bit to its opposite value whose position is given
1468 /// as "bitPosition".
1469 void flipBit(unsigned bitPosition);
1470
1471 /// Negate this APInt in place.
1472 void negate() {
1473 flipAllBits();
1474 ++(*this);
1475 }
1476
1477 /// Insert the bits from a smaller APInt starting at bitPosition.
1478 void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483 /// @}
1484 /// \name Value Characterization Functions
1485 /// @{
1486
1487 /// \brief Return the number of bits in the APInt.
1488 unsigned getBitWidth() const { return BitWidth; }
1489
1490 /// \brief Get the number of words.
1491 ///
1492 /// Here one word's bitwidth equals to that of uint64_t.
1493 ///
1494 /// \returns the number of words to hold the integer value of this APInt.
1495 unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497 /// \brief Get the number of words.
1498 ///
1499 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500 ///
1501 /// \returns the number of words to hold the integer value with a given bit
1502 /// width.
1503 static unsigned getNumWords(unsigned BitWidth) {
1504 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505 }
1506
1507 /// \brief Compute the number of active bits in the value
1508 ///
1509 /// This function returns the number of active bits which is defined as the
1510 /// bit width minus the number of leading zeros. This is used in several
1511 /// computations to see how "wide" the value is.
1512 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514 /// \brief Compute the number of active words in the value of this APInt.
1515 ///
1516 /// This is used in conjunction with getActiveData to extract the raw value of
1517 /// the APInt.
1518 unsigned getActiveWords() const {
1519 unsigned numActiveBits = getActiveBits();
1520 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521 }
1522
1523 /// \brief Get the minimum bit size for this signed APInt
1524 ///
1525 /// Computes the minimum bit width for this APInt while considering it to be a
1526 /// signed (and probably negative) value. If the value is not negative, this
1527 /// function returns the same value as getActiveBits()+1. Otherwise, it
1528 /// returns the smallest bit width that will retain the negative value. For
1529 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530 /// for -1, this function will always return 1.
1531 unsigned getMinSignedBits() const {
1532 if (isNegative())
1533 return BitWidth - countLeadingOnes() + 1;
1534 return getActiveBits() + 1;
1535 }
1536
1537 /// \brief Get zero extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a zero extended
1540 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541 /// uint64_t. Otherwise an assertion will result.
1542 uint64_t getZExtValue() const {
1543 if (isSingleWord())
25
Calling 'APInt::isSingleWord'
27
Returning from 'APInt::isSingleWord'
28
Taking true branch
1544 return U.VAL;
1545 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1545, __extension__ __PRETTY_FUNCTION__))
;
1546 return U.pVal[0];
1547 }
1548
1549 /// \brief Get sign extended value
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bit width must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise an assertion will result.
1554 int64_t getSExtValue() const {
1555 if (isSingleWord())
1556 return SignExtend64(U.VAL, BitWidth);
1557 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1557, __extension__ __PRETTY_FUNCTION__))
;
1558 return int64_t(U.pVal[0]);
1559 }
1560
1561 /// \brief Get bits required for string value.
1562 ///
1563 /// This method determines how many bits are required to hold the APInt
1564 /// equivalent of the string given by \p str.
1565 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567 /// \brief The APInt version of the countLeadingZeros functions in
1568 /// MathExtras.h.
1569 ///
1570 /// It counts the number of zeros from the most significant bit to the first
1571 /// one bit.
1572 ///
1573 /// \returns BitWidth if the value is zero, otherwise returns the number of
1574 /// zeros from the most significant bit to the first one bits.
1575 unsigned countLeadingZeros() const {
1576 if (isSingleWord()) {
1577 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579 }
1580 return countLeadingZerosSlowCase();
1581 }
1582
1583 /// \brief Count the number of leading one bits.
1584 ///
1585 /// This function is an APInt version of the countLeadingOnes
1586 /// functions in MathExtras.h. It counts the number of ones from the most
1587 /// significant bit to the first zero bit.
1588 ///
1589 /// \returns 0 if the high order bit is not set, otherwise returns the number
1590 /// of 1 bits from the most significant to the least
1591 unsigned countLeadingOnes() const {
1592 if (isSingleWord())
1593 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594 return countLeadingOnesSlowCase();
1595 }
1596
1597 /// Computes the number of leading bits of this APInt that are equal to its
1598 /// sign bit.
1599 unsigned getNumSignBits() const {
1600 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1601 }
1602
1603 /// \brief Count the number of trailing zero bits.
1604 ///
1605 /// This function is an APInt version of the countTrailingZeros
1606 /// functions in MathExtras.h. It counts the number of zeros from the least
1607 /// significant bit to the first set bit.
1608 ///
1609 /// \returns BitWidth if the value is zero, otherwise returns the number of
1610 /// zeros from the least significant bit to the first one bit.
1611 unsigned countTrailingZeros() const {
1612 if (isSingleWord())
1613 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614 return countTrailingZerosSlowCase();
1615 }
1616
1617 /// \brief Count the number of trailing one bits.
