Bug Summary

File:tools/llvm-readobj/ELFDumper.cpp
Location:line 1647, column 39
Description:Called C++ object pointer is null

Annotated Source Code

1//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements the ELF-specific dumper for llvm-readobj.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm-readobj.h"
16#include "ARMAttributeParser.h"
17#include "ARMEHABIPrinter.h"
18#include "Error.h"
19#include "ObjDumper.h"
20#include "StackMapPrinter.h"
21#include "StreamWriter.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Object/ELFObjectFile.h"
26#include "llvm/Support/ARMBuildAttributes.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/MipsABIFlags.h"
31#include "llvm/Support/raw_ostream.h"
32
33using namespace llvm;
34using namespace llvm::object;
35using namespace ELF;
36
37#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
38 case ns::enum: return #enum;
39
40namespace {
41
42template<typename ELFT>
43class ELFDumper : public ObjDumper {
44public:
45 ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer);
46
47 void printFileHeaders() override;
48 void printSections() override;
49 void printRelocations() override;
50 void printDynamicRelocations() override;
51 void printSymbols() override;
52 void printDynamicSymbols() override;
53 void printUnwindInfo() override;
54
55 void printDynamicTable() override;
56 void printNeededLibraries() override;
57 void printProgramHeaders() override;
58 void printHashTable() override;
59 void printGnuHashTable() override;
60 void printLoadName() override;
61 void printVersionInfo() override;
62
63 void printAttributes() override;
64 void printMipsPLTGOT() override;
65 void printMipsABIFlags() override;
66 void printMipsReginfo() override;
67
68 void printStackMap() const override;
69
70private:
71 typedef ELFFile<ELFT> ELFO;
72 typedef typename ELFO::Elf_Shdr Elf_Shdr;
73 typedef typename ELFO::Elf_Sym Elf_Sym;
74 typedef typename ELFO::Elf_Dyn Elf_Dyn;
75 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
76 typedef typename ELFO::Elf_Rel Elf_Rel;
77 typedef typename ELFO::Elf_Rela Elf_Rela;
78 typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;
79 typedef typename ELFO::Elf_Phdr Elf_Phdr;
80 typedef typename ELFO::Elf_Half Elf_Half;
81 typedef typename ELFO::Elf_Hash Elf_Hash;
82 typedef typename ELFO::Elf_GnuHash Elf_GnuHash;
83 typedef typename ELFO::Elf_Ehdr Elf_Ehdr;
84 typedef typename ELFO::Elf_Word Elf_Word;
85 typedef typename ELFO::uintX_t uintX_t;
86 typedef typename ELFO::Elf_Versym Elf_Versym;
87 typedef typename ELFO::Elf_Verneed Elf_Verneed;
88 typedef typename ELFO::Elf_Vernaux Elf_Vernaux;
89 typedef typename ELFO::Elf_Verdef Elf_Verdef;
90 typedef typename ELFO::Elf_Verdaux Elf_Verdaux;
91
92 /// \brief Represents a region described by entries in the .dynamic table.
93 struct DynRegionInfo {
94 DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {}
95 /// \brief Address in current address space.
96 const void *Addr;
97 /// \brief Size in bytes of the region.
98 uintX_t Size;
99 /// \brief Size of each entity in the region.
100 uintX_t EntSize;
101 };
102
103 void printSymbolsHelper(bool IsDynamic);
104 void printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab,
105 StringRef StrTable, bool IsDynamic);
106
107 void printRelocations(const Elf_Shdr *Sec);
108 void printRelocation(Elf_Rela Rel, const Elf_Shdr *SymTab);
109 void printValue(uint64_t Type, uint64_t Value);
110
111 const Elf_Rela *dyn_rela_begin() const;
112 const Elf_Rela *dyn_rela_end() const;
113 Elf_Rela_Range dyn_relas() const;
114 StringRef getDynamicString(uint64_t Offset) const;
115 const Elf_Dyn *dynamic_table_begin() const {
116 ErrorOr<const Elf_Dyn *> Ret = Obj->dynamic_table_begin(DynamicProgHeader);
117 error(Ret.getError());
118 return *Ret;
119 }
120 const Elf_Dyn *dynamic_table_end() const {
121 ErrorOr<const Elf_Dyn *> Ret = Obj->dynamic_table_end(DynamicProgHeader);
122 error(Ret.getError());
123 return *Ret;
124 }
125 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
126 bool &IsDefault);
127 void LoadVersionMap();
128 void LoadVersionNeeds(const Elf_Shdr *ec) const;
129 void LoadVersionDefs(const Elf_Shdr *sec) const;
130
131 const ELFO *Obj;
132 DynRegionInfo DynRelaRegion;
133 const Elf_Phdr *DynamicProgHeader = nullptr;
134 StringRef DynamicStringTable;
135 const Elf_Sym *DynSymStart = nullptr;
136 StringRef SOName;
137 const Elf_Hash *HashTable = nullptr;
138 const Elf_GnuHash *GnuHashTable = nullptr;
139 const Elf_Shdr *DotDynSymSec = nullptr;
140 const Elf_Shdr *DotSymtabSec = nullptr;
141 ArrayRef<Elf_Word> ShndxTable;
142
143 const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version
144 const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
145 const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
146
147 // Records for each version index the corresponding Verdef or Vernaux entry.
148 // This is filled the first time LoadVersionMap() is called.
149 class VersionMapEntry : public PointerIntPair<const void *, 1> {
150 public:
151 // If the integer is 0, this is an Elf_Verdef*.
152 // If the integer is 1, this is an Elf_Vernaux*.
153 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
154 VersionMapEntry(const Elf_Verdef *verdef)
155 : PointerIntPair<const void *, 1>(verdef, 0) {}
156 VersionMapEntry(const Elf_Vernaux *vernaux)
157 : PointerIntPair<const void *, 1>(vernaux, 1) {}
158 bool isNull() const { return getPointer() == nullptr; }
159 bool isVerdef() const { return !isNull() && getInt() == 0; }
160 bool isVernaux() const { return !isNull() && getInt() == 1; }
161 const Elf_Verdef *getVerdef() const {
162 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
163 }
164 const Elf_Vernaux *getVernaux() const {
165 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
166 }
167 };
168 mutable SmallVector<VersionMapEntry, 16> VersionMap;
169
170public:
171 Elf_Dyn_Range dynamic_table() const {
172 ErrorOr<Elf_Dyn_Range> Ret = Obj->dynamic_table(DynamicProgHeader);
173 error(Ret.getError());
174 return *Ret;
175 }
176
177 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
178 bool IsDynamic);
179 const Elf_Shdr *getDotDynSymSec() const { return DotDynSymSec; }
180 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
181 ArrayRef<Elf_Word> getShndxTable() { return ShndxTable; }
182};
183
184template <class T> T errorOrDefault(ErrorOr<T> Val, T Default = T()) {
185 if (!Val) {
186 error(Val.getError());
187 return Default;
188 }
189
190 return *Val;
191}
192} // namespace
193
194namespace llvm {
195
196template <class ELFT>
197static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
198 StreamWriter &Writer,
199 std::unique_ptr<ObjDumper> &Result) {
200 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
201 return readobj_error::success;
202}
203
204std::error_code createELFDumper(const object::ObjectFile *Obj,
205 StreamWriter &Writer,
206 std::unique_ptr<ObjDumper> &Result) {
207 // Little-endian 32-bit
208 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
209 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
210
211 // Big-endian 32-bit
212 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
213 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
214
215 // Little-endian 64-bit
216 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
217 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
218
219 // Big-endian 64-bit
220 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
221 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
222
223 return readobj_error::unsupported_obj_file_format;
224}
225
226} // namespace llvm
227
228// Iterate through the versions needed section, and place each Elf_Vernaux
229// in the VersionMap according to its index.
230template <class ELFT>
231void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
232 unsigned vn_size = sec->sh_size; // Size of section in bytes
233 unsigned vn_count = sec->sh_info; // Number of Verneed entries
234 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
235 const char *sec_end = sec_start + vn_size;
236 // The first Verneed entry is at the start of the section.
237 const char *p = sec_start;
238 for (unsigned i = 0; i < vn_count; i++) {
239 if (p + sizeof(Elf_Verneed) > sec_end)
240 report_fatal_error("Section ended unexpectedly while scanning "
241 "version needed records.");
242 const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
243 if (vn->vn_version != ELF::VER_NEED_CURRENT)
244 report_fatal_error("Unexpected verneed version");
245 // Iterate through the Vernaux entries
246 const char *paux = p + vn->vn_aux;
247 for (unsigned j = 0; j < vn->vn_cnt; j++) {
248 if (paux + sizeof(Elf_Vernaux) > sec_end)
249 report_fatal_error("Section ended unexpected while scanning auxiliary "
250 "version needed records.");
251 const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
252 size_t index = vna->vna_other & ELF::VERSYM_VERSION;
253 if (index >= VersionMap.size())
254 VersionMap.resize(index + 1);
255 VersionMap[index] = VersionMapEntry(vna);
256 paux += vna->vna_next;
257 }
258 p += vn->vn_next;
259 }
260}
261
262// Iterate through the version definitions, and place each Elf_Verdef
263// in the VersionMap according to its index.
264template <class ELFT>
265void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
266 unsigned vd_size = sec->sh_size; // Size of section in bytes
267 unsigned vd_count = sec->sh_info; // Number of Verdef entries
268 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
269 const char *sec_end = sec_start + vd_size;
270 // The first Verdef entry is at the start of the section.
271 const char *p = sec_start;
272 for (unsigned i = 0; i < vd_count; i++) {
273 if (p + sizeof(Elf_Verdef) > sec_end)
274 report_fatal_error("Section ended unexpectedly while scanning "
275 "version definitions.");
276 const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
277 if (vd->vd_version != ELF::VER_DEF_CURRENT)
278 report_fatal_error("Unexpected verdef version");
279 size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
280 if (index >= VersionMap.size())
281 VersionMap.resize(index + 1);
282 VersionMap[index] = VersionMapEntry(vd);
283 p += vd->vd_next;
284 }
285}
286
287template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() {
288 // If there is no dynamic symtab or version table, there is nothing to do.
289 if (!DynSymStart || !dot_gnu_version_sec)
290 return;
291
292 // Has the VersionMap already been loaded?
293 if (VersionMap.size() > 0)
294 return;
295
296 // The first two version indexes are reserved.
297 // Index 0 is LOCAL, index 1 is GLOBAL.
298 VersionMap.push_back(VersionMapEntry());
299 VersionMap.push_back(VersionMapEntry());
300
301 if (dot_gnu_version_d_sec)
302 LoadVersionDefs(dot_gnu_version_d_sec);
303
304 if (dot_gnu_version_r_sec)
305 LoadVersionNeeds(dot_gnu_version_r_sec);
306}
307
308
309template <typename ELFO, class ELFT>
310static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper,
311 const ELFO *Obj,
312 const typename ELFO::Elf_Shdr *Sec,
313 StreamWriter &W) {
314 DictScope SS(W, "Version symbols");
315 if (!Sec)
316 return;
317 StringRef Name = errorOrDefault(Obj->getSectionName(Sec));
318 W.printNumber("Section Name", Name, Sec->sh_name);
319 W.printHex("Address", Sec->sh_addr);
320 W.printHex("Offset", Sec->sh_offset);
321 W.printNumber("Link", Sec->sh_link);
322
323 const typename ELFO::Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec();
324 const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
325 ErrorOr<StringRef> StrTableOrErr =
326 Obj->getStringTableForSymtab(*DynSymSec);
327 error(StrTableOrErr.getError());
328
329 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
330 ListScope Syms(W, "Symbols");
331 for (const typename ELFO::Elf_Sym &Sym : Obj->symbols(DynSymSec)) {
332 DictScope S(W, "Symbol");
333 std::string FullSymbolName =
334 Dumper->getFullSymbolName(&Sym, *StrTableOrErr, true /* IsDynamic */);
335 W.printNumber("Version", *P);
336 W.printString("Name", FullSymbolName);
337 P += sizeof(typename ELFO::Elf_Half);
338 }
339}
340
341template <typename ELFO, class ELFT>
342static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
343 const ELFO *Obj,
344 const typename ELFO::Elf_Shdr *Sec,
345 StreamWriter &W) {
346 DictScope SD(W, "Version definition");
347 if (!Sec)
348 return;
349 StringRef Name = errorOrDefault(Obj->getSectionName(Sec));
350 W.printNumber("Section Name", Name, Sec->sh_name);
351 W.printHex("Address", Sec->sh_addr);
352 W.printHex("Offset", Sec->sh_offset);
353 W.printNumber("Link", Sec->sh_link);
354
355 unsigned verdef_entries = 0;
356 // The number of entries in the section SHT_GNU_verdef
357 // is determined by DT_VERDEFNUM tag.
