Bug Summary

File:include/llvm/Support/Error.h
Warning:line 200, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ELFObjectFile.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Object -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Object -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Object -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Object/ELFObjectFile.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/Object/ELFObjectFile.cpp

1//===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Part of the ELFObjectFile class implementation.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Object/ELFObjectFile.h"
14#include "llvm/ADT/Triple.h"
15#include "llvm/BinaryFormat/ELF.h"
16#include "llvm/MC/MCInstrAnalysis.h"
17#include "llvm/MC/SubtargetFeature.h"
18#include "llvm/Object/ELF.h"
19#include "llvm/Object/ELFTypes.h"
20#include "llvm/Object/Error.h"
21#include "llvm/Support/ARMAttributeParser.h"
22#include "llvm/Support/ARMBuildAttributes.h"
23#include "llvm/Support/Endian.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/TargetRegistry.h"
27#include <algorithm>
28#include <cstddef>
29#include <cstdint>
30#include <memory>
31#include <string>
32#include <system_error>
33#include <utility>
34
35using namespace llvm;
36using namespace object;
37
38const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
39 {"None", "NOTYPE", ELF::STT_NOTYPE},
40 {"Object", "OBJECT", ELF::STT_OBJECT},
41 {"Function", "FUNC", ELF::STT_FUNC},
42 {"Section", "SECTION", ELF::STT_SECTION},
43 {"File", "FILE", ELF::STT_FILE},
44 {"Common", "COMMON", ELF::STT_COMMON},
45 {"TLS", "TLS", ELF::STT_TLS},
46 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}};
47
48ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
49 : ObjectFile(Type, Source) {}
50
51template <class ELFT>
52static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
53createPtr(MemoryBufferRef Object) {
54 auto Ret = ELFObjectFile<ELFT>::create(Object);
8
Calling 'ELFObjectFile::create'
55 if (Error E = Ret.takeError())
56 return std::move(E);
57 return make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
58}
59
60Expected<std::unique_ptr<ObjectFile>>
61ObjectFile::createELFObjectFile(MemoryBufferRef Obj) {
62 std::pair<unsigned char, unsigned char> Ident =
63 getElfArchType(Obj.getBuffer());
64 std::size_t MaxAlignment =
65 1ULL << countTrailingZeros(uintptr_t(Obj.getBufferStart()));
66
67 if (MaxAlignment < 2)
1
Assuming 'MaxAlignment' is >= 2
2
Taking false branch
68 return createError("Insufficient alignment");
69
70 if (Ident.first == ELF::ELFCLASS32) {
3
Assuming the condition is true
4
Taking true branch
71 if (Ident.second == ELF::ELFDATA2LSB)
5
Assuming the condition is true
6
Taking true branch
72 return createPtr<ELF32LE>(Obj);
7
Calling 'createPtr<llvm::object::ELFType<llvm::support::little, false>>'
73 else if (Ident.second == ELF::ELFDATA2MSB)
74 return createPtr<ELF32BE>(Obj);
75 else
76 return createError("Invalid ELF data");
77 } else if (Ident.first == ELF::ELFCLASS64) {
78 if (Ident.second == ELF::ELFDATA2LSB)
79 return createPtr<ELF64LE>(Obj);
80 else if (Ident.second == ELF::ELFDATA2MSB)
81 return createPtr<ELF64BE>(Obj);
82 else
83 return createError("Invalid ELF data");
84 }
85 return createError("Invalid ELF class");
86}
87
88SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
89 SubtargetFeatures Features;
90 unsigned PlatformFlags = getPlatformFlags();
91
92 switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
93 case ELF::EF_MIPS_ARCH_1:
94 break;
95 case ELF::EF_MIPS_ARCH_2:
96 Features.AddFeature("mips2");
97 break;
98 case ELF::EF_MIPS_ARCH_3:
99 Features.AddFeature("mips3");
100 break;
101 case ELF::EF_MIPS_ARCH_4:
102 Features.AddFeature("mips4");
103 break;
104 case ELF::EF_MIPS_ARCH_5:
105 Features.AddFeature("mips5");
106 break;
107 case ELF::EF_MIPS_ARCH_32:
108 Features.AddFeature("mips32");
109 break;
110 case ELF::EF_MIPS_ARCH_64:
111 Features.AddFeature("mips64");
112 break;
113 case ELF::EF_MIPS_ARCH_32R2:
114 Features.AddFeature("mips32r2");
115 break;
116 case ELF::EF_MIPS_ARCH_64R2:
117 Features.AddFeature("mips64r2");
118 break;
119 case ELF::EF_MIPS_ARCH_32R6:
120 Features.AddFeature("mips32r6");
121 break;
122 case ELF::EF_MIPS_ARCH_64R6:
123 Features.AddFeature("mips64r6");
124 break;
125 default:
126 llvm_unreachable("Unknown EF_MIPS_ARCH value")::llvm::llvm_unreachable_internal("Unknown EF_MIPS_ARCH value"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Object/ELFObjectFile.cpp"
, 126)
;
127 }
128
129 switch (PlatformFlags & ELF::EF_MIPS_MACH) {
130 case ELF::EF_MIPS_MACH_NONE:
131 // No feature associated with this value.
132 break;
133 case ELF::EF_MIPS_MACH_OCTEON:
134 Features.AddFeature("cnmips");
135 break;
136 default:
137 llvm_unreachable("Unknown EF_MIPS_ARCH value")::llvm::llvm_unreachable_internal("Unknown EF_MIPS_ARCH value"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Object/ELFObjectFile.cpp"
, 137)
;
138 }
139
140 if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
141 Features.AddFeature("mips16");
142 if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
143 Features.AddFeature("micromips");
144
145 return Features;
146}
147
148SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
149 SubtargetFeatures Features;
150 ARMAttributeParser Attributes;
151 if (Error E = getBuildAttributes(Attributes))
152 return SubtargetFeatures();
153
154 // both ARMv7-M and R have to support thumb hardware div
155 bool isV7 = false;
156 if (Attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
157 isV7 = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch)
158 == ARMBuildAttrs::v7;
159
160 if (Attributes.hasAttribute(ARMBuildAttrs::CPU_arch_profile)) {
161 switch(Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile)) {
162 case ARMBuildAttrs::ApplicationProfile:
163 Features.AddFeature("aclass");
164 break;
165 case ARMBuildAttrs::RealTimeProfile:
166 Features.AddFeature("rclass");
167 if (isV7)
168 Features.AddFeature("hwdiv");
169 break;
170 case ARMBuildAttrs::MicroControllerProfile:
171 Features.AddFeature("mclass");
172 if (isV7)
173 Features.AddFeature("hwdiv");
174 break;
175 }
176 }
177
178 if (Attributes.hasAttribute(ARMBuildAttrs::THUMB_ISA_use)) {
179 switch(Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use)) {
180 default:
181 break;
182 case ARMBuildAttrs::Not_Allowed:
183 Features.AddFeature("thumb", false);
184 Features.AddFeature("thumb2", false);
185 break;
186 case ARMBuildAttrs::AllowThumb32:
187 Features.AddFeature("thumb2");
188 break;
189 }
190 }
191
192 if (Attributes.hasAttribute(ARMBuildAttrs::FP_arch)) {
193 switch(Attributes.getAttributeValue(ARMBuildAttrs::FP_arch)) {
194 default:
195 break;
196 case ARMBuildAttrs::Not_Allowed:
197 Features.AddFeature("vfp2d16sp", false);
198 Features.AddFeature("vfp3d16sp", false);
199 Features.AddFeature("vfp4d16sp", false);
200 break;
201 case ARMBuildAttrs::AllowFPv2:
202 Features.AddFeature("vfp2");
203 break;
204 case ARMBuildAttrs::AllowFPv3A:
205 case ARMBuildAttrs::AllowFPv3B:
206 Features.AddFeature("vfp3");
207 break;
208 case ARMBuildAttrs::AllowFPv4A:
209 case ARMBuildAttrs::AllowFPv4B:
210 Features.AddFeature("vfp4");
211 break;
212 }
213 }
214
215 if (Attributes.hasAttribute(ARMBuildAttrs::Advanced_SIMD_arch)) {
216 switch(Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch)) {
217 default:
218 break;
219 case ARMBuildAttrs::Not_Allowed:
220 Features.AddFeature("neon", false);
221 Features.AddFeature("fp16", false);
222 break;
223 case ARMBuildAttrs::AllowNeon:
224 Features.AddFeature("neon");
225 break;
226 case ARMBuildAttrs::AllowNeon2:
227 Features.AddFeature("neon");
228 Features.AddFeature("fp16");
229 break;
230 }
231 }
232
233 if (Attributes.hasAttribute(ARMBuildAttrs::MVE_arch)) {
234 switch(Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch)) {
235 default:
236 break;
237 case ARMBuildAttrs::Not_Allowed:
238 Features.AddFeature("mve", false);
239 Features.AddFeature("mve.fp", false);
240 break;
241 case ARMBuildAttrs::AllowMVEInteger:
242 Features.AddFeature("mve.fp", false);
243 Features.AddFeature("mve");
244 break;
245 case ARMBuildAttrs::AllowMVEIntegerAndFloat:
246 Features.AddFeature("mve.fp");
247 break;
248 }
249 }
250
251 if (Attributes.hasAttribute(ARMBuildAttrs::DIV_use)) {
252 switch(Attributes.getAttributeValue(ARMBuildAttrs::DIV_use)) {
253 default:
254 break;
255 case ARMBuildAttrs::DisallowDIV:
256 Features.AddFeature("hwdiv", false);
257 Features.AddFeature("hwdiv-arm", false);
258 break;
259 case ARMBuildAttrs::AllowDIVExt:
260 Features.AddFeature("hwdiv");
261 Features.AddFeature("hwdiv-arm");
262 break;
263 }
264 }
265
266 return Features;
267}
268
269SubtargetFeatures ELFObjectFileBase::getRISCVFeatures() const {
270 SubtargetFeatures Features;
271 unsigned PlatformFlags = getPlatformFlags();
272
273 if (PlatformFlags & ELF::EF_RISCV_RVC) {
274 Features.AddFeature("c");
275 }
276
277 return Features;
278}
279
280SubtargetFeatures ELFObjectFileBase::getFeatures() const {
281 switch (getEMachine()) {
282 case ELF::EM_MIPS:
283 return getMIPSFeatures();
284 case ELF::EM_ARM:
285 return getARMFeatures();
286 case ELF::EM_RISCV:
287 return getRISCVFeatures();
288 default:
289 return SubtargetFeatures();
290 }
291}
292
293// FIXME Encode from a tablegen description or target parser.
294void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
295 if (TheTriple.getSubArch() != Triple::NoSubArch)
296 return;
297
298 ARMAttributeParser Attributes;
299 if (Error E = getBuildAttributes(Attributes))
300 return;
301
302 std::string Triple;
303 // Default to ARM, but use the triple if it's been set.
304 if (TheTriple.isThumb())
305 Triple = "thumb";
306 else
307 Triple = "arm";
308
309 if (Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) {
310 switch(Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch)) {
311 case ARMBuildAttrs::v4:
312 Triple += "v4";
313 break;
314 case ARMBuildAttrs::v4T:
315 Triple += "v4t";
316 break;
317 case ARMBuildAttrs::v5T:
318 Triple += "v5t";
319 break;
320 case ARMBuildAttrs::v5TE:
321 Triple += "v5te";
322 break;
323 case ARMBuildAttrs::v5TEJ:
324 Triple += "v5tej";
325 break;
326 case ARMBuildAttrs::v6:
327 Triple += "v6";
328 break;
329 case ARMBuildAttrs::v6KZ:
330 Triple += "v6kz";
331 break;
332 case ARMBuildAttrs::v6T2:
333 Triple += "v6t2";
334 break;
335 case ARMBuildAttrs::v6K:
336 Triple += "v6k";
337 break;
338 case ARMBuildAttrs::v7:
339 Triple += "v7";
340 break;
341 case ARMBuildAttrs::v6_M:
342 Triple += "v6m";
343 break;
344 case ARMBuildAttrs::v6S_M:
345 Triple += "v6sm";
346 break;
347 case ARMBuildAttrs::v7E_M:
348 Triple += "v7em";
349 break;
350 }
351 }
352 if (!isLittleEndian())
353 Triple += "eb";
354
355 TheTriple.setArchName(Triple);
356}
357
358std::vector<std::pair<DataRefImpl, uint64_t>>
359ELFObjectFileBase::getPltAddresses() const {
360 std::string Err;
361 const auto Triple = makeTriple();
362 const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
363 if (!T)
364 return {};
365 uint64_t JumpSlotReloc = 0;
366 switch (Triple.getArch()) {
367 case Triple::x86:
368 JumpSlotReloc = ELF::R_386_JUMP_SLOT;
369 break;
370 case Triple::x86_64:
371 JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
372 break;
373 case Triple::aarch64:
374 JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
375 break;
376 default:
377 return {};
378 }
379 std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
380 std::unique_ptr<const MCInstrAnalysis> MIA(
381 T->createMCInstrAnalysis(MII.get()));
382 if (!MIA)
383 return {};
384 Optional<SectionRef> Plt = None, RelaPlt = None, GotPlt = None;
385 for (const SectionRef &Section : sections()) {
386 StringRef Name;
387 if (Section.getName(Name))
388 continue;
389 if (Name == ".plt")
390 Plt = Section;
391 else if (Name == ".rela.plt" || Name == ".rel.plt")
392 RelaPlt = Section;
393 else if (Name == ".got.plt")
394 GotPlt = Section;
395 }
396 if (!Plt || !RelaPlt || !GotPlt)
397 return {};
398 Expected<StringRef> PltContents = Plt->getContents();
399 if (!PltContents) {
400 consumeError(PltContents.takeError());
401 return {};
402 }
403 auto PltEntries = MIA->findPltEntries(Plt->getAddress(),
404 arrayRefFromStringRef(*PltContents),
405 GotPlt->getAddress(), Triple);
406 // Build a map from GOT entry virtual address to PLT entry virtual address.
407 DenseMap<uint64_t, uint64_t> GotToPlt;
408 for (const auto &Entry : PltEntries)
409 GotToPlt.insert(std::make_pair(Entry.second, Entry.first));
410 // Find the relocations in the dynamic relocation table that point to
411 // locations in the GOT for which we know the corresponding PLT entry.
412 std::vector<std::pair<DataRefImpl, uint64_t>> Result;
413 for (const auto &Relocation : RelaPlt->relocations()) {
414 if (Relocation.getType() != JumpSlotReloc)
415 continue;
416 auto PltEntryIter = GotToPlt.find(Relocation.getOffset());
417 if (PltEntryIter != GotToPlt.end())
418 Result.push_back(std::make_pair(
419 Relocation.getSymbol()->getRawDataRefImpl(), PltEntryIter->second));
420 }
421 return Result;
422}

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h

1//===- ELFObjectFile.h - ELF object file implementation ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the ELFObjectFile template class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_OBJECT_ELFOBJECTFILE_H
14#define LLVM_OBJECT_ELFOBJECTFILE_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/BinaryFormat/ELF.h"
23#include "llvm/MC/SubtargetFeature.h"
24#include "llvm/Object/Binary.h"
25#include "llvm/Object/ELF.h"
26#include "llvm/Object/ELFTypes.h"
27#include "llvm/Object/Error.h"
28#include "llvm/Object/ObjectFile.h"
29#include "llvm/Object/SymbolicFile.h"
30#include "llvm/Support/ARMAttributeParser.h"
31#include "llvm/Support/ARMBuildAttributes.h"
32#include "llvm/Support/Casting.h"
33#include "llvm/Support/Endian.h"
34#include "llvm/Support/Error.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MemoryBuffer.h"
37#include <cassert>
38#include <cstdint>
39#include <system_error>
40
41namespace llvm {
42namespace object {
43
44constexpr int NumElfSymbolTypes = 8;
45extern const llvm::EnumEntry<unsigned> ElfSymbolTypes[NumElfSymbolTypes];
46
47class elf_symbol_iterator;
48
49class ELFObjectFileBase : public ObjectFile {
50 friend class ELFRelocationRef;
51 friend class ELFSectionRef;
52 friend class ELFSymbolRef;
53
54protected:
55 ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source);
56
57 virtual uint16_t getEMachine() const = 0;
58 virtual uint64_t getSymbolSize(DataRefImpl Symb) const = 0;
59 virtual uint8_t getSymbolBinding(DataRefImpl Symb) const = 0;
60 virtual uint8_t getSymbolOther(DataRefImpl Symb) const = 0;
61 virtual uint8_t getSymbolELFType(DataRefImpl Symb) const = 0;
62
63 virtual uint32_t getSectionType(DataRefImpl Sec) const = 0;
64 virtual uint64_t getSectionFlags(DataRefImpl Sec) const = 0;
65 virtual uint64_t getSectionOffset(DataRefImpl Sec) const = 0;
66
67 virtual Expected<int64_t> getRelocationAddend(DataRefImpl Rel) const = 0;
68 virtual Error getBuildAttributes(ARMAttributeParser &Attributes) const = 0;
69
70public:
71 using elf_symbol_iterator_range = iterator_range<elf_symbol_iterator>;
72
73 virtual elf_symbol_iterator_range getDynamicSymbolIterators() const = 0;
74
75 /// Returns platform-specific object flags, if any.