1618 ///
1619 /// This function is an APInt version of the countTrailingOnes
1620 /// functions in MathExtras.h. It counts the number of ones from the least
1621 /// significant bit to the first zero bit.
1622 ///
1623 /// \returns BitWidth if the value is all ones, otherwise returns the number
1624 /// of ones from the least significant bit to the first zero bit.
1625 unsigned countTrailingOnes() const {
1626 if (isSingleWord())
1627 return llvm::countTrailingOnes(U.VAL);
1628 return countTrailingOnesSlowCase();
1629 }
1630
1631 /// \brief Count the number of bits set.
1632 ///
1633 /// This function is an APInt version of the countPopulation functions
1634 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635 ///
1636 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637 unsigned countPopulation() const {
1638 if (isSingleWord())
1639 return llvm::countPopulation(U.VAL);
1640 return countPopulationSlowCase();
1641 }
1642
1643 /// @}
1644 /// \name Conversion Functions
1645 /// @{
1646 void print(raw_ostream &OS, bool isSigned) const;
1647
1648 /// Converts an APInt to a string and append it to Str. Str is commonly a
1649 /// SmallString.
1650 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651 bool formatAsCLiteral = false) const;
1652
1653 /// Considers the APInt to be unsigned and converts it into a string in the
1654 /// radix given. The radix can be 2, 8, 10 16, or 36.
1655 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656 toString(Str, Radix, false, false);
1657 }
1658
1659 /// Considers the APInt to be signed and converts it into a string in the
1660 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662 toString(Str, Radix, true, false);
1663 }
1664
1665 /// \brief Return the APInt as a std::string.
1666 ///
1667 /// Note that this is an inefficient method. It is better to pass in a
1668 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669 /// for the string.
1670 std::string toString(unsigned Radix, bool Signed) const;
1671
1672 /// \returns a byte-swapped representation of this APInt Value.
1673 APInt byteSwap() const;
1674
1675 /// \returns the value with the bit representation reversed of this APInt
1676 /// Value.
1677 APInt reverseBits() const;
1678
1679 /// \brief Converts this APInt to a double value.
1680 double roundToDouble(bool isSigned) const;
1681
1682 /// \brief Converts this unsigned APInt to a double value.
1683 double roundToDouble() const { return roundToDouble(false); }
1684
1685 /// \brief Converts this signed APInt to a double value.
1686 double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688 /// \brief Converts APInt bits to a double
1689 ///
1690 /// The conversion does not do a translation from integer to double, it just
1691 /// re-interprets the bits as a double. Note that it is valid to do this on
1692 /// any bit width. Exactly 64 bits will be translated.
1693 double bitsToDouble() const {
1694 return BitsToDouble(getWord(0));
1695 }
1696
1697 /// \brief Converts APInt bits to a double
1698 ///
1699 /// The conversion does not do a translation from integer to float, it just
1700 /// re-interprets the bits as a float. Note that it is valid to do this on
1701 /// any bit width. Exactly 32 bits will be translated.
1702 float bitsToFloat() const {
1703 return BitsToFloat(getWord(0));
1704 }
1705
1706 /// \brief Converts a double to APInt bits.
1707 ///
1708 /// The conversion does not do a translation from double to integer, it just
1709 /// re-interprets the bits of the double.
1710 static APInt doubleToBits(double V) {
1711 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1712 }
1713
1714 /// \brief Converts a float to APInt bits.
1715 ///
1716 /// The conversion does not do a translation from float to integer, it just
1717 /// re-interprets the bits of the float.
1718 static APInt floatToBits(float V) {
1719 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1720 }
1721
1722 /// @}
1723 /// \name Mathematics Operations
1724 /// @{
1725
1726 /// \returns the floor log base 2 of this APInt.
1727 unsigned logBase2() const { return getActiveBits() - 1; }
1728
1729 /// \returns the ceil log base 2 of this APInt.
1730 unsigned ceilLogBase2() const {
1731 APInt temp(*this);
1732 --temp;
1733 return temp.getActiveBits();
1734 }
1735
1736 /// \returns the nearest log base 2 of this APInt. Ties round up.
1737 ///
1738 /// NOTE: When we have a BitWidth of 1, we define:
1739 ///
1740 /// log2(0) = UINT32_MAX
1741 /// log2(1) = 0
1742 ///
1743 /// to get around any mathematical concerns resulting from
1744 /// referencing 2 in a space where 2 does no exist.
1745 unsigned nearestLogBase2() const {
1746 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747 // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748 // UINT32_MAX.
1749 if (BitWidth == 1)
1750 return U.VAL - 1;
1751
1752 // Handle the zero case.
1753 if (isNullValue())
1754 return UINT32_MAX(4294967295U);
1755
1756 // The non-zero case is handled by computing:
1757 //
1758 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759 //
1760 // where x[i] is referring to the value of the ith bit of x.
