Bug Summary

File:clang/lib/AST/Decl.cpp
Warning:line 3728, column 5
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 48 bytes

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Decl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/tools/clang/lib/AST -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp

1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DeclarationName.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/ODRHash.h"
31#include "clang/AST/PrettyDeclStackTrace.h"
32#include "clang/AST/PrettyPrinter.h"
33#include "clang/AST/Redeclarable.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/Basic/Builtins.h"
39#include "clang/Basic/IdentifierTable.h"
40#include "clang/Basic/LLVM.h"
41#include "clang/Basic/LangOptions.h"
42#include "clang/Basic/Linkage.h"
43#include "clang/Basic/Module.h"
44#include "clang/Basic/PartialDiagnostic.h"
45#include "clang/Basic/SanitizerBlacklist.h"
46#include "clang/Basic/Sanitizers.h"
47#include "clang/Basic/SourceLocation.h"
48#include "clang/Basic/SourceManager.h"
49#include "clang/Basic/Specifiers.h"
50#include "clang/Basic/TargetCXXABI.h"
51#include "clang/Basic/TargetInfo.h"
52#include "clang/Basic/Visibility.h"
53#include "llvm/ADT/APSInt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/None.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallVector.h"
59#include "llvm/ADT/StringRef.h"
60#include "llvm/ADT/StringSwitch.h"
61#include "llvm/ADT/Triple.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/raw_ostream.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <memory>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&((!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"
) ? static_cast<void> (0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 174, __PRETTY_FUNCTION__))
174 "asking for explicit visibility when we shouldn't be")((!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"
) ? static_cast<void> (0) : __assert_fail ("!kind.IgnoreExplicitVisibility && \"asking for explicit visibility when we shouldn't be\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 174, __PRETTY_FUNCTION__))
;
175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(D) ||
182 isa<ClassTemplateDecl>(D) ||
183 isa<ObjCInterfaceDecl>(D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T> static typename
189std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind")::llvm::llvm_unreachable_internal("bad visibility kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 217)
;
218}
219
220/// Return the explicit visibility of the given declaration.
221static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222 NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(A);
234 }
235
236 return None;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(&T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(getLVForType(*NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(i);
274 if (!type->isDependentType())
275 LV.merge(getTypeLinkageAndVisibility(type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(getLVForTemplateParameterList(
295 TTP->getExpansionTemplateParameters(i), computation));
296 }
297 }
298
299 return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307 Ret = cast<Decl>(DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(getLVForType(*Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND))((!usesTypeVisibility(ND)) ? static_cast<void> (0) : __assert_fail
("!usesTypeVisibility(ND)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 336, __PRETTY_FUNCTION__))
;
337 LV.merge(getLVForDecl(ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::Template:
346 case TemplateArgument::TemplateExpansion:
347 if (TemplateDecl *Template =
348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349 LV.merge(getLVForDecl(Template, computation));
350 continue;
351
352 case TemplateArgument::Pack:
353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354 continue;
355 }
356 llvm_unreachable("bad template argument kind")::llvm::llvm_unreachable_internal("bad template argument kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 356)
;
357 }
358
359 return LV;
360}
361
362LinkageInfo
363LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364 LVComputationKind computation) {
365 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366}
367
368static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369 const FunctionTemplateSpecializationInfo *specInfo) {
370 // Include visibility from the template parameters and arguments
371 // only if this is not an explicit instantiation or specialization
372 // with direct explicit visibility. (Implicit instantiations won't
373 // have a direct attribute.)
374 if (!specInfo->isExplicitInstantiationOrSpecialization())
375 return true;
376
377 return !fn->hasAttr<VisibilityAttr>();
378}
379
380/// Merge in template-related linkage and visibility for the given
381/// function template specialization.
382///
383/// We don't need a computation kind here because we can assume
384/// LVForValue.
385///
386/// \param[out] LV the computation to use for the parent
387void LinkageComputer::mergeTemplateLV(
388 LinkageInfo &LV, const FunctionDecl *fn,
389 const FunctionTemplateSpecializationInfo *specInfo,
390 LVComputationKind computation) {
391 bool considerVisibility =
392 shouldConsiderTemplateVisibility(fn, specInfo);
393
394 // Merge information from the template parameters.
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 LinkageInfo tempLV =
397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399
400 // Merge information from the template arguments.
401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404}
405
406/// Does the given declaration have a direct visibility attribute
407/// that would match the given rules?
408static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409 LVComputationKind computation) {
410 if (computation.IgnoreAllVisibility)
411 return false;
412
413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414 D->hasAttr<VisibilityAttr>();
415}
416
417/// Should we consider visibility associated with the template
418/// arguments and parameters of the given class template specialization?
419static bool shouldConsiderTemplateVisibility(
420 const ClassTemplateSpecializationDecl *spec,
421 LVComputationKind computation) {
422 // Include visibility from the template parameters and arguments
423 // only if this is not an explicit instantiation or specialization
424 // with direct explicit visibility (and note that implicit
425 // instantiations won't have a direct attribute).
426 //
427 // Furthermore, we want to ignore template parameters and arguments
428 // for an explicit specialization when computing the visibility of a
429 // member thereof with explicit visibility.
430 //
431 // This is a bit complex; let's unpack it.
432 //
433 // An explicit class specialization is an independent, top-level
434 // declaration. As such, if it or any of its members has an
435 // explicit visibility attribute, that must directly express the
436 // user's intent, and we should honor it. The same logic applies to
437 // an explicit instantiation of a member of such a thing.
438
439 // Fast path: if this is not an explicit instantiation or
440 // specialization, we always want to consider template-related
441 // visibility restrictions.
442 if (!spec->isExplicitInstantiationOrSpecialization())
443 return true;
444
445 // This is the 'member thereof' check.
446 if (spec->isExplicitSpecialization() &&
447 hasExplicitVisibilityAlready(computation))
448 return false;
449
450 return !hasDirectVisibilityAttribute(spec, computation);
451}
452
453/// Merge in template-related linkage and visibility for the given
454/// class template specialization.
455void LinkageComputer::mergeTemplateLV(
456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457 LVComputationKind computation) {
458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459
460 // Merge information from the template parameters, but ignore
461 // visibility if we're only considering template arguments.
462
463 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464 LinkageInfo tempLV =
465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466 LV.mergeMaybeWithVisibility(tempLV,
467 considerVisibility && !hasExplicitVisibilityAlready(computation));
468
469 // Merge information from the template arguments. We ignore
470 // template-argument visibility if we've got an explicit
471 // instantiation with a visibility attribute.
472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474 if (considerVisibility)
475 LV.mergeVisibility(argsLV);
476 LV.mergeExternalVisibility(argsLV);
477}
478
479/// Should we consider visibility associated with the template
480/// arguments and parameters of the given variable template
481/// specialization? As usual, follow class template specialization
482/// logic up to initialization.
483static bool shouldConsiderTemplateVisibility(
484 const VarTemplateSpecializationDecl *spec,
485 LVComputationKind computation) {
486 // Include visibility from the template parameters and arguments
487 // only if this is not an explicit instantiation or specialization
488 // with direct explicit visibility (and note that implicit
489 // instantiations won't have a direct attribute).
490 if (!spec->isExplicitInstantiationOrSpecialization())
491 return true;
492
493 // An explicit variable specialization is an independent, top-level
494 // declaration. As such, if it has an explicit visibility attribute,
495 // that must directly express the user's intent, and we should honor
496 // it.
497 if (spec->isExplicitSpecialization() &&
498 hasExplicitVisibilityAlready(computation))
499 return false;
500
501 return !hasDirectVisibilityAttribute(spec, computation);
502}
503
504/// Merge in template-related linkage and visibility for the given
505/// variable template specialization. As usual, follow class template
506/// specialization logic up to initialization.
507void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508 const VarTemplateSpecializationDecl *spec,
509 LVComputationKind computation) {
510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511
512 // Merge information from the template parameters, but ignore
513 // visibility if we're only considering template arguments.
514
515 VarTemplateDecl *temp = spec->getSpecializedTemplate();
516 LinkageInfo tempLV =
517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518 LV.mergeMaybeWithVisibility(tempLV,
519 considerVisibility && !hasExplicitVisibilityAlready(computation));
520
521 // Merge information from the template arguments. We ignore
522 // template-argument visibility if we've got an explicit
523 // instantiation with a visibility attribute.
524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526 if (considerVisibility)
527 LV.mergeVisibility(argsLV);
528 LV.mergeExternalVisibility(argsLV);
529}
530
531static bool useInlineVisibilityHidden(const NamedDecl *D) {
532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533 const LangOptions &Opts = D->getASTContext().getLangOpts();
534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535 return false;
536
537 const auto *FD = dyn_cast<FunctionDecl>(D);
538 if (!FD)
539 return false;
540
541 TemplateSpecializationKind TSK = TSK_Undeclared;
542 if (FunctionTemplateSpecializationInfo *spec
543 = FD->getTemplateSpecializationInfo()) {
544 TSK = spec->getTemplateSpecializationKind();
545 } else if (MemberSpecializationInfo *MSI =
546 FD->getMemberSpecializationInfo()) {
547 TSK = MSI->getTemplateSpecializationKind();
548 }
549
550 const FunctionDecl *Def = nullptr;
551 // InlineVisibilityHidden only applies to definitions, and
552 // isInlined() only gives meaningful answers on definitions
553 // anyway.
554 return TSK != TSK_ExplicitInstantiationDeclaration &&
555 TSK != TSK_ExplicitInstantiationDefinition &&
556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557}
558
559template <typename T> static bool isFirstInExternCContext(T *D) {
560 const T *First = D->getFirstDecl();
561 return First->isInExternCContext();
562}
563
564static bool isSingleLineLanguageLinkage(const Decl &D) {
565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566 if (!SD->hasBraces())
567 return true;
568 return false;
569}
570
571/// Determine whether D is declared in the purview of a named module.
572static bool isInModulePurview(const NamedDecl *D) {
573 if (auto *M = D->getOwningModule())
574 return M->isModulePurview();
575 return false;
576}
577
578static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579 // FIXME: Handle isModulePrivate.
580 switch (D->getModuleOwnershipKind()) {
581 case Decl::ModuleOwnershipKind::Unowned:
582 case Decl::ModuleOwnershipKind::ModulePrivate:
583 return false;
584 case Decl::ModuleOwnershipKind::Visible:
585 case Decl::ModuleOwnershipKind::VisibleWhenImported:
586 return isInModulePurview(D);
587 }
588 llvm_unreachable("unexpected module ownership kind")::llvm::llvm_unreachable_internal("unexpected module ownership kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 588)
;
589}
590
591static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592 // Internal linkage declarations within a module interface unit are modeled
593 // as "module-internal linkage", which means that they have internal linkage
594 // formally but can be indirectly accessed from outside the module via inline
595 // functions and templates defined within the module.
596 if (isInModulePurview(D))
597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598
599 return LinkageInfo::internal();
600}
601
602static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603 // C++ Modules TS [basic.link]/6.8:
604 // - A name declared at namespace scope that does not have internal linkage
605 // by the previous rules and that is introduced by a non-exported
606 // declaration has module linkage.
607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608 cast<NamedDecl>(D->getCanonicalDecl())))
609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610
611 return LinkageInfo::external();
612}
613
614static StorageClass getStorageClass(const Decl *D) {
615 if (auto *TD = dyn_cast<TemplateDecl>(D))
616 D = TD->getTemplatedDecl();
617 if (D) {
618 if (auto *VD = dyn_cast<VarDecl>(D))
619 return VD->getStorageClass();
620 if (auto *FD = dyn_cast<FunctionDecl>(D))
621 return FD->getStorageClass();
622 }
623 return SC_None;
624}
625
626LinkageInfo
627LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628 LVComputationKind computation,
629 bool IgnoreVarTypeLinkage) {
630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&((D->getDeclContext()->getRedeclContext()->isFileContext
() && "Not a name having namespace scope") ? static_cast
<void> (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 631, __PRETTY_FUNCTION__))
631 "Not a name having namespace scope")((D->getDeclContext()->getRedeclContext()->isFileContext
() && "Not a name having namespace scope") ? static_cast
<void> (0) : __assert_fail ("D->getDeclContext()->getRedeclContext()->isFileContext() && \"Not a name having namespace scope\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 ASTContext &Context = D->getASTContext();
633
634 // C++ [basic.link]p3:
635 // A name having namespace scope (3.3.6) has internal linkage if it
636 // is the name of
637
638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639 // - a variable, variable template, function, or function template
640 // that is explicitly declared static; or
641 // (This bullet corresponds to C99 6.2.2p3.)
642 return getInternalLinkageFor(D);
643 }
644
645 if (const auto *Var = dyn_cast<VarDecl>(D)) {
646 // - a non-template variable of non-volatile const-qualified type, unless
647 // - it is explicitly declared extern, or
648 // - it is inline or exported, or
649 // - it was previously declared and the prior declaration did not have
650 // internal linkage
651 // (There is no equivalent in C99.)
652 if (Context.getLangOpts().CPlusPlus &&
653 Var->getType().isConstQualified() &&
654 !Var->getType().isVolatileQualified() &&
655 !Var->isInline() &&
656 !isExportedFromModuleInterfaceUnit(Var) &&
657 !isa<VarTemplateSpecializationDecl>(Var) &&
658 !Var->getDescribedVarTemplate()) {
659 const VarDecl *PrevVar = Var->getPreviousDecl();
660 if (PrevVar)
661 return getLVForDecl(PrevVar, computation);
662
663 if (Var->getStorageClass() != SC_Extern &&
664 Var->getStorageClass() != SC_PrivateExtern &&
665 !isSingleLineLanguageLinkage(*Var))
666 return getInternalLinkageFor(Var);
667 }
668
669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670 PrevVar = PrevVar->getPreviousDecl()) {
671 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672 Var->getStorageClass() == SC_None)
673 return getDeclLinkageAndVisibility(PrevVar);
674 // Explicitly declared static.
675 if (PrevVar->getStorageClass() == SC_Static)
676 return getInternalLinkageFor(Var);
677 }
678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679 // - a data member of an anonymous union.
680 const VarDecl *VD = IFD->getVarDecl();
681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!")((VD && "Expected a VarDecl in this IndirectFieldDecl!"
) ? static_cast<void> (0) : __assert_fail ("VD && \"Expected a VarDecl in this IndirectFieldDecl!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 681, __PRETTY_FUNCTION__))
;
682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683 }
684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!")((!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(D) && \"Didn't expect a FieldDecl!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 684, __PRETTY_FUNCTION__))
;
685
686 // FIXME: This gives internal linkage to names that should have no linkage
687 // (those not covered by [basic.link]p6).
688 if (D->isInAnonymousNamespace()) {
689 const auto *Var = dyn_cast<VarDecl>(D);
690 const auto *Func = dyn_cast<FunctionDecl>(D);
691 // FIXME: The check for extern "C" here is not justified by the standard
692 // wording, but we retain it from the pre-DR1113 model to avoid breaking
693 // code.
694 //
695 // C++11 [basic.link]p4:
696 // An unnamed namespace or a namespace declared directly or indirectly
697 // within an unnamed namespace has internal linkage.
698 if ((!Var || !isFirstInExternCContext(Var)) &&
699 (!Func || !isFirstInExternCContext(Func)))
700 return getInternalLinkageFor(D);
701 }
702
703 // Set up the defaults.
704
705 // C99 6.2.2p5:
706 // If the declaration of an identifier for an object has file
707 // scope and no storage-class specifier, its linkage is
708 // external.
709 LinkageInfo LV = getExternalLinkageFor(D);
710
711 if (!hasExplicitVisibilityAlready(computation)) {
712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713 LV.mergeVisibility(*Vis, true);
714 } else {
715 // If we're declared in a namespace with a visibility attribute,
716 // use that namespace's visibility, and it still counts as explicit.
717 for (const DeclContext *DC = D->getDeclContext();
718 !isa<TranslationUnitDecl>(DC);
719 DC = DC->getParent()) {
720 const auto *ND = dyn_cast<NamespaceDecl>(DC);
721 if (!ND) continue;
722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723 LV.mergeVisibility(*Vis, true);
724 break;
725 }
726 }
727 }
728
729 // Add in global settings if the above didn't give us direct visibility.
730 if (!LV.isVisibilityExplicit()) {
731 // Use global type/value visibility as appropriate.
732 Visibility globalVisibility =
733 computation.isValueVisibility()
734 ? Context.getLangOpts().getValueVisibilityMode()
735 : Context.getLangOpts().getTypeVisibilityMode();
736 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737
738 // If we're paying attention to global visibility, apply
739 // -finline-visibility-hidden if this is an inline method.
740 if (useInlineVisibilityHidden(D))
741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742 }
743 }
744
745 // C++ [basic.link]p4:
746
747 // A name having namespace scope that has not been given internal linkage
748 // above and that is the name of
749 // [...bullets...]
750 // has its linkage determined as follows:
751 // - if the enclosing namespace has internal linkage, the name has
752 // internal linkage; [handled above]
753 // - otherwise, if the declaration of the name is attached to a named
754 // module and is not exported, the name has module linkage;
755 // - otherwise, the name has external linkage.
756 // LV is currently set up to handle the last two bullets.
757 //
758 // The bullets are:
759
760 // - a variable; or
761 if (const auto *Var = dyn_cast<VarDecl>(D)) {
762 // GCC applies the following optimization to variables and static
763 // data members, but not to functions:
764 //
765 // Modify the variable's LV by the LV of its type unless this is
766 // C or extern "C". This follows from [basic.link]p9:
767 // A type without linkage shall not be used as the type of a
768 // variable or function with external linkage unless
769 // - the entity has C language linkage, or
770 // - the entity is declared within an unnamed namespace, or
771 // - the entity is not used or is defined in the same
772 // translation unit.
773 // and [basic.link]p10:
774 // ...the types specified by all declarations referring to a
775 // given variable or function shall be identical...
776 // C does not have an equivalent rule.
777 //
778 // Ignore this if we've got an explicit attribute; the user
779 // probably knows what they're doing.
780 //
781 // Note that we don't want to make the variable non-external
782 // because of this, but unique-external linkage suits us.
783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784 !IgnoreVarTypeLinkage) {
785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786 if (!isExternallyVisible(TypeLV.getLinkage()))
787 return LinkageInfo::uniqueExternal();
788 if (!LV.isVisibilityExplicit())
789 LV.mergeVisibility(TypeLV);
790 }
791
792 if (Var->getStorageClass() == SC_PrivateExtern)
793 LV.mergeVisibility(HiddenVisibility, true);
794
795 // Note that Sema::MergeVarDecl already takes care of implementing
796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797 // to do it here.
798
799 // As per function and class template specializations (below),
800 // consider LV for the template and template arguments. We're at file
801 // scope, so we do not need to worry about nested specializations.
802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803 mergeTemplateLV(LV, spec, computation);
804 }
805
806 // - a function; or
807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808 // In theory, we can modify the function's LV by the LV of its
809 // type unless it has C linkage (see comment above about variables
810 // for justification). In practice, GCC doesn't do this, so it's
811 // just too painful to make work.
812
813 if (Function->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(D)) {
863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 // Everything not covered here has no linkage.
896 } else {
897 return LinkageInfo::none();
898 }
899
900 // If we ended up with non-externally-visible linkage, visibility should
901 // always be default.
902 if (!isExternallyVisible(LV.getLinkage()))
903 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
904
905 // Mark the symbols as hidden when compiling for the device.
906 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
907 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
908
909 return LV;
910}
911
912LinkageInfo
913LinkageComputer::getLVForClassMember(const NamedDecl *D,
914 LVComputationKind computation,
915 bool IgnoreVarTypeLinkage) {
916 // Only certain class members have linkage. Note that fields don't
917 // really have linkage, but it's convenient to say they do for the
918 // purposes of calculating linkage of pointer-to-data-member
919 // template arguments.
920 //
921 // Templates also don't officially have linkage, but since we ignore
922 // the C++ standard and look at template arguments when determining
923 // linkage and visibility of a template specialization, we might hit
924 // a template template argument that way. If we do, we need to
925 // consider its linkage.
926 if (!(isa<CXXMethodDecl>(D) ||
927 isa<VarDecl>(D) ||
928 isa<FieldDecl>(D) ||
929 isa<IndirectFieldDecl>(D) ||
930 isa<TagDecl>(D) ||
931 isa<TemplateDecl>(D)))
932 return LinkageInfo::none();
933
934 LinkageInfo LV;
935
936 // If we have an explicit visibility attribute, merge that in.
937 if (!hasExplicitVisibilityAlready(computation)) {
938 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
939 LV.mergeVisibility(*Vis, true);
940 // If we're paying attention to global visibility, apply
941 // -finline-visibility-hidden if this is an inline method.
942 //
943 // Note that we do this before merging information about
944 // the class visibility.
945 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
946 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
947 }
948
949 // If this class member has an explicit visibility attribute, the only
950 // thing that can change its visibility is the template arguments, so
951 // only look for them when processing the class.
952 LVComputationKind classComputation = computation;
953 if (LV.isVisibilityExplicit())
954 classComputation = withExplicitVisibilityAlready(computation);
955
956 LinkageInfo classLV =
957 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
958 // The member has the same linkage as the class. If that's not externally
959 // visible, we don't need to compute anything about the linkage.
960 // FIXME: If we're only computing linkage, can we bail out here?
961 if (!isExternallyVisible(classLV.getLinkage()))
962 return classLV;
963
964
965 // Otherwise, don't merge in classLV yet, because in certain cases
966 // we need to completely ignore the visibility from it.
967
968 // Specifically, if this decl exists and has an explicit attribute.
969 const NamedDecl *explicitSpecSuppressor = nullptr;
970
971 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
972 // Only look at the type-as-written. Otherwise, deducing the return type
973 // of a function could change its linkage.
