Bug Summary

File:tools/clang/lib/AST/DeclBase.cpp
Warning:line 962, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name DeclBase.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/AST -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp

1//===- DeclBase.cpp - Declaration AST Node Implementation -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl and DeclContext classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/DeclBase.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/AttrIterator.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclContextInternals.h"
22#include "clang/AST/DeclFriend.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclOpenMP.h"
25#include "clang/AST/DeclTemplate.h"
26#include "clang/AST/DependentDiagnostic.h"
27#include "clang/AST/ExternalASTSource.h"
28#include "clang/AST/Stmt.h"
29#include "clang/AST/Type.h"
30#include "clang/Basic/IdentifierTable.h"
31#include "clang/Basic/LLVM.h"
32#include "clang/Basic/LangOptions.h"
33#include "clang/Basic/ObjCRuntime.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/TargetInfo.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/VersionTuple.h"
45#include "llvm/Support/raw_ostream.h"
46#include <algorithm>
47#include <cassert>
48#include <cstddef>
49#include <string>
50#include <tuple>
51#include <utility>
52
53using namespace clang;
54
55//===----------------------------------------------------------------------===//
56// Statistics
57//===----------------------------------------------------------------------===//
58
59#define DECL(DERIVED, BASE) static int n##DERIVED##s = 0;
60#define ABSTRACT_DECL(DECL)
61#include "clang/AST/DeclNodes.inc"
62
63void Decl::updateOutOfDate(IdentifierInfo &II) const {
64 getASTContext().getExternalSource()->updateOutOfDateIdentifier(II);
65}
66
67#define DECL(DERIVED, BASE) \
68 static_assert(alignof(Decl) >= alignof(DERIVED##Decl), \
69 "Alignment sufficient after objects prepended to " #DERIVED);
70#define ABSTRACT_DECL(DECL)
71#include "clang/AST/DeclNodes.inc"
72
73void *Decl::operator new(std::size_t Size, const ASTContext &Context,
74 unsigned ID, std::size_t Extra) {
75 // Allocate an extra 8 bytes worth of storage, which ensures that the
76 // resulting pointer will still be 8-byte aligned.
77 static_assert(sizeof(unsigned) * 2 >= alignof(Decl),
78 "Decl won't be misaligned");
79 void *Start = Context.Allocate(Size + Extra + 8);
80 void *Result = (char*)Start + 8;
81
82 unsigned *PrefixPtr = (unsigned *)Result - 2;
83
84 // Zero out the first 4 bytes; this is used to store the owning module ID.
85 PrefixPtr[0] = 0;
86
87 // Store the global declaration ID in the second 4 bytes.
88 PrefixPtr[1] = ID;
89
90 return Result;
91}
92
93void *Decl::operator new(std::size_t Size, const ASTContext &Ctx,
94 DeclContext *Parent, std::size_t Extra) {
95 assert(!Parent || &Parent->getParentASTContext() == &Ctx)((!Parent || &Parent->getParentASTContext() == &Ctx
) ? static_cast<void> (0) : __assert_fail ("!Parent || &Parent->getParentASTContext() == &Ctx"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 95, __PRETTY_FUNCTION__))
;
96 // With local visibility enabled, we track the owning module even for local
97 // declarations. We create the TU decl early and may not yet know what the
98 // LangOpts are, so conservatively allocate the storage.
99 if (Ctx.getLangOpts().trackLocalOwningModule() || !Parent) {
100 // Ensure required alignment of the resulting object by adding extra
101 // padding at the start if required.
102 size_t ExtraAlign =
103 llvm::offsetToAlignment(sizeof(Module *), llvm::Align(alignof(Decl)));
104 auto *Buffer = reinterpret_cast<char *>(
105 ::operator new(ExtraAlign + sizeof(Module *) + Size + Extra, Ctx));
106 Buffer += ExtraAlign;
107 auto *ParentModule =
108 Parent ? cast<Decl>(Parent)->getOwningModule() : nullptr;
109 return new (Buffer) Module*(ParentModule) + 1;
110 }
111 return ::operator new(Size + Extra, Ctx);
112}
113
114Module *Decl::getOwningModuleSlow() const {
115 assert(isFromASTFile() && "Not from AST file?")((isFromASTFile() && "Not from AST file?") ? static_cast
<void> (0) : __assert_fail ("isFromASTFile() && \"Not from AST file?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 115, __PRETTY_FUNCTION__))
;
116 return getASTContext().getExternalSource()->getModule(getOwningModuleID());
117}
118
119bool Decl::hasLocalOwningModuleStorage() const {
120 return getASTContext().getLangOpts().trackLocalOwningModule();
121}
122
123const char *Decl::getDeclKindName() const {
124 switch (DeclKind) {
125 default: llvm_unreachable("Declaration not in DeclNodes.inc!")::llvm::llvm_unreachable_internal("Declaration not in DeclNodes.inc!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 125)
;
126#define DECL(DERIVED, BASE) case DERIVED: return #DERIVED;
127#define ABSTRACT_DECL(DECL)
128#include "clang/AST/DeclNodes.inc"
129 }
130}
131
132void Decl::setInvalidDecl(bool Invalid) {
133 InvalidDecl = Invalid;
134 assert(!isa<TagDecl>(this) || !cast<TagDecl>(this)->isCompleteDefinition())((!isa<TagDecl>(this) || !cast<TagDecl>(this)->
isCompleteDefinition()) ? static_cast<void> (0) : __assert_fail
("!isa<TagDecl>(this) || !cast<TagDecl>(this)->isCompleteDefinition()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 134, __PRETTY_FUNCTION__))
;
135 if (!Invalid) {
136 return;
137 }
138
139 if (!isa<ParmVarDecl>(this)) {
140 // Defensive maneuver for ill-formed code: we're likely not to make it to
141 // a point where we set the access specifier, so default it to "public"
142 // to avoid triggering asserts elsewhere in the front end.
143 setAccess(AS_public);
144 }
145
146 // Marking a DecompositionDecl as invalid implies all the child BindingDecl's
147 // are invalid too.
148 if (auto *DD = dyn_cast<DecompositionDecl>(this)) {
149 for (auto *Binding : DD->bindings()) {
150 Binding->setInvalidDecl();
151 }
152 }
153}
154
155const char *DeclContext::getDeclKindName() const {
156 switch (getDeclKind()) {
157#define DECL(DERIVED, BASE) case Decl::DERIVED: return #DERIVED;
158#define ABSTRACT_DECL(DECL)
159#include "clang/AST/DeclNodes.inc"
160 }
161 llvm_unreachable("Declaration context not in DeclNodes.inc!")::llvm::llvm_unreachable_internal("Declaration context not in DeclNodes.inc!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 161)
;
162}
163
164bool Decl::StatisticsEnabled = false;
165void Decl::EnableStatistics() {
166 StatisticsEnabled = true;
167}
168
169void Decl::PrintStats() {
170 llvm::errs() << "\n*** Decl Stats:\n";
171
172 int totalDecls = 0;
173#define DECL(DERIVED, BASE) totalDecls += n##DERIVED##s;
174#define ABSTRACT_DECL(DECL)
175#include "clang/AST/DeclNodes.inc"
176 llvm::errs() << " " << totalDecls << " decls total.\n";
177
178 int totalBytes = 0;
179#define DECL(DERIVED, BASE) \
180 if (n##DERIVED##s > 0) { \
181 totalBytes += (int)(n##DERIVED##s * sizeof(DERIVED##Decl)); \
182 llvm::errs() << " " << n##DERIVED##s << " " #DERIVED " decls, " \
183 << sizeof(DERIVED##Decl) << " each (" \
184 << n##DERIVED##s * sizeof(DERIVED##Decl) \
185 << " bytes)\n"; \
186 }
187#define ABSTRACT_DECL(DECL)
188#include "clang/AST/DeclNodes.inc"
189
190 llvm::errs() << "Total bytes = " << totalBytes << "\n";
191}
192
193void Decl::add(Kind k) {
194 switch (k) {
195#define DECL(DERIVED, BASE) case DERIVED: ++n##DERIVED##s; break;
196#define ABSTRACT_DECL(DECL)
197#include "clang/AST/DeclNodes.inc"
198 }
199}
200
201bool Decl::isTemplateParameterPack() const {
202 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(this))
203 return TTP->isParameterPack();
204 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(this))
205 return NTTP->isParameterPack();
206 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(this))
207 return TTP->isParameterPack();
208 return false;
209}
210
211bool Decl::isParameterPack() const {
212 if (const auto *Var = dyn_cast<VarDecl>(this))
213 return Var->isParameterPack();
214
215 return isTemplateParameterPack();
216}
217
218FunctionDecl *Decl::getAsFunction() {
219 if (auto *FD = dyn_cast<FunctionDecl>(this))
220 return FD;
221 if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(this))
222 return FTD->getTemplatedDecl();
223 return nullptr;
224}
225
226bool Decl::isTemplateDecl() const {
227 return isa<TemplateDecl>(this);
228}
229
230TemplateDecl *Decl::getDescribedTemplate() const {
231 if (auto *FD = dyn_cast<FunctionDecl>(this))
232 return FD->getDescribedFunctionTemplate();
233 else if (auto *RD = dyn_cast<CXXRecordDecl>(this))
234 return RD->getDescribedClassTemplate();
235 else if (auto *VD = dyn_cast<VarDecl>(this))
236 return VD->getDescribedVarTemplate();
237 else if (auto *AD = dyn_cast<TypeAliasDecl>(this))
238 return AD->getDescribedAliasTemplate();
239
240 return nullptr;
241}
242
243bool Decl::isTemplated() const {
244 // A declaration is dependent if it is a template or a template pattern, or
245 // is within (lexcially for a friend, semantically otherwise) a dependent
246 // context.
247 // FIXME: Should local extern declarations be treated like friends?
248 if (auto *AsDC = dyn_cast<DeclContext>(this))
249 return AsDC->isDependentContext();
250 auto *DC = getFriendObjectKind() ? getLexicalDeclContext() : getDeclContext();
251 return DC->isDependentContext() || isTemplateDecl() || getDescribedTemplate();
252}
253
254const DeclContext *Decl::getParentFunctionOrMethod() const {
255 for (const DeclContext *DC = getDeclContext();
256 DC && !DC->isTranslationUnit() && !DC->isNamespace();
257 DC = DC->getParent())
258 if (DC->isFunctionOrMethod())
259 return DC;
260
261 return nullptr;
262}
263
264//===----------------------------------------------------------------------===//
265// PrettyStackTraceDecl Implementation
266//===----------------------------------------------------------------------===//
267
268void PrettyStackTraceDecl::print(raw_ostream &OS) const {
269 SourceLocation TheLoc = Loc;
270 if (TheLoc.isInvalid() && TheDecl)
271 TheLoc = TheDecl->getLocation();
272
273 if (TheLoc.isValid()) {
274 TheLoc.print(OS, SM);
275 OS << ": ";
276 }
277
278 OS << Message;
279
280 if (const auto *DN = dyn_cast_or_null<NamedDecl>(TheDecl)) {
281 OS << " '";
282 DN->printQualifiedName(OS);
283 OS << '\'';
284 }
285 OS << '\n';
286}
287
288//===----------------------------------------------------------------------===//
289// Decl Implementation
290//===----------------------------------------------------------------------===//
291
292// Out-of-line virtual method providing a home for Decl.
293Decl::~Decl() = default;
294
295void Decl::setDeclContext(DeclContext *DC) {
296 DeclCtx = DC;
297}
298
299void Decl::setLexicalDeclContext(DeclContext *DC) {
300 if (DC == getLexicalDeclContext())
301 return;
302
303 if (isInSemaDC()) {
304 setDeclContextsImpl(getDeclContext(), DC, getASTContext());
305 } else {
306 getMultipleDC()->LexicalDC = DC;
307 }
308
309 // FIXME: We shouldn't be changing the lexical context of declarations
310 // imported from AST files.
311 if (!isFromASTFile()) {
312 setModuleOwnershipKind(getModuleOwnershipKindForChildOf(DC));
313 if (hasOwningModule())
314 setLocalOwningModule(cast<Decl>(DC)->getOwningModule());
315 }
316
317 assert((((getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported
|| getOwningModule()) && "hidden declaration has no owning module"
) ? static_cast<void> (0) : __assert_fail ("(getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported || getOwningModule()) && \"hidden declaration has no owning module\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 320, __PRETTY_FUNCTION__))
318 (getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported ||(((getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported
|| getOwningModule()) && "hidden declaration has no owning module"
) ? static_cast<void> (0) : __assert_fail ("(getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported || getOwningModule()) && \"hidden declaration has no owning module\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 320, __PRETTY_FUNCTION__))
319 getOwningModule()) &&(((getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported
|| getOwningModule()) && "hidden declaration has no owning module"
) ? static_cast<void> (0) : __assert_fail ("(getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported || getOwningModule()) && \"hidden declaration has no owning module\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 320, __PRETTY_FUNCTION__))
320 "hidden declaration has no owning module")(((getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported
|| getOwningModule()) && "hidden declaration has no owning module"
) ? static_cast<void> (0) : __assert_fail ("(getModuleOwnershipKind() != ModuleOwnershipKind::VisibleWhenImported || getOwningModule()) && \"hidden declaration has no owning module\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 320, __PRETTY_FUNCTION__))
;
321}
322
323void Decl::setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
324 ASTContext &Ctx) {
325 if (SemaDC == LexicalDC) {
326 DeclCtx = SemaDC;
327 } else {
328 auto *MDC = new (Ctx) Decl::MultipleDC();
329 MDC->SemanticDC = SemaDC;
330 MDC->LexicalDC = LexicalDC;
331 DeclCtx = MDC;
332 }
333}
334
335bool Decl::isLexicallyWithinFunctionOrMethod() const {
336 const DeclContext *LDC = getLexicalDeclContext();
337 while (true) {
338 if (LDC->isFunctionOrMethod())
339 return true;
340 if (!isa<TagDecl>(LDC))
341 return false;
342 LDC = LDC->getLexicalParent();
343 }
344 return false;
345}
346
347bool Decl::isInAnonymousNamespace() const {
348 for (const DeclContext *DC = getDeclContext(); DC; DC = DC->getParent()) {
349 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
350 if (ND->isAnonymousNamespace())
351 return true;
352 }
353
354 return false;
355}
356
357bool Decl::isInStdNamespace() const {
358 const DeclContext *DC = getDeclContext();
359 return DC && DC->isStdNamespace();
360}
361
362TranslationUnitDecl *Decl::getTranslationUnitDecl() {
363 if (auto *TUD = dyn_cast<TranslationUnitDecl>(this))
364 return TUD;
365
366 DeclContext *DC = getDeclContext();
367 assert(DC && "This decl is not contained in a translation unit!")((DC && "This decl is not contained in a translation unit!"
) ? static_cast<void> (0) : __assert_fail ("DC && \"This decl is not contained in a translation unit!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 367, __PRETTY_FUNCTION__))
;
368
369 while (!DC->isTranslationUnit()) {
370 DC = DC->getParent();
371 assert(DC && "This decl is not contained in a translation unit!")((DC && "This decl is not contained in a translation unit!"
) ? static_cast<void> (0) : __assert_fail ("DC && \"This decl is not contained in a translation unit!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 371, __PRETTY_FUNCTION__))
;
372 }
373
374 return cast<TranslationUnitDecl>(DC);
375}
376
377ASTContext &Decl::getASTContext() const {
378 return getTranslationUnitDecl()->getASTContext();
379}
380
381ASTMutationListener *Decl::getASTMutationListener() const {
382 return getASTContext().getASTMutationListener();
383}
384
385unsigned Decl::getMaxAlignment() const {
386 if (!hasAttrs())
387 return 0;
388
389 unsigned Align = 0;
390 const AttrVec &V = getAttrs();
391 ASTContext &Ctx = getASTContext();
392 specific_attr_iterator<AlignedAttr> I(V.begin()), E(V.end());
393 for (; I != E; ++I)
394 Align = std::max(Align, I->getAlignment(Ctx));
395 return Align;
396}
397
398bool Decl::isUsed(bool CheckUsedAttr) const {
399 const Decl *CanonD = getCanonicalDecl();
400 if (CanonD->Used)
401 return true;
402
403 // Check for used attribute.
404 // Ask the most recent decl, since attributes accumulate in the redecl chain.
405 if (CheckUsedAttr && getMostRecentDecl()->hasAttr<UsedAttr>())
406 return true;
407
408 // The information may have not been deserialized yet. Force deserialization
409 // to complete the needed information.
410 return getMostRecentDecl()->getCanonicalDecl()->Used;
411}
412
413void Decl::markUsed(ASTContext &C) {
414 if (isUsed(false))
415 return;
416
417 if (C.getASTMutationListener())
418 C.getASTMutationListener()->DeclarationMarkedUsed(this);
419
420 setIsUsed();
421}
422
423bool Decl::isReferenced() const {
424 if (Referenced)
425 return true;
426
427 // Check redeclarations.
428 for (const auto *I : redecls())
429 if (I->Referenced)
430 return true;
431
432 return false;
433}
434
435ExternalSourceSymbolAttr *Decl::getExternalSourceSymbolAttr() const {
436 const Decl *Definition = nullptr;
437 if (auto *ID = dyn_cast<ObjCInterfaceDecl>(this)) {
438 Definition = ID->getDefinition();
439 } else if (auto *PD = dyn_cast<ObjCProtocolDecl>(this)) {
440 Definition = PD->getDefinition();
441 } else if (auto *TD = dyn_cast<TagDecl>(this)) {
442 Definition = TD->getDefinition();
443 }
444 if (!Definition)
445 Definition = this;
446
447 if (auto *attr = Definition->getAttr<ExternalSourceSymbolAttr>())
448 return attr;
449 if (auto *dcd = dyn_cast<Decl>(getDeclContext())) {
450 return dcd->getAttr<ExternalSourceSymbolAttr>();
451 }
452
453 return nullptr;
454}
455
456bool Decl::hasDefiningAttr() const {
457 return hasAttr<AliasAttr>() || hasAttr<IFuncAttr>();
458}
459
460const Attr *Decl::getDefiningAttr() const {
461 if (auto *AA = getAttr<AliasAttr>())
462 return AA;
463 if (auto *IFA = getAttr<IFuncAttr>())
464 return IFA;
465 return nullptr;
466}
467
468static StringRef getRealizedPlatform(const AvailabilityAttr *A,
469 const ASTContext &Context) {
470 // Check if this is an App Extension "platform", and if so chop off
471 // the suffix for matching with the actual platform.
472 StringRef RealizedPlatform = A->getPlatform()->getName();
473 if (!Context.getLangOpts().AppExt)
474 return RealizedPlatform;
475 size_t suffix = RealizedPlatform.rfind("_app_extension");
476 if (suffix != StringRef::npos)
477 return RealizedPlatform.slice(0, suffix);
478 return RealizedPlatform;
479}
480
481/// Determine the availability of the given declaration based on
482/// the target platform.
483///
484/// When it returns an availability result other than \c AR_Available,
485/// if the \p Message parameter is non-NULL, it will be set to a
486/// string describing why the entity is unavailable.
487///
488/// FIXME: Make these strings localizable, since they end up in
489/// diagnostics.
490static AvailabilityResult CheckAvailability(ASTContext &Context,
491 const AvailabilityAttr *A,
492 std::string *Message,
493 VersionTuple EnclosingVersion) {
494 if (EnclosingVersion.empty())
495 EnclosingVersion = Context.getTargetInfo().getPlatformMinVersion();
496
497 if (EnclosingVersion.empty())
498 return AR_Available;
499
500 StringRef ActualPlatform = A->getPlatform()->getName();
501 StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
502
503 // Match the platform name.
504 if (getRealizedPlatform(A, Context) != TargetPlatform)
505 return AR_Available;
506
507 StringRef PrettyPlatformName
508 = AvailabilityAttr::getPrettyPlatformName(ActualPlatform);
509
510 if (PrettyPlatformName.empty())
511 PrettyPlatformName = ActualPlatform;
512
513 std::string HintMessage;
514 if (!A->getMessage().empty()) {
515 HintMessage = " - ";
516 HintMessage += A->getMessage();
517 }
518
519 // Make sure that this declaration has not been marked 'unavailable'.
520 if (A->getUnavailable()) {
521 if (Message) {
522 Message->clear();
523 llvm::raw_string_ostream Out(*Message);
524 Out << "not available on " << PrettyPlatformName
525 << HintMessage;
526 }
527
528 return AR_Unavailable;
529 }
530
531 // Make sure that this declaration has already been introduced.
532 if (!A->getIntroduced().empty() &&
533 EnclosingVersion < A->getIntroduced()) {
534 if (Message) {
535 Message->clear();
536 llvm::raw_string_ostream Out(*Message);
537 VersionTuple VTI(A->getIntroduced());
538 Out << "introduced in " << PrettyPlatformName << ' '
539 << VTI << HintMessage;
540 }
541
542 return A->getStrict() ? AR_Unavailable : AR_NotYetIntroduced;
543 }
544
545 // Make sure that this declaration hasn't been obsoleted.
546 if (!A->getObsoleted().empty() && EnclosingVersion >= A->getObsoleted()) {
547 if (Message) {
548 Message->clear();
549 llvm::raw_string_ostream Out(*Message);
550 VersionTuple VTO(A->getObsoleted());
551 Out << "obsoleted in " << PrettyPlatformName << ' '
552 << VTO << HintMessage;
553 }
554
555 return AR_Unavailable;
556 }
557
558 // Make sure that this declaration hasn't been deprecated.
559 if (!A->getDeprecated().empty() && EnclosingVersion >= A->getDeprecated()) {
560 if (Message) {
561 Message->clear();
562 llvm::raw_string_ostream Out(*Message);
563 VersionTuple VTD(A->getDeprecated());
564 Out << "first deprecated in " << PrettyPlatformName << ' '
565 << VTD << HintMessage;
566 }
567
568 return AR_Deprecated;
569 }
570
571 return AR_Available;
572}
573
574AvailabilityResult Decl::getAvailability(std::string *Message,
575 VersionTuple EnclosingVersion,
576 StringRef *RealizedPlatform) const {
577 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(this))
578 return FTD->getTemplatedDecl()->getAvailability(Message, EnclosingVersion,
579 RealizedPlatform);
580
581 AvailabilityResult Result = AR_Available;
582 std::string ResultMessage;
583
584 for (const auto *A : attrs()) {
585 if (const auto *Deprecated = dyn_cast<DeprecatedAttr>(A)) {
586 if (Result >= AR_Deprecated)
587 continue;
588
589 if (Message)
590 ResultMessage = Deprecated->getMessage();
591
592 Result = AR_Deprecated;
593 continue;
594 }
595
596 if (const auto *Unavailable = dyn_cast<UnavailableAttr>(A)) {
597 if (Message)
598 *Message = Unavailable->getMessage();
599 return AR_Unavailable;
600 }
601
602 if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
603 AvailabilityResult AR = CheckAvailability(getASTContext(), Availability,
604 Message, EnclosingVersion);
605
606 if (AR == AR_Unavailable) {
607 if (RealizedPlatform)
608 *RealizedPlatform = Availability->getPlatform()->getName();
609 return AR_Unavailable;
610 }
611
612 if (AR > Result) {
613 Result = AR;
614 if (Message)
615 ResultMessage.swap(*Message);
616 }
617 continue;
618 }
619 }
620
621 if (Message)
622 Message->swap(ResultMessage);
623 return Result;
624}
625
626VersionTuple Decl::getVersionIntroduced() const {
627 const ASTContext &Context = getASTContext();
628 StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
629 for (const auto *A : attrs()) {
630 if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
631 if (getRealizedPlatform(Availability, Context) != TargetPlatform)
632 continue;
633 if (!Availability->getIntroduced().empty())
634 return Availability->getIntroduced();
635 }
636 }
637 return {};
638}
639
640bool Decl::canBeWeakImported(bool &IsDefinition) const {
641 IsDefinition = false;
642
643 // Variables, if they aren't definitions.
644 if (const auto *Var = dyn_cast<VarDecl>(this)) {
645 if (Var->isThisDeclarationADefinition()) {
646 IsDefinition = true;
647 return false;
648 }
649 return true;
650
651 // Functions, if they aren't definitions.
652 } else if (const auto *FD = dyn_cast<FunctionDecl>(this)) {
653 if (FD->hasBody()) {
654 IsDefinition = true;
655 return false;
656 }
657 return true;
658
659 // Objective-C classes, if this is the non-fragile runtime.
660 } else if (isa<ObjCInterfaceDecl>(this) &&
661 getASTContext().getLangOpts().ObjCRuntime.hasWeakClassImport()) {
662 return true;
663
664 // Nothing else.
665 } else {
666 return false;
667 }
668}
669
670bool Decl::isWeakImported() const {
671 bool IsDefinition;
672 if (!canBeWeakImported(IsDefinition))
673 return false;
674
675 for (const auto *A : attrs()) {
676 if (isa<WeakImportAttr>(A))
677 return true;
678
679 if (const auto *Availability = dyn_cast<AvailabilityAttr>(A)) {
680 if (CheckAvailability(getASTContext(), Availability, nullptr,
681 VersionTuple()) == AR_NotYetIntroduced)
682 return true;
683 }
684 }
685
686 return false;
687}
688
689unsigned Decl::getIdentifierNamespaceForKind(Kind DeclKind) {
690 switch (DeclKind) {
691 case Function:
692 case CXXDeductionGuide:
693 case CXXMethod:
694 case CXXConstructor:
695 case ConstructorUsingShadow:
696 case CXXDestructor:
697 case CXXConversion:
698 case EnumConstant:
699 case Var:
700 case ImplicitParam:
701 case ParmVar:
702 case ObjCMethod:
703 case ObjCProperty:
704 case MSProperty:
705 return IDNS_Ordinary;
706 case Label:
707 return IDNS_Label;
708 case IndirectField:
709 return IDNS_Ordinary | IDNS_Member;
710
711 case Binding:
712 case NonTypeTemplateParm:
713 case VarTemplate:
714 case Concept:
715 // These (C++-only) declarations are found by redeclaration lookup for
716 // tag types, so we include them in the tag namespace.
717 return IDNS_Ordinary | IDNS_Tag;
718
719 case ObjCCompatibleAlias:
720 case ObjCInterface:
721 return IDNS_Ordinary | IDNS_Type;
722
723 case Typedef:
724 case TypeAlias:
725 case TemplateTypeParm:
726 case ObjCTypeParam:
727 return IDNS_Ordinary | IDNS_Type;
728
729 case UnresolvedUsingTypename:
730 return IDNS_Ordinary | IDNS_Type | IDNS_Using;
731
732 case UsingShadow:
733 return 0; // we'll actually overwrite this later
734
735 case UnresolvedUsingValue:
736 return IDNS_Ordinary | IDNS_Using;
737
738 case Using:
739 case UsingPack:
740 return IDNS_Using;
741
742 case ObjCProtocol:
743 return IDNS_ObjCProtocol;
744
745 case Field:
746 case ObjCAtDefsField:
747 case ObjCIvar:
748 return IDNS_Member;
749
750 case Record:
751 case CXXRecord:
752 case Enum:
753 return IDNS_Tag | IDNS_Type;
754
755 case Namespace:
756 case NamespaceAlias:
757 return IDNS_Namespace;
758
759 case FunctionTemplate:
760 return IDNS_Ordinary;
761
762 case ClassTemplate:
763 case TemplateTemplateParm:
764 case TypeAliasTemplate:
765 return IDNS_Ordinary | IDNS_Tag | IDNS_Type;
766
767 case OMPDeclareReduction:
768 return IDNS_OMPReduction;
769
770 case OMPDeclareMapper:
771 return IDNS_OMPMapper;
772
773 // Never have names.
774 case Friend:
775 case FriendTemplate:
776 case AccessSpec:
777 case LinkageSpec:
778 case Export:
779 case FileScopeAsm:
780 case StaticAssert:
781 case ObjCPropertyImpl:
782 case PragmaComment:
783 case PragmaDetectMismatch:
784 case Block:
785 case Captured:
786 case TranslationUnit:
787 case ExternCContext:
788 case Decomposition:
789
790 case UsingDirective:
791 case BuiltinTemplate:
792 case ClassTemplateSpecialization:
793 case ClassTemplatePartialSpecialization:
794 case ClassScopeFunctionSpecialization:
795 case VarTemplateSpecialization:
796 case VarTemplatePartialSpecialization:
797 case ObjCImplementation:
798 case ObjCCategory:
799 case ObjCCategoryImpl:
800 case Import:
801 case OMPThreadPrivate:
802 case OMPAllocate:
803 case OMPRequires:
804 case OMPCapturedExpr:
805 case Empty:
806 // Never looked up by name.
807 return 0;
808 }
809
810 llvm_unreachable("Invalid DeclKind!")::llvm::llvm_unreachable_internal("Invalid DeclKind!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 810)
;
811}
812
813void Decl::setAttrsImpl(const AttrVec &attrs, ASTContext &Ctx) {
814 assert(!HasAttrs && "Decl already contains attrs.")((!HasAttrs && "Decl already contains attrs.") ? static_cast
<void> (0) : __assert_fail ("!HasAttrs && \"Decl already contains attrs.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 814, __PRETTY_FUNCTION__))
;
815
816 AttrVec &AttrBlank = Ctx.getDeclAttrs(this);
817 assert(AttrBlank.empty() && "HasAttrs was wrong?")((AttrBlank.empty() && "HasAttrs was wrong?") ? static_cast
<void> (0) : __assert_fail ("AttrBlank.empty() && \"HasAttrs was wrong?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 817, __PRETTY_FUNCTION__))
;
818
819 AttrBlank = attrs;
820 HasAttrs = true;
821}
822
823void Decl::dropAttrs() {
824 if (!HasAttrs) return;
825
826 HasAttrs = false;
827 getASTContext().eraseDeclAttrs(this);
828}
829
830void Decl::addAttr(Attr *A) {
831 if (!hasAttrs()) {
832 setAttrs(AttrVec(1, A));
833 return;
834 }
835
836 AttrVec &Attrs = getAttrs();
837 if (!A->isInherited()) {
838 Attrs.push_back(A);
839 return;
840 }
841
842 // Attribute inheritance is processed after attribute parsing. To keep the
843 // order as in the source code, add inherited attributes before non-inherited
844 // ones.
845 auto I = Attrs.begin(), E = Attrs.end();
846 for (; I != E; ++I) {
847 if (!(*I)->isInherited())
848 break;
849 }
850 Attrs.insert(I, A);
851}
852
853const AttrVec &Decl::getAttrs() const {
854 assert(HasAttrs && "No attrs to get!")((HasAttrs && "No attrs to get!") ? static_cast<void
> (0) : __assert_fail ("HasAttrs && \"No attrs to get!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 854, __PRETTY_FUNCTION__))
;
855 return getASTContext().getDeclAttrs(this);
856}
857
858Decl *Decl::castFromDeclContext (const DeclContext *D) {
859 Decl::Kind DK = D->getDeclKind();
860 switch(DK) {
861#define DECL(NAME, BASE)
862#define DECL_CONTEXT(NAME) \
863 case Decl::NAME: \
864 return static_cast<NAME##Decl *>(const_cast<DeclContext *>(D));
865#define DECL_CONTEXT_BASE(NAME)
866#include "clang/AST/DeclNodes.inc"
867 default:
868#define DECL(NAME, BASE)
869#define DECL_CONTEXT_BASE(NAME) \
870 if (DK >= first##NAME && DK <= last##NAME) \
871 return static_cast<NAME##Decl *>(const_cast<DeclContext *>(D));
872#include "clang/AST/DeclNodes.inc"
873 llvm_unreachable("a decl that inherits DeclContext isn't handled")::llvm::llvm_unreachable_internal("a decl that inherits DeclContext isn't handled"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 873)
;
874 }
875}
876
877DeclContext *Decl::castToDeclContext(const Decl *D) {
878 Decl::Kind DK = D->getKind();
879 switch(DK) {
880#define DECL(NAME, BASE)
881#define DECL_CONTEXT(NAME) \
882 case Decl::NAME: \
883 return static_cast<NAME##Decl *>(const_cast<Decl *>(D));
884#define DECL_CONTEXT_BASE(NAME)
885#include "clang/AST/DeclNodes.inc"
886 default:
887#define DECL(NAME, BASE)
888#define DECL_CONTEXT_BASE(NAME) \
889 if (DK >= first##NAME && DK <= last##NAME) \
890 return static_cast<NAME##Decl *>(const_cast<Decl *>(D));
891#include "clang/AST/DeclNodes.inc"
892 llvm_unreachable("a decl that inherits DeclContext isn't handled")::llvm::llvm_unreachable_internal("a decl that inherits DeclContext isn't handled"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 892)
;
893 }
894}
895
896SourceLocation Decl::getBodyRBrace() const {
897 // Special handling of FunctionDecl to avoid de-serializing the body from PCH.
898 // FunctionDecl stores EndRangeLoc for this purpose.
899 if (const auto *FD = dyn_cast<FunctionDecl>(this)) {
900 const FunctionDecl *Definition;
901 if (FD->hasBody(Definition))
902 return Definition->getSourceRange().getEnd();
903 return {};
904 }
905
906 if (Stmt *Body = getBody())
907 return Body->getSourceRange().getEnd();
908
909 return {};
910}
911
912bool Decl::AccessDeclContextSanity() const {
913#ifndef NDEBUG
914 // Suppress this check if any of the following hold:
915 // 1. this is the translation unit (and thus has no parent)
916 // 2. this is a template parameter (and thus doesn't belong to its context)
917 // 3. this is a non-type template parameter
918 // 4. the context is not a record
919 // 5. it's invalid
920 // 6. it's a C++0x static_assert.
921 // 7. it's a block literal declaration
922 if (isa<TranslationUnitDecl>(this) ||
923 isa<TemplateTypeParmDecl>(this) ||
924 isa<NonTypeTemplateParmDecl>(this) ||
925 !getDeclContext() ||
926 !isa<CXXRecordDecl>(getDeclContext()) ||
927 isInvalidDecl() ||
928 isa<StaticAssertDecl>(this) ||
929 isa<BlockDecl>(this) ||
930 // FIXME: a ParmVarDecl can have ClassTemplateSpecialization
931 // as DeclContext (?).
932 isa<ParmVarDecl>(this) ||
933 // FIXME: a ClassTemplateSpecialization or CXXRecordDecl can have
934 // AS_none as access specifier.
