Bug Summary

File:tools/llvm-readobj/ELFDumper.cpp
Location:line 1133, column 33
Description:Called C++ object pointer is null

Annotated Source Code

1//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements the ELF-specific dumper for llvm-readobj.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm-readobj.h"
16#include "ARMAttributeParser.h"
17#include "ARMEHABIPrinter.h"
18#include "Error.h"
19#include "ObjDumper.h"
20#include "StackMapPrinter.h"
21#include "StreamWriter.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Object/ELFObjectFile.h"
26#include "llvm/Support/ARMBuildAttributes.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/MipsABIFlags.h"
31#include "llvm/Support/raw_ostream.h"
32
33using namespace llvm;
34using namespace llvm::object;
35using namespace ELF;
36
37#define LLVM_READOBJ_ENUM_CASE(ns, enum)case ns::enum: return "enum"; \
38 case ns::enum: return #enum;
39
40namespace {
41
42template<typename ELFT>
43class ELFDumper : public ObjDumper {
44public:
45 ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer);
46
47 void printFileHeaders() override;
48 void printSections() override;
49 void printRelocations() override;
50 void printDynamicRelocations() override;
51 void printSymbols() override;
52 void printDynamicSymbols() override;
53 void printUnwindInfo() override;
54
55 void printDynamicTable() override;
56 void printNeededLibraries() override;
57 void printProgramHeaders() override;
58 void printHashTable() override;
59 void printLoadName() override;
60
61 void printAttributes() override;
62 void printMipsPLTGOT() override;
63 void printMipsABIFlags() override;
64 void printMipsReginfo() override;
65
66 void printStackMap() const override;
67
68private:
69 typedef ELFFile<ELFT> ELFO;
70 typedef typename ELFO::Elf_Shdr Elf_Shdr;
71 typedef typename ELFO::Elf_Sym Elf_Sym;
72 typedef typename ELFO::Elf_Dyn Elf_Dyn;
73 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
74 typedef typename ELFO::Elf_Rel Elf_Rel;
75 typedef typename ELFO::Elf_Rela Elf_Rela;
76 typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range;
77 typedef typename ELFO::Elf_Phdr Elf_Phdr;
78 typedef typename ELFO::Elf_Hash Elf_Hash;
79 typedef typename ELFO::Elf_Ehdr Elf_Ehdr;
80 typedef typename ELFO::Elf_Word Elf_Word;
81 typedef typename ELFO::uintX_t uintX_t;
82 typedef typename ELFO::Elf_Versym Elf_Versym;
83 typedef typename ELFO::Elf_Verneed Elf_Verneed;
84 typedef typename ELFO::Elf_Vernaux Elf_Vernaux;
85 typedef typename ELFO::Elf_Verdef Elf_Verdef;
86
87 /// \brief Represents a region described by entries in the .dynamic table.
88 struct DynRegionInfo {
89 DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {}
90 /// \brief Address in current address space.
91 const void *Addr;
92 /// \brief Size in bytes of the region.
93 uintX_t Size;
94 /// \brief Size of each entity in the region.
95 uintX_t EntSize;
96 };
97
98 void printSymbolsHelper(bool IsDynamic);
99 void printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab,
100 StringRef StrTable, bool IsDynamic);
101
102 void printRelocations(const Elf_Shdr *Sec);
103 void printRelocation(const Elf_Shdr *Sec, Elf_Rela Rel);
104 void printValue(uint64_t Type, uint64_t Value);
105
106 const Elf_Rela *dyn_rela_begin() const;
107 const Elf_Rela *dyn_rela_end() const;
108 Elf_Rela_Range dyn_relas() const;
109 StringRef getDynamicString(uint64_t Offset) const;
110 const Elf_Dyn *dynamic_table_begin() const {
111 ErrorOr<const Elf_Dyn *> Ret = Obj->dynamic_table_begin(DynamicProgHeader);
112 error(Ret.getError());
113 return *Ret;
114 }
115 const Elf_Dyn *dynamic_table_end() const {
116 ErrorOr<const Elf_Dyn *> Ret = Obj->dynamic_table_end(DynamicProgHeader);
117 error(Ret.getError());
118 return *Ret;
119 }
120 Elf_Dyn_Range dynamic_table() const {
121 ErrorOr<Elf_Dyn_Range> Ret = Obj->dynamic_table(DynamicProgHeader);
122 error(Ret.getError());
123 return *Ret;
124 }
125
126 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
127 bool &IsDefault);
128 void LoadVersionMap();
129 void LoadVersionNeeds(const Elf_Shdr *ec) const;
130 void LoadVersionDefs(const Elf_Shdr *sec) const;
131
132 const ELFO *Obj;
133 DynRegionInfo DynRelaRegion;
134 const Elf_Phdr *DynamicProgHeader = nullptr;
135 StringRef DynamicStringTable;
136 const Elf_Sym *DynSymStart = nullptr;
137 StringRef SOName;
138 const Elf_Hash *HashTable = nullptr;
139 const Elf_Shdr *DotDynSymSec = nullptr;
140 const Elf_Shdr *DotSymtabSec = nullptr;
141 ArrayRef<Elf_Word> ShndxTable;
142
143 const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version
144 const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
145 const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
146
147 // Records for each version index the corresponding Verdef or Vernaux entry.
148 // This is filled the first time LoadVersionMap() is called.
149 class VersionMapEntry : public PointerIntPair<const void *, 1> {
150 public:
151 // If the integer is 0, this is an Elf_Verdef*.
152 // If the integer is 1, this is an Elf_Vernaux*.
153 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
154 VersionMapEntry(const Elf_Verdef *verdef)
155 : PointerIntPair<const void *, 1>(verdef, 0) {}
156 VersionMapEntry(const Elf_Vernaux *vernaux)
157 : PointerIntPair<const void *, 1>(vernaux, 1) {}
158 bool isNull() const { return getPointer() == nullptr; }
159 bool isVerdef() const { return !isNull() && getInt() == 0; }
160 bool isVernaux() const { return !isNull() && getInt() == 1; }
161 const Elf_Verdef *getVerdef() const {
162 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
163 }
164 const Elf_Vernaux *getVernaux() const {
165 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
166 }
167 };
168 mutable SmallVector<VersionMapEntry, 16> VersionMap;
169
170public:
171 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
172 bool IsDynamic);
173 const Elf_Shdr *getDotDynSymSec() const { return DotDynSymSec; }
174 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
175 ArrayRef<Elf_Word> getShndxTable() { return ShndxTable; }
176};
177
178template <class T> T errorOrDefault(ErrorOr<T> Val, T Default = T()) {
179 if (!Val) {
180 error(Val.getError());
181 return Default;
182 }
183
184 return *Val;
185}
186} // namespace
187
188namespace llvm {
189
190template <class ELFT>
191static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
192 StreamWriter &Writer,
193 std::unique_ptr<ObjDumper> &Result) {
194 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
195 return readobj_error::success;
196}
197
198std::error_code createELFDumper(const object::ObjectFile *Obj,
199 StreamWriter &Writer,
200 std::unique_ptr<ObjDumper> &Result) {
201 // Little-endian 32-bit
202 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
203 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
204
205 // Big-endian 32-bit
206 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
207 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
208
209 // Little-endian 64-bit
210 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
211 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
212
213 // Big-endian 64-bit
214 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
215 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
216
217 return readobj_error::unsupported_obj_file_format;
218}
219
220} // namespace llvm
221
222// Iterate through the versions needed section, and place each Elf_Vernaux
223// in the VersionMap according to its index.
224template <class ELFT>
225void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
226 unsigned vn_size = sec->sh_size; // Size of section in bytes
227 unsigned vn_count = sec->sh_info; // Number of Verneed entries
228 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
229 const char *sec_end = sec_start + vn_size;
230 // The first Verneed entry is at the start of the section.
231 const char *p = sec_start;
232 for (unsigned i = 0; i < vn_count; i++) {
233 if (p + sizeof(Elf_Verneed) > sec_end)
234 report_fatal_error("Section ended unexpectedly while scanning "
235 "version needed records.");
236 const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
237 if (vn->vn_version != ELF::VER_NEED_CURRENT)
238 report_fatal_error("Unexpected verneed version");
239 // Iterate through the Vernaux entries
240 const char *paux = p + vn->vn_aux;
241 for (unsigned j = 0; j < vn->vn_cnt; j++) {
242 if (paux + sizeof(Elf_Vernaux) > sec_end)
243 report_fatal_error("Section ended unexpected while scanning auxiliary "
244 "version needed records.");
245 const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
246 size_t index = vna->vna_other & ELF::VERSYM_VERSION;
247 if (index >= VersionMap.size())
248 VersionMap.resize(index + 1);
249 VersionMap[index] = VersionMapEntry(vna);
250 paux += vna->vna_next;
251 }
252 p += vn->vn_next;
253 }
254}
255
256// Iterate through the version definitions, and place each Elf_Verdef
257// in the VersionMap according to its index.
258template <class ELFT>
259void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
260 unsigned vd_size = sec->sh_size; // Size of section in bytes
261 unsigned vd_count = sec->sh_info; // Number of Verdef entries
262 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
263 const char *sec_end = sec_start + vd_size;
264 // The first Verdef entry is at the start of the section.
265 const char *p = sec_start;
266 for (unsigned i = 0; i < vd_count; i++) {
267 if (p + sizeof(Elf_Verdef) > sec_end)
268 report_fatal_error("Section ended unexpectedly while scanning "
269 "version definitions.");
270 const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
271 if (vd->vd_version != ELF::VER_DEF_CURRENT)
272 report_fatal_error("Unexpected verdef version");
273 size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
274 if (index >= VersionMap.size())
275 VersionMap.resize(index + 1);
276 VersionMap[index] = VersionMapEntry(vd);
277 p += vd->vd_next;
278 }
279}
280
281template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() {
282 // If there is no dynamic symtab or version table, there is nothing to do.
283 if (!DynSymStart || !dot_gnu_version_sec)
284 return;
285
286 // Has the VersionMap already been loaded?
287 if (VersionMap.size() > 0)
288 return;
289
290 // The first two version indexes are reserved.
291 // Index 0 is LOCAL, index 1 is GLOBAL.
292 VersionMap.push_back(VersionMapEntry());
293 VersionMap.push_back(VersionMapEntry());
294
295 if (dot_gnu_version_d_sec)
296 LoadVersionDefs(dot_gnu_version_d_sec);
297
298 if (dot_gnu_version_r_sec)
299 LoadVersionNeeds(dot_gnu_version_r_sec);
300}
301
302template <typename ELFT>
303StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
304 const Elf_Sym *symb,
305 bool &IsDefault) {
306 // This is a dynamic symbol. Look in the GNU symbol version table.
307 if (!dot_gnu_version_sec) {
308 // No version table.
309 IsDefault = false;
310 return StringRef("");
311 }
312
313 // Determine the position in the symbol table of this entry.
314 size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
315 reinterpret_cast<uintptr_t>(DynSymStart)) /
316 sizeof(Elf_Sym);
317
318 // Get the corresponding version index entry
319 const Elf_Versym *vs =
320 Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
321 size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
322
323 // Special markers for unversioned symbols.
324 if (version_index == ELF::VER_NDX_LOCAL ||
325 version_index == ELF::VER_NDX_GLOBAL) {
326 IsDefault = false;
327 return StringRef("");
328 }
329
330 // Lookup this symbol in the version table
331 LoadVersionMap();
332 if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
333 reportError("Invalid version entry");
334 const VersionMapEntry &entry = VersionMap[version_index];
335
336 // Get the version name string
337 size_t name_offset;
338 if (entry.isVerdef()) {
339 // The first Verdaux entry holds the name.