1761 unsigned lg = logBase2();
1762 return lg + unsigned((*this)[lg - 1]);
1763 }
1764
1765 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766 /// otherwise
1767 int32_t exactLogBase2() const {
1768 if (!isPowerOf2())
1769 return -1;
1770 return logBase2();
1771 }
1772
1773 /// \brief Compute the square root
1774 APInt sqrt() const;
1775
1776 /// \brief Get the absolute value;
1777 ///
1778 /// If *this is < 0 then return -(*this), otherwise *this;
1779 APInt abs() const {
1780 if (isNegative())
1781 return -(*this);
1782 return *this;
1783 }
1784
1785 /// \returns the multiplicative inverse for a given modulo.
1786 APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788 /// @}
1789 /// \name Support for division by constant
1790 /// @{
1791
1792 /// Calculate the magic number for signed division by a constant.
1793 struct ms;
1794 ms magic() const;
1795
1796 /// Calculate the magic number for unsigned division by a constant.
1797 struct mu;
1798 mu magicu(unsigned LeadingZeros = 0) const;
1799
1800 /// @}
1801 /// \name Building-block Operations for APInt and APFloat
1802 /// @{
1803
1804 // These building block operations operate on a representation of arbitrary
1805 // precision, two's-complement, bignum integer values. They should be
1806 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807 // generally a pointer to the base of an array of integer parts, representing
1808 // an unsigned bignum, and a count of how many parts there are.
1809
1810 /// Sets the least significant part of a bignum to the input value, and zeroes
1811 /// out higher parts.
1812 static void tcSet(WordType *, WordType, unsigned);
1813
1814 /// Assign one bignum to another.
1815 static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817 /// Returns true if a bignum is zero, false otherwise.
1818 static bool tcIsZero(const WordType *, unsigned);
1819
1820 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1821 static int tcExtractBit(const WordType *, unsigned bit);
1822
1823 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825 /// significant bit of DST. All high bits above srcBITS in DST are
1826 /// zero-filled.
1827 static void tcExtract(WordType *, unsigned dstCount,
1828 const WordType *, unsigned srcBits,
1829 unsigned srcLSB);
1830
1831 /// Set the given bit of a bignum. Zero-based.
1832 static void tcSetBit(WordType *, unsigned bit);
1833
1834 /// Clear the given bit of a bignum. Zero-based.
1835 static void tcClearBit(WordType *, unsigned bit);
1836
1837 /// Returns the bit number of the least or most significant set bit of a
1838 /// number. If the input number has no bits set -1U is returned.
1839 static unsigned tcLSB(const WordType *, unsigned n);
1840 static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842 /// Negate a bignum in-place.
1843 static void tcNegate(WordType *, unsigned);
1844
1845 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1846 static WordType tcAdd(WordType *, const WordType *,
1847 WordType carry, unsigned);
1848 /// DST += RHS. Returns the carry flag.
1849 static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852 static WordType tcSubtract(WordType *, const WordType *,
1853 WordType carry, unsigned);
1854 /// DST -= RHS. Returns the carry flag.
1855 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857 /// DST += SRC * MULTIPLIER + PART if add is true
1858 /// DST = SRC * MULTIPLIER + PART if add is false
1859 ///
1860 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1861 /// start at the same point, i.e. DST == SRC.
1862 ///
1863 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865 /// result, and if all of the omitted higher parts were zero return zero,
1866 /// otherwise overflow occurred and return one.
1867 static int tcMultiplyPart(WordType *dst, const WordType *src,
1868 WordType multiplier, WordType carry,
1869 unsigned srcParts, unsigned dstParts,
1870 bool add);
1871
1872 /// DST = LHS * RHS, where DST has the same width as the operands and is
1873 /// filled with the least significant parts of the result. Returns one if
1874 /// overflow occurred, otherwise zero. DST must be disjoint from both
1875 /// operands.
1876 static int tcMultiply(WordType *, const WordType *, const WordType *,
1877 unsigned);
1878
1879 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880 /// operands. No overflow occurs. DST must be disjoint from both operands.
1881 static void tcFullMultiply(WordType *, const WordType *,
1882 const WordType *, unsigned, unsigned);
1883
1884 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886 /// REMAINDER to the remainder, return zero. i.e.
1887 ///
1888 /// OLD_LHS = RHS * LHS + REMAINDER
1889 ///
1890 /// SCRATCH is a bignum of the same size as the operands and result for use by
1891 /// the routine; its contents need not be initialized and are destroyed. LHS,
1892 /// REMAINDER and SCRATCH must be distinct.
1893 static int tcDivide(WordType *lhs, const WordType *rhs,
1894 WordType *remainder, WordType *scratch,
1895 unsigned parts);
1896
1897 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898 /// restrictions on Count.
1899 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1902 /// restrictions on Count.
1903 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905 /// The obvious AND, OR and XOR and complement operations.
1906 static void tcAnd(WordType *, const WordType *, unsigned);
1907 static void tcOr(WordType *, const WordType *, unsigned);
1908 static void tcXor(WordType *, const WordType *, unsigned);
1909 static void tcComplement(WordType *, unsigned);
1910
1911 /// Comparison (unsigned) of two bignums.