935 isa<CXXRecordDecl>(this) ||
936 isa<ClassScopeFunctionSpecializationDecl>(this))
937 return true;
938
939 assert(Access != AS_none &&((Access != AS_none && "Access specifier is AS_none inside a record decl"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Access specifier is AS_none inside a record decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 940, __PRETTY_FUNCTION__))
940 "Access specifier is AS_none inside a record decl")((Access != AS_none && "Access specifier is AS_none inside a record decl"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Access specifier is AS_none inside a record decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 940, __PRETTY_FUNCTION__))
;
941#endif
942 return true;
943}
944
945static Decl::Kind getKind(const Decl *D) { return D->getKind(); }
946static Decl::Kind getKind(const DeclContext *DC) { return DC->getDeclKind(); }
947
948int64_t Decl::getID() const {
949 return getASTContext().getAllocator().identifyKnownAlignedObject<Decl>(this);
950}
951
952const FunctionType *Decl::getFunctionType(bool BlocksToo) const {
953 QualType Ty;
954 if (const auto *D
1.1
'D' is non-null
1.1
'D' is non-null
= dyn_cast<ValueDecl>(this))
1
Assuming the object is a 'ValueDecl'
2
Taking true branch
955 Ty = D->getType();
956 else if (const auto *D = dyn_cast<TypedefNameDecl>(this))
957 Ty = D->getUnderlyingType();
958 else
959 return nullptr;
960
961 if (Ty->isFunctionPointerType())
3
Calling 'Type::isFunctionPointerType'
11
Returning from 'Type::isFunctionPointerType'
12
Taking true branch
962 Ty = Ty->getAs<PointerType>()->getPointeeType();
13
Assuming the object is not a 'PointerType'
14
Called C++ object pointer is null
963 else if (Ty->isFunctionReferenceType())
964 Ty = Ty->getAs<ReferenceType>()->getPointeeType();
965 else if (BlocksToo && Ty->isBlockPointerType())
966 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
967
968 return Ty->getAs<FunctionType>();
969}
970
971/// Starting at a given context (a Decl or DeclContext), look for a
972/// code context that is not a closure (a lambda, block, etc.).
973template <class T> static Decl *getNonClosureContext(T *D) {
974 if (getKind(D) == Decl::CXXMethod) {
975 auto *MD = cast<CXXMethodDecl>(D);
976 if (MD->getOverloadedOperator() == OO_Call &&
977 MD->getParent()->isLambda())
978 return getNonClosureContext(MD->getParent()->getParent());
979 return MD;
980 } else if (auto *FD = dyn_cast<FunctionDecl>(D))
981 return FD;
982 else if (auto *MD = dyn_cast<ObjCMethodDecl>(D))
983 return MD;
984 else if (auto *BD = dyn_cast<BlockDecl>(D))
985 return getNonClosureContext(BD->getParent());
986 else if (auto *CD = dyn_cast<CapturedDecl>(D))
987 return getNonClosureContext(CD->getParent());
988 else
989 return nullptr;
990}
991
992Decl *Decl::getNonClosureContext() {
993 return ::getNonClosureContext(this);
994}
995
996Decl *DeclContext::getNonClosureAncestor() {
997 return ::getNonClosureContext(this);
998}
999
1000//===----------------------------------------------------------------------===//
1001// DeclContext Implementation
1002//===----------------------------------------------------------------------===//
1003
1004DeclContext::DeclContext(Decl::Kind K) {
1005 DeclContextBits.DeclKind = K;
1006 setHasExternalLexicalStorage(false);
1007 setHasExternalVisibleStorage(false);
1008 setNeedToReconcileExternalVisibleStorage(false);
1009 setHasLazyLocalLexicalLookups(false);
1010 setHasLazyExternalLexicalLookups(false);
1011 setUseQualifiedLookup(false);
1012}
1013
1014bool DeclContext::classof(const Decl *D) {
1015 switch (D->getKind()) {
1016#define DECL(NAME, BASE)
1017#define DECL_CONTEXT(NAME) case Decl::NAME:
1018#define DECL_CONTEXT_BASE(NAME)
1019#include "clang/AST/DeclNodes.inc"
1020 return true;
1021 default:
1022#define DECL(NAME, BASE)
1023#define DECL_CONTEXT_BASE(NAME) \
1024 if (D->getKind() >= Decl::first##NAME && \
1025 D->getKind() <= Decl::last##NAME) \
1026 return true;
1027#include "clang/AST/DeclNodes.inc"
1028 return false;
1029 }
1030}
1031
1032DeclContext::~DeclContext() = default;
1033
1034/// Find the parent context of this context that will be
1035/// used for unqualified name lookup.
1036///
1037/// Generally, the parent lookup context is the semantic context. However, for
1038/// a friend function the parent lookup context is the lexical context, which
1039/// is the class in which the friend is declared.
1040DeclContext *DeclContext::getLookupParent() {
1041 // FIXME: Find a better way to identify friends.
1042 if (isa<FunctionDecl>(this))
1043 if (getParent()->getRedeclContext()->isFileContext() &&
1044 getLexicalParent()->getRedeclContext()->isRecord())
1045 return getLexicalParent();
1046
1047 // A lookup within the call operator of a lambda never looks in the lambda
1048 // class; instead, skip to the context in which that closure type is
1049 // declared.
1050 if (isLambdaCallOperator(this))
1051 return getParent()->getParent();
1052
1053 return getParent();
1054}
1055
1056const BlockDecl *DeclContext::getInnermostBlockDecl() const {
1057 const DeclContext *Ctx = this;
1058
1059 do {
1060 if (Ctx->isClosure())
1061 return cast<BlockDecl>(Ctx);
1062 Ctx = Ctx->getParent();
1063 } while (Ctx);
1064
1065 return nullptr;
1066}
1067
1068bool DeclContext::isInlineNamespace() const {
1069 return isNamespace() &&
1070 cast<NamespaceDecl>(this)->isInline();
1071}
1072
1073bool DeclContext::isStdNamespace() const {
1074 if (!isNamespace())
1075 return false;
1076
1077 const auto *ND = cast<NamespaceDecl>(this);
1078 if (ND->isInline()) {
1079 return ND->getParent()->isStdNamespace();
1080 }
1081
1082 if (!getParent()->getRedeclContext()->isTranslationUnit())
1083 return false;
1084
1085 const IdentifierInfo *II = ND->getIdentifier();
1086 return II && II->isStr("std");
1087}
1088
1089bool DeclContext::isDependentContext() const {
1090 if (isFileContext())
1091 return false;
1092
1093 if (isa<ClassTemplatePartialSpecializationDecl>(this))
1094 return true;
1095
1096 if (const auto *Record = dyn_cast<CXXRecordDecl>(this)) {
1097 if (Record->getDescribedClassTemplate())
1098 return true;
1099
1100 if (Record->isDependentLambda())
1101 return true;
1102 }
1103
1104 if (const auto *Function = dyn_cast<FunctionDecl>(this)) {
1105 if (Function->getDescribedFunctionTemplate())
1106 return true;
1107
1108 // Friend function declarations are dependent if their *lexical*
1109 // context is dependent.
1110 if (cast<Decl>(this)->getFriendObjectKind())
1111 return getLexicalParent()->isDependentContext();
1112 }
1113
1114 // FIXME: A variable template is a dependent context, but is not a
1115 // DeclContext. A context within it (such as a lambda-expression)
1116 // should be considered dependent.
1117
1118 return getParent() && getParent()->isDependentContext();
1119}
1120
1121bool DeclContext::isTransparentContext() const {
1122 if (getDeclKind() == Decl::Enum)
1123 return !cast<EnumDecl>(this)->isScoped();
1124 else if (getDeclKind() == Decl::LinkageSpec || getDeclKind() == Decl::Export)
1125 return true;
1126
1127 return false;
1128}
1129
1130static bool isLinkageSpecContext(const DeclContext *DC,
1131 LinkageSpecDecl::LanguageIDs ID) {
1132 while (DC->getDeclKind() != Decl::TranslationUnit) {
1133 if (DC->getDeclKind() == Decl::LinkageSpec)
1134 return cast<LinkageSpecDecl>(DC)->getLanguage() == ID;
1135 DC = DC->getLexicalParent();
1136 }
1137 return false;
1138}
1139
1140bool DeclContext::isExternCContext() const {
1141 return isLinkageSpecContext(this, LinkageSpecDecl::lang_c);
1142}
1143
1144const LinkageSpecDecl *DeclContext::getExternCContext() const {
1145 const DeclContext *DC = this;
1146 while (DC->getDeclKind() != Decl::TranslationUnit) {
1147 if (DC->getDeclKind() == Decl::LinkageSpec &&
1148 cast<LinkageSpecDecl>(DC)->getLanguage() == LinkageSpecDecl::lang_c)
1149 return cast<LinkageSpecDecl>(DC);
1150 DC = DC->getLexicalParent();
1151 }
1152 return nullptr;
1153}
1154
1155bool DeclContext::isExternCXXContext() const {
1156 return isLinkageSpecContext(this, LinkageSpecDecl::lang_cxx);
1157}
1158
1159bool DeclContext::Encloses(const DeclContext *DC) const {
1160 if (getPrimaryContext() != this)
1161 return getPrimaryContext()->Encloses(DC);
1162
1163 for (; DC; DC = DC->getParent())
1164 if (DC->getPrimaryContext() == this)
1165 return true;
1166 return false;
1167}
1168
1169DeclContext *DeclContext::getPrimaryContext() {
1170 switch (getDeclKind()) {
1171 case Decl::TranslationUnit:
1172 case Decl::ExternCContext:
1173 case Decl::LinkageSpec:
1174 case Decl::Export:
1175 case Decl::Block:
1176 case Decl::Captured:
1177 case Decl::OMPDeclareReduction:
1178 case Decl::OMPDeclareMapper:
1179 // There is only one DeclContext for these entities.
1180 return this;
1181
1182 case Decl::Namespace:
1183 // The original namespace is our primary context.
1184 return static_cast<NamespaceDecl *>(this)->getOriginalNamespace();
1185
1186 case Decl::ObjCMethod:
1187 return this;
1188
1189 case Decl::ObjCInterface:
1190 if (auto *OID = dyn_cast<ObjCInterfaceDecl>(this))
1191 if (auto *Def = OID->getDefinition())
1192 return Def;
1193 return this;
1194
1195 case Decl::ObjCProtocol:
1196 if (auto *OPD = dyn_cast<ObjCProtocolDecl>(this))
1197 if (auto *Def = OPD->getDefinition())
1198 return Def;
1199 return this;
1200
1201 case Decl::ObjCCategory:
1202 return this;
1203
1204 case Decl::ObjCImplementation:
1205 case Decl::ObjCCategoryImpl:
1206 return this;
1207
1208 default:
1209 if (getDeclKind() >= Decl::firstTag && getDeclKind() <= Decl::lastTag) {
1210 // If this is a tag type that has a definition or is currently
1211 // being defined, that definition is our primary context.
1212 auto *Tag = cast<TagDecl>(this);
1213
1214 if (TagDecl *Def = Tag->getDefinition())
1215 return Def;
1216
1217 if (const auto *TagTy = dyn_cast<TagType>(Tag->getTypeForDecl())) {
1218 // Note, TagType::getDecl returns the (partial) definition one exists.
1219 TagDecl *PossiblePartialDef = TagTy->getDecl();
1220 if (PossiblePartialDef->isBeingDefined())
1221 return PossiblePartialDef;
1222 } else {
1223 assert(isa<InjectedClassNameType>(Tag->getTypeForDecl()))((isa<InjectedClassNameType>(Tag->getTypeForDecl()))
? static_cast<void> (0) : __assert_fail ("isa<InjectedClassNameType>(Tag->getTypeForDecl())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1223, __PRETTY_FUNCTION__))
;
1224 }
1225
1226 return Tag;
1227 }
1228
1229 assert(getDeclKind() >= Decl::firstFunction &&((getDeclKind() >= Decl::firstFunction && getDeclKind
() <= Decl::lastFunction && "Unknown DeclContext kind"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() >= Decl::firstFunction && getDeclKind() <= Decl::lastFunction && \"Unknown DeclContext kind\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1231, __PRETTY_FUNCTION__))
1230 getDeclKind() <= Decl::lastFunction &&((getDeclKind() >= Decl::firstFunction && getDeclKind
() <= Decl::lastFunction && "Unknown DeclContext kind"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() >= Decl::firstFunction && getDeclKind() <= Decl::lastFunction && \"Unknown DeclContext kind\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1231, __PRETTY_FUNCTION__))
1231 "Unknown DeclContext kind")((getDeclKind() >= Decl::firstFunction && getDeclKind
() <= Decl::lastFunction && "Unknown DeclContext kind"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() >= Decl::firstFunction && getDeclKind() <= Decl::lastFunction && \"Unknown DeclContext kind\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1231, __PRETTY_FUNCTION__))
;
1232 return this;
1233 }
1234}
1235
1236void
1237DeclContext::collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts){
1238 Contexts.clear();
1239
1240 if (getDeclKind() != Decl::Namespace) {
1241 Contexts.push_back(this);
1242 return;
1243 }
1244
1245 auto *Self = static_cast<NamespaceDecl *>(this);
1246 for (NamespaceDecl *N = Self->getMostRecentDecl(); N;
1247 N = N->getPreviousDecl())
1248 Contexts.push_back(N);
1249
1250 std::reverse(Contexts.begin(), Contexts.end());
1251}
1252
1253std::pair<Decl *, Decl *>
1254DeclContext::BuildDeclChain(ArrayRef<Decl *> Decls,
1255 bool FieldsAlreadyLoaded) {
1256 // Build up a chain of declarations via the Decl::NextInContextAndBits field.
1257 Decl *FirstNewDecl = nullptr;
1258 Decl *PrevDecl = nullptr;
1259 for (auto *D : Decls) {
1260 if (FieldsAlreadyLoaded && isa<FieldDecl>(D))
1261 continue;
1262
1263 if (PrevDecl)
1264 PrevDecl->NextInContextAndBits.setPointer(D);
1265 else
1266 FirstNewDecl = D;
1267
1268 PrevDecl = D;
1269 }
1270
1271 return std::make_pair(FirstNewDecl, PrevDecl);
1272}
1273
1274/// We have just acquired external visible storage, and we already have
1275/// built a lookup map. For every name in the map, pull in the new names from
1276/// the external storage.
1277void DeclContext::reconcileExternalVisibleStorage() const {
1278 assert(hasNeedToReconcileExternalVisibleStorage() && LookupPtr)((hasNeedToReconcileExternalVisibleStorage() && LookupPtr
) ? static_cast<void> (0) : __assert_fail ("hasNeedToReconcileExternalVisibleStorage() && LookupPtr"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1278, __PRETTY_FUNCTION__))
;
1279 setNeedToReconcileExternalVisibleStorage(false);
1280
1281 for (auto &Lookup : *LookupPtr)
1282 Lookup.second.setHasExternalDecls();
1283}
1284
1285/// Load the declarations within this lexical storage from an
1286/// external source.
1287/// \return \c true if any declarations were added.
1288bool
1289DeclContext::LoadLexicalDeclsFromExternalStorage() const {
1290 ExternalASTSource *Source = getParentASTContext().getExternalSource();
1291 assert(hasExternalLexicalStorage() && Source && "No external storage?")((hasExternalLexicalStorage() && Source && "No external storage?"
) ? static_cast<void> (0) : __assert_fail ("hasExternalLexicalStorage() && Source && \"No external storage?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1291, __PRETTY_FUNCTION__))
;
1292
1293 // Notify that we have a DeclContext that is initializing.
1294 ExternalASTSource::Deserializing ADeclContext(Source);
1295
1296 // Load the external declarations, if any.
1297 SmallVector<Decl*, 64> Decls;
1298 setHasExternalLexicalStorage(false);
1299 Source->FindExternalLexicalDecls(this, Decls);
1300
1301 if (Decls.empty())
1302 return false;
1303
1304 // We may have already loaded just the fields of this record, in which case
1305 // we need to ignore them.
1306 bool FieldsAlreadyLoaded = false;
1307 if (const auto *RD = dyn_cast<RecordDecl>(this))
1308 FieldsAlreadyLoaded = RD->hasLoadedFieldsFromExternalStorage();
1309
1310 // Splice the newly-read declarations into the beginning of the list
1311 // of declarations.
1312 Decl *ExternalFirst, *ExternalLast;
1313 std::tie(ExternalFirst, ExternalLast) =
1314 BuildDeclChain(Decls, FieldsAlreadyLoaded);
1315 ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
1316 FirstDecl = ExternalFirst;
1317 if (!LastDecl)
1318 LastDecl = ExternalLast;
1319 return true;
1320}
1321
1322DeclContext::lookup_result
1323ExternalASTSource::SetNoExternalVisibleDeclsForName(const DeclContext *DC,
1324 DeclarationName Name) {
1325 ASTContext &Context = DC->getParentASTContext();
1326 StoredDeclsMap *Map;
1327 if (!(Map = DC->LookupPtr))
1328 Map = DC->CreateStoredDeclsMap(Context);
1329 if (DC->hasNeedToReconcileExternalVisibleStorage())
1330 DC->reconcileExternalVisibleStorage();
1331
1332 (*Map)[Name].removeExternalDecls();
1333
1334 return DeclContext::lookup_result();
1335}
1336
1337DeclContext::lookup_result
1338ExternalASTSource::SetExternalVisibleDeclsForName(const DeclContext *DC,
1339 DeclarationName Name,
1340 ArrayRef<NamedDecl*> Decls) {
1341 ASTContext &Context = DC->getParentASTContext();
1342 StoredDeclsMap *Map;
1343 if (!(Map = DC->LookupPtr))
1344 Map = DC->CreateStoredDeclsMap(Context);
1345 if (DC->hasNeedToReconcileExternalVisibleStorage())
1346 DC->reconcileExternalVisibleStorage();
1347
1348 StoredDeclsList &List = (*Map)[Name];
1349
1350 // Clear out any old external visible declarations, to avoid quadratic
1351 // performance in the redeclaration checks below.
1352 List.removeExternalDecls();
1353
1354 if (!List.isNull()) {
1355 // We have both existing declarations and new declarations for this name.
1356 // Some of the declarations may simply replace existing ones. Handle those
1357 // first.
1358 llvm::SmallVector<unsigned, 8> Skip;
1359 for (unsigned I = 0, N = Decls.size(); I != N; ++I)
1360 if (List.HandleRedeclaration(Decls[I], /*IsKnownNewer*/false))
1361 Skip.push_back(I);
1362 Skip.push_back(Decls.size());
1363
1364 // Add in any new declarations.
1365 unsigned SkipPos = 0;
1366 for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
1367 if (I == Skip[SkipPos])
1368 ++SkipPos;
1369 else
1370 List.AddSubsequentDecl(Decls[I]);
1371 }
1372 } else {
1373 // Convert the array to a StoredDeclsList.
1374 for (auto *D : Decls) {
1375 if (List.isNull())
1376 List.setOnlyValue(D);
1377 else
1378 List.AddSubsequentDecl(D);
1379 }
1380 }
1381
1382 return List.getLookupResult();
1383}
1384
1385DeclContext::decl_iterator DeclContext::decls_begin() const {
1386 if (hasExternalLexicalStorage())
1387 LoadLexicalDeclsFromExternalStorage();
1388 return decl_iterator(FirstDecl);
1389}
1390
1391bool DeclContext::decls_empty() const {
1392 if (hasExternalLexicalStorage())
1393 LoadLexicalDeclsFromExternalStorage();
1394
1395 return !FirstDecl;
1396}
1397
1398bool DeclContext::containsDecl(Decl *D) const {
1399 return (D->getLexicalDeclContext() == this &&
1400 (D->NextInContextAndBits.getPointer() || D == LastDecl));
1401}
1402
1403bool DeclContext::containsDeclAndLoad(Decl *D) const {
1404 if (hasExternalLexicalStorage())
1405 LoadLexicalDeclsFromExternalStorage();
1406 return containsDecl(D);
1407}
1408
1409/// shouldBeHidden - Determine whether a declaration which was declared
1410/// within its semantic context should be invisible to qualified name lookup.
1411static bool shouldBeHidden(NamedDecl *D) {
1412 // Skip unnamed declarations.
1413 if (!D->getDeclName())
1414 return true;
1415
1416 // Skip entities that can't be found by name lookup into a particular
1417 // context.
1418 if ((D->getIdentifierNamespace() == 0 && !isa<UsingDirectiveDecl>(D)) ||
1419 D->isTemplateParameter())
1420 return true;
1421
1422 // Skip friends and local extern declarations unless they're the first
1423 // declaration of the entity.
1424 if ((D->isLocalExternDecl() || D->getFriendObjectKind()) &&
1425 D != D->getCanonicalDecl())
1426 return true;
1427
1428 // Skip template specializations.
1429 // FIXME: This feels like a hack. Should DeclarationName support
1430 // template-ids, or is there a better way to keep specializations
1431 // from being visible?
1432 if (isa<ClassTemplateSpecializationDecl>(D))
1433 return true;
1434 if (auto *FD = dyn_cast<FunctionDecl>(D))
1435 if (FD->isFunctionTemplateSpecialization())
1436 return true;
1437
1438 return false;
1439}
1440
1441void DeclContext::removeDecl(Decl *D) {
1442 assert(D->getLexicalDeclContext() == this &&((D->getLexicalDeclContext() == this && "decl being removed from non-lexical context"
) ? static_cast<void> (0) : __assert_fail ("D->getLexicalDeclContext() == this && \"decl being removed from non-lexical context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1443, __PRETTY_FUNCTION__))
1443 "decl being removed from non-lexical context")((D->getLexicalDeclContext() == this && "decl being removed from non-lexical context"
) ? static_cast<void> (0) : __assert_fail ("D->getLexicalDeclContext() == this && \"decl being removed from non-lexical context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1443, __PRETTY_FUNCTION__))
;
1444 assert((D->NextInContextAndBits.getPointer() || D == LastDecl) &&(((D->NextInContextAndBits.getPointer() || D == LastDecl) &&
"decl is not in decls list") ? static_cast<void> (0) :
__assert_fail ("(D->NextInContextAndBits.getPointer() || D == LastDecl) && \"decl is not in decls list\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1445, __PRETTY_FUNCTION__))
1445 "decl is not in decls list")(((D->NextInContextAndBits.getPointer() || D == LastDecl) &&
"decl is not in decls list") ? static_cast<void> (0) :
__assert_fail ("(D->NextInContextAndBits.getPointer() || D == LastDecl) && \"decl is not in decls list\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1445, __PRETTY_FUNCTION__))
;
1446
1447 // Remove D from the decl chain. This is O(n) but hopefully rare.
1448 if (D == FirstDecl) {
1449 if (D == LastDecl)
1450 FirstDecl = LastDecl = nullptr;
1451 else
1452 FirstDecl = D->NextInContextAndBits.getPointer();
1453 } else {
1454 for (Decl *I = FirstDecl; true; I = I->NextInContextAndBits.getPointer()) {
1455 assert(I && "decl not found in linked list")((I && "decl not found in linked list") ? static_cast
<void> (0) : __assert_fail ("I && \"decl not found in linked list\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1455, __PRETTY_FUNCTION__))
;
1456 if (I->NextInContextAndBits.getPointer() == D) {
1457 I->NextInContextAndBits.setPointer(D->NextInContextAndBits.getPointer());
1458 if (D == LastDecl) LastDecl = I;
1459 break;
1460 }
1461 }
1462 }
1463
1464 // Mark that D is no longer in the decl chain.
1465 D->NextInContextAndBits.setPointer(nullptr);
1466
1467 // Remove D from the lookup table if necessary.
1468 if (isa<NamedDecl>(D)) {
1469 auto *ND = cast<NamedDecl>(D);
1470
1471 // Do not try to remove the declaration if that is invisible to qualified
1472 // lookup. E.g. template specializations are skipped.
1473 if (shouldBeHidden(ND))
1474 return;
1475
1476 // Remove only decls that have a name
1477 if (!ND->getDeclName())
1478 return;
1479
1480 auto *DC = D->getDeclContext();
1481 do {
1482 StoredDeclsMap *Map = DC->getPrimaryContext()->LookupPtr;
1483 if (Map) {
1484 StoredDeclsMap::iterator Pos = Map->find(ND->getDeclName());
1485 assert(Pos != Map->end() && "no lookup entry for decl")((Pos != Map->end() && "no lookup entry for decl")
? static_cast<void> (0) : __assert_fail ("Pos != Map->end() && \"no lookup entry for decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1485, __PRETTY_FUNCTION__))
;
1486 // Remove the decl only if it is contained.
1487 StoredDeclsList::DeclsTy *Vec = Pos->second.getAsVector();
1488 if ((Vec && is_contained(*Vec, ND)) || Pos->second.getAsDecl() == ND)
1489 Pos->second.remove(ND);
1490 }
1491 } while (DC->isTransparentContext() && (DC = DC->getParent()));
1492 }
1493}
1494
1495void DeclContext::addHiddenDecl(Decl *D) {
1496 assert(D->getLexicalDeclContext() == this &&((D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context"
) ? static_cast<void> (0) : __assert_fail ("D->getLexicalDeclContext() == this && \"Decl inserted into wrong lexical context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1497, __PRETTY_FUNCTION__))
1497 "Decl inserted into wrong lexical context")((D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context"
) ? static_cast<void> (0) : __assert_fail ("D->getLexicalDeclContext() == this && \"Decl inserted into wrong lexical context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1497, __PRETTY_FUNCTION__))
;
1498 assert(!D->getNextDeclInContext() && D != LastDecl &&((!D->getNextDeclInContext() && D != LastDecl &&
"Decl already inserted into a DeclContext") ? static_cast<
void> (0) : __assert_fail ("!D->getNextDeclInContext() && D != LastDecl && \"Decl already inserted into a DeclContext\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1499, __PRETTY_FUNCTION__))
1499 "Decl already inserted into a DeclContext")((!D->getNextDeclInContext() && D != LastDecl &&
"Decl already inserted into a DeclContext") ? static_cast<
void> (0) : __assert_fail ("!D->getNextDeclInContext() && D != LastDecl && \"Decl already inserted into a DeclContext\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1499, __PRETTY_FUNCTION__))
;
1500
1501 if (FirstDecl) {
1502 LastDecl->NextInContextAndBits.setPointer(D);
1503 LastDecl = D;
1504 } else {
1505 FirstDecl = LastDecl = D;
1506 }
1507
1508 // Notify a C++ record declaration that we've added a member, so it can
1509 // update its class-specific state.
1510 if (auto *Record = dyn_cast<CXXRecordDecl>(this))
1511 Record->addedMember(D);
1512
1513 // If this is a newly-created (not de-serialized) import declaration, wire
1514 // it in to the list of local import declarations.
1515 if (!D->isFromASTFile()) {
1516 if (auto *Import = dyn_cast<ImportDecl>(D))
1517 D->getASTContext().addedLocalImportDecl(Import);
1518 }
1519}
1520
1521void DeclContext::addDecl(Decl *D) {
1522 addHiddenDecl(D);
1523
1524 if (auto *ND = dyn_cast<NamedDecl>(D))
1525 ND->getDeclContext()->getPrimaryContext()->
1526 makeDeclVisibleInContextWithFlags(ND, false, true);
1527}
1528
1529void DeclContext::addDeclInternal(Decl *D) {
1530 addHiddenDecl(D);
1531
1532 if (auto *ND = dyn_cast<NamedDecl>(D))
1533 ND->getDeclContext()->getPrimaryContext()->
1534 makeDeclVisibleInContextWithFlags(ND, true, true);
1535}
1536
1537/// buildLookup - Build the lookup data structure with all of the
1538/// declarations in this DeclContext (and any other contexts linked
1539/// to it or transparent contexts nested within it) and return it.
1540///
1541/// Note that the produced map may miss out declarations from an
1542/// external source. If it does, those entries will be marked with
1543/// the 'hasExternalDecls' flag.
1544StoredDeclsMap *DeclContext::buildLookup() {
1545 assert(this == getPrimaryContext() && "buildLookup called on non-primary DC")((this == getPrimaryContext() && "buildLookup called on non-primary DC"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"buildLookup called on non-primary DC\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1545, __PRETTY_FUNCTION__))
;
1546
1547 if (!hasLazyLocalLexicalLookups() &&
1548 !hasLazyExternalLexicalLookups())
1549 return LookupPtr;
1550
1551 SmallVector<DeclContext *, 2> Contexts;
1552 collectAllContexts(Contexts);
1553
1554 if (hasLazyExternalLexicalLookups()) {
1555 setHasLazyExternalLexicalLookups(false);
1556 for (auto *DC : Contexts) {
1557 if (DC->hasExternalLexicalStorage()) {
1558 bool LoadedDecls = DC->LoadLexicalDeclsFromExternalStorage();
1559 setHasLazyLocalLexicalLookups(
1560 hasLazyLocalLexicalLookups() | LoadedDecls );
1561 }
1562 }
1563
1564 if (!hasLazyLocalLexicalLookups())
1565 return LookupPtr;
1566 }
1567
1568 for (auto *DC : Contexts)
1569 buildLookupImpl(DC, hasExternalVisibleStorage());
1570
1571 // We no longer have any lazy decls.
1572 setHasLazyLocalLexicalLookups(false);
1573 return LookupPtr;
1574}
1575
1576/// buildLookupImpl - Build part of the lookup data structure for the
1577/// declarations contained within DCtx, which will either be this
1578/// DeclContext, a DeclContext linked to it, or a transparent context
1579/// nested within it.
1580void DeclContext::buildLookupImpl(DeclContext *DCtx, bool Internal) {
1581 for (auto *D : DCtx->noload_decls()) {
1582 // Insert this declaration into the lookup structure, but only if
1583 // it's semantically within its decl context. Any other decls which
1584 // should be found in this context are added eagerly.
1585 //
1586 // If it's from an AST file, don't add it now. It'll get handled by
1587 // FindExternalVisibleDeclsByName if needed. Exception: if we're not
1588 // in C++, we do not track external visible decls for the TU, so in
1589 // that case we need to collect them all here.
1590 if (auto *ND = dyn_cast<NamedDecl>(D))
1591 if (ND->getDeclContext() == DCtx && !shouldBeHidden(ND) &&
1592 (!ND->isFromASTFile() ||
1593 (isTranslationUnit() &&
1594 !getParentASTContext().getLangOpts().CPlusPlus)))
1595 makeDeclVisibleInContextImpl(ND, Internal);
1596
1597 // If this declaration is itself a transparent declaration context
1598 // or inline namespace, add the members of this declaration of that
1599 // context (recursively).
1600 if (auto *InnerCtx = dyn_cast<DeclContext>(D))
1601 if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
1602 buildLookupImpl(InnerCtx, Internal);
1603 }
1604}
1605
1606NamedDecl *const DeclContextLookupResult::SingleElementDummyList = nullptr;
1607
1608DeclContext::lookup_result
1609DeclContext::lookup(DeclarationName Name) const {
1610 assert(getDeclKind() != Decl::LinkageSpec &&((getDeclKind() != Decl::LinkageSpec && getDeclKind()
!= Decl::Export && "should not perform lookups into transparent contexts"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && \"should not perform lookups into transparent contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1612, __PRETTY_FUNCTION__))
1611 getDeclKind() != Decl::Export &&((getDeclKind() != Decl::LinkageSpec && getDeclKind()
!= Decl::Export && "should not perform lookups into transparent contexts"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && \"should not perform lookups into transparent contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1612, __PRETTY_FUNCTION__))
1612 "should not perform lookups into transparent contexts")((getDeclKind() != Decl::LinkageSpec && getDeclKind()
!= Decl::Export && "should not perform lookups into transparent contexts"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && \"should not perform lookups into transparent contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1612, __PRETTY_FUNCTION__))
;
1613
1614 const DeclContext *PrimaryContext = getPrimaryContext();
1615 if (PrimaryContext != this)
1616 return PrimaryContext->lookup(Name);
1617
1618 // If we have an external source, ensure that any later redeclarations of this
1619 // context have been loaded, since they may add names to the result of this
1620 // lookup (or add external visible storage).
1621 ExternalASTSource *Source = getParentASTContext().getExternalSource();
1622 if (Source)
1623 (void)cast<Decl>(this)->getMostRecentDecl();
1624
1625 if (hasExternalVisibleStorage()) {
1626 assert(Source && "external visible storage but no external source?")((Source && "external visible storage but no external source?"
) ? static_cast<void> (0) : __assert_fail ("Source && \"external visible storage but no external source?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1626, __PRETTY_FUNCTION__))
;
1627
1628 if (hasNeedToReconcileExternalVisibleStorage())
1629 reconcileExternalVisibleStorage();
1630
1631 StoredDeclsMap *Map = LookupPtr;
1632
1633 if (hasLazyLocalLexicalLookups() ||
1634 hasLazyExternalLexicalLookups())
1635 // FIXME: Make buildLookup const?
1636 Map = const_cast<DeclContext*>(this)->buildLookup();
1637
1638 if (!Map)
1639 Map = CreateStoredDeclsMap(getParentASTContext());
1640
1641 // If we have a lookup result with no external decls, we are done.