76 virtual unsigned getPlatformFlags() const = 0;
77
78 elf_symbol_iterator_range symbols() const;
79
80 static bool classof(const Binary *v) { return v->isELF(); }
81
82 SubtargetFeatures getFeatures() const override;
83
84 SubtargetFeatures getMIPSFeatures() const;
85
86 SubtargetFeatures getARMFeatures() const;
87
88 SubtargetFeatures getRISCVFeatures() const;
89
90 void setARMSubArch(Triple &TheTriple) const override;
91
92 virtual uint16_t getEType() const = 0;
93
94 std::vector<std::pair<DataRefImpl, uint64_t>> getPltAddresses() const;
95};
96
97class ELFSectionRef : public SectionRef {
98public:
99 ELFSectionRef(const SectionRef &B) : SectionRef(B) {
100 assert(isa<ELFObjectFileBase>(SectionRef::getObject()))((isa<ELFObjectFileBase>(SectionRef::getObject())) ? static_cast
<void> (0) : __assert_fail ("isa<ELFObjectFileBase>(SectionRef::getObject())"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 100, __PRETTY_FUNCTION__))
;
101 }
102
103 const ELFObjectFileBase *getObject() const {
104 return cast<ELFObjectFileBase>(SectionRef::getObject());
105 }
106
107 uint32_t getType() const {
108 return getObject()->getSectionType(getRawDataRefImpl());
109 }
110
111 uint64_t getFlags() const {
112 return getObject()->getSectionFlags(getRawDataRefImpl());
113 }
114
115 uint64_t getOffset() const {
116 return getObject()->getSectionOffset(getRawDataRefImpl());
117 }
118};
119
120class elf_section_iterator : public section_iterator {
121public:
122 elf_section_iterator(const section_iterator &B) : section_iterator(B) {
123 assert(isa<ELFObjectFileBase>(B->getObject()))((isa<ELFObjectFileBase>(B->getObject())) ? static_cast
<void> (0) : __assert_fail ("isa<ELFObjectFileBase>(B->getObject())"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 123, __PRETTY_FUNCTION__))
;
124 }
125
126 const ELFSectionRef *operator->() const {
127 return static_cast<const ELFSectionRef *>(section_iterator::operator->());
128 }
129
130 const ELFSectionRef &operator*() const {
131 return static_cast<const ELFSectionRef &>(section_iterator::operator*());
132 }
133};
134
135class ELFSymbolRef : public SymbolRef {
136public:
137 ELFSymbolRef(const SymbolRef &B) : SymbolRef(B) {
138 assert(isa<ELFObjectFileBase>(SymbolRef::getObject()))((isa<ELFObjectFileBase>(SymbolRef::getObject())) ? static_cast
<void> (0) : __assert_fail ("isa<ELFObjectFileBase>(SymbolRef::getObject())"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 138, __PRETTY_FUNCTION__))
;
139 }
140
141 const ELFObjectFileBase *getObject() const {
142 return cast<ELFObjectFileBase>(BasicSymbolRef::getObject());
143 }
144
145 uint64_t getSize() const {
146 return getObject()->getSymbolSize(getRawDataRefImpl());
147 }
148
149 uint8_t getBinding() const {
150 return getObject()->getSymbolBinding(getRawDataRefImpl());
151 }
152
153 uint8_t getOther() const {
154 return getObject()->getSymbolOther(getRawDataRefImpl());
155 }
156
157 uint8_t getELFType() const {
158 return getObject()->getSymbolELFType(getRawDataRefImpl());
159 }
160
161 StringRef getELFTypeName() const {
162 uint8_t Type = getELFType();
163 for (auto &EE : ElfSymbolTypes) {
164 if (EE.Value == Type) {
165 return EE.AltName;
166 }
167 }
168 return "";
169 }
170};
171
172class elf_symbol_iterator : public symbol_iterator {
173public:
174 elf_symbol_iterator(const basic_symbol_iterator &B)
175 : symbol_iterator(SymbolRef(B->getRawDataRefImpl(),
176 cast<ELFObjectFileBase>(B->getObject()))) {}
177
178 const ELFSymbolRef *operator->() const {
179 return static_cast<const ELFSymbolRef *>(symbol_iterator::operator->());
180 }
181
182 const ELFSymbolRef &operator*() const {
183 return static_cast<const ELFSymbolRef &>(symbol_iterator::operator*());
184 }
185};
186
187class ELFRelocationRef : public RelocationRef {
188public:
189 ELFRelocationRef(const RelocationRef &B) : RelocationRef(B) {
190 assert(isa<ELFObjectFileBase>(RelocationRef::getObject()))((isa<ELFObjectFileBase>(RelocationRef::getObject())) ?
static_cast<void> (0) : __assert_fail ("isa<ELFObjectFileBase>(RelocationRef::getObject())"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 190, __PRETTY_FUNCTION__))
;
191 }
192
193 const ELFObjectFileBase *getObject() const {
194 return cast<ELFObjectFileBase>(RelocationRef::getObject());
195 }
196
197 Expected<int64_t> getAddend() const {
198 return getObject()->getRelocationAddend(getRawDataRefImpl());
199 }
200};
201
202class elf_relocation_iterator : public relocation_iterator {
203public:
204 elf_relocation_iterator(const relocation_iterator &B)
205 : relocation_iterator(RelocationRef(
206 B->getRawDataRefImpl(), cast<ELFObjectFileBase>(B->getObject()))) {}
207
208 const ELFRelocationRef *operator->() const {
209 return static_cast<const ELFRelocationRef *>(
210 relocation_iterator::operator->());
211 }
212
213 const ELFRelocationRef &operator*() const {
214 return static_cast<const ELFRelocationRef &>(
215 relocation_iterator::operator*());
216 }
217};
218
219inline ELFObjectFileBase::elf_symbol_iterator_range
220ELFObjectFileBase::symbols() const {
221 return elf_symbol_iterator_range(symbol_begin(), symbol_end());
222}
223
224template <class ELFT> class ELFObjectFile : public ELFObjectFileBase {
225 uint16_t getEMachine() const override;
226 uint16_t getEType() const override;
227 uint64_t getSymbolSize(DataRefImpl Sym) const override;
228
229public:
230 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword;
231
232 using uintX_t = typename ELFT::uint;
233
234 using Elf_Sym = typename ELFT::Sym;
235 using Elf_Shdr = typename ELFT::Shdr;
236 using Elf_Ehdr = typename ELFT::Ehdr;
237 using Elf_Rel = typename ELFT::Rel;
238 using Elf_Rela = typename ELFT::Rela;
239 using Elf_Dyn = typename ELFT::Dyn;
240
241private:
242 ELFObjectFile(MemoryBufferRef Object, ELFFile<ELFT> EF,
243 const Elf_Shdr *DotDynSymSec, const Elf_Shdr *DotSymtabSec,
244 ArrayRef<Elf_Word> ShndxTable);
245
246protected:
247 ELFFile<ELFT> EF;
248
249 const Elf_Shdr *DotDynSymSec = nullptr; // Dynamic symbol table section.
250 const Elf_Shdr *DotSymtabSec = nullptr; // Symbol table section.
251 ArrayRef<Elf_Word> ShndxTable;
252
253 void moveSymbolNext(DataRefImpl &Symb) const override;
254 Expected<StringRef> getSymbolName(DataRefImpl Symb) const override;
255 Expected<uint64_t> getSymbolAddress(DataRefImpl Symb) const override;
256 uint64_t getSymbolValueImpl(DataRefImpl Symb) const override;
257 uint32_t getSymbolAlignment(DataRefImpl Symb) const override;
258 uint64_t getCommonSymbolSizeImpl(DataRefImpl Symb) const override;
259 uint32_t getSymbolFlags(DataRefImpl Symb) const override;
260 uint8_t getSymbolBinding(DataRefImpl Symb) const override;
261 uint8_t getSymbolOther(DataRefImpl Symb) const override;
262 uint8_t getSymbolELFType(DataRefImpl Symb) const override;
263 Expected<SymbolRef::Type> getSymbolType(DataRefImpl Symb) const override;
264 Expected<section_iterator> getSymbolSection(const Elf_Sym *Symb,
265 const Elf_Shdr *SymTab) const;
266 Expected<section_iterator> getSymbolSection(DataRefImpl Symb) const override;
267
268 void moveSectionNext(DataRefImpl &Sec) const override;
269 Expected<StringRef> getSectionName(DataRefImpl Sec) const override;
270 uint64_t getSectionAddress(DataRefImpl Sec) const override;
271 uint64_t getSectionIndex(DataRefImpl Sec) const override;
272 uint64_t getSectionSize(DataRefImpl Sec) const override;
273 Expected<ArrayRef<uint8_t>>
274 getSectionContents(DataRefImpl Sec) const override;
275 uint64_t getSectionAlignment(DataRefImpl Sec) const override;
276 bool isSectionCompressed(DataRefImpl Sec) const override;
277 bool isSectionText(DataRefImpl Sec) const override;
278 bool isSectionData(DataRefImpl Sec) const override;
279 bool isSectionBSS(DataRefImpl Sec) const override;
280 bool isSectionVirtual(DataRefImpl Sec) const override;
281 bool isBerkeleyText(DataRefImpl Sec) const override;
282 bool isBerkeleyData(DataRefImpl Sec) const override;
283 relocation_iterator section_rel_begin(DataRefImpl Sec) const override;
284 relocation_iterator section_rel_end(DataRefImpl Sec) const override;
285 std::vector<SectionRef> dynamic_relocation_sections() const override;
286 section_iterator getRelocatedSection(DataRefImpl Sec) const override;
287
288 void moveRelocationNext(DataRefImpl &Rel) const override;
289 uint64_t getRelocationOffset(DataRefImpl Rel) const override;
290 symbol_iterator getRelocationSymbol(DataRefImpl Rel) const override;
291 uint64_t getRelocationType(DataRefImpl Rel) const override;
292 void getRelocationTypeName(DataRefImpl Rel,
293 SmallVectorImpl<char> &Result) const override;
294
295 uint32_t getSectionType(DataRefImpl Sec) const override;
296 uint64_t getSectionFlags(DataRefImpl Sec) const override;
297 uint64_t getSectionOffset(DataRefImpl Sec) const override;
298 StringRef getRelocationTypeName(uint32_t Type) const;
299
300 /// Get the relocation section that contains \a Rel.
301 const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
302 auto RelSecOrErr = EF.getSection(Rel.d.a);
303 if (!RelSecOrErr)
304 report_fatal_error(errorToErrorCode(RelSecOrErr.takeError()).message());
305 return *RelSecOrErr;
306 }
307
308 DataRefImpl toDRI(const Elf_Shdr *SymTable, unsigned SymbolNum) const {
309 DataRefImpl DRI;
310 if (!SymTable) {
311 DRI.d.a = 0;
312 DRI.d.b = 0;
313 return DRI;
314 }
315 assert(SymTable->sh_type == ELF::SHT_SYMTAB ||((SymTable->sh_type == ELF::SHT_SYMTAB || SymTable->sh_type
== ELF::SHT_DYNSYM) ? static_cast<void> (0) : __assert_fail
("SymTable->sh_type == ELF::SHT_SYMTAB || SymTable->sh_type == ELF::SHT_DYNSYM"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 316, __PRETTY_FUNCTION__))
316 SymTable->sh_type == ELF::SHT_DYNSYM)((SymTable->sh_type == ELF::SHT_SYMTAB || SymTable->sh_type
== ELF::SHT_DYNSYM) ? static_cast<void> (0) : __assert_fail
("SymTable->sh_type == ELF::SHT_SYMTAB || SymTable->sh_type == ELF::SHT_DYNSYM"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 316, __PRETTY_FUNCTION__))
;
317
318 auto SectionsOrErr = EF.sections();
319 if (!SectionsOrErr) {
320 DRI.d.a = 0;
321 DRI.d.b = 0;
322 return DRI;
323 }
324 uintptr_t SHT = reinterpret_cast<uintptr_t>((*SectionsOrErr).begin());
325 unsigned SymTableIndex =
326 (reinterpret_cast<uintptr_t>(SymTable) - SHT) / sizeof(Elf_Shdr);
327
328 DRI.d.a = SymTableIndex;
329 DRI.d.b = SymbolNum;
330 return DRI;
331 }
332
333 const Elf_Shdr *toELFShdrIter(DataRefImpl Sec) const {
334 return reinterpret_cast<const Elf_Shdr *>(Sec.p);
335 }
336
337 DataRefImpl toDRI(const Elf_Shdr *Sec) const {
338 DataRefImpl DRI;
339 DRI.p = reinterpret_cast<uintptr_t>(Sec);
340 return DRI;
341 }
342
343 DataRefImpl toDRI(const Elf_Dyn *Dyn) const {
344 DataRefImpl DRI;
345 DRI.p = reinterpret_cast<uintptr_t>(Dyn);
346 return DRI;
347 }
348
349 bool isExportedToOtherDSO(const Elf_Sym *ESym) const {
350 unsigned char Binding = ESym->getBinding();
351 unsigned char Visibility = ESym->getVisibility();
352
353 // A symbol is exported if its binding is either GLOBAL or WEAK, and its
354 // visibility is either DEFAULT or PROTECTED. All other symbols are not
355 // exported.
356 return (
357 (Binding == ELF::STB_GLOBAL || Binding == ELF::STB_WEAK ||
358 Binding == ELF::STB_GNU_UNIQUE) &&
359 (Visibility == ELF::STV_DEFAULT || Visibility == ELF::STV_PROTECTED));
360 }
361
362 Error getBuildAttributes(ARMAttributeParser &Attributes) const override {
363 auto SectionsOrErr = EF.sections();
364 if (!SectionsOrErr)
365 return SectionsOrErr.takeError();
366
367 for (const Elf_Shdr &Sec : *SectionsOrErr) {
368 if (Sec.sh_type == ELF::SHT_ARM_ATTRIBUTES) {
369 auto ErrorOrContents = EF.getSectionContents(&Sec);
370 if (!ErrorOrContents)
371 return ErrorOrContents.takeError();
372
373 auto Contents = ErrorOrContents.get();
374 if (Contents[0] != ARMBuildAttrs::Format_Version || Contents.size() == 1)
375 return Error::success();
376
377 Attributes.Parse(Contents, ELFT::TargetEndianness == support::little);
378 break;
379 }
380 }
381 return Error::success();
382 }
383
384 // This flag is used for classof, to distinguish ELFObjectFile from
385 // its subclass. If more subclasses will be created, this flag will
386 // have to become an enum.