340 name_offset = entry.getVerdef()->getAux()->vda_name;
341 } else {
342 name_offset = entry.getVernaux()->vna_name;
343 }
344
345 // Set IsDefault
346 if (entry.isVerdef()) {
347 IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
348 } else {
349 IsDefault = false;
350 }
351
352 if (name_offset >= StrTab.size())
353 reportError("Invalid string offset");
354 return StringRef(StrTab.data() + name_offset);
355}
356
357template <typename ELFT>
358std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
359 StringRef StrTable,
360 bool IsDynamic) {
361 StringRef SymbolName = errorOrDefault(Symbol->getName(StrTable));
362 if (!IsDynamic)
363 return SymbolName;
364
365 std::string FullSymbolName(SymbolName);
366
367 bool IsDefault;
368 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
369 FullSymbolName += (IsDefault ? "@@" : "@");
370 FullSymbolName += Version;
371 return FullSymbolName;
372}
373
374template <typename ELFO>
375static void
376getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
377 const typename ELFO::Elf_Shdr *SymTab,
378 ArrayRef<typename ELFO::Elf_Word> ShndxTable,
379 StringRef &SectionName, unsigned &SectionIndex) {
380 SectionIndex = Symbol->st_shndx;
381 if (Symbol->isUndefined())
382 SectionName = "Undefined";
383 else if (Symbol->isProcessorSpecific())
384 SectionName = "Processor Specific";
385 else if (Symbol->isOSSpecific())
386 SectionName = "Operating System Specific";
387 else if (Symbol->isAbsolute())
388 SectionName = "Absolute";
389 else if (Symbol->isCommon())
390 SectionName = "Common";
391 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
392 SectionName = "Reserved";
393 else {
394 if (SectionIndex == SHN_XINDEX)
395 SectionIndex =
396 Obj.getExtendedSymbolTableIndex(Symbol, SymTab, ShndxTable);
397 ErrorOr<const typename ELFO::Elf_Shdr *> Sec = Obj.getSection(SectionIndex);
398 error(Sec.getError());
399 SectionName = errorOrDefault(Obj.getSectionName(*Sec));
400 }
401}
402
403template <class ELFO>
404static const typename ELFO::Elf_Shdr *findSectionByAddress(const ELFO *Obj,
405 uint64_t Addr) {
406 for (const auto &Shdr : Obj->sections())
407 if (Shdr.sh_addr == Addr)
408 return &Shdr;
409 return nullptr;
410}
411
412template <class ELFO>
413static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
414 StringRef Name) {
415 for (const auto &Shdr : Obj.sections()) {
416 if (Name == errorOrDefault(Obj.getSectionName(&Shdr)))
417 return &Shdr;
418 }
419 return nullptr;
420}
421
422static const EnumEntry<unsigned> ElfClass[] = {
423 { "None", ELF::ELFCLASSNONE },
424 { "32-bit", ELF::ELFCLASS32 },
425 { "64-bit", ELF::ELFCLASS64 },
426};
427
428static const EnumEntry<unsigned> ElfDataEncoding[] = {
429 { "None", ELF::ELFDATANONE },
430 { "LittleEndian", ELF::ELFDATA2LSB },
431 { "BigEndian", ELF::ELFDATA2MSB },
432};
433
434static const EnumEntry<unsigned> ElfObjectFileType[] = {
435 { "None", ELF::ET_NONE },
436 { "Relocatable", ELF::ET_REL },
437 { "Executable", ELF::ET_EXEC },
438 { "SharedObject", ELF::ET_DYN },
439 { "Core", ELF::ET_CORE },
440};
441
442static const EnumEntry<unsigned> ElfOSABI[] = {
443 { "SystemV", ELF::ELFOSABI_NONE },
444 { "HPUX", ELF::ELFOSABI_HPUX },
445 { "NetBSD", ELF::ELFOSABI_NETBSD },
446 { "GNU/Linux", ELF::ELFOSABI_LINUX },
447 { "GNU/Hurd", ELF::ELFOSABI_HURD },
448 { "Solaris", ELF::ELFOSABI_SOLARIS },
449 { "AIX", ELF::ELFOSABI_AIX },
450 { "IRIX", ELF::ELFOSABI_IRIX },
451 { "FreeBSD", ELF::ELFOSABI_FREEBSD },
452 { "TRU64", ELF::ELFOSABI_TRU64 },
453 { "Modesto", ELF::ELFOSABI_MODESTO },
454 { "OpenBSD", ELF::ELFOSABI_OPENBSD },
455 { "OpenVMS", ELF::ELFOSABI_OPENVMS },
456 { "NSK", ELF::ELFOSABI_NSK },
457 { "AROS", ELF::ELFOSABI_AROS },
458 { "FenixOS", ELF::ELFOSABI_FENIXOS },
459 { "CloudABI", ELF::ELFOSABI_CLOUDABI },
460 { "C6000_ELFABI", ELF::ELFOSABI_C6000_ELFABI },
461 { "C6000_LINUX" , ELF::ELFOSABI_C6000_LINUX },
462 { "ARM", ELF::ELFOSABI_ARM },
463 { "Standalone" , ELF::ELFOSABI_STANDALONE }
464};
465
466static const EnumEntry<unsigned> ElfMachineType[] = {
467 LLVM_READOBJ_ENUM_ENT(ELF, EM_NONE ){ "EM_NONE", ELF::EM_NONE },
468 LLVM_READOBJ_ENUM_ENT(ELF, EM_M32 ){ "EM_M32", ELF::EM_M32 },
469 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC ){ "EM_SPARC", ELF::EM_SPARC },
470 LLVM_READOBJ_ENUM_ENT(ELF, EM_386 ){ "EM_386", ELF::EM_386 },
471 LLVM_READOBJ_ENUM_ENT(ELF, EM_68K ){ "EM_68K", ELF::EM_68K },
472 LLVM_READOBJ_ENUM_ENT(ELF, EM_88K ){ "EM_88K", ELF::EM_88K },
473 LLVM_READOBJ_ENUM_ENT(ELF, EM_IAMCU ){ "EM_IAMCU", ELF::EM_IAMCU },
474 LLVM_READOBJ_ENUM_ENT(ELF, EM_860 ){ "EM_860", ELF::EM_860 },
475 LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS ){ "EM_MIPS", ELF::EM_MIPS },
476 LLVM_READOBJ_ENUM_ENT(ELF, EM_S370 ){ "EM_S370", ELF::EM_S370 },
477 LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_RS3_LE ){ "EM_MIPS_RS3_LE", ELF::EM_MIPS_RS3_LE },
478 LLVM_READOBJ_ENUM_ENT(ELF, EM_PARISC ){ "EM_PARISC", ELF::EM_PARISC },
479 LLVM_READOBJ_ENUM_ENT(ELF, EM_VPP500 ){ "EM_VPP500", ELF::EM_VPP500 },
480 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC32PLUS ){ "EM_SPARC32PLUS", ELF::EM_SPARC32PLUS },
481 LLVM_READOBJ_ENUM_ENT(ELF, EM_960 ){ "EM_960", ELF::EM_960 },
482 LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC ){ "EM_PPC", ELF::EM_PPC },
483 LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC64 ){ "EM_PPC64", ELF::EM_PPC64 },
484 LLVM_READOBJ_ENUM_ENT(ELF, EM_S390 ){ "EM_S390", ELF::EM_S390 },
485 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPU ){ "EM_SPU", ELF::EM_SPU },
486 LLVM_READOBJ_ENUM_ENT(ELF, EM_V800 ){ "EM_V800", ELF::EM_V800 },
487 LLVM_READOBJ_ENUM_ENT(ELF, EM_FR20 ){ "EM_FR20", ELF::EM_FR20 },
488 LLVM_READOBJ_ENUM_ENT(ELF, EM_RH32 ){ "EM_RH32", ELF::EM_RH32 },
489 LLVM_READOBJ_ENUM_ENT(ELF, EM_RCE ){ "EM_RCE", ELF::EM_RCE },
490 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARM ){ "EM_ARM", ELF::EM_ARM },
491 LLVM_READOBJ_ENUM_ENT(ELF, EM_ALPHA ){ "EM_ALPHA", ELF::EM_ALPHA },
492 LLVM_READOBJ_ENUM_ENT(ELF, EM_SH ){ "EM_SH", ELF::EM_SH },
493 LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARCV9 ){ "EM_SPARCV9", ELF::EM_SPARCV9 },
494 LLVM_READOBJ_ENUM_ENT(ELF, EM_TRICORE ){ "EM_TRICORE", ELF::EM_TRICORE },
495 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC ){ "EM_ARC", ELF::EM_ARC },
496 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300 ){ "EM_H8_300", ELF::EM_H8_300 },
497 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300H ){ "EM_H8_300H", ELF::EM_H8_300H },
498 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8S ){ "EM_H8S", ELF::EM_H8S },
499 LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_500 ){ "EM_H8_500", ELF::EM_H8_500 },
500 LLVM_READOBJ_ENUM_ENT(ELF, EM_IA_64 ){ "EM_IA_64", ELF::EM_IA_64 },
501 LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_X ){ "EM_MIPS_X", ELF::EM_MIPS_X },
502 LLVM_READOBJ_ENUM_ENT(ELF, EM_COLDFIRE ){ "EM_COLDFIRE", ELF::EM_COLDFIRE },
503 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC12 ){ "EM_68HC12", ELF::EM_68HC12 },
504 LLVM_READOBJ_ENUM_ENT(ELF, EM_MMA ){ "EM_MMA", ELF::EM_MMA },
505 LLVM_READOBJ_ENUM_ENT(ELF, EM_PCP ){ "EM_PCP", ELF::EM_PCP },
506 LLVM_READOBJ_ENUM_ENT(ELF, EM_NCPU ){ "EM_NCPU", ELF::EM_NCPU },
507 LLVM_READOBJ_ENUM_ENT(ELF, EM_NDR1 ){ "EM_NDR1", ELF::EM_NDR1 },
508 LLVM_READOBJ_ENUM_ENT(ELF, EM_STARCORE ){ "EM_STARCORE", ELF::EM_STARCORE },
509 LLVM_READOBJ_ENUM_ENT(ELF, EM_ME16 ){ "EM_ME16", ELF::EM_ME16 },
510 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST100 ){ "EM_ST100", ELF::EM_ST100 },
511 LLVM_READOBJ_ENUM_ENT(ELF, EM_TINYJ ){ "EM_TINYJ", ELF::EM_TINYJ },
512 LLVM_READOBJ_ENUM_ENT(ELF, EM_X86_64 ){ "EM_X86_64", ELF::EM_X86_64 },
513 LLVM_READOBJ_ENUM_ENT(ELF, EM_PDSP ){ "EM_PDSP", ELF::EM_PDSP },
514 LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP10 ){ "EM_PDP10", ELF::EM_PDP10 },
515 LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP11 ){ "EM_PDP11", ELF::EM_PDP11 },
516 LLVM_READOBJ_ENUM_ENT(ELF, EM_FX66 ){ "EM_FX66", ELF::EM_FX66 },
517 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST9PLUS ){ "EM_ST9PLUS", ELF::EM_ST9PLUS },
518 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST7 ){ "EM_ST7", ELF::EM_ST7 },
519 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC16 ){ "EM_68HC16", ELF::EM_68HC16 },
520 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC11 ){ "EM_68HC11", ELF::EM_68HC11 },
521 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC08 ){ "EM_68HC08", ELF::EM_68HC08 },
522 LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC05 ){ "EM_68HC05", ELF::EM_68HC05 },
523 LLVM_READOBJ_ENUM_ENT(ELF, EM_SVX ){ "EM_SVX", ELF::EM_SVX },
524 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST19 ){ "EM_ST19", ELF::EM_ST19 },
525 LLVM_READOBJ_ENUM_ENT(ELF, EM_VAX ){ "EM_VAX", ELF::EM_VAX },
526 LLVM_READOBJ_ENUM_ENT(ELF, EM_CRIS ){ "EM_CRIS", ELF::EM_CRIS },