1642 std::pair<StoredDeclsMap::iterator, bool> R =
1643 Map->insert(std::make_pair(Name, StoredDeclsList()));
1644 if (!R.second && !R.first->second.hasExternalDecls())
1645 return R.first->second.getLookupResult();
1646
1647 if (Source->FindExternalVisibleDeclsByName(this, Name) || !R.second) {
1648 if (StoredDeclsMap *Map = LookupPtr) {
1649 StoredDeclsMap::iterator I = Map->find(Name);
1650 if (I != Map->end())
1651 return I->second.getLookupResult();
1652 }
1653 }
1654
1655 return {};
1656 }
1657
1658 StoredDeclsMap *Map = LookupPtr;
1659 if (hasLazyLocalLexicalLookups() ||
1660 hasLazyExternalLexicalLookups())
1661 Map = const_cast<DeclContext*>(this)->buildLookup();
1662
1663 if (!Map)
1664 return {};
1665
1666 StoredDeclsMap::iterator I = Map->find(Name);
1667 if (I == Map->end())
1668 return {};
1669
1670 return I->second.getLookupResult();
1671}
1672
1673DeclContext::lookup_result
1674DeclContext::noload_lookup(DeclarationName Name) {
1675 assert(getDeclKind() != Decl::LinkageSpec &&((getDeclKind() != Decl::LinkageSpec && getDeclKind()
!= Decl::Export && "should not perform lookups into transparent contexts"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && \"should not perform lookups into transparent contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1677, __PRETTY_FUNCTION__))
1676 getDeclKind() != Decl::Export &&((getDeclKind() != Decl::LinkageSpec && getDeclKind()
!= Decl::Export && "should not perform lookups into transparent contexts"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && \"should not perform lookups into transparent contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1677, __PRETTY_FUNCTION__))
1677 "should not perform lookups into transparent contexts")((getDeclKind() != Decl::LinkageSpec && getDeclKind()
!= Decl::Export && "should not perform lookups into transparent contexts"
) ? static_cast<void> (0) : __assert_fail ("getDeclKind() != Decl::LinkageSpec && getDeclKind() != Decl::Export && \"should not perform lookups into transparent contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1677, __PRETTY_FUNCTION__))
;
1678
1679 DeclContext *PrimaryContext = getPrimaryContext();
1680 if (PrimaryContext != this)
1681 return PrimaryContext->noload_lookup(Name);
1682
1683 loadLazyLocalLexicalLookups();
1684 StoredDeclsMap *Map = LookupPtr;
1685 if (!Map)
1686 return {};
1687
1688 StoredDeclsMap::iterator I = Map->find(Name);
1689 return I != Map->end() ? I->second.getLookupResult()
1690 : lookup_result();
1691}
1692
1693// If we have any lazy lexical declarations not in our lookup map, add them
1694// now. Don't import any external declarations, not even if we know we have
1695// some missing from the external visible lookups.
1696void DeclContext::loadLazyLocalLexicalLookups() {
1697 if (hasLazyLocalLexicalLookups()) {
1698 SmallVector<DeclContext *, 2> Contexts;
1699 collectAllContexts(Contexts);
1700 for (auto *Context : Contexts)
1701 buildLookupImpl(Context, hasExternalVisibleStorage());
1702 setHasLazyLocalLexicalLookups(false);
1703 }
1704}
1705
1706void DeclContext::localUncachedLookup(DeclarationName Name,
1707 SmallVectorImpl<NamedDecl *> &Results) {
1708 Results.clear();
1709
1710 // If there's no external storage, just perform a normal lookup and copy
1711 // the results.
1712 if (!hasExternalVisibleStorage() && !hasExternalLexicalStorage() && Name) {
1713 lookup_result LookupResults = lookup(Name);
1714 Results.insert(Results.end(), LookupResults.begin(), LookupResults.end());
1715 return;
1716 }
1717
1718 // If we have a lookup table, check there first. Maybe we'll get lucky.
1719 // FIXME: Should we be checking these flags on the primary context?
1720 if (Name && !hasLazyLocalLexicalLookups() &&
1721 !hasLazyExternalLexicalLookups()) {
1722 if (StoredDeclsMap *Map = LookupPtr) {
1723 StoredDeclsMap::iterator Pos = Map->find(Name);
1724 if (Pos != Map->end()) {
1725 Results.insert(Results.end(),
1726 Pos->second.getLookupResult().begin(),
1727 Pos->second.getLookupResult().end());
1728 return;
1729 }
1730 }
1731 }
1732
1733 // Slow case: grovel through the declarations in our chain looking for
1734 // matches.
1735 // FIXME: If we have lazy external declarations, this will not find them!
1736 // FIXME: Should we CollectAllContexts and walk them all here?
1737 for (Decl *D = FirstDecl; D; D = D->getNextDeclInContext()) {
1738 if (auto *ND = dyn_cast<NamedDecl>(D))
1739 if (ND->getDeclName() == Name)
1740 Results.push_back(ND);
1741 }
1742}
1743
1744DeclContext *DeclContext::getRedeclContext() {
1745 DeclContext *Ctx = this;
1746
1747 // In C, a record type is the redeclaration context for its fields only. If
1748 // we arrive at a record context after skipping anything else, we should skip
1749 // the record as well. Currently, this means skipping enumerations because
1750 // they're the only transparent context that can exist within a struct or
1751 // union.
1752 bool SkipRecords = getDeclKind() == Decl::Kind::Enum &&
1753 !getParentASTContext().getLangOpts().CPlusPlus;
1754
1755 // Skip through contexts to get to the redeclaration context. Transparent
1756 // contexts are always skipped.
1757 while ((SkipRecords && Ctx->isRecord()) || Ctx->isTransparentContext())
1758 Ctx = Ctx->getParent();
1759 return Ctx;
1760}
1761
1762DeclContext *DeclContext::getEnclosingNamespaceContext() {
1763 DeclContext *Ctx = this;
1764 // Skip through non-namespace, non-translation-unit contexts.
1765 while (!Ctx->isFileContext())
1766 Ctx = Ctx->getParent();
1767 return Ctx->getPrimaryContext();
1768}
1769
1770RecordDecl *DeclContext::getOuterLexicalRecordContext() {
1771 // Loop until we find a non-record context.
1772 RecordDecl *OutermostRD = nullptr;
1773 DeclContext *DC = this;
1774 while (DC->isRecord()) {
1775 OutermostRD = cast<RecordDecl>(DC);
1776 DC = DC->getLexicalParent();
1777 }
1778 return OutermostRD;
1779}
1780
1781bool DeclContext::InEnclosingNamespaceSetOf(const DeclContext *O) const {
1782 // For non-file contexts, this is equivalent to Equals.
1783 if (!isFileContext())
1784 return O->Equals(this);
1785
1786 do {
1787 if (O->Equals(this))
1788 return true;
1789
1790 const auto *NS = dyn_cast<NamespaceDecl>(O);
1791 if (!NS || !NS->isInline())
1792 break;
1793 O = NS->getParent();
1794 } while (O);
1795
1796 return false;
1797}
1798
1799void DeclContext::makeDeclVisibleInContext(NamedDecl *D) {
1800 DeclContext *PrimaryDC = this->getPrimaryContext();
1801 DeclContext *DeclDC = D->getDeclContext()->getPrimaryContext();
1802 // If the decl is being added outside of its semantic decl context, we
1803 // need to ensure that we eagerly build the lookup information for it.
1804 PrimaryDC->makeDeclVisibleInContextWithFlags(D, false, PrimaryDC == DeclDC);
1805}
1806
1807void DeclContext::makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
1808 bool Recoverable) {
1809 assert(this == getPrimaryContext() && "expected a primary DC")((this == getPrimaryContext() && "expected a primary DC"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"expected a primary DC\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 if (!isLookupContext()) {
1812 if (isTransparentContext())
1813 getParent()->getPrimaryContext()
1814 ->makeDeclVisibleInContextWithFlags(D, Internal, Recoverable);
1815 return;
1816 }
1817
1818 // Skip declarations which should be invisible to name lookup.
1819 if (shouldBeHidden(D))
1820 return;
1821
1822 // If we already have a lookup data structure, perform the insertion into
1823 // it. If we might have externally-stored decls with this name, look them
1824 // up and perform the insertion. If this decl was declared outside its
1825 // semantic context, buildLookup won't add it, so add it now.
1826 //
1827 // FIXME: As a performance hack, don't add such decls into the translation
1828 // unit unless we're in C++, since qualified lookup into the TU is never
1829 // performed.
1830 if (LookupPtr || hasExternalVisibleStorage() ||
1831 ((!Recoverable || D->getDeclContext() != D->getLexicalDeclContext()) &&
1832 (getParentASTContext().getLangOpts().CPlusPlus ||
1833 !isTranslationUnit()))) {
1834 // If we have lazily omitted any decls, they might have the same name as
1835 // the decl which we are adding, so build a full lookup table before adding
1836 // this decl.
1837 buildLookup();
1838 makeDeclVisibleInContextImpl(D, Internal);
1839 } else {
1840 setHasLazyLocalLexicalLookups(true);
1841 }
1842
1843 // If we are a transparent context or inline namespace, insert into our
1844 // parent context, too. This operation is recursive.
1845 if (isTransparentContext() || isInlineNamespace())
1846 getParent()->getPrimaryContext()->
1847 makeDeclVisibleInContextWithFlags(D, Internal, Recoverable);
1848
1849 auto *DCAsDecl = cast<Decl>(this);
1850 // Notify that a decl was made visible unless we are a Tag being defined.
1851 if (!(isa<TagDecl>(DCAsDecl) && cast<TagDecl>(DCAsDecl)->isBeingDefined()))
1852 if (ASTMutationListener *L = DCAsDecl->getASTMutationListener())
1853 L->AddedVisibleDecl(this, D);
1854}
1855
1856void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal) {
1857 // Find or create the stored declaration map.
1858 StoredDeclsMap *Map = LookupPtr;
1859 if (!Map) {
1860 ASTContext *C = &getParentASTContext();
1861 Map = CreateStoredDeclsMap(*C);
1862 }
1863
1864 // If there is an external AST source, load any declarations it knows about
1865 // with this declaration's name.
1866 // If the lookup table contains an entry about this name it means that we
1867 // have already checked the external source.
1868 if (!Internal)
1869 if (ExternalASTSource *Source = getParentASTContext().getExternalSource())
1870 if (hasExternalVisibleStorage() &&
1871 Map->find(D->getDeclName()) == Map->end())
1872 Source->FindExternalVisibleDeclsByName(this, D->getDeclName());
1873
1874 // Insert this declaration into the map.
1875 StoredDeclsList &DeclNameEntries = (*Map)[D->getDeclName()];
1876
1877 if (Internal) {
1878 // If this is being added as part of loading an external declaration,
1879 // this may not be the only external declaration with this name.
1880 // In this case, we never try to replace an existing declaration; we'll
1881 // handle that when we finalize the list of declarations for this name.
1882 DeclNameEntries.setHasExternalDecls();
1883 DeclNameEntries.AddSubsequentDecl(D);
1884 return;
1885 }
1886
1887 if (DeclNameEntries.isNull()) {
1888 DeclNameEntries.setOnlyValue(D);
1889 return;
1890 }
1891
1892 if (DeclNameEntries.HandleRedeclaration(D, /*IsKnownNewer*/!Internal)) {
1893 // This declaration has replaced an existing one for which
1894 // declarationReplaces returns true.
1895 return;
1896 }
1897
1898 // Put this declaration into the appropriate slot.
1899 DeclNameEntries.AddSubsequentDecl(D);
1900}
1901
1902UsingDirectiveDecl *DeclContext::udir_iterator::operator*() const {
1903 return cast<UsingDirectiveDecl>(*I);
1904}
1905
1906/// Returns iterator range [First, Last) of UsingDirectiveDecls stored within
1907/// this context.
1908DeclContext::udir_range DeclContext::using_directives() const {
1909 // FIXME: Use something more efficient than normal lookup for using
1910 // directives. In C++, using directives are looked up more than anything else.
1911 lookup_result Result = lookup(UsingDirectiveDecl::getName());
1912 return udir_range(Result.begin(), Result.end());
1913}
1914
1915//===----------------------------------------------------------------------===//
1916// Creation and Destruction of StoredDeclsMaps. //
1917//===----------------------------------------------------------------------===//
1918
1919StoredDeclsMap *DeclContext::CreateStoredDeclsMap(ASTContext &C) const {
1920 assert(!LookupPtr && "context already has a decls map")((!LookupPtr && "context already has a decls map") ? static_cast
<void> (0) : __assert_fail ("!LookupPtr && \"context already has a decls map\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1920, __PRETTY_FUNCTION__))
;
1921 assert(getPrimaryContext() == this &&((getPrimaryContext() == this && "creating decls map on non-primary context"
) ? static_cast<void> (0) : __assert_fail ("getPrimaryContext() == this && \"creating decls map on non-primary context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1922, __PRETTY_FUNCTION__))
1922 "creating decls map on non-primary context")((getPrimaryContext() == this && "creating decls map on non-primary context"
) ? static_cast<void> (0) : __assert_fail ("getPrimaryContext() == this && \"creating decls map on non-primary context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1922, __PRETTY_FUNCTION__))
;
1923
1924 StoredDeclsMap *M;
1925 bool Dependent = isDependentContext();
1926 if (Dependent)
1927 M = new DependentStoredDeclsMap();
1928 else
1929 M = new StoredDeclsMap();
1930 M->Previous = C.LastSDM;
1931 C.LastSDM = llvm::PointerIntPair<StoredDeclsMap*,1>(M, Dependent);
1932 LookupPtr = M;
1933 return M;
1934}
1935
1936void ASTContext::ReleaseDeclContextMaps() {
1937 // It's okay to delete DependentStoredDeclsMaps via a StoredDeclsMap
1938 // pointer because the subclass doesn't add anything that needs to
1939 // be deleted.
1940 StoredDeclsMap::DestroyAll(LastSDM.getPointer(), LastSDM.getInt());
1941}
1942
1943void StoredDeclsMap::DestroyAll(StoredDeclsMap *Map, bool Dependent) {
1944 while (Map) {
1945 // Advance the iteration before we invalidate memory.
1946 llvm::PointerIntPair<StoredDeclsMap*,1> Next = Map->Previous;
1947
1948 if (Dependent)
1949 delete static_cast<DependentStoredDeclsMap*>(Map);
1950 else
1951 delete Map;
1952
1953 Map = Next.getPointer();
1954 Dependent = Next.getInt();
1955 }
1956}
1957
1958DependentDiagnostic *DependentDiagnostic::Create(ASTContext &C,
1959 DeclContext *Parent,
1960 const PartialDiagnostic &PDiag) {
1961 assert(Parent->isDependentContext()((Parent->isDependentContext() && "cannot iterate dependent diagnostics of non-dependent context"
) ? static_cast<void> (0) : __assert_fail ("Parent->isDependentContext() && \"cannot iterate dependent diagnostics of non-dependent context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1962, __PRETTY_FUNCTION__))
1962 && "cannot iterate dependent diagnostics of non-dependent context")((Parent->isDependentContext() && "cannot iterate dependent diagnostics of non-dependent context"
) ? static_cast<void> (0) : __assert_fail ("Parent->isDependentContext() && \"cannot iterate dependent diagnostics of non-dependent context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/AST/DeclBase.cpp"
, 1962, __PRETTY_FUNCTION__))
;
1963 Parent = Parent->getPrimaryContext();
1964 if (!Parent->LookupPtr)
1965 Parent->CreateStoredDeclsMap(C);
1966
1967 auto *Map = static_cast<DependentStoredDeclsMap *>(Parent->LookupPtr);
1968
1969 // Allocate the copy of the PartialDiagnostic via the ASTContext's
1970 // BumpPtrAllocator, rather than the ASTContext itself.
1971 PartialDiagnostic::Storage *DiagStorage = nullptr;
1972 if (PDiag.hasStorage())
1973 DiagStorage = new (C) PartialDiagnostic::Storage;
1974
1975 auto *DD = new (C) DependentDiagnostic(PDiag, DiagStorage);
1976
1977 // TODO: Maybe we shouldn't reverse the order during insertion.
1978 DD->NextDiagnostic = Map->FirstDiagnostic;
1979 Map->FirstDiagnostic = DD;
1980
1981 return DD;
1982}

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Check if this is or contains a C union that is non-trivial to
1165 /// default-initialize, which is a union that has a member that is non-trivial
1166 /// to default-initialize. If this returns true,
1167 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1168 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1169
1170 /// Check if this is or contains a C union that is non-trivial to destruct,
1171 /// which is a union that has a member that is non-trivial to destruct. If
1172 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1173 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1174
1175 /// Check if this is or contains a C union that is non-trivial to copy, which
1176 /// is a union that has a member that is non-trivial to copy. If this returns
1177 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1178 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1179
1180 /// Determine whether expressions of the given type are forbidden
1181 /// from being lvalues in C.
1182 ///
1183 /// The expression types that are forbidden to be lvalues are:
1184 /// - 'void', but not qualified void
1185 /// - function types
1186 ///
1187 /// The exact rule here is C99 6.3.2.1:
1188 /// An lvalue is an expression with an object type or an incomplete
1189 /// type other than void.
1190 bool isCForbiddenLValueType() const;
1191
1192 /// Substitute type arguments for the Objective-C type parameters used in the
1193 /// subject type.
1194 ///
1195 /// \param ctx ASTContext in which the type exists.
1196 ///
1197 /// \param typeArgs The type arguments that will be substituted for the
1198 /// Objective-C type parameters in the subject type, which are generally
1199 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1200 /// parameters will be replaced with their bounds or id/Class, as appropriate
1201 /// for the context.
1202 ///
1203 /// \param context The context in which the subject type was written.
1204 ///
1205 /// \returns the resulting type.
1206 QualType substObjCTypeArgs(ASTContext &ctx,
1207 ArrayRef<QualType> typeArgs,
1208 ObjCSubstitutionContext context) const;
1209
1210 /// Substitute type arguments from an object type for the Objective-C type
1211 /// parameters used in the subject type.
1212 ///
1213 /// This operation combines the computation of type arguments for
1214 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1215 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1216 /// callers that need to perform a single substitution in isolation.
1217 ///
1218 /// \param objectType The type of the object whose member type we're
1219 /// substituting into. For example, this might be the receiver of a message
1220 /// or the base of a property access.
1221 ///
1222 /// \param dc The declaration context from which the subject type was
1223 /// retrieved, which indicates (for example) which type parameters should
1224 /// be substituted.
1225 ///
1226 /// \param context The context in which the subject type was written.
1227 ///
1228 /// \returns the subject type after replacing all of the Objective-C type
1229 /// parameters with their corresponding arguments.
1230 QualType substObjCMemberType(QualType objectType,
1231 const DeclContext *dc,
1232 ObjCSubstitutionContext context) const;
1233
1234 /// Strip Objective-C "__kindof" types from the given type.
1235 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1236
1237 /// Remove all qualifiers including _Atomic.
1238 QualType getAtomicUnqualifiedType() const;
1239
1240private:
1241 // These methods are implemented in a separate translation unit;
1242 // "static"-ize them to avoid creating temporary QualTypes in the
1243 // caller.
1244 static bool isConstant(QualType T, const ASTContext& Ctx);
1245 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1246 static SplitQualType getSplitDesugaredType(QualType T);
1247 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1248 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1249 const ASTContext &C);
1250 static QualType IgnoreParens(QualType T);
1251 static DestructionKind isDestructedTypeImpl(QualType type);
1252
1253 /// Check if \param RD is or contains a non-trivial C union.
1254 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1255 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1256 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1257};
1258
1259} // namespace clang
1260
1261namespace llvm {
1262
1263/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1264/// to a specific Type class.
1265template<> struct simplify_type< ::clang::QualType> {
1266 using SimpleType = const ::clang::Type *;
1267
1268 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1269 return Val.getTypePtr();
1270 }
1271};
1272
1273// Teach SmallPtrSet that QualType is "basically a pointer".
1274template<>
1275struct PointerLikeTypeTraits<clang::QualType> {
1276 static inline void *getAsVoidPointer(clang::QualType P) {
1277 return P.getAsOpaquePtr();
1278 }
1279
1280 static inline clang::QualType getFromVoidPointer(void *P) {
1281 return clang::QualType::getFromOpaquePtr(P);
1282 }
1283
1284 // Various qualifiers go in low bits.
1285 enum { NumLowBitsAvailable = 0 };
1286};
1287
1288} // namespace llvm
1289
1290namespace clang {
1291
1292/// Base class that is common to both the \c ExtQuals and \c Type
1293/// classes, which allows \c QualType to access the common fields between the
1294/// two.
1295class ExtQualsTypeCommonBase {
1296 friend class ExtQuals;
1297 friend class QualType;
1298 friend class Type;
1299
1300 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1301 /// a self-referential pointer (for \c Type).
1302 ///
1303 /// This pointer allows an efficient mapping from a QualType to its
1304 /// underlying type pointer.
1305 const Type *const BaseType;
1306
1307 /// The canonical type of this type. A QualType.
1308 QualType CanonicalType;
1309
1310 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1311 : BaseType(baseType), CanonicalType(canon) {}
1312};
1313
1314/// We can encode up to four bits in the low bits of a
1315/// type pointer, but there are many more type qualifiers that we want
1316/// to be able to apply to an arbitrary type. Therefore we have this
1317/// struct, intended to be heap-allocated and used by QualType to
1318/// store qualifiers.
1319///
1320/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1321/// in three low bits on the QualType pointer; a fourth bit records whether
1322/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1323/// Objective-C GC attributes) are much more rare.
1324class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1325 // NOTE: changing the fast qualifiers should be straightforward as
1326 // long as you don't make 'const' non-fast.
1327 // 1. Qualifiers:
1328 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1329 // Fast qualifiers must occupy the low-order bits.
1330 // b) Update Qualifiers::FastWidth and FastMask.
1331 // 2. QualType:
1332 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1333 // b) Update remove{Volatile,Restrict}, defined near the end of
1334 // this header.
1335 // 3. ASTContext:
1336 // a) Update get{Volatile,Restrict}Type.
1337
1338 /// The immutable set of qualifiers applied by this node. Always contains
1339 /// extended qualifiers.
1340 Qualifiers Quals;
1341
1342 ExtQuals *this_() { return this; }
1343
1344public:
1345 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1346 : ExtQualsTypeCommonBase(baseType,
1347 canon.isNull() ? QualType(this_(), 0) : canon),
1348 Quals(quals) {
1349 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
1350 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
1352 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
;
1353 }
1354
1355 Qualifiers getQualifiers() const { return Quals; }
1356
1357 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1358 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1359
1360 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1361 Qualifiers::ObjCLifetime getObjCLifetime() const {
1362 return Quals.getObjCLifetime();
1363 }
1364
1365 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1366 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1367
1368 const Type *getBaseType() const { return BaseType; }
1369
1370public:
1371 void Profile(llvm::FoldingSetNodeID &ID) const {
1372 Profile(ID, getBaseType(), Quals);
1373 }
1374
1375 static void Profile(llvm::FoldingSetNodeID &ID,
1376 const Type *BaseType,
1377 Qualifiers Quals) {
1378 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1378, __PRETTY_FUNCTION__))
;
1379 ID.AddPointer(BaseType);
1380 Quals.Profile(ID);
1381 }
1382};
1383
1384/// The kind of C++11 ref-qualifier associated with a function type.
1385/// This determines whether a member function's "this" object can be an
1386/// lvalue, rvalue, or neither.
1387enum RefQualifierKind {
1388 /// No ref-qualifier was provided.
1389 RQ_None = 0,
1390
1391 /// An lvalue ref-qualifier was provided (\c &).
1392 RQ_LValue,
1393
1394 /// An rvalue ref-qualifier was provided (\c &&).
1395 RQ_RValue
1396};
1397
1398/// Which keyword(s) were used to create an AutoType.
1399enum class AutoTypeKeyword {
1400 /// auto
1401 Auto,
1402
1403 /// decltype(auto)
1404 DecltypeAuto,
1405
1406 /// __auto_type (GNU extension)
1407 GNUAutoType
1408};
1409
1410/// The base class of the type hierarchy.
1411///
1412/// A central concept with types is that each type always has a canonical
1413/// type. A canonical type is the type with any typedef names stripped out
1414/// of it or the types it references. For example, consider:
1415///
1416/// typedef int foo;
1417/// typedef foo* bar;
1418/// 'int *' 'foo *' 'bar'
1419///
1420/// There will be a Type object created for 'int'. Since int is canonical, its
1421/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1422/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1423/// there is a PointerType that represents 'int*', which, like 'int', is
1424/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1425/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1426/// is also 'int*'.
1427///
1428/// Non-canonical types are useful for emitting diagnostics, without losing
1429/// information about typedefs being used. Canonical types are useful for type
1430/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1431/// about whether something has a particular form (e.g. is a function type),
1432/// because they implicitly, recursively, strip all typedefs out of a type.
1433///
1434/// Types, once created, are immutable.
1435///
1436class alignas(8) Type : public ExtQualsTypeCommonBase {
1437public:
1438 enum TypeClass {
1439#define TYPE(Class, Base) Class,
1440#define LAST_TYPE(Class) TypeLast = Class
1441#define ABSTRACT_TYPE(Class, Base)
1442#include "clang/AST/TypeNodes.inc"
1443 };
1444
1445private:
1446 /// Bitfields required by the Type class.
1447 class TypeBitfields {
1448 friend class Type;
1449 template <class T> friend class TypePropertyCache;
1450
1451 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1452 unsigned TC : 8;
1453
1454 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1455 unsigned Dependent : 1;
1456
1457 /// Whether this type somehow involves a template parameter, even
1458 /// if the resolution of the type does not depend on a template parameter.
1459 unsigned InstantiationDependent : 1;
1460
1461 /// Whether this type is a variably-modified type (C99 6.7.5).
1462 unsigned VariablyModified : 1;
1463
1464 /// Whether this type contains an unexpanded parameter pack
1465 /// (for C++11 variadic templates).
1466 unsigned ContainsUnexpandedParameterPack : 1;
1467
1468 /// True if the cache (i.e. the bitfields here starting with
1469 /// 'Cache') is valid.
1470 mutable unsigned CacheValid : 1;
1471
1472 /// Linkage of this type.
1473 mutable unsigned CachedLinkage : 3;
1474
1475 /// Whether this type involves and local or unnamed types.
1476 mutable unsigned CachedLocalOrUnnamed : 1;
1477
1478 /// Whether this type comes from an AST file.
1479 mutable unsigned FromAST : 1;
1480
1481 bool isCacheValid() const {
1482 return CacheValid;
1483 }
1484
1485 Linkage getLinkage() const {
1486 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1486, __PRETTY_FUNCTION__))
;
1487 return static_cast<Linkage>(CachedLinkage);
1488 }
1489
1490 bool hasLocalOrUnnamedType() const {
1491 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1491, __PRETTY_FUNCTION__))
;
1492 return CachedLocalOrUnnamed;
1493 }
1494 };
1495 enum { NumTypeBits = 18 };
1496
1497protected:
1498 // These classes allow subclasses to somewhat cleanly pack bitfields
1499 // into Type.
1500
1501 class ArrayTypeBitfields {
1502 friend class ArrayType;
1503
1504 unsigned : NumTypeBits;
1505
1506 /// CVR qualifiers from declarations like
1507 /// 'int X[static restrict 4]'. For function parameters only.
1508 unsigned IndexTypeQuals : 3;
1509
1510 /// Storage class qualifiers from declarations like
1511 /// 'int X[static restrict 4]'. For function parameters only.
1512 /// Actually an ArrayType::ArraySizeModifier.
1513 unsigned SizeModifier : 3;
1514 };
1515
1516 class BuiltinTypeBitfields {
1517 friend class BuiltinType;
1518
1519 unsigned : NumTypeBits;
1520
1521 /// The kind (BuiltinType::Kind) of builtin type this is.
1522 unsigned Kind : 8;
1523 };
1524
1525 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1526 /// Only common bits are stored here. Additional uncommon bits are stored
1527 /// in a trailing object after FunctionProtoType.
1528 class FunctionTypeBitfields {
1529 friend class FunctionProtoType;
1530 friend class FunctionType;
1531
1532 unsigned : NumTypeBits;
1533
1534 /// Extra information which affects how the function is called, like
1535 /// regparm and the calling convention.
1536 unsigned ExtInfo : 12;
1537
1538 /// The ref-qualifier associated with a \c FunctionProtoType.
1539 ///
1540 /// This is a value of type \c RefQualifierKind.
1541 unsigned RefQualifier : 2;
1542
1543 /// Used only by FunctionProtoType, put here to pack with the
1544 /// other bitfields.
1545 /// The qualifiers are part of FunctionProtoType because...
1546 ///
1547 /// C++ 8.3.5p4: The return type, the parameter type list and the
1548 /// cv-qualifier-seq, [...], are part of the function type.
1549 unsigned FastTypeQuals : Qualifiers::FastWidth;
1550 /// Whether this function has extended Qualifiers.
1551 unsigned HasExtQuals : 1;
1552
1553 /// The number of parameters this function has, not counting '...'.
1554 /// According to [implimits] 8 bits should be enough here but this is
1555 /// somewhat easy to exceed with metaprogramming and so we would like to
1556 /// keep NumParams as wide as reasonably possible.
1557 unsigned NumParams : 16;
1558
1559 /// The type of exception specification this function has.
1560 unsigned ExceptionSpecType : 4;
1561
1562 /// Whether this function has extended parameter information.
1563 unsigned HasExtParameterInfos : 1;
1564
1565 /// Whether the function is variadic.
1566 unsigned Variadic : 1;
1567
1568 /// Whether this function has a trailing return type.
1569 unsigned HasTrailingReturn : 1;
1570 };
1571
1572 class ObjCObjectTypeBitfields {
1573 friend class ObjCObjectType;
1574
1575 unsigned : NumTypeBits;
1576
1577 /// The number of type arguments stored directly on this object type.
1578 unsigned NumTypeArgs : 7;
1579
1580 /// The number of protocols stored directly on this object type.
1581 unsigned NumProtocols : 6;
1582
1583 /// Whether this is a "kindof" type.
1584 unsigned IsKindOf : 1;
1585 };
1586
1587 class ReferenceTypeBitfields {
1588 friend class ReferenceType;
1589
1590 unsigned : NumTypeBits;
1591
1592 /// True if the type was originally spelled with an lvalue sigil.
1593 /// This is never true of rvalue references but can also be false
1594 /// on lvalue references because of C++0x [dcl.typedef]p9,
1595 /// as follows:
1596 ///
1597 /// typedef int &ref; // lvalue, spelled lvalue
1598 /// typedef int &&rvref; // rvalue
1599 /// ref &a; // lvalue, inner ref, spelled lvalue
1600 /// ref &&a; // lvalue, inner ref
1601 /// rvref &a; // lvalue, inner ref, spelled lvalue
1602 /// rvref &&a; // rvalue, inner ref
1603 unsigned SpelledAsLValue : 1;
1604
1605 /// True if the inner type is a reference type. This only happens
1606 /// in non-canonical forms.
1607 unsigned InnerRef : 1;
1608 };
1609
1610 class TypeWithKeywordBitfields {
1611 friend class TypeWithKeyword;
1612
1613 unsigned : NumTypeBits;
1614
1615 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1616 unsigned Keyword : 8;
1617 };
1618
1619 enum { NumTypeWithKeywordBits = 8 };
1620
1621 class ElaboratedTypeBitfields {
1622 friend class ElaboratedType;
1623
1624 unsigned : NumTypeBits;
1625 unsigned : NumTypeWithKeywordBits;
1626
1627 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1628 unsigned HasOwnedTagDecl : 1;
1629 };
1630
1631 class VectorTypeBitfields {
1632 friend class VectorType;
1633 friend class DependentVectorType;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// The kind of vector, either a generic vector type or some
1638 /// target-specific vector type such as for AltiVec or Neon.
1639 unsigned VecKind : 3;
1640
1641 /// The number of elements in the vector.
1642 unsigned NumElements : 29 - NumTypeBits;
1643
1644 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1645 };
1646
1647 class AttributedTypeBitfields {
1648 friend class AttributedType;
1649
1650 unsigned : NumTypeBits;
1651
1652 /// An AttributedType::Kind
1653 unsigned AttrKind : 32 - NumTypeBits;
1654 };
1655
1656 class AutoTypeBitfields {
1657 friend class AutoType;
1658
1659 unsigned : NumTypeBits;
1660
1661 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1662 /// or '__auto_type'? AutoTypeKeyword value.
1663 unsigned Keyword : 2;
1664 };
1665
1666 class SubstTemplateTypeParmPackTypeBitfields {
1667 friend class SubstTemplateTypeParmPackType;
1668
1669 unsigned : NumTypeBits;
1670
1671 /// The number of template arguments in \c Arguments, which is
1672 /// expected to be able to hold at least 1024 according to [implimits].
1673 /// However as this limit is somewhat easy to hit with template
1674 /// metaprogramming we'd prefer to keep it as large as possible.
1675 /// At the moment it has been left as a non-bitfield since this type
1676 /// safely fits in 64 bits as an unsigned, so there is no reason to
1677 /// introduce the performance impact of a bitfield.
1678 unsigned NumArgs;
1679 };
1680
1681 class TemplateSpecializationTypeBitfields {
1682 friend class TemplateSpecializationType;
1683
1684 unsigned : NumTypeBits;
1685
1686 /// Whether this template specialization type is a substituted type alias.
1687 unsigned TypeAlias : 1;
1688
1689 /// The number of template arguments named in this class template
1690 /// specialization, which is expected to be able to hold at least 1024
1691 /// according to [implimits]. However, as this limit is somewhat easy to
1692 /// hit with template metaprogramming we'd prefer to keep it as large
1693 /// as possible. At the moment it has been left as a non-bitfield since
1694 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1695 /// to introduce the performance impact of a bitfield.
1696 unsigned NumArgs;
1697 };
1698
1699 class DependentTemplateSpecializationTypeBitfields {
1700 friend class DependentTemplateSpecializationType;
1701
1702 unsigned : NumTypeBits;
1703 unsigned : NumTypeWithKeywordBits;
1704
1705 /// The number of template arguments named in this class template
1706 /// specialization, which is expected to be able to hold at least 1024
1707 /// according to [implimits]. However, as this limit is somewhat easy to
1708 /// hit with template metaprogramming we'd prefer to keep it as large
1709 /// as possible. At the moment it has been left as a non-bitfield since
1710 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1711 /// to introduce the performance impact of a bitfield.
1712 unsigned NumArgs;
1713 };
1714
1715 class PackExpansionTypeBitfields {
1716 friend class PackExpansionType;
1717
1718 unsigned : NumTypeBits;
1719
1720 /// The number of expansions that this pack expansion will
1721 /// generate when substituted (+1), which is expected to be able to
1722 /// hold at least 1024 according to [implimits]. However, as this limit
1723 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1724 /// keep it as large as possible. At the moment it has been left as a
1725 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1726 /// there is no reason to introduce the performance impact of a bitfield.
1727 ///
1728 /// This field will only have a non-zero value when some of the parameter
1729 /// packs that occur within the pattern have been substituted but others
1730 /// have not.