387 bool isDyldELFObject;
388
389public:
390 ELFObjectFile(ELFObjectFile<ELFT> &&Other);
391 static Expected<ELFObjectFile<ELFT>> create(MemoryBufferRef Object);
392
393 const Elf_Rel *getRel(DataRefImpl Rel) const;
394 const Elf_Rela *getRela(DataRefImpl Rela) const;
395
396 const Elf_Sym *getSymbol(DataRefImpl Sym) const {
397 auto Ret = EF.template getEntry<Elf_Sym>(Sym.d.a, Sym.d.b);
398 if (!Ret)
399 report_fatal_error(errorToErrorCode(Ret.takeError()).message());
400 return *Ret;
401 }
402
403 const Elf_Shdr *getSection(DataRefImpl Sec) const {
404 return reinterpret_cast<const Elf_Shdr *>(Sec.p);
405 }
406
407 basic_symbol_iterator symbol_begin() const override;
408 basic_symbol_iterator symbol_end() const override;
409
410 elf_symbol_iterator dynamic_symbol_begin() const;
411 elf_symbol_iterator dynamic_symbol_end() const;
412
413 section_iterator section_begin() const override;
414 section_iterator section_end() const override;
415
416 Expected<int64_t> getRelocationAddend(DataRefImpl Rel) const override;
417
418 uint8_t getBytesInAddress() const override;
419 StringRef getFileFormatName() const override;
420 Triple::ArchType getArch() const override;
421 Expected<uint64_t> getStartAddress() const override;
422
423 unsigned getPlatformFlags() const override { return EF.getHeader()->e_flags; }
424
425 const ELFFile<ELFT> *getELFFile() const { return &EF; }
426
427 bool isDyldType() const { return isDyldELFObject; }
428 static bool classof(const Binary *v) {
429 return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
430 ELFT::Is64Bits);
431 }
432
433 elf_symbol_iterator_range getDynamicSymbolIterators() const override;
434
435 bool isRelocatableObject() const override;
436};
437
438using ELF32LEObjectFile = ELFObjectFile<ELF32LE>;
439using ELF64LEObjectFile = ELFObjectFile<ELF64LE>;
440using ELF32BEObjectFile = ELFObjectFile<ELF32BE>;
441using ELF64BEObjectFile = ELFObjectFile<ELF64BE>;
442
443template <class ELFT>
444void ELFObjectFile<ELFT>::moveSymbolNext(DataRefImpl &Sym) const {
445 ++Sym.d.b;
446}
447
448template <class ELFT>
449Expected<StringRef> ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Sym) const {
450 const Elf_Sym *ESym = getSymbol(Sym);
451 auto SymTabOrErr = EF.getSection(Sym.d.a);
452 if (!SymTabOrErr)
453 return SymTabOrErr.takeError();
454 const Elf_Shdr *SymTableSec = *SymTabOrErr;
455 auto StrTabOrErr = EF.getSection(SymTableSec->sh_link);
456 if (!StrTabOrErr)
457 return StrTabOrErr.takeError();
458 const Elf_Shdr *StringTableSec = *StrTabOrErr;
459 auto SymStrTabOrErr = EF.getStringTable(StringTableSec);
460 if (!SymStrTabOrErr)
461 return SymStrTabOrErr.takeError();
462 Expected<StringRef> Name = ESym->getName(*SymStrTabOrErr);
463
464 // If the symbol name is empty use the section name.
465 if ((!Name || Name->empty()) && ESym->getType() == ELF::STT_SECTION) {
466 StringRef SecName;
467 Expected<section_iterator> Sec = getSymbolSection(Sym);
468 if (Sec && !(*Sec)->getName(SecName))
469 return SecName;
470 }
471 return Name;
472}
473
474template <class ELFT>
475uint64_t ELFObjectFile<ELFT>::getSectionFlags(DataRefImpl Sec) const {
476 return getSection(Sec)->sh_flags;
477}
478
479template <class ELFT>
480uint32_t ELFObjectFile<ELFT>::getSectionType(DataRefImpl Sec) const {
481 return getSection(Sec)->sh_type;
482}
483
484template <class ELFT>
485uint64_t ELFObjectFile<ELFT>::getSectionOffset(DataRefImpl Sec) const {
486 return getSection(Sec)->sh_offset;
487}
488
489template <class ELFT>
490uint64_t ELFObjectFile<ELFT>::getSymbolValueImpl(DataRefImpl Symb) const {
491 const Elf_Sym *ESym = getSymbol(Symb);
492 uint64_t Ret = ESym->st_value;
493 if (ESym->st_shndx == ELF::SHN_ABS)
494 return Ret;
495
496 const Elf_Ehdr *Header = EF.getHeader();
497 // Clear the ARM/Thumb or microMIPS indicator flag.
498 if ((Header->e_machine == ELF::EM_ARM || Header->e_machine == ELF::EM_MIPS) &&
499 ESym->getType() == ELF::STT_FUNC)
500 Ret &= ~1;
501
502 return Ret;
503}
504
505template <class ELFT>
506Expected<uint64_t>
507ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb) const {
508 uint64_t Result = getSymbolValue(Symb);
509 const Elf_Sym *ESym = getSymbol(Symb);
510 switch (ESym->st_shndx) {
511 case ELF::SHN_COMMON:
512 case ELF::SHN_UNDEF:
513 case ELF::SHN_ABS:
514 return Result;
515 }
516
517 const Elf_Ehdr *Header = EF.getHeader();
518 auto SymTabOrErr = EF.getSection(Symb.d.a);
519 if (!SymTabOrErr)
520 return SymTabOrErr.takeError();
521 const Elf_Shdr *SymTab = *SymTabOrErr;
522
523 if (Header->e_type == ELF::ET_REL) {
524 auto SectionOrErr = EF.getSection(ESym, SymTab, ShndxTable);
525 if (!SectionOrErr)
526 return SectionOrErr.takeError();
527 const Elf_Shdr *Section = *SectionOrErr;
528 if (Section)
529 Result += Section->sh_addr;
530 }
531
532 return Result;
533}
534
535template <class ELFT>
536uint32_t ELFObjectFile<ELFT>::getSymbolAlignment(DataRefImpl Symb) const {
537 const Elf_Sym *Sym = getSymbol(Symb);
538 if (Sym->st_shndx == ELF::SHN_COMMON)
539 return Sym->st_value;
540 return 0;
541}
542
543template <class ELFT>
544uint16_t ELFObjectFile<ELFT>::getEMachine() const {
545 return EF.getHeader()->e_machine;
546}
547
548template <class ELFT> uint16_t ELFObjectFile<ELFT>::getEType() const {
549 return EF.getHeader()->e_type;
550}
551
552template <class ELFT>
553uint64_t ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Sym) const {
554 return getSymbol(Sym)->st_size;
555}
556
557template <class ELFT>
558uint64_t ELFObjectFile<ELFT>::getCommonSymbolSizeImpl(DataRefImpl Symb) const {
559 return getSymbol(Symb)->st_size;
560}
561
562template <class ELFT>
563uint8_t ELFObjectFile<ELFT>::getSymbolBinding(DataRefImpl Symb) const {
564 return getSymbol(Symb)->getBinding();
565}
566
567template <class ELFT>
568uint8_t ELFObjectFile<ELFT>::getSymbolOther(DataRefImpl Symb) const {
569 return getSymbol(Symb)->st_other;
570}
571
572template <class ELFT>
573uint8_t ELFObjectFile<ELFT>::getSymbolELFType(DataRefImpl Symb) const {
574 return getSymbol(Symb)->getType();
575}
576
577template <class ELFT>
578Expected<SymbolRef::Type>
579ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb) const {
580 const Elf_Sym *ESym = getSymbol(Symb);
581
582 switch (ESym->getType()) {
583 case ELF::STT_NOTYPE:
584 return SymbolRef::ST_Unknown;
585 case ELF::STT_SECTION:
586 return SymbolRef::ST_Debug;
587 case ELF::STT_FILE:
588 return SymbolRef::ST_File;
589 case ELF::STT_FUNC:
590 return SymbolRef::ST_Function;
591 case ELF::STT_OBJECT:
592 case ELF::STT_COMMON:
593 case ELF::STT_TLS:
594 return SymbolRef::ST_Data;
595 default:
596 return SymbolRef::ST_Other;
597 }
598}
599
600template <class ELFT>
601uint32_t ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Sym) const {
602 const Elf_Sym *ESym = getSymbol(Sym);
603
604 uint32_t Result = SymbolRef::SF_None;
605
606 if (ESym->getBinding() != ELF::STB_LOCAL)
607 Result |= SymbolRef::SF_Global;
608
609 if (ESym->getBinding() == ELF::STB_WEAK)
610 Result |= SymbolRef::SF_Weak;
611
612 if (ESym->st_shndx == ELF::SHN_ABS)
613 Result |= SymbolRef::SF_Absolute;
614
615 if (ESym->getType() == ELF::STT_FILE || ESym->getType() == ELF::STT_SECTION)
616 Result |= SymbolRef::SF_FormatSpecific;
617
618 auto DotSymtabSecSyms = EF.symbols(DotSymtabSec);
619 if (DotSymtabSecSyms && ESym == (*DotSymtabSecSyms).begin())
620 Result |= SymbolRef::SF_FormatSpecific;
621 auto DotDynSymSecSyms = EF.symbols(DotDynSymSec);
622 if (DotDynSymSecSyms && ESym == (*DotDynSymSecSyms).begin())
623 Result |= SymbolRef::SF_FormatSpecific;
624
625 if (EF.getHeader()->e_machine == ELF::EM_ARM) {
626 if (Expected<StringRef> NameOrErr = getSymbolName(Sym)) {
627 StringRef Name = *NameOrErr;
628 if (Name.startswith("$d") || Name.startswith("$t") ||
629 Name.startswith("$a"))
630 Result |= SymbolRef::SF_FormatSpecific;
631 } else {
632 // TODO: Actually report errors helpfully.
633 consumeError(NameOrErr.takeError());
634 }
635 if (ESym->getType() == ELF::STT_FUNC && (ESym->st_value & 1) == 1)
636 Result |= SymbolRef::SF_Thumb;
637 }
638
639 if (ESym->st_shndx == ELF::SHN_UNDEF)
640 Result |= SymbolRef::SF_Undefined;
641
642 if (ESym->getType() == ELF::STT_COMMON || ESym->st_shndx == ELF::SHN_COMMON)
643 Result |= SymbolRef::SF_Common;
644
645 if (isExportedToOtherDSO(ESym))
646 Result |= SymbolRef::SF_Exported;
647
648 if (ESym->getVisibility() == ELF::STV_HIDDEN)
649 Result |= SymbolRef::SF_Hidden;
650
651 return Result;
652}
653
654template <class ELFT>
655Expected<section_iterator>
656ELFObjectFile<ELFT>::getSymbolSection(const Elf_Sym *ESym,
657 const Elf_Shdr *SymTab) const {
658 auto ESecOrErr = EF.getSection(ESym, SymTab, ShndxTable);
659 if (!ESecOrErr)
660 return ESecOrErr.takeError();
661
662 const Elf_Shdr *ESec = *ESecOrErr;
663 if (!ESec)
664 return section_end();
665
666 DataRefImpl Sec;
667 Sec.p = reinterpret_cast<intptr_t>(ESec);
668 return section_iterator(SectionRef(Sec, this));
669}
670
671template <class ELFT>
672Expected<section_iterator>
673ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb) const {
674 const Elf_Sym *Sym = getSymbol(Symb);
675 auto SymTabOrErr = EF.getSection(Symb.d.a);
676 if (!SymTabOrErr)
677 return SymTabOrErr.takeError();
678 const Elf_Shdr *SymTab = *SymTabOrErr;
679 return getSymbolSection(Sym, SymTab);
680}
681
682template <class ELFT>
683void ELFObjectFile<ELFT>::moveSectionNext(DataRefImpl &Sec) const {
684 const Elf_Shdr *ESec = getSection(Sec);
685 Sec = toDRI(++ESec);
686}
687
688template <class ELFT>
689Expected<StringRef> ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec) const {
690 return EF.getSectionName(&*getSection(Sec));
691}
692
693template <class ELFT>
694uint64_t ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec) const {
695 return getSection(Sec)->sh_addr;
696}
697
698template <class ELFT>
699uint64_t ELFObjectFile<ELFT>::getSectionIndex(DataRefImpl Sec) const {
700 auto SectionsOrErr = EF.sections();
701 handleAllErrors(std::move(SectionsOrErr.takeError()),
702 [](const ErrorInfoBase &) {
703 llvm_unreachable("unable to get section index")::llvm::llvm_unreachable_internal("unable to get section index"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 703)
;
704 });
705 const Elf_Shdr *First = SectionsOrErr->begin();
706 return getSection(Sec) - First;
707}
708
709template <class ELFT>
710uint64_t ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec) const {
711 return getSection(Sec)->sh_size;
712}
713
714template <class ELFT>
715Expected<ArrayRef<uint8_t>>
716ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec) const {
717 const Elf_Shdr *EShdr = getSection(Sec);
718 if (std::error_code EC =
719 checkOffset(getMemoryBufferRef(),
720 (uintptr_t)base() + EShdr->sh_offset, EShdr->sh_size))
721 return errorCodeToError(EC);
722 return makeArrayRef((const uint8_t *)base() + EShdr->sh_offset,
723 EShdr->sh_size);
724}
725
726template <class ELFT>
727uint64_t ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec) const {
728 return getSection(Sec)->sh_addralign;
729}
730
731template <class ELFT>
732bool ELFObjectFile<ELFT>::isSectionCompressed(DataRefImpl Sec) const {
733 return getSection(Sec)->sh_flags & ELF::SHF_COMPRESSED;
734}
735
736template <class ELFT>
737bool ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec) const {
738 return getSection(Sec)->sh_flags & ELF::SHF_EXECINSTR;
739}
740
741template <class ELFT>
742bool ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec) const {
743 const Elf_Shdr *EShdr = getSection(Sec);
744 return EShdr->sh_type == ELF::SHT_PROGBITS &&
745 EShdr->sh_flags & ELF::SHF_ALLOC &&
746 !(EShdr->sh_flags & ELF::SHF_EXECINSTR);
747}
748
749template <class ELFT>
750bool ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec) const {
751 const Elf_Shdr *EShdr = getSection(Sec);
752 return EShdr->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE) &&
753 EShdr->sh_type == ELF::SHT_NOBITS;
754}
755
756template <class ELFT>
757std::vector<SectionRef>
758ELFObjectFile<ELFT>::dynamic_relocation_sections() const {
759 std::vector<SectionRef> Res;
760 std::vector<uintptr_t> Offsets;
761
762 auto SectionsOrErr = EF.sections();
763 if (!SectionsOrErr)
764 return Res;
765
766 for (const Elf_Shdr &Sec : *SectionsOrErr) {
767 if (Sec.sh_type != ELF::SHT_DYNAMIC)
768 continue;
769 Elf_Dyn *Dynamic =
770 reinterpret_cast<Elf_Dyn *>((uintptr_t)base() + Sec.sh_offset);
771 for (; Dynamic->d_tag != ELF::DT_NULL; Dynamic++) {
772 if (Dynamic->d_tag == ELF::DT_REL || Dynamic->d_tag == ELF::DT_RELA ||
773 Dynamic->d_tag == ELF::DT_JMPREL) {
774 Offsets.push_back(Dynamic->d_un.d_val);
775 }
776 }
777 }
778 for (const Elf_Shdr &Sec : *SectionsOrErr) {
779 if (is_contained(Offsets, Sec.sh_offset))
780 Res.emplace_back(toDRI(&Sec), this);
781 }
782 return Res;
783}
784
785template <class ELFT>
786bool ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec) const {
787 return getSection(Sec)->sh_type == ELF::SHT_NOBITS;
788}
789
790template <class ELFT>
791bool ELFObjectFile<ELFT>::isBerkeleyText(DataRefImpl Sec) const {
792 return getSection(Sec)->sh_flags & ELF::SHF_ALLOC &&
793 (getSection(Sec)->sh_flags & ELF::SHF_EXECINSTR ||
794 !(getSection(Sec)->sh_flags & ELF::SHF_WRITE));
795}
796
797template <class ELFT>
798bool ELFObjectFile<ELFT>::isBerkeleyData(DataRefImpl Sec) const {
799 const Elf_Shdr *EShdr = getSection(Sec);
800 return !isBerkeleyText(Sec) && EShdr->sh_type != ELF::SHT_NOBITS &&
801 EShdr->sh_flags & ELF::SHF_ALLOC;
802}
803
804template <class ELFT>
805relocation_iterator
806ELFObjectFile<ELFT>::section_rel_begin(DataRefImpl Sec) const {
807 DataRefImpl RelData;
808 auto SectionsOrErr = EF.sections();
809 if (!SectionsOrErr)
810 return relocation_iterator(RelocationRef());
811 uintptr_t SHT = reinterpret_cast<uintptr_t>((*SectionsOrErr).begin());
812 RelData.d.a = (Sec.p - SHT) / EF.getHeader()->e_shentsize;
813 RelData.d.b = 0;
814 return relocation_iterator(RelocationRef(RelData, this));
815}
816
817template <class ELFT>
818relocation_iterator
819ELFObjectFile<ELFT>::section_rel_end(DataRefImpl Sec) const {
820 const Elf_Shdr *S = reinterpret_cast<const Elf_Shdr *>(Sec.p);
821 relocation_iterator Begin = section_rel_begin(Sec);
822 if (S->sh_type != ELF::SHT_RELA && S->sh_type != ELF::SHT_REL)
823 return Begin;
824 DataRefImpl RelData = Begin->getRawDataRefImpl();
825 const Elf_Shdr *RelSec = getRelSection(RelData);
826
827 // Error check sh_link here so that getRelocationSymbol can just use it.