358 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
359 if (Dyn.d_tag == DT_VERDEFNUM)
360 verdef_entries = Dyn.d_un.d_val;
361 }
362 const uint8_t *SecStartAddress =
363 (const uint8_t *)Obj->base() + Sec->sh_offset;
364 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
365 const uint8_t *P = SecStartAddress;
366 ErrorOr<const typename ELFO::Elf_Shdr *> StrTabOrErr =
367 Obj->getSection(Sec->sh_link);
368 error(StrTabOrErr.getError());
369
370 ListScope Entries(W, "Entries");
371 for (unsigned i = 0; i < verdef_entries; ++i) {
372 if (P + sizeof(typename ELFO::Elf_Verdef) > SecEndAddress)
373 report_fatal_error("invalid offset in the section");
374 auto *VD = reinterpret_cast<const typename ELFO::Elf_Verdef *>(P);
375 DictScope Entry(W, "Entry");
376 W.printHex("Offset", (uintptr_t)P - (uintptr_t)SecStartAddress);
377 W.printNumber("Rev", VD->vd_version);
378 // FIXME: print something more readable.
379 W.printNumber("Flags", VD->vd_flags);
380 W.printNumber("Index", VD->vd_ndx);
381 W.printNumber("Cnt", VD->vd_cnt);
382 W.printString("Name", StringRef((const char *)(Obj->base() +
383 (*StrTabOrErr)->sh_offset +
384 VD->getAux()->vda_name)));
385 P += VD->vd_next;
386 }
387}
388
389template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
390 // Dump version symbol section.
391 printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
392
393 // Dump version definition section.
394 printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
395}
396
397template <typename ELFT>
398StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
399 const Elf_Sym *symb,
400 bool &IsDefault) {
401 // This is a dynamic symbol. Look in the GNU symbol version table.
402 if (!dot_gnu_version_sec) {
403 // No version table.
404 IsDefault = false;
405 return StringRef("");
406 }
407
408 // Determine the position in the symbol table of this entry.
409 size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
410 reinterpret_cast<uintptr_t>(DynSymStart)) /
411 sizeof(Elf_Sym);
412
413 // Get the corresponding version index entry
414 const Elf_Versym *vs =
415 Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
416 size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
417
418 // Special markers for unversioned symbols.
419 if (version_index == ELF::VER_NDX_LOCAL ||
420 version_index == ELF::VER_NDX_GLOBAL) {
421 IsDefault = false;
422 return StringRef("");
423 }
424
425 // Lookup this symbol in the version table
426 LoadVersionMap();
427 if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
428 reportError("Invalid version entry");
429 const VersionMapEntry &entry = VersionMap[version_index];
430
431 // Get the version name string
432 size_t name_offset;
433 if (entry.isVerdef()) {
434 // The first Verdaux entry holds the name.
435 name_offset = entry.getVerdef()->getAux()->vda_name;
436 IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
437 } else {
438 name_offset = entry.getVernaux()->vna_name;
439 IsDefault = false;
440 }
441 if (name_offset >= StrTab.size())
442 reportError("Invalid string offset");
443 return StringRef(StrTab.data() + name_offset);
444}
445
446template <typename ELFT>
447std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
448 StringRef StrTable,
449 bool IsDynamic) {
450 StringRef SymbolName = errorOrDefault(Symbol->getName(StrTable));
451 if (!IsDynamic)
452 return SymbolName;
453
454 std::string FullSymbolName(SymbolName);
455
456 bool IsDefault;
457 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
458 FullSymbolName += (IsDefault ? "@@" : "@");
459 FullSymbolName += Version;
460 return FullSymbolName;
461}
462
463template <typename ELFO>
464static void
465getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
466 const typename ELFO::Elf_Shdr *SymTab,
467 ArrayRef<typename ELFO::Elf_Word> ShndxTable,
468 StringRef &SectionName, unsigned &SectionIndex) {
469 SectionIndex = Symbol->st_shndx;
470 if (Symbol->isUndefined())
471 SectionName = "Undefined";
472 else if (Symbol->isProcessorSpecific())
473 SectionName = "Processor Specific";
474 else if (Symbol->isOSSpecific())
475 SectionName = "Operating System Specific";
476 else if (Symbol->isAbsolute())
477 SectionName = "Absolute";
478 else if (Symbol->isCommon())
479 SectionName = "Common";
480 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
481 SectionName = "Reserved";
482 else {
483 if (SectionIndex == SHN_XINDEX)
484 SectionIndex =
485 Obj.getExtendedSymbolTableIndex(Symbol, SymTab, ShndxTable);
486 ErrorOr<const typename ELFO::Elf_Shdr *> Sec = Obj.getSection(SectionIndex);
487 error(Sec.getError());
488 SectionName = errorOrDefault(Obj.getSectionName(*Sec));
489 }
490}
491
492template <class ELFO>
493static const typename ELFO::Elf_Shdr *findSectionByAddress(const ELFO *Obj,
494 uint64_t Addr) {
495 for (const auto &Shdr : Obj->sections())
496 if (Shdr.sh_addr == Addr)
497 return &Shdr;
498 return nullptr;
499}
500
501template <class ELFO>
502static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
503 StringRef Name) {
504 for (const auto &Shdr : Obj.sections()) {
505 if (Name == errorOrDefault(Obj.getSectionName(&Shdr)))
506 return &Shdr;
507 }
508 return nullptr;
509}
510
511static const EnumEntry<unsigned> ElfClass[] = {
512 { "None", ELF::ELFCLASSNONE },
513 { "32-bit", ELF::ELFCLASS32 },
514 { "64-bit", ELF::ELFCLASS64 },
515};
516
517static const EnumEntry<unsigned> ElfDataEncoding[] = {
518 { "None", ELF::ELFDATANONE },
519 { "LittleEndian", ELF::ELFDATA2LSB },
520 { "BigEndian", ELF::ELFDATA2MSB },
521};
522
523static const EnumEntry<unsigned> ElfObjectFileType[] = {
524 { "None", ELF::ET_NONE },
525 { "Relocatable", ELF::ET_REL },
526 { "Executable", ELF::ET_EXEC },
527 { "SharedObject", ELF::ET_DYN },
528 { "Core", ELF::ET_CORE },
529};
530
531static const EnumEntry<unsigned> ElfOSABI[] = {
532 { "SystemV", ELF::ELFOSABI_NONE },
533 { "HPUX", ELF::ELFOSABI_HPUX },
534 { "NetBSD", ELF::ELFOSABI_NETBSD },
535 { "GNU/Linux", ELF::ELFOSABI_LINUX },
536 { "GNU/Hurd", ELF::ELFOSABI_HURD },
537 { "Solaris", ELF::ELFOSABI_SOLARIS },
538 { "AIX", ELF::ELFOSABI_AIX },
539 { "IRIX", ELF::ELFOSABI_IRIX },
540 { "FreeBSD", ELF::ELFOSABI_FREEBSD },
541 { "TRU64", ELF::ELFOSABI_TRU64 },
542 { "Modesto", ELF::ELFOSABI_MODESTO },
543 { "OpenBSD", ELF::ELFOSABI_OPENBSD },
544 { "OpenVMS", ELF::ELFOSABI_OPENVMS },
545 { "NSK", ELF::ELFOSABI_NSK },
546 { "AROS", ELF::ELFOSABI_AROS },
547 { "FenixOS", ELF::ELFOSABI_FENIXOS },
548 { "CloudABI", ELF::ELFOSABI_CLOUDABI },
549 { "C6000_ELFABI", ELF::ELFOSABI_C6000_ELFABI },
550 { "C6000_LINUX" , ELF::ELFOSABI_C6000_LINUX },
551 { "ARM", ELF::ELFOSABI_ARM },
552 { "Standalone" , ELF::ELFOSABI_STANDALONE }
553};
554
555static const EnumEntry<unsigned> ElfMachineType[] = {
556 LLVM_READOBJ_ENUM_ENT(ELF, EM_NONE ){ "EM_NONE", ELF::EM_NONE },
557 LLVM_READOBJ_ENUM_ENT(ELF, EM_M32 ){ "EM_M32", ELF::EM_M32 },
558 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC ){ "EM_SPARC", ELF::EM_SPARC },
559 LLVM_READOBJ_ENUM_ENT(ELF, EM_386 ){ "EM_386", ELF::EM_386 },
560 LLVM_READOBJ_ENUM_ENT(ELF, EM_68K ){ "EM_68K", ELF::EM_68K },
561 LLVM_READOBJ_ENUM_ENT(ELF, EM_88K ){ "EM_88K", ELF::EM_88K },
562 LLVM_READOBJ_ENUM_ENT(ELF, EM_IAMCU ){ "EM_IAMCU", ELF::EM_IAMCU },
563 LLVM_READOBJ_ENUM_ENT(ELF, EM_860 ){ "EM_860", ELF::EM_860 },
564 LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS ){ "EM_MIPS", ELF::EM_MIPS },
565 LLVM_READOBJ_ENUM_ENT(ELF, EM_S370 ){ "EM_S370", ELF::EM_S370 },
566 LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_RS3_LE ){ "EM_MIPS_RS3_LE", ELF::EM_MIPS_RS3_LE },
567 LLVM_READOBJ_ENUM_ENT(ELF, EM_PARISC ){ "EM_PARISC", ELF::EM_PARISC },
568 LLVM_READOBJ_ENUM_ENT(ELF, EM_VPP500 ){ "EM_VPP500", ELF::EM_VPP500 },
569 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC32PLUS ){ "EM_SPARC32PLUS", ELF::EM_SPARC32PLUS },
570 LLVM_READOBJ_ENUM_ENT(ELF, EM_960 ){ "EM_960", ELF::EM_960 },
571 LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC ){ "EM_PPC", ELF::EM_PPC },
572 LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC64 ){ "EM_PPC64", ELF::EM_PPC64 },
573 LLVM_READOBJ_ENUM_ENT(ELF, EM_S390 ){ "EM_S390", ELF::EM_S390 },
574 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPU ){ "EM_SPU", ELF::EM_SPU },
575 LLVM_READOBJ_ENUM_ENT(ELF, EM_V800 ){ "EM_V800", ELF::EM_V800 },
576 LLVM_READOBJ_ENUM_ENT(ELF, EM_FR20 ){ "EM_FR20", ELF::EM_FR20 },
577 LLVM_READOBJ_ENUM_ENT(ELF, EM_RH32 ){ "EM_RH32", ELF::EM_RH32 },
578 LLVM_READOBJ_ENUM_ENT(ELF, EM_RCE ){ "EM_RCE", ELF::EM_RCE },
579 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARM ){ "EM_ARM", ELF::EM_ARM },
580 LLVM_READOBJ_ENUM_ENT(ELF, EM_ALPHA ){ "EM_ALPHA", ELF::EM_ALPHA },