1912 static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914 /// Increment a bignum in-place. Return the carry flag.
1915 static WordType tcIncrement(WordType *dst, unsigned parts) {
1916 return tcAddPart(dst, 1, parts);
1917 }
1918
1919 /// Decrement a bignum in-place. Return the borrow flag.
1920 static WordType tcDecrement(WordType *dst, unsigned parts) {
1921 return tcSubtractPart(dst, 1, parts);
1922 }
1923
1924 /// Set the least significant BITS and clear the rest.
1925 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927 /// \brief debug method
1928 void dump() const;
1929
1930 /// @}
1931};
1932
1933/// Magic data for optimising signed division by a constant.
1934struct APInt::ms {
1935 APInt m; ///< magic number
1936 unsigned s; ///< shift amount
1937};
1938
1939/// Magic data for optimising unsigned division by a constant.
1940struct APInt::mu {
1941 APInt m; ///< magic number
1942 bool a; ///< add indicator
1943 unsigned s; ///< shift amount
1944};
1945
1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950/// \brief Unary bitwise complement operator.
1951///
1952/// \returns an APInt that is the bitwise complement of \p v.
1953inline APInt operator~(APInt v) {
1954 v.flipAllBits();
1955 return v;
1956}
1957
1958inline APInt operator&(APInt a, const APInt &b) {
1959 a &= b;
1960 return a;
1961}
1962
1963inline APInt operator&(const APInt &a, APInt &&b) {
1964 b &= a;
1965 return std::move(b);
1966}
1967
1968inline APInt operator&(APInt a, uint64_t RHS) {
1969 a &= RHS;
1970 return a;
1971}
1972
1973inline APInt operator&(uint64_t LHS, APInt b) {
1974 b &= LHS;
1975 return b;
1976}
1977
1978inline APInt operator|(APInt a, const APInt &b) {
1979 a |= b;
1980 return a;
1981}
1982
1983inline APInt operator|(const APInt &a, APInt &&b) {
1984 b |= a;
1985 return std::move(b);
1986}
1987
1988inline APInt operator|(APInt a, uint64_t RHS) {
1989 a |= RHS;
1990 return a;
1991}
1992
1993inline APInt operator|(uint64_t LHS, APInt b) {
1994 b |= LHS;
1995 return b;
1996}
1997
1998inline APInt operator^(APInt a, const APInt &b) {
1999 a ^= b;
2000 return a;
2001}
2002
2003inline APInt operator^(const APInt &a, APInt &&b) {
2004 b ^= a;
2005 return std::move(b);
2006}
2007
2008inline APInt operator^(APInt a, uint64_t RHS) {
2009 a ^= RHS;
2010 return a;
2011}
2012
2013inline APInt operator^(uint64_t LHS, APInt b) {
2014 b ^= LHS;
2015 return b;
2016}
2017
2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019 I.print(OS, true);
2020 return OS;
2021}
2022
2023inline APInt operator-(APInt v) {
2024 v.negate();
2025 return v;
2026}
2027
2028inline APInt operator+(APInt a, const APInt &b) {
2029 a += b;
2030 return a;
2031}
2032
2033inline APInt operator+(const APInt &a, APInt &&b) {
2034 b += a;
2035 return std::move(b);
2036}
2037
2038inline APInt operator+(APInt a, uint64_t RHS) {
2039 a += RHS;
2040 return a;
2041}
2042
2043inline APInt operator+(uint64_t LHS, APInt b) {
2044 b += LHS;
2045 return b;
2046}
2047
2048inline APInt operator-(APInt a, const APInt &b) {
2049 a -= b;
2050 return a;
2051}
2052
2053inline APInt operator-(const APInt &a, APInt &&b) {
2054 b.negate();
2055 b += a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator-(APInt a, uint64_t RHS) {
2060 a -= RHS;
2061 return a;
2062}
2063
2064inline APInt operator-(uint64_t LHS, APInt b) {
2065 b.negate();
2066 b += LHS;
2067 return b;
2068}
2069
2070inline APInt operator*(APInt a, uint64_t RHS) {
2071 a *= RHS;
2072 return a;
2073}
2074
2075inline APInt operator*(uint64_t LHS, APInt b) {
2076 b *= LHS;
2077 return b;
2078}
2079
2080
2081namespace APIntOps {
2082
2083/// \brief Determine the smaller of two APInts considered to be signed.
2084inline const APInt &smin(const APInt &A, const APInt &B) {
2085 return A.slt(B) ? A : B;
2086}
2087
2088/// \brief Determine the larger of two APInts considered to be signed.
2089inline const APInt &smax(const APInt &A, const APInt &B) {
2090 return A.sgt(B) ? A : B;
2091}
2092
2093/// \brief Determine the smaller of two APInts considered to be signed.
2094inline const APInt &umin(const APInt &A, const APInt &B) {
2095 return A.ult(B) ? A : B;
2096}
2097
2098/// \brief Determine the larger of two APInts considered to be unsigned.