828 auto SymSecOrErr = EF.getSection(RelSec->sh_link);
829 if (!SymSecOrErr)
830 report_fatal_error(errorToErrorCode(SymSecOrErr.takeError()).message());
831
832 RelData.d.b += S->sh_size / S->sh_entsize;
833 return relocation_iterator(RelocationRef(RelData, this));
834}
835
836template <class ELFT>
837section_iterator
838ELFObjectFile<ELFT>::getRelocatedSection(DataRefImpl Sec) const {
839 if (EF.getHeader()->e_type != ELF::ET_REL)
840 return section_end();
841
842 const Elf_Shdr *EShdr = getSection(Sec);
843 uintX_t Type = EShdr->sh_type;
844 if (Type != ELF::SHT_REL && Type != ELF::SHT_RELA)
845 return section_end();
846
847 auto R = EF.getSection(EShdr->sh_info);
848 if (!R)
849 report_fatal_error(errorToErrorCode(R.takeError()).message());
850 return section_iterator(SectionRef(toDRI(*R), this));
851}
852
853// Relocations
854template <class ELFT>
855void ELFObjectFile<ELFT>::moveRelocationNext(DataRefImpl &Rel) const {
856 ++Rel.d.b;
857}
858
859template <class ELFT>
860symbol_iterator
861ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel) const {
862 uint32_t symbolIdx;
863 const Elf_Shdr *sec = getRelSection(Rel);
864 if (sec->sh_type == ELF::SHT_REL)
865 symbolIdx = getRel(Rel)->getSymbol(EF.isMips64EL());
866 else
867 symbolIdx = getRela(Rel)->getSymbol(EF.isMips64EL());
868 if (!symbolIdx)
869 return symbol_end();
870
871 // FIXME: error check symbolIdx
872 DataRefImpl SymbolData;
873 SymbolData.d.a = sec->sh_link;
874 SymbolData.d.b = symbolIdx;
875 return symbol_iterator(SymbolRef(SymbolData, this));
876}
877
878template <class ELFT>
879uint64_t ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel) const {
880 const Elf_Shdr *sec = getRelSection(Rel);
881 if (sec->sh_type == ELF::SHT_REL)
882 return getRel(Rel)->r_offset;
883
884 return getRela(Rel)->r_offset;
885}
886
887template <class ELFT>
888uint64_t ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel) const {
889 const Elf_Shdr *sec = getRelSection(Rel);
890 if (sec->sh_type == ELF::SHT_REL)
891 return getRel(Rel)->getType(EF.isMips64EL());
892 else
893 return getRela(Rel)->getType(EF.isMips64EL());
894}
895
896template <class ELFT>
897StringRef ELFObjectFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
898 return getELFRelocationTypeName(EF.getHeader()->e_machine, Type);
899}
900
901template <class ELFT>
902void ELFObjectFile<ELFT>::getRelocationTypeName(
903 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
904 uint32_t type = getRelocationType(Rel);
905 EF.getRelocationTypeName(type, Result);
906}
907
908template <class ELFT>
909Expected<int64_t>
910ELFObjectFile<ELFT>::getRelocationAddend(DataRefImpl Rel) const {
911 if (getRelSection(Rel)->sh_type != ELF::SHT_RELA)
912 return createError("Section is not SHT_RELA");
913 return (int64_t)getRela(Rel)->r_addend;
914}
915
916template <class ELFT>
917const typename ELFObjectFile<ELFT>::Elf_Rel *
918ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
919 assert(getRelSection(Rel)->sh_type == ELF::SHT_REL)((getRelSection(Rel)->sh_type == ELF::SHT_REL) ? static_cast
<void> (0) : __assert_fail ("getRelSection(Rel)->sh_type == ELF::SHT_REL"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 919, __PRETTY_FUNCTION__))
;
920 auto Ret = EF.template getEntry<Elf_Rel>(Rel.d.a, Rel.d.b);
921 if (!Ret)
922 report_fatal_error(errorToErrorCode(Ret.takeError()).message());
923 return *Ret;
924}
925
926template <class ELFT>
927const typename ELFObjectFile<ELFT>::Elf_Rela *
928ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
929 assert(getRelSection(Rela)->sh_type == ELF::SHT_RELA)((getRelSection(Rela)->sh_type == ELF::SHT_RELA) ? static_cast
<void> (0) : __assert_fail ("getRelSection(Rela)->sh_type == ELF::SHT_RELA"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELFObjectFile.h"
, 929, __PRETTY_FUNCTION__))
;
930 auto Ret = EF.template getEntry<Elf_Rela>(Rela.d.a, Rela.d.b);
931 if (!Ret)
932 report_fatal_error(errorToErrorCode(Ret.takeError()).message());
933 return *Ret;
934}
935
936template <class ELFT>
937Expected<ELFObjectFile<ELFT>>
938ELFObjectFile<ELFT>::create(MemoryBufferRef Object) {
939 auto EFOrErr = ELFFile<ELFT>::create(Object.getBuffer());
9
Calling 'ELFFile::create'
940 if (Error E = EFOrErr.takeError())
941 return std::move(E);
942 auto EF = std::move(*EFOrErr);
943
944 auto SectionsOrErr = EF.sections();
945 if (!SectionsOrErr)
946 return SectionsOrErr.takeError();
947
948 const Elf_Shdr *DotDynSymSec = nullptr;
949 const Elf_Shdr *DotSymtabSec = nullptr;
950 ArrayRef<Elf_Word> ShndxTable;
951 for (const Elf_Shdr &Sec : *SectionsOrErr) {
952 switch (Sec.sh_type) {
953 case ELF::SHT_DYNSYM: {
954 if (!DotDynSymSec)
955 DotDynSymSec = &Sec;
956 break;
957 }
958 case ELF::SHT_SYMTAB: {
959 if (!DotSymtabSec)
960 DotSymtabSec = &Sec;
961 break;
962 }
963 case ELF::SHT_SYMTAB_SHNDX: {
964 auto TableOrErr = EF.getSHNDXTable(Sec);
965 if (!TableOrErr)
966 return TableOrErr.takeError();
967 ShndxTable = *TableOrErr;
968 break;
969 }
970 }
971 }
972 return ELFObjectFile<ELFT>(Object, EF, DotDynSymSec, DotSymtabSec,
973 ShndxTable);
974}
975
976template <class ELFT>
977ELFObjectFile<ELFT>::ELFObjectFile(MemoryBufferRef Object, ELFFile<ELFT> EF,
978 const Elf_Shdr *DotDynSymSec,
979 const Elf_Shdr *DotSymtabSec,
980 ArrayRef<Elf_Word> ShndxTable)
981 : ELFObjectFileBase(
982 getELFType(ELFT::TargetEndianness == support::little, ELFT::Is64Bits),
983 Object),
984 EF(EF), DotDynSymSec(DotDynSymSec), DotSymtabSec(DotSymtabSec),
985 ShndxTable(ShndxTable) {}
986
987template <class ELFT>
988ELFObjectFile<ELFT>::ELFObjectFile(ELFObjectFile<ELFT> &&Other)
989 : ELFObjectFile(Other.Data, Other.EF, Other.DotDynSymSec,
990 Other.DotSymtabSec, Other.ShndxTable) {}
991
992template <class ELFT>
993basic_symbol_iterator ELFObjectFile<ELFT>::symbol_begin() const {
994 DataRefImpl Sym =
995 toDRI(DotSymtabSec,
996 DotSymtabSec && DotSymtabSec->sh_size >= sizeof(Elf_Sym) ? 1 : 0);
997 return basic_symbol_iterator(SymbolRef(Sym, this));
998}
999
1000template <class ELFT>
1001basic_symbol_iterator ELFObjectFile<ELFT>::symbol_end() const {
1002 const Elf_Shdr *SymTab = DotSymtabSec;
1003 if (!SymTab)
1004 return symbol_begin();
1005 DataRefImpl Sym = toDRI(SymTab, SymTab->sh_size / sizeof(Elf_Sym));
1006 return basic_symbol_iterator(SymbolRef(Sym, this));
1007}
1008
1009template <class ELFT>
1010elf_symbol_iterator ELFObjectFile<ELFT>::dynamic_symbol_begin() const {
1011 DataRefImpl Sym = toDRI(DotDynSymSec, 0);
1012 return symbol_iterator(SymbolRef(Sym, this));
1013}
1014
1015template <class ELFT>
1016elf_symbol_iterator ELFObjectFile<ELFT>::dynamic_symbol_end() const {
1017 const Elf_Shdr *SymTab = DotDynSymSec;
1018 if (!SymTab)
1019 return dynamic_symbol_begin();
1020 DataRefImpl Sym = toDRI(SymTab, SymTab->sh_size / sizeof(Elf_Sym));
1021 return basic_symbol_iterator(SymbolRef(Sym, this));
1022}
1023
1024template <class ELFT>
1025section_iterator ELFObjectFile<ELFT>::section_begin() const {
1026 auto SectionsOrErr = EF.sections();
1027 if (!SectionsOrErr)
1028 return section_iterator(SectionRef());
1029 return section_iterator(SectionRef(toDRI((*SectionsOrErr).begin()), this));
1030}
1031
1032template <class ELFT>
1033section_iterator ELFObjectFile<ELFT>::section_end() const {
1034 auto SectionsOrErr = EF.sections();
1035 if (!SectionsOrErr)
1036 return section_iterator(SectionRef());
1037 return section_iterator(SectionRef(toDRI((*SectionsOrErr).end()), this));
1038}
1039
1040template <class ELFT>
1041uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
1042 return ELFT::Is64Bits ? 8 : 4;
1043}
1044
1045template <class ELFT>
1046StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
1047 bool IsLittleEndian = ELFT::TargetEndianness == support::little;
1048 switch (EF.getHeader()->e_ident[ELF::EI_CLASS]) {
1049 case ELF::ELFCLASS32:
1050 switch (EF.getHeader()->e_machine) {
1051 case ELF::EM_386:
1052 return "ELF32-i386";
1053 case ELF::EM_IAMCU:
1054 return "ELF32-iamcu";
1055 case ELF::EM_X86_64:
1056 return "ELF32-x86-64";
1057 case ELF::EM_ARM:
1058 return (IsLittleEndian ? "ELF32-arm-little" : "ELF32-arm-big");
1059 case ELF::EM_AVR:
1060 return "ELF32-avr";
1061 case ELF::EM_HEXAGON:
1062 return "ELF32-hexagon";
1063 case ELF::EM_LANAI:
1064 return "ELF32-lanai";
1065 case ELF::EM_MIPS:
1066 return "ELF32-mips";
1067 case ELF::EM_MSP430:
1068 return "ELF32-msp430";
1069 case ELF::EM_PPC:
1070 return "ELF32-ppc";
1071 case ELF::EM_RISCV:
1072 return "ELF32-riscv";
1073 case ELF::EM_SPARC:
1074 case ELF::EM_SPARC32PLUS:
1075 return "ELF32-sparc";
1076 case ELF::EM_AMDGPU:
1077 return "ELF32-amdgpu";
1078 default:
1079 return "ELF32-unknown";
1080 }
1081 case ELF::ELFCLASS64:
1082 switch (EF.getHeader()->e_machine) {
1083 case ELF::EM_386:
1084 return "ELF64-i386";
1085 case ELF::EM_X86_64:
1086 return "ELF64-x86-64";
1087 case ELF::EM_AARCH64:
1088 return (IsLittleEndian ? "ELF64-aarch64-little" : "ELF64-aarch64-big");
1089 case ELF::EM_PPC64:
1090 return "ELF64-ppc64";
1091 case ELF::EM_RISCV:
1092 return "ELF64-riscv";
1093 case ELF::EM_S390:
1094 return "ELF64-s390";
1095 case ELF::EM_SPARCV9:
1096 return "ELF64-sparc";
1097 case ELF::EM_MIPS:
1098 return "ELF64-mips";
1099 case ELF::EM_AMDGPU:
1100 return "ELF64-amdgpu";
1101 case ELF::EM_BPF:
1102 return "ELF64-BPF";
1103 default:
1104 return "ELF64-unknown";
1105 }
1106 default:
1107 // FIXME: Proper error handling.