974 QualType TypeAsWritten = MD->getType();
975 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
976 TypeAsWritten = TSI->getType();
977 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
978 return LinkageInfo::uniqueExternal();
979
980 // If this is a method template specialization, use the linkage for
981 // the template parameters and arguments.
982 if (FunctionTemplateSpecializationInfo *spec
983 = MD->getTemplateSpecializationInfo()) {
984 mergeTemplateLV(LV, MD, spec, computation);
985 if (spec->isExplicitSpecialization()) {
986 explicitSpecSuppressor = MD;
987 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
988 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
989 }
990 } else if (isExplicitMemberSpecialization(MD)) {
991 explicitSpecSuppressor = MD;
992 }
993
994 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
995 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
996 mergeTemplateLV(LV, spec, computation);
997 if (spec->isExplicitSpecialization()) {
998 explicitSpecSuppressor = spec;
999 } else {
1000 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1001 if (isExplicitMemberSpecialization(temp)) {
1002 explicitSpecSuppressor = temp->getTemplatedDecl();
1003 }
1004 }
1005 } else if (isExplicitMemberSpecialization(RD)) {
1006 explicitSpecSuppressor = RD;
1007 }
1008
1009 // Static data members.
1010 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1011 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1012 mergeTemplateLV(LV, spec, computation);
1013
1014 // Modify the variable's linkage by its type, but ignore the
1015 // type's visibility unless it's a definition.
1016 if (!IgnoreVarTypeLinkage) {
1017 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1018 // FIXME: If the type's linkage is not externally visible, we can
1019 // give this static data member UniqueExternalLinkage.
1020 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1021 LV.mergeVisibility(typeLV);
1022 LV.mergeExternalVisibility(typeLV);
1023 }
1024
1025 if (isExplicitMemberSpecialization(VD)) {
1026 explicitSpecSuppressor = VD;
1027 }
1028
1029 // Template members.
1030 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1031 bool considerVisibility =
1032 (!LV.isVisibilityExplicit() &&
1033 !classLV.isVisibilityExplicit() &&
1034 !hasExplicitVisibilityAlready(computation));
1035 LinkageInfo tempLV =
1036 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1037 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1038
1039 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1040 if (isExplicitMemberSpecialization(redeclTemp)) {
1041 explicitSpecSuppressor = temp->getTemplatedDecl();
1042 }
1043 }
1044 }
1045
1046 // We should never be looking for an attribute directly on a template.
1047 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor))((!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor
)) ? static_cast<void> (0) : __assert_fail ("!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1047, __PRETTY_FUNCTION__))
;
1048
1049 // If this member is an explicit member specialization, and it has
1050 // an explicit attribute, ignore visibility from the parent.
1051 bool considerClassVisibility = true;
1052 if (explicitSpecSuppressor &&
1053 // optimization: hasDVA() is true only with explicit visibility.
1054 LV.isVisibilityExplicit() &&
1055 classLV.getVisibility() != DefaultVisibility &&
1056 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1057 considerClassVisibility = false;
1058 }
1059
1060 // Finally, merge in information from the class.
1061 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1062 return LV;
1063}
1064
1065void NamedDecl::anchor() {}
1066
1067bool NamedDecl::isLinkageValid() const {
1068 if (!hasCachedLinkage())
1069 return true;
1070
1071 Linkage L = LinkageComputer{}
1072 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1073 .getLinkage();
1074 return L == getCachedLinkage();
1075}
1076
1077ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1078 StringRef name = getName();
1079 if (name.empty()) return SFF_None;
1080
1081 if (name.front() == 'C')
1082 if (name == "CFStringCreateWithFormat" ||
1083 name == "CFStringCreateWithFormatAndArguments" ||
1084 name == "CFStringAppendFormat" ||
1085 name == "CFStringAppendFormatAndArguments")
1086 return SFF_CFString;
1087 return SFF_None;
1088}
1089
1090Linkage NamedDecl::getLinkageInternal() const {
1091 // We don't care about visibility here, so ask for the cheapest
1092 // possible visibility analysis.
1093 return LinkageComputer{}
1094 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1095 .getLinkage();
1096}
1097
1098LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1099 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1100}
1101
1102static Optional<Visibility>
1103getExplicitVisibilityAux(const NamedDecl *ND,
1104 NamedDecl::ExplicitVisibilityKind kind,
1105 bool IsMostRecent) {
1106 assert(!IsMostRecent || ND == ND->getMostRecentDecl())((!IsMostRecent || ND == ND->getMostRecentDecl()) ? static_cast
<void> (0) : __assert_fail ("!IsMostRecent || ND == ND->getMostRecentDecl()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1106, __PRETTY_FUNCTION__))
;
1107
1108 // Check the declaration itself first.
1109 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1110 return V;
1111
1112 // If this is a member class of a specialization of a class template
1113 // and the corresponding decl has explicit visibility, use that.
1114 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1115 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1116 if (InstantiatedFrom)
1117 return getVisibilityOf(InstantiatedFrom, kind);
1118 }
1119
1120 // If there wasn't explicit visibility there, and this is a
1121 // specialization of a class template, check for visibility
1122 // on the pattern.
1123 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1124 // Walk all the template decl till this point to see if there are
1125 // explicit visibility attributes.
1126 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1127 while (TD != nullptr) {
1128 auto Vis = getVisibilityOf(TD, kind);
1129 if (Vis != None)
1130 return Vis;
1131 TD = TD->getPreviousDecl();
1132 }
1133 return None;
1134 }
1135
1136 // Use the most recent declaration.
1137 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1138 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1139 if (MostRecent != ND)
1140 return getExplicitVisibilityAux(MostRecent, kind, true);
1141 }
1142
1143 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1144 if (Var->isStaticDataMember()) {
1145 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1146 if (InstantiatedFrom)
1147 return getVisibilityOf(InstantiatedFrom, kind);
1148 }
1149
1150 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1151 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1152 kind);
1153
1154 return None;
1155 }
1156 // Also handle function template specializations.
1157 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1158 // If the function is a specialization of a template with an
1159 // explicit visibility attribute, use that.
1160 if (FunctionTemplateSpecializationInfo *templateInfo
1161 = fn->getTemplateSpecializationInfo())
1162 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1163 kind);
1164
1165 // If the function is a member of a specialization of a class template
1166 // and the corresponding decl has explicit visibility, use that.
1167 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1168 if (InstantiatedFrom)
1169 return getVisibilityOf(InstantiatedFrom, kind);
1170
1171 return None;
1172 }
1173
1174 // The visibility of a template is stored in the templated decl.
1175 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1176 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1177
1178 return None;
1179}
1180
1181Optional<Visibility>
1182NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1183 return getExplicitVisibilityAux(this, kind, false);
1184}
1185
1186LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1187 Decl *ContextDecl,
1188 LVComputationKind computation) {
1189 // This lambda has its linkage/visibility determined by its owner.
1190 const NamedDecl *Owner;
1191 if (!ContextDecl)
1192 Owner = dyn_cast<NamedDecl>(DC);
1193 else if (isa<ParmVarDecl>(ContextDecl))
1194 Owner =
1195 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1196 else
1197 Owner = cast<NamedDecl>(ContextDecl);
1198
1199 if (!Owner)
1200 return LinkageInfo::none();
1201
1202 // If the owner has a deduced type, we need to skip querying the linkage and
1203 // visibility of that type, because it might involve this closure type. The
1204 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1205 // than NoLinkage when we don't strictly need to, which is benign.
1206 auto *VD = dyn_cast<VarDecl>(Owner);
1207 LinkageInfo OwnerLV =
1208 VD && VD->getType()->getContainedDeducedType()
1209 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1210 : getLVForDecl(Owner, computation);
1211
1212 // A lambda never formally has linkage. But if the owner is externally
1213 // visible, then the lambda is too. We apply the same rules to blocks.
1214 if (!isExternallyVisible(OwnerLV.getLinkage()))
1215 return LinkageInfo::none();
1216 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1217 OwnerLV.isVisibilityExplicit());
1218}
1219
1220LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1221 LVComputationKind computation) {
1222 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1223 if (Function->isInAnonymousNamespace() &&
1224 !isFirstInExternCContext(Function))
1225 return getInternalLinkageFor(Function);
1226
1227 // This is a "void f();" which got merged with a file static.
1228 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1229 return getInternalLinkageFor(Function);
1230
1231 LinkageInfo LV;
1232 if (!hasExplicitVisibilityAlready(computation)) {
1233 if (Optional<Visibility> Vis =
1234 getExplicitVisibility(Function, computation))
1235 LV.mergeVisibility(*Vis, true);
1236 }
1237
1238 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1239 // merging storage classes and visibility attributes, so we don't have to
1240 // look at previous decls in here.
1241
1242 return LV;
1243 }
1244
1245 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1246 if (Var->hasExternalStorage()) {
1247 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1248 return getInternalLinkageFor(Var);
1249
1250 LinkageInfo LV;
1251 if (Var->getStorageClass() == SC_PrivateExtern)
1252 LV.mergeVisibility(HiddenVisibility, true);
1253 else if (!hasExplicitVisibilityAlready(computation)) {
1254 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1255 LV.mergeVisibility(*Vis, true);
1256 }
1257
1258 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1259 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1260 if (PrevLV.getLinkage())
1261 LV.setLinkage(PrevLV.getLinkage());
1262 LV.mergeVisibility(PrevLV);
1263 }
1264
1265 return LV;
1266 }
1267
1268 if (!Var->isStaticLocal())
1269 return LinkageInfo::none();
1270 }
1271
1272 ASTContext &Context = D->getASTContext();
1273 if (!Context.getLangOpts().CPlusPlus)
1274 return LinkageInfo::none();
1275
1276 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1277 if (!OuterD || OuterD->isInvalidDecl())
1278 return LinkageInfo::none();
1279
1280 LinkageInfo LV;
1281 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1282 if (!BD->getBlockManglingNumber())
1283 return LinkageInfo::none();
1284
1285 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1286 BD->getBlockManglingContextDecl(), computation);
1287 } else {
1288 const auto *FD = cast<FunctionDecl>(OuterD);
1289 if (!FD->isInlined() &&
1290 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1291 return LinkageInfo::none();
1292
1293 // If a function is hidden by -fvisibility-inlines-hidden option and
1294 // is not explicitly attributed as a hidden function,
1295 // we should not make static local variables in the function hidden.
1296 LV = getLVForDecl(FD, computation);
1297 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1298 !LV.isVisibilityExplicit()) {
1299 assert(cast<VarDecl>(D)->isStaticLocal())((cast<VarDecl>(D)->isStaticLocal()) ? static_cast<
void> (0) : __assert_fail ("cast<VarDecl>(D)->isStaticLocal()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1299, __PRETTY_FUNCTION__))
;
1300 // If this was an implicitly hidden inline method, check again for
1301 // explicit visibility on the parent class, and use that for static locals
1302 // if present.
1303 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1304 LV = getLVForDecl(MD->getParent(), computation);
1305 if (!LV.isVisibilityExplicit()) {
1306 Visibility globalVisibility =
1307 computation.isValueVisibility()
1308 ? Context.getLangOpts().getValueVisibilityMode()
1309 : Context.getLangOpts().getTypeVisibilityMode();
1310 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1311 /*visibilityExplicit=*/false);
1312 }
1313 }
1314 }
1315 if (!isExternallyVisible(LV.getLinkage()))
1316 return LinkageInfo::none();
1317 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1318 LV.isVisibilityExplicit());
1319}
1320
1321LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1322 LVComputationKind computation,
1323 bool IgnoreVarTypeLinkage) {
1324 // Internal_linkage attribute overrides other considerations.
1325 if (D->hasAttr<InternalLinkageAttr>())
1326 return getInternalLinkageFor(D);
1327
1328 // Objective-C: treat all Objective-C declarations as having external
1329 // linkage.
1330 switch (D->getKind()) {
1331 default:
1332 break;
1333
1334 // Per C++ [basic.link]p2, only the names of objects, references,
1335 // functions, types, templates, namespaces, and values ever have linkage.
1336 //
1337 // Note that the name of a typedef, namespace alias, using declaration,
1338 // and so on are not the name of the corresponding type, namespace, or
1339 // declaration, so they do *not* have linkage.
1340 case Decl::ImplicitParam:
1341 case Decl::Label:
1342 case Decl::NamespaceAlias:
1343 case Decl::ParmVar:
1344 case Decl::Using:
1345 case Decl::UsingShadow:
1346 case Decl::UsingDirective:
1347 return LinkageInfo::none();
1348
1349 case Decl::EnumConstant:
1350 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1351 if (D->getASTContext().getLangOpts().CPlusPlus)
1352 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1353 return LinkageInfo::visible_none();
1354
1355 case Decl::Typedef:
1356 case Decl::TypeAlias:
1357 // A typedef declaration has linkage if it gives a type a name for
1358 // linkage purposes.
1359 if (!cast<TypedefNameDecl>(D)
1360 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1361 return LinkageInfo::none();
1362 break;
1363
1364 case Decl::TemplateTemplateParm: // count these as external
1365 case Decl::NonTypeTemplateParm:
1366 case Decl::ObjCAtDefsField:
1367 case Decl::ObjCCategory:
1368 case Decl::ObjCCategoryImpl:
1369 case Decl::ObjCCompatibleAlias:
1370 case Decl::ObjCImplementation:
1371 case Decl::ObjCMethod:
1372 case Decl::ObjCProperty:
1373 case Decl::ObjCPropertyImpl:
1374 case Decl::ObjCProtocol:
1375 return getExternalLinkageFor(D);
1376
1377 case Decl::CXXRecord: {
1378 const auto *Record = cast<CXXRecordDecl>(D);
1379 if (Record->isLambda()) {
1380 if (Record->hasKnownLambdaInternalLinkage() ||
1381 !Record->getLambdaManglingNumber()) {
1382 // This lambda has no mangling number, so it's internal.
1383 return getInternalLinkageFor(D);
1384 }
1385
1386 return getLVForClosure(
1387 Record->getDeclContext()->getRedeclContext(),
1388 Record->getLambdaContextDecl(), computation);
1389 }
1390
1391 break;
1392 }
1393 }
1394
1395 // Handle linkage for namespace-scope names.
1396 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1397 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1398
1399 // C++ [basic.link]p5:
1400 // In addition, a member function, static data member, a named
1401 // class or enumeration of class scope, or an unnamed class or
1402 // enumeration defined in a class-scope typedef declaration such
1403 // that the class or enumeration has the typedef name for linkage
1404 // purposes (7.1.3), has external linkage if the name of the class
1405 // has external linkage.
1406 if (D->getDeclContext()->isRecord())
1407 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1408
1409 // C++ [basic.link]p6:
1410 // The name of a function declared in block scope and the name of
1411 // an object declared by a block scope extern declaration have
1412 // linkage. If there is a visible declaration of an entity with
1413 // linkage having the same name and type, ignoring entities
1414 // declared outside the innermost enclosing namespace scope, the
1415 // block scope declaration declares that same entity and receives
1416 // the linkage of the previous declaration. If there is more than
1417 // one such matching entity, the program is ill-formed. Otherwise,
1418 // if no matching entity is found, the block scope entity receives
1419 // external linkage.
1420 if (D->getDeclContext()->isFunctionOrMethod())
1421 return getLVForLocalDecl(D, computation);
1422
1423 // C++ [basic.link]p6:
1424 // Names not covered by these rules have no linkage.
1425 return LinkageInfo::none();
1426}
1427
1428/// getLVForDecl - Get the linkage and visibility for the given declaration.
1429LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1430 LVComputationKind computation) {
1431 // Internal_linkage attribute overrides other considerations.
1432 if (D->hasAttr<InternalLinkageAttr>())
1433 return getInternalLinkageFor(D);
1434
1435 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1436 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1437
1438 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1439 return *LI;
1440
1441 LinkageInfo LV = computeLVForDecl(D, computation);
1442 if (D->hasCachedLinkage())
1443 assert(D->getCachedLinkage() == LV.getLinkage())((D->getCachedLinkage() == LV.getLinkage()) ? static_cast<
void> (0) : __assert_fail ("D->getCachedLinkage() == LV.getLinkage()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1443, __PRETTY_FUNCTION__))
;
1444
1445 D->setCachedLinkage(LV.getLinkage());
1446 cache(D, computation, LV);
1447
1448#ifndef NDEBUG
1449 // In C (because of gnu inline) and in c++ with microsoft extensions an
1450 // static can follow an extern, so we can have two decls with different
1451 // linkages.
1452 const LangOptions &Opts = D->getASTContext().getLangOpts();
1453 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1454 return LV;
1455
1456 // We have just computed the linkage for this decl. By induction we know
1457 // that all other computed linkages match, check that the one we just
1458 // computed also does.
1459 NamedDecl *Old = nullptr;
1460 for (auto I : D->redecls()) {
1461 auto *T = cast<NamedDecl>(I);
1462 if (T == D)
1463 continue;
1464 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1465 Old = T;
1466 break;
1467 }
1468 }
1469 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage())((!Old || Old->getCachedLinkage() == D->getCachedLinkage
()) ? static_cast<void> (0) : __assert_fail ("!Old || Old->getCachedLinkage() == D->getCachedLinkage()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1469, __PRETTY_FUNCTION__))
;
1470#endif
1471
1472 return LV;
1473}
1474
1475LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1476 return getLVForDecl(D,
1477 LVComputationKind(usesTypeVisibility(D)
1478 ? NamedDecl::VisibilityForType
1479 : NamedDecl::VisibilityForValue));
1480}
1481
1482Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1483 Module *M = getOwningModule();
1484 if (!M)
1485 return nullptr;
1486
1487 switch (M->Kind) {
1488 case Module::ModuleMapModule:
1489 // Module map modules have no special linkage semantics.
1490 return nullptr;
1491
1492 case Module::ModuleInterfaceUnit:
1493 return M;
1494
1495 case Module::GlobalModuleFragment: {
1496 // External linkage declarations in the global module have no owning module
1497 // for linkage purposes. But internal linkage declarations in the global
1498 // module fragment of a particular module are owned by that module for
1499 // linkage purposes.
1500 if (IgnoreLinkage)
1501 return nullptr;
1502 bool InternalLinkage;
1503 if (auto *ND = dyn_cast<NamedDecl>(this))
1504 InternalLinkage = !ND->hasExternalFormalLinkage();
1505 else {
1506 auto *NSD = dyn_cast<NamespaceDecl>(this);
1507 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1508 isInAnonymousNamespace();
1509 }
1510 return InternalLinkage ? M->Parent : nullptr;
1511 }
1512
1513 case Module::PrivateModuleFragment:
1514 // The private module fragment is part of its containing module for linkage
1515 // purposes.
1516 return M->Parent;
1517 }
1518
1519 llvm_unreachable("unknown module kind")::llvm::llvm_unreachable_internal("unknown module kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1519)
;
1520}
1521
1522void NamedDecl::printName(raw_ostream &os) const {
1523 os << Name;
1524}
1525
1526std::string NamedDecl::getQualifiedNameAsString() const {
1527 std::string QualName;
1528 llvm::raw_string_ostream OS(QualName);
1529 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1530 return OS.str();
1531}
1532
1533void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1534 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1535}
1536
1537void NamedDecl::printQualifiedName(raw_ostream &OS,
1538 const PrintingPolicy &P) const {
1539 if (getDeclContext()->isFunctionOrMethod()) {
1540 // We do not print '(anonymous)' for function parameters without name.
1541 printName(OS);
1542 return;
1543 }
1544 printNestedNameSpecifier(OS, P);
1545 if (getDeclName() || isa<DecompositionDecl>(this))
1546 OS << *this;
1547 else
1548 OS << "(anonymous)";
1549}
1550
1551void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1552 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1553}
1554
1555void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1556 const PrintingPolicy &P) const {
1557 const DeclContext *Ctx = getDeclContext();
1558
1559 // For ObjC methods and properties, look through categories and use the
1560 // interface as context.
1561 if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1562 if (auto *ID = MD->getClassInterface())
1563 Ctx = ID;
1564 if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1565 if (auto *MD = PD->getGetterMethodDecl())
1566 if (auto *ID = MD->getClassInterface())
1567 Ctx = ID;
1568 }
1569
1570 if (Ctx->isFunctionOrMethod())
1571 return;
1572
1573 using ContextsTy = SmallVector<const DeclContext *, 8>;
1574 ContextsTy Contexts;
1575
1576 // Collect named contexts.
1577 while (Ctx) {
1578 if (isa<NamedDecl>(Ctx))
1579 Contexts.push_back(Ctx);
1580 Ctx = Ctx->getParent();
1581 }
1582
1583 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1584 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1585 OS << Spec->getName();
1586 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1587 printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1588 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1589 if (P.SuppressUnwrittenScope &&
1590 (ND->isAnonymousNamespace() || ND->isInline()))
1591 continue;
1592 if (ND->isAnonymousNamespace()) {
1593 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1594 : "(anonymous namespace)");
1595 }
1596 else
1597 OS << *ND;
1598 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1599 if (!RD->getIdentifier())
1600 OS << "(anonymous " << RD->getKindName() << ')';
1601 else
1602 OS << *RD;
1603 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1604 const FunctionProtoType *FT = nullptr;
1605 if (FD->hasWrittenPrototype())
1606 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1607
1608 OS << *FD << '(';
1609 if (FT) {
1610 unsigned NumParams = FD->getNumParams();
1611 for (unsigned i = 0; i < NumParams; ++i) {
1612 if (i)
1613 OS << ", ";
1614 OS << FD->getParamDecl(i)->getType().stream(P);
1615 }
1616
1617 if (FT->isVariadic()) {
1618 if (NumParams > 0)
1619 OS << ", ";
1620 OS << "...";
1621 }
1622 }
1623 OS << ')';
1624 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1625 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1626 // enumerator is declared in the scope that immediately contains
1627 // the enum-specifier. Each scoped enumerator is declared in the
1628 // scope of the enumeration.