527 LLVM_READOBJ_ENUM_ENT(ELF, EM_JAVELIN ){ "EM_JAVELIN", ELF::EM_JAVELIN },
528 LLVM_READOBJ_ENUM_ENT(ELF, EM_FIREPATH ){ "EM_FIREPATH", ELF::EM_FIREPATH },
529 LLVM_READOBJ_ENUM_ENT(ELF, EM_ZSP ){ "EM_ZSP", ELF::EM_ZSP },
530 LLVM_READOBJ_ENUM_ENT(ELF, EM_MMIX ){ "EM_MMIX", ELF::EM_MMIX },
531 LLVM_READOBJ_ENUM_ENT(ELF, EM_HUANY ){ "EM_HUANY", ELF::EM_HUANY },
532 LLVM_READOBJ_ENUM_ENT(ELF, EM_PRISM ){ "EM_PRISM", ELF::EM_PRISM },
533 LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR ){ "EM_AVR", ELF::EM_AVR },
534 LLVM_READOBJ_ENUM_ENT(ELF, EM_FR30 ){ "EM_FR30", ELF::EM_FR30 },
535 LLVM_READOBJ_ENUM_ENT(ELF, EM_D10V ){ "EM_D10V", ELF::EM_D10V },
536 LLVM_READOBJ_ENUM_ENT(ELF, EM_D30V ){ "EM_D30V", ELF::EM_D30V },
537 LLVM_READOBJ_ENUM_ENT(ELF, EM_V850 ){ "EM_V850", ELF::EM_V850 },
538 LLVM_READOBJ_ENUM_ENT(ELF, EM_M32R ){ "EM_M32R", ELF::EM_M32R },
539 LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10300 ){ "EM_MN10300", ELF::EM_MN10300 },
540 LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10200 ){ "EM_MN10200", ELF::EM_MN10200 },
541 LLVM_READOBJ_ENUM_ENT(ELF, EM_PJ ){ "EM_PJ", ELF::EM_PJ },
542 LLVM_READOBJ_ENUM_ENT(ELF, EM_OPENRISC ){ "EM_OPENRISC", ELF::EM_OPENRISC },
543 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT ){ "EM_ARC_COMPACT", ELF::EM_ARC_COMPACT },
544 LLVM_READOBJ_ENUM_ENT(ELF, EM_XTENSA ){ "EM_XTENSA", ELF::EM_XTENSA },
545 LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE ){ "EM_VIDEOCORE", ELF::EM_VIDEOCORE },
546 LLVM_READOBJ_ENUM_ENT(ELF, EM_TMM_GPP ){ "EM_TMM_GPP", ELF::EM_TMM_GPP },
547 LLVM_READOBJ_ENUM_ENT(ELF, EM_NS32K ){ "EM_NS32K", ELF::EM_NS32K },
548 LLVM_READOBJ_ENUM_ENT(ELF, EM_TPC ){ "EM_TPC", ELF::EM_TPC },
549 LLVM_READOBJ_ENUM_ENT(ELF, EM_SNP1K ){ "EM_SNP1K", ELF::EM_SNP1K },
550 LLVM_READOBJ_ENUM_ENT(ELF, EM_ST200 ){ "EM_ST200", ELF::EM_ST200 },
551 LLVM_READOBJ_ENUM_ENT(ELF, EM_IP2K ){ "EM_IP2K", ELF::EM_IP2K },
552 LLVM_READOBJ_ENUM_ENT(ELF, EM_MAX ){ "EM_MAX", ELF::EM_MAX },
553 LLVM_READOBJ_ENUM_ENT(ELF, EM_CR ){ "EM_CR", ELF::EM_CR },
554 LLVM_READOBJ_ENUM_ENT(ELF, EM_F2MC16 ){ "EM_F2MC16", ELF::EM_F2MC16 },
555 LLVM_READOBJ_ENUM_ENT(ELF, EM_MSP430 ){ "EM_MSP430", ELF::EM_MSP430 },
556 LLVM_READOBJ_ENUM_ENT(ELF, EM_BLACKFIN ){ "EM_BLACKFIN", ELF::EM_BLACKFIN },
557 LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C33 ){ "EM_SE_C33", ELF::EM_SE_C33 },
558 LLVM_READOBJ_ENUM_ENT(ELF, EM_SEP ){ "EM_SEP", ELF::EM_SEP },
559 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARCA ){ "EM_ARCA", ELF::EM_ARCA },
560 LLVM_READOBJ_ENUM_ENT(ELF, EM_UNICORE ){ "EM_UNICORE", ELF::EM_UNICORE },
561 LLVM_READOBJ_ENUM_ENT(ELF, EM_EXCESS ){ "EM_EXCESS", ELF::EM_EXCESS },
562 LLVM_READOBJ_ENUM_ENT(ELF, EM_DXP ){ "EM_DXP", ELF::EM_DXP },
563 LLVM_READOBJ_ENUM_ENT(ELF, EM_ALTERA_NIOS2 ){ "EM_ALTERA_NIOS2", ELF::EM_ALTERA_NIOS2 },
564 LLVM_READOBJ_ENUM_ENT(ELF, EM_CRX ){ "EM_CRX", ELF::EM_CRX },
565 LLVM_READOBJ_ENUM_ENT(ELF, EM_XGATE ){ "EM_XGATE", ELF::EM_XGATE },
566 LLVM_READOBJ_ENUM_ENT(ELF, EM_C166 ){ "EM_C166", ELF::EM_C166 },
567 LLVM_READOBJ_ENUM_ENT(ELF, EM_M16C ){ "EM_M16C", ELF::EM_M16C },
568 LLVM_READOBJ_ENUM_ENT(ELF, EM_DSPIC30F ){ "EM_DSPIC30F", ELF::EM_DSPIC30F },
569 LLVM_READOBJ_ENUM_ENT(ELF, EM_CE ){ "EM_CE", ELF::EM_CE },
570 LLVM_READOBJ_ENUM_ENT(ELF, EM_M32C ){ "EM_M32C", ELF::EM_M32C },
571 LLVM_READOBJ_ENUM_ENT(ELF, EM_TSK3000 ){ "EM_TSK3000", ELF::EM_TSK3000 },
572 LLVM_READOBJ_ENUM_ENT(ELF, EM_RS08 ){ "EM_RS08", ELF::EM_RS08 },
573 LLVM_READOBJ_ENUM_ENT(ELF, EM_SHARC ){ "EM_SHARC", ELF::EM_SHARC },
574 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG2 ){ "EM_ECOG2", ELF::EM_ECOG2 },
575 LLVM_READOBJ_ENUM_ENT(ELF, EM_SCORE7 ){ "EM_SCORE7", ELF::EM_SCORE7 },
576 LLVM_READOBJ_ENUM_ENT(ELF, EM_DSP24 ){ "EM_DSP24", ELF::EM_DSP24 },
577 LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE3 ){ "EM_VIDEOCORE3", ELF::EM_VIDEOCORE3 },
578 LLVM_READOBJ_ENUM_ENT(ELF, EM_LATTICEMICO32){ "EM_LATTICEMICO32", ELF::EM_LATTICEMICO32 },
579 LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C17 ){ "EM_SE_C17", ELF::EM_SE_C17 },
580 LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C6000 ){ "EM_TI_C6000", ELF::EM_TI_C6000 },
581 LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C2000 ){ "EM_TI_C2000", ELF::EM_TI_C2000 },
582 LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C5500 ){ "EM_TI_C5500", ELF::EM_TI_C5500 },
583 LLVM_READOBJ_ENUM_ENT(ELF, EM_MMDSP_PLUS ){ "EM_MMDSP_PLUS", ELF::EM_MMDSP_PLUS },
584 LLVM_READOBJ_ENUM_ENT(ELF, EM_CYPRESS_M8C ){ "EM_CYPRESS_M8C", ELF::EM_CYPRESS_M8C },
585 LLVM_READOBJ_ENUM_ENT(ELF, EM_R32C ){ "EM_R32C", ELF::EM_R32C },
586 LLVM_READOBJ_ENUM_ENT(ELF, EM_TRIMEDIA ){ "EM_TRIMEDIA", ELF::EM_TRIMEDIA },
587 LLVM_READOBJ_ENUM_ENT(ELF, EM_HEXAGON ){ "EM_HEXAGON", ELF::EM_HEXAGON },
588 LLVM_READOBJ_ENUM_ENT(ELF, EM_8051 ){ "EM_8051", ELF::EM_8051 },
589 LLVM_READOBJ_ENUM_ENT(ELF, EM_STXP7X ){ "EM_STXP7X", ELF::EM_STXP7X },
590 LLVM_READOBJ_ENUM_ENT(ELF, EM_NDS32 ){ "EM_NDS32", ELF::EM_NDS32 },
591 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1 ){ "EM_ECOG1", ELF::EM_ECOG1 },
592 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1X ){ "EM_ECOG1X", ELF::EM_ECOG1X },
593 LLVM_READOBJ_ENUM_ENT(ELF, EM_MAXQ30 ){ "EM_MAXQ30", ELF::EM_MAXQ30 },
594 LLVM_READOBJ_ENUM_ENT(ELF, EM_XIMO16 ){ "EM_XIMO16", ELF::EM_XIMO16 },
595 LLVM_READOBJ_ENUM_ENT(ELF, EM_MANIK ){ "EM_MANIK", ELF::EM_MANIK },
596 LLVM_READOBJ_ENUM_ENT(ELF, EM_CRAYNV2 ){ "EM_CRAYNV2", ELF::EM_CRAYNV2 },
597 LLVM_READOBJ_ENUM_ENT(ELF, EM_RX ){ "EM_RX", ELF::EM_RX },
598 LLVM_READOBJ_ENUM_ENT(ELF, EM_METAG ){ "EM_METAG", ELF::EM_METAG },
599 LLVM_READOBJ_ENUM_ENT(ELF, EM_MCST_ELBRUS ){ "EM_MCST_ELBRUS", ELF::EM_MCST_ELBRUS },
600 LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG16 ){ "EM_ECOG16", ELF::EM_ECOG16 },
601 LLVM_READOBJ_ENUM_ENT(ELF, EM_CR16 ){ "EM_CR16", ELF::EM_CR16 },
602 LLVM_READOBJ_ENUM_ENT(ELF, EM_ETPU ){ "EM_ETPU", ELF::EM_ETPU },
603 LLVM_READOBJ_ENUM_ENT(ELF, EM_SLE9X ){ "EM_SLE9X", ELF::EM_SLE9X },
604 LLVM_READOBJ_ENUM_ENT(ELF, EM_L10M ){ "EM_L10M", ELF::EM_L10M },
605 LLVM_READOBJ_ENUM_ENT(ELF, EM_K10M ){ "EM_K10M", ELF::EM_K10M },
606 LLVM_READOBJ_ENUM_ENT(ELF, EM_AARCH64 ){ "EM_AARCH64", ELF::EM_AARCH64 },
607 LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR32 ){ "EM_AVR32", ELF::EM_AVR32 },
608 LLVM_READOBJ_ENUM_ENT(ELF, EM_STM8 ){ "EM_STM8", ELF::EM_STM8 },
609 LLVM_READOBJ_ENUM_ENT(ELF, EM_TILE64 ){ "EM_TILE64", ELF::EM_TILE64 },
610 LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEPRO ){ "EM_TILEPRO", ELF::EM_TILEPRO },
611 LLVM_READOBJ_ENUM_ENT(ELF, EM_CUDA ){ "EM_CUDA", ELF::EM_CUDA },
612 LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEGX ){ "EM_TILEGX", ELF::EM_TILEGX },
613 LLVM_READOBJ_ENUM_ENT(ELF, EM_CLOUDSHIELD ){ "EM_CLOUDSHIELD", ELF::EM_CLOUDSHIELD },
614 LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_1ST ){ "EM_COREA_1ST", ELF::EM_COREA_1ST },
615 LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_2ND ){ "EM_COREA_2ND", ELF::EM_COREA_2ND },
616 LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT2 ){ "EM_ARC_COMPACT2", ELF::EM_ARC_COMPACT2 },
617 LLVM_READOBJ_ENUM_ENT(ELF, EM_OPEN8 ){ "EM_OPEN8", ELF::EM_OPEN8 },
618 LLVM_READOBJ_ENUM_ENT(ELF, EM_RL78 ){ "EM_RL78", ELF::EM_RL78 },
619 LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE5 ){ "EM_VIDEOCORE5", ELF::EM_VIDEOCORE5 },
620 LLVM_READOBJ_ENUM_ENT(ELF, EM_78KOR ){ "EM_78KOR", ELF::EM_78KOR },
621 LLVM_READOBJ_ENUM_ENT(ELF, EM_56800EX ){ "EM_56800EX", ELF::EM_56800EX },
622 LLVM_READOBJ_ENUM_ENT(ELF, EM_AMDGPU ){ "EM_AMDGPU", ELF::EM_AMDGPU }
623};
624
625static const EnumEntry<unsigned> ElfSymbolBindings[] = {
626 { "Local", ELF::STB_LOCAL },
627 { "Global", ELF::STB_GLOBAL },
628 { "Weak", ELF::STB_WEAK },
629 { "Unique", ELF::STB_GNU_UNIQUE }
630};
631
632static const EnumEntry<unsigned> ElfSymbolTypes[] = {
633 { "None", ELF::STT_NOTYPE },
634 { "Object", ELF::STT_OBJECT },
635 { "Function", ELF::STT_FUNC },
636 { "Section", ELF::STT_SECTION },
637 { "File", ELF::STT_FILE },
638 { "Common", ELF::STT_COMMON },
639 { "TLS", ELF::STT_TLS },
640 { "GNU_IFunc", ELF::STT_GNU_IFUNC }
641};
642
643static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
644 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL },
645 { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION },
646 { "AMDGPU_HSA_METADATA", ELF::STT_AMDGPU_HSA_METADATA }
647};
648
649static const char *getElfSectionType(unsigned Arch, unsigned Type) {
650 switch (Arch) {
651 case ELF::EM_ARM:
652 switch (Type) {
653 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX)case ELF::SHT_ARM_EXIDX: return "SHT_ARM_EXIDX";;
654 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP)case ELF::SHT_ARM_PREEMPTMAP: return "SHT_ARM_PREEMPTMAP";;