1108 report_fatal_error("Invalid ELFCLASS!");
1109 }
1110}
1111
1112template <class ELFT> Triple::ArchType ELFObjectFile<ELFT>::getArch() const {
1113 bool IsLittleEndian = ELFT::TargetEndianness == support::little;
1114 switch (EF.getHeader()->e_machine) {
1115 case ELF::EM_386:
1116 case ELF::EM_IAMCU:
1117 return Triple::x86;
1118 case ELF::EM_X86_64:
1119 return Triple::x86_64;
1120 case ELF::EM_AARCH64:
1121 return IsLittleEndian ? Triple::aarch64 : Triple::aarch64_be;
1122 case ELF::EM_ARM:
1123 return Triple::arm;
1124 case ELF::EM_AVR:
1125 return Triple::avr;
1126 case ELF::EM_HEXAGON:
1127 return Triple::hexagon;
1128 case ELF::EM_LANAI:
1129 return Triple::lanai;
1130 case ELF::EM_MIPS:
1131 switch (EF.getHeader()->e_ident[ELF::EI_CLASS]) {
1132 case ELF::ELFCLASS32:
1133 return IsLittleEndian ? Triple::mipsel : Triple::mips;
1134 case ELF::ELFCLASS64:
1135 return IsLittleEndian ? Triple::mips64el : Triple::mips64;
1136 default:
1137 report_fatal_error("Invalid ELFCLASS!");
1138 }
1139 case ELF::EM_MSP430:
1140 return Triple::msp430;
1141 case ELF::EM_PPC:
1142 return Triple::ppc;
1143 case ELF::EM_PPC64:
1144 return IsLittleEndian ? Triple::ppc64le : Triple::ppc64;
1145 case ELF::EM_RISCV:
1146 switch (EF.getHeader()->e_ident[ELF::EI_CLASS]) {
1147 case ELF::ELFCLASS32:
1148 return Triple::riscv32;
1149 case ELF::ELFCLASS64:
1150 return Triple::riscv64;
1151 default:
1152 report_fatal_error("Invalid ELFCLASS!");
1153 }
1154 case ELF::EM_S390:
1155 return Triple::systemz;
1156
1157 case ELF::EM_SPARC:
1158 case ELF::EM_SPARC32PLUS:
1159 return IsLittleEndian ? Triple::sparcel : Triple::sparc;
1160 case ELF::EM_SPARCV9:
1161 return Triple::sparcv9;
1162
1163 case ELF::EM_AMDGPU: {
1164 if (!IsLittleEndian)
1165 return Triple::UnknownArch;
1166
1167 unsigned MACH = EF.getHeader()->e_flags & ELF::EF_AMDGPU_MACH;
1168 if (MACH >= ELF::EF_AMDGPU_MACH_R600_FIRST &&
1169 MACH <= ELF::EF_AMDGPU_MACH_R600_LAST)
1170 return Triple::r600;
1171 if (MACH >= ELF::EF_AMDGPU_MACH_AMDGCN_FIRST &&
1172 MACH <= ELF::EF_AMDGPU_MACH_AMDGCN_LAST)
1173 return Triple::amdgcn;
1174
1175 return Triple::UnknownArch;
1176 }
1177
1178 case ELF::EM_BPF:
1179 return IsLittleEndian ? Triple::bpfel : Triple::bpfeb;
1180
1181 default:
1182 return Triple::UnknownArch;
1183 }
1184}
1185
1186template <class ELFT>
1187Expected<uint64_t> ELFObjectFile<ELFT>::getStartAddress() const {
1188 return EF.getHeader()->e_entry;
1189}
1190
1191template <class ELFT>
1192ELFObjectFileBase::elf_symbol_iterator_range
1193ELFObjectFile<ELFT>::getDynamicSymbolIterators() const {
1194 return make_range(dynamic_symbol_begin(), dynamic_symbol_end());
1195}
1196
1197template <class ELFT> bool ELFObjectFile<ELFT>::isRelocatableObject() const {
1198 return EF.getHeader()->e_type == ELF::ET_REL;
1199}
1200
1201} // end namespace object
1202} // end namespace llvm
1203
1204#endif // LLVM_OBJECT_ELFOBJECTFILE_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELF.h

1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the ELFFile template class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_OBJECT_ELF_H
14#define LLVM_OBJECT_ELF_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/BinaryFormat/ELF.h"
20#include "llvm/Object/ELFTypes.h"
21#include "llvm/Object/Error.h"
22#include "llvm/Support/Endian.h"
23#include "llvm/Support/Error.h"
24#include <cassert>
25#include <cstddef>
26#include <cstdint>
27#include <limits>
28#include <utility>
29
30namespace llvm {
31namespace object {
32
33StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type);
34uint32_t getELFRelativeRelocationType(uint32_t Machine);
35StringRef getELFSectionTypeName(uint32_t Machine, uint32_t Type);
36
37// Subclasses of ELFFile may need this for template instantiation
38inline std::pair<unsigned char, unsigned char>
39getElfArchType(StringRef Object) {
40 if (Object.size() < ELF::EI_NIDENT)
41 return std::make_pair((uint8_t)ELF::ELFCLASSNONE,
42 (uint8_t)ELF::ELFDATANONE);
43 return std::make_pair((uint8_t)Object[ELF::EI_CLASS],
44 (uint8_t)Object[ELF::EI_DATA]);
45}
46
47static inline Error createError(StringRef Err) {
48 return make_error<StringError>(Err, object_error::parse_failed);
13
Calling 'make_error<llvm::StringError, llvm::StringRef &, llvm::object::object_error>'
49}
50
51template <class ELFT>
52class ELFFile {
53public:
54 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)using Elf_Addr = typename ELFT::Addr; using Elf_Off = typename
ELFT::Off; using Elf_Half = typename ELFT::Half; using Elf_Word
= typename ELFT::Word; using Elf_Sword = typename ELFT::Sword
; using Elf_Xword = typename ELFT::Xword; using Elf_Sxword = typename
ELFT::Sxword;
55 using uintX_t = typename ELFT::uint;
56 using Elf_Ehdr = typename ELFT::Ehdr;
57 using Elf_Shdr = typename ELFT::Shdr;
58 using Elf_Sym = typename ELFT::Sym;
59 using Elf_Dyn = typename ELFT::Dyn;
60 using Elf_Phdr = typename ELFT::Phdr;
61 using Elf_Rel = typename ELFT::Rel;
62 using Elf_Rela = typename ELFT::Rela;
63 using Elf_Relr = typename ELFT::Relr;
64 using Elf_Verdef = typename ELFT::Verdef;
65 using Elf_Verdaux = typename ELFT::Verdaux;
66 using Elf_Verneed = typename ELFT::Verneed;
67 using Elf_Vernaux = typename ELFT::Vernaux;
68 using Elf_Versym = typename ELFT::Versym;
69 using Elf_Hash = typename ELFT::Hash;
70 using Elf_GnuHash = typename ELFT::GnuHash;
71 using Elf_Nhdr = typename ELFT::Nhdr;
72 using Elf_Note = typename ELFT::Note;
73 using Elf_Note_Iterator = typename ELFT::NoteIterator;
74 using Elf_Dyn_Range = typename ELFT::DynRange;
75 using Elf_Shdr_Range = typename ELFT::ShdrRange;
76 using Elf_Sym_Range = typename ELFT::SymRange;
77 using Elf_Rel_Range = typename ELFT::RelRange;
78 using Elf_Rela_Range = typename ELFT::RelaRange;
79 using Elf_Relr_Range = typename ELFT::RelrRange;
80 using Elf_Phdr_Range = typename ELFT::PhdrRange;
81
82 const uint8_t *base() const { return Buf.bytes_begin(); }
83
84 size_t getBufSize() const { return Buf.size(); }
85
86private:
87 StringRef Buf;
88
89 ELFFile(StringRef Object);
90
91public:
92 const Elf_Ehdr *getHeader() const {
93 return reinterpret_cast<const Elf_Ehdr *>(base());
94 }
95
96 template <typename T>
97 Expected<const T *> getEntry(uint32_t Section, uint32_t Entry) const;
98 template <typename T>
99 Expected<const T *> getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
100
101 Expected<StringRef> getStringTable(const Elf_Shdr *Section) const;
102 Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section) const;
103 Expected<StringRef> getStringTableForSymtab(const Elf_Shdr &Section,
104 Elf_Shdr_Range Sections) const;
105
106 Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section) const;
107 Expected<ArrayRef<Elf_Word>> getSHNDXTable(const Elf_Shdr &Section,
108 Elf_Shdr_Range Sections) const;
109
110 StringRef getRelocationTypeName(uint32_t Type) const;
111 void getRelocationTypeName(uint32_t Type,
112 SmallVectorImpl<char> &Result) const;
113 uint32_t getRelativeRelocationType() const;
114
115 std::string getDynamicTagAsString(unsigned Arch, uint64_t Type) const;
116 std::string getDynamicTagAsString(uint64_t Type) const;
117
118 /// Get the symbol for a given relocation.
119 Expected<const Elf_Sym *> getRelocationSymbol(const Elf_Rel *Rel,
120 const Elf_Shdr *SymTab) const;
121
122 static Expected<ELFFile> create(StringRef Object);
123
124 bool isMipsELF64() const {
125 return getHeader()->e_machine == ELF::EM_MIPS &&
126 getHeader()->getFileClass() == ELF::ELFCLASS64;
127 }
128
129 bool isMips64EL() const {
130 return isMipsELF64() &&
131 getHeader()->getDataEncoding() == ELF::ELFDATA2LSB;
132 }
133
134 Expected<Elf_Shdr_Range> sections() const;
135
136 Expected<Elf_Dyn_Range> dynamicEntries() const;
137
138 Expected<const uint8_t *> toMappedAddr(uint64_t VAddr) const;
139
140 Expected<Elf_Sym_Range> symbols(const Elf_Shdr *Sec) const {
141 if (!Sec)
142 return makeArrayRef<Elf_Sym>(nullptr, nullptr);
143 return getSectionContentsAsArray<Elf_Sym>(Sec);
144 }
145
146 Expected<Elf_Rela_Range> relas(const Elf_Shdr *Sec) const {
147 return getSectionContentsAsArray<Elf_Rela>(Sec);
148 }
149
150 Expected<Elf_Rel_Range> rels(const Elf_Shdr *Sec) const {
151 return getSectionContentsAsArray<Elf_Rel>(Sec);
152 }
153
154 Expected<Elf_Relr_Range> relrs(const Elf_Shdr *Sec) const {
155 return getSectionContentsAsArray<Elf_Relr>(Sec);
156 }
157
158 Expected<std::vector<Elf_Rela>> decode_relrs(Elf_Relr_Range relrs) const;
159
160 Expected<std::vector<Elf_Rela>> android_relas(const Elf_Shdr *Sec) const;
161
162 /// Iterate over program header table.
163 Expected<Elf_Phdr_Range> program_headers() const {
164 if (getHeader()->e_phnum && getHeader()->e_phentsize != sizeof(Elf_Phdr))
165 return createError("invalid e_phentsize");
166 if (getHeader()->e_phoff +
167 (getHeader()->e_phnum * getHeader()->e_phentsize) >
168 getBufSize())
169 return createError("program headers longer than binary");
170 auto *Begin =
171 reinterpret_cast<const Elf_Phdr *>(base() + getHeader()->e_phoff);
172 return makeArrayRef(Begin, Begin + getHeader()->e_phnum);
173 }
174
175 /// Get an iterator over notes in a program header.
176 ///
177 /// The program header must be of type \c PT_NOTE.
178 ///
179 /// \param Phdr the program header to iterate over.
180 /// \param Err [out] an error to support fallible iteration, which should
181 /// be checked after iteration ends.
182 Elf_Note_Iterator notes_begin(const Elf_Phdr &Phdr, Error &Err) const {
183 if (Phdr.p_type != ELF::PT_NOTE) {
184 Err = createError("attempt to iterate notes of non-note program header");
185 return Elf_Note_Iterator(Err);
186 }
187 if (Phdr.p_offset + Phdr.p_filesz > getBufSize()) {
188 Err = createError("invalid program header offset/size");
189 return Elf_Note_Iterator(Err);
190 }
191 return Elf_Note_Iterator(base() + Phdr.p_offset, Phdr.p_filesz, Err);
192 }
193
194 /// Get an iterator over notes in a section.
195 ///
196 /// The section must be of type \c SHT_NOTE.
197 ///
198 /// \param Shdr the section to iterate over.
199 /// \param Err [out] an error to support fallible iteration, which should
200 /// be checked after iteration ends.
201 Elf_Note_Iterator notes_begin(const Elf_Shdr &Shdr, Error &Err) const {
202 if (Shdr.sh_type != ELF::SHT_NOTE) {
203 Err = createError("attempt to iterate notes of non-note section");
204 return Elf_Note_Iterator(Err);
205 }
206 if (Shdr.sh_offset + Shdr.sh_size > getBufSize()) {
207 Err = createError("invalid section offset/size");
208 return Elf_Note_Iterator(Err);
209 }
210 return Elf_Note_Iterator(base() + Shdr.sh_offset, Shdr.sh_size, Err);
211 }
212
213 /// Get the end iterator for notes.
214 Elf_Note_Iterator notes_end() const {
215 return Elf_Note_Iterator();
216 }
217
218 /// Get an iterator range over notes of a program header.
219 ///
220 /// The program header must be of type \c PT_NOTE.
221 ///
222 /// \param Phdr the program header to iterate over.
223 /// \param Err [out] an error to support fallible iteration, which should
224 /// be checked after iteration ends.
225 iterator_range<Elf_Note_Iterator> notes(const Elf_Phdr &Phdr,
226 Error &Err) const {
227 return make_range(notes_begin(Phdr, Err), notes_end());
228 }
229
230 /// Get an iterator range over notes of a section.
231 ///
232 /// The section must be of type \c SHT_NOTE.
233 ///
234 /// \param Shdr the section to iterate over.
235 /// \param Err [out] an error to support fallible iteration, which should
236 /// be checked after iteration ends.
237 iterator_range<Elf_Note_Iterator> notes(const Elf_Shdr &Shdr,
238 Error &Err) const {
239 return make_range(notes_begin(Shdr, Err), notes_end());
240 }
241
242 Expected<StringRef> getSectionStringTable(Elf_Shdr_Range Sections) const;
243 Expected<uint32_t> getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms,
244 ArrayRef<Elf_Word> ShndxTable) const;
245 Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
246 const Elf_Shdr *SymTab,
247 ArrayRef<Elf_Word> ShndxTable) const;
248 Expected<const Elf_Shdr *> getSection(const Elf_Sym *Sym,
249 Elf_Sym_Range Symtab,
250 ArrayRef<Elf_Word> ShndxTable) const;
251 Expected<const Elf_Shdr *> getSection(uint32_t Index) const;
252 Expected<const Elf_Shdr *> getSection(const StringRef SectionName) const;
253
254 Expected<const Elf_Sym *> getSymbol(const Elf_Shdr *Sec,
255 uint32_t Index) const;
256
257 Expected<StringRef> getSectionName(const Elf_Shdr *Section) const;
258 Expected<StringRef> getSectionName(const Elf_Shdr *Section,
259 StringRef DotShstrtab) const;
260 template <typename T>
261 Expected<ArrayRef<T>> getSectionContentsAsArray(const Elf_Shdr *Sec) const;
262 Expected<ArrayRef<uint8_t>> getSectionContents(const Elf_Shdr *Sec) const;
263};
264
265using ELF32LEFile = ELFFile<ELF32LE>;
266using ELF64LEFile = ELFFile<ELF64LE>;
267using ELF32BEFile = ELFFile<ELF32BE>;
268using ELF64BEFile = ELFFile<ELF64BE>;
269
270template <class ELFT>
271inline Expected<const typename ELFT::Shdr *>
272getSection(typename ELFT::ShdrRange Sections, uint32_t Index) {
273 if (Index >= Sections.size())
274 return createError("invalid section index");
275 return &Sections[Index];
276}
277
278template <class ELFT>
279inline Expected<uint32_t>
280getExtendedSymbolTableIndex(const typename ELFT::Sym *Sym,
281 const typename ELFT::Sym *FirstSym,
282 ArrayRef<typename ELFT::Word> ShndxTable) {
283 assert(Sym->st_shndx == ELF::SHN_XINDEX)((Sym->st_shndx == ELF::SHN_XINDEX) ? static_cast<void>
(0) : __assert_fail ("Sym->st_shndx == ELF::SHN_XINDEX", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELF.h"
, 283, __PRETTY_FUNCTION__))
;
284 unsigned Index = Sym - FirstSym;
285 if (Index >= ShndxTable.size())
286 return createError("index past the end of the symbol table");
287
288 // The size of the table was checked in getSHNDXTable.
289 return ShndxTable[Index];
290}
291
292template <class ELFT>
293Expected<uint32_t>
294ELFFile<ELFT>::getSectionIndex(const Elf_Sym *Sym, Elf_Sym_Range Syms,
295 ArrayRef<Elf_Word> ShndxTable) const {
296 uint32_t Index = Sym->st_shndx;
297 if (Index == ELF::SHN_XINDEX) {
298 auto ErrorOrIndex = getExtendedSymbolTableIndex<ELFT>(
299 Sym, Syms.begin(), ShndxTable);
300 if (!ErrorOrIndex)
301 return ErrorOrIndex.takeError();
302 return *ErrorOrIndex;
303 }
304 if (Index == ELF::SHN_UNDEF || Index >= ELF::SHN_LORESERVE)
305 return 0;
306 return Index;
307}
308
309template <class ELFT>
310Expected<const typename ELFT::Shdr *>
311ELFFile<ELFT>::getSection(const Elf_Sym *Sym, const Elf_Shdr *SymTab,
312 ArrayRef<Elf_Word> ShndxTable) const {
313 auto SymsOrErr = symbols(SymTab);
314 if (!SymsOrErr)
315 return SymsOrErr.takeError();
316 return getSection(Sym, *SymsOrErr, ShndxTable);
317}
318
319template <class ELFT>
320Expected<const typename ELFT::Shdr *>
321ELFFile<ELFT>::getSection(const Elf_Sym *Sym, Elf_Sym_Range Symbols,
322 ArrayRef<Elf_Word> ShndxTable) const {
323 auto IndexOrErr = getSectionIndex(Sym, Symbols, ShndxTable);
324 if (!IndexOrErr)
325 return IndexOrErr.takeError();
326 uint32_t Index = *IndexOrErr;
327 if (Index == 0)
328 return nullptr;
329 return getSection(Index);
330}
331
332template <class ELFT>
333inline Expected<const typename ELFT::Sym *>
334getSymbol(typename ELFT::SymRange Symbols, uint32_t Index) {
335 if (Index >= Symbols.size())
336 return createError("invalid symbol index");
337 return &Symbols[Index];
338}
339
340template <class ELFT>
341Expected<const typename ELFT::Sym *>
342ELFFile<ELFT>::getSymbol(const Elf_Shdr *Sec, uint32_t Index) const {
343 auto SymtabOrErr = symbols(Sec);
344 if (!SymtabOrErr)
345 return SymtabOrErr.takeError();
346 return object::getSymbol<ELFT>(*SymtabOrErr, Index);
347}
348
349template <class ELFT>
350template <typename T>
351Expected<ArrayRef<T>>
352ELFFile<ELFT>::getSectionContentsAsArray(const Elf_Shdr *Sec) const {
353 if (Sec->sh_entsize != sizeof(T) && sizeof(T) != 1)
354 return createError("invalid sh_entsize");
355
356 uintX_t Offset = Sec->sh_offset;
357 uintX_t Size = Sec->sh_size;
358
359 if (Size % sizeof(T))
360 return createError("size is not a multiple of sh_entsize");
361 if ((std::numeric_limits<uintX_t>::max() - Offset < Size) ||
362 Offset + Size > Buf.size())
363 return createError("invalid section offset");
364
365 if (Offset % alignof(T))
366 return createError("unaligned data");
367
368 const T *Start = reinterpret_cast<const T *>(base() + Offset);
369 return makeArrayRef(Start, Size / sizeof(T));
370}
371
372template <class ELFT>
373Expected<ArrayRef<uint8_t>>
374ELFFile<ELFT>::getSectionContents(const Elf_Shdr *Sec) const {
375 return getSectionContentsAsArray<uint8_t>(Sec);
376}
377
378template <class ELFT>
379StringRef ELFFile<ELFT>::getRelocationTypeName(uint32_t Type) const {
380 return getELFRelocationTypeName(getHeader()->e_machine, Type);
381}
382
383template <class ELFT>
384void ELFFile<ELFT>::getRelocationTypeName(uint32_t Type,
385 SmallVectorImpl<char> &Result) const {
386 if (!isMipsELF64()) {
387 StringRef Name = getRelocationTypeName(Type);
388 Result.append(Name.begin(), Name.end());
389 } else {
390 // The Mips N64 ABI allows up to three operations to be specified per
391 // relocation record. Unfortunately there's no easy way to test for the
392 // presence of N64 ELFs as they have no special flag that identifies them
393 // as being N64. We can safely assume at the moment that all Mips
394 // ELFCLASS64 ELFs are N64. New Mips64 ABIs should provide enough
395 // information to disambiguate between old vs new ABIs.