1629 // For the case of unscoped enumerator, do not include in the qualified
1630 // name any information about its enum enclosing scope, as its visibility
1631 // is global.
1632 if (ED->isScoped())
1633 OS << *ED;
1634 else
1635 continue;
1636 } else {
1637 OS << *cast<NamedDecl>(DC);
1638 }
1639 OS << "::";
1640 }
1641}
1642
1643void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1644 const PrintingPolicy &Policy,
1645 bool Qualified) const {
1646 if (Qualified)
1647 printQualifiedName(OS, Policy);
1648 else
1649 printName(OS);
1650}
1651
1652template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1653 return true;
1654}
1655static bool isRedeclarableImpl(...) { return false; }
1656static bool isRedeclarable(Decl::Kind K) {
1657 switch (K) {
1658#define DECL(Type, Base) \
1659 case Decl::Type: \
1660 return isRedeclarableImpl((Type##Decl *)nullptr);
1661#define ABSTRACT_DECL(DECL)
1662#include "clang/AST/DeclNodes.inc"
1663 }
1664 llvm_unreachable("unknown decl kind")::llvm::llvm_unreachable_internal("unknown decl kind", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1664)
;
1665}
1666
1667bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1668 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch")((getDeclName() == OldD->getDeclName() && "Declaration name mismatch"
) ? static_cast<void> (0) : __assert_fail ("getDeclName() == OldD->getDeclName() && \"Declaration name mismatch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1668, __PRETTY_FUNCTION__))
;
1669
1670 // Never replace one imported declaration with another; we need both results
1671 // when re-exporting.
1672 if (OldD->isFromASTFile() && isFromASTFile())
1673 return false;
1674
1675 // A kind mismatch implies that the declaration is not replaced.
1676 if (OldD->getKind() != getKind())
1677 return false;
1678
1679 // For method declarations, we never replace. (Why?)
1680 if (isa<ObjCMethodDecl>(this))
1681 return false;
1682
1683 // For parameters, pick the newer one. This is either an error or (in
1684 // Objective-C) permitted as an extension.
1685 if (isa<ParmVarDecl>(this))
1686 return true;
1687
1688 // Inline namespaces can give us two declarations with the same
1689 // name and kind in the same scope but different contexts; we should
1690 // keep both declarations in this case.
1691 if (!this->getDeclContext()->getRedeclContext()->Equals(
1692 OldD->getDeclContext()->getRedeclContext()))
1693 return false;
1694
1695 // Using declarations can be replaced if they import the same name from the
1696 // same context.
1697 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1698 ASTContext &Context = getASTContext();
1699 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1700 Context.getCanonicalNestedNameSpecifier(
1701 cast<UsingDecl>(OldD)->getQualifier());
1702 }
1703 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1704 ASTContext &Context = getASTContext();
1705 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1706 Context.getCanonicalNestedNameSpecifier(
1707 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1708 }
1709
1710 if (isRedeclarable(getKind())) {
1711 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1712 return false;
1713
1714 if (IsKnownNewer)
1715 return true;
1716
1717 // Check whether this is actually newer than OldD. We want to keep the
1718 // newer declaration. This loop will usually only iterate once, because
1719 // OldD is usually the previous declaration.
1720 for (auto D : redecls()) {
1721 if (D == OldD)
1722 break;
1723
1724 // If we reach the canonical declaration, then OldD is not actually older
1725 // than this one.
1726 //
1727 // FIXME: In this case, we should not add this decl to the lookup table.
1728 if (D->isCanonicalDecl())
1729 return false;
1730 }
1731
1732 // It's a newer declaration of the same kind of declaration in the same
1733 // scope: we want this decl instead of the existing one.
1734 return true;
1735 }
1736
1737 // In all other cases, we need to keep both declarations in case they have
1738 // different visibility. Any attempt to use the name will result in an
1739 // ambiguity if more than one is visible.
1740 return false;
1741}
1742
1743bool NamedDecl::hasLinkage() const {
1744 return getFormalLinkage() != NoLinkage;
1745}
1746
1747NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1748 NamedDecl *ND = this;
1749 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1750 ND = UD->getTargetDecl();
1751
1752 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1753 return AD->getClassInterface();
1754
1755 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1756 return AD->getNamespace();
1757
1758 return ND;
1759}
1760
1761bool NamedDecl::isCXXInstanceMember() const {
1762 if (!isCXXClassMember())
1763 return false;
1764
1765 const NamedDecl *D = this;
1766 if (isa<UsingShadowDecl>(D))
1767 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1768
1769 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1770 return true;
1771 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1772 return MD->isInstance();
1773 return false;
1774}
1775
1776//===----------------------------------------------------------------------===//
1777// DeclaratorDecl Implementation
1778//===----------------------------------------------------------------------===//
1779
1780template <typename DeclT>
1781static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1782 if (decl->getNumTemplateParameterLists() > 0)
1783 return decl->getTemplateParameterList(0)->getTemplateLoc();
1784 else
1785 return decl->getInnerLocStart();
1786}
1787
1788SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1789 TypeSourceInfo *TSI = getTypeSourceInfo();
1790 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1791 return SourceLocation();
1792}
1793
1794SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1795 TypeSourceInfo *TSI = getTypeSourceInfo();
1796 if (TSI) return TSI->getTypeLoc().getEndLoc();
1797 return SourceLocation();
1798}
1799
1800void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1801 if (QualifierLoc) {
1802 // Make sure the extended decl info is allocated.
1803 if (!hasExtInfo()) {
1804 // Save (non-extended) type source info pointer.
1805 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1806 // Allocate external info struct.
1807 DeclInfo = new (getASTContext()) ExtInfo;
1808 // Restore savedTInfo into (extended) decl info.
1809 getExtInfo()->TInfo = savedTInfo;
1810 }
1811 // Set qualifier info.
1812 getExtInfo()->QualifierLoc = QualifierLoc;
1813 } else if (hasExtInfo()) {
1814 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1815 getExtInfo()->QualifierLoc = QualifierLoc;
1816 }
1817}
1818
1819void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1820 assert(TrailingRequiresClause)((TrailingRequiresClause) ? static_cast<void> (0) : __assert_fail
("TrailingRequiresClause", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1820, __PRETTY_FUNCTION__))
;
1821 // Make sure the extended decl info is allocated.
1822 if (!hasExtInfo()) {
1823 // Save (non-extended) type source info pointer.
1824 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1825 // Allocate external info struct.
1826 DeclInfo = new (getASTContext()) ExtInfo;
1827 // Restore savedTInfo into (extended) decl info.
1828 getExtInfo()->TInfo = savedTInfo;
1829 }
1830 // Set requires clause info.
1831 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1832}
1833
1834void DeclaratorDecl::setTemplateParameterListsInfo(
1835 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1836 assert(!TPLists.empty())((!TPLists.empty()) ? static_cast<void> (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1836, __PRETTY_FUNCTION__))
;
1837 // Make sure the extended decl info is allocated.
1838 if (!hasExtInfo()) {
1839 // Save (non-extended) type source info pointer.
1840 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1841 // Allocate external info struct.
1842 DeclInfo = new (getASTContext()) ExtInfo;
1843 // Restore savedTInfo into (extended) decl info.
1844 getExtInfo()->TInfo = savedTInfo;
1845 }
1846 // Set the template parameter lists info.
1847 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1848}
1849
1850SourceLocation DeclaratorDecl::getOuterLocStart() const {
1851 return getTemplateOrInnerLocStart(this);
1852}
1853
1854// Helper function: returns true if QT is or contains a type
1855// having a postfix component.
1856static bool typeIsPostfix(QualType QT) {
1857 while (true) {
1858 const Type* T = QT.getTypePtr();
1859 switch (T->getTypeClass()) {
1860 default:
1861 return false;
1862 case Type::Pointer:
1863 QT = cast<PointerType>(T)->getPointeeType();
1864 break;
1865 case Type::BlockPointer:
1866 QT = cast<BlockPointerType>(T)->getPointeeType();
1867 break;
1868 case Type::MemberPointer:
1869 QT = cast<MemberPointerType>(T)->getPointeeType();
1870 break;
1871 case Type::LValueReference:
1872 case Type::RValueReference:
1873 QT = cast<ReferenceType>(T)->getPointeeType();
1874 break;
1875 case Type::PackExpansion:
1876 QT = cast<PackExpansionType>(T)->getPattern();
1877 break;
1878 case Type::Paren:
1879 case Type::ConstantArray:
1880 case Type::DependentSizedArray:
1881 case Type::IncompleteArray:
1882 case Type::VariableArray:
1883 case Type::FunctionProto:
1884 case Type::FunctionNoProto:
1885 return true;
1886 }
1887 }
1888}
1889
1890SourceRange DeclaratorDecl::getSourceRange() const {
1891 SourceLocation RangeEnd = getLocation();
1892 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1893 // If the declaration has no name or the type extends past the name take the
1894 // end location of the type.
1895 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1896 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1897 }
1898 return SourceRange(getOuterLocStart(), RangeEnd);
1899}
1900
1901void QualifierInfo::setTemplateParameterListsInfo(
1902 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1903 // Free previous template parameters (if any).
1904 if (NumTemplParamLists > 0) {
1905 Context.Deallocate(TemplParamLists);
1906 TemplParamLists = nullptr;
1907 NumTemplParamLists = 0;
1908 }
1909 // Set info on matched template parameter lists (if any).
1910 if (!TPLists.empty()) {
1911 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1912 NumTemplParamLists = TPLists.size();
1913 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1914 }
1915}
1916
1917//===----------------------------------------------------------------------===//
1918// VarDecl Implementation
1919//===----------------------------------------------------------------------===//
1920
1921const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1922 switch (SC) {
1923 case SC_None: break;
1924 case SC_Auto: return "auto";
1925 case SC_Extern: return "extern";
1926 case SC_PrivateExtern: return "__private_extern__";
1927 case SC_Register: return "register";
1928 case SC_Static: return "static";
1929 }
1930
1931 llvm_unreachable("Invalid storage class")::llvm::llvm_unreachable_internal("Invalid storage class", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1931)
;
1932}
1933
1934VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1935 SourceLocation StartLoc, SourceLocation IdLoc,
1936 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1937 StorageClass SC)
1938 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1939 redeclarable_base(C) {
1940 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1941 "VarDeclBitfields too large!");
1942 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1943 "ParmVarDeclBitfields too large!");
1944 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1945 "NonParmVarDeclBitfields too large!");
1946 AllBits = 0;
1947 VarDeclBits.SClass = SC;
1948 // Everything else is implicitly initialized to false.
1949}
1950
1951VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1952 SourceLocation StartL, SourceLocation IdL,
1953 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1954 StorageClass S) {
1955 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1956}
1957
1958VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1959 return new (C, ID)
1960 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1961 QualType(), nullptr, SC_None);
1962}
1963
1964void VarDecl::setStorageClass(StorageClass SC) {
1965 assert(isLegalForVariable(SC))((isLegalForVariable(SC)) ? static_cast<void> (0) : __assert_fail
("isLegalForVariable(SC)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1965, __PRETTY_FUNCTION__))
;
1966 VarDeclBits.SClass = SC;
1967}
1968
1969VarDecl::TLSKind VarDecl::getTLSKind() const {
1970 switch (VarDeclBits.TSCSpec) {
1971 case TSCS_unspecified:
1972 if (!hasAttr<ThreadAttr>() &&
1973 !(getASTContext().getLangOpts().OpenMPUseTLS &&
1974 getASTContext().getTargetInfo().isTLSSupported() &&
1975 hasAttr<OMPThreadPrivateDeclAttr>()))
1976 return TLS_None;
1977 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1978 LangOptions::MSVC2015)) ||
1979 hasAttr<OMPThreadPrivateDeclAttr>())
1980 ? TLS_Dynamic
1981 : TLS_Static;
1982 case TSCS___thread: // Fall through.
1983 case TSCS__Thread_local:
1984 return TLS_Static;
1985 case TSCS_thread_local:
1986 return TLS_Dynamic;
1987 }
1988 llvm_unreachable("Unknown thread storage class specifier!")::llvm::llvm_unreachable_internal("Unknown thread storage class specifier!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 1988)
;
1989}
1990
1991SourceRange VarDecl::getSourceRange() const {
1992 if (const Expr *Init = getInit()) {
1993 SourceLocation InitEnd = Init->getEndLoc();
1994 // If Init is implicit, ignore its source range and fallback on
1995 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1996 if (InitEnd.isValid() && InitEnd != getLocation())
1997 return SourceRange(getOuterLocStart(), InitEnd);
1998 }
1999 return DeclaratorDecl::getSourceRange();
2000}
2001
2002template<typename T>
2003static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2004 // C++ [dcl.link]p1: All function types, function names with external linkage,
2005 // and variable names with external linkage have a language linkage.
2006 if (!D.hasExternalFormalLinkage())
2007 return NoLanguageLinkage;
2008
2009 // Language linkage is a C++ concept, but saying that everything else in C has
2010 // C language linkage fits the implementation nicely.
2011 ASTContext &Context = D.getASTContext();
2012 if (!Context.getLangOpts().CPlusPlus)
2013 return CLanguageLinkage;
2014
2015 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2016 // language linkage of the names of class members and the function type of
2017 // class member functions.
2018 const DeclContext *DC = D.getDeclContext();
2019 if (DC->isRecord())
2020 return CXXLanguageLinkage;
2021
2022 // If the first decl is in an extern "C" context, any other redeclaration
2023 // will have C language linkage. If the first one is not in an extern "C"
2024 // context, we would have reported an error for any other decl being in one.
2025 if (isFirstInExternCContext(&D))
2026 return CLanguageLinkage;
2027 return CXXLanguageLinkage;
2028}
2029
2030template<typename T>
2031static bool isDeclExternC(const T &D) {
2032 // Since the context is ignored for class members, they can only have C++
2033 // language linkage or no language linkage.
2034 const DeclContext *DC = D.getDeclContext();
2035 if (DC->isRecord()) {
2036 assert(D.getASTContext().getLangOpts().CPlusPlus)((D.getASTContext().getLangOpts().CPlusPlus) ? static_cast<
void> (0) : __assert_fail ("D.getASTContext().getLangOpts().CPlusPlus"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2036, __PRETTY_FUNCTION__))
;
2037 return false;
2038 }
2039
2040 return D.getLanguageLinkage() == CLanguageLinkage;
2041}
2042
2043LanguageLinkage VarDecl::getLanguageLinkage() const {
2044 return getDeclLanguageLinkage(*this);
2045}
2046
2047bool VarDecl::isExternC() const {
2048 return isDeclExternC(*this);
2049}
2050
2051bool VarDecl::isInExternCContext() const {
2052 return getLexicalDeclContext()->isExternCContext();
2053}
2054
2055bool VarDecl::isInExternCXXContext() const {
2056 return getLexicalDeclContext()->isExternCXXContext();
2057}
2058
2059VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2060
2061VarDecl::DefinitionKind
2062VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2063 if (isThisDeclarationADemotedDefinition())
2064 return DeclarationOnly;
2065
2066 // C++ [basic.def]p2:
2067 // A declaration is a definition unless [...] it contains the 'extern'
2068 // specifier or a linkage-specification and neither an initializer [...],
2069 // it declares a non-inline static data member in a class declaration [...],
2070 // it declares a static data member outside a class definition and the variable
2071 // was defined within the class with the constexpr specifier [...],
2072 // C++1y [temp.expl.spec]p15:
2073 // An explicit specialization of a static data member or an explicit
2074 // specialization of a static data member template is a definition if the
2075 // declaration includes an initializer; otherwise, it is a declaration.
2076 //
2077 // FIXME: How do you declare (but not define) a partial specialization of
2078 // a static data member template outside the containing class?
2079 if (isStaticDataMember()) {
2080 if (isOutOfLine() &&
2081 !(getCanonicalDecl()->isInline() &&
2082 getCanonicalDecl()->isConstexpr()) &&
2083 (hasInit() ||
2084 // If the first declaration is out-of-line, this may be an
2085 // instantiation of an out-of-line partial specialization of a variable
2086 // template for which we have not yet instantiated the initializer.
2087 (getFirstDecl()->isOutOfLine()
2088 ? getTemplateSpecializationKind() == TSK_Undeclared
2089 : getTemplateSpecializationKind() !=
2090 TSK_ExplicitSpecialization) ||
2091 isa<VarTemplatePartialSpecializationDecl>(this)))
2092 return Definition;
2093 else if (!isOutOfLine() && isInline())
2094 return Definition;
2095 else
2096 return DeclarationOnly;
2097 }
2098 // C99 6.7p5:
2099 // A definition of an identifier is a declaration for that identifier that
2100 // [...] causes storage to be reserved for that object.
2101 // Note: that applies for all non-file-scope objects.
2102 // C99 6.9.2p1:
2103 // If the declaration of an identifier for an object has file scope and an
2104 // initializer, the declaration is an external definition for the identifier
2105 if (hasInit())
2106 return Definition;
2107
2108 if (hasDefiningAttr())
2109 return Definition;
2110
2111 if (const auto *SAA = getAttr<SelectAnyAttr>())
2112 if (!SAA->isInherited())
2113 return Definition;
2114
2115 // A variable template specialization (other than a static data member
2116 // template or an explicit specialization) is a declaration until we
2117 // instantiate its initializer.
2118 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2119 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2120 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2121 !VTSD->IsCompleteDefinition)
2122 return DeclarationOnly;
2123 }
2124
2125 if (hasExternalStorage())
2126 return DeclarationOnly;
2127
2128 // [dcl.link] p7:
2129 // A declaration directly contained in a linkage-specification is treated
2130 // as if it contains the extern specifier for the purpose of determining
2131 // the linkage of the declared name and whether it is a definition.
2132 if (isSingleLineLanguageLinkage(*this))
2133 return DeclarationOnly;
2134
2135 // C99 6.9.2p2:
2136 // A declaration of an object that has file scope without an initializer,
2137 // and without a storage class specifier or the scs 'static', constitutes
2138 // a tentative definition.
2139 // No such thing in C++.
2140 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2141 return TentativeDefinition;
2142
2143 // What's left is (in C, block-scope) declarations without initializers or
2144 // external storage. These are definitions.
2145 return Definition;
2146}
2147
2148VarDecl *VarDecl::getActingDefinition() {
2149 DefinitionKind Kind = isThisDeclarationADefinition();
2150 if (Kind != TentativeDefinition)
2151 return nullptr;
2152
2153 VarDecl *LastTentative = nullptr;
2154 VarDecl *First = getFirstDecl();
2155 for (auto I : First->redecls()) {
2156 Kind = I->isThisDeclarationADefinition();
2157 if (Kind == Definition)
2158 return nullptr;
2159 else if (Kind == TentativeDefinition)
2160 LastTentative = I;
2161 }
2162 return LastTentative;
2163}
2164
2165VarDecl *VarDecl::getDefinition(ASTContext &C) {
2166 VarDecl *First = getFirstDecl();
2167 for (auto I : First->redecls()) {
2168 if (I->isThisDeclarationADefinition(C) == Definition)
2169 return I;
2170 }
2171 return nullptr;
2172}
2173
2174VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2175 DefinitionKind Kind = DeclarationOnly;
2176
2177 const VarDecl *First = getFirstDecl();
2178 for (auto I : First->redecls()) {
2179 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2180 if (Kind == Definition)
2181 break;
2182 }
2183
2184 return Kind;
2185}
2186
2187const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2188 for (auto I : redecls()) {
2189 if (auto Expr = I->getInit()) {
2190 D = I;
2191 return Expr;
2192 }
2193 }
2194 return nullptr;
2195}
2196
2197bool VarDecl::hasInit() const {
2198 if (auto *P = dyn_cast<ParmVarDecl>(this))
2199 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2200 return false;
2201
2202 return !Init.isNull();
2203}
2204
2205Expr *VarDecl::getInit() {
2206 if (!hasInit())
2207 return nullptr;
2208
2209 if (auto *S = Init.dyn_cast<Stmt *>())
2210 return cast<Expr>(S);
2211
2212 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2213}
2214
2215Stmt **VarDecl::getInitAddress() {
2216 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2217 return &ES->Value;
2218
2219 return Init.getAddrOfPtr1();
2220}
2221
2222VarDecl *VarDecl::getInitializingDeclaration() {
2223 VarDecl *Def = nullptr;
2224 for (auto I : redecls()) {
2225 if (I->hasInit())
2226 return I;
2227
2228 if (I->isThisDeclarationADefinition()) {
2229 if (isStaticDataMember())
2230 return I;
2231 else
2232 Def = I;
2233 }
2234 }
2235 return Def;
2236}
2237
2238bool VarDecl::isOutOfLine() const {
2239 if (Decl::isOutOfLine())
2240 return true;
2241
2242 if (!isStaticDataMember())
2243 return false;
2244
2245 // If this static data member was instantiated from a static data member of
2246 // a class template, check whether that static data member was defined
2247 // out-of-line.
2248 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2249 return VD->isOutOfLine();
2250
2251 return false;
2252}
2253
2254void VarDecl::setInit(Expr *I) {
2255 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2256 Eval->~EvaluatedStmt();
2257 getASTContext().Deallocate(Eval);
2258 }
2259
2260 Init = I;
2261}
2262
2263bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2264 const LangOptions &Lang = C.getLangOpts();
2265
2266 if (!Lang.CPlusPlus)
2267 return false;
2268
2269 // Function parameters are never usable in constant expressions.
2270 if (isa<ParmVarDecl>(this))
2271 return false;
2272
2273 // In C++11, any variable of reference type can be used in a constant
2274 // expression if it is initialized by a constant expression.
2275 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2276 return true;
2277
2278 // Only const objects can be used in constant expressions in C++. C++98 does
2279 // not require the variable to be non-volatile, but we consider this to be a
2280 // defect.