655 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES)case ELF::SHT_ARM_ATTRIBUTES: return "SHT_ARM_ATTRIBUTES";;
656 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY)case ELF::SHT_ARM_DEBUGOVERLAY: return "SHT_ARM_DEBUGOVERLAY"
;
;
657 LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION)case ELF::SHT_ARM_OVERLAYSECTION: return "SHT_ARM_OVERLAYSECTION"
;
;
658 }
659 case ELF::EM_HEXAGON:
660 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED)case ELF::SHT_HEX_ORDERED: return "SHT_HEX_ORDERED";; }
661 case ELF::EM_X86_64:
662 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND)case ELF::SHT_X86_64_UNWIND: return "SHT_X86_64_UNWIND";; }
663 case ELF::EM_MIPS:
664 case ELF::EM_MIPS_RS3_LE:
665 switch (Type) {
666 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO)case ELF::SHT_MIPS_REGINFO: return "SHT_MIPS_REGINFO";;
667 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS)case ELF::SHT_MIPS_OPTIONS: return "SHT_MIPS_OPTIONS";;
668 LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS)case ELF::SHT_MIPS_ABIFLAGS: return "SHT_MIPS_ABIFLAGS";;
669 }
670 }
671
672 switch (Type) {
673 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL )case ELF::SHT_NULL: return "SHT_NULL";;
674 LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS )case ELF::SHT_PROGBITS: return "SHT_PROGBITS";;
675 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB )case ELF::SHT_SYMTAB: return "SHT_SYMTAB";;
676 LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB )case ELF::SHT_STRTAB: return "SHT_STRTAB";;
677 LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA )case ELF::SHT_RELA: return "SHT_RELA";;
678 LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH )case ELF::SHT_HASH: return "SHT_HASH";;
679 LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC )case ELF::SHT_DYNAMIC: return "SHT_DYNAMIC";;
680 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE )case ELF::SHT_NOTE: return "SHT_NOTE";;
681 LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS )case ELF::SHT_NOBITS: return "SHT_NOBITS";;
682 LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL )case ELF::SHT_REL: return "SHT_REL";;
683 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB )case ELF::SHT_SHLIB: return "SHT_SHLIB";;
684 LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM )case ELF::SHT_DYNSYM: return "SHT_DYNSYM";;
685 LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY )case ELF::SHT_INIT_ARRAY: return "SHT_INIT_ARRAY";;
686 LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY )case ELF::SHT_FINI_ARRAY: return "SHT_FINI_ARRAY";;
687 LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY )case ELF::SHT_PREINIT_ARRAY: return "SHT_PREINIT_ARRAY";;
688 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP )case ELF::SHT_GROUP: return "SHT_GROUP";;
689 LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX )case ELF::SHT_SYMTAB_SHNDX: return "SHT_SYMTAB_SHNDX";;
690 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES )case ELF::SHT_GNU_ATTRIBUTES: return "SHT_GNU_ATTRIBUTES";;
691 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH )case ELF::SHT_GNU_HASH: return "SHT_GNU_HASH";;
692 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef )case ELF::SHT_GNU_verdef: return "SHT_GNU_verdef";;
693 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed )case ELF::SHT_GNU_verneed: return "SHT_GNU_verneed";;
694 LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym )case ELF::SHT_GNU_versym: return "SHT_GNU_versym";;
695 default: return "";
696 }
697}
698
699static const EnumEntry<unsigned> ElfSectionFlags[] = {
700 LLVM_READOBJ_ENUM_ENT(ELF, SHF_WRITE ){ "SHF_WRITE", ELF::SHF_WRITE },
701 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ALLOC ){ "SHF_ALLOC", ELF::SHF_ALLOC },
702 LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXCLUDE ){ "SHF_EXCLUDE", ELF::SHF_EXCLUDE },
703 LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXECINSTR ){ "SHF_EXECINSTR", ELF::SHF_EXECINSTR },
704 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MERGE ){ "SHF_MERGE", ELF::SHF_MERGE },
705 LLVM_READOBJ_ENUM_ENT(ELF, SHF_STRINGS ){ "SHF_STRINGS", ELF::SHF_STRINGS },
706 LLVM_READOBJ_ENUM_ENT(ELF, SHF_INFO_LINK ){ "SHF_INFO_LINK", ELF::SHF_INFO_LINK },
707 LLVM_READOBJ_ENUM_ENT(ELF, SHF_LINK_ORDER ){ "SHF_LINK_ORDER", ELF::SHF_LINK_ORDER },
708 LLVM_READOBJ_ENUM_ENT(ELF, SHF_OS_NONCONFORMING){ "SHF_OS_NONCONFORMING", ELF::SHF_OS_NONCONFORMING },
709 LLVM_READOBJ_ENUM_ENT(ELF, SHF_GROUP ){ "SHF_GROUP", ELF::SHF_GROUP },
710 LLVM_READOBJ_ENUM_ENT(ELF, SHF_TLS ){ "SHF_TLS", ELF::SHF_TLS },
711 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION){ "XCORE_SHF_CP_SECTION", ELF::XCORE_SHF_CP_SECTION },
712 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION){ "XCORE_SHF_DP_SECTION", ELF::XCORE_SHF_DP_SECTION },
713 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP ){ "SHF_MIPS_NOSTRIP", ELF::SHF_MIPS_NOSTRIP },
714 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL){ "SHF_AMDGPU_HSA_GLOBAL", ELF::SHF_AMDGPU_HSA_GLOBAL },
715 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY){ "SHF_AMDGPU_HSA_READONLY", ELF::SHF_AMDGPU_HSA_READONLY },
716 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE){ "SHF_AMDGPU_HSA_CODE", ELF::SHF_AMDGPU_HSA_CODE },
717 LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT){ "SHF_AMDGPU_HSA_AGENT", ELF::SHF_AMDGPU_HSA_AGENT }
718};
719
720static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
721 // Check potentially overlapped processor-specific
722 // program header type.
723 switch (Arch) {
724 case ELF::EM_AMDGPU:
725 switch (Type) {
726 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM)case ELF::PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM: return "PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM"
;
;
727 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT)case ELF::PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT: return "PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT"
;
;
728 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT)case ELF::PT_AMDGPU_HSA_LOAD_READONLY_AGENT: return "PT_AMDGPU_HSA_LOAD_READONLY_AGENT"
;
;
729 LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT)case ELF::PT_AMDGPU_HSA_LOAD_CODE_AGENT: return "PT_AMDGPU_HSA_LOAD_CODE_AGENT"
;
;
730 }
731 case ELF::EM_ARM:
732 switch (Type) {
733 LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX)case ELF::PT_ARM_EXIDX: return "PT_ARM_EXIDX";;
734 }
735 case ELF::EM_MIPS:
736 case ELF::EM_MIPS_RS3_LE:
737 switch (Type) {
738 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO)case ELF::PT_MIPS_REGINFO: return "PT_MIPS_REGINFO";;
739 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC)case ELF::PT_MIPS_RTPROC: return "PT_MIPS_RTPROC";;
740 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS)case ELF::PT_MIPS_OPTIONS: return "PT_MIPS_OPTIONS";;
741 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS)case ELF::PT_MIPS_ABIFLAGS: return "PT_MIPS_ABIFLAGS";;
742 }
743 }
744
745 switch (Type) {
746 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL )case ELF::PT_NULL: return "PT_NULL";;
747 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD )case ELF::PT_LOAD: return "PT_LOAD";;
748 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC)case ELF::PT_DYNAMIC: return "PT_DYNAMIC";;
749 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP )case ELF::PT_INTERP: return "PT_INTERP";;
750 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE )case ELF::PT_NOTE: return "PT_NOTE";;
751 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB )case ELF::PT_SHLIB: return "PT_SHLIB";;
752 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR )case ELF::PT_PHDR: return "PT_PHDR";;
753 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS )case ELF::PT_TLS: return "PT_TLS";;
754
755 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME)case ELF::PT_GNU_EH_FRAME: return "PT_GNU_EH_FRAME";;
756 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND)case ELF::PT_SUNW_UNWIND: return "PT_SUNW_UNWIND";;
757
758 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK)case ELF::PT_GNU_STACK: return "PT_GNU_STACK";;
759 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO)case ELF::PT_GNU_RELRO: return "PT_GNU_RELRO";;
760 default: return "";
761 }
762}
763
764static const EnumEntry<unsigned> ElfSegmentFlags[] = {
765 LLVM_READOBJ_ENUM_ENT(ELF, PF_X){ "PF_X", ELF::PF_X },
766 LLVM_READOBJ_ENUM_ENT(ELF, PF_W){ "PF_W", ELF::PF_W },
767 LLVM_READOBJ_ENUM_ENT(ELF, PF_R){ "PF_R", ELF::PF_R }
768};
769
770static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
771 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER){ "EF_MIPS_NOREORDER", ELF::EF_MIPS_NOREORDER },
772 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC){ "EF_MIPS_PIC", ELF::EF_MIPS_PIC },