581 LLVM_READOBJ_ENUM_ENT(ELF, EM_SH ){ "EM_SH", ELF::EM_SH },
582 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARCV9 ){ "EM_SPARCV9", ELF::EM_SPARCV9 },
583 LLVM_READOBJ_ENUM_ENT(ELF, EM_TRICORE ){ "EM_TRICORE", ELF::EM_TRICORE },
584 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC ){ "EM_ARC", ELF::EM_ARC },
585 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300 ){ "EM_H8_300", ELF::EM_H8_300 },
586 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300H ){ "EM_H8_300H", ELF::EM_H8_300H },
587 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8S ){ "EM_H8S", ELF::EM_H8S },
588 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_500 ){ "EM_H8_500", ELF::EM_H8_500 },
589 LLVM_READOBJ_ENUM_ENT(ELF, EM_IA_64 ){ "EM_IA_64", ELF::EM_IA_64 },
590 LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_X ){ "EM_MIPS_X", ELF::EM_MIPS_X },
591 LLVM_READOBJ_ENUM_ENT(ELF, EM_COLDFIRE ){ "EM_COLDFIRE", ELF::EM_COLDFIRE },
592 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC12 ){ "EM_68HC12", ELF::EM_68HC12 },
593 LLVM_READOBJ_ENUM_ENT(ELF, EM_MMA ){ "EM_MMA", ELF::EM_MMA },
594 LLVM_READOBJ_ENUM_ENT(ELF, EM_PCP ){ "EM_PCP", ELF::EM_PCP },
595 LLVM_READOBJ_ENUM_ENT(ELF, EM_NCPU ){ "EM_NCPU", ELF::EM_NCPU },
596 LLVM_READOBJ_ENUM_ENT(ELF, EM_NDR1 ){ "EM_NDR1", ELF::EM_NDR1 },
597 LLVM_READOBJ_ENUM_ENT(ELF, EM_STARCORE ){ "EM_STARCORE", ELF::EM_STARCORE },
598 LLVM_READOBJ_ENUM_ENT(ELF, EM_ME16 ){ "EM_ME16", ELF::EM_ME16 },
599 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST100 ){ "EM_ST100", ELF::EM_ST100 },
600 LLVM_READOBJ_ENUM_ENT(ELF, EM_TINYJ ){ "EM_TINYJ", ELF::EM_TINYJ },
601 LLVM_READOBJ_ENUM_ENT(ELF, EM_X86_64 ){ "EM_X86_64", ELF::EM_X86_64 },
602 LLVM_READOBJ_ENUM_ENT(ELF, EM_PDSP ){ "EM_PDSP", ELF::EM_PDSP },
603 LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP10 ){ "EM_PDP10", ELF::EM_PDP10 },
604 LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP11 ){ "EM_PDP11", ELF::EM_PDP11 },
605 LLVM_READOBJ_ENUM_ENT(ELF, EM_FX66 ){ "EM_FX66", ELF::EM_FX66 },
606 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST9PLUS ){ "EM_ST9PLUS", ELF::EM_ST9PLUS },
607 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST7 ){ "EM_ST7", ELF::EM_ST7 },
608 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC16 ){ "EM_68HC16", ELF::EM_68HC16 },
609 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC11 ){ "EM_68HC11", ELF::EM_68HC11 },
610 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC08 ){ "EM_68HC08", ELF::EM_68HC08 },
611 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC05 ){ "EM_68HC05", ELF::EM_68HC05 },
612 LLVM_READOBJ_ENUM_ENT(ELF, EM_SVX ){ "EM_SVX", ELF::EM_SVX },
613 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST19 ){ "EM_ST19", ELF::EM_ST19 },
614 LLVM_READOBJ_ENUM_ENT(ELF, EM_VAX ){ "EM_VAX", ELF::EM_VAX },
615 LLVM_READOBJ_ENUM_ENT(ELF, EM_CRIS ){ "EM_CRIS", ELF::EM_CRIS },
616 LLVM_READOBJ_ENUM_ENT(ELF, EM_JAVELIN ){ "EM_JAVELIN", ELF::EM_JAVELIN },
617 LLVM_READOBJ_ENUM_ENT(ELF, EM_FIREPATH ){ "EM_FIREPATH", ELF::EM_FIREPATH },
618 LLVM_READOBJ_ENUM_ENT(ELF, EM_ZSP ){ "EM_ZSP", ELF::EM_ZSP },
619 LLVM_READOBJ_ENUM_ENT(ELF, EM_MMIX ){ "EM_MMIX", ELF::EM_MMIX },
620 LLVM_READOBJ_ENUM_ENT(ELF, EM_HUANY ){ "EM_HUANY", ELF::EM_HUANY },
621 LLVM_READOBJ_ENUM_ENT(ELF, EM_PRISM ){ "EM_PRISM", ELF::EM_PRISM },
622 LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR ){ "EM_AVR", ELF::EM_AVR },
623 LLVM_READOBJ_ENUM_ENT(ELF, EM_FR30 ){ "EM_FR30", ELF::EM_FR30 },
624 LLVM_READOBJ_ENUM_ENT(ELF, EM_D10V ){ "EM_D10V", ELF::EM_D10V },
625 LLVM_READOBJ_ENUM_ENT(ELF, EM_D30V ){ "EM_D30V", ELF::EM_D30V },
626 LLVM_READOBJ_ENUM_ENT(ELF, EM_V850 ){ "EM_V850", ELF::EM_V850 },
627 LLVM_READOBJ_ENUM_ENT(ELF, EM_M32R ){ "EM_M32R", ELF::EM_M32R },
628 LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10300 ){ "EM_MN10300", ELF::EM_MN10300 },
629 LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10200 ){ "EM_MN10200", ELF::EM_MN10200 },
630 LLVM_READOBJ_ENUM_ENT(ELF, EM_PJ ){ "EM_PJ", ELF::EM_PJ },
631 LLVM_READOBJ_ENUM_ENT(ELF, EM_OPENRISC ){ "EM_OPENRISC", ELF::EM_OPENRISC },
632 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT ){ "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
633 LLVM_READOBJ_ENUM_ENT(ELF, EM_XTENSA ){ "EM_XTENSA", ELF::EM_XTENSA },
634 LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE ){ "EM_VIDEOCORE", ELF::EM_VIDEOCORE },
635 LLVM_READOBJ_ENUM_ENT(ELF, EM_TMM_GPP ){ "EM_TMM_GPP", ELF::EM_TMM_GPP },
636 LLVM_READOBJ_ENUM_ENT(ELF, EM_NS32K ){ "EM_NS32K", ELF::EM_NS32K },
637 LLVM_READOBJ_ENUM_ENT(ELF, EM_TPC ){ "EM_TPC", ELF::EM_TPC },
638 LLVM_READOBJ_ENUM_ENT(ELF, EM_SNP1K ){ "EM_SNP1K", ELF::EM_SNP1K },
639 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST200 ){ "EM_ST200", ELF::EM_ST200 },
640 LLVM_READOBJ_ENUM_ENT(ELF, EM_IP2K ){ "EM_IP2K", ELF::EM_IP2K },
641 LLVM_READOBJ_ENUM_ENT(ELF, EM_MAX ){ "EM_MAX", ELF::EM_MAX },
642 LLVM_READOBJ_ENUM_ENT(ELF, EM_CR ){ "EM_CR", ELF::EM_CR },
643 LLVM_READOBJ_ENUM_ENT(ELF, EM_F2MC16 ){ "EM_F2MC16", ELF::EM_F2MC16 },
644 LLVM_READOBJ_ENUM_ENT(ELF, EM_MSP430 ){ "EM_MSP430", ELF::EM_MSP430 },
645 LLVM_READOBJ_ENUM_ENT(ELF, EM_BLACKFIN ){ "EM_BLACKFIN", ELF::EM_BLACKFIN },
646 LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C33 ){ "EM_SE_C33", ELF::EM_SE_C33 },
647 LLVM_READOBJ_ENUM_ENT(ELF, EM_SEP ){ "EM_SEP", ELF::EM_SEP },
648 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARCA ){ "EM_ARCA", ELF::EM_ARCA },
649 LLVM_READOBJ_ENUM_ENT(ELF, EM_UNICORE ){ "EM_UNICORE", ELF::EM_UNICORE },
650 LLVM_READOBJ_ENUM_ENT(ELF, EM_EXCESS ){ "EM_EXCESS", ELF::EM_EXCESS },
651 LLVM_READOBJ_ENUM_ENT(ELF, EM_DXP ){ "EM_DXP", ELF::EM_DXP },
652 LLVM_READOBJ_ENUM_ENT(ELF, EM_ALTERA_NIOS2 ){ "EM_ALTERA_NIOS2", ELF::EM_ALTERA_NIOS2 },
653 LLVM_READOBJ_ENUM_ENT(ELF, EM_CRX ){ "EM_CRX", ELF::EM_CRX },
654 LLVM_READOBJ_ENUM_ENT(ELF, EM_XGATE ){ "EM_XGATE", ELF::EM_XGATE },
655 LLVM_READOBJ_ENUM_ENT(ELF, EM_C166 ){ "EM_C166", ELF::EM_C166 },
656 LLVM_READOBJ_ENUM_ENT(ELF, EM_M16C ){ "EM_M16C", ELF::EM_M16C },
657 LLVM_READOBJ_ENUM_ENT(ELF, EM_DSPIC30F ){ "EM_DSPIC30F", ELF::EM_DSPIC30F },
658 LLVM_READOBJ_ENUM_ENT(ELF, EM_CE ){ "EM_CE", ELF::EM_CE },
659 LLVM_READOBJ_ENUM_ENT(ELF, EM_M32C ){ "EM_M32C", ELF::EM_M32C },
660 LLVM_READOBJ_ENUM_ENT(ELF, EM_TSK3000 ){ "EM_TSK3000", ELF::EM_TSK3000 },
661 LLVM_READOBJ_ENUM_ENT(ELF, EM_RS08 ){ "EM_RS08", ELF::EM_RS08 },
662 LLVM_READOBJ_ENUM_ENT(ELF, EM_SHARC ){ "EM_SHARC", ELF::EM_SHARC },
663 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG2 ){ "EM_ECOG2", ELF::EM_ECOG2 },
664 LLVM_READOBJ_ENUM_ENT(ELF, EM_SCORE7 ){ "EM_SCORE7", ELF::EM_SCORE7 },
665 LLVM_READOBJ_ENUM_ENT(ELF, EM_DSP24 ){ "EM_DSP24", ELF::EM_DSP24 },
666 LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE3 ){ "EM_VIDEOCORE3", ELF::EM_VIDEOCORE3 },
667 LLVM_READOBJ_ENUM_ENT(ELF, EM_LATTICEMICO32){ "EM_LATTICEMICO32", ELF::EM_LATTICEMICO32 },
668 LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C17 ){ "EM_SE_C17", ELF::EM_SE_C17 },
669 LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C6000 ){ "EM_TI_C6000", ELF::EM_TI_C6000 },
670 LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C2000 ){ "EM_TI_C2000", ELF::EM_TI_C2000 },
671 LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C5500 ){ "EM_TI_C5500", ELF::EM_TI_C5500 },
672 LLVM_READOBJ_ENUM_ENT(ELF, EM_MMDSP_PLUS ){ "EM_MMDSP_PLUS", ELF::EM_MMDSP_PLUS },
673 LLVM_READOBJ_ENUM_ENT(ELF, EM_CYPRESS_M8C ){ "EM_CYPRESS_M8C", ELF::EM_CYPRESS_M8C },
674 LLVM_READOBJ_ENUM_ENT(ELF, EM_R32C ){ "EM_R32C", ELF::EM_R32C },
675 LLVM_READOBJ_ENUM_ENT(ELF, EM_TRIMEDIA ){ "EM_TRIMEDIA", ELF::EM_TRIMEDIA },
676 LLVM_READOBJ_ENUM_ENT(ELF, EM_HEXAGON ){ "EM_HEXAGON", ELF::EM_HEXAGON },
677 LLVM_READOBJ_ENUM_ENT(ELF, EM_8051 ){ "EM_8051", ELF::EM_8051 },
678 LLVM_READOBJ_ENUM_ENT(ELF, EM_STXP7X ){ "EM_STXP7X", ELF::EM_STXP7X },
679 LLVM_READOBJ_ENUM_ENT(ELF, EM_NDS32 ){ "EM_NDS32", ELF::EM_NDS32 },
680 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1 ){ "EM_ECOG1", ELF::EM_ECOG1 },
681 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1X ){ "EM_ECOG1X", ELF::EM_ECOG1X },
682 LLVM_READOBJ_ENUM_ENT(ELF, EM_MAXQ30 ){ "EM_MAXQ30", ELF::EM_MAXQ30 },
683 LLVM_READOBJ_ENUM_ENT(ELF, EM_XIMO16 ){ "EM_XIMO16", ELF::EM_XIMO16 },
684 LLVM_READOBJ_ENUM_ENT(ELF, EM_MANIK ){ "EM_MANIK", ELF::EM_MANIK },
685 LLVM_READOBJ_ENUM_ENT(ELF, EM_CRAYNV2 ){ "EM_CRAYNV2", ELF::EM_CRAYNV2 },
686 LLVM_READOBJ_ENUM_ENT(ELF, EM_RX ){ "EM_RX", ELF::EM_RX },
687 LLVM_READOBJ_ENUM_ENT(ELF, EM_METAG ){ "EM_METAG", ELF::EM_METAG },
688 LLVM_READOBJ_ENUM_ENT(ELF, EM_MCST_ELBRUS ){ "EM_MCST_ELBRUS", ELF::EM_MCST_ELBRUS },