2281 if (!getType().isConstQualified() || getType().isVolatileQualified())
2282 return false;
2283
2284 // In C++, const, non-volatile variables of integral or enumeration types
2285 // can be used in constant expressions.
2286 if (getType()->isIntegralOrEnumerationType())
2287 return true;
2288
2289 // Additionally, in C++11, non-volatile constexpr variables can be used in
2290 // constant expressions.
2291 return Lang.CPlusPlus11 && isConstexpr();
2292}
2293
2294bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2295 // C++2a [expr.const]p3:
2296 // A variable is usable in constant expressions after its initializing
2297 // declaration is encountered...
2298 const VarDecl *DefVD = nullptr;
2299 const Expr *Init = getAnyInitializer(DefVD);
2300 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2301 return false;
2302 // ... if it is a constexpr variable, or it is of reference type or of
2303 // const-qualified integral or enumeration type, ...
2304 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2305 return false;
2306 // ... and its initializer is a constant initializer.
2307 return DefVD->checkInitIsICE();
2308}
2309
2310/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2311/// form, which contains extra information on the evaluated value of the
2312/// initializer.
2313EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2314 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2315 if (!Eval) {
2316 // Note: EvaluatedStmt contains an APValue, which usually holds
2317 // resources not allocated from the ASTContext. We need to do some
2318 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2319 // where we can detect whether there's anything to clean up or not.
2320 Eval = new (getASTContext()) EvaluatedStmt;
2321 Eval->Value = Init.get<Stmt *>();
2322 Init = Eval;
2323 }
2324 return Eval;
2325}
2326
2327APValue *VarDecl::evaluateValue() const {
2328 SmallVector<PartialDiagnosticAt, 8> Notes;
2329 return evaluateValue(Notes);
2330}
2331
2332APValue *VarDecl::evaluateValue(
2333 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2334 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2335
2336 // We only produce notes indicating why an initializer is non-constant the
2337 // first time it is evaluated. FIXME: The notes won't always be emitted the
2338 // first time we try evaluation, so might not be produced at all.
2339 if (Eval->WasEvaluated)
2340 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2341
2342 const auto *Init = cast<Expr>(Eval->Value);
2343 assert(!Init->isValueDependent())((!Init->isValueDependent()) ? static_cast<void> (0)
: __assert_fail ("!Init->isValueDependent()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2343, __PRETTY_FUNCTION__))
;
2344
2345 if (Eval->IsEvaluating) {
2346 // FIXME: Produce a diagnostic for self-initialization.
2347 Eval->CheckedICE = true;
2348 Eval->IsICE = false;
2349 return nullptr;
2350 }
2351
2352 Eval->IsEvaluating = true;
2353
2354 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2355 this, Notes);
2356
2357 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2358 // or that it's empty (so that there's nothing to clean up) if evaluation
2359 // failed.
2360 if (!Result)
2361 Eval->Evaluated = APValue();
2362 else if (Eval->Evaluated.needsCleanup())
2363 getASTContext().addDestruction(&Eval->Evaluated);
2364
2365 Eval->IsEvaluating = false;
2366 Eval->WasEvaluated = true;
2367
2368 // In C++11, we have determined whether the initializer was a constant
2369 // expression as a side-effect.
2370 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2371 Eval->CheckedICE = true;
2372 Eval->IsICE = Result && Notes.empty();
2373 }
2374
2375 return Result ? &Eval->Evaluated : nullptr;
2376}
2377
2378APValue *VarDecl::getEvaluatedValue() const {
2379 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2380 if (Eval->WasEvaluated)
2381 return &Eval->Evaluated;
2382
2383 return nullptr;
2384}
2385
2386bool VarDecl::isInitKnownICE() const {
2387 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2388 return Eval->CheckedICE;
2389
2390 return false;
2391}
2392
2393bool VarDecl::isInitICE() const {
2394 assert(isInitKnownICE() &&((isInitKnownICE() && "Check whether we already know that the initializer is an ICE"
) ? static_cast<void> (0) : __assert_fail ("isInitKnownICE() && \"Check whether we already know that the initializer is an ICE\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2395, __PRETTY_FUNCTION__))
2395 "Check whether we already know that the initializer is an ICE")((isInitKnownICE() && "Check whether we already know that the initializer is an ICE"
) ? static_cast<void> (0) : __assert_fail ("isInitKnownICE() && \"Check whether we already know that the initializer is an ICE\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2395, __PRETTY_FUNCTION__))
;
2396 return Init.get<EvaluatedStmt *>()->IsICE;
2397}
2398
2399bool VarDecl::checkInitIsICE() const {
2400 // Initializers of weak variables are never ICEs.
2401 if (isWeak())
2402 return false;
2403
2404 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2405 if (Eval->CheckedICE)
2406 // We have already checked whether this subexpression is an
2407 // integral constant expression.
2408 return Eval->IsICE;
2409
2410 const auto *Init = cast<Expr>(Eval->Value);
2411 assert(!Init->isValueDependent())((!Init->isValueDependent()) ? static_cast<void> (0)
: __assert_fail ("!Init->isValueDependent()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2411, __PRETTY_FUNCTION__))
;
2412
2413 // In C++11, evaluate the initializer to check whether it's a constant
2414 // expression.
2415 if (getASTContext().getLangOpts().CPlusPlus11) {
2416 SmallVector<PartialDiagnosticAt, 8> Notes;
2417 evaluateValue(Notes);
2418 return Eval->IsICE;
2419 }
2420
2421 // It's an ICE whether or not the definition we found is
2422 // out-of-line. See DR 721 and the discussion in Clang PR
2423 // 6206 for details.
2424
2425 if (Eval->CheckingICE)
2426 return false;
2427 Eval->CheckingICE = true;
2428
2429 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2430 Eval->CheckingICE = false;
2431 Eval->CheckedICE = true;
2432 return Eval->IsICE;
2433}
2434
2435bool VarDecl::isParameterPack() const {
2436 return isa<PackExpansionType>(getType());
2437}
2438
2439template<typename DeclT>
2440static DeclT *getDefinitionOrSelf(DeclT *D) {
2441 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2441, __PRETTY_FUNCTION__))
;
2442 if (auto *Def = D->getDefinition())
2443 return Def;
2444 return D;
2445}
2446
2447bool VarDecl::isEscapingByref() const {
2448 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2449}
2450
2451bool VarDecl::isNonEscapingByref() const {
2452 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2453}
2454
2455VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2456 const VarDecl *VD = this;
2457
2458 // If this is an instantiated member, walk back to the template from which
2459 // it was instantiated.
2460 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2461 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2462 VD = VD->getInstantiatedFromStaticDataMember();
2463 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2464 VD = NewVD;
2465 }
2466 }
2467
2468 // If it's an instantiated variable template specialization, find the
2469 // template or partial specialization from which it was instantiated.
2470 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2471 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2472 auto From = VDTemplSpec->getInstantiatedFrom();
2473 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2474 while (!VTD->isMemberSpecialization()) {
2475 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2476 if (!NewVTD)
2477 break;
2478 VTD = NewVTD;
2479 }
2480 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2481 }
2482 if (auto *VTPSD =
2483 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2484 while (!VTPSD->isMemberSpecialization()) {
2485 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2486 if (!NewVTPSD)
2487 break;
2488 VTPSD = NewVTPSD;
2489 }
2490 return getDefinitionOrSelf<VarDecl>(VTPSD);
2491 }
2492 }
2493 }
2494
2495 // If this is the pattern of a variable template, find where it was
2496 // instantiated from. FIXME: Is this necessary?
2497 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2498 while (!VarTemplate->isMemberSpecialization()) {
2499 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2500 if (!NewVT)
2501 break;
2502 VarTemplate = NewVT;
2503 }
2504
2505 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2506 }
2507
2508 if (VD == this)
2509 return nullptr;
2510 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2511}
2512
2513VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2514 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2515 return cast<VarDecl>(MSI->getInstantiatedFrom());
2516
2517 return nullptr;
2518}
2519
2520TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2521 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2522 return Spec->getSpecializationKind();
2523
2524 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2525 return MSI->getTemplateSpecializationKind();
2526
2527 return TSK_Undeclared;
2528}
2529
2530TemplateSpecializationKind
2531VarDecl::getTemplateSpecializationKindForInstantiation() const {
2532 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2533 return MSI->getTemplateSpecializationKind();
2534
2535 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2536 return Spec->getSpecializationKind();
2537
2538 return TSK_Undeclared;
2539}
2540
2541SourceLocation VarDecl::getPointOfInstantiation() const {
2542 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2543 return Spec->getPointOfInstantiation();
2544
2545 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2546 return MSI->getPointOfInstantiation();
2547
2548 return SourceLocation();
2549}
2550
2551VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2552 return getASTContext().getTemplateOrSpecializationInfo(this)
2553 .dyn_cast<VarTemplateDecl *>();
2554}
2555
2556void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2557 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2558}
2559
2560bool VarDecl::isKnownToBeDefined() const {
2561 const auto &LangOpts = getASTContext().getLangOpts();
2562 // In CUDA mode without relocatable device code, variables of form 'extern
2563 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2564 // memory pool. These are never undefined variables, even if they appear
2565 // inside of an anon namespace or static function.
2566 //
2567 // With CUDA relocatable device code enabled, these variables don't get
2568 // special handling; they're treated like regular extern variables.
2569 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2570 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2571 isa<IncompleteArrayType>(getType()))
2572 return true;
2573
2574 return hasDefinition();
2575}
2576
2577bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2578 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2579 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2580 !hasAttr<AlwaysDestroyAttr>()));
2581}
2582
2583QualType::DestructionKind
2584VarDecl::needsDestruction(const ASTContext &Ctx) const {
2585 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2586 if (Eval->HasConstantDestruction)
2587 return QualType::DK_none;
2588
2589 if (isNoDestroy(Ctx))
2590 return QualType::DK_none;
2591
2592 return getType().isDestructedType();
2593}
2594
2595MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2596 if (isStaticDataMember())
2597 // FIXME: Remove ?
2598 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2599 return getASTContext().getTemplateOrSpecializationInfo(this)
2600 .dyn_cast<MemberSpecializationInfo *>();
2601 return nullptr;
2602}
2603
2604void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2605 SourceLocation PointOfInstantiation) {
2606 assert((isa<VarTemplateSpecializationDecl>(this) ||(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2608, __PRETTY_FUNCTION__))
2607 getMemberSpecializationInfo()) &&(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2608, __PRETTY_FUNCTION__))
2608 "not a variable or static data member template specialization")(((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo
()) && "not a variable or static data member template specialization"
) ? static_cast<void> (0) : __assert_fail ("(isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && \"not a variable or static data member template specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2608, __PRETTY_FUNCTION__))
;
2609
2610 if (VarTemplateSpecializationDecl *Spec =
2611 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2612 Spec->setSpecializationKind(TSK);
2613 if (TSK != TSK_ExplicitSpecialization &&
2614 PointOfInstantiation.isValid() &&
2615 Spec->getPointOfInstantiation().isInvalid()) {
2616 Spec->setPointOfInstantiation(PointOfInstantiation);
2617 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2618 L->InstantiationRequested(this);
2619 }
2620 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2621 MSI->setTemplateSpecializationKind(TSK);
2622 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2623 MSI->getPointOfInstantiation().isInvalid()) {
2624 MSI->setPointOfInstantiation(PointOfInstantiation);
2625 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2626 L->InstantiationRequested(this);
2627 }
2628 }
2629}
2630
2631void
2632VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2633 TemplateSpecializationKind TSK) {
2634 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&((getASTContext().getTemplateOrSpecializationInfo(this).isNull
() && "Previous template or instantiation?") ? static_cast
<void> (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2635, __PRETTY_FUNCTION__))
2635 "Previous template or instantiation?")((getASTContext().getTemplateOrSpecializationInfo(this).isNull
() && "Previous template or instantiation?") ? static_cast
<void> (0) : __assert_fail ("getASTContext().getTemplateOrSpecializationInfo(this).isNull() && \"Previous template or instantiation?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2635, __PRETTY_FUNCTION__))
;
2636 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2637}
2638
2639//===----------------------------------------------------------------------===//
2640// ParmVarDecl Implementation
2641//===----------------------------------------------------------------------===//
2642
2643ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2644 SourceLocation StartLoc,
2645 SourceLocation IdLoc, IdentifierInfo *Id,
2646 QualType T, TypeSourceInfo *TInfo,
2647 StorageClass S, Expr *DefArg) {
2648 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2649 S, DefArg);
2650}
2651
2652QualType ParmVarDecl::getOriginalType() const {
2653 TypeSourceInfo *TSI = getTypeSourceInfo();
2654 QualType T = TSI ? TSI->getType() : getType();
2655 if (const auto *DT = dyn_cast<DecayedType>(T))
2656 return DT->getOriginalType();
2657 return T;
2658}
2659
2660ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2661 return new (C, ID)
2662 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2663 nullptr, QualType(), nullptr, SC_None, nullptr);
2664}
2665
2666SourceRange ParmVarDecl::getSourceRange() const {
2667 if (!hasInheritedDefaultArg()) {
2668 SourceRange ArgRange = getDefaultArgRange();
2669 if (ArgRange.isValid())
2670 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2671 }
2672
2673 // DeclaratorDecl considers the range of postfix types as overlapping with the
2674 // declaration name, but this is not the case with parameters in ObjC methods.
2675 if (isa<ObjCMethodDecl>(getDeclContext()))
2676 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2677
2678 return DeclaratorDecl::getSourceRange();
2679}
2680
2681Expr *ParmVarDecl::getDefaultArg() {
2682 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!")((!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"
) ? static_cast<void> (0) : __assert_fail ("!hasUnparsedDefaultArg() && \"Default argument is not yet parsed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2682, __PRETTY_FUNCTION__))
;
2683 assert(!hasUninstantiatedDefaultArg() &&((!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"
) ? static_cast<void> (0) : __assert_fail ("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2684, __PRETTY_FUNCTION__))
2684 "Default argument is not yet instantiated!")((!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"
) ? static_cast<void> (0) : __assert_fail ("!hasUninstantiatedDefaultArg() && \"Default argument is not yet instantiated!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2684, __PRETTY_FUNCTION__))
;
2685
2686 Expr *Arg = getInit();
2687 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2688 return E->getSubExpr();
2689
2690 return Arg;
2691}
2692
2693void ParmVarDecl::setDefaultArg(Expr *defarg) {
2694 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2695 Init = defarg;
2696}
2697
2698SourceRange ParmVarDecl::getDefaultArgRange() const {
2699 switch (ParmVarDeclBits.DefaultArgKind) {
2700 case DAK_None:
2701 case DAK_Unparsed:
2702 // Nothing we can do here.
2703 return SourceRange();
2704
2705 case DAK_Uninstantiated:
2706 return getUninstantiatedDefaultArg()->getSourceRange();
2707
2708 case DAK_Normal:
2709 if (const Expr *E = getInit())
2710 return E->getSourceRange();
2711
2712 // Missing an actual expression, may be invalid.
2713 return SourceRange();
2714 }
2715 llvm_unreachable("Invalid default argument kind.")::llvm::llvm_unreachable_internal("Invalid default argument kind."
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2715)
;
2716}
2717
2718void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2719 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2720 Init = arg;
2721}
2722
2723Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2724 assert(hasUninstantiatedDefaultArg() &&((hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"
) ? static_cast<void> (0) : __assert_fail ("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2725, __PRETTY_FUNCTION__))
2725 "Wrong kind of initialization expression!")((hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"
) ? static_cast<void> (0) : __assert_fail ("hasUninstantiatedDefaultArg() && \"Wrong kind of initialization expression!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2725, __PRETTY_FUNCTION__))
;
2726 return cast_or_null<Expr>(Init.get<Stmt *>());
2727}
2728
2729bool ParmVarDecl::hasDefaultArg() const {
2730 // FIXME: We should just return false for DAK_None here once callers are
2731 // prepared for the case that we encountered an invalid default argument and
2732 // were unable to even build an invalid expression.
2733 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2734 !Init.isNull();
2735}
2736
2737void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2738 getASTContext().setParameterIndex(this, parameterIndex);
2739 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2740}
2741
2742unsigned ParmVarDecl::getParameterIndexLarge() const {
2743 return getASTContext().getParameterIndex(this);
2744}
2745
2746//===----------------------------------------------------------------------===//
2747// FunctionDecl Implementation
2748//===----------------------------------------------------------------------===//
2749
2750FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2751 SourceLocation StartLoc,
2752 const DeclarationNameInfo &NameInfo, QualType T,
2753 TypeSourceInfo *TInfo, StorageClass S,
2754 bool isInlineSpecified,
2755 ConstexprSpecKind ConstexprKind,
2756 Expr *TrailingRequiresClause)
2757 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2758 StartLoc),
2759 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2760 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2761 assert(T.isNull() || T->isFunctionType())((T.isNull() || T->isFunctionType()) ? static_cast<void
> (0) : __assert_fail ("T.isNull() || T->isFunctionType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2761, __PRETTY_FUNCTION__))
;
2762 FunctionDeclBits.SClass = S;
2763 FunctionDeclBits.IsInline = isInlineSpecified;
2764 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2765 FunctionDeclBits.IsVirtualAsWritten = false;
2766 FunctionDeclBits.IsPure = false;
2767 FunctionDeclBits.HasInheritedPrototype = false;
2768 FunctionDeclBits.HasWrittenPrototype = true;
2769 FunctionDeclBits.IsDeleted = false;
2770 FunctionDeclBits.IsTrivial = false;
2771 FunctionDeclBits.IsTrivialForCall = false;
2772 FunctionDeclBits.IsDefaulted = false;
2773 FunctionDeclBits.IsExplicitlyDefaulted = false;
2774 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2775 FunctionDeclBits.HasImplicitReturnZero = false;
2776 FunctionDeclBits.IsLateTemplateParsed = false;
2777 FunctionDeclBits.ConstexprKind = ConstexprKind;
2778 FunctionDeclBits.InstantiationIsPending = false;
2779 FunctionDeclBits.UsesSEHTry = false;
2780 FunctionDeclBits.UsesFPIntrin = false;
2781 FunctionDeclBits.HasSkippedBody = false;
2782 FunctionDeclBits.WillHaveBody = false;
2783 FunctionDeclBits.IsMultiVersion = false;
2784 FunctionDeclBits.IsCopyDeductionCandidate = false;
2785 FunctionDeclBits.HasODRHash = false;
2786 if (TrailingRequiresClause)
2787 setTrailingRequiresClause(TrailingRequiresClause);
2788}
2789
2790void FunctionDecl::getNameForDiagnostic(
2791 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2792 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2793 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2794 if (TemplateArgs)
2795 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2796}
2797
2798bool FunctionDecl::isVariadic() const {
2799 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2800 return FT->isVariadic();
2801 return false;
2802}
2803
2804FunctionDecl::DefaultedFunctionInfo *
2805FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2806 ArrayRef<DeclAccessPair> Lookups) {
2807 DefaultedFunctionInfo *Info = new (Context.Allocate(
2808 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2809 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2810 DefaultedFunctionInfo;
2811 Info->NumLookups = Lookups.size();
2812 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2813 Info->getTrailingObjects<DeclAccessPair>());
2814 return Info;
2815}
2816
2817void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2818 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this")((!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"
) ? static_cast<void> (0) : __assert_fail ("!FunctionDeclBits.HasDefaultedFunctionInfo && \"already have this\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2818, __PRETTY_FUNCTION__))
;
2819 assert(!Body && "can't replace function body with defaulted function info")((!Body && "can't replace function body with defaulted function info"
) ? static_cast<void> (0) : __assert_fail ("!Body && \"can't replace function body with defaulted function info\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2819, __PRETTY_FUNCTION__))
;
2820
2821 FunctionDeclBits.HasDefaultedFunctionInfo = true;
2822 DefaultedInfo = Info;
2823}
2824
2825FunctionDecl::DefaultedFunctionInfo *
2826FunctionDecl::getDefaultedFunctionInfo() const {
2827 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2828}
2829
2830bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2831 for (auto I : redecls()) {
2832 if (I->doesThisDeclarationHaveABody()) {
2833 Definition = I;
2834 return true;
2835 }
2836 }
2837
2838 return false;
2839}
2840
2841bool FunctionDecl::hasTrivialBody() const {
2842 Stmt *S = getBody();
2843 if (!S) {
2844 // Since we don't have a body for this function, we don't know if it's
2845 // trivial or not.
2846 return false;
2847 }
2848
2849 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2850 return true;
2851 return false;
2852}
2853
2854bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2855 for (auto I : redecls()) {
2856 if (I->isThisDeclarationADefinition()) {
2857 Definition = I;
2858 return true;
2859 }
2860 }
2861
2862 return false;
2863}
2864
2865Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2866 if (!hasBody(Definition))
2867 return nullptr;
2868
2869 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&((!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
"definition should not have a body") ? static_cast<void>
(0) : __assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2870, __PRETTY_FUNCTION__))
2870 "definition should not have a body")((!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
"definition should not have a body") ? static_cast<void>
(0) : __assert_fail ("!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && \"definition should not have a body\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2870, __PRETTY_FUNCTION__))
;
2871 if (Definition->Body)
2872 return Definition->Body.get(getASTContext().getExternalSource());
2873
2874 return nullptr;
2875}
2876
2877void FunctionDecl::setBody(Stmt *B) {
2878 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2879 Body = LazyDeclStmtPtr(B);
2880 if (B)
2881 EndRangeLoc = B->getEndLoc();
2882}
2883
2884void FunctionDecl::setPure(bool P) {
2885 FunctionDeclBits.IsPure = P;
2886 if (P)
2887 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2888 Parent->markedVirtualFunctionPure();
2889}
2890
2891template<std::size_t Len>
2892static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2893 IdentifierInfo *II = ND->getIdentifier();
2894 return II && II->isStr(Str);
2895}
2896
2897bool FunctionDecl::isMain() const {
2898 const TranslationUnitDecl *tunit =
2899 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2900 return tunit &&
2901 !tunit->getASTContext().getLangOpts().Freestanding &&
2902 isNamed(this, "main");
2903}
2904
2905bool FunctionDecl::isMSVCRTEntryPoint() const {
2906 const TranslationUnitDecl *TUnit =
2907 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2908 if (!TUnit)
2909 return false;
2910
2911 // Even though we aren't really targeting MSVCRT if we are freestanding,
2912 // semantic analysis for these functions remains the same.