1731 unsigned NumExpansions;
1732 };
1733
1734 union {
1735 TypeBitfields TypeBits;
1736 ArrayTypeBitfields ArrayTypeBits;
1737 AttributedTypeBitfields AttributedTypeBits;
1738 AutoTypeBitfields AutoTypeBits;
1739 BuiltinTypeBitfields BuiltinTypeBits;
1740 FunctionTypeBitfields FunctionTypeBits;
1741 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1742 ReferenceTypeBitfields ReferenceTypeBits;
1743 TypeWithKeywordBitfields TypeWithKeywordBits;
1744 ElaboratedTypeBitfields ElaboratedTypeBits;
1745 VectorTypeBitfields VectorTypeBits;
1746 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1747 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1748 DependentTemplateSpecializationTypeBitfields
1749 DependentTemplateSpecializationTypeBits;
1750 PackExpansionTypeBitfields PackExpansionTypeBits;
1751
1752 static_assert(sizeof(TypeBitfields) <= 8,
1753 "TypeBitfields is larger than 8 bytes!");
1754 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1755 "ArrayTypeBitfields is larger than 8 bytes!");
1756 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1757 "AttributedTypeBitfields is larger than 8 bytes!");
1758 static_assert(sizeof(AutoTypeBitfields) <= 8,
1759 "AutoTypeBitfields is larger than 8 bytes!");
1760 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1761 "BuiltinTypeBitfields is larger than 8 bytes!");
1762 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1763 "FunctionTypeBitfields is larger than 8 bytes!");
1764 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1765 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1766 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1767 "ReferenceTypeBitfields is larger than 8 bytes!");
1768 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1769 "TypeWithKeywordBitfields is larger than 8 bytes!");
1770 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1771 "ElaboratedTypeBitfields is larger than 8 bytes!");
1772 static_assert(sizeof(VectorTypeBitfields) <= 8,
1773 "VectorTypeBitfields is larger than 8 bytes!");
1774 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1775 "SubstTemplateTypeParmPackTypeBitfields is larger"
1776 " than 8 bytes!");
1777 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1778 "TemplateSpecializationTypeBitfields is larger"
1779 " than 8 bytes!");
1780 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1781 "DependentTemplateSpecializationTypeBitfields is larger"
1782 " than 8 bytes!");
1783 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1784 "PackExpansionTypeBitfields is larger than 8 bytes");
1785 };
1786
1787private:
1788 template <class T> friend class TypePropertyCache;
1789
1790 /// Set whether this type comes from an AST file.
1791 void setFromAST(bool V = true) const {
1792 TypeBits.FromAST = V;
1793 }
1794
1795protected:
1796 friend class ASTContext;
1797
1798 Type(TypeClass tc, QualType canon, bool Dependent,
1799 bool InstantiationDependent, bool VariablyModified,
1800 bool ContainsUnexpandedParameterPack)
1801 : ExtQualsTypeCommonBase(this,
1802 canon.isNull() ? QualType(this_(), 0) : canon) {
1803 TypeBits.TC = tc;
1804 TypeBits.Dependent = Dependent;
1805 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1806 TypeBits.VariablyModified = VariablyModified;
1807 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1808 TypeBits.CacheValid = false;
1809 TypeBits.CachedLocalOrUnnamed = false;
1810 TypeBits.CachedLinkage = NoLinkage;
1811 TypeBits.FromAST = false;
1812 }
1813
1814 // silence VC++ warning C4355: 'this' : used in base member initializer list
1815 Type *this_() { return this; }
1816
1817 void setDependent(bool D = true) {
1818 TypeBits.Dependent = D;
1819 if (D)
1820 TypeBits.InstantiationDependent = true;
1821 }
1822
1823 void setInstantiationDependent(bool D = true) {
1824 TypeBits.InstantiationDependent = D; }
1825
1826 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1827
1828 void setContainsUnexpandedParameterPack(bool PP = true) {
1829 TypeBits.ContainsUnexpandedParameterPack = PP;
1830 }
1831
1832public:
1833 friend class ASTReader;
1834 friend class ASTWriter;
1835
1836 Type(const Type &) = delete;
1837 Type(Type &&) = delete;
1838 Type &operator=(const Type &) = delete;
1839 Type &operator=(Type &&) = delete;
1840
1841 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1842
1843 /// Whether this type comes from an AST file.
1844 bool isFromAST() const { return TypeBits.FromAST; }
1845
1846 /// Whether this type is or contains an unexpanded parameter
1847 /// pack, used to support C++0x variadic templates.
1848 ///
1849 /// A type that contains a parameter pack shall be expanded by the
1850 /// ellipsis operator at some point. For example, the typedef in the
1851 /// following example contains an unexpanded parameter pack 'T':
1852 ///
1853 /// \code
1854 /// template<typename ...T>
1855 /// struct X {
1856 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1857 /// };
1858 /// \endcode
1859 ///
1860 /// Note that this routine does not specify which
1861 bool containsUnexpandedParameterPack() const {
1862 return TypeBits.ContainsUnexpandedParameterPack;
1863 }
1864
1865 /// Determines if this type would be canonical if it had no further
1866 /// qualification.
1867 bool isCanonicalUnqualified() const {
1868 return CanonicalType == QualType(this, 0);
1869 }
1870
1871 /// Pull a single level of sugar off of this locally-unqualified type.
1872 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1873 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1874 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1875
1876 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1877 /// object types, function types, and incomplete types.
1878
1879 /// Return true if this is an incomplete type.
1880 /// A type that can describe objects, but which lacks information needed to
1881 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1882 /// routine will need to determine if the size is actually required.
1883 ///
1884 /// Def If non-null, and the type refers to some kind of declaration
1885 /// that can be completed (such as a C struct, C++ class, or Objective-C
1886 /// class), will be set to the declaration.
1887 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1888
1889 /// Return true if this is an incomplete or object
1890 /// type, in other words, not a function type.
1891 bool isIncompleteOrObjectType() const {
1892 return !isFunctionType();
1893 }
1894
1895 /// Determine whether this type is an object type.
1896 bool isObjectType() const {
1897 // C++ [basic.types]p8:
1898 // An object type is a (possibly cv-qualified) type that is not a
1899 // function type, not a reference type, and not a void type.
1900 return !isReferenceType() && !isFunctionType() && !isVoidType();
1901 }
1902
1903 /// Return true if this is a literal type
1904 /// (C++11 [basic.types]p10)
1905 bool isLiteralType(const ASTContext &Ctx) const;
1906
1907 /// Test if this type is a standard-layout type.
1908 /// (C++0x [basic.type]p9)
1909 bool isStandardLayoutType() const;
1910
1911 /// Helper methods to distinguish type categories. All type predicates
1912 /// operate on the canonical type, ignoring typedefs and qualifiers.
1913
1914 /// Returns true if the type is a builtin type.
1915 bool isBuiltinType() const;
1916
1917 /// Test for a particular builtin type.
1918 bool isSpecificBuiltinType(unsigned K) const;
1919
1920 /// Test for a type which does not represent an actual type-system type but
1921 /// is instead used as a placeholder for various convenient purposes within
1922 /// Clang. All such types are BuiltinTypes.
1923 bool isPlaceholderType() const;
1924 const BuiltinType *getAsPlaceholderType() const;
1925
1926 /// Test for a specific placeholder type.
1927 bool isSpecificPlaceholderType(unsigned K) const;
1928
1929 /// Test for a placeholder type other than Overload; see
1930 /// BuiltinType::isNonOverloadPlaceholderType.
1931 bool isNonOverloadPlaceholderType() const;
1932
1933 /// isIntegerType() does *not* include complex integers (a GCC extension).
1934 /// isComplexIntegerType() can be used to test for complex integers.
1935 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1936 bool isEnumeralType() const;
1937
1938 /// Determine whether this type is a scoped enumeration type.
1939 bool isScopedEnumeralType() const;
1940 bool isBooleanType() const;
1941 bool isCharType() const;
1942 bool isWideCharType() const;
1943 bool isChar8Type() const;
1944 bool isChar16Type() const;
1945 bool isChar32Type() const;
1946 bool isAnyCharacterType() const;
1947 bool isIntegralType(const ASTContext &Ctx) const;
1948
1949 /// Determine whether this type is an integral or enumeration type.
1950 bool isIntegralOrEnumerationType() const;
1951
1952 /// Determine whether this type is an integral or unscoped enumeration type.
1953 bool isIntegralOrUnscopedEnumerationType() const;
1954
1955 /// Floating point categories.
1956 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1957 /// isComplexType() does *not* include complex integers (a GCC extension).
1958 /// isComplexIntegerType() can be used to test for complex integers.
1959 bool isComplexType() const; // C99 6.2.5p11 (complex)
1960 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1961 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1962 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1963 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1964 bool isFloat128Type() const;
1965 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1966 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1967 bool isVoidType() const; // C99 6.2.5p19
1968 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1969 bool isAggregateType() const;
1970 bool isFundamentalType() const;
1971 bool isCompoundType() const;
1972
1973 // Type Predicates: Check to see if this type is structurally the specified
1974 // type, ignoring typedefs and qualifiers.
1975 bool isFunctionType() const;
1976 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1977 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1978 bool isPointerType() const;
1979 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1980 bool isBlockPointerType() const;
1981 bool isVoidPointerType() const;
1982 bool isReferenceType() const;
1983 bool isLValueReferenceType() const;
1984 bool isRValueReferenceType() const;
1985 bool isFunctionPointerType() const;
1986 bool isFunctionReferenceType() const;
1987 bool isMemberPointerType() const;
1988 bool isMemberFunctionPointerType() const;
1989 bool isMemberDataPointerType() const;
1990 bool isArrayType() const;
1991 bool isConstantArrayType() const;
1992 bool isIncompleteArrayType() const;
1993 bool isVariableArrayType() const;
1994 bool isDependentSizedArrayType() const;
1995 bool isRecordType() const;
1996 bool isClassType() const;
1997 bool isStructureType() const;
1998 bool isObjCBoxableRecordType() const;
1999 bool isInterfaceType() const;
2000 bool isStructureOrClassType() const;
2001 bool isUnionType() const;
2002 bool isComplexIntegerType() const; // GCC _Complex integer type.
2003 bool isVectorType() const; // GCC vector type.
2004 bool isExtVectorType() const; // Extended vector type.
2005 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2006 bool isObjCObjectPointerType() const; // pointer to ObjC object
2007 bool isObjCRetainableType() const; // ObjC object or block pointer
2008 bool isObjCLifetimeType() const; // (array of)* retainable type
2009 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2010 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2011 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2012 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2013 // for the common case.
2014 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2015 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2016 bool isObjCQualifiedIdType() const; // id<foo>
2017 bool isObjCQualifiedClassType() const; // Class<foo>
2018 bool isObjCObjectOrInterfaceType() const;
2019 bool isObjCIdType() const; // id
2020 bool isDecltypeType() const;
2021 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2022 /// qualifier?
2023 ///
2024 /// This approximates the answer to the following question: if this
2025 /// translation unit were compiled in ARC, would this type be qualified
2026 /// with __unsafe_unretained?
2027 bool isObjCInertUnsafeUnretainedType() const {
2028 return hasAttr(attr::ObjCInertUnsafeUnretained);
2029 }
2030
2031 /// Whether the type is Objective-C 'id' or a __kindof type of an
2032 /// object type, e.g., __kindof NSView * or __kindof id
2033 /// <NSCopying>.
2034 ///
2035 /// \param bound Will be set to the bound on non-id subtype types,
2036 /// which will be (possibly specialized) Objective-C class type, or
2037 /// null for 'id.
2038 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2039 const ObjCObjectType *&bound) const;
2040
2041 bool isObjCClassType() const; // Class
2042
2043 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2044 /// Class type, e.g., __kindof Class <NSCopying>.
2045 ///
2046 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2047 /// here because Objective-C's type system cannot express "a class
2048 /// object for a subclass of NSFoo".
2049 bool isObjCClassOrClassKindOfType() const;
2050
2051 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2052 bool isObjCSelType() const; // Class
2053 bool isObjCBuiltinType() const; // 'id' or 'Class'
2054 bool isObjCARCBridgableType() const;
2055 bool isCARCBridgableType() const;
2056 bool isTemplateTypeParmType() const; // C++ template type parameter
2057 bool isNullPtrType() const; // C++11 std::nullptr_t
2058 bool isNothrowT() const; // C++ std::nothrow_t
2059 bool isAlignValT() const; // C++17 std::align_val_t
2060 bool isStdByteType() const; // C++17 std::byte
2061 bool isAtomicType() const; // C11 _Atomic()
2062
2063#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2064 bool is##Id##Type() const;
2065#include "clang/Basic/OpenCLImageTypes.def"
2066
2067 bool isImageType() const; // Any OpenCL image type
2068
2069 bool isSamplerT() const; // OpenCL sampler_t
2070 bool isEventT() const; // OpenCL event_t
2071 bool isClkEventT() const; // OpenCL clk_event_t
2072 bool isQueueT() const; // OpenCL queue_t
2073 bool isReserveIDT() const; // OpenCL reserve_id_t
2074
2075#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2076 bool is##Id##Type() const;
2077#include "clang/Basic/OpenCLExtensionTypes.def"
2078 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2079 bool isOCLIntelSubgroupAVCType() const;
2080 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2081
2082 bool isPipeType() const; // OpenCL pipe type
2083 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2084
2085 /// Determines if this type, which must satisfy
2086 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2087 /// than implicitly __strong.
2088 bool isObjCARCImplicitlyUnretainedType() const;
2089
2090 /// Return the implicit lifetime for this type, which must not be dependent.
2091 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2092
2093 enum ScalarTypeKind {
2094 STK_CPointer,
2095 STK_BlockPointer,
2096 STK_ObjCObjectPointer,
2097 STK_MemberPointer,
2098 STK_Bool,
2099 STK_Integral,
2100 STK_Floating,
2101 STK_IntegralComplex,
2102 STK_FloatingComplex,
2103 STK_FixedPoint
2104 };
2105
2106 /// Given that this is a scalar type, classify it.
2107 ScalarTypeKind getScalarTypeKind() const;
2108
2109 /// Whether this type is a dependent type, meaning that its definition
2110 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2111 bool isDependentType() const { return TypeBits.Dependent; }
2112
2113 /// Determine whether this type is an instantiation-dependent type,
2114 /// meaning that the type involves a template parameter (even if the
2115 /// definition does not actually depend on the type substituted for that
2116 /// template parameter).
2117 bool isInstantiationDependentType() const {
2118 return TypeBits.InstantiationDependent;
2119 }
2120
2121 /// Determine whether this type is an undeduced type, meaning that
2122 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2123 /// deduced.
2124 bool isUndeducedType() const;
2125
2126 /// Whether this type is a variably-modified type (C99 6.7.5).
2127 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2128
2129 /// Whether this type involves a variable-length array type
2130 /// with a definite size.
2131 bool hasSizedVLAType() const;
2132
2133 /// Whether this type is or contains a local or unnamed type.
2134 bool hasUnnamedOrLocalType() const;
2135
2136 bool isOverloadableType() const;
2137
2138 /// Determine wither this type is a C++ elaborated-type-specifier.
2139 bool isElaboratedTypeSpecifier() const;
2140
2141 bool canDecayToPointerType() const;
2142
2143 /// Whether this type is represented natively as a pointer. This includes
2144 /// pointers, references, block pointers, and Objective-C interface,
2145 /// qualified id, and qualified interface types, as well as nullptr_t.
2146 bool hasPointerRepresentation() const;
2147
2148 /// Whether this type can represent an objective pointer type for the
2149 /// purpose of GC'ability
2150 bool hasObjCPointerRepresentation() const;
2151
2152 /// Determine whether this type has an integer representation
2153 /// of some sort, e.g., it is an integer type or a vector.
2154 bool hasIntegerRepresentation() const;
2155
2156 /// Determine whether this type has an signed integer representation
2157 /// of some sort, e.g., it is an signed integer type or a vector.
2158 bool hasSignedIntegerRepresentation() const;
2159
2160 /// Determine whether this type has an unsigned integer representation
2161 /// of some sort, e.g., it is an unsigned integer type or a vector.
2162 bool hasUnsignedIntegerRepresentation() const;
2163
2164 /// Determine whether this type has a floating-point representation
2165 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2166 bool hasFloatingRepresentation() const;
2167
2168 // Type Checking Functions: Check to see if this type is structurally the
2169 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2170 // the best type we can.
2171 const RecordType *getAsStructureType() const;
2172 /// NOTE: getAs*ArrayType are methods on ASTContext.
2173 const RecordType *getAsUnionType() const;
2174 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2175 const ObjCObjectType *getAsObjCInterfaceType() const;
2176
2177 // The following is a convenience method that returns an ObjCObjectPointerType
2178 // for object declared using an interface.
2179 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2180 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2181 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2182 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2183
2184 /// Retrieves the CXXRecordDecl that this type refers to, either
2185 /// because the type is a RecordType or because it is the injected-class-name
2186 /// type of a class template or class template partial specialization.
2187 CXXRecordDecl *getAsCXXRecordDecl() const;
2188
2189 /// Retrieves the RecordDecl this type refers to.
2190 RecordDecl *getAsRecordDecl() const;
2191
2192 /// Retrieves the TagDecl that this type refers to, either
2193 /// because the type is a TagType or because it is the injected-class-name
2194 /// type of a class template or class template partial specialization.
2195 TagDecl *getAsTagDecl() const;
2196
2197 /// If this is a pointer or reference to a RecordType, return the
2198 /// CXXRecordDecl that the type refers to.
2199 ///
2200 /// If this is not a pointer or reference, or the type being pointed to does
2201 /// not refer to a CXXRecordDecl, returns NULL.
2202 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2203
2204 /// Get the DeducedType whose type will be deduced for a variable with
2205 /// an initializer of this type. This looks through declarators like pointer
2206 /// types, but not through decltype or typedefs.
2207 DeducedType *getContainedDeducedType() const;
2208
2209 /// Get the AutoType whose type will be deduced for a variable with
2210 /// an initializer of this type. This looks through declarators like pointer
2211 /// types, but not through decltype or typedefs.
2212 AutoType *getContainedAutoType() const {
2213 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2214 }
2215
2216 /// Determine whether this type was written with a leading 'auto'
2217 /// corresponding to a trailing return type (possibly for a nested
2218 /// function type within a pointer to function type or similar).
2219 bool hasAutoForTrailingReturnType() const;
2220
2221 /// Member-template getAs<specific type>'. Look through sugar for
2222 /// an instance of \<specific type>. This scheme will eventually
2223 /// replace the specific getAsXXXX methods above.
2224 ///
2225 /// There are some specializations of this member template listed
2226 /// immediately following this class.
2227 template <typename T> const T *getAs() const;
2228
2229 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2230 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2231 /// This is used when you need to walk over sugar nodes that represent some
2232 /// kind of type adjustment from a type that was written as a \<specific type>
2233 /// to another type that is still canonically a \<specific type>.
2234 template <typename T> const T *getAsAdjusted() const;
2235
2236 /// A variant of getAs<> for array types which silently discards
2237 /// qualifiers from the outermost type.
2238 const ArrayType *getAsArrayTypeUnsafe() const;
2239
2240 /// Member-template castAs<specific type>. Look through sugar for
2241 /// the underlying instance of \<specific type>.
2242 ///
2243 /// This method has the same relationship to getAs<T> as cast<T> has
2244 /// to dyn_cast<T>; which is to say, the underlying type *must*
2245 /// have the intended type, and this method will never return null.
2246 template <typename T> const T *castAs() const;
2247
2248 /// A variant of castAs<> for array type which silently discards
2249 /// qualifiers from the outermost type.
2250 const ArrayType *castAsArrayTypeUnsafe() const;
2251
2252 /// Determine whether this type had the specified attribute applied to it
2253 /// (looking through top-level type sugar).
2254 bool hasAttr(attr::Kind AK) const;
2255
2256 /// Get the base element type of this type, potentially discarding type
2257 /// qualifiers. This should never be used when type qualifiers
2258 /// are meaningful.
2259 const Type *getBaseElementTypeUnsafe() const;
2260
2261 /// If this is an array type, return the element type of the array,
2262 /// potentially with type qualifiers missing.
2263 /// This should never be used when type qualifiers are meaningful.
2264 const Type *getArrayElementTypeNoTypeQual() const;
2265
2266 /// If this is a pointer type, return the pointee type.
2267 /// If this is an array type, return the array element type.
2268 /// This should never be used when type qualifiers are meaningful.
2269 const Type *getPointeeOrArrayElementType() const;
2270
2271 /// If this is a pointer, ObjC object pointer, or block
2272 /// pointer, this returns the respective pointee.
2273 QualType getPointeeType() const;
2274
2275 /// Return the specified type with any "sugar" removed from the type,
2276 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2277 const Type *getUnqualifiedDesugaredType() const;
2278
2279 /// More type predicates useful for type checking/promotion
2280 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2281
2282 /// Return true if this is an integer type that is
2283 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2284 /// or an enum decl which has a signed representation.
2285 bool isSignedIntegerType() const;
2286
2287 /// Return true if this is an integer type that is
2288 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2289 /// or an enum decl which has an unsigned representation.
2290 bool isUnsignedIntegerType() const;
2291
2292 /// Determines whether this is an integer type that is signed or an
2293 /// enumeration types whose underlying type is a signed integer type.
2294 bool isSignedIntegerOrEnumerationType() const;
2295
2296 /// Determines whether this is an integer type that is unsigned or an
2297 /// enumeration types whose underlying type is a unsigned integer type.
2298 bool isUnsignedIntegerOrEnumerationType() const;
2299
2300 /// Return true if this is a fixed point type according to
2301 /// ISO/IEC JTC1 SC22 WG14 N1169.
2302 bool isFixedPointType() const;
2303
2304 /// Return true if this is a fixed point or integer type.
2305 bool isFixedPointOrIntegerType() const;
2306
2307 /// Return true if this is a saturated fixed point type according to
2308 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2309 bool isSaturatedFixedPointType() const;
2310
2311 /// Return true if this is a saturated fixed point type according to
2312 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2313 bool isUnsaturatedFixedPointType() const;
2314
2315 /// Return true if this is a fixed point type that is signed according
2316 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2317 bool isSignedFixedPointType() const;
2318
2319 /// Return true if this is a fixed point type that is unsigned according
2320 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2321 bool isUnsignedFixedPointType() const;
2322
2323 /// Return true if this is not a variable sized type,
2324 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2325 /// incomplete types.
2326 bool isConstantSizeType() const;
2327
2328 /// Returns true if this type can be represented by some
2329 /// set of type specifiers.
2330 bool isSpecifierType() const;
2331
2332 /// Determine the linkage of this type.
2333 Linkage getLinkage() const;
2334
2335 /// Determine the visibility of this type.
2336 Visibility getVisibility() const {
2337 return getLinkageAndVisibility().getVisibility();
2338 }
2339
2340 /// Return true if the visibility was explicitly set is the code.
2341 bool isVisibilityExplicit() const {
2342 return getLinkageAndVisibility().isVisibilityExplicit();
2343 }
2344
2345 /// Determine the linkage and visibility of this type.
2346 LinkageInfo getLinkageAndVisibility() const;
2347
2348 /// True if the computed linkage is valid. Used for consistency
2349 /// checking. Should always return true.
2350 bool isLinkageValid() const;
2351
2352 /// Determine the nullability of the given type.
2353 ///
2354 /// Note that nullability is only captured as sugar within the type
2355 /// system, not as part of the canonical type, so nullability will
2356 /// be lost by canonicalization and desugaring.
2357 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2358
2359 /// Determine whether the given type can have a nullability
2360 /// specifier applied to it, i.e., if it is any kind of pointer type.
2361 ///
2362 /// \param ResultIfUnknown The value to return if we don't yet know whether
2363 /// this type can have nullability because it is dependent.
2364 bool canHaveNullability(bool ResultIfUnknown = true) const;
2365
2366 /// Retrieve the set of substitutions required when accessing a member
2367 /// of the Objective-C receiver type that is declared in the given context.
2368 ///
2369 /// \c *this is the type of the object we're operating on, e.g., the
2370 /// receiver for a message send or the base of a property access, and is
2371 /// expected to be of some object or object pointer type.
2372 ///
2373 /// \param dc The declaration context for which we are building up a
2374 /// substitution mapping, which should be an Objective-C class, extension,
2375 /// category, or method within.
2376 ///
2377 /// \returns an array of type arguments that can be substituted for
2378 /// the type parameters of the given declaration context in any type described
2379 /// within that context, or an empty optional to indicate that no
2380 /// substitution is required.
2381 Optional<ArrayRef<QualType>>
2382 getObjCSubstitutions(const DeclContext *dc) const;
2383
2384 /// Determines if this is an ObjC interface type that may accept type
2385 /// parameters.
2386 bool acceptsObjCTypeParams() const;
2387
2388 const char *getTypeClassName() const;
2389
2390 QualType getCanonicalTypeInternal() const {
2391 return CanonicalType;
2392 }
2393
2394 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2395 void dump() const;
2396 void dump(llvm::raw_ostream &OS) const;
2397};
2398
2399/// This will check for a TypedefType by removing any existing sugar
2400/// until it reaches a TypedefType or a non-sugared type.
2401template <> const TypedefType *Type::getAs() const;
2402
2403/// This will check for a TemplateSpecializationType by removing any
2404/// existing sugar until it reaches a TemplateSpecializationType or a
2405/// non-sugared type.
2406template <> const TemplateSpecializationType *Type::getAs() const;
2407
2408/// This will check for an AttributedType by removing any existing sugar
2409/// until it reaches an AttributedType or a non-sugared type.
2410template <> const AttributedType *Type::getAs() const;
2411
2412// We can do canonical leaf types faster, because we don't have to
2413// worry about preserving child type decoration.
2414#define TYPE(Class, Base)
2415#define LEAF_TYPE(Class) \
2416template <> inline const Class##Type *Type::getAs() const { \
2417 return dyn_cast<Class##Type>(CanonicalType); \
2418} \
2419template <> inline const Class##Type *Type::castAs() const { \
2420 return cast<Class##Type>(CanonicalType); \
2421}
2422#include "clang/AST/TypeNodes.inc"
2423
2424/// This class is used for builtin types like 'int'. Builtin
2425/// types are always canonical and have a literal name field.
2426class BuiltinType : public Type {
2427public:
2428 enum Kind {
2429// OpenCL image types
2430#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2431#include "clang/Basic/OpenCLImageTypes.def"
2432// OpenCL extension types
2433#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2434#include "clang/Basic/OpenCLExtensionTypes.def"
2435// SVE Types
2436#define SVE_TYPE(Name, Id, SingletonId) Id,
2437#include "clang/Basic/AArch64SVEACLETypes.def"
2438// All other builtin types
2439#define BUILTIN_TYPE(Id, SingletonId) Id,
2440#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2441#include "clang/AST/BuiltinTypes.def"
2442 };
2443
2444private:
2445 friend class ASTContext; // ASTContext creates these.
2446
2447 BuiltinType(Kind K)
2448 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2449 /*InstantiationDependent=*/(K == Dependent),
2450 /*VariablyModified=*/false,
2451 /*Unexpanded parameter pack=*/false) {
2452 BuiltinTypeBits.Kind = K;
2453 }
2454
2455public:
2456 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2457 StringRef getName(const PrintingPolicy &Policy) const;
2458
2459 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2460 // The StringRef is null-terminated.
2461 StringRef str = getName(Policy);
2462 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 2462, __PRETTY_FUNCTION__))
;
2463 return str.data();
2464 }
2465
2466 bool isSugared() const { return false; }
2467 QualType desugar() const { return QualType(this, 0); }
2468
2469 bool isInteger() const {
2470 return getKind() >= Bool && getKind() <= Int128;
2471 }
2472
2473 bool isSignedInteger() const {
2474 return getKind() >= Char_S && getKind() <= Int128;
2475 }
2476
2477 bool isUnsignedInteger() const {
2478 return getKind() >= Bool && getKind() <= UInt128;
2479 }
2480
2481 bool isFloatingPoint() const {
2482 return getKind() >= Half && getKind() <= Float128;
2483 }
2484
2485 /// Determines whether the given kind corresponds to a placeholder type.
2486 static bool isPlaceholderTypeKind(Kind K) {
2487 return K >= Overload;
2488 }
2489
2490 /// Determines whether this type is a placeholder type, i.e. a type
2491 /// which cannot appear in arbitrary positions in a fully-formed
2492 /// expression.
2493 bool isPlaceholderType() const {
2494 return isPlaceholderTypeKind(getKind());
2495 }
2496
2497 /// Determines whether this type is a placeholder type other than
2498 /// Overload. Most placeholder types require only syntactic
2499 /// information about their context in order to be resolved (e.g.
2500 /// whether it is a call expression), which means they can (and
2501 /// should) be resolved in an earlier "phase" of analysis.
2502 /// Overload expressions sometimes pick up further information
2503 /// from their context, like whether the context expects a
2504 /// specific function-pointer type, and so frequently need
2505 /// special treatment.
2506 bool isNonOverloadPlaceholderType() const {
2507 return getKind() > Overload;
2508 }
2509
2510 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2511};
2512
2513/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2514/// types (_Complex float etc) as well as the GCC integer complex extensions.
2515class ComplexType : public Type, public llvm::FoldingSetNode {
2516 friend class ASTContext; // ASTContext creates these.
2517
2518 QualType ElementType;
2519
2520 ComplexType(QualType Element, QualType CanonicalPtr)
2521 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2522 Element->isInstantiationDependentType(),
2523 Element->isVariablyModifiedType(),
2524 Element->containsUnexpandedParameterPack()),
2525 ElementType(Element) {}
2526
2527public:
2528 QualType getElementType() const { return ElementType; }
2529
2530 bool isSugared() const { return false; }
2531 QualType desugar() const { return QualType(this, 0); }
2532
2533 void Profile(llvm::FoldingSetNodeID &ID) {
2534 Profile(ID, getElementType());
2535 }
2536
2537 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2538 ID.AddPointer(Element.getAsOpaquePtr());
2539 }
2540
2541 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2542};
2543
2544/// Sugar for parentheses used when specifying types.
2545class ParenType : public Type, public llvm::FoldingSetNode {
2546 friend class ASTContext; // ASTContext creates these.
2547
2548 QualType Inner;
2549
2550 ParenType(QualType InnerType, QualType CanonType)
2551 : Type(Paren, CanonType, InnerType->isDependentType(),
2552 InnerType->isInstantiationDependentType(),
2553 InnerType->isVariablyModifiedType(),
2554 InnerType->containsUnexpandedParameterPack()),
2555 Inner(InnerType) {}
2556
2557public:
2558 QualType getInnerType() const { return Inner; }
2559
2560 bool isSugared() const { return true; }
2561 QualType desugar() const { return getInnerType(); }
2562
2563 void Profile(llvm::FoldingSetNodeID &ID) {
2564 Profile(ID, getInnerType());
2565 }
2566
2567 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2568 Inner.Profile(ID);
2569 }
2570
2571 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2572};
2573
2574/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2575class PointerType : public Type, public llvm::FoldingSetNode {
2576 friend class ASTContext; // ASTContext creates these.
2577
2578 QualType PointeeType;
2579
2580 PointerType(QualType Pointee, QualType CanonicalPtr)
2581 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2582 Pointee->isInstantiationDependentType(),
2583 Pointee->isVariablyModifiedType(),
2584 Pointee->containsUnexpandedParameterPack()),
2585 PointeeType(Pointee) {}
2586
2587public:
2588 QualType getPointeeType() const { return PointeeType; }
2589
2590 /// Returns true if address spaces of pointers overlap.
2591 /// OpenCL v2.0 defines conversion rules for pointers to different
2592 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2593 /// address spaces.
2594 /// CL1.1 or CL1.2:
2595 /// address spaces overlap iff they are they same.
2596 /// CL2.0 adds:
2597 /// __generic overlaps with any address space except for __constant.
2598 bool isAddressSpaceOverlapping(const PointerType &other) const {
2599 Qualifiers thisQuals = PointeeType.getQualifiers();
2600 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2601 // Address spaces overlap if at least one of them is a superset of another
2602 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2603 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2604 }
2605
2606 bool isSugared() const { return false; }
2607 QualType desugar() const { return QualType(this, 0); }
2608
2609 void Profile(llvm::FoldingSetNodeID &ID) {
2610 Profile(ID, getPointeeType());
2611 }
2612
2613 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2614 ID.AddPointer(Pointee.getAsOpaquePtr());
2615 }
2616
2617 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2618};
2619
2620/// Represents a type which was implicitly adjusted by the semantic
2621/// engine for arbitrary reasons. For example, array and function types can
2622/// decay, and function types can have their calling conventions adjusted.
2623class AdjustedType : public Type, public llvm::FoldingSetNode {
2624 QualType OriginalTy;
2625 QualType AdjustedTy;
2626
2627protected:
2628 friend class ASTContext; // ASTContext creates these.
2629
2630 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2631 QualType CanonicalPtr)
2632 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2633 OriginalTy->isInstantiationDependentType(),
2634 OriginalTy->isVariablyModifiedType(),
2635 OriginalTy->containsUnexpandedParameterPack()),
2636 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2637
2638public:
2639 QualType getOriginalType() const { return OriginalTy; }
2640 QualType getAdjustedType() const { return AdjustedTy; }
2641
2642 bool isSugared() const { return true; }
2643 QualType desugar() const { return AdjustedTy; }
2644
2645 void Profile(llvm::FoldingSetNodeID &ID) {
2646 Profile(ID, OriginalTy, AdjustedTy);
2647 }
2648
2649 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2650 ID.AddPointer(Orig.getAsOpaquePtr());
2651 ID.AddPointer(New.getAsOpaquePtr());
2652 }
2653
2654 static bool classof(const Type *T) {
2655 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2656 }
2657};
2658
2659/// Represents a pointer type decayed from an array or function type.
2660class DecayedType : public AdjustedType {
2661 friend class ASTContext; // ASTContext creates these.
2662
2663 inline
2664 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2665
2666public:
2667 QualType getDecayedType() const { return getAdjustedType(); }
2668
2669 inline QualType getPointeeType() const;
2670
2671 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2672};
2673
2674/// Pointer to a block type.
2675/// This type is to represent types syntactically represented as
2676/// "void (^)(int)", etc. Pointee is required to always be a function type.
2677class BlockPointerType : public Type, public llvm::FoldingSetNode {
2678 friend class ASTContext; // ASTContext creates these.
2679
2680 // Block is some kind of pointer type
2681 QualType PointeeType;
2682
2683 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2684 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2685 Pointee->isInstantiationDependentType(),
2686 Pointee->isVariablyModifiedType(),
2687 Pointee->containsUnexpandedParameterPack()),
2688 PointeeType(Pointee) {}
2689
2690public:
2691 // Get the pointee type. Pointee is required to always be a function type.