689 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG16 ){ "EM_ECOG16", ELF::EM_ECOG16 },
690 LLVM_READOBJ_ENUM_ENT(ELF, EM_CR16 ){ "EM_CR16", ELF::EM_CR16 },
691 LLVM_READOBJ_ENUM_ENT(ELF, EM_ETPU ){ "EM_ETPU", ELF::EM_ETPU },
692 LLVM_READOBJ_ENUM_ENT(ELF, EM_SLE9X ){ "EM_SLE9X", ELF::EM_SLE9X },
693 LLVM_READOBJ_ENUM_ENT(ELF, EM_L10M ){ "EM_L10M", ELF::EM_L10M },
694 LLVM_READOBJ_ENUM_ENT(ELF, EM_K10M ){ "EM_K10M", ELF::EM_K10M },
695 LLVM_READOBJ_ENUM_ENT(ELF, EM_AARCH64 ){ "EM_AARCH64", ELF::EM_AARCH64 },
696 LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR32 ){ "EM_AVR32", ELF::EM_AVR32 },
697 LLVM_READOBJ_ENUM_ENT(ELF, EM_STM8 ){ "EM_STM8", ELF::EM_STM8 },
698 LLVM_READOBJ_ENUM_ENT(ELF, EM_TILE64 ){ "EM_TILE64", ELF::EM_TILE64 },
699 LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEPRO ){ "EM_TILEPRO", ELF::EM_TILEPRO },
700 LLVM_READOBJ_ENUM_ENT(ELF, EM_CUDA ){ "EM_CUDA", ELF::EM_CUDA },
701 LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEGX ){ "EM_TILEGX", ELF::EM_TILEGX },
702 LLVM_READOBJ_ENUM_ENT(ELF, EM_CLOUDSHIELD ){ "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
703 LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_1ST ){ "EM_COREA_1ST", ELF::EM_COREA_1ST },
704 LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_2ND ){ "EM_COREA_2ND", ELF::EM_COREA_2ND },
705 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT2 ){ "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
706 LLVM_READOBJ_ENUM_ENT(ELF, EM_OPEN8 ){ "EM_OPEN8", ELF::EM_OPEN8 },
707 LLVM_READOBJ_ENUM_ENT(ELF, EM_RL78 ){ "EM_RL78", ELF::EM_RL78 },
708 LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE5 ){ "EM_VIDEOCORE5", ELF::EM_VIDEOCORE5 },
709 LLVM_READOBJ_ENUM_ENT(ELF, EM_78KOR ){ "EM_78KOR", ELF::EM_78KOR },
710 LLVM_READOBJ_ENUM_ENT(ELF, EM_56800EX ){ "EM_56800EX", ELF::EM_56800EX },
711 LLVM_READOBJ_ENUM_ENT(ELF, EM_AMDGPU ){ "EM_AMDGPU", ELF::EM_AMDGPU }
712};
713
714static const EnumEntry<unsigned> ElfSymbolBindings[] = {
715 { "Local", ELF::STB_LOCAL },
716 { "Global", ELF::STB_GLOBAL },
717 { "Weak", ELF::STB_WEAK },
718 { "Unique", ELF::STB_GNU_UNIQUE }
719};
720
721static const EnumEntry<unsigned> ElfSymbolTypes[] = {
722 { "None", ELF::STT_NOTYPE },
723 { "Object", ELF::STT_OBJECT },
724 { "Function", ELF::STT_FUNC },
725 { "Section", ELF::STT_SECTION },
726 { "File", ELF::STT_FILE },
727 { "Common", ELF::STT_COMMON },
728 { "TLS", ELF::STT_TLS },
729 { "GNU_IFunc", ELF::STT_GNU_IFUNC }
730};
731
732static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
733 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL },
734 { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION },
735 { "AMDGPU_HSA_METADATA", ELF::STT_AMDGPU_HSA_METADATA }
736};
737
738static const char *getElfSectionType(unsigned Arch, unsigned Type) {
739 switch (Arch) {
740 case ELF::EM_ARM:
741 switch (Type) {
742 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX)case ELF::SHT_ARM_EXIDX: return "SHT_ARM_EXIDX";;
743 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP)case ELF::SHT_ARM_PREEMPTMAP: return "SHT_ARM_PREEMPTMAP";;
744 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES)case ELF::SHT_ARM_ATTRIBUTES: return "SHT_ARM_ATTRIBUTES";;
745 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY)case ELF::SHT_ARM_DEBUGOVERLAY: return "SHT_ARM_DEBUGOVERLAY"
;
;
746 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION)case ELF::SHT_ARM_OVERLAYSECTION: return "SHT_ARM_OVERLAYSECTION"
;
;
747 }
748 case ELF::EM_HEXAGON:
749 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED)case ELF::SHT_HEX_ORDERED: return "SHT_HEX_ORDERED";; }
750 case ELF::EM_X86_64:
751 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND)case ELF::SHT_X86_64_UNWIND: return "SHT_X86_64_UNWIND";; }
752 case ELF::EM_MIPS:
753 case ELF::EM_MIPS_RS3_LE:
754 switch (Type) {
755 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO)case ELF::SHT_MIPS_REGINFO: return "SHT_MIPS_REGINFO";;
756 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS)case ELF::SHT_MIPS_OPTIONS: return "SHT_MIPS_OPTIONS";;
757 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS)case ELF::SHT_MIPS_ABIFLAGS: return "SHT_MIPS_ABIFLAGS";;
758 }
759 }
760
761 switch (Type) {
762 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL )case ELF::SHT_NULL: return "SHT_NULL";;
763 LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS )case ELF::SHT_PROGBITS: return "SHT_PROGBITS";;
764 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB )case ELF::SHT_SYMTAB: return "SHT_SYMTAB";;
765 LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB )case ELF::SHT_STRTAB: return "SHT_STRTAB";;
766 LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA )case ELF::SHT_RELA: return "SHT_RELA";;
767 LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH )case ELF::SHT_HASH: return "SHT_HASH";;
768 LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC )case ELF::SHT_DYNAMIC: return "SHT_DYNAMIC";;
769 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE )case ELF::SHT_NOTE: return "SHT_NOTE";;
770 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS )case ELF::SHT_NOBITS: return "SHT_NOBITS";;
771 LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL )case ELF::SHT_REL: return "SHT_REL";;
772 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB )case ELF::SHT_SHLIB: return "SHT_SHLIB";;
773 LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM )case ELF::SHT_DYNSYM: return "SHT_DYNSYM";;
774 LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY )case ELF::SHT_INIT_ARRAY: return "SHT_INIT_ARRAY";;
775 LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY )case ELF::SHT_FINI_ARRAY: return "SHT_FINI_ARRAY";;
776 LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY )case ELF::SHT_PREINIT_ARRAY: return "SHT_PREINIT_ARRAY";;
777 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP )case ELF::SHT_GROUP: return "SHT_GROUP";;
778 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX )case ELF::SHT_SYMTAB_SHNDX: return "SHT_SYMTAB_SHNDX";;
779 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES )case ELF::SHT_GNU_ATTRIBUTES: return "SHT_GNU_ATTRIBUTES";;
780 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH )case ELF::SHT_GNU_HASH: return "SHT_GNU_HASH";;
781 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef )case ELF::SHT_GNU_verdef: return "SHT_GNU_verdef";;
782 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed )case ELF::SHT_GNU_verneed: return "SHT_GNU_verneed";;
783 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym )case ELF::SHT_GNU_versym: return "SHT_GNU_versym";;
784 default: return "";
785 }
786}
787
788static const EnumEntry<unsigned> ElfSectionFlags[] = {
789 LLVM_READOBJ_ENUM_ENT(ELF, SHF_WRITE ){ "SHF_WRITE", ELF::SHF_WRITE },
790 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ALLOC ){ "SHF_ALLOC", ELF::SHF_ALLOC },
791 LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXCLUDE ){ "SHF_EXCLUDE", ELF::SHF_EXCLUDE },
792 LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXECINSTR ){ "SHF_EXECINSTR", ELF::SHF_EXECINSTR },
793 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MERGE ){ "SHF_MERGE", ELF::SHF_MERGE },
794 LLVM_READOBJ_ENUM_ENT(ELF, SHF_STRINGS ){ "SHF_STRINGS", ELF::SHF_STRINGS },
795 LLVM_READOBJ_ENUM_ENT(ELF, SHF_INFO_LINK ){ "SHF_INFO_LINK", ELF::SHF_INFO_LINK },
796 LLVM_READOBJ_ENUM_ENT(ELF, SHF_LINK_ORDER ){ "SHF_LINK_ORDER", ELF::SHF_LINK_ORDER },
797 LLVM_READOBJ_ENUM_ENT(ELF, SHF_OS_NONCONFORMING){ "SHF_OS_NONCONFORMING", ELF::SHF_OS_NONCONFORMING },
798 LLVM_READOBJ_ENUM_ENT(ELF, SHF_GROUP ){ "SHF_GROUP", ELF::SHF_GROUP },
799 LLVM_READOBJ_ENUM_ENT(ELF, SHF_TLS ){ "SHF_TLS", ELF::SHF_TLS },
800 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION){ "XCORE_SHF_CP_SECTION", ELF::XCORE_SHF_CP_SECTION },
801 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION){ "XCORE_SHF_DP_SECTION", ELF::XCORE_SHF_DP_SECTION },
802 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP ){ "SHF_MIPS_NOSTRIP", ELF::SHF_MIPS_NOSTRIP },
803 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL){ "SHF_AMDGPU_HSA_GLOBAL", ELF::SHF_AMDGPU_HSA_GLOBAL },
804 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY){ "SHF_AMDGPU_HSA_READONLY", ELF::SHF_AMDGPU_HSA_READONLY },
805 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE){ "SHF_AMDGPU_HSA_CODE", ELF::SHF_AMDGPU_HSA_CODE },
806 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT){ "SHF_AMDGPU_HSA_AGENT", ELF::SHF_AMDGPU_HSA_AGENT }
807};
808
809static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
810 // Check potentially overlapped processor-specific
811 // program header type.