2913
2914 // MSVCRT entry points only exist on MSVCRT targets.
2915 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2916 return false;
2917
2918 // Nameless functions like constructors cannot be entry points.
2919 if (!getIdentifier())
2920 return false;
2921
2922 return llvm::StringSwitch<bool>(getName())
2923 .Cases("main", // an ANSI console app
2924 "wmain", // a Unicode console App
2925 "WinMain", // an ANSI GUI app
2926 "wWinMain", // a Unicode GUI app
2927 "DllMain", // a DLL
2928 true)
2929 .Default(false);
2930}
2931
2932bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2933 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName)((getDeclName().getNameKind() == DeclarationName::CXXOperatorName
) ? static_cast<void> (0) : __assert_fail ("getDeclName().getNameKind() == DeclarationName::CXXOperatorName"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2933, __PRETTY_FUNCTION__))
;
2934 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2937, __PRETTY_FUNCTION__))
2935 getDeclName().getCXXOverloadedOperator() == OO_Delete ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2937, __PRETTY_FUNCTION__))
2936 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2937, __PRETTY_FUNCTION__))
2937 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)((getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName
().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator
() == OO_Array_New || getDeclName().getCXXOverloadedOperator(
) == OO_Array_Delete) ? static_cast<void> (0) : __assert_fail
("getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 2937, __PRETTY_FUNCTION__))
;
2938
2939 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2940 return false;
2941
2942 const auto *proto = getType()->castAs<FunctionProtoType>();
2943 if (proto->getNumParams() != 2 || proto->isVariadic())
2944 return false;
2945
2946 ASTContext &Context =
2947 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2948 ->getASTContext();
2949
2950 // The result type and first argument type are constant across all
2951 // these operators. The second argument must be exactly void*.
2952 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2953}
2954
2955bool FunctionDecl::isReplaceableGlobalAllocationFunction(
2956 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
2957 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2958 return false;
2959 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2960 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2961 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2962 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2963 return false;
2964
2965 if (isa<CXXRecordDecl>(getDeclContext()))
2966 return false;
2967
2968 // This can only fail for an invalid 'operator new' declaration.
2969 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2970 return false;
2971
2972 const auto *FPT = getType()->castAs<FunctionProtoType>();
2973 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2974 return false;
2975
2976 // If this is a single-parameter function, it must be a replaceable global
2977 // allocation or deallocation function.
2978 if (FPT->getNumParams() == 1)
2979 return true;
2980
2981 unsigned Params = 1;
2982 QualType Ty = FPT->getParamType(Params);
2983 ASTContext &Ctx = getASTContext();
2984
2985 auto Consume = [&] {
2986 ++Params;
2987 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2988 };
2989
2990 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2991 bool IsSizedDelete = false;
2992 if (Ctx.getLangOpts().SizedDeallocation &&
2993 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2994 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2995 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2996 IsSizedDelete = true;
2997 Consume();
2998 }
2999
3000 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3001 // new/delete.
3002 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3003 Consume();
3004 if (AlignmentParam)
3005 *AlignmentParam = Params;
3006 }
3007
3008 // Finally, if this is not a sized delete, the final parameter can
3009 // be a 'const std::nothrow_t&'.
3010 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3011 Ty = Ty->getPointeeType();
3012 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3013 return false;
3014 if (Ty->isNothrowT()) {
3015 if (IsNothrow)
3016 *IsNothrow = true;
3017 Consume();
3018 }
3019 }
3020
3021 return Params == FPT->getNumParams();
3022}
3023
3024bool FunctionDecl::isInlineBuiltinDeclaration() const {
3025 if (!getBuiltinID())
3026 return false;
3027
3028 const FunctionDecl *Definition;
3029 return hasBody(Definition) && Definition->isInlineSpecified();
3030}
3031
3032bool FunctionDecl::isDestroyingOperatorDelete() const {
3033 // C++ P0722:
3034 // Within a class C, a single object deallocation function with signature
3035 // (T, std::destroying_delete_t, <more params>)
3036 // is a destroying operator delete.
3037 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3038 getNumParams() < 2)
3039 return false;
3040
3041 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3042 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3043 RD->getIdentifier()->isStr("destroying_delete_t");
3044}
3045
3046LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3047 return getDeclLanguageLinkage(*this);
3048}
3049
3050bool FunctionDecl::isExternC() const {
3051 return isDeclExternC(*this);
3052}
3053
3054bool FunctionDecl::isInExternCContext() const {
3055 if (hasAttr<OpenCLKernelAttr>())
3056 return true;
3057 return getLexicalDeclContext()->isExternCContext();
3058}
3059
3060bool FunctionDecl::isInExternCXXContext() const {
3061 return getLexicalDeclContext()->isExternCXXContext();
3062}
3063
3064bool FunctionDecl::isGlobal() const {
3065 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3066 return Method->isStatic();
3067
3068 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3069 return false;
3070
3071 for (const DeclContext *DC = getDeclContext();
3072 DC->isNamespace();
3073 DC = DC->getParent()) {
3074 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3075 if (!Namespace->getDeclName())
3076 return false;
3077 break;
3078 }
3079 }
3080
3081 return true;
3082}
3083
3084bool FunctionDecl::isNoReturn() const {
3085 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3086 hasAttr<C11NoReturnAttr>())
3087 return true;
3088
3089 if (auto *FnTy = getType()->getAs<FunctionType>())
3090 return FnTy->getNoReturnAttr();
3091
3092 return false;
3093}
3094
3095
3096MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3097 if (hasAttr<TargetAttr>())
3098 return MultiVersionKind::Target;
3099 if (hasAttr<CPUDispatchAttr>())
3100 return MultiVersionKind::CPUDispatch;
3101 if (hasAttr<CPUSpecificAttr>())
3102 return MultiVersionKind::CPUSpecific;
3103 return MultiVersionKind::None;
3104}
3105
3106bool FunctionDecl::isCPUDispatchMultiVersion() const {
3107 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3108}
3109
3110bool FunctionDecl::isCPUSpecificMultiVersion() const {
3111 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3112}
3113
3114bool FunctionDecl::isTargetMultiVersion() const {
3115 return isMultiVersion() && hasAttr<TargetAttr>();
3116}
3117
3118void
3119FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3120 redeclarable_base::setPreviousDecl(PrevDecl);
3121
3122 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3123 FunctionTemplateDecl *PrevFunTmpl
3124 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3125 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch")(((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"
) ? static_cast<void> (0) : __assert_fail ("(!PrevDecl || PrevFunTmpl) && \"Function/function template mismatch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3125, __PRETTY_FUNCTION__))
;
3126 FunTmpl->setPreviousDecl(PrevFunTmpl);
3127 }
3128
3129 if (PrevDecl && PrevDecl->isInlined())
3130 setImplicitlyInline(true);
3131}
3132
3133FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3134
3135/// Returns a value indicating whether this function corresponds to a builtin
3136/// function.
3137///
3138/// The function corresponds to a built-in function if it is declared at
3139/// translation scope or within an extern "C" block and its name matches with
3140/// the name of a builtin. The returned value will be 0 for functions that do
3141/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3142/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3143/// value.
3144///
3145/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3146/// functions as their wrapped builtins. This shouldn't be done in general, but
3147/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3148unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3149 unsigned BuiltinID;
3150
3151 if (const auto *AMAA = getAttr<ArmMveAliasAttr>()) {
3152 BuiltinID = AMAA->getBuiltinName()->getBuiltinID();
3153 } else {
3154 if (!getIdentifier())
3155 return 0;
3156
3157 BuiltinID = getIdentifier()->getBuiltinID();
3158 }
3159
3160 if (!BuiltinID)
3161 return 0;
3162
3163 ASTContext &Context = getASTContext();
3164 if (Context.getLangOpts().CPlusPlus) {
3165 const auto *LinkageDecl =
3166 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
3167 // In C++, the first declaration of a builtin is always inside an implicit
3168 // extern "C".
3169 // FIXME: A recognised library function may not be directly in an extern "C"
3170 // declaration, for instance "extern "C" { namespace std { decl } }".
3171 if (!LinkageDecl) {
3172 if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3173 Context.getTargetInfo().getCXXABI().isMicrosoft())
3174 return Builtin::BI__GetExceptionInfo;
3175 return 0;
3176 }
3177 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3178 return 0;
3179 }
3180
3181 // If the function is marked "overloadable", it has a different mangled name
3182 // and is not the C library function.
3183 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3184 !hasAttr<ArmMveAliasAttr>())
3185 return 0;
3186
3187 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3188 return BuiltinID;
3189
3190 // This function has the name of a known C library
3191 // function. Determine whether it actually refers to the C library
3192 // function or whether it just has the same name.
3193
3194 // If this is a static function, it's not a builtin.
3195 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3196 return 0;
3197
3198 // OpenCL v1.2 s6.9.f - The library functions defined in
3199 // the C99 standard headers are not available.
3200 if (Context.getLangOpts().OpenCL &&
3201 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3202 return 0;
3203
3204 // CUDA does not have device-side standard library. printf and malloc are the
3205 // only special cases that are supported by device-side runtime.
3206 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3207 !hasAttr<CUDAHostAttr>() &&
3208 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3209 return 0;
3210
3211 return BuiltinID;
3212}
3213
3214/// getNumParams - Return the number of parameters this function must have
3215/// based on its FunctionType. This is the length of the ParamInfo array
3216/// after it has been created.
3217unsigned FunctionDecl::getNumParams() const {
3218 const auto *FPT = getType()->getAs<FunctionProtoType>();
3219 return FPT ? FPT->getNumParams() : 0;
3220}
3221
3222void FunctionDecl::setParams(ASTContext &C,
3223 ArrayRef<ParmVarDecl *> NewParamInfo) {
3224 assert(!ParamInfo && "Already has param info!")((!ParamInfo && "Already has param info!") ? static_cast
<void> (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3224, __PRETTY_FUNCTION__))
;
3225 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!")((NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"
) ? static_cast<void> (0) : __assert_fail ("NewParamInfo.size() == getNumParams() && \"Parameter count mismatch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3225, __PRETTY_FUNCTION__))
;
3226
3227 // Zero params -> null pointer.
3228 if (!NewParamInfo.empty()) {
3229 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3230 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3231 }
3232}
3233
3234/// getMinRequiredArguments - Returns the minimum number of arguments
3235/// needed to call this function. This may be fewer than the number of
3236/// function parameters, if some of the parameters have default
3237/// arguments (in C++) or are parameter packs (C++11).
3238unsigned FunctionDecl::getMinRequiredArguments() const {
3239 if (!getASTContext().getLangOpts().CPlusPlus)
3240 return getNumParams();
3241
3242 unsigned NumRequiredArgs = 0;
3243 for (auto *Param : parameters())
3244 if (!Param->isParameterPack() && !Param->hasDefaultArg())
3245 ++NumRequiredArgs;
3246 return NumRequiredArgs;
3247}
3248
3249/// The combination of the extern and inline keywords under MSVC forces
3250/// the function to be required.
3251///
3252/// Note: This function assumes that we will only get called when isInlined()
3253/// would return true for this FunctionDecl.
3254bool FunctionDecl::isMSExternInline() const {
3255 assert(isInlined() && "expected to get called on an inlined function!")((isInlined() && "expected to get called on an inlined function!"
) ? static_cast<void> (0) : __assert_fail ("isInlined() && \"expected to get called on an inlined function!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3255, __PRETTY_FUNCTION__))
;
3256
3257 const ASTContext &Context = getASTContext();
3258 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3259 !hasAttr<DLLExportAttr>())
3260 return false;
3261
3262 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3263 FD = FD->getPreviousDecl())
3264 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3265 return true;
3266
3267 return false;
3268}
3269
3270static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3271 if (Redecl->getStorageClass() != SC_Extern)
3272 return false;
3273
3274 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3275 FD = FD->getPreviousDecl())
3276 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3277 return false;
3278
3279 return true;
3280}
3281
3282static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3283 // Only consider file-scope declarations in this test.
3284 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3285 return false;
3286
3287 // Only consider explicit declarations; the presence of a builtin for a
3288 // libcall shouldn't affect whether a definition is externally visible.
3289 if (Redecl->isImplicit())
3290 return false;
3291
3292 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3293 return true; // Not an inline definition
3294
3295 return false;
3296}
3297
3298/// For a function declaration in C or C++, determine whether this
3299/// declaration causes the definition to be externally visible.
3300///
3301/// For instance, this determines if adding the current declaration to the set
3302/// of redeclarations of the given functions causes
3303/// isInlineDefinitionExternallyVisible to change from false to true.
3304bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3305 assert(!doesThisDeclarationHaveABody() &&((!doesThisDeclarationHaveABody() && "Must have a declaration without a body."
) ? static_cast<void> (0) : __assert_fail ("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3306, __PRETTY_FUNCTION__))
3306 "Must have a declaration without a body.")((!doesThisDeclarationHaveABody() && "Must have a declaration without a body."
) ? static_cast<void> (0) : __assert_fail ("!doesThisDeclarationHaveABody() && \"Must have a declaration without a body.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3306, __PRETTY_FUNCTION__))
;
3307
3308 ASTContext &Context = getASTContext();
3309
3310 if (Context.getLangOpts().MSVCCompat) {
3311 const FunctionDecl *Definition;
3312 if (hasBody(Definition) && Definition->isInlined() &&
3313 redeclForcesDefMSVC(this))
3314 return true;
3315 }
3316
3317 if (Context.getLangOpts().CPlusPlus)
3318 return false;
3319
3320 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3321 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3322 // an externally visible definition.
3323 //
3324 // FIXME: What happens if gnu_inline gets added on after the first
3325 // declaration?
3326 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3327 return false;
3328
3329 const FunctionDecl *Prev = this;
3330 bool FoundBody = false;
3331 while ((Prev = Prev->getPreviousDecl())) {
3332 FoundBody |= Prev->doesThisDeclarationHaveABody();
3333
3334 if (Prev->doesThisDeclarationHaveABody()) {
3335 // If it's not the case that both 'inline' and 'extern' are
3336 // specified on the definition, then it is always externally visible.
3337 if (!Prev->isInlineSpecified() ||
3338 Prev->getStorageClass() != SC_Extern)
3339 return false;
3340 } else if (Prev->isInlineSpecified() &&
3341 Prev->getStorageClass() != SC_Extern) {
3342 return false;
3343 }
3344 }
3345 return FoundBody;
3346 }
3347
3348 // C99 6.7.4p6:
3349 // [...] If all of the file scope declarations for a function in a
3350 // translation unit include the inline function specifier without extern,
3351 // then the definition in that translation unit is an inline definition.
3352 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3353 return false;
3354 const FunctionDecl *Prev = this;
3355 bool FoundBody = false;
3356 while ((Prev = Prev->getPreviousDecl())) {
3357 FoundBody |= Prev->doesThisDeclarationHaveABody();
3358 if (RedeclForcesDefC99(Prev))
3359 return false;
3360 }
3361 return FoundBody;
3362}
3363
3364FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3365 const TypeSourceInfo *TSI = getTypeSourceInfo();
3366 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3367 : FunctionTypeLoc();
3368}
3369
3370SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3371 FunctionTypeLoc FTL = getFunctionTypeLoc();
3372 if (!FTL)
3373 return SourceRange();
3374
3375 // Skip self-referential return types.
3376 const SourceManager &SM = getASTContext().getSourceManager();
3377 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3378 SourceLocation Boundary = getNameInfo().getBeginLoc();
3379 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3380 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3381 return SourceRange();
3382
3383 return RTRange;
3384}
3385
3386SourceRange FunctionDecl::getParametersSourceRange() const {
3387 unsigned NP = getNumParams();
3388 SourceLocation EllipsisLoc = getEllipsisLoc();
3389
3390 if (NP == 0 && EllipsisLoc.isInvalid())
3391 return SourceRange();
3392
3393 SourceLocation Begin =
3394 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3395 SourceLocation End = EllipsisLoc.isValid()
3396 ? EllipsisLoc
3397 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3398
3399 return SourceRange(Begin, End);
3400}
3401
3402SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3403 FunctionTypeLoc FTL = getFunctionTypeLoc();
3404 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3405}
3406
3407/// For an inline function definition in C, or for a gnu_inline function
3408/// in C++, determine whether the definition will be externally visible.
3409///
3410/// Inline function definitions are always available for inlining optimizations.
3411/// However, depending on the language dialect, declaration specifiers, and
3412/// attributes, the definition of an inline function may or may not be
3413/// "externally" visible to other translation units in the program.
3414///
3415/// In C99, inline definitions are not externally visible by default. However,
3416/// if even one of the global-scope declarations is marked "extern inline", the
3417/// inline definition becomes externally visible (C99 6.7.4p6).
3418///
3419/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3420/// definition, we use the GNU semantics for inline, which are nearly the
3421/// opposite of C99 semantics. In particular, "inline" by itself will create
3422/// an externally visible symbol, but "extern inline" will not create an
3423/// externally visible symbol.
3424bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3425 assert((doesThisDeclarationHaveABody() || willHaveBody() ||(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3427, __PRETTY_FUNCTION__))
3426 hasAttr<AliasAttr>()) &&(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3427, __PRETTY_FUNCTION__))
3427 "Must be a function definition")(((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr
<AliasAttr>()) && "Must be a function definition"
) ? static_cast<void> (0) : __assert_fail ("(doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && \"Must be a function definition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3427, __PRETTY_FUNCTION__))
;
3428 assert(isInlined() && "Function must be inline")((isInlined() && "Function must be inline") ? static_cast
<void> (0) : __assert_fail ("isInlined() && \"Function must be inline\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3428, __PRETTY_FUNCTION__))
;
3429 ASTContext &Context = getASTContext();
3430
3431 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3432 // Note: If you change the logic here, please change
3433 // doesDeclarationForceExternallyVisibleDefinition as well.
3434 //
3435 // If it's not the case that both 'inline' and 'extern' are
3436 // specified on the definition, then this inline definition is
3437 // externally visible.
3438 if (Context.getLangOpts().CPlusPlus)
3439 return false;
3440 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3441 return true;
3442
3443 // If any declaration is 'inline' but not 'extern', then this definition
3444 // is externally visible.
3445 for (auto Redecl : redecls()) {
3446 if (Redecl->isInlineSpecified() &&
3447 Redecl->getStorageClass() != SC_Extern)
3448 return true;
3449 }
3450
3451 return false;
3452 }
3453
3454 // The rest of this function is C-only.
3455 assert(!Context.getLangOpts().CPlusPlus &&((!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"
) ? static_cast<void> (0) : __assert_fail ("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3456, __PRETTY_FUNCTION__))
3456 "should not use C inline rules in C++")((!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"
) ? static_cast<void> (0) : __assert_fail ("!Context.getLangOpts().CPlusPlus && \"should not use C inline rules in C++\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3456, __PRETTY_FUNCTION__))
;
3457
3458 // C99 6.7.4p6:
3459 // [...] If all of the file scope declarations for a function in a
3460 // translation unit include the inline function specifier without extern,
3461 // then the definition in that translation unit is an inline definition.
3462 for (auto Redecl : redecls()) {
3463 if (RedeclForcesDefC99(Redecl))
3464 return true;
3465 }
3466
3467 // C99 6.7.4p6:
3468 // An inline definition does not provide an external definition for the
3469 // function, and does not forbid an external definition in another
3470 // translation unit.
3471 return false;
3472}
3473
3474/// getOverloadedOperator - Which C++ overloaded operator this
3475/// function represents, if any.
3476OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3477 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3478 return getDeclName().getCXXOverloadedOperator();
3479 else
3480 return OO_None;
3481}
3482
3483/// getLiteralIdentifier - The literal suffix identifier this function
3484/// represents, if any.
3485const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3486 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3487 return getDeclName().getCXXLiteralIdentifier();
3488 else
3489 return nullptr;
3490}
3491
3492FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3493 if (TemplateOrSpecialization.isNull())
3494 return TK_NonTemplate;
3495 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3496 return TK_FunctionTemplate;
3497 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3498 return TK_MemberSpecialization;
3499 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3500 return TK_FunctionTemplateSpecialization;
3501 if (TemplateOrSpecialization.is
3502 <DependentFunctionTemplateSpecializationInfo*>())
3503 return TK_DependentFunctionTemplateSpecialization;
3504
3505 llvm_unreachable("Did we miss a TemplateOrSpecialization type?")::llvm::llvm_unreachable_internal("Did we miss a TemplateOrSpecialization type?"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3505)
;
3506}
3507
3508FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3509 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3510 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3511
3512 return nullptr;
3513}
3514
3515MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3516 if (auto *MSI =
3517 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3518 return MSI;
3519 if (auto *FTSI = TemplateOrSpecialization
3520 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3521 return FTSI->getMemberSpecializationInfo();
3522 return nullptr;
3523}
3524
3525void
3526FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3527 FunctionDecl *FD,
3528 TemplateSpecializationKind TSK) {
3529 assert(TemplateOrSpecialization.isNull() &&((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3530, __PRETTY_FUNCTION__))
3530 "Member function is already a specialization")((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3530, __PRETTY_FUNCTION__))
;
3531 MemberSpecializationInfo *Info
3532 = new (C) MemberSpecializationInfo(FD, TSK);
3533 TemplateOrSpecialization = Info;
3534}
3535
3536FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3537 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3538}
3539
3540void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3541 assert(TemplateOrSpecialization.isNull() &&((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3542, __PRETTY_FUNCTION__))
3542 "Member function is already a specialization")((TemplateOrSpecialization.isNull() && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("TemplateOrSpecialization.isNull() && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3542, __PRETTY_FUNCTION__))
;
3543 TemplateOrSpecialization = Template;
3544}
3545
3546bool FunctionDecl::isImplicitlyInstantiable() const {
3547 // If the function is invalid, it can't be implicitly instantiated.