773 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC){ "EF_MIPS_CPIC", ELF::EF_MIPS_CPIC },
774 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2){ "EF_MIPS_ABI2", ELF::EF_MIPS_ABI2 },
775 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE){ "EF_MIPS_32BITMODE", ELF::EF_MIPS_32BITMODE },
776 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64){ "EF_MIPS_FP64", ELF::EF_MIPS_FP64 },
777 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008){ "EF_MIPS_NAN2008", ELF::EF_MIPS_NAN2008 },
778 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32){ "EF_MIPS_ABI_O32", ELF::EF_MIPS_ABI_O32 },
779 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64){ "EF_MIPS_ABI_O64", ELF::EF_MIPS_ABI_O64 },
780 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32){ "EF_MIPS_ABI_EABI32", ELF::EF_MIPS_ABI_EABI32 },
781 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64){ "EF_MIPS_ABI_EABI64", ELF::EF_MIPS_ABI_EABI64 },
782 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900){ "EF_MIPS_MACH_3900", ELF::EF_MIPS_MACH_3900 },
783 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010){ "EF_MIPS_MACH_4010", ELF::EF_MIPS_MACH_4010 },
784 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100){ "EF_MIPS_MACH_4100", ELF::EF_MIPS_MACH_4100 },
785 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650){ "EF_MIPS_MACH_4650", ELF::EF_MIPS_MACH_4650 },
786 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120){ "EF_MIPS_MACH_4120", ELF::EF_MIPS_MACH_4120 },
787 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111){ "EF_MIPS_MACH_4111", ELF::EF_MIPS_MACH_4111 },
788 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1){ "EF_MIPS_MACH_SB1", ELF::EF_MIPS_MACH_SB1 },
789 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON){ "EF_MIPS_MACH_OCTEON", ELF::EF_MIPS_MACH_OCTEON },
790 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR){ "EF_MIPS_MACH_XLR", ELF::EF_MIPS_MACH_XLR },
791 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2){ "EF_MIPS_MACH_OCTEON2", ELF::EF_MIPS_MACH_OCTEON2 },
792 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3){ "EF_MIPS_MACH_OCTEON3", ELF::EF_MIPS_MACH_OCTEON3 },
793 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400){ "EF_MIPS_MACH_5400", ELF::EF_MIPS_MACH_5400 },
794 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900){ "EF_MIPS_MACH_5900", ELF::EF_MIPS_MACH_5900 },
795 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500){ "EF_MIPS_MACH_5500", ELF::EF_MIPS_MACH_5500 },
796 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000){ "EF_MIPS_MACH_9000", ELF::EF_MIPS_MACH_9000 },
797 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E){ "EF_MIPS_MACH_LS2E", ELF::EF_MIPS_MACH_LS2E },
798 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F){ "EF_MIPS_MACH_LS2F", ELF::EF_MIPS_MACH_LS2F },
799 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A){ "EF_MIPS_MACH_LS3A", ELF::EF_MIPS_MACH_LS3A },
800 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS){ "EF_MIPS_MICROMIPS", ELF::EF_MIPS_MICROMIPS },
801 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16){ "EF_MIPS_ARCH_ASE_M16", ELF::EF_MIPS_ARCH_ASE_M16 },
802 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX){ "EF_MIPS_ARCH_ASE_MDMX", ELF::EF_MIPS_ARCH_ASE_MDMX },
803 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1){ "EF_MIPS_ARCH_1", ELF::EF_MIPS_ARCH_1 },
804 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2){ "EF_MIPS_ARCH_2", ELF::EF_MIPS_ARCH_2 },
805 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3){ "EF_MIPS_ARCH_3", ELF::EF_MIPS_ARCH_3 },
806 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4){ "EF_MIPS_ARCH_4", ELF::EF_MIPS_ARCH_4 },
807 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5){ "EF_MIPS_ARCH_5", ELF::EF_MIPS_ARCH_5 },
808 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32){ "EF_MIPS_ARCH_32", ELF::EF_MIPS_ARCH_32 },
809 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64){ "EF_MIPS_ARCH_64", ELF::EF_MIPS_ARCH_64 },
810 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2){ "EF_MIPS_ARCH_32R2", ELF::EF_MIPS_ARCH_32R2 },
811 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2){ "EF_MIPS_ARCH_64R2", ELF::EF_MIPS_ARCH_64R2 },
812 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6){ "EF_MIPS_ARCH_32R6", ELF::EF_MIPS_ARCH_32R6 },
813 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6){ "EF_MIPS_ARCH_64R6", ELF::EF_MIPS_ARCH_64R6 }
814};
815
816template <typename ELFT>
817ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer)
818 : ObjDumper(Writer), Obj(Obj) {
819
820 SmallVector<const Elf_Phdr *, 4> LoadSegments;
821 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
822 if (Phdr.p_type == ELF::PT_DYNAMIC) {
823 DynamicProgHeader = &Phdr;
824 continue;
825 }
826 if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
827 continue;
828 LoadSegments.push_back(&Phdr);
829 }
830
831 auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
832 const Elf_Phdr **I = std::upper_bound(
833 LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr<ELFT>);
834 if (I == LoadSegments.begin())
835 report_fatal_error("Virtual address is not in any segment");
836 --I;
837 const Elf_Phdr &Phdr = **I;
838 uint64_t Delta = VAddr - Phdr.p_vaddr;
839 if (Delta >= Phdr.p_filesz)
840 report_fatal_error("Virtual address is not in any segment");
841 return Obj->base() + Phdr.p_offset + Delta;
842 };
843
844 uint64_t SONameOffset = 0;
845 const char *StringTableBegin = nullptr;
846 uint64_t StringTableSize = 0;
847 for (const Elf_Dyn &Dyn : dynamic_table()) {
848 switch (Dyn.d_tag) {
849 case ELF::DT_HASH:
850 HashTable =
851 reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
852 break;
853 case ELF::DT_RELA:
854 DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
855 break;
856 case ELF::DT_RELASZ:
857 DynRelaRegion.Size = Dyn.getVal();
858 break;
859 case ELF::DT_RELAENT:
860 DynRelaRegion.EntSize = Dyn.getVal();
861 break;
862 case ELF::DT_SONAME:
863 SONameOffset = Dyn.getVal();
864 break;
865 case ELF::DT_STRTAB:
866 StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
867 break;
868 case ELF::DT_STRSZ:
869 StringTableSize = Dyn.getVal();
870 break;
871 case ELF::DT_SYMTAB:
872 DynSymStart =
873 reinterpret_cast<const Elf_Sym *>(toMappedAddr(Dyn.getPtr()));
874 break;
875 }
876 }
877 if (StringTableBegin)
878 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
879 if (SONameOffset)
880 SOName = getDynamicString(SONameOffset);
881
882 for (const Elf_Shdr &Sec : Obj->sections()) {
883 switch (Sec.sh_type) {
884 case ELF::SHT_GNU_versym:
885 if (dot_gnu_version_sec != nullptr)
886 reportError("Multiple SHT_GNU_versym");
887 dot_gnu_version_sec = &Sec;
888 break;
889 case ELF::SHT_GNU_verdef:
890 if (dot_gnu_version_d_sec != nullptr)
891 reportError("Multiple SHT_GNU_verdef");
892 dot_gnu_version_d_sec = &Sec;
893 break;
894 case ELF::SHT_GNU_verneed:
895 if (dot_gnu_version_r_sec != nullptr)
896 reportError("Multilpe SHT_GNU_verneed");
897 dot_gnu_version_r_sec = &Sec;
898 break;
899 case ELF::SHT_DYNSYM:
900 if (DotDynSymSec != nullptr)
901 reportError("Multilpe SHT_DYNSYM");
902 DotDynSymSec = &Sec;
903 break;
904 case ELF::SHT_SYMTAB:
905 if (DotSymtabSec != nullptr)
906 reportError("Multilpe SHT_SYMTAB");
907 DotSymtabSec = &Sec;
908 break;
909 case ELF::SHT_SYMTAB_SHNDX: {
910 ErrorOr<ArrayRef<Elf_Word>> TableOrErr = Obj->getSHNDXTable(Sec);
911 error(TableOrErr.getError());
912 ShndxTable = *TableOrErr;
913 break;
914 }
915 }
916 }
917}
918
919template <typename ELFT>
920const typename ELFDumper<ELFT>::Elf_Rela *
921ELFDumper<ELFT>::dyn_rela_begin() const {
922 if (DynRelaRegion.Size && DynRelaRegion.EntSize != sizeof(Elf_Rela))
923 report_fatal_error("Invalid relocation entry size");
924 return reinterpret_cast<const Elf_Rela *>(DynRelaRegion.Addr);
925}
926
927template <typename ELFT>
928const typename ELFDumper<ELFT>::Elf_Rela *
929ELFDumper<ELFT>::dyn_rela_end() const {
930 uint64_t Size = DynRelaRegion.Size;
931 if (Size % sizeof(Elf_Rela))
932 report_fatal_error("Invalid relocation table size");
933 return dyn_rela_begin() + Size / sizeof(Elf_Rela);
934}
935
936template <typename ELFT>
937typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
938 return make_range(dyn_rela_begin(), dyn_rela_end());
939}
940
941template<class ELFT>
942void ELFDumper<ELFT>::printFileHeaders() {
943 const Elf_Ehdr *Header = Obj->getHeader();
944
945 {
946 DictScope D(W, "ElfHeader");
947 {
948 DictScope D(W, "Ident");
949 W.printBinary("Magic", makeArrayRef(Header->e_ident).slice(ELF::EI_MAG0,
950 4));
951 W.printEnum ("Class", Header->e_ident[ELF::EI_CLASS],
952 makeArrayRef(ElfClass));
953 W.printEnum ("DataEncoding", Header->e_ident[ELF::EI_DATA],
954 makeArrayRef(ElfDataEncoding));
955 W.printNumber("FileVersion", Header->e_ident[ELF::EI_VERSION]);
956
957 // Handle architecture specific OS/ABI values.