812 switch (Arch) {
813 case ELF::EM_AMDGPU:
814 switch (Type) {
815 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM)case ELF::PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM: return "PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM"
;
;
816 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT)case ELF::PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT: return "PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT"
;
;
817 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT)case ELF::PT_AMDGPU_HSA_LOAD_READONLY_AGENT: return "PT_AMDGPU_HSA_LOAD_READONLY_AGENT"
;
;
818 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT)case ELF::PT_AMDGPU_HSA_LOAD_CODE_AGENT: return "PT_AMDGPU_HSA_LOAD_CODE_AGENT"
;
;
819 }
820 case ELF::EM_ARM:
821 switch (Type) {
822 LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";;
823 }
824 case ELF::EM_MIPS:
825 case ELF::EM_MIPS_RS3_LE:
826 switch (Type) {
827 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
828 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
829 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
830 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
831 }
832 }
833
834 switch (Type) {
835 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL )case ELF::PT_NULL: return "PT_NULL";;
836 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD )case ELF::PT_LOAD: return "PT_LOAD";;
837 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
838 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP )case ELF::PT_INTERP: return "PT_INTERP";;
839 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE )case ELF::PT_NOTE: return "PT_NOTE";;
840 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB )case ELF::PT_SHLIB: return "PT_SHLIB";;
841 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR )case ELF::PT_PHDR: return "PT_PHDR";;
842 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS )case ELF::PT_TLS: return "PT_TLS";;
843
844 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
845 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
846
847 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
848 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
849 default: return "";
850 }
851}
852
853static const EnumEntry<unsigned> ElfSegmentFlags[] = {
854 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
855 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
856 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
857};
858
859static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
860 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER){ "EF_MIPS_NOREORDER", ELF::EF_MIPS_NOREORDER },
861 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC){ "EF_MIPS_PIC", ELF::EF_MIPS_PIC },
862 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC){ "EF_MIPS_CPIC", ELF::EF_MIPS_CPIC },
863 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2){ "EF_MIPS_ABI2", ELF::EF_MIPS_ABI2 },
864 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE){ "EF_MIPS_32BITMODE", ELF::EF_MIPS_32BITMODE },
865 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64){ "EF_MIPS_FP64", ELF::EF_MIPS_FP64 },
866 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008){ "EF_MIPS_NAN2008", ELF::EF_MIPS_NAN2008 },
867 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32){ "EF_MIPS_ABI_O32", ELF::EF_MIPS_ABI_O32 },
868 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64){ "EF_MIPS_ABI_O64", ELF::EF_MIPS_ABI_O64 },
869 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32){ "EF_MIPS_ABI_EABI32", ELF::EF_MIPS_ABI_EABI32 },
870 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64){ "EF_MIPS_ABI_EABI64", ELF::EF_MIPS_ABI_EABI64 },
871 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900){ "EF_MIPS_MACH_3900", ELF::EF_MIPS_MACH_3900 },
872 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010){ "EF_MIPS_MACH_4010", ELF::EF_MIPS_MACH_4010 },
873 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100){ "EF_MIPS_MACH_4100", ELF::EF_MIPS_MACH_4100 },
874 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650){ "EF_MIPS_MACH_4650", ELF::EF_MIPS_MACH_4650 },
875 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120){ "EF_MIPS_MACH_4120", ELF::EF_MIPS_MACH_4120 },
876 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111){ "EF_MIPS_MACH_4111", ELF::EF_MIPS_MACH_4111 },
877 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1){ "EF_MIPS_MACH_SB1", ELF::EF_MIPS_MACH_SB1 },
878 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON){ "EF_MIPS_MACH_OCTEON", ELF::EF_MIPS_MACH_OCTEON },
879 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR){ "EF_MIPS_MACH_XLR", ELF::EF_MIPS_MACH_XLR },
880 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2){ "EF_MIPS_MACH_OCTEON2", ELF::EF_MIPS_MACH_OCTEON2 },
881 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3){ "EF_MIPS_MACH_OCTEON3", ELF::EF_MIPS_MACH_OCTEON3 },
882 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400){ "EF_MIPS_MACH_5400", ELF::EF_MIPS_MACH_5400 },
883 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900){ "EF_MIPS_MACH_5900", ELF::EF_MIPS_MACH_5900 },
884 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500){ "EF_MIPS_MACH_5500", ELF::EF_MIPS_MACH_5500 },
885 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000){ "EF_MIPS_MACH_9000", ELF::EF_MIPS_MACH_9000 },
886 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E){ "EF_MIPS_MACH_LS2E", ELF::EF_MIPS_MACH_LS2E },
887 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F){ "EF_MIPS_MACH_LS2F", ELF::EF_MIPS_MACH_LS2F },
888 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A){ "EF_MIPS_MACH_LS3A", ELF::EF_MIPS_MACH_LS3A },
889 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS){ "EF_MIPS_MICROMIPS", ELF::EF_MIPS_MICROMIPS },
890 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16){ "EF_MIPS_ARCH_ASE_M16", ELF::EF_MIPS_ARCH_ASE_M16 },
891 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX){ "EF_MIPS_ARCH_ASE_MDMX", ELF::EF_MIPS_ARCH_ASE_MDMX },
892 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1){ "EF_MIPS_ARCH_1", ELF::EF_MIPS_ARCH_1 },
893 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2){ "EF_MIPS_ARCH_2", ELF::EF_MIPS_ARCH_2 },
894 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3){ "EF_MIPS_ARCH_3", ELF::EF_MIPS_ARCH_3 },
895 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4){ "EF_MIPS_ARCH_4", ELF::EF_MIPS_ARCH_4 },
896 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5){ "EF_MIPS_ARCH_5", ELF::EF_MIPS_ARCH_5 },
897 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32){ "EF_MIPS_ARCH_32", ELF::EF_MIPS_ARCH_32 },
898 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64){ "EF_MIPS_ARCH_64", ELF::EF_MIPS_ARCH_64 },
899 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2){ "EF_MIPS_ARCH_32R2", ELF::EF_MIPS_ARCH_32R2 },
900 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2){ "EF_MIPS_ARCH_64R2", ELF::EF_MIPS_ARCH_64R2 },
901 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6){ "EF_MIPS_ARCH_32R6", ELF::EF_MIPS_ARCH_32R6 },
902 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6){ "EF_MIPS_ARCH_64R6", ELF::EF_MIPS_ARCH_64R6 }
903};
904
905template <typename ELFT>
906ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer)
907 : ObjDumper(Writer), Obj(Obj) {
908
909 SmallVector<const Elf_Phdr *, 4> LoadSegments;
910 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
911 if (Phdr.p_type == ELF::PT_DYNAMIC) {
912 DynamicProgHeader = &Phdr;
913 continue;
914 }
915 if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
916 continue;
917 LoadSegments.push_back(&Phdr);
918 }
919
920 auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
921 const Elf_Phdr **I = std::upper_bound(
922 LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr<ELFT>);
923 if (I == LoadSegments.begin())
924 report_fatal_error("Virtual address is not in any segment");
925 --I;
926 const Elf_Phdr &Phdr = **I;
927 uint64_t Delta = VAddr - Phdr.p_vaddr;
928 if (Delta >= Phdr.p_filesz)
929 report_fatal_error("Virtual address is not in any segment");
930 return Obj->base() + Phdr.p_offset + Delta;
931 };
932
933 uint64_t SONameOffset = 0;
934 const char *StringTableBegin = nullptr;
935 uint64_t StringTableSize = 0;
936 for (const Elf_Dyn &Dyn : dynamic_table()) {
937 switch (Dyn.d_tag) {
938 case ELF::DT_HASH:
939 HashTable =
940 reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
941 break;
942 case ELF::DT_GNU_HASH:
943 GnuHashTable =
944 reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
945 break;
946 case ELF::DT_RELA:
947 DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
948 break;
949 case ELF::DT_RELASZ:
950 DynRelaRegion.Size = Dyn.getVal();
951 break;
952 case ELF::DT_RELAENT:
953 DynRelaRegion.EntSize = Dyn.getVal();
954 break;
955 case ELF::DT_SONAME:
956 SONameOffset = Dyn.getVal();
957 break;
958 case ELF::DT_STRTAB:
959 StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
960 break;
961 case ELF::DT_STRSZ:
962 StringTableSize = Dyn.getVal();
963 break;
964 case ELF::DT_SYMTAB:
965 DynSymStart =
966 reinterpret_cast<const Elf_Sym *>(toMappedAddr(Dyn.getPtr()));
967 break;
968 }
969 }
970 if (StringTableBegin)
971 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
972 if (SONameOffset)
973 SOName = getDynamicString(SONameOffset);
974
975 for (const Elf_Shdr &Sec : Obj->sections()) {
976 switch (Sec.sh_type) {
977 case ELF::SHT_GNU_versym:
978 if (dot_gnu_version_sec != nullptr)
979 reportError("Multiple SHT_GNU_versym");
980 dot_gnu_version_sec = &Sec;
981 break;
982 case ELF::SHT_GNU_verdef:
983 if (dot_gnu_version_d_sec != nullptr)
984 reportError("Multiple SHT_GNU_verdef");
985 dot_gnu_version_d_sec = &Sec;
986 break;
987 case ELF::SHT_GNU_verneed:
988 if (dot_gnu_version_r_sec != nullptr)
989 reportError("Multilpe SHT_GNU_verneed");
990 dot_gnu_version_r_sec = &Sec;
991 break;
992 case ELF::SHT_DYNSYM:
993 if (DotDynSymSec != nullptr)
994 reportError("Multilpe SHT_DYNSYM");
995 DotDynSymSec = &Sec;
996 break;
997 case ELF::SHT_SYMTAB:
998 if (DotSymtabSec != nullptr)
999 reportError("Multilpe SHT_SYMTAB");
1000 DotSymtabSec = &Sec;
1001 break;
1002 case ELF::SHT_SYMTAB_SHNDX: {
1003 ErrorOr<ArrayRef<Elf_Word>> TableOrErr = Obj->getSHNDXTable(Sec);
1004 error(TableOrErr.getError());
1005 ShndxTable = *TableOrErr;
1006 break;
1007 }
1008 }
1009 }
1010}
1011
1012template <typename ELFT>
1013const typename ELFDumper<ELFT>::Elf_Rela *
1014ELFDumper<ELFT>::dyn_rela_begin() const {
1015 if (DynRelaRegion.Size && DynRelaRegion.EntSize != sizeof(Elf_Rela))
1016 report_fatal_error("Invalid relocation entry size");
1017 return reinterpret_cast<const Elf_Rela *>(DynRelaRegion.Addr);
1018}
1019
1020template <typename ELFT>
1021const typename ELFDumper<ELFT>::Elf_Rela *
1022ELFDumper<ELFT>::dyn_rela_end() const {
1023 uint64_t Size = DynRelaRegion.Size;
1024 if (Size % sizeof(Elf_Rela))
1025 report_fatal_error("Invalid relocation table size");
1026 return dyn_rela_begin() + Size / sizeof(Elf_Rela);
1027}
1028
1029template <typename ELFT>
1030typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1031 return make_range(dyn_rela_begin(), dyn_rela_end());
1032}
1033
1034template<class ELFT>
1035void ELFDumper<ELFT>::printFileHeaders() {
1036 const Elf_Ehdr *Header = Obj->getHeader();
1037
1038 {
1039 DictScope D(W, "ElfHeader");
1040 {
1041 DictScope D(W, "Ident");
1042 W.printBinary("Magic", makeArrayRef(Header->e_ident).slice(ELF::EI_MAG0,
1043 4));
1044 W.printEnum ("Class", Header->e_ident[ELF::EI_CLASS],
1045 makeArrayRef(ElfClass));
1046 W.printEnum ("DataEncoding", Header->e_ident[ELF::EI_DATA],
1047 makeArrayRef(ElfDataEncoding));
1048 W.printNumber("FileVersion", Header->e_ident[ELF::EI_VERSION]);
1049
1050 // Handle architecture specific OS/ABI values.