3548 if (isInvalidDecl())
3549 return false;
3550
3551 switch (getTemplateSpecializationKindForInstantiation()) {
3552 case TSK_Undeclared:
3553 case TSK_ExplicitInstantiationDefinition:
3554 case TSK_ExplicitSpecialization:
3555 return false;
3556
3557 case TSK_ImplicitInstantiation:
3558 return true;
3559
3560 case TSK_ExplicitInstantiationDeclaration:
3561 // Handled below.
3562 break;
3563 }
3564
3565 // Find the actual template from which we will instantiate.
3566 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3567 bool HasPattern = false;
3568 if (PatternDecl)
3569 HasPattern = PatternDecl->hasBody(PatternDecl);
3570
3571 // C++0x [temp.explicit]p9:
3572 // Except for inline functions, other explicit instantiation declarations
3573 // have the effect of suppressing the implicit instantiation of the entity
3574 // to which they refer.
3575 if (!HasPattern || !PatternDecl)
3576 return true;
3577
3578 return PatternDecl->isInlined();
3579}
3580
3581bool FunctionDecl::isTemplateInstantiation() const {
3582 // FIXME: Remove this, it's not clear what it means. (Which template
3583 // specialization kind?)
3584 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3585}
3586
3587FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3588 // If this is a generic lambda call operator specialization, its
3589 // instantiation pattern is always its primary template's pattern
3590 // even if its primary template was instantiated from another
3591 // member template (which happens with nested generic lambdas).
3592 // Since a lambda's call operator's body is transformed eagerly,
3593 // we don't have to go hunting for a prototype definition template
3594 // (i.e. instantiated-from-member-template) to use as an instantiation
3595 // pattern.
3596
3597 if (isGenericLambdaCallOperatorSpecialization(
3598 dyn_cast<CXXMethodDecl>(this))) {
3599 assert(getPrimaryTemplate() && "not a generic lambda call operator?")((getPrimaryTemplate() && "not a generic lambda call operator?"
) ? static_cast<void> (0) : __assert_fail ("getPrimaryTemplate() && \"not a generic lambda call operator?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3599, __PRETTY_FUNCTION__))
;
3600 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3601 }
3602
3603 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3604 if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3605 return nullptr;
3606 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3607 }
3608
3609 if (!clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3610 return nullptr;
3611
3612 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3613 // If we hit a point where the user provided a specialization of this
3614 // template, we're done looking.
3615 while (!Primary->isMemberSpecialization()) {
3616 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3617 if (!NewPrimary)
3618 break;
3619 Primary = NewPrimary;
3620 }
3621
3622 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3623 }
3624
3625 return nullptr;
3626}
3627
3628FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3629 if (FunctionTemplateSpecializationInfo *Info
3630 = TemplateOrSpecialization
3631 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3632 return Info->getTemplate();
3633 }
3634 return nullptr;
3635}
3636
3637FunctionTemplateSpecializationInfo *
3638FunctionDecl::getTemplateSpecializationInfo() const {
3639 return TemplateOrSpecialization
3640 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3641}
3642
3643const TemplateArgumentList *
3644FunctionDecl::getTemplateSpecializationArgs() const {
3645 if (FunctionTemplateSpecializationInfo *Info
3646 = TemplateOrSpecialization
3647 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3648 return Info->TemplateArguments;
3649 }
3650 return nullptr;
3651}
3652
3653const ASTTemplateArgumentListInfo *
3654FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3655 if (FunctionTemplateSpecializationInfo *Info
3656 = TemplateOrSpecialization
3657 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3658 return Info->TemplateArgumentsAsWritten;
3659 }
3660 return nullptr;
3661}
3662
3663void
3664FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3665 FunctionTemplateDecl *Template,
3666 const TemplateArgumentList *TemplateArgs,
3667 void *InsertPos,
3668 TemplateSpecializationKind TSK,
3669 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3670 SourceLocation PointOfInstantiation) {
3671 assert((TemplateOrSpecialization.isNull() ||(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3673, __PRETTY_FUNCTION__))
3672 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3673, __PRETTY_FUNCTION__))
3673 "Member function is already a specialization")(((TemplateOrSpecialization.isNull() || TemplateOrSpecialization
.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && \"Member function is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3673, __PRETTY_FUNCTION__))
;
3674 assert(TSK != TSK_Undeclared &&((TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3675, __PRETTY_FUNCTION__))
3675 "Must specify the type of function template specialization")((TSK != TSK_Undeclared && "Must specify the type of function template specialization"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_Undeclared && \"Must specify the type of function template specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3675, __PRETTY_FUNCTION__))
;
3676 assert((TemplateOrSpecialization.isNull() ||(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3678, __PRETTY_FUNCTION__))
3677 TSK == TSK_ExplicitSpecialization) &&(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3678, __PRETTY_FUNCTION__))
3678 "Member specialization must be an explicit specialization")(((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization
) && "Member specialization must be an explicit specialization"
) ? static_cast<void> (0) : __assert_fail ("(TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && \"Member specialization must be an explicit specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3678, __PRETTY_FUNCTION__))
;
3679 FunctionTemplateSpecializationInfo *Info =
3680 FunctionTemplateSpecializationInfo::Create(
3681 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3682 PointOfInstantiation,
3683 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3684 TemplateOrSpecialization = Info;
3685 Template->addSpecialization(Info, InsertPos);
3686}
3687
3688void
3689FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3690 const UnresolvedSetImpl &Templates,
3691 const TemplateArgumentListInfo &TemplateArgs) {
3692 assert(TemplateOrSpecialization.isNull())((TemplateOrSpecialization.isNull()) ? static_cast<void>
(0) : __assert_fail ("TemplateOrSpecialization.isNull()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3692, __PRETTY_FUNCTION__))
;
1
'?' condition is true
3693 DependentFunctionTemplateSpecializationInfo *Info =
3694 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
2
Calling 'DependentFunctionTemplateSpecializationInfo::Create'
3695 TemplateArgs);
3696 TemplateOrSpecialization = Info;
3697}
3698
3699DependentFunctionTemplateSpecializationInfo *
3700FunctionDecl::getDependentSpecializationInfo() const {
3701 return TemplateOrSpecialization
3702 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3703}
3704
3705DependentFunctionTemplateSpecializationInfo *
3706DependentFunctionTemplateSpecializationInfo::Create(
3707 ASTContext &Context, const UnresolvedSetImpl &Ts,
3708 const TemplateArgumentListInfo &TArgs) {
3709 void *Buffer = Context.Allocate(
3710 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3711 TArgs.size(), Ts.size()));
3712 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3
Calling constructor for 'DependentFunctionTemplateSpecializationInfo'
3713}
3714
3715DependentFunctionTemplateSpecializationInfo::
3716DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3717 const TemplateArgumentListInfo &TArgs)
3718 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3719 NumTemplates = Ts.size();
3720 NumArgs = TArgs.size();
3721
3722 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3723 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4
Assuming 'I' is equal to 'E'
5
Loop condition is false. Execution continues on line 3726
3724 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3725
3726 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
6
Calling 'TrailingObjects::getTrailingObjects'
15
Returning from 'TrailingObjects::getTrailingObjects'
16
'ArgsArray' initialized here
3727 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
17
Assuming 'I' is not equal to 'E'
18
Loop condition is true. Entering loop body
3728 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
19
Storage provided to placement new is only 0 bytes, whereas the allocated type requires 48 bytes
3729}
3730
3731TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3732 // For a function template specialization, query the specialization
3733 // information object.
3734 if (FunctionTemplateSpecializationInfo *FTSInfo =
3735 TemplateOrSpecialization
3736 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3737 return FTSInfo->getTemplateSpecializationKind();
3738
3739 if (MemberSpecializationInfo *MSInfo =
3740 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3741 return MSInfo->getTemplateSpecializationKind();
3742
3743 return TSK_Undeclared;
3744}
3745
3746TemplateSpecializationKind
3747FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3748 // This is the same as getTemplateSpecializationKind(), except that for a
3749 // function that is both a function template specialization and a member
3750 // specialization, we prefer the member specialization information. Eg:
3751 //
3752 // template<typename T> struct A {
3753 // template<typename U> void f() {}
3754 // template<> void f<int>() {}
3755 // };
3756 //
3757 // For A<int>::f<int>():
3758 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3759 // * getTemplateSpecializationKindForInstantiation() will return
3760 // TSK_ImplicitInstantiation
3761 //
3762 // This reflects the facts that A<int>::f<int> is an explicit specialization
3763 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3764 // from A::f<int> if a definition is needed.
3765 if (FunctionTemplateSpecializationInfo *FTSInfo =
3766 TemplateOrSpecialization
3767 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3768 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3769 return MSInfo->getTemplateSpecializationKind();
3770 return FTSInfo->getTemplateSpecializationKind();
3771 }
3772
3773 if (MemberSpecializationInfo *MSInfo =
3774 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3775 return MSInfo->getTemplateSpecializationKind();
3776
3777 return TSK_Undeclared;
3778}
3779
3780void
3781FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3782 SourceLocation PointOfInstantiation) {
3783 if (FunctionTemplateSpecializationInfo *FTSInfo
3784 = TemplateOrSpecialization.dyn_cast<
3785 FunctionTemplateSpecializationInfo*>()) {
3786 FTSInfo->setTemplateSpecializationKind(TSK);
3787 if (TSK != TSK_ExplicitSpecialization &&
3788 PointOfInstantiation.isValid() &&
3789 FTSInfo->getPointOfInstantiation().isInvalid()) {
3790 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3791 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3792 L->InstantiationRequested(this);
3793 }
3794 } else if (MemberSpecializationInfo *MSInfo
3795 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3796 MSInfo->setTemplateSpecializationKind(TSK);
3797 if (TSK != TSK_ExplicitSpecialization &&
3798 PointOfInstantiation.isValid() &&
3799 MSInfo->getPointOfInstantiation().isInvalid()) {
3800 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3801 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3802 L->InstantiationRequested(this);
3803 }
3804 } else
3805 llvm_unreachable("Function cannot have a template specialization kind")::llvm::llvm_unreachable_internal("Function cannot have a template specialization kind"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3805)
;
3806}
3807
3808SourceLocation FunctionDecl::getPointOfInstantiation() const {
3809 if (FunctionTemplateSpecializationInfo *FTSInfo
3810 = TemplateOrSpecialization.dyn_cast<
3811 FunctionTemplateSpecializationInfo*>())
3812 return FTSInfo->getPointOfInstantiation();
3813 else if (MemberSpecializationInfo *MSInfo
3814 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3815 return MSInfo->getPointOfInstantiation();
3816
3817 return SourceLocation();
3818}
3819
3820bool FunctionDecl::isOutOfLine() const {
3821 if (Decl::isOutOfLine())
3822 return true;
3823
3824 // If this function was instantiated from a member function of a
3825 // class template, check whether that member function was defined out-of-line.
3826 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3827 const FunctionDecl *Definition;
3828 if (FD->hasBody(Definition))
3829 return Definition->isOutOfLine();
3830 }
3831
3832 // If this function was instantiated from a function template,
3833 // check whether that function template was defined out-of-line.
3834 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3835 const FunctionDecl *Definition;
3836 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3837 return Definition->isOutOfLine();
3838 }
3839
3840 return false;
3841}
3842
3843SourceRange FunctionDecl::getSourceRange() const {
3844 return SourceRange(getOuterLocStart(), EndRangeLoc);
3845}
3846
3847unsigned FunctionDecl::getMemoryFunctionKind() const {
3848 IdentifierInfo *FnInfo = getIdentifier();
3849
3850 if (!FnInfo)
3851 return 0;
3852
3853 // Builtin handling.
3854 switch (getBuiltinID()) {
3855 case Builtin::BI__builtin_memset:
3856 case Builtin::BI__builtin___memset_chk:
3857 case Builtin::BImemset:
3858 return Builtin::BImemset;
3859
3860 case Builtin::BI__builtin_memcpy:
3861 case Builtin::BI__builtin___memcpy_chk:
3862 case Builtin::BImemcpy:
3863 return Builtin::BImemcpy;
3864
3865 case Builtin::BI__builtin_mempcpy:
3866 case Builtin::BI__builtin___mempcpy_chk:
3867 case Builtin::BImempcpy:
3868 return Builtin::BImempcpy;
3869
3870 case Builtin::BI__builtin_memmove:
3871 case Builtin::BI__builtin___memmove_chk:
3872 case Builtin::BImemmove:
3873 return Builtin::BImemmove;
3874
3875// case Builtin::BIstrlcpy:
3876// case Builtin::BI__builtin___strlcpy_chk:
3877// return Builtin::BIstrlcpy;
3878
3879// case Builtin::BIstrlcat:
3880// case Builtin::BI__builtin___strlcat_chk:
3881// return Builtin::BIstrlcat;
3882
3883 case Builtin::BI__builtin_memcmp:
3884 case Builtin::BImemcmp:
3885 return Builtin::BImemcmp;
3886
3887 case Builtin::BI__builtin_bcmp:
3888 case Builtin::BIbcmp:
3889 return Builtin::BIbcmp;
3890
3891 case Builtin::BI__builtin_strncpy:
3892 case Builtin::BI__builtin___strncpy_chk:
3893 case Builtin::BIstrncpy:
3894 return Builtin::BIstrncpy;
3895
3896 case Builtin::BI__builtin_strncmp:
3897 case Builtin::BIstrncmp:
3898 return Builtin::BIstrncmp;
3899
3900 case Builtin::BI__builtin_strncasecmp:
3901 case Builtin::BIstrncasecmp:
3902 return Builtin::BIstrncasecmp;
3903
3904 case Builtin::BI__builtin_strncat:
3905 case Builtin::BI__builtin___strncat_chk:
3906 case Builtin::BIstrncat:
3907 return Builtin::BIstrncat;
3908
3909 case Builtin::BI__builtin_strndup:
3910 case Builtin::BIstrndup:
3911 return Builtin::BIstrndup;
3912
3913 case Builtin::BI__builtin_strlen:
3914 case Builtin::BIstrlen:
3915 return Builtin::BIstrlen;
3916
3917 case Builtin::BI__builtin_bzero:
3918 case Builtin::BIbzero:
3919 return Builtin::BIbzero;
3920
3921 default:
3922 if (isExternC()) {
3923 if (FnInfo->isStr("memset"))
3924 return Builtin::BImemset;
3925 else if (FnInfo->isStr("memcpy"))
3926 return Builtin::BImemcpy;
3927 else if (FnInfo->isStr("mempcpy"))
3928 return Builtin::BImempcpy;
3929 else if (FnInfo->isStr("memmove"))
3930 return Builtin::BImemmove;
3931 else if (FnInfo->isStr("memcmp"))
3932 return Builtin::BImemcmp;
3933 else if (FnInfo->isStr("bcmp"))
3934 return Builtin::BIbcmp;
3935 else if (FnInfo->isStr("strncpy"))
3936 return Builtin::BIstrncpy;
3937 else if (FnInfo->isStr("strncmp"))
3938 return Builtin::BIstrncmp;
3939 else if (FnInfo->isStr("strncasecmp"))
3940 return Builtin::BIstrncasecmp;
3941 else if (FnInfo->isStr("strncat"))
3942 return Builtin::BIstrncat;
3943 else if (FnInfo->isStr("strndup"))
3944 return Builtin::BIstrndup;
3945 else if (FnInfo->isStr("strlen"))
3946 return Builtin::BIstrlen;
3947 else if (FnInfo->isStr("bzero"))
3948 return Builtin::BIbzero;
3949 }
3950 break;
3951 }
3952 return 0;
3953}
3954
3955unsigned FunctionDecl::getODRHash() const {
3956 assert(hasODRHash())((hasODRHash()) ? static_cast<void> (0) : __assert_fail
("hasODRHash()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 3956, __PRETTY_FUNCTION__))
;
3957 return ODRHash;
3958}
3959
3960unsigned FunctionDecl::getODRHash() {
3961 if (hasODRHash())
3962 return ODRHash;
3963
3964 if (auto *FT = getInstantiatedFromMemberFunction()) {
3965 setHasODRHash(true);
3966 ODRHash = FT->getODRHash();
3967 return ODRHash;
3968 }
3969
3970 class ODRHash Hash;
3971 Hash.AddFunctionDecl(this);
3972 setHasODRHash(true);
3973 ODRHash = Hash.CalculateHash();
3974 return ODRHash;
3975}
3976
3977//===----------------------------------------------------------------------===//
3978// FieldDecl Implementation
3979//===----------------------------------------------------------------------===//
3980
3981FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3982 SourceLocation StartLoc, SourceLocation IdLoc,
3983 IdentifierInfo *Id, QualType T,
3984 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3985 InClassInitStyle InitStyle) {
3986 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3987 BW, Mutable, InitStyle);
3988}
3989
3990FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3991 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3992 SourceLocation(), nullptr, QualType(), nullptr,
3993 nullptr, false, ICIS_NoInit);
3994}
3995
3996bool FieldDecl::isAnonymousStructOrUnion() const {
3997 if (!isImplicit() || getDeclName())
3998 return false;
3999
4000 if (const auto *Record = getType()->getAs<RecordType>())
4001 return Record->getDecl()->isAnonymousStructOrUnion();
4002
4003 return false;
4004}
4005
4006unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4007 assert(isBitField() && "not a bitfield")((isBitField() && "not a bitfield") ? static_cast<
void> (0) : __assert_fail ("isBitField() && \"not a bitfield\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4007, __PRETTY_FUNCTION__))
;
4008 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4009}
4010
4011bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4012 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4013 getBitWidthValue(Ctx) == 0;
4014}
4015
4016bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4017 if (isZeroLengthBitField(Ctx))
4018 return true;
4019
4020 // C++2a [intro.object]p7:
4021 // An object has nonzero size if it
4022 // -- is not a potentially-overlapping subobject, or
4023 if (!hasAttr<NoUniqueAddressAttr>())
4024 return false;
4025
4026 // -- is not of class type, or
4027 const auto *RT = getType()->getAs<RecordType>();
4028 if (!RT)
4029 return false;
4030 const RecordDecl *RD = RT->getDecl()->getDefinition();
4031 if (!RD) {
4032 assert(isInvalidDecl() && "valid field has incomplete type")((isInvalidDecl() && "valid field has incomplete type"
) ? static_cast<void> (0) : __assert_fail ("isInvalidDecl() && \"valid field has incomplete type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4032, __PRETTY_FUNCTION__))
;
4033 return false;
4034 }
4035
4036 // -- [has] virtual member functions or virtual base classes, or
4037 // -- has subobjects of nonzero size or bit-fields of nonzero length
4038 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4039 if (!CXXRD->isEmpty())
4040 return false;
4041
4042 // Otherwise, [...] the circumstances under which the object has zero size
4043 // are implementation-defined.
4044 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4045 // ABI will do.
4046 return true;
4047}
4048
4049unsigned FieldDecl::getFieldIndex() const {
4050 const FieldDecl *Canonical = getCanonicalDecl();
4051 if (Canonical != this)
4052 return Canonical->getFieldIndex();
4053
4054 if (CachedFieldIndex) return CachedFieldIndex - 1;
4055
4056 unsigned Index = 0;
4057 const RecordDecl *RD = getParent()->getDefinition();
4058 assert(RD && "requested index for field of struct with no definition")((RD && "requested index for field of struct with no definition"
) ? static_cast<void> (0) : __assert_fail ("RD && \"requested index for field of struct with no definition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4058, __PRETTY_FUNCTION__))
;
4059
4060 for (auto *Field : RD->fields()) {
4061 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4062 ++Index;
4063 }
4064
4065 assert(CachedFieldIndex && "failed to find field in parent")((CachedFieldIndex && "failed to find field in parent"
) ? static_cast<void> (0) : __assert_fail ("CachedFieldIndex && \"failed to find field in parent\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4065, __PRETTY_FUNCTION__))
;
4066 return CachedFieldIndex - 1;
4067}
4068
4069SourceRange FieldDecl::getSourceRange() const {
4070 const Expr *FinalExpr = getInClassInitializer();
4071 if (!FinalExpr)
4072 FinalExpr = getBitWidth();
4073 if (FinalExpr)
4074 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4075 return DeclaratorDecl::getSourceRange();
4076}
4077
4078void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4079 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&(((getParent()->isLambda() || getParent()->isCapturedRecord
()) && "capturing type in non-lambda or captured record."
) ? static_cast<void> (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4080, __PRETTY_FUNCTION__))
4080 "capturing type in non-lambda or captured record.")(((getParent()->isLambda() || getParent()->isCapturedRecord
()) && "capturing type in non-lambda or captured record."