396 uint8_t Type1 = (Type >> 0) & 0xFF;
397 uint8_t Type2 = (Type >> 8) & 0xFF;
398 uint8_t Type3 = (Type >> 16) & 0xFF;
399
400 // Concat all three relocation type names.
401 StringRef Name = getRelocationTypeName(Type1);
402 Result.append(Name.begin(), Name.end());
403
404 Name = getRelocationTypeName(Type2);
405 Result.append(1, '/');
406 Result.append(Name.begin(), Name.end());
407
408 Name = getRelocationTypeName(Type3);
409 Result.append(1, '/');
410 Result.append(Name.begin(), Name.end());
411 }
412}
413
414template <class ELFT>
415uint32_t ELFFile<ELFT>::getRelativeRelocationType() const {
416 return getELFRelativeRelocationType(getHeader()->e_machine);
417}
418
419template <class ELFT>
420Expected<const typename ELFT::Sym *>
421ELFFile<ELFT>::getRelocationSymbol(const Elf_Rel *Rel,
422 const Elf_Shdr *SymTab) const {
423 uint32_t Index = Rel->getSymbol(isMips64EL());
424 if (Index == 0)
425 return nullptr;
426 return getEntry<Elf_Sym>(SymTab, Index);
427}
428
429template <class ELFT>
430Expected<StringRef>
431ELFFile<ELFT>::getSectionStringTable(Elf_Shdr_Range Sections) const {
432 uint32_t Index = getHeader()->e_shstrndx;
433 if (Index == ELF::SHN_XINDEX)
434 Index = Sections[0].sh_link;
435
436 if (!Index) // no section string table.
437 return "";
438 if (Index >= Sections.size())
439 return createError("invalid section index");
440 return getStringTable(&Sections[Index]);
441}
442
443template <class ELFT> ELFFile<ELFT>::ELFFile(StringRef Object) : Buf(Object) {}
444
445template <class ELFT>
446Expected<ELFFile<ELFT>> ELFFile<ELFT>::create(StringRef Object) {
447 if (sizeof(Elf_Ehdr) > Object.size())
10
Assuming the condition is true
11
Taking true branch
448 return createError("Invalid buffer");
12
Calling 'createError'
449 return ELFFile(Object);
450}
451
452template <class ELFT>
453Expected<typename ELFT::ShdrRange> ELFFile<ELFT>::sections() const {
454 const uintX_t SectionTableOffset = getHeader()->e_shoff;
455 if (SectionTableOffset == 0)
456 return ArrayRef<Elf_Shdr>();
457
458 if (getHeader()->e_shentsize != sizeof(Elf_Shdr))
459 return createError(
460 "invalid section header entry size (e_shentsize) in ELF header");
461
462 const uint64_t FileSize = Buf.size();
463
464 if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
465 return createError("section header table goes past the end of the file");
466
467 // Invalid address alignment of section headers
468 if (SectionTableOffset & (alignof(Elf_Shdr) - 1))
469 return createError("invalid alignment of section headers");
470
471 const Elf_Shdr *First =
472 reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
473
474 uintX_t NumSections = getHeader()->e_shnum;
475 if (NumSections == 0)
476 NumSections = First->sh_size;
477
478 if (NumSections > UINT64_MAX(18446744073709551615UL) / sizeof(Elf_Shdr))
479 return createError("section table goes past the end of file");
480
481 const uint64_t SectionTableSize = NumSections * sizeof(Elf_Shdr);
482
483 // Section table goes past end of file!
484 if (SectionTableOffset + SectionTableSize > FileSize)
485 return createError("section table goes past the end of file");
486
487 return makeArrayRef(First, NumSections);
488}
489
490template <class ELFT>
491template <typename T>
492Expected<const T *> ELFFile<ELFT>::getEntry(uint32_t Section,
493 uint32_t Entry) const {
494 auto SecOrErr = getSection(Section);
495 if (!SecOrErr)
496 return SecOrErr.takeError();
497 return getEntry<T>(*SecOrErr, Entry);
498}
499
500template <class ELFT>
501template <typename T>
502Expected<const T *> ELFFile<ELFT>::getEntry(const Elf_Shdr *Section,
503 uint32_t Entry) const {
504 if (sizeof(T) != Section->sh_entsize)
505 return createError("invalid sh_entsize");
506 size_t Pos = Section->sh_offset + Entry * sizeof(T);
507 if (Pos + sizeof(T) > Buf.size())
508 return createError("invalid section offset");
509 return reinterpret_cast<const T *>(base() + Pos);
510}
511
512template <class ELFT>
513Expected<const typename ELFT::Shdr *>
514ELFFile<ELFT>::getSection(uint32_t Index) const {
515 auto TableOrErr = sections();
516 if (!TableOrErr)
517 return TableOrErr.takeError();
518 return object::getSection<ELFT>(*TableOrErr, Index);
519}
520
521template <class ELFT>
522Expected<const typename ELFT::Shdr *>
523ELFFile<ELFT>::getSection(const StringRef SectionName) const {
524 auto TableOrErr = sections();
525 if (!TableOrErr)
526 return TableOrErr.takeError();
527 for (auto &Sec : *TableOrErr) {
528 auto SecNameOrErr = getSectionName(&Sec);
529 if (!SecNameOrErr)
530 return SecNameOrErr.takeError();
531 if (*SecNameOrErr == SectionName)
532 return &Sec;
533 }
534 return createError("invalid section name");
535}
536
537template <class ELFT>
538Expected<StringRef>
539ELFFile<ELFT>::getStringTable(const Elf_Shdr *Section) const {
540 if (Section->sh_type != ELF::SHT_STRTAB)
541 return createError("invalid sh_type for string table, expected SHT_STRTAB");
542 auto V = getSectionContentsAsArray<char>(Section);
543 if (!V)
544 return V.takeError();
545 ArrayRef<char> Data = *V;
546 if (Data.empty())
547 return createError("empty string table");
548 if (Data.back() != '\0')
549 return createError("string table non-null terminated");
550 return StringRef(Data.begin(), Data.size());
551}
552
553template <class ELFT>
554Expected<ArrayRef<typename ELFT::Word>>
555ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section) const {
556 auto SectionsOrErr = sections();
557 if (!SectionsOrErr)
558 return SectionsOrErr.takeError();
559 return getSHNDXTable(Section, *SectionsOrErr);
560}
561
562template <class ELFT>
563Expected<ArrayRef<typename ELFT::Word>>
564ELFFile<ELFT>::getSHNDXTable(const Elf_Shdr &Section,
565 Elf_Shdr_Range Sections) const {
566 assert(Section.sh_type == ELF::SHT_SYMTAB_SHNDX)((Section.sh_type == ELF::SHT_SYMTAB_SHNDX) ? static_cast<
void> (0) : __assert_fail ("Section.sh_type == ELF::SHT_SYMTAB_SHNDX"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Object/ELF.h"
, 566, __PRETTY_FUNCTION__))
;
567 auto VOrErr = getSectionContentsAsArray<Elf_Word>(&Section);
568 if (!VOrErr)
569 return VOrErr.takeError();
570 ArrayRef<Elf_Word> V = *VOrErr;
571 auto SymTableOrErr = object::getSection<ELFT>(Sections, Section.sh_link);
572 if (!SymTableOrErr)
573 return SymTableOrErr.takeError();
574 const Elf_Shdr &SymTable = **SymTableOrErr;
575 if (SymTable.sh_type != ELF::SHT_SYMTAB &&
576 SymTable.sh_type != ELF::SHT_DYNSYM)
577 return createError("invalid sh_type");
578 if (V.size() != (SymTable.sh_size / sizeof(Elf_Sym)))
579 return createError("invalid section contents size");
580 return V;
581}
582
583template <class ELFT>
584Expected<StringRef>
585ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec) const {
586 auto SectionsOrErr = sections();
587 if (!SectionsOrErr)
588 return SectionsOrErr.takeError();
589 return getStringTableForSymtab(Sec, *SectionsOrErr);
590}
591
592template <class ELFT>
593Expected<StringRef>
594ELFFile<ELFT>::getStringTableForSymtab(const Elf_Shdr &Sec,
595 Elf_Shdr_Range Sections) const {
596
597 if (Sec.sh_type != ELF::SHT_SYMTAB && Sec.sh_type != ELF::SHT_DYNSYM)
598 return createError(
599 "invalid sh_type for symbol table, expected SHT_SYMTAB or SHT_DYNSYM");
600 auto SectionOrErr = object::getSection<ELFT>(Sections, Sec.sh_link);
601 if (!SectionOrErr)
602 return SectionOrErr.takeError();
603 return getStringTable(*SectionOrErr);
604}
605
606template <class ELFT>
607Expected<StringRef>
608ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section) const {
609 auto SectionsOrErr = sections();
610 if (!SectionsOrErr)
611 return SectionsOrErr.takeError();
612 auto Table = getSectionStringTable(*SectionsOrErr);
613 if (!Table)
614 return Table.takeError();
615 return getSectionName(Section, *Table);
616}
617
618template <class ELFT>
619Expected<StringRef> ELFFile<ELFT>::getSectionName(const Elf_Shdr *Section,
620 StringRef DotShstrtab) const {
621 uint32_t Offset = Section->sh_name;
622 if (Offset == 0)
623 return StringRef();
624 if (Offset >= DotShstrtab.size())
625 return createError("invalid string offset");
626 return StringRef(DotShstrtab.data() + Offset);
627}
628
629/// This function returns the hash value for a symbol in the .dynsym section
630/// Name of the API remains consistent as specified in the libelf
631/// REF : http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#hash
632inline unsigned hashSysV(StringRef SymbolName) {
633 unsigned h = 0, g;
634 for (char C : SymbolName) {
635 h = (h << 4) + C;
636 g = h & 0xf0000000L;
637 if (g != 0)
638 h ^= g >> 24;
639 h &= ~g;
640 }
641 return h;
642}
643
644} // end namespace object
645} // end namespace llvm
646
647#endif // LLVM_OBJECT_ELF_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
159 // pointers out of this class to add to the error list.
160 friend class ErrorList;
161 friend class FileError;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
18
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
14
Calling 'make_unique<llvm::StringError, llvm::StringRef &, llvm::object::object_error>'
16
Returned allocated memory
17
Calling constructor for 'Error'
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = typename std::conditional<isRef, wrap, T>::type;
445 using value_type = T;
446
447private:
448 using reference = typename std::remove_reference<T>::type &;
449 using const_reference = const typename std::remove_reference<T>::type &;
450 using pointer = typename std::remove_reference<T>::type *;
451 using const_pointer = const typename std::remove_reference<T>::type *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
476 * = nullptr)
477 : HasError(false)
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 // Expected is unchecked upon construction in Debug builds.
480 , Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(Expected<OtherT> &&Other,
493 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
494 * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
504 nullptr) {
505 moveConstruct(std::move(Other));
506 }
507
508 /// Move-assign from another Expected<T>.
509 Expected &operator=(Expected &&Other) {
510 moveAssign(std::move(Other));
511 return *this;
512 }
513
514 /// Destroy an Expected<T>.
515 ~Expected() {
516 assertIsChecked();
517 if (!HasError)
518 getStorage()->~storage_type();
519 else
520 getErrorStorage()->~error_type();
521 }
522
523 /// Return false if there is an error.
524 explicit operator bool() {
525#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
526 Unchecked = HasError;
527#endif
528 return !HasError;
529 }
530
531 /// Returns a reference to the stored T value.
532 reference get() {
533 assertIsChecked();
534 return *getStorage();
535 }
536
537 /// Returns a const reference to the stored T value.
538 const_reference get() const {
539 assertIsChecked();
540 return const_cast<Expected<T> *>(this)->get();
541 }
542
543 /// Check that this Expected<T> is an error of type ErrT.
544 template <typename ErrT> bool errorIsA() const {
545 return HasError && (*getErrorStorage())->template isA<ErrT>();
546 }
547
548 /// Take ownership of the stored error.
549 /// After calling this the Expected<T> is in an indeterminate state that can
550 /// only be safely destructed. No further calls (beside the destructor) should
551 /// be made on the Expected<T> vaule.
552 Error takeError() {
553#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
554 Unchecked = false;
555#endif
556 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
557 }
558
559 /// Returns a pointer to the stored T value.
560 pointer operator->() {
561 assertIsChecked();
562 return toPointer(getStorage());
563 }
564
565 /// Returns a const pointer to the stored T value.
566 const_pointer operator->() const {
567 assertIsChecked();
568 return toPointer(getStorage());
569 }
570
571 /// Returns a reference to the stored T value.
572 reference operator*() {
573 assertIsChecked();
574 return *getStorage();
575 }
576
577 /// Returns a const reference to the stored T value.
578 const_reference operator*() const {
579 assertIsChecked();
580 return *getStorage();
581 }
582
583private:
584 template <class T1>
585 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
586 return &a == &b;
587 }
588
589 template <class T1, class T2>
590 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
591 return false;
592 }
593
594 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
595 HasError = Other.HasError;
596#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
597 Unchecked = true;
598 Other.Unchecked = false;
599#endif
600
601 if (!HasError)
602 new (getStorage()) storage_type(std::move(*Other.getStorage()));
603 else
604 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
605 }
606
607 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
608 assertIsChecked();
609
610 if (compareThisIfSameType(*this, Other))
611 return;
612
613 this->~Expected();
614 new (this) Expected(std::move(Other));
615 }
616
617 pointer toPointer(pointer Val) { return Val; }
618
619 const_pointer toPointer(const_pointer Val) const { return Val; }
620
621 pointer toPointer(wrap *Val) { return &Val->get(); }
622
623 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
624
625 storage_type *getStorage() {
626 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 626, __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<storage_type *>(TStorage.buffer);
628 }
629
630 const storage_type *getStorage() const {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<const storage_type *>(TStorage.buffer);
633 }
634
635 error_type *getErrorStorage() {
636 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
638 }
639
640 const error_type *getErrorStorage() const {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
643 }
644
645 // Used by ExpectedAsOutParameter to reset the checked flag.