2692 QualType getPointeeType() const { return PointeeType; }
2693
2694 bool isSugared() const { return false; }
2695 QualType desugar() const { return QualType(this, 0); }
2696
2697 void Profile(llvm::FoldingSetNodeID &ID) {
2698 Profile(ID, getPointeeType());
2699 }
2700
2701 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2702 ID.AddPointer(Pointee.getAsOpaquePtr());
2703 }
2704
2705 static bool classof(const Type *T) {
2706 return T->getTypeClass() == BlockPointer;
2707 }
2708};
2709
2710/// Base for LValueReferenceType and RValueReferenceType
2711class ReferenceType : public Type, public llvm::FoldingSetNode {
2712 QualType PointeeType;
2713
2714protected:
2715 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2716 bool SpelledAsLValue)
2717 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2718 Referencee->isInstantiationDependentType(),
2719 Referencee->isVariablyModifiedType(),
2720 Referencee->containsUnexpandedParameterPack()),
2721 PointeeType(Referencee) {
2722 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2723 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2724 }
2725
2726public:
2727 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2728 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2729
2730 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2731
2732 QualType getPointeeType() const {
2733 // FIXME: this might strip inner qualifiers; okay?
2734 const ReferenceType *T = this;
2735 while (T->isInnerRef())
2736 T = T->PointeeType->castAs<ReferenceType>();
2737 return T->PointeeType;
2738 }
2739
2740 void Profile(llvm::FoldingSetNodeID &ID) {
2741 Profile(ID, PointeeType, isSpelledAsLValue());
2742 }
2743
2744 static void Profile(llvm::FoldingSetNodeID &ID,
2745 QualType Referencee,
2746 bool SpelledAsLValue) {
2747 ID.AddPointer(Referencee.getAsOpaquePtr());
2748 ID.AddBoolean(SpelledAsLValue);
2749 }
2750
2751 static bool classof(const Type *T) {
2752 return T->getTypeClass() == LValueReference ||
2753 T->getTypeClass() == RValueReference;
2754 }
2755};
2756
2757/// An lvalue reference type, per C++11 [dcl.ref].
2758class LValueReferenceType : public ReferenceType {
2759 friend class ASTContext; // ASTContext creates these
2760
2761 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2762 bool SpelledAsLValue)
2763 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2764 SpelledAsLValue) {}
2765
2766public:
2767 bool isSugared() const { return false; }
2768 QualType desugar() const { return QualType(this, 0); }
2769
2770 static bool classof(const Type *T) {
2771 return T->getTypeClass() == LValueReference;
2772 }
2773};
2774
2775/// An rvalue reference type, per C++11 [dcl.ref].
2776class RValueReferenceType : public ReferenceType {
2777 friend class ASTContext; // ASTContext creates these
2778
2779 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2780 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2781
2782public:
2783 bool isSugared() const { return false; }
2784 QualType desugar() const { return QualType(this, 0); }
2785
2786 static bool classof(const Type *T) {
2787 return T->getTypeClass() == RValueReference;
2788 }
2789};
2790
2791/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2792///
2793/// This includes both pointers to data members and pointer to member functions.
2794class MemberPointerType : public Type, public llvm::FoldingSetNode {
2795 friend class ASTContext; // ASTContext creates these.
2796
2797 QualType PointeeType;
2798
2799 /// The class of which the pointee is a member. Must ultimately be a
2800 /// RecordType, but could be a typedef or a template parameter too.
2801 const Type *Class;
2802
2803 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2804 : Type(MemberPointer, CanonicalPtr,
2805 Cls->isDependentType() || Pointee->isDependentType(),
2806 (Cls->isInstantiationDependentType() ||
2807 Pointee->isInstantiationDependentType()),
2808 Pointee->isVariablyModifiedType(),
2809 (Cls->containsUnexpandedParameterPack() ||
2810 Pointee->containsUnexpandedParameterPack())),
2811 PointeeType(Pointee), Class(Cls) {}
2812
2813public:
2814 QualType getPointeeType() const { return PointeeType; }
2815
2816 /// Returns true if the member type (i.e. the pointee type) is a
2817 /// function type rather than a data-member type.
2818 bool isMemberFunctionPointer() const {
2819 return PointeeType->isFunctionProtoType();
2820 }
2821
2822 /// Returns true if the member type (i.e. the pointee type) is a
2823 /// data type rather than a function type.
2824 bool isMemberDataPointer() const {
2825 return !PointeeType->isFunctionProtoType();
2826 }
2827
2828 const Type *getClass() const { return Class; }
2829 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2830
2831 bool isSugared() const { return false; }
2832 QualType desugar() const { return QualType(this, 0); }
2833
2834 void Profile(llvm::FoldingSetNodeID &ID) {
2835 Profile(ID, getPointeeType(), getClass());
2836 }
2837
2838 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2839 const Type *Class) {
2840 ID.AddPointer(Pointee.getAsOpaquePtr());
2841 ID.AddPointer(Class);
2842 }
2843
2844 static bool classof(const Type *T) {
2845 return T->getTypeClass() == MemberPointer;
2846 }
2847};
2848
2849/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2850class ArrayType : public Type, public llvm::FoldingSetNode {
2851public:
2852 /// Capture whether this is a normal array (e.g. int X[4])
2853 /// an array with a static size (e.g. int X[static 4]), or an array
2854 /// with a star size (e.g. int X[*]).
2855 /// 'static' is only allowed on function parameters.
2856 enum ArraySizeModifier {
2857 Normal, Static, Star
2858 };
2859
2860private:
2861 /// The element type of the array.
2862 QualType ElementType;
2863
2864protected:
2865 friend class ASTContext; // ASTContext creates these.
2866
2867 // C++ [temp.dep.type]p1:
2868 // A type is dependent if it is...
2869 // - an array type constructed from any dependent type or whose
2870 // size is specified by a constant expression that is
2871 // value-dependent,
2872 ArrayType(TypeClass tc, QualType et, QualType can,
2873 ArraySizeModifier sm, unsigned tq,
2874 bool ContainsUnexpandedParameterPack)
2875 : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2876 et->isInstantiationDependentType() || tc == DependentSizedArray,
2877 (tc == VariableArray || et->isVariablyModifiedType()),
2878 ContainsUnexpandedParameterPack),
2879 ElementType(et) {
2880 ArrayTypeBits.IndexTypeQuals = tq;
2881 ArrayTypeBits.SizeModifier = sm;
2882 }
2883
2884public:
2885 QualType getElementType() const { return ElementType; }
2886
2887 ArraySizeModifier getSizeModifier() const {
2888 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2889 }
2890
2891 Qualifiers getIndexTypeQualifiers() const {
2892 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2893 }
2894
2895 unsigned getIndexTypeCVRQualifiers() const {
2896 return ArrayTypeBits.IndexTypeQuals;
2897 }
2898
2899 static bool classof(const Type *T) {
2900 return T->getTypeClass() == ConstantArray ||
2901 T->getTypeClass() == VariableArray ||
2902 T->getTypeClass() == IncompleteArray ||
2903 T->getTypeClass() == DependentSizedArray;
2904 }
2905};
2906
2907/// Represents the canonical version of C arrays with a specified constant size.
2908/// For example, the canonical type for 'int A[4 + 4*100]' is a
2909/// ConstantArrayType where the element type is 'int' and the size is 404.
2910class ConstantArrayType : public ArrayType {
2911 llvm::APInt Size; // Allows us to unique the type.
2912
2913 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2914 ArraySizeModifier sm, unsigned tq)
2915 : ArrayType(ConstantArray, et, can, sm, tq,
2916 et->containsUnexpandedParameterPack()),
2917 Size(size) {}
2918
2919protected:
2920 friend class ASTContext; // ASTContext creates these.
2921
2922 ConstantArrayType(TypeClass tc, QualType et, QualType can,
2923 const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2924 : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2925 Size(size) {}
2926
2927public:
2928 const llvm::APInt &getSize() const { return Size; }
2929 bool isSugared() const { return false; }
2930 QualType desugar() const { return QualType(this, 0); }
2931
2932 /// Determine the number of bits required to address a member of
2933 // an array with the given element type and number of elements.
2934 static unsigned getNumAddressingBits(const ASTContext &Context,
2935 QualType ElementType,
2936 const llvm::APInt &NumElements);
2937
2938 /// Determine the maximum number of active bits that an array's size
2939 /// can require, which limits the maximum size of the array.
2940 static unsigned getMaxSizeBits(const ASTContext &Context);
2941
2942 void Profile(llvm::FoldingSetNodeID &ID) {
2943 Profile(ID, getElementType(), getSize(),
2944 getSizeModifier(), getIndexTypeCVRQualifiers());
2945 }
2946
2947 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2948 const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2949 unsigned TypeQuals) {
2950 ID.AddPointer(ET.getAsOpaquePtr());
2951 ID.AddInteger(ArraySize.getZExtValue());
2952 ID.AddInteger(SizeMod);
2953 ID.AddInteger(TypeQuals);
2954 }
2955
2956 static bool classof(const Type *T) {
2957 return T->getTypeClass() == ConstantArray;
2958 }
2959};
2960
2961/// Represents a C array with an unspecified size. For example 'int A[]' has
2962/// an IncompleteArrayType where the element type is 'int' and the size is
2963/// unspecified.
2964class IncompleteArrayType : public ArrayType {
2965 friend class ASTContext; // ASTContext creates these.
2966
2967 IncompleteArrayType(QualType et, QualType can,
2968 ArraySizeModifier sm, unsigned tq)
2969 : ArrayType(IncompleteArray, et, can, sm, tq,
2970 et->containsUnexpandedParameterPack()) {}
2971
2972public:
2973 friend class StmtIteratorBase;
2974
2975 bool isSugared() const { return false; }
2976 QualType desugar() const { return QualType(this, 0); }
2977
2978 static bool classof(const Type *T) {
2979 return T->getTypeClass() == IncompleteArray;
2980 }
2981
2982 void Profile(llvm::FoldingSetNodeID &ID) {
2983 Profile(ID, getElementType(), getSizeModifier(),
2984 getIndexTypeCVRQualifiers());
2985 }
2986
2987 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2988 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2989 ID.AddPointer(ET.getAsOpaquePtr());
2990 ID.AddInteger(SizeMod);
2991 ID.AddInteger(TypeQuals);
2992 }
2993};
2994
2995/// Represents a C array with a specified size that is not an
2996/// integer-constant-expression. For example, 'int s[x+foo()]'.
2997/// Since the size expression is an arbitrary expression, we store it as such.
2998///
2999/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3000/// should not be: two lexically equivalent variable array types could mean
3001/// different things, for example, these variables do not have the same type
3002/// dynamically:
3003///
3004/// void foo(int x) {
3005/// int Y[x];
3006/// ++x;
3007/// int Z[x];
3008/// }
3009class VariableArrayType : public ArrayType {
3010 friend class ASTContext; // ASTContext creates these.
3011
3012 /// An assignment-expression. VLA's are only permitted within
3013 /// a function block.
3014 Stmt *SizeExpr;
3015
3016 /// The range spanned by the left and right array brackets.
3017 SourceRange Brackets;
3018
3019 VariableArrayType(QualType et, QualType can, Expr *e,
3020 ArraySizeModifier sm, unsigned tq,
3021 SourceRange brackets)
3022 : ArrayType(VariableArray, et, can, sm, tq,
3023 et->containsUnexpandedParameterPack()),
3024 SizeExpr((Stmt*) e), Brackets(brackets) {}
3025
3026public:
3027 friend class StmtIteratorBase;
3028
3029 Expr *getSizeExpr() const {
3030 // We use C-style casts instead of cast<> here because we do not wish
3031 // to have a dependency of Type.h on Stmt.h/Expr.h.
3032 return (Expr*) SizeExpr;
3033 }
3034
3035 SourceRange getBracketsRange() const { return Brackets; }
3036 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3037 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3038
3039 bool isSugared() const { return false; }
3040 QualType desugar() const { return QualType(this, 0); }
3041
3042 static bool classof(const Type *T) {
3043 return T->getTypeClass() == VariableArray;
3044 }
3045
3046 void Profile(llvm::FoldingSetNodeID &ID) {
3047 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3047)
;
3048 }
3049};
3050
3051/// Represents an array type in C++ whose size is a value-dependent expression.
3052///
3053/// For example:
3054/// \code
3055/// template<typename T, int Size>
3056/// class array {
3057/// T data[Size];
3058/// };
3059/// \endcode
3060///
3061/// For these types, we won't actually know what the array bound is
3062/// until template instantiation occurs, at which point this will
3063/// become either a ConstantArrayType or a VariableArrayType.
3064class DependentSizedArrayType : public ArrayType {
3065 friend class ASTContext; // ASTContext creates these.
3066
3067 const ASTContext &Context;
3068
3069 /// An assignment expression that will instantiate to the
3070 /// size of the array.
3071 ///
3072 /// The expression itself might be null, in which case the array
3073 /// type will have its size deduced from an initializer.
3074 Stmt *SizeExpr;
3075
3076 /// The range spanned by the left and right array brackets.
3077 SourceRange Brackets;
3078
3079 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3080 Expr *e, ArraySizeModifier sm, unsigned tq,
3081 SourceRange brackets);
3082
3083public:
3084 friend class StmtIteratorBase;
3085
3086 Expr *getSizeExpr() const {
3087 // We use C-style casts instead of cast<> here because we do not wish
3088 // to have a dependency of Type.h on Stmt.h/Expr.h.
3089 return (Expr*) SizeExpr;
3090 }
3091
3092 SourceRange getBracketsRange() const { return Brackets; }
3093 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3094 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3095
3096 bool isSugared() const { return false; }
3097 QualType desugar() const { return QualType(this, 0); }
3098
3099 static bool classof(const Type *T) {
3100 return T->getTypeClass() == DependentSizedArray;
3101 }
3102
3103 void Profile(llvm::FoldingSetNodeID &ID) {
3104 Profile(ID, Context, getElementType(),
3105 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3106 }
3107
3108 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3109 QualType ET, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals, Expr *E);
3111};
3112
3113/// Represents an extended address space qualifier where the input address space
3114/// value is dependent. Non-dependent address spaces are not represented with a
3115/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3116///
3117/// For example:
3118/// \code
3119/// template<typename T, int AddrSpace>
3120/// class AddressSpace {
3121/// typedef T __attribute__((address_space(AddrSpace))) type;
3122/// }
3123/// \endcode
3124class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3125 friend class ASTContext;
3126
3127 const ASTContext &Context;
3128 Expr *AddrSpaceExpr;
3129 QualType PointeeType;
3130 SourceLocation loc;
3131
3132 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3133 QualType can, Expr *AddrSpaceExpr,
3134 SourceLocation loc);
3135
3136public:
3137 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3138 QualType getPointeeType() const { return PointeeType; }
3139 SourceLocation getAttributeLoc() const { return loc; }
3140
3141 bool isSugared() const { return false; }
3142 QualType desugar() const { return QualType(this, 0); }
3143
3144 static bool classof(const Type *T) {
3145 return T->getTypeClass() == DependentAddressSpace;
3146 }
3147
3148 void Profile(llvm::FoldingSetNodeID &ID) {
3149 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3150 }
3151
3152 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3153 QualType PointeeType, Expr *AddrSpaceExpr);
3154};
3155
3156/// Represents an extended vector type where either the type or size is
3157/// dependent.
3158///
3159/// For example:
3160/// \code
3161/// template<typename T, int Size>
3162/// class vector {
3163/// typedef T __attribute__((ext_vector_type(Size))) type;
3164/// }
3165/// \endcode
3166class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3167 friend class ASTContext;
3168
3169 const ASTContext &Context;
3170 Expr *SizeExpr;
3171
3172 /// The element type of the array.
3173 QualType ElementType;
3174
3175 SourceLocation loc;
3176
3177 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3178 QualType can, Expr *SizeExpr, SourceLocation loc);
3179
3180public:
3181 Expr *getSizeExpr() const { return SizeExpr; }
3182 QualType getElementType() const { return ElementType; }
3183 SourceLocation getAttributeLoc() const { return loc; }
3184
3185 bool isSugared() const { return false; }
3186 QualType desugar() const { return QualType(this, 0); }
3187
3188 static bool classof(const Type *T) {
3189 return T->getTypeClass() == DependentSizedExtVector;
3190 }
3191
3192 void Profile(llvm::FoldingSetNodeID &ID) {
3193 Profile(ID, Context, getElementType(), getSizeExpr());
3194 }
3195
3196 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3197 QualType ElementType, Expr *SizeExpr);
3198};
3199
3200
3201/// Represents a GCC generic vector type. This type is created using
3202/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3203/// bytes; or from an Altivec __vector or vector declaration.
3204/// Since the constructor takes the number of vector elements, the
3205/// client is responsible for converting the size into the number of elements.
3206class VectorType : public Type, public llvm::FoldingSetNode {
3207public:
3208 enum VectorKind {
3209 /// not a target-specific vector type
3210 GenericVector,
3211
3212 /// is AltiVec vector
3213 AltiVecVector,
3214
3215 /// is AltiVec 'vector Pixel'
3216 AltiVecPixel,
3217
3218 /// is AltiVec 'vector bool ...'
3219 AltiVecBool,
3220
3221 /// is ARM Neon vector
3222 NeonVector,
3223
3224 /// is ARM Neon polynomial vector
3225 NeonPolyVector
3226 };
3227
3228protected:
3229 friend class ASTContext; // ASTContext creates these.
3230
3231 /// The element type of the vector.
3232 QualType ElementType;
3233
3234 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3235 VectorKind vecKind);
3236
3237 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3238 QualType canonType, VectorKind vecKind);
3239
3240public:
3241 QualType getElementType() const { return ElementType; }
3242 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3243
3244 static bool isVectorSizeTooLarge(unsigned NumElements) {
3245 return NumElements > VectorTypeBitfields::MaxNumElements;
3246 }
3247
3248 bool isSugared() const { return false; }
3249 QualType desugar() const { return QualType(this, 0); }
3250
3251 VectorKind getVectorKind() const {
3252 return VectorKind(VectorTypeBits.VecKind);
3253 }
3254
3255 void Profile(llvm::FoldingSetNodeID &ID) {
3256 Profile(ID, getElementType(), getNumElements(),
3257 getTypeClass(), getVectorKind());
3258 }
3259
3260 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3261 unsigned NumElements, TypeClass TypeClass,
3262 VectorKind VecKind) {
3263 ID.AddPointer(ElementType.getAsOpaquePtr());
3264 ID.AddInteger(NumElements);
3265 ID.AddInteger(TypeClass);
3266 ID.AddInteger(VecKind);
3267 }
3268
3269 static bool classof(const Type *T) {
3270 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3271 }
3272};
3273
3274/// Represents a vector type where either the type or size is dependent.
3275////
3276/// For example:
3277/// \code
3278/// template<typename T, int Size>
3279/// class vector {
3280/// typedef T __attribute__((vector_size(Size))) type;
3281/// }
3282/// \endcode
3283class DependentVectorType : public Type, public llvm::FoldingSetNode {
3284 friend class ASTContext;
3285
3286 const ASTContext &Context;
3287 QualType ElementType;
3288 Expr *SizeExpr;
3289 SourceLocation Loc;
3290
3291 DependentVectorType(const ASTContext &Context, QualType ElementType,
3292 QualType CanonType, Expr *SizeExpr,
3293 SourceLocation Loc, VectorType::VectorKind vecKind);
3294
3295public:
3296 Expr *getSizeExpr() const { return SizeExpr; }
3297 QualType getElementType() const { return ElementType; }
3298 SourceLocation getAttributeLoc() const { return Loc; }
3299 VectorType::VectorKind getVectorKind() const {
3300 return VectorType::VectorKind(VectorTypeBits.VecKind);
3301 }
3302
3303 bool isSugared() const { return false; }
3304 QualType desugar() const { return QualType(this, 0); }
3305
3306 static bool classof(const Type *T) {
3307 return T->getTypeClass() == DependentVector;
3308 }
3309
3310 void Profile(llvm::FoldingSetNodeID &ID) {
3311 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3312 }
3313
3314 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3315 QualType ElementType, const Expr *SizeExpr,
3316 VectorType::VectorKind VecKind);
3317};
3318
3319/// ExtVectorType - Extended vector type. This type is created using
3320/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3321/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3322/// class enables syntactic extensions, like Vector Components for accessing
3323/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3324/// Shading Language).
3325class ExtVectorType : public VectorType {
3326 friend class ASTContext; // ASTContext creates these.
3327
3328 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3329 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3330
3331public:
3332 static int getPointAccessorIdx(char c) {
3333 switch (c) {
3334 default: return -1;
3335 case 'x': case 'r': return 0;
3336 case 'y': case 'g': return 1;
3337 case 'z': case 'b': return 2;
3338 case 'w': case 'a': return 3;
3339 }
3340 }
3341
3342 static int getNumericAccessorIdx(char c) {
3343 switch (c) {
3344 default: return -1;
3345 case '0': return 0;
3346 case '1': return 1;
3347 case '2': return 2;
3348 case '3': return 3;
3349 case '4': return 4;
3350 case '5': return 5;
3351 case '6': return 6;
3352 case '7': return 7;
3353 case '8': return 8;
3354 case '9': return 9;
3355 case 'A':
3356 case 'a': return 10;
3357 case 'B':
3358 case 'b': return 11;
3359 case 'C':
3360 case 'c': return 12;
3361 case 'D':
3362 case 'd': return 13;
3363 case 'E':
3364 case 'e': return 14;
3365 case 'F':
3366 case 'f': return 15;
3367 }
3368 }
3369
3370 static int getAccessorIdx(char c, bool isNumericAccessor) {
3371 if (isNumericAccessor)
3372 return getNumericAccessorIdx(c);
3373 else
3374 return getPointAccessorIdx(c);
3375 }
3376
3377 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3378 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3379 return unsigned(idx-1) < getNumElements();
3380 return false;
3381 }
3382
3383 bool isSugared() const { return false; }
3384 QualType desugar() const { return QualType(this, 0); }
3385
3386 static bool classof(const Type *T) {
3387 return T->getTypeClass() == ExtVector;
3388 }
3389};
3390
3391/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3392/// class of FunctionNoProtoType and FunctionProtoType.
3393class FunctionType : public Type {
3394 // The type returned by the function.
3395 QualType ResultType;
3396
3397public:
3398 /// Interesting information about a specific parameter that can't simply
3399 /// be reflected in parameter's type. This is only used by FunctionProtoType
3400 /// but is in FunctionType to make this class available during the
3401 /// specification of the bases of FunctionProtoType.
3402 ///
3403 /// It makes sense to model language features this way when there's some
3404 /// sort of parameter-specific override (such as an attribute) that
3405 /// affects how the function is called. For example, the ARC ns_consumed
3406 /// attribute changes whether a parameter is passed at +0 (the default)
3407 /// or +1 (ns_consumed). This must be reflected in the function type,
3408 /// but isn't really a change to the parameter type.
3409 ///
3410 /// One serious disadvantage of modelling language features this way is
3411 /// that they generally do not work with language features that attempt
3412 /// to destructure types. For example, template argument deduction will
3413 /// not be able to match a parameter declared as
3414 /// T (*)(U)
3415 /// against an argument of type
3416 /// void (*)(__attribute__((ns_consumed)) id)
3417 /// because the substitution of T=void, U=id into the former will
3418 /// not produce the latter.
3419 class ExtParameterInfo {
3420 enum {
3421 ABIMask = 0x0F,
3422 IsConsumed = 0x10,
3423 HasPassObjSize = 0x20,
3424 IsNoEscape = 0x40,
3425 };
3426 unsigned char Data = 0;
3427
3428 public:
3429 ExtParameterInfo() = default;
3430
3431 /// Return the ABI treatment of this parameter.
3432 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3433 ExtParameterInfo withABI(ParameterABI kind) const {
3434 ExtParameterInfo copy = *this;
3435 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3436 return copy;
3437 }
3438
3439 /// Is this parameter considered "consumed" by Objective-C ARC?
3440 /// Consumed parameters must have retainable object type.
3441 bool isConsumed() const { return (Data & IsConsumed); }
3442 ExtParameterInfo withIsConsumed(bool consumed) const {
3443 ExtParameterInfo copy = *this;
3444 if (consumed)
3445 copy.Data |= IsConsumed;
3446 else
3447 copy.Data &= ~IsConsumed;
3448 return copy;
3449 }
3450
3451 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3452 ExtParameterInfo withHasPassObjectSize() const {
3453 ExtParameterInfo Copy = *this;
3454 Copy.Data |= HasPassObjSize;
3455 return Copy;
3456 }
3457
3458 bool isNoEscape() const { return Data & IsNoEscape; }
3459 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3460 ExtParameterInfo Copy = *this;
3461 if (NoEscape)
3462 Copy.Data |= IsNoEscape;
3463 else
3464 Copy.Data &= ~IsNoEscape;
3465 return Copy;
3466 }
3467
3468 unsigned char getOpaqueValue() const { return Data; }
3469 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3470 ExtParameterInfo result;
3471 result.Data = data;
3472 return result;
3473 }
3474
3475 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3476 return lhs.Data == rhs.Data;
3477 }
3478
3479 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3480 return lhs.Data != rhs.Data;
3481 }
3482 };
3483
3484 /// A class which abstracts out some details necessary for
3485 /// making a call.
3486 ///
3487 /// It is not actually used directly for storing this information in
3488 /// a FunctionType, although FunctionType does currently use the
3489 /// same bit-pattern.
3490 ///
3491 // If you add a field (say Foo), other than the obvious places (both,
3492 // constructors, compile failures), what you need to update is
3493 // * Operator==
3494 // * getFoo
3495 // * withFoo
3496 // * functionType. Add Foo, getFoo.
3497 // * ASTContext::getFooType
3498 // * ASTContext::mergeFunctionTypes
3499 // * FunctionNoProtoType::Profile
3500 // * FunctionProtoType::Profile
3501 // * TypePrinter::PrintFunctionProto
3502 // * AST read and write
3503 // * Codegen
3504 class ExtInfo {
3505 friend class FunctionType;
3506
3507 // Feel free to rearrange or add bits, but if you go over 12,
3508 // you'll need to adjust both the Bits field below and
3509 // Type::FunctionTypeBitfields.
3510
3511 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3512 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3513 //
3514 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3515 enum { CallConvMask = 0x1F };
3516 enum { NoReturnMask = 0x20 };
3517 enum { ProducesResultMask = 0x40 };
3518 enum { NoCallerSavedRegsMask = 0x80 };
3519 enum { NoCfCheckMask = 0x800 };
3520 enum {
3521 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3522 NoCallerSavedRegsMask | NoCfCheckMask),
3523 RegParmOffset = 8
3524 }; // Assumed to be the last field
3525 uint16_t Bits = CC_C;
3526
3527 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3528
3529 public:
3530 // Constructor with no defaults. Use this when you know that you
3531 // have all the elements (when reading an AST file for example).
3532 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3533 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3534 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3534, __PRETTY_FUNCTION__))
;
3535 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3536 (producesResult ? ProducesResultMask : 0) |
3537 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3538 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3539 (NoCfCheck ? NoCfCheckMask : 0);
3540 }
3541
3542 // Constructor with all defaults. Use when for example creating a
3543 // function known to use defaults.
3544 ExtInfo() = default;
3545
3546 // Constructor with just the calling convention, which is an important part
3547 // of the canonical type.
3548 ExtInfo(CallingConv CC) : Bits(CC) {}
3549
3550 bool getNoReturn() const { return Bits & NoReturnMask; }
3551 bool getProducesResult() const { return Bits & ProducesResultMask; }
3552 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3553 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3554 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3555
3556 unsigned getRegParm() const {
3557 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3558 if (RegParm > 0)
3559 --RegParm;
3560 return RegParm;
3561 }
3562
3563 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3564
3565 bool operator==(ExtInfo Other) const {
3566 return Bits == Other.Bits;
3567 }
3568 bool operator!=(ExtInfo Other) const {
3569 return Bits != Other.Bits;
3570 }
3571
3572 // Note that we don't have setters. That is by design, use
3573 // the following with methods instead of mutating these objects.
3574
3575 ExtInfo withNoReturn(bool noReturn) const {
3576 if (noReturn)
3577 return ExtInfo(Bits | NoReturnMask);
3578 else
3579 return ExtInfo(Bits & ~NoReturnMask);
3580 }
3581
3582 ExtInfo withProducesResult(bool producesResult) const {
3583 if (producesResult)
3584 return ExtInfo(Bits | ProducesResultMask);
3585 else
3586 return ExtInfo(Bits & ~ProducesResultMask);
3587 }
3588
3589 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3590 if (noCallerSavedRegs)
3591 return ExtInfo(Bits | NoCallerSavedRegsMask);
3592 else
3593 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3594 }
3595
3596 ExtInfo withNoCfCheck(bool noCfCheck) const {
3597 if (noCfCheck)
3598 return ExtInfo(Bits | NoCfCheckMask);
3599 else
3600 return ExtInfo(Bits & ~NoCfCheckMask);
3601 }
3602
3603 ExtInfo withRegParm(unsigned RegParm) const {
3604 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3604, __PRETTY_FUNCTION__))
;
3605 return ExtInfo((Bits & ~RegParmMask) |
3606 ((RegParm + 1) << RegParmOffset));
3607 }
3608
3609 ExtInfo withCallingConv(CallingConv cc) const {
3610 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3611 }
3612
3613 void Profile(llvm::FoldingSetNodeID &ID) const {
3614 ID.AddInteger(Bits);
3615 }
3616 };
3617
3618 /// A simple holder for a QualType representing a type in an
3619 /// exception specification. Unfortunately needed by FunctionProtoType
3620 /// because TrailingObjects cannot handle repeated types.
3621 struct ExceptionType { QualType Type; };
3622
3623 /// A simple holder for various uncommon bits which do not fit in
3624 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3625 /// alignment of subsequent objects in TrailingObjects. You must update
3626 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3627 struct alignas(void *) FunctionTypeExtraBitfields {
3628 /// The number of types in the exception specification.
3629 /// A whole unsigned is not needed here and according to
3630 /// [implimits] 8 bits would be enough here.
3631 unsigned NumExceptionType;
3632 };
3633
3634protected:
3635 FunctionType(TypeClass tc, QualType res,
3636 QualType Canonical, bool Dependent,
3637 bool InstantiationDependent,
3638 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3639 ExtInfo Info)
3640 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3641 ContainsUnexpandedParameterPack),
3642 ResultType(res) {
3643 FunctionTypeBits.ExtInfo = Info.Bits;
3644 }
3645
3646 Qualifiers getFastTypeQuals() const {
3647 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3648 }
3649
3650public:
3651 QualType getReturnType() const { return ResultType; }
3652
3653 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3654 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3655
3656 /// Determine whether this function type includes the GNU noreturn
3657 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3658 /// type.
3659 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3660
3661 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3662 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3663
3664 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3665 "Const, volatile and restrict are assumed to be a subset of "
3666 "the fast qualifiers.");
3667
3668 bool isConst() const { return getFastTypeQuals().hasConst(); }
3669 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3670 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3671
3672 /// Determine the type of an expression that calls a function of
3673 /// this type.
3674 QualType getCallResultType(const ASTContext &Context) const {
3675 return getReturnType().getNonLValueExprType(Context);
3676 }
3677
3678 static StringRef getNameForCallConv(CallingConv CC);
3679
3680 static bool classof(const Type *T) {
3681 return T->getTypeClass() == FunctionNoProto ||
3682 T->getTypeClass() == FunctionProto;
3683 }
3684};
3685
3686/// Represents a K&R-style 'int foo()' function, which has
3687/// no information available about its arguments.
3688class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3689 friend class ASTContext; // ASTContext creates these.
3690
3691 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3692 : FunctionType(FunctionNoProto, Result, Canonical,
3693 /*Dependent=*/false, /*InstantiationDependent=*/false,
3694 Result->isVariablyModifiedType(),
3695 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3696
3697public:
3698 // No additional state past what FunctionType provides.
3699
3700 bool isSugared() const { return false; }
3701 QualType desugar() const { return QualType(this, 0); }
3702
3703 void Profile(llvm::FoldingSetNodeID &ID) {
3704 Profile(ID, getReturnType(), getExtInfo());
3705 }
3706
3707 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3708 ExtInfo Info) {
3709 Info.Profile(ID);
3710 ID.AddPointer(ResultType.getAsOpaquePtr());
3711 }
3712
3713 static bool classof(const Type *T) {
3714 return T->getTypeClass() == FunctionNoProto;
3715 }
3716};
3717
3718/// Represents a prototype with parameter type info, e.g.
3719/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3720/// parameters, not as having a single void parameter. Such a type can have
3721/// an exception specification, but this specification is not part of the
3722/// canonical type. FunctionProtoType has several trailing objects, some of
3723/// which optional. For more information about the trailing objects see
3724/// the first comment inside FunctionProtoType.
3725class FunctionProtoType final
3726 : public FunctionType,
3727 public llvm::FoldingSetNode,
3728 private llvm::TrailingObjects<
3729 FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
3730 FunctionType::ExceptionType, Expr *, FunctionDecl *,
3731 FunctionType::ExtParameterInfo, Qualifiers> {
3732 friend class ASTContext; // ASTContext creates these.
3733 friend TrailingObjects;
3734
3735 // FunctionProtoType is followed by several trailing objects, some of
3736 // which optional. They are in order:
3737 //
3738 // * An array of getNumParams() QualType holding the parameter types.
3739 // Always present. Note that for the vast majority of FunctionProtoType,
3740 // these will be the only trailing objects.
3741 //
3742 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3743 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3744 // a single FunctionTypeExtraBitfields. Present if and only if
3745 // hasExtraBitfields() is true.
3746 //
3747 // * Optionally exactly one of:
3748 // * an array of getNumExceptions() ExceptionType,
3749 // * a single Expr *,
3750 // * a pair of FunctionDecl *,
3751 // * a single FunctionDecl *
3752 // used to store information about the various types of exception
3753 // specification. See getExceptionSpecSize for the details.
3754 //
3755 // * Optionally an array of getNumParams() ExtParameterInfo holding
3756 // an ExtParameterInfo for each of the parameters. Present if and
3757 // only if hasExtParameterInfos() is true.
3758 //
3759 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3760 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3761 // if hasExtQualifiers() is true.
3762 //
3763 // The optional FunctionTypeExtraBitfields has to be before the data
3764 // related to the exception specification since it contains the number
3765 // of exception types.