) ? static_cast<void> (0) : __assert_fail ("(getParent()->isLambda() || getParent()->isCapturedRecord()) && \"capturing type in non-lambda or captured record.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4080, __PRETTY_FUNCTION__))
;
4081 assert(InitStorage.getInt() == ISK_NoInit &&((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4083, __PRETTY_FUNCTION__))
4082 InitStorage.getPointer() == nullptr &&((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4083, __PRETTY_FUNCTION__))
4083 "bit width, initializer or captured type already set")((InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer
() == nullptr && "bit width, initializer or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && \"bit width, initializer or captured type already set\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4083, __PRETTY_FUNCTION__))
;
4084 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4085 ISK_CapturedVLAType);
4086}
4087
4088//===----------------------------------------------------------------------===//
4089// TagDecl Implementation
4090//===----------------------------------------------------------------------===//
4091
4092TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4093 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4094 SourceLocation StartL)
4095 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4096 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4097 assert((DK != Enum || TK == TTK_Enum) &&(((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"
) ? static_cast<void> (0) : __assert_fail ("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4098, __PRETTY_FUNCTION__))
4098 "EnumDecl not matched with TTK_Enum")(((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"
) ? static_cast<void> (0) : __assert_fail ("(DK != Enum || TK == TTK_Enum) && \"EnumDecl not matched with TTK_Enum\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4098, __PRETTY_FUNCTION__))
;
4099 setPreviousDecl(PrevDecl);
4100 setTagKind(TK);
4101 setCompleteDefinition(false);
4102 setBeingDefined(false);
4103 setEmbeddedInDeclarator(false);
4104 setFreeStanding(false);
4105 setCompleteDefinitionRequired(false);
4106}
4107
4108SourceLocation TagDecl::getOuterLocStart() const {
4109 return getTemplateOrInnerLocStart(this);
4110}
4111
4112SourceRange TagDecl::getSourceRange() const {
4113 SourceLocation RBraceLoc = BraceRange.getEnd();
4114 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4115 return SourceRange(getOuterLocStart(), E);
4116}
4117
4118TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4119
4120void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4121 TypedefNameDeclOrQualifier = TDD;
4122 if (const Type *T = getTypeForDecl()) {
4123 (void)T;
4124 assert(T->isLinkageValid())((T->isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("T->isLinkageValid()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4124, __PRETTY_FUNCTION__))
;
4125 }
4126 assert(isLinkageValid())((isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("isLinkageValid()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4126, __PRETTY_FUNCTION__))
;
4127}
4128
4129void TagDecl::startDefinition() {
4130 setBeingDefined(true);
4131
4132 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4133 struct CXXRecordDecl::DefinitionData *Data =
4134 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4135 for (auto I : redecls())
4136 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4137 }
4138}
4139
4140void TagDecl::completeDefinition() {
4141 assert((!isa<CXXRecordDecl>(this) ||(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4143, __PRETTY_FUNCTION__))
4142 cast<CXXRecordDecl>(this)->hasDefinition()) &&(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4143, __PRETTY_FUNCTION__))
4143 "definition completed but not started")(((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>
(this)->hasDefinition()) && "definition completed but not started"
) ? static_cast<void> (0) : __assert_fail ("(!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && \"definition completed but not started\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4143, __PRETTY_FUNCTION__))
;
4144
4145 setCompleteDefinition(true);
4146 setBeingDefined(false);
4147
4148 if (ASTMutationListener *L = getASTMutationListener())
4149 L->CompletedTagDefinition(this);
4150}
4151
4152TagDecl *TagDecl::getDefinition() const {
4153 if (isCompleteDefinition())
4154 return const_cast<TagDecl *>(this);
4155
4156 // If it's possible for us to have an out-of-date definition, check now.
4157 if (mayHaveOutOfDateDef()) {
4158 if (IdentifierInfo *II = getIdentifier()) {
4159 if (II->isOutOfDate()) {
4160 updateOutOfDate(*II);
4161 }
4162 }
4163 }
4164
4165 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4166 return CXXRD->getDefinition();
4167
4168 for (auto R : redecls())
4169 if (R->isCompleteDefinition())
4170 return R;
4171
4172 return nullptr;
4173}
4174
4175void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4176 if (QualifierLoc) {
4177 // Make sure the extended qualifier info is allocated.
4178 if (!hasExtInfo())
4179 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4180 // Set qualifier info.
4181 getExtInfo()->QualifierLoc = QualifierLoc;
4182 } else {
4183 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4184 if (hasExtInfo()) {
4185 if (getExtInfo()->NumTemplParamLists == 0) {
4186 getASTContext().Deallocate(getExtInfo());
4187 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4188 }
4189 else
4190 getExtInfo()->QualifierLoc = QualifierLoc;
4191 }
4192 }
4193}
4194
4195void TagDecl::setTemplateParameterListsInfo(
4196 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4197 assert(!TPLists.empty())((!TPLists.empty()) ? static_cast<void> (0) : __assert_fail
("!TPLists.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4197, __PRETTY_FUNCTION__))
;
4198 // Make sure the extended decl info is allocated.
4199 if (!hasExtInfo())
4200 // Allocate external info struct.
4201 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4202 // Set the template parameter lists info.
4203 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4204}
4205
4206//===----------------------------------------------------------------------===//
4207// EnumDecl Implementation
4208//===----------------------------------------------------------------------===//
4209
4210EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4211 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4212 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4213 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4214 assert(Scoped || !ScopedUsingClassTag)((Scoped || !ScopedUsingClassTag) ? static_cast<void> (
0) : __assert_fail ("Scoped || !ScopedUsingClassTag", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4214, __PRETTY_FUNCTION__))
;
4215 IntegerType = nullptr;
4216 setNumPositiveBits(0);
4217 setNumNegativeBits(0);
4218 setScoped(Scoped);
4219 setScopedUsingClassTag(ScopedUsingClassTag);
4220 setFixed(Fixed);
4221 setHasODRHash(false);
4222 ODRHash = 0;
4223}
4224
4225void EnumDecl::anchor() {}
4226
4227EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4228 SourceLocation StartLoc, SourceLocation IdLoc,
4229 IdentifierInfo *Id,
4230 EnumDecl *PrevDecl, bool IsScoped,
4231 bool IsScopedUsingClassTag, bool IsFixed) {
4232 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4233 IsScoped, IsScopedUsingClassTag, IsFixed);
4234 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4235 C.getTypeDeclType(Enum, PrevDecl);
4236 return Enum;
4237}
4238
4239EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4240 EnumDecl *Enum =
4241 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4242 nullptr, nullptr, false, false, false);
4243 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4244 return Enum;
4245}
4246
4247SourceRange EnumDecl::getIntegerTypeRange() const {
4248 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4249 return TI->getTypeLoc().getSourceRange();
4250 return SourceRange();
4251}
4252
4253void EnumDecl::completeDefinition(QualType NewType,
4254 QualType NewPromotionType,
4255 unsigned NumPositiveBits,
4256 unsigned NumNegativeBits) {
4257 assert(!isCompleteDefinition() && "Cannot redefine enums!")((!isCompleteDefinition() && "Cannot redefine enums!"
) ? static_cast<void> (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine enums!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4257, __PRETTY_FUNCTION__))
;
4258 if (!IntegerType)
4259 IntegerType = NewType.getTypePtr();
4260 PromotionType = NewPromotionType;
4261 setNumPositiveBits(NumPositiveBits);
4262 setNumNegativeBits(NumNegativeBits);
4263 TagDecl::completeDefinition();
4264}
4265
4266bool EnumDecl::isClosed() const {
4267 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4268 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4269 return true;
4270}
4271
4272bool EnumDecl::isClosedFlag() const {
4273 return isClosed() && hasAttr<FlagEnumAttr>();
4274}
4275
4276bool EnumDecl::isClosedNonFlag() const {
4277 return isClosed() && !hasAttr<FlagEnumAttr>();
4278}
4279
4280TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4281 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4282 return MSI->getTemplateSpecializationKind();
4283
4284 return TSK_Undeclared;
4285}
4286
4287void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4288 SourceLocation PointOfInstantiation) {
4289 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4290 assert(MSI && "Not an instantiated member enumeration?")((MSI && "Not an instantiated member enumeration?") ?
static_cast<void> (0) : __assert_fail ("MSI && \"Not an instantiated member enumeration?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4290, __PRETTY_FUNCTION__))
;
4291 MSI->setTemplateSpecializationKind(TSK);
4292 if (TSK != TSK_ExplicitSpecialization &&
4293 PointOfInstantiation.isValid() &&
4294 MSI->getPointOfInstantiation().isInvalid())
4295 MSI->setPointOfInstantiation(PointOfInstantiation);
4296}
4297
4298EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4299 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4300 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4301 EnumDecl *ED = getInstantiatedFromMemberEnum();
4302 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4303 ED = NewED;
4304 return getDefinitionOrSelf(ED);
4305 }
4306 }
4307
4308 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&((!isTemplateInstantiation(getTemplateSpecializationKind()) &&
"couldn't find pattern for enum instantiation") ? static_cast
<void> (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4309, __PRETTY_FUNCTION__))
4309 "couldn't find pattern for enum instantiation")((!isTemplateInstantiation(getTemplateSpecializationKind()) &&
"couldn't find pattern for enum instantiation") ? static_cast
<void> (0) : __assert_fail ("!isTemplateInstantiation(getTemplateSpecializationKind()) && \"couldn't find pattern for enum instantiation\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4309, __PRETTY_FUNCTION__))
;
4310 return nullptr;
4311}
4312
4313EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4314 if (SpecializationInfo)
4315 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4316
4317 return nullptr;
4318}
4319
4320void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4321 TemplateSpecializationKind TSK) {
4322 assert(!SpecializationInfo && "Member enum is already a specialization")((!SpecializationInfo && "Member enum is already a specialization"
) ? static_cast<void> (0) : __assert_fail ("!SpecializationInfo && \"Member enum is already a specialization\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4322, __PRETTY_FUNCTION__))
;
4323 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4324}
4325
4326unsigned EnumDecl::getODRHash() {
4327 if (hasODRHash())
4328 return ODRHash;
4329
4330 class ODRHash Hash;
4331 Hash.AddEnumDecl(this);
4332 setHasODRHash(true);
4333 ODRHash = Hash.CalculateHash();
4334 return ODRHash;
4335}
4336
4337//===----------------------------------------------------------------------===//
4338// RecordDecl Implementation
4339//===----------------------------------------------------------------------===//
4340
4341RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4342 DeclContext *DC, SourceLocation StartLoc,
4343 SourceLocation IdLoc, IdentifierInfo *Id,
4344 RecordDecl *PrevDecl)
4345 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4346 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!")((classof(static_cast<Decl *>(this)) && "Invalid Kind!"
) ? static_cast<void> (0) : __assert_fail ("classof(static_cast<Decl *>(this)) && \"Invalid Kind!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4346, __PRETTY_FUNCTION__))
;
4347 setHasFlexibleArrayMember(false);
4348 setAnonymousStructOrUnion(false);
4349 setHasObjectMember(false);
4350 setHasVolatileMember(false);
4351 setHasLoadedFieldsFromExternalStorage(false);
4352 setNonTrivialToPrimitiveDefaultInitialize(false);
4353 setNonTrivialToPrimitiveCopy(false);
4354 setNonTrivialToPrimitiveDestroy(false);
4355 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4356 setHasNonTrivialToPrimitiveDestructCUnion(false);
4357 setHasNonTrivialToPrimitiveCopyCUnion(false);
4358 setParamDestroyedInCallee(false);
4359 setArgPassingRestrictions(APK_CanPassInRegs);
4360}
4361
4362RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4363 SourceLocation StartLoc, SourceLocation IdLoc,
4364 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4365 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4366 StartLoc, IdLoc, Id, PrevDecl);
4367 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4368
4369 C.getTypeDeclType(R, PrevDecl);
4370 return R;
4371}
4372
4373RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4374 RecordDecl *R =
4375 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4376 SourceLocation(), nullptr, nullptr);
4377 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4378 return R;
4379}
4380
4381bool RecordDecl::isInjectedClassName() const {
4382 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4383 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4384}
4385
4386bool RecordDecl::isLambda() const {
4387 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4388 return RD->isLambda();
4389 return false;
4390}
4391
4392bool RecordDecl::isCapturedRecord() const {
4393 return hasAttr<CapturedRecordAttr>();
4394}
4395
4396void RecordDecl::setCapturedRecord() {
4397 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4398}
4399
4400RecordDecl::field_iterator RecordDecl::field_begin() const {
4401 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4402 LoadFieldsFromExternalStorage();
4403
4404 return field_iterator(decl_iterator(FirstDecl));
4405}
4406
4407/// completeDefinition - Notes that the definition of this type is now
4408/// complete.
4409void RecordDecl::completeDefinition() {
4410 assert(!isCompleteDefinition() && "Cannot redefine record!")((!isCompleteDefinition() && "Cannot redefine record!"
) ? static_cast<void> (0) : __assert_fail ("!isCompleteDefinition() && \"Cannot redefine record!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4410, __PRETTY_FUNCTION__))
;
4411 TagDecl::completeDefinition();
4412}
4413
4414/// isMsStruct - Get whether or not this record uses ms_struct layout.
4415/// This which can be turned on with an attribute, pragma, or the
4416/// -mms-bitfields command-line option.
4417bool RecordDecl::isMsStruct(const ASTContext &C) const {
4418 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4419}
4420
4421void RecordDecl::LoadFieldsFromExternalStorage() const {
4422 ExternalASTSource *Source = getASTContext().getExternalSource();
4423 assert(hasExternalLexicalStorage() && Source && "No external storage?")((hasExternalLexicalStorage() && Source && "No external storage?"
) ? static_cast<void> (0) : __assert_fail ("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4423, __PRETTY_FUNCTION__))
;
4424
4425 // Notify that we have a RecordDecl doing some initialization.
4426 ExternalASTSource::Deserializing TheFields(Source);
4427
4428 SmallVector<Decl*, 64> Decls;
4429 setHasLoadedFieldsFromExternalStorage(true);
4430 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4431 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4432 }, Decls);
4433
4434#ifndef NDEBUG
4435 // Check that all decls we got were FieldDecls.
4436 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4437 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]))((isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>
(Decls[i])) ? static_cast<void> (0) : __assert_fail ("isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4437, __PRETTY_FUNCTION__))
;
4438#endif
4439
4440 if (Decls.empty())
4441 return;
4442
4443 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4444 /*FieldsAlreadyLoaded=*/false);
4445}
4446
4447bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4448 ASTContext &Context = getASTContext();
4449 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4450 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4451 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4452 return false;
4453 const auto &Blacklist = Context.getSanitizerBlacklist();
4454 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4455 // We may be able to relax some of these requirements.
4456 int ReasonToReject = -1;
4457 if (!CXXRD || CXXRD->isExternCContext())
4458 ReasonToReject = 0; // is not C++.
4459 else if (CXXRD->hasAttr<PackedAttr>())
4460 ReasonToReject = 1; // is packed.
4461 else if (CXXRD->isUnion())
4462 ReasonToReject = 2; // is a union.
4463 else if (CXXRD->isTriviallyCopyable())
4464 ReasonToReject = 3; // is trivially copyable.
4465 else if (CXXRD->hasTrivialDestructor())
4466 ReasonToReject = 4; // has trivial destructor.
4467 else if (CXXRD->isStandardLayout())
4468 ReasonToReject = 5; // is standard layout.
4469 else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4470 "field-padding"))
4471 ReasonToReject = 6; // is in a blacklisted file.
4472 else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4473 getQualifiedNameAsString(),
4474 "field-padding"))
4475 ReasonToReject = 7; // is blacklisted.
4476
4477 if (EmitRemark) {
4478 if (ReasonToReject >= 0)
4479 Context.getDiagnostics().Report(
4480 getLocation(),
4481 diag::remark_sanitize_address_insert_extra_padding_rejected)
4482 << getQualifiedNameAsString() << ReasonToReject;
4483 else
4484 Context.getDiagnostics().Report(
4485 getLocation(),
4486 diag::remark_sanitize_address_insert_extra_padding_accepted)
4487 << getQualifiedNameAsString();
4488 }
4489 return ReasonToReject < 0;
4490}
4491
4492const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4493 for (const auto *I : fields()) {
4494 if (I->getIdentifier())
4495 return I;
4496
4497 if (const auto *RT = I->getType()->getAs<RecordType>())
4498 if (const FieldDecl *NamedDataMember =
4499 RT->getDecl()->findFirstNamedDataMember())
4500 return NamedDataMember;
4501 }
4502
4503 // We didn't find a named data member.
4504 return nullptr;
4505}
4506
4507//===----------------------------------------------------------------------===//
4508// BlockDecl Implementation
4509//===----------------------------------------------------------------------===//
4510
4511BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4512 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4513 setIsVariadic(false);
4514 setCapturesCXXThis(false);
4515 setBlockMissingReturnType(true);
4516 setIsConversionFromLambda(false);
4517 setDoesNotEscape(false);
4518 setCanAvoidCopyToHeap(false);
4519}
4520
4521void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4522 assert(!ParamInfo && "Already has param info!")((!ParamInfo && "Already has param info!") ? static_cast
<void> (0) : __assert_fail ("!ParamInfo && \"Already has param info!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4522, __PRETTY_FUNCTION__))
;
4523
4524 // Zero params -> null pointer.
4525 if (!NewParamInfo.empty()) {
4526 NumParams = NewParamInfo.size();
4527 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4528 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4529 }
4530}
4531
4532void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4533 bool CapturesCXXThis) {
4534 this->setCapturesCXXThis(CapturesCXXThis);
4535 this->NumCaptures = Captures.size();
4536
4537 if (Captures.empty()) {
4538 this->Captures = nullptr;
4539 return;
4540 }
4541
4542 this->Captures = Captures.copy(Context).data();
4543}
4544
4545bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4546 for (const auto &I : captures())
4547 // Only auto vars can be captured, so no redeclaration worries.
4548 if (I.getVariable() == variable)
4549 return true;
4550
4551 return false;
4552}
4553
4554SourceRange BlockDecl::getSourceRange() const {
4555 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4556}
4557
4558//===----------------------------------------------------------------------===//
4559// Other Decl Allocation/Deallocation Method Implementations
4560//===----------------------------------------------------------------------===//
4561
4562void TranslationUnitDecl::anchor() {}
4563
4564TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4565 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4566}
4567
4568void PragmaCommentDecl::anchor() {}
4569
4570PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4571 TranslationUnitDecl *DC,
4572 SourceLocation CommentLoc,
4573 PragmaMSCommentKind CommentKind,
4574 StringRef Arg) {
4575 PragmaCommentDecl *PCD =
4576 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4577 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4578 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4579 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4580 return PCD;
4581}
4582
4583PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4584 unsigned ID,
4585 unsigned ArgSize) {
4586 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4587 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4588}
4589
4590void PragmaDetectMismatchDecl::anchor() {}
4591
4592PragmaDetectMismatchDecl *
4593PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4594 SourceLocation Loc, StringRef Name,
4595 StringRef Value) {
4596 size_t ValueStart = Name.size() + 1;
4597 PragmaDetectMismatchDecl *PDMD =
4598 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4599 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4600 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4601 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4602 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4603 Value.size());
4604 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4605 return PDMD;
4606}
4607
4608PragmaDetectMismatchDecl *
4609PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4610 unsigned NameValueSize) {
4611 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4612 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4613}
4614
4615void ExternCContextDecl::anchor() {}
4616
4617ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4618 TranslationUnitDecl *DC) {
4619 return new (C, DC) ExternCContextDecl(DC);
4620}
4621
4622void LabelDecl::anchor() {}
4623
4624LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4625 SourceLocation IdentL, IdentifierInfo *II) {
4626 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4627}
4628
4629LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4630 SourceLocation IdentL, IdentifierInfo *II,
4631 SourceLocation GnuLabelL) {
4632 assert(GnuLabelL != IdentL && "Use this only for GNU local labels")((GnuLabelL != IdentL && "Use this only for GNU local labels"
) ? static_cast<void> (0) : __assert_fail ("GnuLabelL != IdentL && \"Use this only for GNU local labels\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4632, __PRETTY_FUNCTION__))
;
4633 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4634}
4635
4636LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4637 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4638 SourceLocation());
4639}
4640
4641void LabelDecl::setMSAsmLabel(StringRef Name) {
4642char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4643 memcpy(Buffer, Name.data(), Name.size());
4644 Buffer[Name.size()] = '\0';
4645 MSAsmName = Buffer;
4646}
4647
4648void ValueDecl::anchor() {}
4649
4650bool ValueDecl::isWeak() const {
4651 for (const auto *I : attrs())
4652 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4653 return true;
4654
4655 return isWeakImported();
4656}
4657
4658void ImplicitParamDecl::anchor() {}
4659
4660ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4661 SourceLocation IdLoc,
4662 IdentifierInfo *Id, QualType Type,
4663 ImplicitParamKind ParamKind) {
4664 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4665}
4666
4667ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4668 ImplicitParamKind ParamKind) {
4669 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4670}
4671
4672ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4673 unsigned ID) {
4674 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4675}
4676
4677FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4678 SourceLocation StartLoc,
4679 const DeclarationNameInfo &NameInfo,
4680 QualType T, TypeSourceInfo *TInfo,
4681 StorageClass SC, bool isInlineSpecified,
4682 bool hasWrittenPrototype,
4683 ConstexprSpecKind ConstexprKind,
4684 Expr *TrailingRequiresClause) {
4685 FunctionDecl *New =
4686 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4687 SC, isInlineSpecified, ConstexprKind,
4688 TrailingRequiresClause);
4689 New->setHasWrittenPrototype(hasWrittenPrototype);
4690 return New;
4691}
4692
4693FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4694 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4695 DeclarationNameInfo(), QualType(), nullptr,
4696 SC_None, false, CSK_unspecified, nullptr);
4697}
4698
4699BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4700 return new (C, DC) BlockDecl(DC, L);
4701}
4702
4703BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4704 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4705}
4706
4707CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4708 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4709 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4710
4711CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4712 unsigned NumParams) {
4713 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4714 CapturedDecl(DC, NumParams);
4715}
4716
4717CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4718 unsigned NumParams) {
4719 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4720 CapturedDecl(nullptr, NumParams);
4721}
4722
4723Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4724void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4725
4726bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4727void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4728
4729EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4730 SourceLocation L,
4731 IdentifierInfo *Id, QualType T,
4732 Expr *E, const llvm::APSInt &V) {
4733 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4734}
4735
4736EnumConstantDecl *
4737EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4738 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4739 QualType(), nullptr, llvm::APSInt());
4740}
4741
4742void IndirectFieldDecl::anchor() {}
4743
4744IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4745 SourceLocation L, DeclarationName N,
4746 QualType T,
4747 MutableArrayRef<NamedDecl *> CH)
4748 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4749 ChainingSize(CH.size()) {
4750 // In C++, indirect field declarations conflict with tag declarations in the
4751 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4752 if (C.getLangOpts().CPlusPlus)
4753 IdentifierNamespace |= IDNS_Tag;
4754}
4755
4756IndirectFieldDecl *
4757IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4758 IdentifierInfo *Id, QualType T,
4759 llvm::MutableArrayRef<NamedDecl *> CH) {
4760 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4761}
4762
4763IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4764 unsigned ID) {
4765 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4766 DeclarationName(), QualType(), None);
4767}
4768
4769SourceRange EnumConstantDecl::getSourceRange() const {
4770 SourceLocation End = getLocation();
4771 if (Init)
4772 End = Init->getEndLoc();
4773 return SourceRange(getLocation(), End);
4774}
4775
4776void TypeDecl::anchor() {}
4777
4778TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4779 SourceLocation StartLoc, SourceLocation IdLoc,
4780 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4781 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4782}
4783
4784void TypedefNameDecl::anchor() {}
4785
4786TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4787 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4788 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4789 auto *ThisTypedef = this;
4790 if (AnyRedecl && OwningTypedef) {
4791 OwningTypedef = OwningTypedef->getCanonicalDecl();
4792 ThisTypedef = ThisTypedef->getCanonicalDecl();
4793 }
4794 if (OwningTypedef == ThisTypedef)
4795 return TT->getDecl();
4796 }
4797
4798 return nullptr;
4799}
4800
4801bool TypedefNameDecl::isTransparentTagSlow() const {
4802 auto determineIsTransparent = [&]() {
4803 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4804 if (auto *TD = TT->getDecl()) {
4805 if (TD->getName() != getName())
4806 return false;
4807 SourceLocation TTLoc = getLocation();
4808 SourceLocation TDLoc = TD->getLocation();
4809 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4810 return false;
4811 SourceManager &SM = getASTContext().getSourceManager();
4812 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4813 }
4814 }
4815 return false;
4816 };
4817
4818 bool isTransparent = determineIsTransparent();
4819 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4820 return isTransparent;
4821}
4822
4823TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4824 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4825 nullptr, nullptr);
4826}
4827
4828TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4829 SourceLocation StartLoc,
4830 SourceLocation IdLoc, IdentifierInfo *Id,
4831 TypeSourceInfo *TInfo) {
4832 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4833}
4834
4835TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4836 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4837 SourceLocation(), nullptr, nullptr);
4838}
4839
4840SourceRange TypedefDecl::getSourceRange() const {
4841 SourceLocation RangeEnd = getLocation();
4842 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4843 if (typeIsPostfix(TInfo->getType()))
4844 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4845 }
4846 return SourceRange(getBeginLoc(), RangeEnd);
4847}
4848
4849SourceRange TypeAliasDecl::getSourceRange() const {
4850 SourceLocation RangeEnd = getBeginLoc();
4851 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4852 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4853 return SourceRange(getBeginLoc(), RangeEnd);
4854}
4855
4856void FileScopeAsmDecl::anchor() {}
4857
4858FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4859 StringLiteral *Str,
4860 SourceLocation AsmLoc,
4861 SourceLocation RParenLoc) {
4862 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4863}
4864
4865FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4866 unsigned ID) {
4867 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4868 SourceLocation());
4869}
4870
4871void EmptyDecl::anchor() {}
4872
4873EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4874 return new (C, DC) EmptyDecl(DC, L);
4875}
4876
4877EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4878 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4879}
4880
4881//===----------------------------------------------------------------------===//
4882// ImportDecl Implementation
4883//===----------------------------------------------------------------------===//
4884
4885/// Retrieve the number of module identifiers needed to name the given
4886/// module.