2099inline const APInt &umax(const APInt &A, const APInt &B) {
2100 return A.ugt(B) ? A : B;
2101}
2102
2103/// \brief Compute GCD of two unsigned APInt values.
2104///
2105/// This function returns the greatest common divisor of the two APInt values
2106/// using Stein's algorithm.
2107///
2108/// \returns the greatest common divisor of A and B.
2109APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111/// \brief Converts the given APInt to a double value.
2112///
2113/// Treats the APInt as an unsigned value for conversion purposes.
2114inline double RoundAPIntToDouble(const APInt &APIVal) {
2115 return APIVal.roundToDouble();
2116}
2117
2118/// \brief Converts the given APInt to a double value.
2119///
2120/// Treats the APInt as a signed value for conversion purposes.
2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122 return APIVal.signedRoundToDouble();
2123}
2124
2125/// \brief Converts the given APInt to a float vlalue.
2126inline float RoundAPIntToFloat(const APInt &APIVal) {
2127 return float(RoundAPIntToDouble(APIVal));
2128}
2129
2130/// \brief Converts the given APInt to a float value.
2131///
2132/// Treast the APInt as a signed value for conversion purposes.
2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134 return float(APIVal.signedRoundToDouble());
2135}
2136
2137/// \brief Converts the given double value into a APInt.
2138///
2139/// This function convert a double value to an APInt value.
2140APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142/// \brief Converts a float value into a APInt.
2143///
2144/// Converts a float value into an APInt value.
2145inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146 return RoundDoubleToAPInt(double(Float), width);
2147}
2148
2149} // End of APIntOps namespace
2150
2151// See friend declaration above. This additional declaration is required in
2152// order to compile LLVM with IBM xlC compiler.
2153hash_code hash_value(const APInt &Arg);
2154} // End of llvm namespace
2155
2156#endif

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h

1//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TWINE_H
11#define LLVM_ADT_TWINE_H
12
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/ADT/StringRef.h"
15#include "llvm/Support/ErrorHandling.h"
16#include <cassert>
17#include <cstdint>
18#include <string>
19
20namespace llvm {
21
22 class formatv_object_base;
23 class raw_ostream;
24
25 /// Twine - A lightweight data structure for efficiently representing the
26 /// concatenation of temporary values as strings.
27 ///
28 /// A Twine is a kind of rope, it represents a concatenated string using a
29 /// binary-tree, where the string is the preorder of the nodes. Since the
30 /// Twine can be efficiently rendered into a buffer when its result is used,
31 /// it avoids the cost of generating temporary values for intermediate string
32 /// results -- particularly in cases when the Twine result is never
33 /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34 /// the creation of temporary strings for conversions operations (such as
35 /// appending an integer to a string).
36 ///
37 /// A Twine is not intended for use directly and should not be stored, its
38 /// implementation relies on the ability to store pointers to temporary stack
39 /// objects which may be deallocated at the end of a statement. Twines should
40 /// only be used accepted as const references in arguments, when an API wishes
41 /// to accept possibly-concatenated strings.
42 ///
43 /// Twines support a special 'null' value, which always concatenates to form
44 /// itself, and renders as an empty string. This can be returned from APIs to
45 /// effectively nullify any concatenations performed on the result.
46 ///
47 /// \b Implementation
48 ///
49 /// Given the nature of a Twine, it is not possible for the Twine's
50 /// concatenation method to construct interior nodes; the result must be
51 /// represented inside the returned value. For this reason a Twine object
52 /// actually holds two values, the left- and right-hand sides of a
53 /// concatenation. We also have nullary Twine objects, which are effectively
54 /// sentinel values that represent empty strings.
55 ///
56 /// Thus, a Twine can effectively have zero, one, or two children. The \see
57 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58 /// testing the number of children.
59 ///
60 /// We maintain a number of invariants on Twine objects (FIXME: Why):
61 /// - Nullary twines are always represented with their Kind on the left-hand
62 /// side, and the Empty kind on the right-hand side.
63 /// - Unary twines are always represented with the value on the left-hand
64 /// side, and the Empty kind on the right-hand side.
65 /// - If a Twine has another Twine as a child, that child should always be
66 /// binary (otherwise it could have been folded into the parent).
67 ///
68 /// These invariants are check by \see isValid().
69 ///
70 /// \b Efficiency Considerations
71 ///
72 /// The Twine is designed to yield efficient and small code for common
73 /// situations. For this reason, the concat() method is inlined so that
74 /// concatenations of leaf nodes can be optimized into stores directly into a
75 /// single stack allocated object.
76 ///
77 /// In practice, not all compilers can be trusted to optimize concat() fully,
78 /// so we provide two additional methods (and accompanying operator+
79 /// overloads) to guarantee that particularly important cases (cstring plus
80 /// StringRef) codegen as desired.
81 class Twine {
82 /// NodeKind - Represent the type of an argument.
83 enum NodeKind : unsigned char {
84 /// An empty string; the result of concatenating anything with it is also
85 /// empty.
86 NullKind,
87
88 /// The empty string.
89 EmptyKind,
90
91 /// A pointer to a Twine instance.