646 void setUnchecked() {
647#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
648 Unchecked = true;
649#endif
650 }
651
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
654 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
655 void fatalUncheckedExpected() const {
656 dbgs() << "Expected<T> must be checked before access or destruction.\n";
657 if (HasError) {
658 dbgs() << "Unchecked Expected<T> contained error:\n";
659 (*getErrorStorage())->log(dbgs());
660 } else
661 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
662 "values in success mode must still be checked prior to being "
663 "destroyed).\n";
664 abort();
665 }
666#endif
667
668 void assertIsChecked() {
669#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
670 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
671 fatalUncheckedExpected();
672#endif
673 }
674
675 union {
676 AlignedCharArrayUnion<storage_type> TStorage;
677 AlignedCharArrayUnion<error_type> ErrorStorage;
678 };
679 bool HasError : 1;
680#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
681 bool Unchecked : 1;
682#endif
683};
684
685/// Report a serious error, calling any installed error handler. See
686/// ErrorHandling.h.
687LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
688 bool gen_crash_diag = true);
689
690/// Report a fatal error if Err is a failure value.
691///
692/// This function can be used to wrap calls to fallible functions ONLY when it
693/// is known that the Error will always be a success value. E.g.
694///
695/// @code{.cpp}
696/// // foo only attempts the fallible operation if DoFallibleOperation is
697/// // true. If DoFallibleOperation is false then foo always returns
698/// // Error::success().
699/// Error foo(bool DoFallibleOperation);
700///
701/// cantFail(foo(false));
702/// @endcode
703inline void cantFail(Error Err, const char *Msg = nullptr) {
704 if (Err) {
705 if (!Msg)
706 Msg = "Failure value returned from cantFail wrapped call";
707 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 707)
;
708 }
709}
710
711/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
712/// returns the contained value.
713///
714/// This function can be used to wrap calls to fallible functions ONLY when it
715/// is known that the Error will always be a success value. E.g.
716///
717/// @code{.cpp}
718/// // foo only attempts the fallible operation if DoFallibleOperation is
719/// // true. If DoFallibleOperation is false then foo always returns an int.
720/// Expected<int> foo(bool DoFallibleOperation);
721///
722/// int X = cantFail(foo(false));
723/// @endcode
724template <typename T>
725T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
726 if (ValOrErr)
727 return std::move(*ValOrErr);
728 else {
729 if (!Msg)
730 Msg = "Failure value returned from cantFail wrapped call";
731 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 731)
;
732 }
733}
734
735/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
736/// returns the contained reference.
737///
738/// This function can be used to wrap calls to fallible functions ONLY when it
739/// is known that the Error will always be a success value. E.g.
740///
741/// @code{.cpp}
742/// // foo only attempts the fallible operation if DoFallibleOperation is
743/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
744/// Expected<Bar&> foo(bool DoFallibleOperation);
745///
746/// Bar &X = cantFail(foo(false));
747/// @endcode
748template <typename T>
749T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
750 if (ValOrErr)
751 return *ValOrErr;
752 else {
753 if (!Msg)
754 Msg = "Failure value returned from cantFail wrapped call";
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Helper for testing applicability of, and applying, handlers for
760/// ErrorInfo types.
761template <typename HandlerT>
762class ErrorHandlerTraits
763 : public ErrorHandlerTraits<decltype(
764 &std::remove_reference<HandlerT>::type::operator())> {};
765
766// Specialization functions of the form 'Error (const ErrT&)'.
767template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
768public:
769 static bool appliesTo(const ErrorInfoBase &E) {
770 return E.template isA<ErrT>();
771 }
772
773 template <typename HandlerT>
774 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
775 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 775, __PRETTY_FUNCTION__))
;
776 return H(static_cast<ErrT &>(*E));
777 }
778};
779
780// Specialization functions of the form 'void (const ErrT&)'.
781template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
782public:
783 static bool appliesTo(const ErrorInfoBase &E) {
784 return E.template isA<ErrT>();
785 }
786
787 template <typename HandlerT>
788 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
789 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 789, __PRETTY_FUNCTION__))
;
790 H(static_cast<ErrT &>(*E));
791 return Error::success();
792 }
793};
794
795/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
796template <typename ErrT>
797class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
798public:
799 static bool appliesTo(const ErrorInfoBase &E) {
800 return E.template isA<ErrT>();
801 }
802
803 template <typename HandlerT>
804 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
805 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 805, __PRETTY_FUNCTION__))
;
806 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
807 return H(std::move(SubE));
808 }
809};
810
811/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
812template <typename ErrT>
813class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
814public:
815 static bool appliesTo(const ErrorInfoBase &E) {
816 return E.template isA<ErrT>();
817 }
818
819 template <typename HandlerT>
820 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
821 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 821, __PRETTY_FUNCTION__))
;
822 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
823 H(std::move(SubE));
824 return Error::success();
825 }
826};
827
828// Specialization for member functions of the form 'RetT (const ErrT&)'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833// Specialization for member functions of the form 'RetT (const ErrT&) const'.
834template <typename C, typename RetT, typename ErrT>
835class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
836 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
837
838// Specialization for member functions of the form 'RetT (const ErrT&)'.
839template <typename C, typename RetT, typename ErrT>
840class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
841 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
842
843// Specialization for member functions of the form 'RetT (const ErrT&) const'.
844template <typename C, typename RetT, typename ErrT>
845class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
846 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
847
848/// Specialization for member functions of the form
849/// 'RetT (std::unique_ptr<ErrT>)'.
850template <typename C, typename RetT, typename ErrT>
851class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
852 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
853
854/// Specialization for member functions of the form
855/// 'RetT (std::unique_ptr<ErrT>) const'.
856template <typename C, typename RetT, typename ErrT>
857class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
858 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
859
860inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
861 return Error(std::move(Payload));
862}
863
864template <typename HandlerT, typename... HandlerTs>
865Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
866 HandlerT &&Handler, HandlerTs &&... Handlers) {
867 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
868 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
869 std::move(Payload));
870 return handleErrorImpl(std::move(Payload),
871 std::forward<HandlerTs>(Handlers)...);
872}
873
874/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
875/// unhandled errors (or Errors returned by handlers) are re-concatenated and
876/// returned.
877/// Because this function returns an error, its result must also be checked
878/// or returned. If you intend to handle all errors use handleAllErrors
879/// (which returns void, and will abort() on unhandled errors) instead.
880template <typename... HandlerTs>
881Error handleErrors(Error E, HandlerTs &&... Hs) {
882 if (!E)
883 return Error::success();
884
885 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
886
887 if (Payload->isA<ErrorList>()) {
888 ErrorList &List = static_cast<ErrorList &>(*Payload);
889 Error R;
890 for (auto &P : List.Payloads)
891 R = ErrorList::join(
892 std::move(R),
893 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
894 return R;
895 }
896
897 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
898}
899
900/// Behaves the same as handleErrors, except that by contract all errors
901/// *must* be handled by the given handlers (i.e. there must be no remaining
902/// errors after running the handlers, or llvm_unreachable is called).
903template <typename... HandlerTs>
904void handleAllErrors(Error E, HandlerTs &&... Handlers) {
905 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
906}
907
908/// Check that E is a non-error, then drop it.
909/// If E is an error, llvm_unreachable will be called.
910inline void handleAllErrors(Error E) {
911 cantFail(std::move(E));
912}
913
914/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
915///
916/// If the incoming value is a success value it is returned unmodified. If it
917/// is a failure value then it the contained error is passed to handleErrors.
918/// If handleErrors is able to handle the error then the RecoveryPath functor
919/// is called to supply the final result. If handleErrors is not able to
920/// handle all errors then the unhandled errors are returned.
921///
922/// This utility enables the follow pattern:
923///
924/// @code{.cpp}
925/// enum FooStrategy { Aggressive, Conservative };
926/// Expected<Foo> foo(FooStrategy S);
927///
928/// auto ResultOrErr =
929/// handleExpected(
930/// foo(Aggressive),
931/// []() { return foo(Conservative); },
932/// [](AggressiveStrategyError&) {
933/// // Implicitly conusme this - we'll recover by using a conservative
934/// // strategy.
935/// });
936///
937/// @endcode
938template <typename T, typename RecoveryFtor, typename... HandlerTs>
939Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
940 HandlerTs &&... Handlers) {
941 if (ValOrErr)
942 return ValOrErr;
943
944 if (auto Err = handleErrors(ValOrErr.takeError(),
945 std::forward<HandlerTs>(Handlers)...))
946 return std::move(Err);
947
948 return RecoveryPath();
949}
950
951/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
952/// will be printed before the first one is logged. A newline will be printed
953/// after each error.
954///
955/// This function is compatible with the helpers from Support/WithColor.h. You
956/// can pass any of them as the OS. Please consider using them instead of
957/// including 'error: ' in the ErrorBanner.
958///
959/// This is useful in the base level of your program to allow clean termination
960/// (allowing clean deallocation of resources, etc.), while reporting error
961/// information to the user.
962void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
963
964/// Write all error messages (if any) in E to a string. The newline character
965/// is used to separate error messages.
966inline std::string toString(Error E) {
967 SmallVector<std::string, 2> Errors;
968 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
969 Errors.push_back(EI.message());
970 });
971 return join(Errors.begin(), Errors.end(), "\n");
972}
973
974/// Consume a Error without doing anything. This method should be used
975/// only where an error can be considered a reasonable and expected return
976/// value.
977///
978/// Uses of this method are potentially indicative of design problems: If it's
979/// legitimate to do nothing while processing an "error", the error-producer
980/// might be more clearly refactored to return an Optional<T>.
981inline void consumeError(Error Err) {
982 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
983}
984
985/// Helper for converting an Error to a bool.
986///
987/// This method returns true if Err is in an error state, or false if it is
988/// in a success state. Puts Err in a checked state in both cases (unlike
989/// Error::operator bool(), which only does this for success states).
990inline bool errorToBool(Error Err) {
991 bool IsError = static_cast<bool>(Err);
992 if (IsError)
993 consumeError(std::move(Err));
994 return IsError;
995}
996
997/// Helper for Errors used as out-parameters.
998///
999/// This helper is for use with the Error-as-out-parameter idiom, where an error
1000/// is passed to a function or method by reference, rather than being returned.
1001/// In such cases it is helpful to set the checked bit on entry to the function
1002/// so that the error can be written to (unchecked Errors abort on assignment)
1003/// and clear the checked bit on exit so that clients cannot accidentally forget
1004/// to check the result. This helper performs these actions automatically using
1005/// RAII:
1006///
1007/// @code{.cpp}
1008/// Result foo(Error &Err) {
1009/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1010/// // <body of foo>
1011/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1012/// }
1013/// @endcode
1014///
1015/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1016/// used with optional Errors (Error pointers that are allowed to be null). If
1017/// ErrorAsOutParameter took an Error reference, an instance would have to be
1018/// created inside every condition that verified that Error was non-null. By
1019/// taking an Error pointer we can just create one instance at the top of the
1020/// function.
1021class ErrorAsOutParameter {
1022public:
1023 ErrorAsOutParameter(Error *Err) : Err(Err) {
1024 // Raise the checked bit if Err is success.
1025 if (Err)
1026 (void)!!*Err;
1027 }
1028
1029 ~ErrorAsOutParameter() {
1030 // Clear the checked bit.
1031 if (Err && !*Err)
1032 *Err = Error::success();
1033 }
1034
1035private:
1036 Error *Err;
1037};
1038
1039/// Helper for Expected<T>s used as out-parameters.
1040///
1041/// See ErrorAsOutParameter.
1042template <typename T>
1043class ExpectedAsOutParameter {
1044public:
1045 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1046 : ValOrErr(ValOrErr) {
1047 if (ValOrErr)
1048 (void)!!*ValOrErr;
1049 }
1050
1051 ~ExpectedAsOutParameter() {
1052 if (ValOrErr)
1053 ValOrErr->setUnchecked();
1054 }
1055
1056private:
1057 Expected<T> *ValOrErr;
1058};
1059
1060/// This class wraps a std::error_code in a Error.
1061///
1062/// This is useful if you're writing an interface that returns a Error
1063/// (or Expected) and you want to call code that still returns
1064/// std::error_codes.
1065class ECError : public ErrorInfo<ECError> {
1066 friend Error errorCodeToError(std::error_code);
1067
1068 virtual void anchor() override;
1069
1070public:
1071 void setErrorCode(std::error_code EC) { this->EC = EC; }
1072 std::error_code convertToErrorCode() const override { return EC; }
1073 void log(raw_ostream &OS) const override { OS << EC.message(); }
1074
1075 // Used by ErrorInfo::classID.
1076 static char ID;
1077
1078protected:
1079 ECError() = default;
1080 ECError(std::error_code EC) : EC(EC) {}
1081
1082 std::error_code EC;
1083};
1084
1085/// The value returned by this function can be returned from convertToErrorCode
1086/// for Error values where no sensible translation to std::error_code exists.
1087/// It should only be used in this situation, and should never be used where a
1088/// sensible conversion to std::error_code is available, as attempts to convert
1089/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1090///error to try to convert such a value).
1091std::error_code inconvertibleErrorCode();
1092
1093/// Helper for converting an std::error_code to a Error.
1094Error errorCodeToError(std::error_code EC);
1095
1096/// Helper for converting an ECError to a std::error_code.
1097///
1098/// This method requires that Err be Error() or an ECError, otherwise it
1099/// will trigger a call to abort().
1100std::error_code errorToErrorCode(Error Err);
1101
1102/// Convert an ErrorOr<T> to an Expected<T>.
1103template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1104 if (auto EC = EO.getError())
1105 return errorCodeToError(EC);
1106 return std::move(*EO);
1107}
1108
1109/// Convert an Expected<T> to an ErrorOr<T>.
1110template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1111 if (auto Err = E.takeError())
1112 return errorToErrorCode(std::move(Err));
1113 return std::move(*E);
1114}
1115
1116/// This class wraps a string in an Error.
1117///
1118/// StringError is useful in cases where the client is not expected to be able
1119/// to consume the specific error message programmatically (for example, if the
1120/// error message is to be presented to the user).
1121///
1122/// StringError can also be used when additional information is to be printed
1123/// along with a error_code message. Depending on the constructor called, this
1124/// class can either display:
1125/// 1. the error_code message (ECError behavior)
1126/// 2. a string
1127/// 3. the error_code message and a string
1128///
1129/// These behaviors are useful when subtyping is required; for example, when a
1130/// specific library needs an explicit error type. In the example below,
1131/// PDBError is derived from StringError:
1132///
1133/// @code{.cpp}
1134/// Expected<int> foo() {
1135/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1136/// "Additional information");
1137/// }
1138/// @endcode
1139///
1140class StringError : public ErrorInfo<StringError> {
1141public:
1142 static char ID;
1143
1144 // Prints EC + S and converts to EC
1145 StringError(std::error_code EC, const Twine &S = Twine());
1146
1147 // Prints S and converts to EC
1148 StringError(const Twine &S, std::error_code EC);
1149
1150 void log(raw_ostream &OS) const override;
1151 std::error_code convertToErrorCode() const override;
1152
1153 const std::string &getMessage() const { return Msg; }
1154
1155private:
1156 std::string Msg;
1157 std::error_code EC;
1158 const bool PrintMsgOnly = false;
1159};
1160
1161/// Create formatted StringError object.
1162template <typename... Ts>
1163Error createStringError(std::error_code EC, char const *Fmt,
1164 const Ts &... Vals) {
1165 std::string Buffer;
1166 raw_string_ostream Stream(Buffer);
1167 Stream << format(Fmt, Vals...);
1168 return make_error<StringError>(Stream.str(), EC);
1169}
1170
1171Error createStringError(std::error_code EC, char const *Msg);
1172
1173/// This class wraps a filename and another Error.
1174///
1175/// In some cases, an error needs to live along a 'source' name, in order to
1176/// show more detailed information to the user.
1177class FileError final : public ErrorInfo<FileError> {
1178
1179 friend Error createFileError(const Twine &, Error);
1180 friend Error createFileError(const Twine &, size_t, Error);
1181
1182public:
1183 void log(raw_ostream &OS) const override {
1184 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1184, __PRETTY_FUNCTION__))
;
1185 OS << "'" << FileName << "': ";
1186 if (Line.hasValue())
1187 OS << "line " << Line.getValue() << ": ";
1188 Err->log(OS);
1189 }
1190
1191 Error takeError() { return Error(std::move(Err)); }
1192
1193 std::error_code convertToErrorCode() const override;
1194
1195 // Used by ErrorInfo::classID.