958 if (Header->e_machine == ELF::EM_AMDGPU &&
959 Header->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
960 W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
961 else
962 W.printEnum ("OS/ABI", Header->e_ident[ELF::EI_OSABI],
963 makeArrayRef(ElfOSABI));
964 W.printNumber("ABIVersion", Header->e_ident[ELF::EI_ABIVERSION]);
965 W.printBinary("Unused", makeArrayRef(Header->e_ident).slice(ELF::EI_PAD));
966 }
967
968 W.printEnum ("Type", Header->e_type, makeArrayRef(ElfObjectFileType));
969 W.printEnum ("Machine", Header->e_machine, makeArrayRef(ElfMachineType));
970 W.printNumber("Version", Header->e_version);
971 W.printHex ("Entry", Header->e_entry);
972 W.printHex ("ProgramHeaderOffset", Header->e_phoff);
973 W.printHex ("SectionHeaderOffset", Header->e_shoff);
974 if (Header->e_machine == EM_MIPS)
975 W.printFlags("Flags", Header->e_flags, makeArrayRef(ElfHeaderMipsFlags),
976 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
977 unsigned(ELF::EF_MIPS_MACH));
978 else
979 W.printFlags("Flags", Header->e_flags);
980 W.printNumber("HeaderSize", Header->e_ehsize);
981 W.printNumber("ProgramHeaderEntrySize", Header->e_phentsize);
982 W.printNumber("ProgramHeaderCount", Header->e_phnum);
983 W.printNumber("SectionHeaderEntrySize", Header->e_shentsize);
984 W.printNumber("SectionHeaderCount", Header->e_shnum);
985 W.printNumber("StringTableSectionIndex", Header->e_shstrndx);
986 }
987}
988
989template<class ELFT>
990void ELFDumper<ELFT>::printSections() {
991 ListScope SectionsD(W, "Sections");
992
993 int SectionIndex = -1;
994 for (const Elf_Shdr &Sec : Obj->sections()) {
995 ++SectionIndex;
996
997 StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));
998
999 DictScope SectionD(W, "Section");
1000 W.printNumber("Index", SectionIndex);
1001 W.printNumber("Name", Name, Sec.sh_name);
1002 W.printHex("Type",
1003 getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
1004 Sec.sh_type);
1005 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(ElfSectionFlags));
1006 W.printHex("Address", Sec.sh_addr);
1007 W.printHex("Offset", Sec.sh_offset);
1008 W.printNumber("Size", Sec.sh_size);
1009 W.printNumber("Link", Sec.sh_link);
1010 W.printNumber("Info", Sec.sh_info);
1011 W.printNumber("AddressAlignment", Sec.sh_addralign);
1012 W.printNumber("EntrySize", Sec.sh_entsize);
1013
1014 if (opts::SectionRelocations) {
1015 ListScope D(W, "Relocations");
1016 printRelocations(&Sec);
1017 }
1018
1019 if (opts::SectionSymbols) {
1020 ListScope D(W, "Symbols");
1021 const Elf_Shdr *Symtab = DotSymtabSec;
1022 ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*Symtab);
1023 error(StrTableOrErr.getError());
1024 StringRef StrTable = *StrTableOrErr;
1025
1026 for (const Elf_Sym &Sym : Obj->symbols(Symtab)) {
1027 ErrorOr<const Elf_Shdr *> SymSec =
1028 Obj->getSection(&Sym, Symtab, ShndxTable);
1029 if (!SymSec)
1030 continue;
1031 if (*SymSec == &Sec)
1032 printSymbol(&Sym, Symtab, StrTable, false);
1033 }
1034 }
1035
1036 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
1037 ArrayRef<uint8_t> Data = errorOrDefault(Obj->getSectionContents(&Sec));
1038 W.printBinaryBlock("SectionData",
1039 StringRef((const char *)Data.data(), Data.size()));
1040 }
1041 }
1042}
1043
1044template<class ELFT>
1045void ELFDumper<ELFT>::printRelocations() {
1046 ListScope D(W, "Relocations");
1047
1048 int SectionNumber = -1;
1049 for (const Elf_Shdr &Sec : Obj->sections()) {
1
Assuming '__begin' is not equal to '__end'
1050 ++SectionNumber;
1051
1052 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
1053 continue;
1054
1055 StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));
1056
1057 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
1058 W.indent();
1059
1060 printRelocations(&Sec);
2
Calling 'ELFDumper::printRelocations'
1061
1062 W.unindent();
1063 W.startLine() << "}\n";
1064 }
1065}
1066
1067template<class ELFT>
1068void ELFDumper<ELFT>::printDynamicRelocations() {
1069 W.startLine() << "Dynamic Relocations {\n";
1070 W.indent();
1071 for (const Elf_Rela &Rel : dyn_relas()) {
1072 SmallString<32> RelocName;
1073 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
1074 StringRef SymbolName;
1075 uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
1076 const Elf_Sym *Sym = DynSymStart + SymIndex;
1077 SymbolName = errorOrDefault(Sym->getName(DynamicStringTable));
1078 if (opts::ExpandRelocs) {
1079 DictScope Group(W, "Relocation");
1080 W.printHex("Offset", Rel.r_offset);
1081 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
1082 W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
1083 W.printHex("Addend", Rel.r_addend);
1084 }
1085 else {
1086 raw_ostream& OS = W.startLine();
1087 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
1088 << (SymbolName.size() > 0 ? SymbolName : "-") << " "
1089 << W.hex(Rel.r_addend) << "\n";
1090 }
1091 }
1092 W.unindent();
1093 W.startLine() << "}\n";
1094}
1095
1096template <class ELFT>
1097void ELFDumper<ELFT>::printRelocations(const Elf_Shdr *Sec) {
1098 switch (Sec->sh_type) {
3
Control jumps to 'case SHT_RELA:' at line 1108
1099 case ELF::SHT_REL:
1100 for (const Elf_Rel &R : Obj->rels(Sec)) {
1101 Elf_Rela Rela;
1102 Rela.r_offset = R.r_offset;
1103 Rela.r_info = R.r_info;
1104 Rela.r_addend = 0;
1105 printRelocation(Sec, Rela);
1106 }
1107 break;
1108 case ELF::SHT_RELA:
1109 for (const Elf_Rela &R : Obj->relas(Sec))
4
Assuming '__begin' is not equal to '__end'
1110 printRelocation(Sec, R);
5
Calling 'ELFDumper::printRelocation'
1111 break;
1112 }
1113}
1114
1115template <class ELFT>
1116void ELFDumper<ELFT>::printRelocation(const Elf_Shdr *Sec, Elf_Rela Rel) {
1117 SmallString<32> RelocName;
1118 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
1119 StringRef TargetName;
1120 std::pair<const Elf_Shdr *, const Elf_Sym *> Sym =
1121 Obj->getRelocationSymbol(Sec, &Rel);
6
Value assigned to 'Sym.second'
1122 if (Sym.second && Sym.second->getType() == ELF::STT_SECTION) {
7
Assuming pointer value is null
1123 ErrorOr<const Elf_Shdr *> Sec =
1124 Obj->getSection(Sym.second, Sym.first, ShndxTable);
1125 error(Sec.getError());
1126 ErrorOr<StringRef> SecName = Obj->getSectionName(*Sec);
1127 if (SecName)
1128 TargetName = SecName.get();
1129 } else if (Sym.first) {
8
Taking true branch
1130 const Elf_Shdr *SymTable = Sym.first;
1131 ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*SymTable);
1132 error(StrTableOrErr.getError());
1133 TargetName = errorOrDefault(Sym.second->getName(*StrTableOrErr));
9
Called C++ object pointer is null
1134 }
1135
1136 if (opts::ExpandRelocs) {
1137 DictScope Group(W, "Relocation");
1138 W.printHex("Offset", Rel.r_offset);
1139 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
1140 W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
1141 Rel.getSymbol(Obj->isMips64EL()));
1142 W.printHex("Addend", Rel.r_addend);
1143 } else {
1144 raw_ostream& OS = W.startLine();
1145 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
1146 << (TargetName.size() > 0 ? TargetName : "-") << " "
1147 << W.hex(Rel.r_addend) << "\n";
1148 }
1149}
1150
1151template<class ELFT>
1152void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) {
1153 const Elf_Shdr *Symtab = (IsDynamic) ? DotDynSymSec : DotSymtabSec;
1154 ErrorOr<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*Symtab);
1155 error(StrTableOrErr.getError());
1156 StringRef StrTable = *StrTableOrErr;
1157 for (const Elf_Sym &Sym : Obj->symbols(Symtab))
1158 printSymbol(&Sym, Symtab, StrTable, IsDynamic);
1159}
1160
1161template<class ELFT>
1162void ELFDumper<ELFT>::printSymbols() {
1163 ListScope Group(W, "Symbols");
1164 printSymbolsHelper(false);
1165}
1166
1167template<class ELFT>
1168void ELFDumper<ELFT>::printDynamicSymbols() {
1169 ListScope Group(W, "DynamicSymbols");
1170 printSymbolsHelper(true);
1171}
1172
1173template <class ELFT>
1174void ELFDumper<ELFT>::printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab,
1175 StringRef StrTable, bool IsDynamic) {
1176 unsigned SectionIndex = 0;
1177 StringRef SectionName;
1178 getSectionNameIndex(*Obj, Symbol, SymTab, ShndxTable, SectionName,
1179 SectionIndex);
1180 std::string FullSymbolName = getFullSymbolName(Symbol, StrTable, IsDynamic);
1181 unsigned char SymbolType = Symbol->getType();
1182
1183 DictScope D(W, "Symbol");
1184 W.printNumber("Name", FullSymbolName, Symbol->st_name);
1185 W.printHex ("Value", Symbol->st_value);
1186 W.printNumber("Size", Symbol->st_size);
1187 W.printEnum ("Binding", Symbol->getBinding(),
1188 makeArrayRef(ElfSymbolBindings));
1189 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
1190 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
1191 W.printEnum ("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
1192 else
1193 W.printEnum ("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
1194 W.printNumber("Other", Symbol->st_other);
1195 W.printHex("Section", SectionName, SectionIndex);
1196}
1197
1198#define LLVM_READOBJ_TYPE_CASE(name) \
1199 case DT_##name: return #name
1200
1201static const char *getTypeString(uint64_t Type) {
1202 switch (Type) {
1203 LLVM_READOBJ_TYPE_CASE(BIND_NOW);
1204 LLVM_READOBJ_TYPE_CASE(DEBUG);
1205 LLVM_READOBJ_TYPE_CASE(FINI);
1206 LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
1207 LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
1208 LLVM_READOBJ_TYPE_CASE(FLAGS);
1209 LLVM_READOBJ_TYPE_CASE(FLAGS_1);
1210 LLVM_READOBJ_TYPE_CASE(HASH);
1211 LLVM_READOBJ_TYPE_CASE(INIT);
1212 LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
1213 LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
1214 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
1215 LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
1216 LLVM_READOBJ_TYPE_CASE(JMPREL);
1217 LLVM_READOBJ_TYPE_CASE(NEEDED);
1218 LLVM_READOBJ_TYPE_CASE(NULL__null);
1219 LLVM_READOBJ_TYPE_CASE(PLTGOT);
1220 LLVM_READOBJ_TYPE_CASE(PLTREL);
1221 LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
1222 LLVM_READOBJ_TYPE_CASE(REL);
1223 LLVM_READOBJ_TYPE_CASE(RELA);
1224 LLVM_READOBJ_TYPE_CASE(RELENT);
1225 LLVM_READOBJ_TYPE_CASE(RELSZ);
1226 LLVM_READOBJ_TYPE_CASE(RELAENT);
1227 LLVM_READOBJ_TYPE_CASE(RELASZ);
1228 LLVM_READOBJ_TYPE_CASE(RPATH);
1229 LLVM_READOBJ_TYPE_CASE(RUNPATH);
1230 LLVM_READOBJ_TYPE_CASE(SONAME);
1231 LLVM_READOBJ_TYPE_CASE(STRSZ);
1232 LLVM_READOBJ_TYPE_CASE(STRTAB);
1233 LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
1234 LLVM_READOBJ_TYPE_CASE(SYMENT);
1235 LLVM_READOBJ_TYPE_CASE(SYMTAB);
1236 LLVM_READOBJ_TYPE_CASE(TEXTREL);
1237 LLVM_READOBJ_TYPE_CASE(VERNEED);
1238 LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
1239 LLVM_READOBJ_TYPE_CASE(VERSYM);
1240 LLVM_READOBJ_TYPE_CASE(RELCOUNT);
1241 LLVM_READOBJ_TYPE_CASE(GNU_HASH);
1242 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
1243 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL);
1244 LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
1245 LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
1246 LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
1247 LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
1248 LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
1249 LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
1250 LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
1251 LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
1252 LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
1253 default: return "unknown";
1254 }
1255}
1256
1257#undef LLVM_READOBJ_TYPE_CASE
1258
1259#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1260 { #enum, prefix##_##enum }
1261
1262static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1263 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1264 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1265 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1266 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1267 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1268};
1269
1270static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1271 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1272 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1273 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1274 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1275 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1276 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1277 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1278 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1279 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1280 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1281 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1282 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1283 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1284 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1285 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1286 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1287 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1288 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1289 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1290 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1291 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1292 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1293 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1294 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1295 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1296};
1297
1298static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1299 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1300 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1301 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1302 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1303 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1304 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1305 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1306 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1307 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1308 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1309 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1310 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1311 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1312 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1313 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1314 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1315};
1316
1317#undef LLVM_READOBJ_DT_FLAG_ENT
1318
1319template <typename T, typename TFlag>
1320void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1321 typedef EnumEntry<TFlag> FlagEntry;
1322 typedef SmallVector<FlagEntry, 10> FlagVector;
1323 FlagVector SetFlags;
1324
1325 for (const auto &Flag : Flags) {
1326 if (Flag.Value == 0)
1327 continue;
1328
1329 if ((Value & Flag.Value) == Flag.Value)
1330 SetFlags.push_back(Flag);
1331 }
1332
1333 for (const auto &Flag : SetFlags) {
1334 OS << Flag.Name << " ";
1335 }
1336}
1337
1338template <class ELFT>
1339StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1340 if (Value >= DynamicStringTable.size())
1341 reportError("Invalid dynamic string table reference");
1342 return StringRef(DynamicStringTable.data() + Value);
1343}
1344
1345template <class ELFT>
1346void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1347 raw_ostream &OS = W.getOStream();
1348 switch (Type) {
1349 case DT_PLTREL:
1350 if (Value == DT_REL) {
1351 OS << "REL";
1352 break;
1353 } else if (Value == DT_RELA) {
1354 OS << "RELA";
1355 break;
1356 }
1357 // Fallthrough.