3766 //
3767 // We put the ExtParameterInfos last. If all were equal, it would make
3768 // more sense to put these before the exception specification, because
3769 // it's much easier to skip past them compared to the elaborate switch
3770 // required to skip the exception specification. However, all is not
3771 // equal; ExtParameterInfos are used to model very uncommon features,
3772 // and it's better not to burden the more common paths.
3773
3774public:
3775 /// Holds information about the various types of exception specification.
3776 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3777 /// used to group together the various bits of information about the
3778 /// exception specification.
3779 struct ExceptionSpecInfo {
3780 /// The kind of exception specification this is.
3781 ExceptionSpecificationType Type = EST_None;
3782
3783 /// Explicitly-specified list of exception types.
3784 ArrayRef<QualType> Exceptions;
3785
3786 /// Noexcept expression, if this is a computed noexcept specification.
3787 Expr *NoexceptExpr = nullptr;
3788
3789 /// The function whose exception specification this is, for
3790 /// EST_Unevaluated and EST_Uninstantiated.
3791 FunctionDecl *SourceDecl = nullptr;
3792
3793 /// The function template whose exception specification this is instantiated
3794 /// from, for EST_Uninstantiated.
3795 FunctionDecl *SourceTemplate = nullptr;
3796
3797 ExceptionSpecInfo() = default;
3798
3799 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3800 };
3801
3802 /// Extra information about a function prototype. ExtProtoInfo is not
3803 /// stored as such in FunctionProtoType but is used to group together
3804 /// the various bits of extra information about a function prototype.
3805 struct ExtProtoInfo {
3806 FunctionType::ExtInfo ExtInfo;
3807 bool Variadic : 1;
3808 bool HasTrailingReturn : 1;
3809 Qualifiers TypeQuals;
3810 RefQualifierKind RefQualifier = RQ_None;
3811 ExceptionSpecInfo ExceptionSpec;
3812 const ExtParameterInfo *ExtParameterInfos = nullptr;
3813
3814 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3815
3816 ExtProtoInfo(CallingConv CC)
3817 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3818
3819 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3820 ExtProtoInfo Result(*this);
3821 Result.ExceptionSpec = ESI;
3822 return Result;
3823 }
3824 };
3825
3826private:
3827 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3828 return getNumParams();
3829 }
3830
3831 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3832 return hasExtraBitfields();
3833 }
3834
3835 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3836 return getExceptionSpecSize().NumExceptionType;
3837 }
3838
3839 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3840 return getExceptionSpecSize().NumExprPtr;
3841 }
3842
3843 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3844 return getExceptionSpecSize().NumFunctionDeclPtr;
3845 }
3846
3847 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3848 return hasExtParameterInfos() ? getNumParams() : 0;
3849 }
3850
3851 /// Determine whether there are any argument types that
3852 /// contain an unexpanded parameter pack.
3853 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3854 unsigned numArgs) {
3855 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3856 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3857 return true;
3858
3859 return false;
3860 }
3861
3862 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3863 QualType canonical, const ExtProtoInfo &epi);
3864
3865 /// This struct is returned by getExceptionSpecSize and is used to
3866 /// translate an ExceptionSpecificationType to the number and kind
3867 /// of trailing objects related to the exception specification.
3868 struct ExceptionSpecSizeHolder {
3869 unsigned NumExceptionType;
3870 unsigned NumExprPtr;
3871 unsigned NumFunctionDeclPtr;
3872 };
3873
3874 /// Return the number and kind of trailing objects
3875 /// related to the exception specification.
3876 static ExceptionSpecSizeHolder
3877 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3878 switch (EST) {
3879 case EST_None:
3880 case EST_DynamicNone:
3881 case EST_MSAny:
3882 case EST_BasicNoexcept:
3883 case EST_Unparsed:
3884 case EST_NoThrow:
3885 return {0, 0, 0};
3886
3887 case EST_Dynamic:
3888 return {NumExceptions, 0, 0};
3889
3890 case EST_DependentNoexcept:
3891 case EST_NoexceptFalse:
3892 case EST_NoexceptTrue:
3893 return {0, 1, 0};
3894
3895 case EST_Uninstantiated:
3896 return {0, 0, 2};
3897
3898 case EST_Unevaluated:
3899 return {0, 0, 1};
3900 }
3901 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3901)
;
3902 }
3903
3904 /// Return the number and kind of trailing objects
3905 /// related to the exception specification.
3906 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3907 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3908 }
3909
3910 /// Whether the trailing FunctionTypeExtraBitfields is present.
3911 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3912 // If the exception spec type is EST_Dynamic then we have > 0 exception
3913 // types and the exact number is stored in FunctionTypeExtraBitfields.
3914 return EST == EST_Dynamic;
3915 }
3916
3917 /// Whether the trailing FunctionTypeExtraBitfields is present.
3918 bool hasExtraBitfields() const {
3919 return hasExtraBitfields(getExceptionSpecType());
3920 }
3921
3922 bool hasExtQualifiers() const {
3923 return FunctionTypeBits.HasExtQuals;
3924 }
3925
3926public:
3927 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3928
3929 QualType getParamType(unsigned i) const {
3930 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3930, __PRETTY_FUNCTION__))
;
3931 return param_type_begin()[i];
3932 }
3933
3934 ArrayRef<QualType> getParamTypes() const {
3935 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3936 }
3937
3938 ExtProtoInfo getExtProtoInfo() const {
3939 ExtProtoInfo EPI;
3940 EPI.ExtInfo = getExtInfo();
3941 EPI.Variadic = isVariadic();
3942 EPI.HasTrailingReturn = hasTrailingReturn();
3943 EPI.ExceptionSpec.Type = getExceptionSpecType();
3944 EPI.TypeQuals = getMethodQuals();
3945 EPI.RefQualifier = getRefQualifier();
3946 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3947 EPI.ExceptionSpec.Exceptions = exceptions();
3948 } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
3949 EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3950 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3951 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3952 EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3953 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3954 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3955 }
3956 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3957 return EPI;
3958 }
3959
3960 /// Get the kind of exception specification on this function.
3961 ExceptionSpecificationType getExceptionSpecType() const {
3962 return static_cast<ExceptionSpecificationType>(
3963 FunctionTypeBits.ExceptionSpecType);
3964 }
3965
3966 /// Return whether this function has any kind of exception spec.
3967 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3968
3969 /// Return whether this function has a dynamic (throw) exception spec.
3970 bool hasDynamicExceptionSpec() const {
3971 return isDynamicExceptionSpec(getExceptionSpecType());
3972 }
3973
3974 /// Return whether this function has a noexcept exception spec.
3975 bool hasNoexceptExceptionSpec() const {
3976 return isNoexceptExceptionSpec(getExceptionSpecType());
3977 }
3978
3979 /// Return whether this function has a dependent exception spec.
3980 bool hasDependentExceptionSpec() const;
3981
3982 /// Return whether this function has an instantiation-dependent exception
3983 /// spec.
3984 bool hasInstantiationDependentExceptionSpec() const;
3985
3986 /// Return the number of types in the exception specification.
3987 unsigned getNumExceptions() const {
3988 return getExceptionSpecType() == EST_Dynamic
3989 ? getTrailingObjects<FunctionTypeExtraBitfields>()
3990 ->NumExceptionType
3991 : 0;
3992 }
3993
3994 /// Return the ith exception type, where 0 <= i < getNumExceptions().
3995 QualType getExceptionType(unsigned i) const {
3996 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3996, __PRETTY_FUNCTION__))
;
3997 return exception_begin()[i];
3998 }
3999
4000 /// Return the expression inside noexcept(expression), or a null pointer
4001 /// if there is none (because the exception spec is not of this form).
4002 Expr *getNoexceptExpr() const {
4003 if (!isComputedNoexcept(getExceptionSpecType()))
4004 return nullptr;
4005 return *getTrailingObjects<Expr *>();
4006 }
4007
4008 /// If this function type has an exception specification which hasn't
4009 /// been determined yet (either because it has not been evaluated or because
4010 /// it has not been instantiated), this is the function whose exception
4011 /// specification is represented by this type.
4012 FunctionDecl *getExceptionSpecDecl() const {
4013 if (getExceptionSpecType() != EST_Uninstantiated &&
4014 getExceptionSpecType() != EST_Unevaluated)
4015 return nullptr;
4016 return getTrailingObjects<FunctionDecl *>()[0];
4017 }
4018
4019 /// If this function type has an uninstantiated exception
4020 /// specification, this is the function whose exception specification
4021 /// should be instantiated to find the exception specification for
4022 /// this type.
4023 FunctionDecl *getExceptionSpecTemplate() const {
4024 if (getExceptionSpecType() != EST_Uninstantiated)
4025 return nullptr;
4026 return getTrailingObjects<FunctionDecl *>()[1];
4027 }
4028
4029 /// Determine whether this function type has a non-throwing exception
4030 /// specification.
4031 CanThrowResult canThrow() const;
4032
4033 /// Determine whether this function type has a non-throwing exception
4034 /// specification. If this depends on template arguments, returns
4035 /// \c ResultIfDependent.
4036 bool isNothrow(bool ResultIfDependent = false) const {
4037 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4038 }
4039
4040 /// Whether this function prototype is variadic.
4041 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4042
4043 /// Determines whether this function prototype contains a
4044 /// parameter pack at the end.
4045 ///
4046 /// A function template whose last parameter is a parameter pack can be
4047 /// called with an arbitrary number of arguments, much like a variadic
4048 /// function.
4049 bool isTemplateVariadic() const;
4050
4051 /// Whether this function prototype has a trailing return type.
4052 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4053
4054 Qualifiers getMethodQuals() const {
4055 if (hasExtQualifiers())
4056 return *getTrailingObjects<Qualifiers>();
4057 else
4058 return getFastTypeQuals();
4059 }
4060
4061 /// Retrieve the ref-qualifier associated with this function type.
4062 RefQualifierKind getRefQualifier() const {
4063 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4064 }
4065
4066 using param_type_iterator = const QualType *;
4067 using param_type_range = llvm::iterator_range<param_type_iterator>;
4068
4069 param_type_range param_types() const {
4070 return param_type_range(param_type_begin(), param_type_end());
4071 }
4072
4073 param_type_iterator param_type_begin() const {
4074 return getTrailingObjects<QualType>();
4075 }
4076
4077 param_type_iterator param_type_end() const {
4078 return param_type_begin() + getNumParams();
4079 }
4080
4081 using exception_iterator = const QualType *;
4082
4083 ArrayRef<QualType> exceptions() const {
4084 return llvm::makeArrayRef(exception_begin(), exception_end());
4085 }
4086
4087 exception_iterator exception_begin() const {
4088 return reinterpret_cast<exception_iterator>(
4089 getTrailingObjects<ExceptionType>());
4090 }
4091
4092 exception_iterator exception_end() const {
4093 return exception_begin() + getNumExceptions();
4094 }
4095
4096 /// Is there any interesting extra information for any of the parameters
4097 /// of this function type?
4098 bool hasExtParameterInfos() const {
4099 return FunctionTypeBits.HasExtParameterInfos;
4100 }
4101
4102 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4103 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4103, __PRETTY_FUNCTION__))
;
4104 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4105 getNumParams());
4106 }
4107
4108 /// Return a pointer to the beginning of the array of extra parameter
4109 /// information, if present, or else null if none of the parameters
4110 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4111 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4112 if (!hasExtParameterInfos())
4113 return nullptr;
4114 return getTrailingObjects<ExtParameterInfo>();
4115 }
4116
4117 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4118 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4118, __PRETTY_FUNCTION__))
;
4119 if (hasExtParameterInfos())
4120 return getTrailingObjects<ExtParameterInfo>()[I];
4121 return ExtParameterInfo();
4122 }
4123
4124 ParameterABI getParameterABI(unsigned I) const {
4125 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4125, __PRETTY_FUNCTION__))
;
4126 if (hasExtParameterInfos())
4127 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4128 return ParameterABI::Ordinary;
4129 }
4130
4131 bool isParamConsumed(unsigned I) const {
4132 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4132, __PRETTY_FUNCTION__))
;
4133 if (hasExtParameterInfos())
4134 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4135 return false;
4136 }
4137
4138 bool isSugared() const { return false; }
4139 QualType desugar() const { return QualType(this, 0); }
4140
4141 void printExceptionSpecification(raw_ostream &OS,
4142 const PrintingPolicy &Policy) const;
4143
4144 static bool classof(const Type *T) {
4145 return T->getTypeClass() == FunctionProto;
4146 }
4147
4148 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4149 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4150 param_type_iterator ArgTys, unsigned NumArgs,
4151 const ExtProtoInfo &EPI, const ASTContext &Context,
4152 bool Canonical);
4153};
4154
4155/// Represents the dependent type named by a dependently-scoped
4156/// typename using declaration, e.g.
4157/// using typename Base<T>::foo;
4158///
4159/// Template instantiation turns these into the underlying type.
4160class UnresolvedUsingType : public Type {
4161 friend class ASTContext; // ASTContext creates these.
4162
4163 UnresolvedUsingTypenameDecl *Decl;
4164
4165 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4166 : Type(UnresolvedUsing, QualType(), true, true, false,
4167 /*ContainsUnexpandedParameterPack=*/false),
4168 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4169
4170public:
4171 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4172
4173 bool isSugared() const { return false; }
4174 QualType desugar() const { return QualType(this, 0); }
4175
4176 static bool classof(const Type *T) {
4177 return T->getTypeClass() == UnresolvedUsing;
4178 }
4179
4180 void Profile(llvm::FoldingSetNodeID &ID) {
4181 return Profile(ID, Decl);
4182 }
4183
4184 static void Profile(llvm::FoldingSetNodeID &ID,
4185 UnresolvedUsingTypenameDecl *D) {
4186 ID.AddPointer(D);
4187 }
4188};
4189
4190class TypedefType : public Type {
4191 TypedefNameDecl *Decl;
4192
4193protected:
4194 friend class ASTContext; // ASTContext creates these.
4195
4196 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4197 : Type(tc, can, can->isDependentType(),
4198 can->isInstantiationDependentType(),
4199 can->isVariablyModifiedType(),
4200 /*ContainsUnexpandedParameterPack=*/false),
4201 Decl(const_cast<TypedefNameDecl*>(D)) {
4202 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4202, __PRETTY_FUNCTION__))
;
4203 }
4204
4205public:
4206 TypedefNameDecl *getDecl() const { return Decl; }
4207
4208 bool isSugared() const { return true; }
4209 QualType desugar() const;
4210
4211 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4212};
4213
4214/// Sugar type that represents a type that was qualified by a qualifier written
4215/// as a macro invocation.
4216class MacroQualifiedType : public Type {
4217 friend class ASTContext; // ASTContext creates these.
4218
4219 QualType UnderlyingTy;
4220 const IdentifierInfo *MacroII;
4221
4222 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4223 const IdentifierInfo *MacroII)
4224 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4225 UnderlyingTy->isInstantiationDependentType(),
4226 UnderlyingTy->isVariablyModifiedType(),
4227 UnderlyingTy->containsUnexpandedParameterPack()),
4228 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4229 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
4230 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
;
4231 }
4232
4233public:
4234 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4235 QualType getUnderlyingType() const { return UnderlyingTy; }
4236
4237 /// Return this attributed type's modified type with no qualifiers attached to
4238 /// it.
4239 QualType getModifiedType() const;
4240
4241 bool isSugared() const { return true; }
4242 QualType desugar() const;
4243
4244 static bool classof(const Type *T) {
4245 return T->getTypeClass() == MacroQualified;
4246 }
4247};
4248
4249/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4250class TypeOfExprType : public Type {
4251 Expr *TOExpr;
4252
4253protected:
4254 friend class ASTContext; // ASTContext creates these.
4255
4256 TypeOfExprType(Expr *E, QualType can = QualType());
4257
4258public:
4259 Expr *getUnderlyingExpr() const { return TOExpr; }
4260
4261 /// Remove a single level of sugar.
4262 QualType desugar() const;
4263
4264 /// Returns whether this type directly provides sugar.
4265 bool isSugared() const;
4266
4267 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4268};
4269
4270/// Internal representation of canonical, dependent
4271/// `typeof(expr)` types.
4272///
4273/// This class is used internally by the ASTContext to manage
4274/// canonical, dependent types, only. Clients will only see instances
4275/// of this class via TypeOfExprType nodes.
4276class DependentTypeOfExprType
4277 : public TypeOfExprType, public llvm::FoldingSetNode {
4278 const ASTContext &Context;
4279
4280public:
4281 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4282 : TypeOfExprType(E), Context(Context) {}
4283
4284 void Profile(llvm::FoldingSetNodeID &ID) {
4285 Profile(ID, Context, getUnderlyingExpr());
4286 }
4287
4288 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4289 Expr *E);
4290};
4291
4292/// Represents `typeof(type)`, a GCC extension.
4293class TypeOfType : public Type {
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 QualType TOType;
4297
4298 TypeOfType(QualType T, QualType can)
4299 : Type(TypeOf, can, T->isDependentType(),
4300 T->isInstantiationDependentType(),
4301 T->isVariablyModifiedType(),
4302 T->containsUnexpandedParameterPack()),
4303 TOType(T) {
4304 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4304, __PRETTY_FUNCTION__))
;
4305 }
4306
4307public:
4308 QualType getUnderlyingType() const { return TOType; }
4309
4310 /// Remove a single level of sugar.
4311 QualType desugar() const { return getUnderlyingType(); }
4312
4313 /// Returns whether this type directly provides sugar.
4314 bool isSugared() const { return true; }
4315
4316 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4317};
4318
4319/// Represents the type `decltype(expr)` (C++11).
4320class DecltypeType : public Type {
4321 Expr *E;
4322 QualType UnderlyingType;
4323
4324protected:
4325 friend class ASTContext; // ASTContext creates these.
4326
4327 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4328
4329public:
4330 Expr *getUnderlyingExpr() const { return E; }
4331 QualType getUnderlyingType() const { return UnderlyingType; }
4332
4333 /// Remove a single level of sugar.
4334 QualType desugar() const;
4335
4336 /// Returns whether this type directly provides sugar.
4337 bool isSugared() const;
4338
4339 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4340};
4341
4342/// Internal representation of canonical, dependent
4343/// decltype(expr) types.
4344///
4345/// This class is used internally by the ASTContext to manage
4346/// canonical, dependent types, only. Clients will only see instances
4347/// of this class via DecltypeType nodes.
4348class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4349 const ASTContext &Context;
4350
4351public:
4352 DependentDecltypeType(const ASTContext &Context, Expr *E);
4353
4354 void Profile(llvm::FoldingSetNodeID &ID) {
4355 Profile(ID, Context, getUnderlyingExpr());
4356 }
4357
4358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4359 Expr *E);
4360};
4361
4362/// A unary type transform, which is a type constructed from another.
4363class UnaryTransformType : public Type {
4364public:
4365 enum UTTKind {
4366 EnumUnderlyingType
4367 };
4368
4369private:
4370 /// The untransformed type.
4371 QualType BaseType;
4372
4373 /// The transformed type if not dependent, otherwise the same as BaseType.
4374 QualType UnderlyingType;
4375
4376 UTTKind UKind;
4377
4378protected:
4379 friend class ASTContext;
4380
4381 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4382 QualType CanonicalTy);
4383
4384public:
4385 bool isSugared() const { return !isDependentType(); }
4386 QualType desugar() const { return UnderlyingType; }
4387
4388 QualType getUnderlyingType() const { return UnderlyingType; }
4389 QualType getBaseType() const { return BaseType; }
4390
4391 UTTKind getUTTKind() const { return UKind; }
4392
4393 static bool classof(const Type *T) {
4394 return T->getTypeClass() == UnaryTransform;
4395 }
4396};
4397
4398/// Internal representation of canonical, dependent
4399/// __underlying_type(type) types.
4400///
4401/// This class is used internally by the ASTContext to manage
4402/// canonical, dependent types, only. Clients will only see instances
4403/// of this class via UnaryTransformType nodes.
4404class DependentUnaryTransformType : public UnaryTransformType,
4405 public llvm::FoldingSetNode {
4406public:
4407 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4408 UTTKind UKind);
4409
4410 void Profile(llvm::FoldingSetNodeID &ID) {
4411 Profile(ID, getBaseType(), getUTTKind());
4412 }
4413
4414 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4415 UTTKind UKind) {
4416 ID.AddPointer(BaseType.getAsOpaquePtr());
4417 ID.AddInteger((unsigned)UKind);
4418 }
4419};
4420
4421class TagType : public Type {
4422 friend class ASTReader;
4423
4424 /// Stores the TagDecl associated with this type. The decl may point to any
4425 /// TagDecl that declares the entity.
4426 TagDecl *decl;
4427
4428protected:
4429 TagType(TypeClass TC, const TagDecl *D, QualType can);
4430
4431public:
4432 TagDecl *getDecl() const;
4433
4434 /// Determines whether this type is in the process of being defined.
4435 bool isBeingDefined() const;
4436
4437 static bool classof(const Type *T) {
4438 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4439 }
4440};
4441
4442/// A helper class that allows the use of isa/cast/dyncast
4443/// to detect TagType objects of structs/unions/classes.
4444class RecordType : public TagType {
4445protected:
4446 friend class ASTContext; // ASTContext creates these.
4447
4448 explicit RecordType(const RecordDecl *D)
4449 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4450 explicit RecordType(TypeClass TC, RecordDecl *D)
4451 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4452
4453public:
4454 RecordDecl *getDecl() const {
4455 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4456 }
4457
4458 /// Recursively check all fields in the record for const-ness. If any field
4459 /// is declared const, return true. Otherwise, return false.
4460 bool hasConstFields() const;
4461
4462 bool isSugared() const { return false; }
4463 QualType desugar() const { return QualType(this, 0); }
4464
4465 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4466};
4467
4468/// A helper class that allows the use of isa/cast/dyncast
4469/// to detect TagType objects of enums.
4470class EnumType : public TagType {
4471 friend class ASTContext; // ASTContext creates these.
4472
4473 explicit EnumType(const EnumDecl *D)
4474 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4475
4476public:
4477 EnumDecl *getDecl() const {
4478 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4479 }
4480
4481 bool isSugared() const { return false; }
4482 QualType desugar() const { return QualType(this, 0); }
4483
4484 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4485};
4486
4487/// An attributed type is a type to which a type attribute has been applied.
4488///
4489/// The "modified type" is the fully-sugared type to which the attributed
4490/// type was applied; generally it is not canonically equivalent to the
4491/// attributed type. The "equivalent type" is the minimally-desugared type
4492/// which the type is canonically equivalent to.
4493///
4494/// For example, in the following attributed type:
4495/// int32_t __attribute__((vector_size(16)))
4496/// - the modified type is the TypedefType for int32_t
4497/// - the equivalent type is VectorType(16, int32_t)
4498/// - the canonical type is VectorType(16, int)
4499class AttributedType : public Type, public llvm::FoldingSetNode {
4500public:
4501 using Kind = attr::Kind;
4502
4503private:
4504 friend class ASTContext; // ASTContext creates these
4505
4506 QualType ModifiedType;
4507 QualType EquivalentType;
4508
4509 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4510 QualType equivalent)
4511 : Type(Attributed, canon, equivalent->isDependentType(),
4512 equivalent->isInstantiationDependentType(),
4513 equivalent->isVariablyModifiedType(),
4514 equivalent->containsUnexpandedParameterPack()),
4515 ModifiedType(modified), EquivalentType(equivalent) {
4516 AttributedTypeBits.AttrKind = attrKind;
4517 }
4518
4519public:
4520 Kind getAttrKind() const {
4521 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4522 }
4523
4524 QualType getModifiedType() const { return ModifiedType; }
4525 QualType getEquivalentType() const { return EquivalentType; }
4526
4527 bool isSugared() const { return true; }
4528 QualType desugar() const { return getEquivalentType(); }
4529
4530 /// Does this attribute behave like a type qualifier?
4531 ///
4532 /// A type qualifier adjusts a type to provide specialized rules for
4533 /// a specific object, like the standard const and volatile qualifiers.
4534 /// This includes attributes controlling things like nullability,
4535 /// address spaces, and ARC ownership. The value of the object is still
4536 /// largely described by the modified type.
4537 ///
4538 /// In contrast, many type attributes "rewrite" their modified type to
4539 /// produce a fundamentally different type, not necessarily related in any
4540 /// formalizable way to the original type. For example, calling convention
4541 /// and vector attributes are not simple type qualifiers.
4542 ///
4543 /// Type qualifiers are often, but not always, reflected in the canonical
4544 /// type.
4545 bool isQualifier() const;
4546
4547 bool isMSTypeSpec() const;
4548
4549 bool isCallingConv() const;
4550
4551 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4552
4553 /// Retrieve the attribute kind corresponding to the given
4554 /// nullability kind.
4555 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4556 switch (kind) {
4557 case NullabilityKind::NonNull:
4558 return attr::TypeNonNull;
4559
4560 case NullabilityKind::Nullable:
4561 return attr::TypeNullable;
4562
4563 case NullabilityKind::Unspecified:
4564 return attr::TypeNullUnspecified;
4565 }
4566 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4566)
;
4567 }
4568
4569 /// Strip off the top-level nullability annotation on the given
4570 /// type, if it's there.
4571 ///
4572 /// \param T The type to strip. If the type is exactly an
4573 /// AttributedType specifying nullability (without looking through
4574 /// type sugar), the nullability is returned and this type changed
4575 /// to the underlying modified type.
4576 ///
4577 /// \returns the top-level nullability, if present.
4578 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4585 QualType modified, QualType equivalent) {
4586 ID.AddInteger(attrKind);
4587 ID.AddPointer(modified.getAsOpaquePtr());
4588 ID.AddPointer(equivalent.getAsOpaquePtr());
4589 }
4590
4591 static bool classof(const Type *T) {
4592 return T->getTypeClass() == Attributed;
4593 }
4594};
4595
4596class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4597 friend class ASTContext; // ASTContext creates these
4598
4599 // Helper data collector for canonical types.
4600 struct CanonicalTTPTInfo {
4601 unsigned Depth : 15;
4602 unsigned ParameterPack : 1;
4603 unsigned Index : 16;
4604 };
4605
4606 union {
4607 // Info for the canonical type.
4608 CanonicalTTPTInfo CanTTPTInfo;
4609
4610 // Info for the non-canonical type.
4611 TemplateTypeParmDecl *TTPDecl;
4612 };
4613
4614 /// Build a non-canonical type.
4615 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4616 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4617 /*InstantiationDependent=*/true,
4618 /*VariablyModified=*/false,
4619 Canon->containsUnexpandedParameterPack()),
4620 TTPDecl(TTPDecl) {}
4621
4622 /// Build the canonical type.
4623 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4624 : Type(TemplateTypeParm, QualType(this, 0),
4625 /*Dependent=*/true,
4626 /*InstantiationDependent=*/true,
4627 /*VariablyModified=*/false, PP) {
4628 CanTTPTInfo.Depth = D;
4629 CanTTPTInfo.Index = I;
4630 CanTTPTInfo.ParameterPack = PP;
4631 }
4632
4633 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4634 QualType Can = getCanonicalTypeInternal();
4635 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4636 }
4637
4638public:
4639 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4640 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4641 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4642
4643 TemplateTypeParmDecl *getDecl() const {
4644 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4645 }
4646
4647 IdentifierInfo *getIdentifier() const;
4648
4649 bool isSugared() const { return false; }
4650 QualType desugar() const { return QualType(this, 0); }
4651
4652 void Profile(llvm::FoldingSetNodeID &ID) {
4653 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4654 }
4655
4656 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4657 unsigned Index, bool ParameterPack,
4658 TemplateTypeParmDecl *TTPDecl) {
4659 ID.AddInteger(Depth);
4660 ID.AddInteger(Index);
4661 ID.AddBoolean(ParameterPack);
4662 ID.AddPointer(TTPDecl);
4663 }
4664
4665 static bool classof(const Type *T) {
4666 return T->getTypeClass() == TemplateTypeParm;
4667 }
4668};
4669
4670/// Represents the result of substituting a type for a template
4671/// type parameter.
4672///
4673/// Within an instantiated template, all template type parameters have
4674/// been replaced with these. They are used solely to record that a
4675/// type was originally written as a template type parameter;
4676/// therefore they are never canonical.
4677class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4678 friend class ASTContext;
4679
4680 // The original type parameter.
4681 const TemplateTypeParmType *Replaced;
4682
4683 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4684 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4685 Canon->isInstantiationDependentType(),
4686 Canon->isVariablyModifiedType(),
4687 Canon->containsUnexpandedParameterPack()),
4688 Replaced(Param) {}
4689
4690public:
4691 /// Gets the template parameter that was substituted for.
4692 const TemplateTypeParmType *getReplacedParameter() const {
4693 return Replaced;
4694 }
4695
4696 /// Gets the type that was substituted for the template
4697 /// parameter.
4698 QualType getReplacementType() const {
4699 return getCanonicalTypeInternal();
4700 }
4701
4702 bool isSugared() const { return true; }
4703 QualType desugar() const { return getReplacementType(); }
4704
4705 void Profile(llvm::FoldingSetNodeID &ID) {
4706 Profile(ID, getReplacedParameter(), getReplacementType());
4707 }
4708
4709 static void Profile(llvm::FoldingSetNodeID &ID,
4710 const TemplateTypeParmType *Replaced,
4711 QualType Replacement) {
4712 ID.AddPointer(Replaced);
4713 ID.AddPointer(Replacement.getAsOpaquePtr());
4714 }
4715
4716 static bool classof(const Type *T) {
4717 return T->getTypeClass() == SubstTemplateTypeParm;
4718 }
4719};
4720
4721/// Represents the result of substituting a set of types for a template
4722/// type parameter pack.
4723///
4724/// When a pack expansion in the source code contains multiple parameter packs
4725/// and those parameter packs correspond to different levels of template
4726/// parameter lists, this type node is used to represent a template type
4727/// parameter pack from an outer level, which has already had its argument pack
4728/// substituted but that still lives within a pack expansion that itself
4729/// could not be instantiated. When actually performing a substitution into
4730/// that pack expansion (e.g., when all template parameters have corresponding
4731/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4732/// at the current pack substitution index.
4733class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4734 friend class ASTContext;
4735
4736 /// The original type parameter.
4737 const TemplateTypeParmType *Replaced;
4738
4739 /// A pointer to the set of template arguments that this
4740 /// parameter pack is instantiated with.
4741 const TemplateArgument *Arguments;
4742
4743 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4744 QualType Canon,
4745 const TemplateArgument &ArgPack);
4746
4747public:
4748 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4749
4750 /// Gets the template parameter that was substituted for.
4751 const TemplateTypeParmType *getReplacedParameter() const {
4752 return Replaced;
4753 }
4754
4755 unsigned getNumArgs() const {
4756 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4757 }
4758
4759 bool isSugared() const { return false; }
4760 QualType desugar() const { return QualType(this, 0); }
4761
4762 TemplateArgument getArgumentPack() const;
4763
4764 void Profile(llvm::FoldingSetNodeID &ID);
4765 static void Profile(llvm::FoldingSetNodeID &ID,
4766 const TemplateTypeParmType *Replaced,
4767 const TemplateArgument &ArgPack);
4768
4769 static bool classof(const Type *T) {
4770 return T->getTypeClass() == SubstTemplateTypeParmPack;
4771 }
4772};
4773
4774/// Common base class for placeholders for types that get replaced by
4775/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4776/// class template types, and (eventually) constrained type names from the C++
4777/// Concepts TS.
4778///
4779/// These types are usually a placeholder for a deduced type. However, before
4780/// the initializer is attached, or (usually) if the initializer is
4781/// type-dependent, there is no deduced type and the type is canonical. In
4782/// the latter case, it is also a dependent type.
4783class DeducedType : public Type {
4784protected:
4785 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4786 bool IsInstantiationDependent, bool ContainsParameterPack)
4787 : Type(TC,
4788 // FIXME: Retain the sugared deduced type?
4789 DeducedAsType.isNull() ? QualType(this, 0)
4790 : DeducedAsType.getCanonicalType(),
4791 IsDependent, IsInstantiationDependent,
4792 /*VariablyModified=*/false, ContainsParameterPack) {
4793 if (!DeducedAsType.isNull()) {
4794 if (DeducedAsType->isDependentType())
4795 setDependent();
4796 if (DeducedAsType->isInstantiationDependentType())
4797 setInstantiationDependent();
4798 if (DeducedAsType->containsUnexpandedParameterPack())
4799 setContainsUnexpandedParameterPack();
4800 }
4801 }
4802
4803public:
4804 bool isSugared() const { return !isCanonicalUnqualified(); }
4805 QualType desugar() const { return getCanonicalTypeInternal(); }
4806
4807 /// Get the type deduced for this placeholder type, or null if it's
4808 /// either not been deduced or was deduced to a dependent type.
4809 QualType getDeducedType() const {
4810 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4811 }
4812 bool isDeduced() const {
4813 return !isCanonicalUnqualified() || isDependentType();
4814 }
4815
4816 static bool classof(const Type *T) {
4817 return T->getTypeClass() == Auto ||
4818 T->getTypeClass() == DeducedTemplateSpecialization;
4819 }
4820};
4821
4822/// Represents a C++11 auto or C++14 decltype(auto) type.
4823class AutoType : public DeducedType, public llvm::FoldingSetNode {
4824 friend class ASTContext; // ASTContext creates these
4825
4826 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4827 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4828 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4829 IsDeducedAsDependent, IsDeducedAsPack) {
4830 AutoTypeBits.Keyword = (unsigned)Keyword;
4831 }
4832
4833public:
4834 bool isDecltypeAuto() const {
4835 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4836 }
4837
4838 AutoTypeKeyword getKeyword() const {
4839 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4840 }
4841
4842 void Profile(llvm::FoldingSetNodeID &ID) {
4843 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4844 containsUnexpandedParameterPack());
4845 }
4846
4847 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4848 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4849 ID.AddPointer(Deduced.getAsOpaquePtr());
4850 ID.AddInteger((unsigned)Keyword);
4851 ID.AddBoolean(IsDependent);
4852 ID.AddBoolean(IsPack);
4853 }
4854
4855 static bool classof(const Type *T) {
4856 return T->getTypeClass() == Auto;
4857 }
4858};
4859
4860/// Represents a C++17 deduced template specialization type.
4861class DeducedTemplateSpecializationType : public DeducedType,
4862 public llvm::FoldingSetNode {
4863 friend class ASTContext; // ASTContext creates these
4864
4865 /// The name of the template whose arguments will be deduced.