92 TwineKind,
93
94 /// A pointer to a C string instance.
95 CStringKind,
96
97 /// A pointer to an std::string instance.
98 StdStringKind,
99
100 /// A pointer to a StringRef instance.
101 StringRefKind,
102
103 /// A pointer to a SmallString instance.
104 SmallStringKind,
105
106 /// A pointer to a formatv_object_base instance.
107 FormatvObjectKind,
108
109 /// A char value, to render as a character.
110 CharKind,
111
112 /// An unsigned int value, to render as an unsigned decimal integer.
113 DecUIKind,
114
115 /// An int value, to render as a signed decimal integer.
116 DecIKind,
117
118 /// A pointer to an unsigned long value, to render as an unsigned decimal
119 /// integer.
120 DecULKind,
121
122 /// A pointer to a long value, to render as a signed decimal integer.
123 DecLKind,
124
125 /// A pointer to an unsigned long long value, to render as an unsigned
126 /// decimal integer.
127 DecULLKind,
128
129 /// A pointer to a long long value, to render as a signed decimal integer.
130 DecLLKind,
131
132 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
133 /// integer.
134 UHexKind
135 };
136
137 union Child
138 {
139 const Twine *twine;
140 const char *cString;
141 const std::string *stdString;
142 const StringRef *stringRef;
143 const SmallVectorImpl<char> *smallString;
144 const formatv_object_base *formatvObject;
145 char character;
146 unsigned int decUI;
147 int decI;
148 const unsigned long *decUL;
149 const long *decL;
150 const unsigned long long *decULL;
151 const long long *decLL;
152 const uint64_t *uHex;
153 };
154
155 /// LHS - The prefix in the concatenation, which may be uninitialized for
156 /// Null or Empty kinds.
157 Child LHS;
158
159 /// RHS - The suffix in the concatenation, which may be uninitialized for
160 /// Null or Empty kinds.
161 Child RHS;
162
163 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
164 NodeKind LHSKind = EmptyKind;
165
166 /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
167 NodeKind RHSKind = EmptyKind;
168
169 /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
170 explicit Twine(NodeKind Kind) : LHSKind(Kind) {
171 assert(isNullary() && "Invalid kind!")(static_cast <bool> (isNullary() && "Invalid kind!"
) ? void (0) : __assert_fail ("isNullary() && \"Invalid kind!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 171, __extension__ __PRETTY_FUNCTION__))
;
172 }
173
174 /// Construct a binary twine.
175 explicit Twine(const Twine &LHS, const Twine &RHS)
176 : LHSKind(TwineKind), RHSKind(TwineKind) {
177 this->LHS.twine = &LHS;
178 this->RHS.twine = &RHS;
179 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 179, __extension__ __PRETTY_FUNCTION__))
;
180 }
181
182 /// Construct a twine from explicit values.
183 explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
184 : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
185 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 185, __extension__ __PRETTY_FUNCTION__))
;
186 }
187
188 /// Check for the null twine.
189 bool isNull() const {
190 return getLHSKind() == NullKind;
191 }
192
193 /// Check for the empty twine.
194 bool isEmpty() const {
195 return getLHSKind() == EmptyKind;
196 }
197
198 /// Check if this is a nullary twine (null or empty).
199 bool isNullary() const {
200 return isNull() || isEmpty();
201 }
202
203 /// Check if this is a unary twine.
204 bool isUnary() const {
205 return getRHSKind() == EmptyKind && !isNullary();
206 }
207
208 /// Check if this is a binary twine.
209 bool isBinary() const {
210 return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
211 }
212
213 /// Check if this is a valid twine (satisfying the invariants on
214 /// order and number of arguments).
215 bool isValid() const {
216 // Nullary twines always have Empty on the RHS.
217 if (isNullary() && getRHSKind() != EmptyKind)
218 return false;
219
220 // Null should never appear on the RHS.
221 if (getRHSKind() == NullKind)
222 return false;
223
224 // The RHS cannot be non-empty if the LHS is empty.
225 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
226 return false;
227
228 // A twine child should always be binary.
229 if (getLHSKind() == TwineKind &&
230 !LHS.twine->isBinary())
231 return false;
232 if (getRHSKind() == TwineKind &&
233 !RHS.twine->isBinary())
234 return false;
235
236 return true;
237 }
238
239 /// Get the NodeKind of the left-hand side.
240 NodeKind getLHSKind() const { return LHSKind; }
241
242 /// Get the NodeKind of the right-hand side.
243 NodeKind getRHSKind() const { return RHSKind; }
244
245 /// Print one child from a twine.
246 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
247
248 /// Print the representation of one child from a twine.
249 void printOneChildRepr(raw_ostream &OS, Child Ptr,
250 NodeKind Kind) const;
251
252 public:
253 /// @name Constructors
254 /// @{
255
256 /// Construct from an empty string.
257 /*implicit*/ Twine() {
258 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 258, __extension__ __PRETTY_FUNCTION__))
;
259 }
260
261 Twine(const Twine &) = default;
262
263 /// Construct from a C string.