1358 case DT_PLTGOT:
1359 case DT_HASH:
1360 case DT_STRTAB:
1361 case DT_SYMTAB:
1362 case DT_RELA:
1363 case DT_INIT:
1364 case DT_FINI:
1365 case DT_REL:
1366 case DT_JMPREL:
1367 case DT_INIT_ARRAY:
1368 case DT_FINI_ARRAY:
1369 case DT_PREINIT_ARRAY:
1370 case DT_DEBUG:
1371 case DT_VERNEED:
1372 case DT_VERSYM:
1373 case DT_GNU_HASH:
1374 case DT_NULL:
1375 case DT_MIPS_BASE_ADDRESS:
1376 case DT_MIPS_GOTSYM:
1377 case DT_MIPS_RLD_MAP:
1378 case DT_MIPS_RLD_MAP_REL:
1379 case DT_MIPS_PLTGOT:
1380 case DT_MIPS_OPTIONS:
1381 OS << format("0x%" PRIX64"l" "X", Value);
1382 break;
1383 case DT_RELCOUNT:
1384 case DT_VERNEEDNUM:
1385 case DT_MIPS_RLD_VERSION:
1386 case DT_MIPS_LOCAL_GOTNO:
1387 case DT_MIPS_SYMTABNO:
1388 case DT_MIPS_UNREFEXTNO:
1389 OS << Value;
1390 break;
1391 case DT_PLTRELSZ:
1392 case DT_RELASZ:
1393 case DT_RELAENT:
1394 case DT_STRSZ:
1395 case DT_SYMENT:
1396 case DT_RELSZ:
1397 case DT_RELENT:
1398 case DT_INIT_ARRAYSZ:
1399 case DT_FINI_ARRAYSZ:
1400 case DT_PREINIT_ARRAYSZ:
1401 OS << Value << " (bytes)";
1402 break;
1403 case DT_NEEDED:
1404 OS << "SharedLibrary (" << getDynamicString(Value) << ")";
1405 break;
1406 case DT_SONAME:
1407 OS << "LibrarySoname (" << getDynamicString(Value) << ")";
1408 break;
1409 case DT_RPATH:
1410 case DT_RUNPATH:
1411 OS << getDynamicString(Value);
1412 break;
1413 case DT_MIPS_FLAGS:
1414 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1415 break;
1416 case DT_FLAGS:
1417 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1418 break;
1419 case DT_FLAGS_1:
1420 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1421 break;
1422 default:
1423 OS << format("0x%" PRIX64"l" "X", Value);
1424 break;
1425 }
1426}
1427
1428template<class ELFT>
1429void ELFDumper<ELFT>::printUnwindInfo() {
1430 W.startLine() << "UnwindInfo not implemented.\n";
1431}
1432
1433namespace {
1434template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
1435 const unsigned Machine = Obj->getHeader()->e_machine;
1436 if (Machine == EM_ARM) {
1437 ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(
1438 W, Obj, DotSymtabSec);
1439 return Ctx.PrintUnwindInformation();
1440 }
1441 W.startLine() << "UnwindInfo not implemented.\n";
1442}
1443}
1444
1445template<class ELFT>
1446void ELFDumper<ELFT>::printDynamicTable() {
1447 auto I = dynamic_table_begin();
1448 auto E = dynamic_table_end();
1449
1450 if (I == E)
1451 return;
1452
1453 --E;
1454 while (I != E && E->getTag() == ELF::DT_NULL)
1455 --E;
1456 if (E->getTag() != ELF::DT_NULL)
1457 ++E;
1458 ++E;
1459
1460 ptrdiff_t Total = std::distance(I, E);
1461 if (Total == 0)
1462 return;
1463
1464 raw_ostream &OS = W.getOStream();
1465 W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1466
1467 bool Is64 = ELFT::Is64Bits;
1468
1469 W.startLine()
1470 << " Tag" << (Is64 ? " " : " ") << "Type"
1471 << " " << "Name/Value\n";
1472 while (I != E) {
1473 const Elf_Dyn &Entry = *I;
1474 ++I;
1475 W.startLine()
1476 << " "
1477 << format(Is64 ? "0x%016" PRIX64"l" "X" : "0x%08" PRIX64"l" "X", Entry.getTag())
1478 << " " << format("%-21s", getTypeString(Entry.getTag()));
1479 printValue(Entry.getTag(), Entry.getVal());
1480 OS << "\n";
1481 }
1482
1483 W.startLine() << "]\n";
1484}
1485
1486template<class ELFT>
1487void ELFDumper<ELFT>::printNeededLibraries() {
1488 ListScope D(W, "NeededLibraries");
1489
1490 typedef std::vector<StringRef> LibsTy;
1491 LibsTy Libs;
1492
1493 for (const auto &Entry : dynamic_table())
1494 if (Entry.d_tag == ELF::DT_NEEDED)
1495 Libs.push_back(getDynamicString(Entry.d_un.d_val));
1496
1497 std::stable_sort(Libs.begin(), Libs.end());
1498
1499 for (const auto &L : Libs) {
1500 outs() << " " << L << "\n";
1501 }
1502}
1503
1504template<class ELFT>
1505void ELFDumper<ELFT>::printProgramHeaders() {
1506 ListScope L(W, "ProgramHeaders");
1507
1508 for (const Elf_Phdr &Phdr : Obj->program_headers()) {
1509 DictScope P(W, "ProgramHeader");
1510 W.printHex("Type",
1511 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
1512 Phdr.p_type);
1513 W.printHex("Offset", Phdr.p_offset);
1514 W.printHex("VirtualAddress", Phdr.p_vaddr);
1515 W.printHex("PhysicalAddress", Phdr.p_paddr);
1516 W.printNumber("FileSize", Phdr.p_filesz);
1517 W.printNumber("MemSize", Phdr.p_memsz);
1518 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
1519 W.printNumber("Alignment", Phdr.p_align);
1520 }
1521}
1522
1523template <typename ELFT>
1524void ELFDumper<ELFT>::printHashTable() {
1525 DictScope D(W, "HashTable");
1526 if (!HashTable)
1527 return;
1528 W.printNumber("Num Buckets", HashTable->nbucket);
1529 W.printNumber("Num Chains", HashTable->nchain);
1530 W.printList("Buckets", HashTable->buckets());
1531 W.printList("Chains", HashTable->chains());
1532}
1533
1534template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1535 outs() << "LoadName: " << SOName << '\n';
1536}
1537
1538template <class ELFT>
1539void ELFDumper<ELFT>::printAttributes() {
1540 W.startLine() << "Attributes not implemented.\n";
1541}
1542
1543namespace {
1544template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
1545 if (Obj->getHeader()->e_machine != EM_ARM) {
1546 W.startLine() << "Attributes not implemented.\n";
1547 return;
1548 }
1549
1550 DictScope BA(W, "BuildAttributes");
1551 for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
1552 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
1553 continue;
1554
1555 ErrorOr<ArrayRef<uint8_t>> Contents = Obj->getSectionContents(&Sec);
1556 if (!Contents)
1557 continue;
1558
1559 if ((*Contents)[0] != ARMBuildAttrs::Format_Version) {
1560 errs() << "unrecognised FormatVersion: 0x" << utohexstr((*Contents)[0])
1561 << '\n';
1562 continue;
1563 }
1564
1565 W.printHex("FormatVersion", (*Contents)[0]);
1566 if (Contents->size() == 1)
1567 continue;
1568
1569 ARMAttributeParser(W).Parse(*Contents);
1570 }
1571}
1572}
1573
1574namespace {
1575template <class ELFT> class MipsGOTParser {
1576public:
1577 typedef object::ELFFile<ELFT> ELFO;
1578 typedef typename ELFO::Elf_Shdr Elf_Shdr;
1579 typedef typename ELFO::Elf_Sym Elf_Sym;
1580 typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range;
1581 typedef typename ELFO::Elf_Addr GOTEntry;
1582 typedef typename ELFO::Elf_Rel Elf_Rel;
1583 typedef typename ELFO::Elf_Rela Elf_Rela;
1584
1585 MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1586 Elf_Dyn_Range DynTable, StreamWriter &W);
1587
1588 void parseGOT();
1589 void parsePLT();
1590
1591private:
1592 ELFDumper<ELFT> *Dumper;
1593 const ELFO *Obj;
1594 StreamWriter &W;
1595 llvm::Optional<uint64_t> DtPltGot;
1596 llvm::Optional<uint64_t> DtLocalGotNum;
1597 llvm::Optional<uint64_t> DtGotSym;
1598 llvm::Optional<uint64_t> DtMipsPltGot;
1599 llvm::Optional<uint64_t> DtJmpRel;
1600
1601 std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
1602 const GOTEntry *makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);
1603
1604 void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1605 const GOTEntry *It);
1606 void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt,
1607 const GOTEntry *It, const Elf_Sym *Sym,
1608 StringRef StrTable, bool IsDynamic);
1609 void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1610 const GOTEntry *It, StringRef Purpose);
1611 void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt,
1612 const GOTEntry *It, StringRef StrTable,
1613 const Elf_Sym *Sym);
1614};
1615}
1616
1617template <class ELFT>
1618MipsGOTParser<ELFT>::MipsGOTParser(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
1619 Elf_Dyn_Range DynTable, StreamWriter &W)
1620 : Dumper(Dumper), Obj(Obj), W(W) {
1621 for (const auto &Entry : DynTable) {
1622 switch (Entry.getTag()) {
1623 case ELF::DT_PLTGOT:
1624 DtPltGot = Entry.getVal();
1625 break;
1626 case ELF::DT_MIPS_LOCAL_GOTNO:
1627 DtLocalGotNum = Entry.getVal();
1628 break;
1629 case ELF::DT_MIPS_GOTSYM:
1630 DtGotSym = Entry.getVal();
1631 break;
1632 case ELF::DT_MIPS_PLTGOT:
1633 DtMipsPltGot = Entry.getVal();
1634 break;
1635 case ELF::DT_JMPREL:
1636 DtJmpRel = Entry.getVal();
1637 break;
1638 }
1639 }
1640}
1641
1642template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
1643 // See "Global Offset Table" in Chapter 5 in the following document
1644 // for detailed GOT description.