4887static unsigned getNumModuleIdentifiers(Module *Mod) {
4888 unsigned Result = 1;
4889 while (Mod->Parent) {
4890 Mod = Mod->Parent;
4891 ++Result;
4892 }
4893 return Result;
4894}
4895
4896ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4897 Module *Imported,
4898 ArrayRef<SourceLocation> IdentifierLocs)
4899 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4900 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size())((getNumModuleIdentifiers(Imported) == IdentifierLocs.size())
? static_cast<void> (0) : __assert_fail ("getNumModuleIdentifiers(Imported) == IdentifierLocs.size()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/clang/lib/AST/Decl.cpp"
, 4900, __PRETTY_FUNCTION__))
;
4901 auto *StoredLocs = getTrailingObjects<SourceLocation>();
4902 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4903 StoredLocs);
4904}
4905
4906ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4907 Module *Imported, SourceLocation EndLoc)
4908 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4909 *getTrailingObjects<SourceLocation>() = EndLoc;
4910}
4911
4912ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4913 SourceLocation StartLoc, Module *Imported,
4914 ArrayRef<SourceLocation> IdentifierLocs) {
4915 return new (C, DC,
4916 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4917 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4918}
4919
4920ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4921 SourceLocation StartLoc,
4922 Module *Imported,
4923 SourceLocation EndLoc) {
4924 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4925 ImportDecl(DC, StartLoc, Imported, EndLoc);
4926 Import->setImplicit();
4927 return Import;
4928}
4929
4930ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4931 unsigned NumLocations) {
4932 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4933 ImportDecl(EmptyShell());
4934}
4935
4936ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4937 if (!ImportedAndComplete.getInt())
4938 return None;
4939
4940 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4941 return llvm::makeArrayRef(StoredLocs,
4942 getNumModuleIdentifiers(getImportedModule()));
4943}
4944
4945SourceRange ImportDecl::getSourceRange() const {
4946 if (!ImportedAndComplete.getInt())
4947 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4948
4949 return SourceRange(getLocation(), getIdentifierLocs().back());
4950}
4951
4952//===----------------------------------------------------------------------===//
4953// ExportDecl Implementation
4954//===----------------------------------------------------------------------===//
4955
4956void ExportDecl::anchor() {}
4957
4958ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4959 SourceLocation ExportLoc) {
4960 return new (C, DC) ExportDecl(DC, ExportLoc);
4961}
4962
4963ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4964 return new (C, ID) ExportDecl(nullptr, SourceLocation());
4965}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/TrailingObjects.h

1//===--- TrailingObjects.h - Variable-length classes ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This header defines support for implementing classes that have
11/// some trailing object (or arrays of objects) appended to them. The
12/// main purpose is to make it obvious where this idiom is being used,
13/// and to make the usage more idiomatic and more difficult to get
14/// wrong.
15///
16/// The TrailingObject template abstracts away the reinterpret_cast,
17/// pointer arithmetic, and size calculations used for the allocation
18/// and access of appended arrays of objects, and takes care that they
19/// are all allocated at their required alignment. Additionally, it
20/// ensures that the base type is final -- deriving from a class that
21/// expects data appended immediately after it is typically not safe.
22///
23/// Users are expected to derive from this template, and provide
24/// numTrailingObjects implementations for each trailing type except
25/// the last, e.g. like this sample:
26///
27/// \code
28/// class VarLengthObj : private TrailingObjects<VarLengthObj, int, double> {
29/// friend TrailingObjects;
30///
31/// unsigned NumInts, NumDoubles;
32/// size_t numTrailingObjects(OverloadToken<int>) const { return NumInts; }
33/// };
34/// \endcode
35///
36/// You can access the appended arrays via 'getTrailingObjects', and
37/// determine the size needed for allocation via
38/// 'additionalSizeToAlloc' and 'totalSizeToAlloc'.
39///
40/// All the methods implemented by this class are are intended for use
41/// by the implementation of the class, not as part of its interface
42/// (thus, private inheritance is suggested).
43///
44//===----------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_TRAILINGOBJECTS_H
47#define LLVM_SUPPORT_TRAILINGOBJECTS_H
48
49#include "llvm/Support/AlignOf.h"
50#include "llvm/Support/Alignment.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/type_traits.h"
54#include <new>
55#include <type_traits>
56
57namespace llvm {
58
59namespace trailing_objects_internal {
60/// Helper template to calculate the max alignment requirement for a set of
61/// objects.
62template <typename First, typename... Rest> class AlignmentCalcHelper {
63private:
64 enum {
65 FirstAlignment = alignof(First),
66 RestAlignment = AlignmentCalcHelper<Rest...>::Alignment,
67 };
68
69public:
70 enum {
71 Alignment = FirstAlignment > RestAlignment ? FirstAlignment : RestAlignment
72 };
73};
74
75template <typename First> class AlignmentCalcHelper<First> {
76public:
77 enum { Alignment = alignof(First) };
78};
79
80/// The base class for TrailingObjects* classes.
81class TrailingObjectsBase {
82protected:
83 /// OverloadToken's purpose is to allow specifying function overloads
84 /// for different types, without actually taking the types as
85 /// parameters. (Necessary because member function templates cannot
86 /// be specialized, so overloads must be used instead of
87 /// specialization.)
88 template <typename T> struct OverloadToken {};
89};
90
91template <int Align>
92class TrailingObjectsAligner : public TrailingObjectsBase {};
93template <>
94class alignas(1) TrailingObjectsAligner<1> : public TrailingObjectsBase {};
95template <>
96class alignas(2) TrailingObjectsAligner<2> : public TrailingObjectsBase {};
97template <>
98class alignas(4) TrailingObjectsAligner<4> : public TrailingObjectsBase {};
99template <>
100class alignas(8) TrailingObjectsAligner<8> : public TrailingObjectsBase {};
101template <>
102class alignas(16) TrailingObjectsAligner<16> : public TrailingObjectsBase {
103};
104template <>
105class alignas(32) TrailingObjectsAligner<32> : public TrailingObjectsBase {
106};
107
108// Just a little helper for transforming a type pack into the same
109// number of a different type. e.g.:
110// ExtractSecondType<Foo..., int>::type
111template <typename Ty1, typename Ty2> struct ExtractSecondType {
112 typedef Ty2 type;
113};
114
115// TrailingObjectsImpl is somewhat complicated, because it is a
116// recursively inheriting template, in order to handle the template
117// varargs. Each level of inheritance picks off a single trailing type
118// then recurses on the rest. The "Align", "BaseTy", and
119// "TopTrailingObj" arguments are passed through unchanged through the
120// recursion. "PrevTy" is, at each level, the type handled by the
121// level right above it.
122
123template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
124 typename... MoreTys>
125class TrailingObjectsImpl {
126 // The main template definition is never used -- the two
127 // specializations cover all possibilities.
128};
129
130template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy,
131 typename NextTy, typename... MoreTys>
132class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy, NextTy,
133 MoreTys...>
134 : public TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy,
135 MoreTys...> {
136
137 typedef TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, NextTy, MoreTys...>
138 ParentType;
139
140 struct RequiresRealignment {
141 static const bool value = alignof(PrevTy) < alignof(NextTy);
142 };
143
144 static constexpr bool requiresRealignment() {
145 return RequiresRealignment::value;
146 }
147
148protected:
149 // Ensure the inherited getTrailingObjectsImpl is not hidden.
150 using ParentType::getTrailingObjectsImpl;
151
152 // These two functions are helper functions for
153 // TrailingObjects::getTrailingObjects. They recurse to the left --
154 // the result for each type in the list of trailing types depends on
155 // the result of calling the function on the type to the
156 // left. However, the function for the type to the left is
157 // implemented by a *subclass* of this class, so we invoke it via
158 // the TopTrailingObj, which is, via the
159 // curiously-recurring-template-pattern, the most-derived type in
160 // this recursion, and thus, contains all the overloads.
161 static const NextTy *
162 getTrailingObjectsImpl(const BaseTy *Obj,
163 TrailingObjectsBase::OverloadToken<NextTy>) {
164 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
165 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
166 TopTrailingObj::callNumTrailingObjects(
167 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
168
169 if (requiresRealignment())
170 return reinterpret_cast<const NextTy *>(
171 alignAddr(Ptr, Align::Of<NextTy>()));
172 else
173 return reinterpret_cast<const NextTy *>(Ptr);
174 }
175
176 static NextTy *
177 getTrailingObjectsImpl(BaseTy *Obj,
178 TrailingObjectsBase::OverloadToken<NextTy>) {
179 auto *Ptr = TopTrailingObj::getTrailingObjectsImpl(
10
'Ptr' initialized here
180 Obj, TrailingObjectsBase::OverloadToken<PrevTy>()) +
9
Passing value via 1st parameter 'Obj'
181 TopTrailingObj::callNumTrailingObjects(
182 Obj, TrailingObjectsBase::OverloadToken<PrevTy>());
183
184 if (requiresRealignment())
11
Taking false branch
185 return reinterpret_cast<NextTy *>(alignAddr(Ptr, Align::Of<NextTy>()));
186 else
187 return reinterpret_cast<NextTy *>(Ptr);
12
Returning pointer (loaded from 'Ptr')
188 }
189
190 // Helper function for TrailingObjects::additionalSizeToAlloc: this
191 // function recurses to superclasses, each of which requires one
192 // fewer size_t argument, and adds its own size.
193 static constexpr size_t additionalSizeToAllocImpl(
194 size_t SizeSoFar, size_t Count1,
195 typename ExtractSecondType<MoreTys, size_t>::type... MoreCounts) {
196 return ParentType::additionalSizeToAllocImpl(
197 (requiresRealignment() ? llvm::alignTo<alignof(NextTy)>(SizeSoFar)
198 : SizeSoFar) +
199 sizeof(NextTy) * Count1,
200 MoreCounts...);
201 }
202};
203
204// The base case of the TrailingObjectsImpl inheritance recursion,
205// when there's no more trailing types.
206template <int Align, typename BaseTy, typename TopTrailingObj, typename PrevTy>
207class TrailingObjectsImpl<Align, BaseTy, TopTrailingObj, PrevTy>
208 : public TrailingObjectsAligner<Align> {
209protected:
210 // This is a dummy method, only here so the "using" doesn't fail --
211 // it will never be called, because this function recurses backwards
212 // up the inheritance chain to subclasses.
213 static void getTrailingObjectsImpl();
214
215 static constexpr size_t additionalSizeToAllocImpl(size_t SizeSoFar) {
216 return SizeSoFar;
217 }
218
219 template <bool CheckAlignment> static void verifyTrailingObjectsAlignment() {}
220};
221
222} // end namespace trailing_objects_internal
223
224// Finally, the main type defined in this file, the one intended for users...
225
226/// See the file comment for details on the usage of the
227/// TrailingObjects type.
228template <typename BaseTy, typename... TrailingTys>
229class TrailingObjects : private trailing_objects_internal::TrailingObjectsImpl<
230 trailing_objects_internal::AlignmentCalcHelper<
231 TrailingTys...>::Alignment,
232 BaseTy, TrailingObjects<BaseTy, TrailingTys...>,
233 BaseTy, TrailingTys...> {
234
235 template <int A, typename B, typename T, typename P, typename... M>
236 friend class trailing_objects_internal::TrailingObjectsImpl;
237
238 template <typename... Tys> class Foo {};
239
240 typedef trailing_objects_internal::TrailingObjectsImpl<
241 trailing_objects_internal::AlignmentCalcHelper<TrailingTys...>::Alignment,
242 BaseTy, TrailingObjects<BaseTy, TrailingTys...>, BaseTy, TrailingTys...>
243 ParentType;
244 using TrailingObjectsBase = trailing_objects_internal::TrailingObjectsBase;
245
246 using ParentType::getTrailingObjectsImpl;
247
248 // This function contains only a static_assert BaseTy is final. The
249 // static_assert must be in a function, and not at class-level
250 // because BaseTy isn't complete at class instantiation time, but
251 // will be by the time this function is instantiated.
252 static void verifyTrailingObjectsAssertions() {
253 static_assert(std::is_final<BaseTy>(), "BaseTy must be final.");
254 }
255
256 // These two methods are the base of the recursion for this method.
257 static const BaseTy *
258 getTrailingObjectsImpl(const BaseTy *Obj,
259 TrailingObjectsBase::OverloadToken<BaseTy>) {
260 return Obj;
261 }
262
263 static BaseTy *
264 getTrailingObjectsImpl(BaseTy *Obj,
265 TrailingObjectsBase::OverloadToken<BaseTy>) {
266 return Obj;
267 }
268
269 // callNumTrailingObjects simply calls numTrailingObjects on the
270 // provided Obj -- except when the type being queried is BaseTy
271 // itself. There is always only one of the base object, so that case
272 // is handled here. (An additional benefit of indirecting through
273 // this function is that consumers only say "friend
274 // TrailingObjects", and thus, only this class itself can call the
275 // numTrailingObjects function.)
276 static size_t
277 callNumTrailingObjects(const BaseTy *Obj,
278 TrailingObjectsBase::OverloadToken<BaseTy>) {
279 return 1;
280 }
281
282 template <typename T>
283 static size_t callNumTrailingObjects(const BaseTy *Obj,
284 TrailingObjectsBase::OverloadToken<T>) {
285 return Obj->numTrailingObjects(TrailingObjectsBase::OverloadToken<T>());
286 }
287
288public:
289 // Make this (privately inherited) member public.
290#ifndef _MSC_VER
291 using ParentType::OverloadToken;
292#else
293 // MSVC bug prevents the above from working, at least up through CL
294 // 19.10.24629.
295 template <typename T>
296 using OverloadToken = typename ParentType::template OverloadToken<T>;
297#endif
298
299 /// Returns a pointer to the trailing object array of the given type
300 /// (which must be one of those specified in the class template). The
301 /// array may have zero or more elements in it.
302 template <typename T> const T *getTrailingObjects() const {
303 verifyTrailingObjectsAssertions();
304 // Forwards to an impl function with overloads, since member
305 // function templates can't be specialized.
306 return this->getTrailingObjectsImpl(
307 static_cast<const BaseTy *>(this),
308 TrailingObjectsBase::OverloadToken<T>());
309 }
310
311 /// Returns a pointer to the trailing object array of the given type
312 /// (which must be one of those specified in the class template). The
313 /// array may have zero or more elements in it.
314 template <typename T> T *getTrailingObjects() {
315 verifyTrailingObjectsAssertions();
316 // Forwards to an impl function with overloads, since member
317 // function templates can't be specialized.
318 return this->getTrailingObjectsImpl(
8
Calling 'TrailingObjectsImpl::getTrailingObjectsImpl'
13
Returning from 'TrailingObjectsImpl::getTrailingObjectsImpl'
14
Returning pointer
319 static_cast<BaseTy *>(this), TrailingObjectsBase::OverloadToken<T>());
7
Passing value via 1st parameter 'Obj'
320 }
321
322 /// Returns the size of the trailing data, if an object were
323 /// allocated with the given counts (The counts are in the same order
324 /// as the template arguments). This does not include the size of the
325 /// base object. The template arguments must be the same as those
326 /// used in the class; they are supplied here redundantly only so
327 /// that it's clear what the counts are counting in callers.
328 template <typename... Tys>
329 static constexpr std::enable_if_t<
330 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
331 additionalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
332 TrailingTys, size_t>::type... Counts) {
333 return ParentType::additionalSizeToAllocImpl(0, Counts...);
334 }
335
336 /// Returns the total size of an object if it were allocated with the
337 /// given trailing object counts. This is the same as
338 /// additionalSizeToAlloc, except it *does* include the size of the base
339 /// object.
340 template <typename... Tys>
341 static constexpr std::enable_if_t<
342 std::is_same<Foo<TrailingTys...>, Foo<Tys...>>::value, size_t>
343 totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType<
344 TrailingTys, size_t>::type... Counts) {
345 return sizeof(BaseTy) + ParentType::additionalSizeToAllocImpl(0, Counts...);
346 }
347
348 /// A type where its ::with_counts template member has a ::type member
349 /// suitable for use as uninitialized storage for an object with the given
350 /// trailing object counts. The template arguments are similar to those
351 /// of additionalSizeToAlloc.
352 ///
353 /// Use with FixedSizeStorageOwner, e.g.:
354 ///
355 /// \code{.cpp}
356 ///
357 /// MyObj::FixedSizeStorage<void *>::with_counts<1u>::type myStackObjStorage;
358 /// MyObj::FixedSizeStorageOwner
359 /// myStackObjOwner(new ((void *)&myStackObjStorage) MyObj);
360 /// MyObj *const myStackObjPtr = myStackObjOwner.get();
361 ///
362 /// \endcode
363 template <typename... Tys> struct FixedSizeStorage {
364 template <size_t... Counts> struct with_counts {
365 enum { Size = totalSizeToAlloc<Tys...>(Counts...) };
366 struct type {
367 alignas(BaseTy) char buffer[Size];
368 };
369 };
370 };
371
372 /// A type that acts as the owner for an object placed into fixed storage.
373 class FixedSizeStorageOwner {
374 public:
375 FixedSizeStorageOwner(BaseTy *p) : p(p) {}
376 ~FixedSizeStorageOwner() {
377 assert(p && "FixedSizeStorageOwner owns null?")((p && "FixedSizeStorageOwner owns null?") ? static_cast
<void> (0) : __assert_fail ("p && \"FixedSizeStorageOwner owns null?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/Support/TrailingObjects.h"
, 377, __PRETTY_FUNCTION__))
;
378 p->~BaseTy();
379 }
380
381 BaseTy *get() { return p; }
382 const BaseTy *get() const { return p; }
383
384 private:
385 FixedSizeStorageOwner(const FixedSizeStorageOwner &) = delete;
386 FixedSizeStorageOwner(FixedSizeStorageOwner &&) = delete;
387 FixedSizeStorageOwner &operator=(const FixedSizeStorageOwner &) = delete;
388 FixedSizeStorageOwner &operator=(FixedSizeStorageOwner &&) = delete;
389
390 BaseTy *const p;
391 };
392};
393
394} // end namespace llvm
395
396#endif