1051 if (Header->e_machine == ELF::EM_AMDGPU &&
1052 Header->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
1053 W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
1054 else
1055 W.printEnum ("OS/ABI", Header->e_ident[ELF::EI_OSABI],
1056 makeArrayRef(ElfOSABI));
1057 W.printNumber("ABIVersion", Header->e_ident[ELF::EI_ABIVERSION]);
1058 W.printBinary("Unused", makeArrayRef(Header->e_ident).slice(ELF::EI_PAD));
1059 }
1060
1061 W.printEnum ("Type", Header->e_type, makeArrayRef(ElfObjectFileType));
1062 W.printEnum ("Machine", Header->e_machine, makeArrayRef(ElfMachineType));
1063 W.printNumber("Version", Header->e_version);
1064 W.printHex ("Entry", Header->e_entry);
1065 W.printHex ("ProgramHeaderOffset", Header->e_phoff);
1066 W.printHex ("SectionHeaderOffset", Header->e_shoff);
1067 if (Header->e_machine == EM_MIPS)
1068 W.printFlags("Flags", Header->e_flags, makeArrayRef(ElfHeaderMipsFlags),
1069 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
1070 unsigned(ELF::EF_MIPS_MACH));
1071 else
1072 W.printFlags("Flags", Header->e_flags);
1073 W.printNumber("HeaderSize", Header->e_ehsize);
1074 W.printNumber("ProgramHeaderEntrySize", Header->e_phentsize);
1075 W.printNumber("ProgramHeaderCount", Header->e_phnum);
1076 W.printNumber("SectionHeaderEntrySize", Header->e_shentsize);
1077 W.printNumber("SectionHeaderCount", Header->e_shnum);
1078 W.printNumber("StringTableSectionIndex", Header->e_shstrndx);
1079 }
1080}
1081
1082template<class ELFT>
1083void ELFDumper<ELFT>::printSections() {
1084 ListScope SectionsD(W, "Sections");
1085
1086 int SectionIndex = -1;
1087 for (const Elf_Shdr &Sec : Obj->sections()) {
1088 ++SectionIndex;
1089
1090 StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));
1091
1092 DictScope SectionD(W, "Section");
1093 W.printNumber("Index", SectionIndex);
1094 W.printNumber("Name", Name, Sec.sh_name);
1095 W.printHex("Type",
1096 getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
1097 Sec.sh_type);
1098 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(ElfSectionFlags));
1099 W.printHex("Address", Sec.sh_addr);
1100 W.printHex("Offset", Sec.sh_offset);
1101 W.printNumber("Size", Sec.sh_size);
1102 W.printNumber("Link", Sec.sh_link);
1103 W.printNumber("Info", Sec.sh_info);
1104 W.printNumber("AddressAlignment", Sec.sh_addralign);
1105 W.printNumber("EntrySize", Sec.sh_entsize);
1106
1107 if (opts::SectionRelocations) {
1108 ListScope D(W, "Relocations");
1109 printRelocations(&Sec);
1110 }
1111
1112 if (opts::SectionSymbols) {
1113 ListScope D(W, "Symbols");
1114 const Elf_Shdr *Symtab = DotSymtabSec;
1115 ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*Symtab);
1116 error(StrTableOrErr.getError());
1117 StringRef StrTable = *StrTableOrErr;
1118
1119 for (const Elf_Sym &Sym : Obj->symbols(Symtab)) {
1120 ErrorOr<const Elf_Shdr *> SymSec =
1121 Obj->getSection(&Sym, Symtab, ShndxTable);
1122 if (!SymSec)
1123 continue;
1124 if (*SymSec == &Sec)
1125 printSymbol(&Sym, Symtab, StrTable, false);
1126 }
1127 }
1128
1129 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
1130 ArrayRef<uint8_t> Data = errorOrDefault(Obj->getSectionContents(&Sec));
1131 W.printBinaryBlock("SectionData",
1132 StringRef((const char *)Data.data(), Data.size()));
1133 }
1134 }
1135}
1136
1137template<class ELFT>
1138void ELFDumper<ELFT>::printRelocations() {
1139 ListScope D(W, "Relocations");
1140
1141 int SectionNumber = -1;
1142 for (const Elf_Shdr &Sec : Obj->sections()) {
1143 ++SectionNumber;
1144
1145 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
1146 continue;
1147
1148 StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));
1149
1150 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
1151 W.indent();
1152
1153 printRelocations(&Sec);
1154
1155 W.unindent();
1156 W.startLine() << "}\n";
1157 }
1158}
1159
1160template<class ELFT>
1161void ELFDumper<ELFT>::printDynamicRelocations() {
1162 W.startLine() << "Dynamic Relocations {\n";
1163 W.indent();
1164 for (const Elf_Rela &Rel : dyn_relas()) {
1165 SmallString<32> RelocName;
1166 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
1167 StringRef SymbolName;
1168 uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
1169 const Elf_Sym *Sym = DynSymStart + SymIndex;
1170 SymbolName = errorOrDefault(Sym->getName(DynamicStringTable));
1171 if (opts::ExpandRelocs) {
1172 DictScope Group(W, "Relocation");
1173 W.printHex("Offset", Rel.r_offset);
1174 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
1175 W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
1176 W.printHex("Addend", Rel.r_addend);
1177 }
1178 else {
1179 raw_ostream& OS = W.startLine();
1180 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
1181 << (SymbolName.size() > 0 ? SymbolName : "-") << " "
1182 << W.hex(Rel.r_addend) << "\n";
1183 }
1184 }
1185 W.unindent();
1186 W.startLine() << "}\n";
1187}
1188
1189template <class ELFT>
1190void ELFDumper<ELFT>::printRelocations(const Elf_Shdr *Sec) {
1191 ErrorOr<const Elf_Shdr *> SymTabOrErr = Obj->getSection(Sec->sh_link);
1192 error(SymTabOrErr.getError());
1193 const Elf_Shdr *SymTab = *SymTabOrErr;
1194
1195 switch (Sec->sh_type) {
1196 case ELF::SHT_REL:
1197 for (const Elf_Rel &R : Obj->rels(Sec)) {
1198 Elf_Rela Rela;
1199 Rela.r_offset = R.r_offset;
1200 Rela.r_info = R.r_info;
1201 Rela.r_addend = 0;
1202 printRelocation(Rela, SymTab);
1203 }
1204 break;
1205 case ELF::SHT_RELA:
1206 for (const Elf_Rela &R : Obj->relas(Sec))
1207 printRelocation(R, SymTab);
1208 break;
1209 }
1210}
1211
1212template <class ELFT>
1213void ELFDumper<ELFT>::printRelocation(Elf_Rela Rel, const Elf_Shdr *SymTab) {
1214 SmallString<32> RelocName;
1215 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
1216 StringRef TargetName;
1217 const Elf_Sym *Sym = Obj->getRelocationSymbol(&Rel, SymTab);
1218 if (Sym && Sym->getType() == ELF::STT_SECTION) {
1219 ErrorOr<const Elf_Shdr *> Sec = Obj->getSection(Sym, SymTab, ShndxTable);
1220 error(Sec.getError());
1221 ErrorOr<StringRef> SecName = Obj->getSectionName(*Sec);
1222 if (SecName)
1223 TargetName = SecName.get();
1224 } else if (Sym) {
1225 ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*SymTab);
1226 error(StrTableOrErr.getError());
1227 TargetName = errorOrDefault(Sym->getName(*StrTableOrErr));
1228 }
1229
1230 if (opts::ExpandRelocs) {
1231 DictScope Group(W, "Relocation");
1232 W.printHex("Offset", Rel.r_offset);
1233 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
1234 W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
1235 Rel.getSymbol(Obj->isMips64EL()));
1236 W.printHex("Addend", Rel.r_addend);
1237 } else {
1238 raw_ostream& OS = W.startLine();
1239 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
1240 << (TargetName.size() > 0 ? TargetName : "-") << " "
1241 << W.hex(Rel.r_addend) << "\n";
1242 }
1243}
1244
1245template<class ELFT>
1246void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) {
1247 const Elf_Shdr *Symtab = (IsDynamic) ? DotDynSymSec : DotSymtabSec;
1248 if (!Symtab)
1249 return;
1250 ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*Symtab);
1251 error(StrTableOrErr.getError());
1252 StringRef StrTable = *StrTableOrErr;
1253 for (const Elf_Sym &Sym : Obj->symbols(Symtab))
1254 printSymbol(&Sym, Symtab, StrTable, IsDynamic);
1255}
1256
1257template<class ELFT>
1258void ELFDumper<ELFT>::printSymbols() {
1259 ListScope Group(W, "Symbols");
1260 printSymbolsHelper(false);
1261}
1262
1263template<class ELFT>
1264void ELFDumper<ELFT>::printDynamicSymbols() {
1265 ListScope Group(W, "DynamicSymbols");
1266 printSymbolsHelper(true);
1267}
1268
1269template <class ELFT>
1270void ELFDumper<ELFT>::printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab,
1271 StringRef StrTable, bool IsDynamic) {
1272 unsigned SectionIndex = 0;
1273 StringRef SectionName;
1274 getSectionNameIndex(*Obj, Symbol, SymTab, ShndxTable, SectionName,
1275 SectionIndex);
1276 std::string FullSymbolName = getFullSymbolName(Symbol, StrTable, IsDynamic);
1277 unsigned char SymbolType = Symbol->getType();
1278
1279 DictScope D(W, "Symbol");
1280 W.printNumber("Name", FullSymbolName, Symbol->st_name);
1281 W.printHex ("Value", Symbol->st_value);
1282 W.printNumber("Size", Symbol->st_size);
1283 W.printEnum ("Binding", Symbol->getBinding(),
1284 makeArrayRef(ElfSymbolBindings));
1285 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
1286 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
1287 W.printEnum ("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
1288 else
1289 W.printEnum ("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
1290 W.printNumber("Other", Symbol->st_other);
1291 W.printHex("Section", SectionName, SectionIndex);
1292}
1293
1294#define LLVM_READOBJ_TYPE_CASE(name) \
1295 case DT_##name: return #name
1296
1297static const char *getTypeString(uint64_t Type) {
1298 switch (Type) {
1299 LLVM_READOBJ_TYPE_CASE(BIND_NOW);
1300 LLVM_READOBJ_TYPE_CASE(DEBUG);
1301 LLVM_READOBJ_TYPE_CASE(FINI);
1302 LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
1303 LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
1304 LLVM_READOBJ_TYPE_CASE(FLAGS);
1305 LLVM_READOBJ_TYPE_CASE(FLAGS_1);
1306 LLVM_READOBJ_TYPE_CASE(HASH);
1307 LLVM_READOBJ_TYPE_CASE(INIT);
1308 LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
1309 LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
1310 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
1311 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
1312 LLVM_READOBJ_TYPE_CASE(JMPREL);
1313 LLVM_READOBJ_TYPE_CASE(NEEDED);
1314 LLVM_READOBJ_TYPE_CASE(NULL__null);
1315 LLVM_READOBJ_TYPE_CASE(PLTGOT);
1316 LLVM_READOBJ_TYPE_CASE(PLTREL);
1317 LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
1318 LLVM_READOBJ_TYPE_CASE(REL);
1319 LLVM_READOBJ_TYPE_CASE(RELA);
1320 LLVM_READOBJ_TYPE_CASE(RELENT);
1321 LLVM_READOBJ_TYPE_CASE(RELSZ);
1322 LLVM_READOBJ_TYPE_CASE(RELAENT);
1323 LLVM_READOBJ_TYPE_CASE(RELASZ);
1324 LLVM_READOBJ_TYPE_CASE(RPATH);
1325 LLVM_READOBJ_TYPE_CASE(RUNPATH);
1326 LLVM_READOBJ_TYPE_CASE(SONAME);
1327 LLVM_READOBJ_TYPE_CASE(STRSZ);
1328 LLVM_READOBJ_TYPE_CASE(STRTAB);
1329 LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
1330 LLVM_READOBJ_TYPE_CASE(SYMENT);
1331 LLVM_READOBJ_TYPE_CASE(SYMTAB);
1332 LLVM_READOBJ_TYPE_CASE(TEXTREL);
1333 LLVM_READOBJ_TYPE_CASE(VERDEF);
1334 LLVM_READOBJ_TYPE_CASE(VERDEFNUM);
1335 LLVM_READOBJ_TYPE_CASE(VERNEED);
1336 LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
1337 LLVM_READOBJ_TYPE_CASE(VERSYM);
1338 LLVM_READOBJ_TYPE_CASE(RELCOUNT);
1339 LLVM_READOBJ_TYPE_CASE(GNU_HASH);
1340 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
1341 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
1342 LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
1343 LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
1344 LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
1345 LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
1346 LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
1347 LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
1348 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
1349 LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
1350 LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
1351 default: return "unknown";
1352 }
1353}
1354
1355#undef LLVM_READOBJ_TYPE_CASE
1356
1357#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1358 { #enum, prefix##_##enum }
1359
1360static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1361 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1362 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1363 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1364 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1365 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1366};
1367
1368static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1369 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1370 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1371 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1372 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1373 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1374 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1375 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1376 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1377 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1378 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1379 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1380 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1381 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1382 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1383 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1384 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1385 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1386 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1387 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1388 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1389 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1390 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1391 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1392 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1393 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1394};
1395
1396static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1397 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1398 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1399 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1400 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1401 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1402 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1403 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1404 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1405 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1406 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1407 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1408 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1409 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1410 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1411 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1412 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1413};
1414
1415#undef LLVM_READOBJ_DT_FLAG_ENT
1416
1417template <typename T, typename TFlag>
1418void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1419 typedef EnumEntry<TFlag> FlagEntry;
1420 typedef SmallVector<FlagEntry, 10> FlagVector;
1421 FlagVector SetFlags;
1422
1423 for (const auto &Flag : Flags) {
1424 if (Flag.Value == 0)
1425 continue;
1426
1427 if ((Value & Flag.Value) == Flag.Value)
1428 SetFlags.push_back(Flag);
1429 }
1430
1431 for (const auto &Flag : SetFlags) {
1432 OS << Flag.Name << " ";
1433 }
1434}
1435
1436template <class ELFT>
1437StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1438 if (Value >= DynamicStringTable.size())
1439 reportError("Invalid dynamic string table reference");
1440 return StringRef(DynamicStringTable.data() + Value);
1441}
1442
1443template <class ELFT>
1444void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1445 raw_ostream &OS = W.getOStream();
1446 switch (Type) {
1447 case DT_PLTREL:
1448 if (Value == DT_REL) {
1449 OS << "REL";
1450 break;
1451 } else if (Value == DT_RELA) {
1452 OS << "RELA";
1453 break;
1454 }
1455 // Fallthrough.