1645 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1646 if (!DtPltGot) {
1647 W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
1648 return;
1649 }
1650 if (!DtLocalGotNum) {
1651 W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
1652 return;
1653 }
1654 if (!DtGotSym) {
1655 W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
1656 return;
1657 }
1658
1659 const Elf_Shdr *GOTShdr = findSectionByAddress(Obj, *DtPltGot);
1660 if (!GOTShdr) {
1661 W.startLine() << "There is no .got section in the file.\n";
1662 return;
1663 }
1664
1665 ErrorOr<ArrayRef<uint8_t>> GOT = Obj->getSectionContents(GOTShdr);
1666 if (!GOT) {
1667 W.startLine() << "The .got section is empty.\n";
1668 return;
1669 }
1670
1671 if (*DtLocalGotNum > getGOTTotal(*GOT)) {
1672 W.startLine() << "MIPS_LOCAL_GOTNO exceeds a number of GOT entries.\n";
1673 return;
1674 }
1675
1676 const Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec();
1677 ErrorOr<StringRef> StrTable = Obj->getStringTableForSymtab(*DynSymSec);
1678 error(StrTable.getError());
1679 const Elf_Sym *DynSymBegin = Obj->symbol_begin(DynSymSec);
1680 const Elf_Sym *DynSymEnd = Obj->symbol_end(DynSymSec);
1681 std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));
1682
1683 if (*DtGotSym > DynSymTotal) {
1684 W.startLine() << "MIPS_GOTSYM exceeds a number of dynamic symbols.\n";
1685 return;
1686 }
1687
1688 std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;
1689
1690 if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(*GOT)) {
1691 W.startLine() << "Number of global GOT entries exceeds the size of GOT.\n";
1692 return;
1693 }
1694
1695 const GOTEntry *GotBegin = makeGOTIter(*GOT, 0);
1696 const GOTEntry *GotLocalEnd = makeGOTIter(*GOT, *DtLocalGotNum);
1697 const GOTEntry *It = GotBegin;
1698
1699 DictScope GS(W, "Primary GOT");
1700
1701 W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
1702 {
1703 ListScope RS(W, "Reserved entries");
1704
1705 {
1706 DictScope D(W, "Entry");
1707 printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
1708 W.printString("Purpose", StringRef("Lazy resolver"));
1709 }
1710
1711 if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
1712 DictScope D(W, "Entry");
1713 printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
1714 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
1715 }
1716 }
1717 {
1718 ListScope LS(W, "Local entries");
1719 for (; It != GotLocalEnd; ++It) {
1720 DictScope D(W, "Entry");
1721 printGotEntry(GOTShdr->sh_addr, GotBegin, It);
1722 }
1723 }
1724 {
1725 ListScope GS(W, "Global entries");
1726
1727 const GOTEntry *GotGlobalEnd =
1728 makeGOTIter(*GOT, *DtLocalGotNum + GlobalGotNum);
1729 const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
1730 for (; It != GotGlobalEnd; ++It) {
1731 DictScope D(W, "Entry");
1732 printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++,
1733 *StrTable, true);
1734 }
1735 }
1736
1737 std::size_t SpecGotNum = getGOTTotal(*GOT) - *DtLocalGotNum - GlobalGotNum;
1738 W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
1739}
1740
1741template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
1742 if (!DtMipsPltGot) {
1743 W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
1744 return;
1745 }
1746 if (!DtJmpRel) {
1747 W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
1748 return;
1749 }
1750
1751 const Elf_Shdr *PLTShdr = findSectionByAddress(Obj, *DtMipsPltGot);
1752 if (!PLTShdr) {
1753 W.startLine() << "There is no .got.plt section in the file.\n";
1754 return;
1755 }
1756 ErrorOr<ArrayRef<uint8_t>> PLT = Obj->getSectionContents(PLTShdr);
1757 if (!PLT) {
1758 W.startLine() << "The .got.plt section is empty.\n";
1759 return;
1760 }
1761
1762 const Elf_Shdr *PLTRelShdr = findSectionByAddress(Obj, *DtJmpRel);
1763 if (!PLTShdr) {
1764 W.startLine() << "There is no .rel.plt section in the file.\n";
1765 return;
1766 }
1767 ErrorOr<const Elf_Shdr *> SymTableOrErr =
1768 Obj->getSection(PLTRelShdr->sh_link);
1769 error(SymTableOrErr.getError());
1770 ErrorOr<StringRef> StrTable = Obj->getStringTableForSymtab(**SymTableOrErr);
1771 error(StrTable.getError());
1772
1773 const GOTEntry *PLTBegin = makeGOTIter(*PLT, 0);
1774 const GOTEntry *PLTEnd = makeGOTIter(*PLT, getGOTTotal(*PLT));
1775 const GOTEntry *It = PLTBegin;
1776
1777 DictScope GS(W, "PLT GOT");
1778 {
1779 ListScope RS(W, "Reserved entries");
1780 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
1781 if (It != PLTEnd)
1782 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
1783 }
1784 {
1785 ListScope GS(W, "Entries");
1786
1787 switch (PLTRelShdr->sh_type) {
1788 case ELF::SHT_REL:
1789 for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
1790 *RE = Obj->rel_end(PLTRelShdr);
1791 RI != RE && It != PLTEnd; ++RI, ++It) {
1792 const Elf_Sym *Sym =
1793 Obj->getRelocationSymbol(&*PLTRelShdr, &*RI).second;
1794 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym);
1795 }
1796 break;
1797 case ELF::SHT_RELA:
1798 for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr),
1799 *RE = Obj->rela_end(PLTRelShdr);
1800 RI != RE && It != PLTEnd; ++RI, ++It) {
1801 const Elf_Sym *Sym =
1802 Obj->getRelocationSymbol(&*PLTRelShdr, &*RI).second;
1803 printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym);
1804 }
1805 break;
1806 }
1807 }
1808}
1809
1810template <class ELFT>
1811std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
1812 return GOT.size() / sizeof(GOTEntry);
1813}
1814
1815template <class ELFT>
1816const typename MipsGOTParser<ELFT>::GOTEntry *
1817MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
1818 const char *Data = reinterpret_cast<const char *>(GOT.data());
1819 return reinterpret_cast<const GOTEntry *>(Data + EntryNum * sizeof(GOTEntry));
1820}
1821
1822template <class ELFT>
1823void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr,
1824 const GOTEntry *BeginIt,
1825 const GOTEntry *It) {
1826 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
1827 W.printHex("Address", GotAddr + Offset);
1828 W.printNumber("Access", Offset - 0x7ff0);
1829 W.printHex("Initial", *It);
1830}
1831
1832template <class ELFT>
1833void MipsGOTParser<ELFT>::printGlobalGotEntry(
1834 uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It,
1835 const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) {
1836 printGotEntry(GotAddr, BeginIt, It);
1837
1838 W.printHex("Value", Sym->st_value);
1839 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
1840
1841 unsigned SectionIndex = 0;
1842 StringRef SectionName;
1843 getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(),
1844 Dumper->getShndxTable(), SectionName, SectionIndex);
1845 W.printHex("Section", SectionName, SectionIndex);
1846
1847 std::string FullSymbolName =
1848 Dumper->getFullSymbolName(Sym, StrTable, IsDynamic);
1849 W.printNumber("Name", FullSymbolName, Sym->st_name);
1850}
1851
1852template <class ELFT>
1853void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
1854 const GOTEntry *BeginIt,
1855 const GOTEntry *It, StringRef Purpose) {
1856 DictScope D(W, "Entry");
1857 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
1858 W.printHex("Address", PLTAddr + Offset);
1859 W.printHex("Initial", *It);
1860 W.printString("Purpose", Purpose);
1861}
1862
1863template <class ELFT>
1864void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr,
1865 const GOTEntry *BeginIt,
1866 const GOTEntry *It, StringRef StrTable,
1867 const Elf_Sym *Sym) {
1868 DictScope D(W, "Entry");
1869 int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
1870 W.printHex("Address", PLTAddr + Offset);
1871 W.printHex("Initial", *It);
1872 W.printHex("Value", Sym->st_value);
1873 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
1874
1875 unsigned SectionIndex = 0;
1876 StringRef SectionName;
1877 getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(),
1878 Dumper->getShndxTable(), SectionName, SectionIndex);
1879 W.printHex("Section", SectionName, SectionIndex);
1880
1881 std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true);
1882 W.printNumber("Name", FullSymbolName, Sym->st_name);
1883}
1884
1885template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
1886 if (Obj->getHeader()->e_machine != EM_MIPS) {
1887 W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
1888 return;
1889 }
1890
1891 MipsGOTParser<ELFT> GOTParser(this, Obj, dynamic_table(), W);
1892 GOTParser.parseGOT();
1893 GOTParser.parsePLT();
1894}
1895
1896static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
1897 {"None", Mips::AFL_EXT_NONE},
1898 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
1899 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
1900 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
1901 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
1902 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
1903 {"LSI R4010", Mips::AFL_EXT_4010},
1904 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
1905 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
1906 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
1907 {"MIPS R4650", Mips::AFL_EXT_4650},
1908 {"MIPS R5900", Mips::AFL_EXT_5900},
1909 {"MIPS R10000", Mips::AFL_EXT_10000},
1910 {"NEC VR4100", Mips::AFL_EXT_4100},
1911 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
1912 {"NEC VR4120", Mips::AFL_EXT_4120},
1913 {"NEC VR5400", Mips::AFL_EXT_5400},
1914 {"NEC VR5500", Mips::AFL_EXT_5500},
1915 {"RMI Xlr", Mips::AFL_EXT_XLR},
1916 {"Toshiba R3900", Mips::AFL_EXT_3900}
1917};
1918
1919static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
1920 {"DSP", Mips::AFL_ASE_DSP},
1921 {"DSPR2", Mips::AFL_ASE_DSPR2},
1922 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
1923 {"MCU", Mips::AFL_ASE_MCU},
1924 {"MDMX", Mips::AFL_ASE_MDMX},
1925 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
1926 {"MT", Mips::AFL_ASE_MT},
1927 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
1928 {"VZ", Mips::AFL_ASE_VIRT},
1929 {"MSA", Mips::AFL_ASE_MSA},
1930 {"MIPS16", Mips::AFL_ASE_MIPS16},
1931 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
1932 {"XPA", Mips::AFL_ASE_XPA}
1933};
1934
1935static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
1936 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
1937 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
1938 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
1939 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
1940 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
1941 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
1942 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
1943 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
1944 {"Hard float compat (32-bit CPU, 64-bit FPU)",
1945 Mips::Val_GNU_MIPS_ABI_FP_64A}
1946};
1947
1948static const EnumEntry<unsigned> ElfMipsFlags1[] {
1949 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
1950};
1951
1952static int getMipsRegisterSize(uint8_t Flag) {
1953 switch (Flag) {
1954 case Mips::AFL_REG_NONE:
1955 return 0;
1956 case Mips::AFL_REG_32:
1957 return 32;
1958 case Mips::AFL_REG_64:
1959 return 64;
1960 case Mips::AFL_REG_128:
1961 return 128;
1962 default:
1963 return -1;
1964 }
1965}
1966
1967template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
1968 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
1969 if (!Shdr) {
1970 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
1971 return;
1972 }
1973 ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
1974 if (!Sec) {
1975 W.startLine() << "The .MIPS.abiflags section is empty.\n";
1976 return;
1977 }
1978 if (Sec->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
1979 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
1980 return;
1981 }
1982
1983 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec->data());
1984
1985 raw_ostream &OS = W.getOStream();
1986 DictScope GS(W, "MIPS ABI Flags");
1987
1988 W.printNumber("Version", Flags->version);
1989 W.startLine() << "ISA: ";
1990 if (Flags->isa_rev <= 1)
1991 OS << format("MIPS%u", Flags->isa_level);
1992 else
1993 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
1994 OS << "\n";
1995 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
1996 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
1997 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
1998 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
1999 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2000 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2001 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2002 W.printHex("Flags 2", Flags->flags2);
2003}
2004
2005template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2006 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2007 if (!Shdr) {
2008 W.startLine() << "There is no .reginfo section in the file.\n";
2009 return;
2010 }
2011 ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
2012 if (!Sec) {
2013 W.startLine() << "The .reginfo section is empty.\n";
2014 return;
2015 }
2016 if (Sec->size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2017 W.startLine() << "The .reginfo section has a wrong size.\n";
2018 return;
2019 }
2020
2021 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec->data());
2022
2023 DictScope GS(W, "MIPS RegInfo");
2024 W.printHex("GP", Reginfo->ri_gp_value);
2025 W.printHex("General Mask", Reginfo->ri_gprmask);
2026 W.printHex("Co-Proc Mask0", Reginfo->ri_cprmask[0]);
2027 W.printHex("Co-Proc Mask1", Reginfo->ri_cprmask[1]);
2028 W.printHex("Co-Proc Mask2", Reginfo->ri_cprmask[2]);
2029 W.printHex("Co-Proc Mask3", Reginfo->ri_cprmask[3]);
2030}
2031
2032template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2033 const Elf_Shdr *StackMapSection = nullptr;
2034 for (const auto &Sec : Obj->sections()) {
2035 ErrorOr<StringRef> Name = Obj->getSectionName(&Sec);
2036 if (*Name == ".llvm_stackmaps") {
2037 StackMapSection = &Sec;
2038 break;
2039 }
2040 }
2041
2042 if (!StackMapSection)
2043 return;
2044
2045 StringRef StackMapContents;
2046 ErrorOr<ArrayRef<uint8_t>> StackMapContentsArray =
2047 Obj->getSectionContents(StackMapSection);
2048
2049 prettyPrintStackMap(
2050 llvm::outs(),
2051 StackMapV1Parser<ELFT::TargetEndianness>(*StackMapContentsArray));
2052}