264 ///
265 /// We take care here to optimize "" into the empty twine -- this will be
266 /// optimized out for string constants. This allows Twine arguments have
267 /// default "" values, without introducing unnecessary string constants.
268 /*implicit*/ Twine(const char *Str) {
51
Calling implicit default constructor for 'Child'
52
Returning from default constructor for 'Child'
53
Calling implicit default constructor for 'Child'
54
Returning from default constructor for 'Child'
269 if (Str[0] != '\0') {
55
Taking true branch
270 LHS.cString = Str;
271 LHSKind = CStringKind;
272 } else
273 LHSKind = EmptyKind;
274
275 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 275, __extension__ __PRETTY_FUNCTION__))
;
56
Within the expansion of the macro 'assert':
a
Assuming the condition is true
276 }
277
278 /// Construct from an std::string.
279 /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
280 LHS.stdString = &Str;
281 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 281, __extension__ __PRETTY_FUNCTION__))
;
282 }
283
284 /// Construct from a StringRef.
285 /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) {
286 LHS.stringRef = &Str;
287 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 287, __extension__ __PRETTY_FUNCTION__))
;
288 }
289
290 /// Construct from a SmallString.
291 /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
292 : LHSKind(SmallStringKind) {
293 LHS.smallString = &Str;
294 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 294, __extension__ __PRETTY_FUNCTION__))
;
295 }
296
297 /// Construct from a formatv_object_base.
298 /*implicit*/ Twine(const formatv_object_base &Fmt)
299 : LHSKind(FormatvObjectKind) {
300 LHS.formatvObject = &Fmt;
301 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 301, __extension__ __PRETTY_FUNCTION__))
;
302 }
303
304 /// Construct from a char.
305 explicit Twine(char Val) : LHSKind(CharKind) {
306 LHS.character = Val;
307 }
308
309 /// Construct from a signed char.
310 explicit Twine(signed char Val) : LHSKind(CharKind) {
311 LHS.character = static_cast<char>(Val);
312 }
313
314 /// Construct from an unsigned char.
315 explicit Twine(unsigned char Val) : LHSKind(CharKind) {
316 LHS.character = static_cast<char>(Val);
317 }
318
319 /// Construct a twine to print \p Val as an unsigned decimal integer.
320 explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
321 LHS.decUI = Val;
322 }
323
324 /// Construct a twine to print \p Val as a signed decimal integer.
325 explicit Twine(int Val) : LHSKind(DecIKind) {
326 LHS.decI = Val;
327 }
328
329 /// Construct a twine to print \p Val as an unsigned decimal integer.
330 explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
331 LHS.decUL = &Val;
332 }
333
334 /// Construct a twine to print \p Val as a signed decimal integer.
335 explicit Twine(const long &Val) : LHSKind(DecLKind) {
336 LHS.decL = &Val;
337 }
338
339 /// Construct a twine to print \p Val as an unsigned decimal integer.
340 explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
341 LHS.decULL = &Val;
342 }
343
344 /// Construct a twine to print \p Val as a signed decimal integer.
345 explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
346 LHS.decLL = &Val;
347 }
348
349 // FIXME: Unfortunately, to make sure this is as efficient as possible we
350 // need extra binary constructors from particular types. We can't rely on
351 // the compiler to be smart enough to fold operator+()/concat() down to the
352 // right thing. Yet.
353
354 /// Construct as the concatenation of a C string and a StringRef.
355 /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
356 : LHSKind(CStringKind), RHSKind(StringRefKind) {
357 this->LHS.cString = LHS;
358 this->RHS.stringRef = &RHS;
359 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 359, __extension__ __PRETTY_FUNCTION__))
;
360 }
361
362 /// Construct as the concatenation of a StringRef and a C string.
363 /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
364 : LHSKind(StringRefKind), RHSKind(CStringKind) {
365 this->LHS.stringRef = &LHS;
366 this->RHS.cString = RHS;
367 assert(isValid() && "Invalid twine!")(static_cast <bool> (isValid() && "Invalid twine!"
) ? void (0) : __assert_fail ("isValid() && \"Invalid twine!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 367, __extension__ __PRETTY_FUNCTION__))
;
368 }
369
370 /// Since the intended use of twines is as temporary objects, assignments
371 /// when concatenating might cause undefined behavior or stack corruptions
372 Twine &operator=(const Twine &) = delete;
373
374 /// Create a 'null' string, which is an empty string that always
375 /// concatenates to form another empty string.
376 static Twine createNull() {
377 return Twine(NullKind);
378 }
379
380 /// @}
381 /// @name Numeric Conversions
382 /// @{
383
384 // Construct a twine to print \p Val as an unsigned hexadecimal integer.
385 static Twine utohexstr(const uint64_t &Val) {
386 Child LHS, RHS;
387 LHS.uHex = &Val;
388 RHS.twine = nullptr;
389 return Twine(LHS, UHexKind, RHS, EmptyKind);
390 }
391
392 /// @}
393 /// @name Predicate Operations
394 /// @{
395
396 /// Check if this twine is trivially empty; a false return value does not
397 /// necessarily mean the twine is empty.