1456 case DT_PLTGOT:
1457 case DT_HASH:
1458 case DT_STRTAB:
1459 case DT_SYMTAB:
1460 case DT_RELA:
1461 case DT_INIT:
1462 case DT_FINI:
1463 case DT_REL:
1464 case DT_JMPREL:
1465 case DT_INIT_ARRAY:
1466 case DT_FINI_ARRAY:
1467 case DT_PREINIT_ARRAY:
1468 case DT_DEBUG:
1469 case DT_VERDEF:
1470 case DT_VERNEED:
1471 case DT_VERSYM:
1472 case DT_GNU_HASH:
1473 case DT_NULL:
1474 case DT_MIPS_BASE_ADDRESS:
1475 case DT_MIPS_GOTSYM:
1476 case DT_MIPS_RLD_MAP:
1477 case DT_MIPS_RLD_MAP_REL:
1478 case DT_MIPS_PLTGOT:
1479 case DT_MIPS_OPTIONS:
1480 OS << format("0x%" PRIX64"l" "X", Value);
1481 break;
1482 case DT_RELCOUNT:
1483 case DT_VERDEFNUM:
1484 case DT_VERNEEDNUM:
1485 case DT_MIPS_RLD_VERSION:
1486 case DT_MIPS_LOCAL_GOTNO:
1487 case DT_MIPS_SYMTABNO:
1488 case DT_MIPS_UNREFEXTNO:
1489 OS << Value;
1490 break;
1491 case DT_PLTRELSZ:
1492 case DT_RELASZ:
1493 case DT_RELAENT:
1494 case DT_STRSZ:
1495 case DT_SYMENT:
1496 case DT_RELSZ:
1497 case DT_RELENT:
1498 case DT_INIT_ARRAYSZ:
1499 case DT_FINI_ARRAYSZ:
1500 case DT_PREINIT_ARRAYSZ:
1501 OS << Value << " (bytes)";
1502 break;
1503 case DT_NEEDED:
1504 OS << "SharedLibrary (" << getDynamicString(Value) << ")";
1505 break;
1506 case DT_SONAME:
1507 OS << "LibrarySoname (" << getDynamicString(Value) << ")";
1508 break;
1509 case DT_RPATH:
1510 case DT_RUNPATH:
1511 OS << getDynamicString(Value);
1512 break;
1513 case DT_MIPS_FLAGS:
1514 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1515 break;
1516 case DT_FLAGS:
1517 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1518 break;
1519 case DT_FLAGS_1:
1520 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1521 break;
1522 default:
1523 OS << format("0x%" PRIX64"l" "X", Value);
1524 break;
1525 }
1526}
1527
1528template<class ELFT>
1529void ELFDumper<ELFT>::printUnwindInfo() {
1530 W.startLine() << "UnwindInfo not implemented.\n";
1531}
1532
1533namespace {
1534template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
1535 const unsigned Machine = Obj->getHeader()->e_machine;
1536 if (Machine == EM_ARM) {
1537 ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(
1538 W, Obj, DotSymtabSec);
1539 return Ctx.PrintUnwindInformation();
1540 }
1541 W.startLine() << "UnwindInfo not implemented.\n";
1542}
1543}
1544
1545template<class ELFT>
1546void ELFDumper<ELFT>::printDynamicTable() {
1547 auto I = dynamic_table_begin();
1548 auto E = dynamic_table_end();
1549
1550 if (I == E)
1551 return;
1552
1553 --E;
1554 while (I != E && E->getTag() == ELF::DT_NULL)
1555 --E;
1556 if (E->getTag() != ELF::DT_NULL)
1557 ++E;
1558 ++E;
1559
1560 ptrdiff_t Total = std::distance(I, E);
1561 if (Total == 0)
1562 return;
1563
1564 raw_ostream &OS = W.getOStream();
1565 W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1566
1567 bool Is64 = ELFT::Is64Bits;
1568
1569 W.startLine()
1570 << " Tag" << (Is64 ? " " : " ") << "Type"
1571 << " " << "Name/Value\n";
1572 while (I != E) {
1573 const Elf_Dyn &Entry = *I;
1574 uintX_t Tag = Entry.getTag();
1575 ++I;
1576 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
1577 << format("%-21s", getTypeString(Tag));
1578 printValue(Tag, Entry.getVal());
1579 OS << "\n";
1580 }
1581
1582 W.startLine() << "]\n";
1583}
1584
1585template<class ELFT>
1586void ELFDumper<ELFT>::printNeededLibraries() {
1587 ListScope D(W, "NeededLibraries");
1588
1589 typedef std::vector<StringRef> LibsTy;
1590 LibsTy Libs;
1591
1592 for (const auto &Entry : dynamic_table())
1593 if (Entry.d_tag == ELF::DT_NEEDED)
1594 Libs.push_back(getDynamicString(Entry.d_un.d_val));
1595
1596 std::stable_sort(Libs.begin(), Libs.end());
1597
1598 for (const auto &L : Libs) {
1599 outs() << " " << L << "\n";
1600 }
1601}
1602
1603template<class ELFT>
1604void ELFDumper<ELFT>::printProgramHeaders() {
1605 ListScope L(W, "ProgramHeaders");
1606
1607 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
1608 DictScope P(W, "ProgramHeader");
1609 W.printHex("Type",
1610 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
1611 Phdr.p_type);
1612 W.printHex("Offset", Phdr.p_offset);
1613 W.printHex("VirtualAddress", Phdr.p_vaddr);
1614 W.printHex("PhysicalAddress", Phdr.p_paddr);
1615 W.printNumber("FileSize", Phdr.p_filesz);
1616 W.printNumber("MemSize", Phdr.p_memsz);
1617 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
1618 W.printNumber("Alignment", Phdr.p_align);
1619 }
1620}
1621
1622template <typename ELFT>
1623void ELFDumper<ELFT>::printHashTable() {
1624 DictScope D(W, "HashTable");
1625 if (!HashTable)
1626 return;
1627 W.printNumber("Num Buckets", HashTable->nbucket);
1628 W.printNumber("Num Chains", HashTable->nchain);
1629 W.printList("Buckets", HashTable->buckets());
1630 W.printList("Chains", HashTable->chains());
1631}
1632
1633template <typename ELFT>
1634void ELFDumper<ELFT>::printGnuHashTable() {
1635 DictScope D(W, "GnuHashTable");
1636 if (!GnuHashTable)
1
Taking false branch
1637 return;
1638 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
1639 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
1640 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
1641 W.printNumber("Shift Count", GnuHashTable->shift2);
1642 W.printHexList("Bloom Filter", GnuHashTable->filter());
1643 W.printList("Buckets", GnuHashTable->buckets());
1644 if (!DotDynSymSec)
2
Assuming pointer value is null
3
Taking true branch
1645 reportError("No dynamic symbol section");
1646 W.printHexList("Values",
1647 GnuHashTable->values(DotDynSymSec->getEntityCount()));
4
Called C++ object pointer is null
1648}
1649
1650template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1651 outs() << "LoadName: " << SOName << '\n';
1652}
1653
1654template <class ELFT>
1655void ELFDumper<ELFT>::printAttributes() {
1656 W.startLine() << "Attributes not implemented.\n";
1657}
1658
1659namespace {
1660template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
1661 if (Obj->getHeader()->e_machine != EM_ARM) {
1662 W.startLine() << "Attributes not implemented.\n";
1663 return;
1664 }
1665
1666 DictScope BA(W, "BuildAttributes");
1667 for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
1668 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
1669 continue;
1670
1671 ErrorOr<ArrayRef<uint8_t>> Contents = Obj->getSectionContents(&Sec);
1672 if (!Contents)
1673 continue;
1674
1675 if ((*Contents)[0] != ARMBuildAttrs::Format_Version) {
1676 errs() << "unrecognised FormatVersion: 0x" << utohexstr((*Contents)[0])
1677 << '\n';
1678 continue;
1679 }
1680
1681 W.printHex("FormatVersion", (*Contents)[0]);
1682 if (Contents->size() == 1)
1683 continue;
1684
1685 ARMAttributeParser(W).Parse(*Contents);
1686 }
1687}
1688}
1689
1690namespace {
1691template <class ELFT> class MipsGOTParser {
1692public:
1693 typedef object::ELFFile<ELFT> ELFO;
1694 typedef typename ELFO::Elf_Shdr Elf_Shdr;
1695 typedef typename ELFO::Elf_Sym Elf_Sym;
1696 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
1697 typedef typename ELFO::Elf_Addr GOTEntry;
1698 typedef typename ELFO::Elf_Rel Elf_Rel;
1699 typedef typename ELFO::Elf_Rela Elf_Rela;
1700
1701 MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1702 Elf_Dyn_Range DynTable, StreamWriter &W);
1703
1704 void parseGOT();
1705 void parsePLT();
1706
1707private:
1708 ELFDumper<ELFT> *Dumper;
1709 const ELFO *Obj;
1710 StreamWriter &W;
1711 llvm::Optional<uint64_t> DtPltGot;
1712 llvm::Optional<uint64_t> DtLocalGotNum;
1713 llvm::Optional<uint64_t> DtGotSym;
1714 llvm::Optional<uint64_t> DtMipsPltGot;
1715 llvm::Optional<uint64_t> DtJmpRel;
1716
1717 std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
1718 const GOTEntry *makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);
1719
1720 void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1721 const GOTEntry *It);
1722 void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1723 const GOTEntry *It, const Elf_Sym *Sym,
1724 StringRef StrTable, bool IsDynamic);
1725 void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1726 const GOTEntry *It, StringRef Purpose);
1727 void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1728 const GOTEntry *It, StringRef StrTable,
1729 const Elf_Sym *Sym);
1730};
1731}
1732
1733template <class ELFT>
1734MipsGOTParser<ELFT>::MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1735 Elf_Dyn_Range DynTable, StreamWriter &W)
1736 : Dumper(Dumper), Obj(Obj), W(W) {
1737 for (const auto &Entry : DynTable) {
1738 switch (Entry.getTag()) {
1739 case ELF::DT_PLTGOT:
1740 DtPltGot = Entry.getVal();
1741 break;
1742 case ELF::DT_MIPS_LOCAL_GOTNO:
1743 DtLocalGotNum = Entry.getVal();
1744 break;
1745 case ELF::DT_MIPS_GOTSYM:
1746 DtGotSym = Entry.getVal();
1747 break;
1748 case ELF::DT_MIPS_PLTGOT:
1749 DtMipsPltGot = Entry.getVal();
1750 break;
1751 case ELF::DT_JMPREL:
1752 DtJmpRel = Entry.getVal();
1753 break;
1754 }
1755 }
1756}
1757
1758template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
1759 // See "Global Offset Table" in Chapter 5 in the following document
1760 // for detailed GOT description.