4866 TemplateName Template;
4867
4868 DeducedTemplateSpecializationType(TemplateName Template,
4869 QualType DeducedAsType,
4870 bool IsDeducedAsDependent)
4871 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4872 IsDeducedAsDependent || Template.isDependent(),
4873 IsDeducedAsDependent || Template.isInstantiationDependent(),
4874 Template.containsUnexpandedParameterPack()),
4875 Template(Template) {}
4876
4877public:
4878 /// Retrieve the name of the template that we are deducing.
4879 TemplateName getTemplateName() const { return Template;}
4880
4881 void Profile(llvm::FoldingSetNodeID &ID) {
4882 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4883 }
4884
4885 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4886 QualType Deduced, bool IsDependent) {
4887 Template.Profile(ID);
4888 ID.AddPointer(Deduced.getAsOpaquePtr());
4889 ID.AddBoolean(IsDependent);
4890 }
4891
4892 static bool classof(const Type *T) {
4893 return T->getTypeClass() == DeducedTemplateSpecialization;
4894 }
4895};
4896
4897/// Represents a type template specialization; the template
4898/// must be a class template, a type alias template, or a template
4899/// template parameter. A template which cannot be resolved to one of
4900/// these, e.g. because it is written with a dependent scope
4901/// specifier, is instead represented as a
4902/// @c DependentTemplateSpecializationType.
4903///
4904/// A non-dependent template specialization type is always "sugar",
4905/// typically for a \c RecordType. For example, a class template
4906/// specialization type of \c vector<int> will refer to a tag type for
4907/// the instantiation \c std::vector<int, std::allocator<int>>
4908///
4909/// Template specializations are dependent if either the template or
4910/// any of the template arguments are dependent, in which case the
4911/// type may also be canonical.
4912///
4913/// Instances of this type are allocated with a trailing array of
4914/// TemplateArguments, followed by a QualType representing the
4915/// non-canonical aliased type when the template is a type alias
4916/// template.
4917class alignas(8) TemplateSpecializationType
4918 : public Type,
4919 public llvm::FoldingSetNode {
4920 friend class ASTContext; // ASTContext creates these
4921
4922 /// The name of the template being specialized. This is
4923 /// either a TemplateName::Template (in which case it is a
4924 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4925 /// TypeAliasTemplateDecl*), a
4926 /// TemplateName::SubstTemplateTemplateParmPack, or a
4927 /// TemplateName::SubstTemplateTemplateParm (in which case the
4928 /// replacement must, recursively, be one of these).
4929 TemplateName Template;
4930
4931 TemplateSpecializationType(TemplateName T,
4932 ArrayRef<TemplateArgument> Args,
4933 QualType Canon,
4934 QualType Aliased);
4935
4936public:
4937 /// Determine whether any of the given template arguments are dependent.
4938 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4939 bool &InstantiationDependent);
4940
4941 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4942 bool &InstantiationDependent);
4943
4944 /// True if this template specialization type matches a current
4945 /// instantiation in the context in which it is found.
4946 bool isCurrentInstantiation() const {
4947 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4948 }
4949
4950 /// Determine if this template specialization type is for a type alias
4951 /// template that has been substituted.
4952 ///
4953 /// Nearly every template specialization type whose template is an alias
4954 /// template will be substituted. However, this is not the case when
4955 /// the specialization contains a pack expansion but the template alias
4956 /// does not have a corresponding parameter pack, e.g.,
4957 ///
4958 /// \code
4959 /// template<typename T, typename U, typename V> struct S;
4960 /// template<typename T, typename U> using A = S<T, int, U>;
4961 /// template<typename... Ts> struct X {
4962 /// typedef A<Ts...> type; // not a type alias
4963 /// };
4964 /// \endcode
4965 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
4966
4967 /// Get the aliased type, if this is a specialization of a type alias
4968 /// template.
4969 QualType getAliasedType() const {
4970 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4970, __PRETTY_FUNCTION__))
;
4971 return *reinterpret_cast<const QualType*>(end());
4972 }
4973
4974 using iterator = const TemplateArgument *;
4975
4976 iterator begin() const { return getArgs(); }
4977 iterator end() const; // defined inline in TemplateBase.h
4978
4979 /// Retrieve the name of the template that we are specializing.
4980 TemplateName getTemplateName() const { return Template; }
4981
4982 /// Retrieve the template arguments.
4983 const TemplateArgument *getArgs() const {
4984 return reinterpret_cast<const TemplateArgument *>(this + 1);
4985 }
4986
4987 /// Retrieve the number of template arguments.
4988 unsigned getNumArgs() const {
4989 return TemplateSpecializationTypeBits.NumArgs;
4990 }
4991
4992 /// Retrieve a specific template argument as a type.
4993 /// \pre \c isArgType(Arg)
4994 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4995
4996 ArrayRef<TemplateArgument> template_arguments() const {
4997 return {getArgs(), getNumArgs()};
4998 }
4999
5000 bool isSugared() const {
5001 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5002 }
5003
5004 QualType desugar() const {
5005 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5006 }
5007
5008 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5009 Profile(ID, Template, template_arguments(), Ctx);
5010 if (isTypeAlias())
5011 getAliasedType().Profile(ID);
5012 }
5013
5014 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5015 ArrayRef<TemplateArgument> Args,
5016 const ASTContext &Context);
5017
5018 static bool classof(const Type *T) {
5019 return T->getTypeClass() == TemplateSpecialization;
5020 }
5021};
5022
5023/// Print a template argument list, including the '<' and '>'
5024/// enclosing the template arguments.
5025void printTemplateArgumentList(raw_ostream &OS,
5026 ArrayRef<TemplateArgument> Args,
5027 const PrintingPolicy &Policy);
5028
5029void printTemplateArgumentList(raw_ostream &OS,
5030 ArrayRef<TemplateArgumentLoc> Args,
5031 const PrintingPolicy &Policy);
5032
5033void printTemplateArgumentList(raw_ostream &OS,
5034 const TemplateArgumentListInfo &Args,
5035 const PrintingPolicy &Policy);
5036
5037/// The injected class name of a C++ class template or class
5038/// template partial specialization. Used to record that a type was
5039/// spelled with a bare identifier rather than as a template-id; the
5040/// equivalent for non-templated classes is just RecordType.
5041///
5042/// Injected class name types are always dependent. Template
5043/// instantiation turns these into RecordTypes.
5044///
5045/// Injected class name types are always canonical. This works
5046/// because it is impossible to compare an injected class name type
5047/// with the corresponding non-injected template type, for the same
5048/// reason that it is impossible to directly compare template
5049/// parameters from different dependent contexts: injected class name
5050/// types can only occur within the scope of a particular templated
5051/// declaration, and within that scope every template specialization
5052/// will canonicalize to the injected class name (when appropriate
5053/// according to the rules of the language).
5054class InjectedClassNameType : public Type {
5055 friend class ASTContext; // ASTContext creates these.
5056 friend class ASTNodeImporter;
5057 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5058 // currently suitable for AST reading, too much
5059 // interdependencies.
5060
5061 CXXRecordDecl *Decl;
5062
5063 /// The template specialization which this type represents.
5064 /// For example, in
5065 /// template <class T> class A { ... };
5066 /// this is A<T>, whereas in
5067 /// template <class X, class Y> class A<B<X,Y> > { ... };
5068 /// this is A<B<X,Y> >.
5069 ///
5070 /// It is always unqualified, always a template specialization type,
5071 /// and always dependent.
5072 QualType InjectedType;
5073
5074 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5075 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5076 /*InstantiationDependent=*/true,
5077 /*VariablyModified=*/false,
5078 /*ContainsUnexpandedParameterPack=*/false),
5079 Decl(D), InjectedType(TST) {
5080 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5080, __PRETTY_FUNCTION__))
;
5081 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5081, __PRETTY_FUNCTION__))
;
5082 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5082, __PRETTY_FUNCTION__))
;
5083 }
5084
5085public:
5086 QualType getInjectedSpecializationType() const { return InjectedType; }
5087
5088 const TemplateSpecializationType *getInjectedTST() const {
5089 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5090 }
5091
5092 TemplateName getTemplateName() const {
5093 return getInjectedTST()->getTemplateName();
5094 }
5095
5096 CXXRecordDecl *getDecl() const;
5097
5098 bool isSugared() const { return false; }
5099 QualType desugar() const { return QualType(this, 0); }
5100
5101 static bool classof(const Type *T) {
5102 return T->getTypeClass() == InjectedClassName;
5103 }
5104};
5105
5106/// The kind of a tag type.
5107enum TagTypeKind {
5108 /// The "struct" keyword.
5109 TTK_Struct,
5110
5111 /// The "__interface" keyword.
5112 TTK_Interface,
5113
5114 /// The "union" keyword.
5115 TTK_Union,
5116
5117 /// The "class" keyword.
5118 TTK_Class,
5119
5120 /// The "enum" keyword.
5121 TTK_Enum
5122};
5123
5124/// The elaboration keyword that precedes a qualified type name or
5125/// introduces an elaborated-type-specifier.
5126enum ElaboratedTypeKeyword {
5127 /// The "struct" keyword introduces the elaborated-type-specifier.
5128 ETK_Struct,
5129
5130 /// The "__interface" keyword introduces the elaborated-type-specifier.
5131 ETK_Interface,
5132
5133 /// The "union" keyword introduces the elaborated-type-specifier.
5134 ETK_Union,
5135
5136 /// The "class" keyword introduces the elaborated-type-specifier.
5137 ETK_Class,
5138
5139 /// The "enum" keyword introduces the elaborated-type-specifier.
5140 ETK_Enum,
5141
5142 /// The "typename" keyword precedes the qualified type name, e.g.,
5143 /// \c typename T::type.
5144 ETK_Typename,
5145
5146 /// No keyword precedes the qualified type name.
5147 ETK_None
5148};
5149
5150/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5151/// The keyword in stored in the free bits of the base class.
5152/// Also provides a few static helpers for converting and printing
5153/// elaborated type keyword and tag type kind enumerations.
5154class TypeWithKeyword : public Type {
5155protected:
5156 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5157 QualType Canonical, bool Dependent,
5158 bool InstantiationDependent, bool VariablyModified,
5159 bool ContainsUnexpandedParameterPack)
5160 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5161 ContainsUnexpandedParameterPack) {
5162 TypeWithKeywordBits.Keyword = Keyword;
5163 }
5164
5165public:
5166 ElaboratedTypeKeyword getKeyword() const {
5167 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5168 }
5169
5170 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5171 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5172
5173 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5174 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5175 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5176
5177 /// Converts a TagTypeKind into an elaborated type keyword.
5178 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5179
5180 /// Converts an elaborated type keyword into a TagTypeKind.
5181 /// It is an error to provide an elaborated type keyword
5182 /// which *isn't* a tag kind here.
5183 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5184
5185 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5186
5187 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5188
5189 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5190 return getKeywordName(getKeywordForTagTypeKind(Kind));
5191 }
5192
5193 class CannotCastToThisType {};
5194 static CannotCastToThisType classof(const Type *);
5195};
5196
5197/// Represents a type that was referred to using an elaborated type
5198/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5199/// or both.
5200///
5201/// This type is used to keep track of a type name as written in the
5202/// source code, including tag keywords and any nested-name-specifiers.
5203/// The type itself is always "sugar", used to express what was written
5204/// in the source code but containing no additional semantic information.
5205class ElaboratedType final
5206 : public TypeWithKeyword,
5207 public llvm::FoldingSetNode,
5208 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5209 friend class ASTContext; // ASTContext creates these
5210 friend TrailingObjects;
5211
5212 /// The nested name specifier containing the qualifier.
5213 NestedNameSpecifier *NNS;
5214
5215 /// The type that this qualified name refers to.
5216 QualType NamedType;
5217
5218 /// The (re)declaration of this tag type owned by this occurrence is stored
5219 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5220 /// it, or obtain a null pointer if there is none.
5221
5222 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5223 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5224 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5225 NamedType->isDependentType(),
5226 NamedType->isInstantiationDependentType(),
5227 NamedType->isVariablyModifiedType(),
5228 NamedType->containsUnexpandedParameterPack()),
5229 NNS(NNS), NamedType(NamedType) {
5230 ElaboratedTypeBits.HasOwnedTagDecl = false;
5231 if (OwnedTagDecl) {
5232 ElaboratedTypeBits.HasOwnedTagDecl = true;
5233 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5234 }
5235 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5236 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5237 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
;
5238 }
5239
5240public:
5241 /// Retrieve the qualification on this type.
5242 NestedNameSpecifier *getQualifier() const { return NNS; }
5243
5244 /// Retrieve the type named by the qualified-id.
5245 QualType getNamedType() const { return NamedType; }
5246
5247 /// Remove a single level of sugar.
5248 QualType desugar() const { return getNamedType(); }
5249
5250 /// Returns whether this type directly provides sugar.
5251 bool isSugared() const { return true; }
5252
5253 /// Return the (re)declaration of this type owned by this occurrence of this
5254 /// type, or nullptr if there is none.
5255 TagDecl *getOwnedTagDecl() const {
5256 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5257 : nullptr;
5258 }
5259
5260 void Profile(llvm::FoldingSetNodeID &ID) {
5261 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5262 }
5263
5264 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5265 NestedNameSpecifier *NNS, QualType NamedType,
5266 TagDecl *OwnedTagDecl) {
5267 ID.AddInteger(Keyword);
5268 ID.AddPointer(NNS);
5269 NamedType.Profile(ID);
5270 ID.AddPointer(OwnedTagDecl);
5271 }
5272
5273 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5274};
5275
5276/// Represents a qualified type name for which the type name is
5277/// dependent.
5278///
5279/// DependentNameType represents a class of dependent types that involve a
5280/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5281/// name of a type. The DependentNameType may start with a "typename" (for a
5282/// typename-specifier), "class", "struct", "union", or "enum" (for a
5283/// dependent elaborated-type-specifier), or nothing (in contexts where we
5284/// know that we must be referring to a type, e.g., in a base class specifier).
5285/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5286/// mode, this type is used with non-dependent names to delay name lookup until
5287/// instantiation.
5288class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5289 friend class ASTContext; // ASTContext creates these
5290
5291 /// The nested name specifier containing the qualifier.
5292 NestedNameSpecifier *NNS;
5293
5294 /// The type that this typename specifier refers to.
5295 const IdentifierInfo *Name;
5296
5297 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5298 const IdentifierInfo *Name, QualType CanonType)
5299 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5300 /*InstantiationDependent=*/true,
5301 /*VariablyModified=*/false,
5302 NNS->containsUnexpandedParameterPack()),
5303 NNS(NNS), Name(Name) {}
5304
5305public:
5306 /// Retrieve the qualification on this type.
5307 NestedNameSpecifier *getQualifier() const { return NNS; }
5308
5309 /// Retrieve the type named by the typename specifier as an identifier.
5310 ///
5311 /// This routine will return a non-NULL identifier pointer when the
5312 /// form of the original typename was terminated by an identifier,
5313 /// e.g., "typename T::type".
5314 const IdentifierInfo *getIdentifier() const {
5315 return Name;
5316 }
5317
5318 bool isSugared() const { return false; }
5319 QualType desugar() const { return QualType(this, 0); }
5320
5321 void Profile(llvm::FoldingSetNodeID &ID) {
5322 Profile(ID, getKeyword(), NNS, Name);
5323 }
5324
5325 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5326 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5327 ID.AddInteger(Keyword);
5328 ID.AddPointer(NNS);
5329 ID.AddPointer(Name);
5330 }
5331
5332 static bool classof(const Type *T) {
5333 return T->getTypeClass() == DependentName;
5334 }
5335};
5336
5337/// Represents a template specialization type whose template cannot be
5338/// resolved, e.g.
5339/// A<T>::template B<T>
5340class alignas(8) DependentTemplateSpecializationType
5341 : public TypeWithKeyword,
5342 public llvm::FoldingSetNode {
5343 friend class ASTContext; // ASTContext creates these
5344
5345 /// The nested name specifier containing the qualifier.
5346 NestedNameSpecifier *NNS;
5347
5348 /// The identifier of the template.
5349 const IdentifierInfo *Name;
5350
5351 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5352 NestedNameSpecifier *NNS,
5353 const IdentifierInfo *Name,
5354 ArrayRef<TemplateArgument> Args,
5355 QualType Canon);
5356
5357 const TemplateArgument *getArgBuffer() const {
5358 return reinterpret_cast<const TemplateArgument*>(this+1);
5359 }
5360
5361 TemplateArgument *getArgBuffer() {
5362 return reinterpret_cast<TemplateArgument*>(this+1);
5363 }
5364
5365public:
5366 NestedNameSpecifier *getQualifier() const { return NNS; }
5367 const IdentifierInfo *getIdentifier() const { return Name; }
5368
5369 /// Retrieve the template arguments.
5370 const TemplateArgument *getArgs() const {
5371 return getArgBuffer();
5372 }
5373
5374 /// Retrieve the number of template arguments.
5375 unsigned getNumArgs() const {
5376 return DependentTemplateSpecializationTypeBits.NumArgs;
5377 }
5378
5379 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5380
5381 ArrayRef<TemplateArgument> template_arguments() const {
5382 return {getArgs(), getNumArgs()};
5383 }
5384
5385 using iterator = const TemplateArgument *;
5386
5387 iterator begin() const { return getArgs(); }
5388 iterator end() const; // inline in TemplateBase.h
5389
5390 bool isSugared() const { return false; }
5391 QualType desugar() const { return QualType(this, 0); }
5392
5393 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5394 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5395 }
5396
5397 static void Profile(llvm::FoldingSetNodeID &ID,
5398 const ASTContext &Context,
5399 ElaboratedTypeKeyword Keyword,
5400 NestedNameSpecifier *Qualifier,
5401 const IdentifierInfo *Name,
5402 ArrayRef<TemplateArgument> Args);
5403
5404 static bool classof(const Type *T) {
5405 return T->getTypeClass() == DependentTemplateSpecialization;
5406 }
5407};
5408
5409/// Represents a pack expansion of types.
5410///
5411/// Pack expansions are part of C++11 variadic templates. A pack
5412/// expansion contains a pattern, which itself contains one or more
5413/// "unexpanded" parameter packs. When instantiated, a pack expansion
5414/// produces a series of types, each instantiated from the pattern of
5415/// the expansion, where the Ith instantiation of the pattern uses the
5416/// Ith arguments bound to each of the unexpanded parameter packs. The
5417/// pack expansion is considered to "expand" these unexpanded
5418/// parameter packs.
5419///
5420/// \code
5421/// template<typename ...Types> struct tuple;
5422///
5423/// template<typename ...Types>
5424/// struct tuple_of_references {
5425/// typedef tuple<Types&...> type;
5426/// };
5427/// \endcode
5428///
5429/// Here, the pack expansion \c Types&... is represented via a
5430/// PackExpansionType whose pattern is Types&.
5431class PackExpansionType : public Type, public llvm::FoldingSetNode {
5432 friend class ASTContext; // ASTContext creates these
5433
5434 /// The pattern of the pack expansion.
5435 QualType Pattern;
5436
5437 PackExpansionType(QualType Pattern, QualType Canon,
5438 Optional<unsigned> NumExpansions)
5439 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5440 /*InstantiationDependent=*/true,
5441 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5442 /*ContainsUnexpandedParameterPack=*/false),
5443 Pattern(Pattern) {
5444 PackExpansionTypeBits.NumExpansions =
5445 NumExpansions ? *NumExpansions + 1 : 0;
5446 }
5447
5448public:
5449 /// Retrieve the pattern of this pack expansion, which is the
5450 /// type that will be repeatedly instantiated when instantiating the
5451 /// pack expansion itself.
5452 QualType getPattern() const { return Pattern; }
5453
5454 /// Retrieve the number of expansions that this pack expansion will
5455 /// generate, if known.
5456 Optional<unsigned> getNumExpansions() const {
5457 if (PackExpansionTypeBits.NumExpansions)
5458 return PackExpansionTypeBits.NumExpansions - 1;
5459 return None;
5460 }
5461
5462 bool isSugared() const { return !Pattern->isDependentType(); }
5463 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5464
5465 void Profile(llvm::FoldingSetNodeID &ID) {
5466 Profile(ID, getPattern(), getNumExpansions());
5467 }
5468
5469 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5470 Optional<unsigned> NumExpansions) {
5471 ID.AddPointer(Pattern.getAsOpaquePtr());
5472 ID.AddBoolean(NumExpansions.hasValue());
5473 if (NumExpansions)
5474 ID.AddInteger(*NumExpansions);
5475 }
5476
5477 static bool classof(const Type *T) {
5478 return T->getTypeClass() == PackExpansion;
5479 }
5480};
5481
5482/// This class wraps the list of protocol qualifiers. For types that can
5483/// take ObjC protocol qualifers, they can subclass this class.
5484template <class T>
5485class ObjCProtocolQualifiers {
5486protected:
5487 ObjCProtocolQualifiers() = default;
5488
5489 ObjCProtocolDecl * const *getProtocolStorage() const {
5490 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5491 }
5492
5493 ObjCProtocolDecl **getProtocolStorage() {
5494 return static_cast<T*>(this)->getProtocolStorageImpl();
5495 }
5496
5497 void setNumProtocols(unsigned N) {
5498 static_cast<T*>(this)->setNumProtocolsImpl(N);
5499 }
5500
5501 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5502 setNumProtocols(protocols.size());
5503 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
5504 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
;
5505 if (!protocols.empty())
5506 memcpy(getProtocolStorage(), protocols.data(),
5507 protocols.size() * sizeof(ObjCProtocolDecl*));
5508 }
5509
5510public:
5511 using qual_iterator = ObjCProtocolDecl * const *;
5512 using qual_range = llvm::iterator_range<qual_iterator>;
5513
5514 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5515 qual_iterator qual_begin() const { return getProtocolStorage(); }
5516 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5517
5518 bool qual_empty() const { return getNumProtocols() == 0; }
5519
5520 /// Return the number of qualifying protocols in this type, or 0 if
5521 /// there are none.
5522 unsigned getNumProtocols() const {
5523 return static_cast<const T*>(this)->getNumProtocolsImpl();
5524 }
5525
5526 /// Fetch a protocol by index.
5527 ObjCProtocolDecl *getProtocol(unsigned I) const {
5528 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5528, __PRETTY_FUNCTION__))
;
5529 return qual_begin()[I];
5530 }
5531
5532 /// Retrieve all of the protocol qualifiers.
5533 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5534 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5535 }
5536};
5537
5538/// Represents a type parameter type in Objective C. It can take
5539/// a list of protocols.
5540class ObjCTypeParamType : public Type,
5541 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5542 public llvm::FoldingSetNode {
5543 friend class ASTContext;
5544 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5545
5546 /// The number of protocols stored on this type.
5547 unsigned NumProtocols : 6;
5548
5549 ObjCTypeParamDecl *OTPDecl;
5550
5551 /// The protocols are stored after the ObjCTypeParamType node. In the
5552 /// canonical type, the list of protocols are sorted alphabetically
5553 /// and uniqued.
5554 ObjCProtocolDecl **getProtocolStorageImpl();
5555
5556 /// Return the number of qualifying protocols in this interface type,
5557 /// or 0 if there are none.
5558 unsigned getNumProtocolsImpl() const {
5559 return NumProtocols;
5560 }
5561
5562 void setNumProtocolsImpl(unsigned N) {
5563 NumProtocols = N;
5564 }
5565
5566 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5567 QualType can,
5568 ArrayRef<ObjCProtocolDecl *> protocols);
5569
5570public:
5571 bool isSugared() const { return true; }
5572 QualType desugar() const { return getCanonicalTypeInternal(); }
5573
5574 static bool classof(const Type *T) {
5575 return T->getTypeClass() == ObjCTypeParam;
5576 }
5577
5578 void Profile(llvm::FoldingSetNodeID &ID);
5579 static void Profile(llvm::FoldingSetNodeID &ID,
5580 const ObjCTypeParamDecl *OTPDecl,
5581 ArrayRef<ObjCProtocolDecl *> protocols);
5582
5583 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5584};
5585
5586/// Represents a class type in Objective C.
5587///
5588/// Every Objective C type is a combination of a base type, a set of
5589/// type arguments (optional, for parameterized classes) and a list of
5590/// protocols.
5591///
5592/// Given the following declarations:
5593/// \code
5594/// \@class C<T>;
5595/// \@protocol P;
5596/// \endcode
5597///
5598/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5599/// with base C and no protocols.
5600///
5601/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5602/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5603/// protocol list.
5604/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5605/// and protocol list [P].
5606///
5607/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5608/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5609/// and no protocols.
5610///
5611/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5612/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5613/// this should get its own sugar class to better represent the source.
5614class ObjCObjectType : public Type,
5615 public ObjCProtocolQualifiers<ObjCObjectType> {
5616 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5617
5618 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5619 // after the ObjCObjectPointerType node.
5620 // ObjCObjectType.NumProtocols - the number of protocols stored
5621 // after the type arguments of ObjCObjectPointerType node.
5622 //
5623 // These protocols are those written directly on the type. If
5624 // protocol qualifiers ever become additive, the iterators will need
5625 // to get kindof complicated.
5626 //
5627 // In the canonical object type, these are sorted alphabetically
5628 // and uniqued.
5629
5630 /// Either a BuiltinType or an InterfaceType or sugar for either.
5631 QualType BaseType;
5632
5633 /// Cached superclass type.
5634 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5635 CachedSuperClassType;
5636
5637 QualType *getTypeArgStorage();
5638 const QualType *getTypeArgStorage() const {
5639 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5640 }
5641
5642 ObjCProtocolDecl **getProtocolStorageImpl();
5643 /// Return the number of qualifying protocols in this interface type,
5644 /// or 0 if there are none.
5645 unsigned getNumProtocolsImpl() const {
5646 return ObjCObjectTypeBits.NumProtocols;
5647 }
5648 void setNumProtocolsImpl(unsigned N) {
5649 ObjCObjectTypeBits.NumProtocols = N;
5650 }
5651
5652protected:
5653 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5654
5655 ObjCObjectType(QualType Canonical, QualType Base,
5656 ArrayRef<QualType> typeArgs,
5657 ArrayRef<ObjCProtocolDecl *> protocols,
5658 bool isKindOf);
5659
5660 ObjCObjectType(enum Nonce_ObjCInterface)
5661 : Type(ObjCInterface, QualType(), false, false, false, false),
5662 BaseType(QualType(this_(), 0)) {
5663 ObjCObjectTypeBits.NumProtocols = 0;
5664 ObjCObjectTypeBits.NumTypeArgs = 0;
5665 ObjCObjectTypeBits.IsKindOf = 0;
5666 }
5667
5668 void computeSuperClassTypeSlow() const;
5669
5670public:
5671 /// Gets the base type of this object type. This is always (possibly
5672 /// sugar for) one of:
5673 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5674 /// user, which is a typedef for an ObjCObjectPointerType)
5675 /// - the 'Class' builtin type (same caveat)
5676 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5677 QualType getBaseType() const { return BaseType; }
5678
5679 bool isObjCId() const {
5680 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5681 }
5682
5683 bool isObjCClass() const {
5684 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5685 }
5686
5687 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5688 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5689 bool isObjCUnqualifiedIdOrClass() const {
5690 if (!qual_empty()) return false;
5691 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5692 return T->getKind() == BuiltinType::ObjCId ||
5693 T->getKind() == BuiltinType::ObjCClass;
5694 return false;
5695 }
5696 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5697 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5698
5699 /// Gets the interface declaration for this object type, if the base type
5700 /// really is an interface.
5701 ObjCInterfaceDecl *getInterface() const;
5702
5703 /// Determine whether this object type is "specialized", meaning
5704 /// that it has type arguments.
5705 bool isSpecialized() const;
5706
5707 /// Determine whether this object type was written with type arguments.
5708 bool isSpecializedAsWritten() const {
5709 return ObjCObjectTypeBits.NumTypeArgs > 0;
5710 }
5711
5712 /// Determine whether this object type is "unspecialized", meaning
5713 /// that it has no type arguments.
5714 bool isUnspecialized() const { return !isSpecialized(); }
5715
5716 /// Determine whether this object type is "unspecialized" as
5717 /// written, meaning that it has no type arguments.
5718 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5719
5720 /// Retrieve the type arguments of this object type (semantically).
5721 ArrayRef<QualType> getTypeArgs() const;
5722
5723 /// Retrieve the type arguments of this object type as they were
5724 /// written.
5725 ArrayRef<QualType> getTypeArgsAsWritten() const {
5726 return llvm::makeArrayRef(getTypeArgStorage(),
5727 ObjCObjectTypeBits.NumTypeArgs);
5728 }
5729
5730 /// Whether this is a "__kindof" type as written.
5731 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5732
5733 /// Whether this ia a "__kindof" type (semantically).
5734 bool isKindOfType() const;
5735
5736 /// Retrieve the type of the superclass of this object type.
5737 ///
5738 /// This operation substitutes any type arguments into the
5739 /// superclass of the current class type, potentially producing a
5740 /// specialization of the superclass type. Produces a null type if
5741 /// there is no superclass.
5742 QualType getSuperClassType() const {
5743 if (!CachedSuperClassType.getInt())
5744 computeSuperClassTypeSlow();
5745
5746 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5746, __PRETTY_FUNCTION__))
;
5747 return QualType(CachedSuperClassType.getPointer(), 0);
5748 }
5749
5750 /// Strip off the Objective-C "kindof" type and (with it) any
5751 /// protocol qualifiers.
5752 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5753
5754 bool isSugared() const { return false; }
5755 QualType desugar() const { return QualType(this, 0); }
5756
5757 static bool classof(const Type *T) {
5758 return T->getTypeClass() == ObjCObject ||
5759 T->getTypeClass() == ObjCInterface;
5760 }
5761};
5762
5763/// A class providing a concrete implementation
5764/// of ObjCObjectType, so as to not increase the footprint of
5765/// ObjCInterfaceType. Code outside of ASTContext and the core type
5766/// system should not reference this type.
5767class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5768 friend class ASTContext;
5769
5770 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5771 // will need to be modified.
5772
5773 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5774 ArrayRef<QualType> typeArgs,
5775 ArrayRef<ObjCProtocolDecl *> protocols,
5776 bool isKindOf)
5777 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5778
5779public:
5780 void Profile(llvm::FoldingSetNodeID &ID);
5781 static void Profile(llvm::FoldingSetNodeID &ID,
5782 QualType Base,
5783 ArrayRef<QualType> typeArgs,
5784 ArrayRef<ObjCProtocolDecl *> protocols,
5785 bool isKindOf);
5786};
5787
5788inline QualType *ObjCObjectType::getTypeArgStorage() {
5789 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5790}
5791
5792inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5793 return reinterpret_cast<ObjCProtocolDecl**>(
5794 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5795}
5796
5797inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5798 return reinterpret_cast<ObjCProtocolDecl**>(
5799 static_cast<ObjCTypeParamType*>(this)+1);
5800}
5801
5802/// Interfaces are the core concept in Objective-C for object oriented design.
5803/// They basically correspond to C++ classes. There are two kinds of interface
5804/// types: normal interfaces like `NSString`, and qualified interfaces, which
5805/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5806///
5807/// ObjCInterfaceType guarantees the following properties when considered
5808/// as a subtype of its superclass, ObjCObjectType:
5809/// - There are no protocol qualifiers. To reinforce this, code which
5810/// tries to invoke the protocol methods via an ObjCInterfaceType will
5811/// fail to compile.
5812/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5813/// T->getBaseType() == QualType(T, 0).
5814class ObjCInterfaceType : public ObjCObjectType {
5815 friend class ASTContext; // ASTContext creates these.
5816 friend class ASTReader;
5817 friend class ObjCInterfaceDecl;
5818
5819 mutable ObjCInterfaceDecl *Decl;
5820
5821 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5822 : ObjCObjectType(Nonce_ObjCInterface),
5823 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5824
5825public:
5826 /// Get the declaration of this interface.
5827 ObjCInterfaceDecl *getDecl() const { return Decl; }
5828
5829 bool isSugared() const { return false; }
5830 QualType desugar() const { return QualType(this, 0); }
5831
5832 static bool classof(const Type *T) {
5833 return T->getTypeClass() == ObjCInterface;
5834 }
5835
5836 // Nonsense to "hide" certain members of ObjCObjectType within this
5837 // class. People asking for protocols on an ObjCInterfaceType are
5838 // not going to get what they want: ObjCInterfaceTypes are
5839 // guaranteed to have no protocols.
5840 enum {
5841 qual_iterator,
5842 qual_begin,
5843 qual_end,
5844 getNumProtocols,
5845 getProtocol
5846 };
5847};
5848
5849inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5850 QualType baseType = getBaseType();
5851 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5852 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5853 return T->getDecl();
5854
5855 baseType = ObjT->getBaseType();
5856 }
5857
5858 return nullptr;
5859}
5860
5861/// Represents a pointer to an Objective C object.
5862///
5863/// These are constructed from pointer declarators when the pointee type is
5864/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5865/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5866/// and 'Class<P>' are translated into these.
5867///
5868/// Pointers to pointers to Objective C objects are still PointerTypes;
5869/// only the first level of pointer gets it own type implementation.
5870class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5871 friend class ASTContext; // ASTContext creates these.
5872
5873 QualType PointeeType;
5874
5875 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5876 : Type(ObjCObjectPointer, Canonical,
5877 Pointee->isDependentType(),
5878 Pointee->isInstantiationDependentType(),
5879 Pointee->isVariablyModifiedType(),
5880 Pointee->containsUnexpandedParameterPack()),
5881 PointeeType(Pointee) {}
5882
5883public:
5884 /// Gets the type pointed to by this ObjC pointer.
5885 /// The result will always be an ObjCObjectType or sugar thereof.
5886 QualType getPointeeType() const { return PointeeType; }
5887
5888 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5889 ///
5890 /// This method is equivalent to getPointeeType() except that
5891 /// it discards any typedefs (or other sugar) between this
5892 /// type and the "outermost" object type. So for:
5893 /// \code
5894 /// \@class A; \@protocol P; \@protocol Q;
5895 /// typedef A<P> AP;
5896 /// typedef A A1;
5897 /// typedef A1<P> A1P;
5898 /// typedef A1P<Q> A1PQ;
5899 /// \endcode
5900 /// For 'A*', getObjectType() will return 'A'.
5901 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5902 /// For 'AP*', getObjectType() will return 'A<P>'.
5903 /// For 'A1*', getObjectType() will return 'A'.