398 bool isTriviallyEmpty() const {
399 return isNullary();
400 }
401
402 /// Return true if this twine can be dynamically accessed as a single
403 /// StringRef value with getSingleStringRef().
404 bool isSingleStringRef() const {
405 if (getRHSKind() != EmptyKind) return false;
406
407 switch (getLHSKind()) {
408 case EmptyKind:
409 case CStringKind:
410 case StdStringKind:
411 case StringRefKind:
412 case SmallStringKind:
413 return true;
414 default:
415 return false;
416 }
417 }
418
419 /// @}
420 /// @name String Operations
421 /// @{
422
423 Twine concat(const Twine &Suffix) const;
424
425 /// @}
426 /// @name Output & Conversion.
427 /// @{
428
429 /// Return the twine contents as a std::string.
430 std::string str() const;
431
432 /// Append the concatenated string into the given SmallString or SmallVector.
433 void toVector(SmallVectorImpl<char> &Out) const;
434
435 /// This returns the twine as a single StringRef. This method is only valid
436 /// if isSingleStringRef() is true.
437 StringRef getSingleStringRef() const {
438 assert(isSingleStringRef() &&"This cannot be had as a single stringref!")(static_cast <bool> (isSingleStringRef() &&"This cannot be had as a single stringref!"
) ? void (0) : __assert_fail ("isSingleStringRef() &&\"This cannot be had as a single stringref!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 438, __extension__ __PRETTY_FUNCTION__))
;
439 switch (getLHSKind()) {
440 default: llvm_unreachable("Out of sync with isSingleStringRef")::llvm::llvm_unreachable_internal("Out of sync with isSingleStringRef"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/Twine.h"
, 440)
;
441 case EmptyKind: return StringRef();
442 case CStringKind: return StringRef(LHS.cString);
443 case StdStringKind: return StringRef(*LHS.stdString);
444 case StringRefKind: return *LHS.stringRef;
445 case SmallStringKind:
446 return StringRef(LHS.smallString->data(), LHS.smallString->size());
447 }
448 }
449
450 /// This returns the twine as a single StringRef if it can be
451 /// represented as such. Otherwise the twine is written into the given
452 /// SmallVector and a StringRef to the SmallVector's data is returned.
453 StringRef toStringRef(SmallVectorImpl<char> &Out) const {
454 if (isSingleStringRef())
455 return getSingleStringRef();
456 toVector(Out);
457 return StringRef(Out.data(), Out.size());
458 }
459
460 /// This returns the twine as a single null terminated StringRef if it
461 /// can be represented as such. Otherwise the twine is written into the
462 /// given SmallVector and a StringRef to the SmallVector's data is returned.
463 ///
464 /// The returned StringRef's size does not include the null terminator.
465 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
466
467 /// Write the concatenated string represented by this twine to the
468 /// stream \p OS.
469 void print(raw_ostream &OS) const;
470
471 /// Dump the concatenated string represented by this twine to stderr.
472 void dump() const;
473
474 /// Write the representation of this twine to the stream \p OS.
475 void printRepr(raw_ostream &OS) const;
476
477 /// Dump the representation of this twine to stderr.
478 void dumpRepr() const;
479
480 /// @}
481 };
482
483 /// @name Twine Inline Implementations
484 /// @{
485
486 inline Twine Twine::concat(const Twine &Suffix) const {
487 // Concatenation with null is null.
488 if (isNull() || Suffix.isNull())
489 return Twine(NullKind);
490
491 // Concatenation with empty yields the other side.
492 if (isEmpty())
493 return Suffix;
494 if (Suffix.isEmpty())
495 return *this;
496
497 // Otherwise we need to create a new node, taking care to fold in unary
498 // twines.
499 Child NewLHS, NewRHS;
500 NewLHS.twine = this;
501 NewRHS.twine = &Suffix;
502 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
503 if (isUnary()) {
504 NewLHS = LHS;
505 NewLHSKind = getLHSKind();
506 }
507 if (Suffix.isUnary()) {
508 NewRHS = Suffix.LHS;
509 NewRHSKind = Suffix.getLHSKind();
510 }
511
512 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
513 }
514
515 inline Twine operator+(const Twine &LHS, const Twine &RHS) {
516 return LHS.concat(RHS);
517 }
518
519 /// Additional overload to guarantee simplified codegen; this is equivalent to
520 /// concat().
521
522 inline Twine operator+(const char *LHS, const StringRef &RHS) {
523 return Twine(LHS, RHS);
524 }
525
526 /// Additional overload to guarantee simplified codegen; this is equivalent to
527 /// concat().
528
529 inline Twine operator+(const StringRef &LHS, const char *RHS) {
530 return Twine(LHS, RHS);
531 }
532
533 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
534 RHS.print(OS);
535 return OS;
536 }
537
538 /// @}
539
540} // end namespace llvm
541
542#endif // LLVM_ADT_TWINE_H