1761 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1762 if (!DtPltGot) {
1763 W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
1764 return;
1765 }
1766 if (!DtLocalGotNum) {
1767 W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
1768 return;
1769 }
1770 if (!DtGotSym) {
1771 W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
1772 return;
1773 }
1774
1775 const Elf_Shdr *GOTShdr = findSectionByAddress(Obj, *DtPltGot);
1776 if (!GOTShdr) {
1777 W.startLine() << "There is no .got section in the file.\n";
1778 return;
1779 }
1780
1781 ErrorOr<ArrayRef<uint8_t>> GOT = Obj->getSectionContents(GOTShdr);
1782 if (!GOT) {
1783 W.startLine() << "The .got section is empty.\n";
1784 return;
1785 }
1786
1787 if (*DtLocalGotNum > getGOTTotal(*GOT)) {
1788 W.startLine() << "MIPS_LOCAL_GOTNO exceeds a number of GOT entries.\n";
1789 return;
1790 }
1791
1792 const Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec();
1793 ErrorOr<StringRef> StrTable = Obj->getStringTableForSymtab(*DynSymSec);
1794 error(StrTable.getError());
1795 const Elf_Sym *DynSymBegin = Obj->symbol_begin(DynSymSec);
1796 const Elf_Sym *DynSymEnd = Obj->symbol_end(DynSymSec);
1797 std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));
1798
1799 if (*DtGotSym > DynSymTotal) {
1800 W.startLine() << "MIPS_GOTSYM exceeds a number of dynamic symbols.\n";
1801 return;
1802 }
1803
1804 std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;
1805
1806 if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(*GOT)) {
1807 W.startLine() << "Number of global GOT entries exceeds the size of GOT.\n";
1808 return;
1809 }
1810
1811 const GOTEntry *GotBegin = makeGOTIter(*GOT, 0);
1812 const GOTEntry *GotLocalEnd = makeGOTIter(*GOT, *DtLocalGotNum);
1813 const GOTEntry *It = GotBegin;
1814
1815 DictScope GS(W, "Primary GOT");
1816
1817 W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
1818 {
1819 ListScope RS(W, "Reserved entries");
1820
1821 {
1822 DictScope D(W, "Entry");
1823 printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
1824 W.printString("Purpose", StringRef("Lazy resolver"));
1825 }
1826
1827 if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
1828 DictScope D(W, "Entry");
1829 printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
1830 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
1831 }
1832 }
1833 {
1834 ListScope LS(W, "Local entries");
1835 for (; It != GotLocalEnd; ++It) {
1836 DictScope D(W, "Entry");
1837 printGotEntry(GOTShdr->sh_addr, GotBegin, It);
1838 }
1839 }
1840 {
1841 ListScope GS(W, "Global entries");
1842
1843 const GOTEntry *GotGlobalEnd =
1844 makeGOTIter(*GOT, *DtLocalGotNum + GlobalGotNum);
1845 const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
1846 for (; It != GotGlobalEnd; ++It) {
1847 DictScope D(W, "Entry");
1848 printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++,
1849 *StrTable, true);
1850 }
1851 }
1852
1853 std::size_t SpecGotNum = getGOTTotal(*GOT) - *DtLocalGotNum - GlobalGotNum;
1854 W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
1855}
1856
1857template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
1858 if (!DtMipsPltGot) {
1859 W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
1860 return;
1861 }
1862 if (!DtJmpRel) {
1863 W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
1864 return;
1865 }
1866
1867 const Elf_Shdr *PLTShdr = findSectionByAddress(Obj, *DtMipsPltGot);
1868 if (!PLTShdr) {
1869 W.startLine() << "There is no .got.plt section in the file.\n";
1870 return;
1871 }
1872 ErrorOr<ArrayRef<uint8_t>> PLT = Obj->getSectionContents(PLTShdr);
1873 if (!PLT) {
1874 W.startLine() << "The .got.plt section is empty.\n";
1875 return;
1876 }
1877
1878 const Elf_Shdr *PLTRelShdr = findSectionByAddress(Obj, *DtJmpRel);
1879 if (!PLTShdr) {
1880 W.startLine() << "There is no .rel.plt section in the file.\n";
1881 return;
1882 }
1883 ErrorOr<const Elf_Shdr *> SymTableOrErr =
1884 Obj->getSection(PLTRelShdr->sh_link);
1885 error(SymTableOrErr.getError());
1886 const Elf_Shdr *SymTable = *SymTableOrErr;
1887 ErrorOr<StringRef> StrTable = Obj->getStringTableForSymtab(*SymTable);
1888 error(StrTable.getError());
1889
1890 const GOTEntry *PLTBegin = makeGOTIter(*PLT, 0);
1891 const GOTEntry *PLTEnd = makeGOTIter(*PLT, getGOTTotal(*PLT));
1892 const GOTEntry *It = PLTBegin;
1893
1894 DictScope GS(W, "PLT GOT");
1895 {
1896 ListScope RS(W, "Reserved entries");
1897 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
1898 if (It != PLTEnd)
1899 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
1900 }
1901 {
1902 ListScope GS(W, "Entries");
1903
1904 switch (PLTRelShdr->sh_type) {
1905 case ELF::SHT_REL:
1906 for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
1907 *RE = Obj->rel_end(PLTRelShdr);
1908 RI != RE && It != PLTEnd; ++RI, ++It) {
1909 const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
1910 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym);
1911 }
1912 break;
1913 case ELF::SHT_RELA:
1914 for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr),
1915 *RE = Obj->rela_end(PLTRelShdr);
1916 RI != RE && It != PLTEnd; ++RI, ++It) {
1917 const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable);
1918 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym);
1919 }
1920 break;
1921 }
1922 }
1923}
1924
1925template <class ELFT>
1926std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
1927 return GOT.size() / sizeof(GOTEntry);
1928}
1929
1930template <class ELFT>
1931const typename MipsGOTParser<ELFT>::GOTEntry *
1932MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
1933 const char *Data = reinterpret_cast<const char *>(GOT.data());
1934 return reinterpret_cast<const GOTEntry *>(Data + EntryNum * sizeof(GOTEntry));
1935}
1936
1937template <class ELFT>
1938void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr,
1939 const GOTEntry *BeginIt,
1940 const GOTEntry *It) {
1941 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
1942 W.printHex("Address", GotAddr + Offset);
1943 W.printNumber("Access", Offset - 0x7ff0);
1944 W.printHex("Initial", *It);
1945}
1946
1947template <class ELFT>
1948void MipsGOTParser<ELFT>::printGlobalGotEntry(
1949 uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It,
1950 const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) {
1951 printGotEntry(GotAddr, BeginIt, It);
1952
1953 W.printHex("Value", Sym->st_value);
1954 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
1955
1956 unsigned SectionIndex = 0;
1957 StringRef SectionName;
1958 getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(),
1959 Dumper->getShndxTable(), SectionName, SectionIndex);
1960 W.printHex("Section", SectionName, SectionIndex);
1961
1962 std::string FullSymbolName =
1963 Dumper->getFullSymbolName(Sym, StrTable, IsDynamic);
1964 W.printNumber("Name", FullSymbolName, Sym->st_name);
1965}
1966
1967template <class ELFT>
1968void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
1969 const GOTEntry *BeginIt,
1970 const GOTEntry *It, StringRef Purpose) {
1971 DictScope D(W, "Entry");
1972 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
1973 W.printHex("Address", PLTAddr + Offset);
1974 W.printHex("Initial", *It);
1975 W.printString("Purpose", Purpose);
1976}
1977
1978template <class ELFT>
1979void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
1980 const GOTEntry *BeginIt,
1981 const GOTEntry *It, StringRef StrTable,
1982 const Elf_Sym *Sym) {
1983 DictScope D(W, "Entry");
1984 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
1985 W.printHex("Address", PLTAddr + Offset);
1986 W.printHex("Initial", *It);
1987 W.printHex("Value", Sym->st_value);
1988 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
1989
1990 unsigned SectionIndex = 0;
1991 StringRef SectionName;
1992 getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(),
1993 Dumper->getShndxTable(), SectionName, SectionIndex);
1994 W.printHex("Section", SectionName, SectionIndex);
1995
1996 std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true);
1997 W.printNumber("Name", FullSymbolName, Sym->st_name);
1998}
1999
2000template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2001 if (Obj->getHeader()->e_machine != EM_MIPS) {
2002 W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
2003 return;
2004 }
2005
2006 MipsGOTParser<ELFT> GOTParser(this, Obj, dynamic_table(), W);
2007 GOTParser.parseGOT();
2008 GOTParser.parsePLT();
2009}
2010
2011static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2012 {"None", Mips::AFL_EXT_NONE},
2013 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2014 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2015 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2016 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2017 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2018 {"LSI R4010", Mips::AFL_EXT_4010},
2019 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2020 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2021 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2022 {"MIPS R4650", Mips::AFL_EXT_4650},
2023 {"MIPS R5900", Mips::AFL_EXT_5900},
2024 {"MIPS R10000", Mips::AFL_EXT_10000},
2025 {"NEC VR4100", Mips::AFL_EXT_4100},
2026 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2027 {"NEC VR4120", Mips::AFL_EXT_4120},
2028 {"NEC VR5400", Mips::AFL_EXT_5400},
2029 {"NEC VR5500", Mips::AFL_EXT_5500},
2030 {"RMI Xlr", Mips::AFL_EXT_XLR},
2031 {"Toshiba R3900", Mips::AFL_EXT_3900}
2032};
2033
2034static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2035 {"DSP", Mips::AFL_ASE_DSP},
2036 {"DSPR2", Mips::AFL_ASE_DSPR2},
2037 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2038 {"MCU", Mips::AFL_ASE_MCU},
2039 {"MDMX", Mips::AFL_ASE_MDMX},
2040 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2041 {"MT", Mips::AFL_ASE_MT},
2042 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2043 {"VZ", Mips::AFL_ASE_VIRT},
2044 {"MSA", Mips::AFL_ASE_MSA},
2045 {"MIPS16", Mips::AFL_ASE_MIPS16},
2046 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2047 {"XPA", Mips::AFL_ASE_XPA}
2048};
2049
2050static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2051 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2052 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2053 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2054 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2055 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2056 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2057 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2058 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2059 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2060 Mips::Val_GNU_MIPS_ABI_FP_64A}
2061};
2062
2063static const EnumEntry<unsigned> ElfMipsFlags1[] {
2064 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2065};
2066
2067static int getMipsRegisterSize(uint8_t Flag) {
2068 switch (Flag) {
2069 case Mips::AFL_REG_NONE:
2070 return 0;
2071 case Mips::AFL_REG_32:
2072 return 32;
2073 case Mips::AFL_REG_64:
2074 return 64;
2075 case Mips::AFL_REG_128:
2076 return 128;
2077 default:
2078 return -1;
2079 }
2080}
2081
2082template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2083 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2084 if (!Shdr) {
2085 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2086 return;
2087 }
2088 ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
2089 if (!Sec) {
2090 W.startLine() << "The .MIPS.abiflags section is empty.\n";
2091 return;
2092 }
2093 if (Sec->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2094 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2095 return;
2096 }
2097
2098 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec->data());
2099
2100 raw_ostream &OS = W.getOStream();
2101 DictScope GS(W, "MIPS ABI Flags");
2102
2103 W.printNumber("Version", Flags->version);
2104 W.startLine() << "ISA: ";
2105 if (Flags->isa_rev <= 1)
2106 OS << format("MIPS%u", Flags->isa_level);
2107 else
2108 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2109 OS << "\n";
2110 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2111 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2112 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2113 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2114 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2115 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2116 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2117 W.printHex("Flags 2", Flags->flags2);
2118}
2119
2120template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2121 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2122 if (!Shdr) {
2123 W.startLine() << "There is no .reginfo section in the file.\n";
2124 return;
2125 }
2126 ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
2127 if (!Sec) {
2128 W.startLine() << "The .reginfo section is empty.\n";
2129 return;
2130 }
2131 if (Sec->size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2132 W.startLine() << "The .reginfo section has a wrong size.\n";
2133 return;
2134 }
2135
2136 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec->data());
2137
2138 DictScope GS(W, "MIPS RegInfo");
2139 W.printHex("GP", Reginfo->ri_gp_value);
2140 W.printHex("General Mask", Reginfo->ri_gprmask);
2141 W.printHex("Co-Proc Mask0", Reginfo->ri_cprmask[0]);
2142 W.printHex("Co-Proc Mask1", Reginfo->ri_cprmask[1]);
2143 W.printHex("Co-Proc Mask2", Reginfo->ri_cprmask[2]);
2144 W.printHex("Co-Proc Mask3", Reginfo->ri_cprmask[3]);
2145}
2146
2147template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2148 const Elf_Shdr *StackMapSection = nullptr;
2149 for (const auto &Sec : Obj->sections()) {
2150 ErrorOr<StringRef> Name = Obj->getSectionName(&Sec);
2151 if (*Name == ".llvm_stackmaps") {
2152 StackMapSection = &Sec;
2153 break;
2154 }
2155 }
2156
2157 if (!StackMapSection)
2158 return;
2159
2160 StringRef StackMapContents;
2161 ErrorOr<ArrayRef<uint8_t>> StackMapContentsArray =
2162 Obj->getSectionContents(StackMapSection);
2163
2164 prettyPrintStackMap(
2165 llvm::outs(),
2166 StackMapV1Parser<ELFT::TargetEndianness>(*StackMapContentsArray));
2167}