5904 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5905 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5906 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5907 /// adding protocols to a protocol-qualified base discards the
5908 /// old qualifiers (for now). But if it didn't, getObjectType()
5909 /// would return 'A1P<Q>' (and we'd have to make iterating over
5910 /// qualifiers more complicated).
5911 const ObjCObjectType *getObjectType() const {
5912 return PointeeType->castAs<ObjCObjectType>();
5913 }
5914
5915 /// If this pointer points to an Objective C
5916 /// \@interface type, gets the type for that interface. Any protocol
5917 /// qualifiers on the interface are ignored.
5918 ///
5919 /// \return null if the base type for this pointer is 'id' or 'Class'
5920 const ObjCInterfaceType *getInterfaceType() const;
5921
5922 /// If this pointer points to an Objective \@interface
5923 /// type, gets the declaration for that interface.
5924 ///
5925 /// \return null if the base type for this pointer is 'id' or 'Class'
5926 ObjCInterfaceDecl *getInterfaceDecl() const {
5927 return getObjectType()->getInterface();
5928 }
5929
5930 /// True if this is equivalent to the 'id' type, i.e. if
5931 /// its object type is the primitive 'id' type with no protocols.
5932 bool isObjCIdType() const {
5933 return getObjectType()->isObjCUnqualifiedId();
5934 }
5935
5936 /// True if this is equivalent to the 'Class' type,
5937 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5938 bool isObjCClassType() const {
5939 return getObjectType()->isObjCUnqualifiedClass();
5940 }
5941
5942 /// True if this is equivalent to the 'id' or 'Class' type,
5943 bool isObjCIdOrClassType() const {
5944 return getObjectType()->isObjCUnqualifiedIdOrClass();
5945 }
5946
5947 /// True if this is equivalent to 'id<P>' for some non-empty set of
5948 /// protocols.
5949 bool isObjCQualifiedIdType() const {
5950 return getObjectType()->isObjCQualifiedId();
5951 }
5952
5953 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5954 /// protocols.
5955 bool isObjCQualifiedClassType() const {
5956 return getObjectType()->isObjCQualifiedClass();
5957 }
5958
5959 /// Whether this is a "__kindof" type.
5960 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
5961
5962 /// Whether this type is specialized, meaning that it has type arguments.
5963 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
5964
5965 /// Whether this type is specialized, meaning that it has type arguments.
5966 bool isSpecializedAsWritten() const {
5967 return getObjectType()->isSpecializedAsWritten();
5968 }
5969
5970 /// Whether this type is unspecialized, meaning that is has no type arguments.
5971 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
5972
5973 /// Determine whether this object type is "unspecialized" as
5974 /// written, meaning that it has no type arguments.
5975 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5976
5977 /// Retrieve the type arguments for this type.
5978 ArrayRef<QualType> getTypeArgs() const {
5979 return getObjectType()->getTypeArgs();
5980 }
5981
5982 /// Retrieve the type arguments for this type.
5983 ArrayRef<QualType> getTypeArgsAsWritten() const {
5984 return getObjectType()->getTypeArgsAsWritten();
5985 }
5986
5987 /// An iterator over the qualifiers on the object type. Provided
5988 /// for convenience. This will always iterate over the full set of
5989 /// protocols on a type, not just those provided directly.
5990 using qual_iterator = ObjCObjectType::qual_iterator;
5991 using qual_range = llvm::iterator_range<qual_iterator>;
5992
5993 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5994
5995 qual_iterator qual_begin() const {
5996 return getObjectType()->qual_begin();
5997 }
5998
5999 qual_iterator qual_end() const {
6000 return getObjectType()->qual_end();
6001 }
6002
6003 bool qual_empty() const { return getObjectType()->qual_empty(); }
6004
6005 /// Return the number of qualifying protocols on the object type.
6006 unsigned getNumProtocols() const {
6007 return getObjectType()->getNumProtocols();
6008 }
6009
6010 /// Retrieve a qualifying protocol by index on the object type.
6011 ObjCProtocolDecl *getProtocol(unsigned I) const {
6012 return getObjectType()->getProtocol(I);
6013 }
6014
6015 bool isSugared() const { return false; }
6016 QualType desugar() const { return QualType(this, 0); }
6017
6018 /// Retrieve the type of the superclass of this object pointer type.
6019 ///
6020 /// This operation substitutes any type arguments into the
6021 /// superclass of the current class type, potentially producing a
6022 /// pointer to a specialization of the superclass type. Produces a
6023 /// null type if there is no superclass.
6024 QualType getSuperClassType() const;
6025
6026 /// Strip off the Objective-C "kindof" type and (with it) any
6027 /// protocol qualifiers.
6028 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6029 const ASTContext &ctx) const;
6030
6031 void Profile(llvm::FoldingSetNodeID &ID) {
6032 Profile(ID, getPointeeType());
6033 }
6034
6035 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6036 ID.AddPointer(T.getAsOpaquePtr());
6037 }
6038
6039 static bool classof(const Type *T) {
6040 return T->getTypeClass() == ObjCObjectPointer;
6041 }
6042};
6043
6044class AtomicType : public Type, public llvm::FoldingSetNode {
6045 friend class ASTContext; // ASTContext creates these.
6046
6047 QualType ValueType;
6048
6049 AtomicType(QualType ValTy, QualType Canonical)
6050 : Type(Atomic, Canonical, ValTy->isDependentType(),
6051 ValTy->isInstantiationDependentType(),
6052 ValTy->isVariablyModifiedType(),
6053 ValTy->containsUnexpandedParameterPack()),
6054 ValueType(ValTy) {}
6055
6056public:
6057 /// Gets the type contained by this atomic type, i.e.
6058 /// the type returned by performing an atomic load of this atomic type.
6059 QualType getValueType() const { return ValueType; }
6060
6061 bool isSugared() const { return false; }
6062 QualType desugar() const { return QualType(this, 0); }
6063
6064 void Profile(llvm::FoldingSetNodeID &ID) {
6065 Profile(ID, getValueType());
6066 }
6067
6068 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6069 ID.AddPointer(T.getAsOpaquePtr());
6070 }
6071
6072 static bool classof(const Type *T) {
6073 return T->getTypeClass() == Atomic;
6074 }
6075};
6076
6077/// PipeType - OpenCL20.
6078class PipeType : public Type, public llvm::FoldingSetNode {
6079 friend class ASTContext; // ASTContext creates these.
6080
6081 QualType ElementType;
6082 bool isRead;
6083
6084 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6085 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6086 elemType->isInstantiationDependentType(),
6087 elemType->isVariablyModifiedType(),
6088 elemType->containsUnexpandedParameterPack()),
6089 ElementType(elemType), isRead(isRead) {}
6090
6091public:
6092 QualType getElementType() const { return ElementType; }
6093
6094 bool isSugared() const { return false; }
6095
6096 QualType desugar() const { return QualType(this, 0); }
6097
6098 void Profile(llvm::FoldingSetNodeID &ID) {
6099 Profile(ID, getElementType(), isReadOnly());
6100 }
6101
6102 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6103 ID.AddPointer(T.getAsOpaquePtr());
6104 ID.AddBoolean(isRead);
6105 }
6106
6107 static bool classof(const Type *T) {
6108 return T->getTypeClass() == Pipe;
6109 }
6110
6111 bool isReadOnly() const { return isRead; }
6112};
6113
6114/// A qualifier set is used to build a set of qualifiers.
6115class QualifierCollector : public Qualifiers {
6116public:
6117 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6118
6119 /// Collect any qualifiers on the given type and return an
6120 /// unqualified type. The qualifiers are assumed to be consistent
6121 /// with those already in the type.
6122 const Type *strip(QualType type) {
6123 addFastQualifiers(type.getLocalFastQualifiers());
6124 if (!type.hasLocalNonFastQualifiers())
6125 return type.getTypePtrUnsafe();
6126
6127 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6128 addConsistentQualifiers(extQuals->getQualifiers());
6129 return extQuals->getBaseType();
6130 }
6131
6132 /// Apply the collected qualifiers to the given type.
6133 QualType apply(const ASTContext &Context, QualType QT) const;
6134
6135 /// Apply the collected qualifiers to the given type.
6136 QualType apply(const ASTContext &Context, const Type* T) const;
6137};
6138
6139// Inline function definitions.
6140
6141inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6142 SplitQualType desugar =
6143 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6144 desugar.Quals.addConsistentQualifiers(Quals);
6145 return desugar;
6146}
6147
6148inline const Type *QualType::getTypePtr() const {
6149 return getCommonPtr()->BaseType;
6150}
6151
6152inline const Type *QualType::getTypePtrOrNull() const {
6153 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6154}
6155
6156inline SplitQualType QualType::split() const {
6157 if (!hasLocalNonFastQualifiers())
6158 return SplitQualType(getTypePtrUnsafe(),
6159 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6160
6161 const ExtQuals *eq = getExtQualsUnsafe();
6162 Qualifiers qs = eq->getQualifiers();
6163 qs.addFastQualifiers(getLocalFastQualifiers());
6164 return SplitQualType(eq->getBaseType(), qs);
6165}
6166
6167inline Qualifiers QualType::getLocalQualifiers() const {
6168 Qualifiers Quals;
6169 if (hasLocalNonFastQualifiers())
6170 Quals = getExtQualsUnsafe()->getQualifiers();
6171 Quals.addFastQualifiers(getLocalFastQualifiers());
6172 return Quals;
6173}
6174
6175inline Qualifiers QualType::getQualifiers() const {
6176 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6177 quals.addFastQualifiers(getLocalFastQualifiers());
6178 return quals;
6179}
6180
6181inline unsigned QualType::getCVRQualifiers() const {
6182 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6183 cvr |= getLocalCVRQualifiers();
6184 return cvr;
6185}
6186
6187inline QualType QualType::getCanonicalType() const {
6188 QualType canon = getCommonPtr()->CanonicalType;
6189 return canon.withFastQualifiers(getLocalFastQualifiers());
6190}
6191
6192inline bool QualType::isCanonical() const {
6193 return getTypePtr()->isCanonicalUnqualified();
6194}
6195
6196inline bool QualType::isCanonicalAsParam() const {
6197 if (!isCanonical()) return false;
6198 if (hasLocalQualifiers()) return false;
6199
6200 const Type *T = getTypePtr();
6201 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6202 return false;
6203
6204 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6205}
6206
6207inline bool QualType::isConstQualified() const {
6208 return isLocalConstQualified() ||
6209 getCommonPtr()->CanonicalType.isLocalConstQualified();
6210}
6211
6212inline bool QualType::isRestrictQualified() const {
6213 return isLocalRestrictQualified() ||
6214 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6215}
6216
6217
6218inline bool QualType::isVolatileQualified() const {
6219 return isLocalVolatileQualified() ||
6220 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6221}
6222
6223inline bool QualType::hasQualifiers() const {
6224 return hasLocalQualifiers() ||
6225 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6226}
6227
6228inline QualType QualType::getUnqualifiedType() const {
6229 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6230 return QualType(getTypePtr(), 0);
6231
6232 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6233}
6234
6235inline SplitQualType QualType::getSplitUnqualifiedType() const {
6236 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6237 return split();
6238
6239 return getSplitUnqualifiedTypeImpl(*this);
6240}
6241
6242inline void QualType::removeLocalConst() {
6243 removeLocalFastQualifiers(Qualifiers::Const);
6244}
6245
6246inline void QualType::removeLocalRestrict() {
6247 removeLocalFastQualifiers(Qualifiers::Restrict);
6248}
6249
6250inline void QualType::removeLocalVolatile() {
6251 removeLocalFastQualifiers(Qualifiers::Volatile);
6252}
6253
6254inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6255 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6255, __PRETTY_FUNCTION__))
;
6256 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6257 "Fast bits differ from CVR bits!");
6258
6259 // Fast path: we don't need to touch the slow qualifiers.
6260 removeLocalFastQualifiers(Mask);
6261}
6262
6263/// Return the address space of this type.
6264inline LangAS QualType::getAddressSpace() const {
6265 return getQualifiers().getAddressSpace();
6266}
6267
6268/// Return the gc attribute of this type.
6269inline Qualifiers::GC QualType::getObjCGCAttr() const {
6270 return getQualifiers().getObjCGCAttr();
6271}
6272
6273inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6274 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6275 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6276 return false;
6277}
6278
6279inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6280 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6281 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6282 return false;
6283}
6284
6285inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6286 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6287 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6288 return false;
6289}
6290
6291inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6292 if (const auto *PT = t.getAs<PointerType>()) {
6293 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6294 return FT->getExtInfo();
6295 } else if (const auto *FT = t.getAs<FunctionType>())
6296 return FT->getExtInfo();
6297
6298 return FunctionType::ExtInfo();
6299}
6300
6301inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6302 return getFunctionExtInfo(*t);
6303}
6304
6305/// Determine whether this type is more
6306/// qualified than the Other type. For example, "const volatile int"
6307/// is more qualified than "const int", "volatile int", and
6308/// "int". However, it is not more qualified than "const volatile
6309/// int".
6310inline bool QualType::isMoreQualifiedThan(QualType other) const {
6311 Qualifiers MyQuals = getQualifiers();
6312 Qualifiers OtherQuals = other.getQualifiers();
6313 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6314}
6315
6316/// Determine whether this type is at last
6317/// as qualified as the Other type. For example, "const volatile
6318/// int" is at least as qualified as "const int", "volatile int",
6319/// "int", and "const volatile int".
6320inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6321 Qualifiers OtherQuals = other.getQualifiers();
6322
6323 // Ignore __unaligned qualifier if this type is a void.
6324 if (getUnqualifiedType()->isVoidType())
6325 OtherQuals.removeUnaligned();
6326
6327 return getQualifiers().compatiblyIncludes(OtherQuals);
6328}
6329
6330/// If Type is a reference type (e.g., const
6331/// int&), returns the type that the reference refers to ("const
6332/// int"). Otherwise, returns the type itself. This routine is used
6333/// throughout Sema to implement C++ 5p6:
6334///
6335/// If an expression initially has the type "reference to T" (8.3.2,
6336/// 8.5.3), the type is adjusted to "T" prior to any further
6337/// analysis, the expression designates the object or function
6338/// denoted by the reference, and the expression is an lvalue.
6339inline QualType QualType::getNonReferenceType() const {
6340 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6341 return RefType->getPointeeType();
6342 else
6343 return *this;
6344}
6345
6346inline bool QualType::isCForbiddenLValueType() const {
6347 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6348 getTypePtr()->isFunctionType());
6349}
6350
6351/// Tests whether the type is categorized as a fundamental type.
6352///
6353/// \returns True for types specified in C++0x [basic.fundamental].
6354inline bool Type::isFundamentalType() const {
6355 return isVoidType() ||
6356 isNullPtrType() ||
6357 // FIXME: It's really annoying that we don't have an
6358 // 'isArithmeticType()' which agrees with the standard definition.
6359 (isArithmeticType() && !isEnumeralType());
6360}
6361
6362/// Tests whether the type is categorized as a compound type.
6363///
6364/// \returns True for types specified in C++0x [basic.compound].
6365inline bool Type::isCompoundType() const {
6366 // C++0x [basic.compound]p1:
6367 // Compound types can be constructed in the following ways:
6368 // -- arrays of objects of a given type [...];
6369 return isArrayType() ||
6370 // -- functions, which have parameters of given types [...];
6371 isFunctionType() ||
6372 // -- pointers to void or objects or functions [...];
6373 isPointerType() ||
6374 // -- references to objects or functions of a given type. [...]
6375 isReferenceType() ||
6376 // -- classes containing a sequence of objects of various types, [...];
6377 isRecordType() ||
6378 // -- unions, which are classes capable of containing objects of different
6379 // types at different times;
6380 isUnionType() ||
6381 // -- enumerations, which comprise a set of named constant values. [...];
6382 isEnumeralType() ||
6383 // -- pointers to non-static class members, [...].
6384 isMemberPointerType();
6385}
6386
6387inline bool Type::isFunctionType() const {
6388 return isa<FunctionType>(CanonicalType);
7
Assuming field 'CanonicalType' is a 'FunctionType'
8
Returning the value 1, which participates in a condition later
6389}
6390
6391inline bool Type::isPointerType() const {
6392 return isa<PointerType>(CanonicalType);
6393}
6394
6395inline bool Type::isAnyPointerType() const {
6396 return isPointerType() || isObjCObjectPointerType();
6397}
6398
6399inline bool Type::isBlockPointerType() const {
6400 return isa<BlockPointerType>(CanonicalType);
6401}
6402
6403inline bool Type::isReferenceType() const {
6404 return isa<ReferenceType>(CanonicalType);
6405}
6406
6407inline bool Type::isLValueReferenceType() const {
6408 return isa<LValueReferenceType>(CanonicalType);
6409}
6410
6411inline bool Type::isRValueReferenceType() const {
6412 return isa<RValueReferenceType>(CanonicalType);
6413}
6414
6415inline bool Type::isFunctionPointerType() const {
6416 if (const auto *T
4.1
'T' is non-null
4.1
'T' is non-null
= getAs<PointerType>())
4
Assuming the object is a 'PointerType'
5
Taking true branch
6417 return T->getPointeeType()->isFunctionType();
6
Calling 'Type::isFunctionType'
9
Returning from 'Type::isFunctionType'
10
Returning the value 1, which participates in a condition later
6418 else
6419 return false;
6420}
6421
6422inline bool Type::isFunctionReferenceType() const {
6423 if (const auto *T = getAs<ReferenceType>())
6424 return T->getPointeeType()->isFunctionType();
6425 else
6426 return false;
6427}
6428
6429inline bool Type::isMemberPointerType() const {
6430 return isa<MemberPointerType>(CanonicalType);
6431}
6432
6433inline bool Type::isMemberFunctionPointerType() const {
6434 if (const auto *T = getAs<MemberPointerType>())
6435 return T->isMemberFunctionPointer();
6436 else
6437 return false;
6438}
6439
6440inline bool Type::isMemberDataPointerType() const {
6441 if (const auto *T = getAs<MemberPointerType>())
6442 return T->isMemberDataPointer();
6443 else
6444 return false;
6445}
6446
6447inline bool Type::isArrayType() const {
6448 return isa<ArrayType>(CanonicalType);
6449}
6450
6451inline bool Type::isConstantArrayType() const {
6452 return isa<ConstantArrayType>(CanonicalType);
6453}
6454
6455inline bool Type::isIncompleteArrayType() const {
6456 return isa<IncompleteArrayType>(CanonicalType);
6457}
6458
6459inline bool Type::isVariableArrayType() const {
6460 return isa<VariableArrayType>(CanonicalType);
6461}
6462
6463inline bool Type::isDependentSizedArrayType() const {
6464 return isa<DependentSizedArrayType>(CanonicalType);
6465}
6466
6467inline bool Type::isBuiltinType() const {
6468 return isa<BuiltinType>(CanonicalType);
6469}
6470
6471inline bool Type::isRecordType() const {
6472 return isa<RecordType>(CanonicalType);
6473}
6474
6475inline bool Type::isEnumeralType() const {
6476 return isa<EnumType>(CanonicalType);
6477}
6478
6479inline bool Type::isAnyComplexType() const {
6480 return isa<ComplexType>(CanonicalType);
6481}
6482
6483inline bool Type::isVectorType() const {
6484 return isa<VectorType>(CanonicalType);
6485}
6486
6487inline bool Type::isExtVectorType() const {
6488 return isa<ExtVectorType>(CanonicalType);
6489}
6490
6491inline bool Type::isDependentAddressSpaceType() const {
6492 return isa<DependentAddressSpaceType>(CanonicalType);
6493}
6494
6495inline bool Type::isObjCObjectPointerType() const {
6496 return isa<ObjCObjectPointerType>(CanonicalType);
6497}
6498
6499inline bool Type::isObjCObjectType() const {
6500 return isa<ObjCObjectType>(CanonicalType);
6501}
6502
6503inline bool Type::isObjCObjectOrInterfaceType() const {
6504 return isa<ObjCInterfaceType>(CanonicalType) ||
6505 isa<ObjCObjectType>(CanonicalType);
6506}
6507
6508inline bool Type::isAtomicType() const {
6509 return isa<AtomicType>(CanonicalType);
6510}
6511
6512inline bool Type::isObjCQualifiedIdType() const {
6513 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6514 return OPT->isObjCQualifiedIdType();
6515 return false;
6516}
6517
6518inline bool Type::isObjCQualifiedClassType() const {
6519 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6520 return OPT->isObjCQualifiedClassType();
6521 return false;
6522}
6523
6524inline bool Type::isObjCIdType() const {
6525 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6526 return OPT->isObjCIdType();
6527 return false;
6528}
6529
6530inline bool Type::isObjCClassType() const {
6531 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6532 return OPT->isObjCClassType();
6533 return false;
6534}
6535
6536inline bool Type::isObjCSelType() const {
6537 if (const auto *OPT = getAs<PointerType>())
6538 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6539 return false;
6540}
6541
6542inline bool Type::isObjCBuiltinType() const {
6543 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6544}
6545
6546inline bool Type::isDecltypeType() const {
6547 return isa<DecltypeType>(this);
6548}
6549
6550#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6551 inline bool Type::is##Id##Type() const { \
6552 return isSpecificBuiltinType(BuiltinType::Id); \
6553 }
6554#include "clang/Basic/OpenCLImageTypes.def"
6555
6556inline bool Type::isSamplerT() const {
6557 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6558}
6559
6560inline bool Type::isEventT() const {
6561 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6562}
6563
6564inline bool Type::isClkEventT() const {
6565 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6566}
6567
6568inline bool Type::isQueueT() const {
6569 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6570}
6571
6572inline bool Type::isReserveIDT() const {
6573 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6574}
6575
6576inline bool Type::isImageType() const {
6577#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6578 return
6579#include "clang/Basic/OpenCLImageTypes.def"
6580 false; // end boolean or operation
6581}
6582
6583inline bool Type::isPipeType() const {
6584 return isa<PipeType>(CanonicalType);
6585}
6586
6587#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6588 inline bool Type::is##Id##Type() const { \
6589 return isSpecificBuiltinType(BuiltinType::Id); \
6590 }
6591#include "clang/Basic/OpenCLExtensionTypes.def"
6592
6593inline bool Type::isOCLIntelSubgroupAVCType() const {
6594#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6595 isOCLIntelSubgroupAVC##Id##Type() ||
6596 return
6597#include "clang/Basic/OpenCLExtensionTypes.def"
6598 false; // end of boolean or operation
6599}
6600
6601inline bool Type::isOCLExtOpaqueType() const {
6602#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6603 return
6604#include "clang/Basic/OpenCLExtensionTypes.def"
6605 false; // end of boolean or operation
6606}
6607
6608inline bool Type::isOpenCLSpecificType() const {
6609 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6610 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6611}
6612
6613inline bool Type::isTemplateTypeParmType() const {
6614 return isa<TemplateTypeParmType>(CanonicalType);
6615}
6616
6617inline bool Type::isSpecificBuiltinType(unsigned K) const {
6618 if (const BuiltinType *BT = getAs<BuiltinType>())
6619 if (BT->getKind() == (BuiltinType::Kind) K)
6620 return true;
6621 return false;
6622}
6623
6624inline bool Type::isPlaceholderType() const {
6625 if (const auto *BT = dyn_cast<BuiltinType>(this))
6626 return BT->isPlaceholderType();
6627 return false;
6628}
6629
6630inline const BuiltinType *Type::getAsPlaceholderType() const {
6631 if (const auto *BT = dyn_cast<BuiltinType>(this))
6632 if (BT->isPlaceholderType())
6633 return BT;
6634 return nullptr;
6635}
6636
6637inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6638 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6638, __PRETTY_FUNCTION__))
;
6639 if (const auto *BT = dyn_cast<BuiltinType>(this))
6640 return (BT->getKind() == (BuiltinType::Kind) K);
6641 return false;
6642}
6643
6644inline bool Type::isNonOverloadPlaceholderType() const {
6645 if (const auto *BT = dyn_cast<BuiltinType>(this))
6646 return BT->isNonOverloadPlaceholderType();
6647 return false;
6648}
6649
6650inline bool Type::isVoidType() const {
6651 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6652 return BT->getKind() == BuiltinType::Void;
6653 return false;
6654}
6655
6656inline bool Type::isHalfType() const {
6657 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6658 return BT->getKind() == BuiltinType::Half;
6659 // FIXME: Should we allow complex __fp16? Probably not.
6660 return false;
6661}
6662
6663inline bool Type::isFloat16Type() const {
6664 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6665 return BT->getKind() == BuiltinType::Float16;
6666 return false;
6667}
6668
6669inline bool Type::isFloat128Type() const {
6670 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6671 return BT->getKind() == BuiltinType::Float128;
6672 return false;
6673}
6674
6675inline bool Type::isNullPtrType() const {
6676 if (const auto *BT = getAs<BuiltinType>())
6677 return BT->getKind() == BuiltinType::NullPtr;
6678 return false;
6679}
6680
6681bool IsEnumDeclComplete(EnumDecl *);
6682bool IsEnumDeclScoped(EnumDecl *);
6683
6684inline bool Type::isIntegerType() const {
6685 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6686 return BT->getKind() >= BuiltinType::Bool &&
6687 BT->getKind() <= BuiltinType::Int128;
6688 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6689 // Incomplete enum types are not treated as integer types.
6690 // FIXME: In C++, enum types are never integer types.
6691 return IsEnumDeclComplete(ET->getDecl()) &&
6692 !IsEnumDeclScoped(ET->getDecl());
6693 }
6694 return false;
6695}
6696
6697inline bool Type::isFixedPointType() const {
6698 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6699 return BT->getKind() >= BuiltinType::ShortAccum &&
6700 BT->getKind() <= BuiltinType::SatULongFract;
6701 }
6702 return false;
6703}
6704
6705inline bool Type::isFixedPointOrIntegerType() const {
6706 return isFixedPointType() || isIntegerType();
6707}
6708
6709inline bool Type::isSaturatedFixedPointType() const {
6710 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6711 return BT->getKind() >= BuiltinType::SatShortAccum &&
6712 BT->getKind() <= BuiltinType::SatULongFract;
6713 }
6714 return false;
6715}
6716
6717inline bool Type::isUnsaturatedFixedPointType() const {
6718 return isFixedPointType() && !isSaturatedFixedPointType();
6719}
6720
6721inline bool Type::isSignedFixedPointType() const {
6722 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6723 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6724 BT->getKind() <= BuiltinType::LongAccum) ||
6725 (BT->getKind() >= BuiltinType::ShortFract &&
6726 BT->getKind() <= BuiltinType::LongFract) ||
6727 (BT->getKind() >= BuiltinType::SatShortAccum &&
6728 BT->getKind() <= BuiltinType::SatLongAccum) ||
6729 (BT->getKind() >= BuiltinType::SatShortFract &&
6730 BT->getKind() <= BuiltinType::SatLongFract));
6731 }
6732 return false;
6733}
6734
6735inline bool Type::isUnsignedFixedPointType() const {
6736 return isFixedPointType() && !isSignedFixedPointType();
6737}
6738
6739inline bool Type::isScalarType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() > BuiltinType::Void &&
6742 BT->getKind() <= BuiltinType::NullPtr;
6743 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6744 // Enums are scalar types, but only if they are defined. Incomplete enums
6745 // are not treated as scalar types.
6746 return IsEnumDeclComplete(ET->getDecl());
6747 return isa<PointerType>(CanonicalType) ||
6748 isa<BlockPointerType>(CanonicalType) ||
6749 isa<MemberPointerType>(CanonicalType) ||
6750 isa<ComplexType>(CanonicalType) ||
6751 isa<ObjCObjectPointerType>(CanonicalType);
6752}
6753
6754inline bool Type::isIntegralOrEnumerationType() const {
6755 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6756 return BT->getKind() >= BuiltinType::Bool &&
6757 BT->getKind() <= BuiltinType::Int128;
6758
6759 // Check for a complete enum type; incomplete enum types are not properly an
6760 // enumeration type in the sense required here.
6761 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6762 return IsEnumDeclComplete(ET->getDecl());
6763
6764 return false;
6765}
6766
6767inline bool Type::isBooleanType() const {
6768 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6769 return BT->getKind() == BuiltinType::Bool;
6770 return false;
6771}
6772
6773inline bool Type::isUndeducedType() const {
6774 auto *DT = getContainedDeducedType();
6775 return DT && !DT->isDeduced();
6776}
6777
6778/// Determines whether this is a type for which one can define
6779/// an overloaded operator.
6780inline bool Type::isOverloadableType() const {
6781 return isDependentType() || isRecordType() || isEnumeralType();
6782}
6783
6784/// Determines whether this type can decay to a pointer type.
6785inline bool Type::canDecayToPointerType() const {
6786 return isFunctionType() || isArrayType();
6787}
6788
6789inline bool Type::hasPointerRepresentation() const {
6790 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6791 isObjCObjectPointerType() || isNullPtrType());
6792}
6793
6794inline bool Type::hasObjCPointerRepresentation() const {
6795 return isObjCObjectPointerType();
6796}
6797
6798inline const Type *Type::getBaseElementTypeUnsafe() const {
6799 const Type *type = this;
6800 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6801 type = arrayType->getElementType().getTypePtr();
6802 return type;
6803}
6804
6805inline const Type *Type::getPointeeOrArrayElementType() const {
6806 const Type *type = this;
6807 if (type->isAnyPointerType())
6808 return type->getPointeeType().getTypePtr();
6809 else if (type->isArrayType())
6810 return type->getBaseElementTypeUnsafe();
6811 return type;
6812}
6813
6814/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6815/// diagnostic with <<.
6816inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6817 Qualifiers Q) {
6818 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6819 DiagnosticsEngine::ArgumentKind::ak_qual);
6820 return DB;
6821}
6822
6823/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6824/// into a diagnostic with <<.
6825inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6826 Qualifiers Q) {
6827 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6828 DiagnosticsEngine::ArgumentKind::ak_qual);
6829 return PD;
6830}
6831
6832/// Insertion operator for diagnostics. This allows sending QualType's into a
6833/// diagnostic with <<.
6834inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6835 QualType T) {
6836 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6837 DiagnosticsEngine::ak_qualtype);
6838 return DB;
6839}
6840
6841/// Insertion operator for partial diagnostics. This allows sending QualType's
6842/// into a diagnostic with <<.
6843inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6844 QualType T) {
6845 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6846 DiagnosticsEngine::ak_qualtype);
6847 return PD;
6848}
6849
6850// Helper class template that is used by Type::getAs to ensure that one does
6851// not try to look through a qualified type to get to an array type.
6852template <typename T>
6853using TypeIsArrayType =
6854 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6855 std::is_base_of<ArrayType, T>::value>;
6856
6857// Member-template getAs<specific type>'.
6858template <typename T> const T *Type::getAs() const {
6859 static_assert(!TypeIsArrayType<T>::value,
6860 "ArrayType cannot be used with getAs!");
6861
6862 // If this is directly a T type, return it.
6863 if (const auto *Ty = dyn_cast<T>(this))
6864 return Ty;
6865
6866 // If the canonical form of this type isn't the right kind, reject it.
6867 if (!isa<T>(CanonicalType))
6868 return nullptr;
6869
6870 // If this is a typedef for the type, strip the typedef off without
6871 // losing all typedef information.
6872 return cast<T>(getUnqualifiedDesugaredType());
6873}
6874
6875template <typename T> const T *Type::getAsAdjusted() const {
6876 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6877
6878 // If this is directly a T type, return it.
6879 if (const auto *Ty = dyn_cast<T>(this))
6880 return Ty;
6881
6882 // If the canonical form of this type isn't the right kind, reject it.
6883 if (!isa<T>(CanonicalType))
6884 return nullptr;
6885
6886 // Strip off type adjustments that do not modify the underlying nature of the
6887 // type.
6888 const Type *Ty = this;
6889 while (Ty) {
6890 if (const auto *A = dyn_cast<AttributedType>(Ty))
6891 Ty = A->getModifiedType().getTypePtr();
6892 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6893 Ty = E->desugar().getTypePtr();
6894 else if (const auto *P = dyn_cast<ParenType>(Ty))
6895 Ty = P->desugar().getTypePtr();
6896 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
6897 Ty = A->desugar().getTypePtr();
6898 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
6899 Ty = M->desugar().getTypePtr();
6900 else
6901 break;
6902 }
6903
6904 // Just because the canonical type is correct does not mean we can use cast<>,
6905 // since we may not have stripped off all the sugar down to the base type.
6906 return dyn_cast<T>(Ty);
6907}
6908
6909inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
6910 // If this is directly an array type, return it.
6911 if (const auto *arr = dyn_cast<ArrayType>(this))
6912 return arr;
6913
6914 // If the canonical form of this type isn't the right kind, reject it.
6915 if (!isa<ArrayType>(CanonicalType))
6916 return nullptr;
6917
6918 // If this is a typedef for the type, strip the typedef off without
6919 // losing all typedef information.
6920 return cast<ArrayType>(getUnqualifiedDesugaredType());
6921}
6922
6923template <typename T> const T *Type::castAs() const {
6924 static_assert(!TypeIsArrayType<T>::value,
6925 "ArrayType cannot be used with castAs!");
6926
6927 if (const auto *ty = dyn_cast<T>(this)) return ty;
6928 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6928, __PRETTY_FUNCTION__))
;
6929 return cast<T>(getUnqualifiedDesugaredType());
6930}
6931
6932inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
6933 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6933, __PRETTY_FUNCTION__))
;
6934 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
6935 return cast<ArrayType>(getUnqualifiedDesugaredType());
6936}
6937
6938DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
6939 QualType CanonicalPtr)
6940 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
6941#ifndef NDEBUG
6942 QualType Adjusted = getAdjustedType();
6943 (void)AttributedType::stripOuterNullability(Adjusted);
6944 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6944, __PRETTY_FUNCTION__))
;
6945#endif
6946}
6947
6948QualType DecayedType::getPointeeType() const {
6949 QualType Decayed = getDecayedType();
6950 (void)AttributedType::stripOuterNullability(Decayed);
6951 return cast<PointerType>(Decayed)->getPointeeType();
6952}
6953
6954// Get the decimal string representation of a fixed point type, represented
6955// as a scaled integer.
6956// TODO: At some point, we should change the arguments to instead just accept an
6957// APFixedPoint instead of APSInt and scale.
6958void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
6959 unsigned Scale);
6960
6961} // namespace clang
6962
6963#endif // LLVM_CLANG_AST_TYPE_H