1196 static char ID;
1197
1198private:
1199 FileError(const Twine &F, Optional<size_t> LineNum,
1200 std::unique_ptr<ErrorInfoBase> E) {
1201 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1201, __PRETTY_FUNCTION__))
;
1202 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
1203 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 FileName = F.str();
1205 Err = std::move(E);
1206 Line = std::move(LineNum);
1207 }
1208
1209 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1210 return Error(
1211 std::unique_ptr<FileError>(new FileError(F, Line, E.takePayload())));
1212 }
1213
1214 std::string FileName;
1215 Optional<size_t> Line;
1216 std::unique_ptr<ErrorInfoBase> Err;
1217};
1218
1219/// Concatenate a source file path and/or name with an Error. The resulting
1220/// Error is unchecked.
1221inline Error createFileError(const Twine &F, Error E) {
1222 return FileError::build(F, Optional<size_t>(), std::move(E));
1223}
1224
1225/// Concatenate a source file path and/or name with line number and an Error.
1226/// The resulting Error is unchecked.
1227inline Error createFileError(const Twine &F, size_t Line, Error E) {
1228 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1229}
1230
1231/// Concatenate a source file path and/or name with a std::error_code
1232/// to form an Error object.
1233inline Error createFileError(const Twine &F, std::error_code EC) {
1234 return createFileError(F, errorCodeToError(EC));
1235}
1236
1237/// Concatenate a source file path and/or name with line number and
1238/// std::error_code to form an Error object.
1239inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1240 return createFileError(F, Line, errorCodeToError(EC));
1241}
1242
1243Error createFileError(const Twine &F, ErrorSuccess) = delete;
1244
1245/// Helper for check-and-exit error handling.
1246///
1247/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1248///
1249class ExitOnError {
1250public:
1251 /// Create an error on exit helper.
1252 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1253 : Banner(std::move(Banner)),
1254 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1255
1256 /// Set the banner string for any errors caught by operator().
1257 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1258
1259 /// Set the exit-code mapper function.
1260 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1261 this->GetExitCode = std::move(GetExitCode);
1262 }
1263
1264 /// Check Err. If it's in a failure state log the error(s) and exit.
1265 void operator()(Error Err) const { checkError(std::move(Err)); }
1266
1267 /// Check E. If it's in a success state then return the contained value. If
1268 /// it's in a failure state log the error(s) and exit.
1269 template <typename T> T operator()(Expected<T> &&E) const {
1270 checkError(E.takeError());
1271 return std::move(*E);
1272 }
1273
1274 /// Check E. If it's in a success state then return the contained reference. If
1275 /// it's in a failure state log the error(s) and exit.
1276 template <typename T> T& operator()(Expected<T&> &&E) const {
1277 checkError(E.takeError());
1278 return *E;
1279 }
1280
1281private:
1282 void checkError(Error Err) const {
1283 if (Err) {
1284 int ExitCode = GetExitCode(Err);
1285 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1286 exit(ExitCode);
1287 }
1288 }
1289
1290 std::string Banner;
1291 std::function<int(const Error &)> GetExitCode;
1292};
1293
1294/// Conversion from Error to LLVMErrorRef for C error bindings.
1295inline LLVMErrorRef wrap(Error Err) {
1296 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1297}
1298
1299/// Conversion from LLVMErrorRef to Error for C error bindings.
1300inline Error unwrap(LLVMErrorRef ErrRef) {
1301 return Error(std::unique_ptr<ErrorInfoBase>(
1302 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1303}
1304
1305} // end namespace llvm
1306
1307#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
76};
77
78template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
81};
82
83//===----------------------------------------------------------------------===//
84// Extra additions to <functional>
85//===----------------------------------------------------------------------===//
86
87template <class Ty> struct identity {
88 using argument_type = Ty;
89
90 Ty &operator()(Ty &self) const {
91 return self;
92 }
93 const Ty &operator()(const Ty &self) const {
94 return self;
95 }
96};
97
98template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
101 }
102};
103
104template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
107 }
108};
109
110/// An efficient, type-erasing, non-owning reference to a callable. This is
111/// intended for use as the type of a function parameter that is not used
112/// after the function in question returns.
113///
114/// This class does not own the callable, so it is not in general safe to store
115/// a function_ref.
116template<typename Fn> class function_ref;
117
118template<typename Ret, typename ...Params>
119class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
122
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
127 }
128
129public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
132
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
143 }
144
145 operator bool() const { return callback; }
146};
147
148// deleter - Very very very simple method that is used to invoke operator
149// delete on something. It is used like this:
150//
151// for_each(V.begin(), B.end(), deleter<Interval>);
152template <class T>
153inline void deleter(T *Ptr) {
154 delete Ptr;
155}
156
157//===----------------------------------------------------------------------===//
158// Extra additions to <iterator>
159//===----------------------------------------------------------------------===//
160
161namespace adl_detail {
162
163using std::begin;
164
165template <typename ContainerTy>
166auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
169}
170
171using std::end;
172
173template <typename ContainerTy>
174auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
177}
178
179using std::swap;
180
181template <typename T>
182void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
185}
186
187} // end namespace adl_detail
188
189template <typename ContainerTy>
190auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193}
194
195template <typename ContainerTy>
196auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
199}
200
201template <typename T>
202void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205}
206
207/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208template <typename T>
209constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211}
212
213// mapped_iterator - This is a simple iterator adapter that causes a function to
214// be applied whenever operator* is invoked on the iterator.
215
216template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228 ItTy getCurrent() { return this->I; }
229
230 FuncReturnTy operator*() { return F(*this->I); }
231
232private:
233 FuncTy F;
234};
235
236// map_iterator - Provide a convenient way to create mapped_iterators, just like
237// make_pair is useful for creating pairs...
238template <class ItTy, class FuncTy>
239inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241}
242
243/// Helper to determine if type T has a member called rbegin().
244template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
247
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
250
251 template <typename>
252 static no& test(...);
253
254public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
256};
257
258/// Metafunction to determine if T& or T has a member called rbegin().
259template <typename Ty>
260struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
261};
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have rbegin()/rend() methods for this to work.
265template <typename ContainerTy>
266auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
270}
271
272// Returns a std::reverse_iterator wrapped around the given iterator.
273template <typename IteratorTy>
274std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
276}
277
278// Returns an iterator_range over the given container which iterates in reverse.
279// Note that the container must have begin()/end() methods which return
280// bidirectional iterators for this to work.
281template <typename ContainerTy>
282auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
289}
290
291/// An iterator adaptor that filters the elements of given inner iterators.
292///
293/// The predicate parameter should be a callable object that accepts the wrapped
294/// iterator's reference type and returns a bool. When incrementing or
295/// decrementing the iterator, it will call the predicate on each element and
296/// skip any where it returns false.
297///
298/// \code
299/// int A[] = { 1, 2, 3, 4 };
300/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301/// // R contains { 1, 3 }.
302/// \endcode
303///
304/// Note: filter_iterator_base implements support for forward iteration.
305/// filter_iterator_impl exists to provide support for bidirectional iteration,
306/// conditional on whether the wrapped iterator supports it.
307template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
321
322protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
325
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
329 }
330
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
338 }
339
340public:
341 using BaseT::operator++;
342
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
347 }
348};
349
350/// Specialization of filter_iterator_base for forward iteration only.
351template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
356
357public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
361};
362
363/// Specialization of filter_iterator_base for bidirectional iteration.
364template <typename WrappedIteratorT, typename PredicateT>
365class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
374 }
375
376public:
377 using BaseT::operator--;
378
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
382
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
387 }
388};
389
390namespace detail {
391
392template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
394};
395
396template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
398};
399
400/// Helper which sets its type member to forward_iterator_tag if the category
401/// of \p IterT does not derive from bidirectional_iterator_tag, and to
402/// bidirectional_iterator_tag otherwise.
403template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
407};
408
409} // namespace detail
410
411/// Defines filter_iterator to a suitable specialization of
412/// filter_iterator_impl, based on the underlying iterator's category.
413template <typename WrappedIteratorT, typename PredicateT>
414using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
417
418/// Convenience function that takes a range of elements and a predicate,
419/// and return a new filter_iterator range.
420///
421/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422/// lifetime of that temporary is not kept by the returned range object, and the
423/// temporary is going to be dropped on the floor after the make_iterator_range
424/// full expression that contains this function call.
425template <typename RangeT, typename PredicateT>
426iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
435}
436
437/// A pseudo-iterator adaptor that is designed to implement "early increment"
438/// style loops.
439///
440/// This is *not a normal iterator* and should almost never be used directly. It
441/// is intended primarily to be used with range based for loops and some range
442/// algorithms.
443///
444/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445/// somewhere between them. The constraints of these iterators are:
446///
447/// - On construction or after being incremented, it is comparable and
448/// dereferencable. It is *not* incrementable.
449/// - After being dereferenced, it is neither comparable nor dereferencable, it
450/// is only incrementable.
451///
452/// This means you can only dereference the iterator once, and you can only
453/// increment it once between dereferences.
454template <typename WrappedIteratorT>
455class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
461
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
463
464protected:
465#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
466 bool IsEarlyIncremented = false;
467#endif
468
469public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
471
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
475 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 475, __PRETTY_FUNCTION__))
;
476 IsEarlyIncremented = true;
477#endif
478 return *(this->I)++;
479 }
480
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 484, __PRETTY_FUNCTION__))
;
485 IsEarlyIncremented = false;
486#endif
487 return *this;
488 }
489
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 493, __PRETTY_FUNCTION__))
;
494#endif
495 return BaseT::operator==(RHS);
496 }
497};
498
499/// Make a range that does early increment to allow mutation of the underlying
500/// range without disrupting iteration.
501///
502/// The underlying iterator will be incremented immediately after it is
503/// dereferenced, allowing deletion of the current node or insertion of nodes to
504/// not disrupt iteration provided they do not invalidate the *next* iterator --
505/// the current iterator can be invalidated.
506///
507/// This requires a very exact pattern of use that is only really suitable to
508/// range based for loops and other range algorithms that explicitly guarantee
509/// to dereference exactly once each element, and to increment exactly once each
510/// element.
511template <typename RangeT>
512iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
518}
519
520// forward declarations required by zip_shortest/zip_first/zip_longest
521template <typename R, typename UnaryPredicate>
522bool all_of(R &&range, UnaryPredicate P);
523template <typename R, typename UnaryPredicate>
524bool any_of(R &&range, UnaryPredicate P);
525
526template <size_t... I> struct index_sequence;
527
528template <class... Ts> struct index_sequence_for;
529
530namespace detail {
531
532using std::declval;
533
534// We have to alias this since inlining the actual type at the usage site
535// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
538};
539
540template <typename ZipType, typename... Iters>
541using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
555
556template <typename ZipType, typename... Iters>
557struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
560
561 std::tuple<Iters...> iterators;
562
563protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
571 }
572
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
576 }
577
578public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
580
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
582
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
585 }
586
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
590 }
591
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
597 }
598};
599
600template <typename... Iters>
601struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
603
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
606 }
607
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
609};
610
611template <typename... Iters>
612class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
618 }
619
620public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
622
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
624
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
627 }
628};
629
630template <template <typename...> class ItType, typename... Args> class zippy {
631public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
638
639private:
640 std::tuple<Args...> ts;
641
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
644 }
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
647 }
648
649public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
651
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
654};
655
656} // end namespace detail
657
658/// zip iterator for two or more iteratable types.
659template <typename T, typename U, typename... Args>
660detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
664}
665
666/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667/// be the shortest.
668template <typename T, typename U, typename... Args>
669detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
673}
674
675namespace detail {
676template <typename Iter>
677static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
681}
682
683template <typename Iter>
684static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
690}
691
692template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
696};
697
698template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
700};
701
702template <typename... Iters>
703class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
716
717private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
720
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
728 }
729
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
733 }
734
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
739 }
740
741public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
745
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
747
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
749
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
753 }
754
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
757 }
758};
759
760template <typename... Args> class zip_longest_range {
761public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
769
770private:
771 std::tuple<Args...> ts;
772
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
781 }
782
783public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
785
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
788};
789} // namespace detail
790
791/// Iterate over two or more iterators at the same time. Iteration continues
792/// until all iterators reach the end. The llvm::Optional only contains a value
793/// if the iterator has not reached the end.
794template <typename T, typename U, typename... Args>
795detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
799}
800
801/// Iterator wrapper that concatenates sequences together.
802///
803/// This can concatenate different iterators, even with different types, into
804/// a single iterator provided the value types of all the concatenated
805/// iterators expose `reference` and `pointer` types that can be converted to
806/// `ValueT &` and `ValueT *` respectively. It doesn't support more
807/// interesting/customized pointer or reference types.
808///
809/// Currently this only supports forward or higher iterator categories as
810/// inputs and always exposes a forward iterator interface.
811template <typename ValueT, typename... IterTs>
812class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
816
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
819 ///
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
825
826 /// Attempts to increment a specific iterator.
827 ///
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
835
836 ++Begin;
837 return true;
838 }
839
840 /// Increments the first non-end iterator.
841 ///
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
847
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
852
853 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 853)
;
854 }
855
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
864
865 return &*Begin;
866 }
867
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
870 ///
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
876
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
881
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 882)
;
883 }
884
885public:
886 /// Constructs an iterator from a squence of ranges.
887 ///
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
893
894 using BaseT::operator++;
895
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
899 }
900
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
902
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
905 }
906};
907
908namespace detail {
909
910/// Helper to store a sequence of ranges being concatenated and access them.
911///
912/// This is designed to facilitate providing actual storage when temporaries
913/// are passed into the constructor such that we can use it as part of range
914/// based for loops.
915template <typename ValueT, typename... RangeTs> class concat_range {
916public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
920
921private:
922 std::tuple<RangeTs...> Ranges;
923
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
926 }
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
930 }
931
932public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
935
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
938};
939
940} // end namespace detail
941
942/// Concatenated range across two or more ranges.
943///
944/// The desired value type must be explicitly specified.
945template <typename ValueT, typename... RangeTs>
946detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
951}
952
953//===----------------------------------------------------------------------===//
954// Extra additions to <utility>
955//===----------------------------------------------------------------------===//
956
957/// Function object to check whether the first component of a std::pair
958/// compares less than the first component of another std::pair.
959struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
962 }
963};
964
965/// Function object to check whether the second component of a std::pair
966/// compares less than the second component of another std::pair.
967struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
970 }
971};
972
973/// \brief Function object to apply a binary function to the first component of
974/// a std::pair.
975template<typename FuncTy>
976struct on_first {
977 FuncTy func;
978
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
983 }
984};
985
986// A subset of N3658. More stuff can be added as-needed.
987
988/// Represents a compile-time sequence of integers.
989template <class T, T... I> struct integer_sequence {
990 using value_type = T;
991
992 static constexpr size_t size() { return sizeof...(I); }
993};
994
995/// Alias for the common case of a sequence of size_ts.
996template <size_t... I>
997struct index_sequence : integer_sequence<std::size_t, I...> {};
998
999template <std::size_t N, std::size_t... I>
1000struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001template <std::size_t... I>
1002struct build_index_impl<0, I...> : index_sequence<I...> {};
1003
1004/// Creates a compile-time integer sequence for a parameter pack.
1005template <class... Ts>
1006struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1007
1008/// Utility type to build an inheritance chain that makes it easy to rank
1009/// overload candidates.
1010template <int N> struct rank : rank<N - 1> {};
1011template <> struct rank<0> {};
1012
1013/// traits class for checking whether type T is one of any of the given
1014/// types in the variadic list.
1015template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1017};
1018
1019template <typename T, typename U, typename... Ts>
1020struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1023};
1024
1025/// traits class for checking whether type T is a base class for all
1026/// the given types in the variadic list.
1027template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1029};
1030
1031template <typename T, typename U, typename... Ts>
1032struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1035};
1036
1037//===----------------------------------------------------------------------===//
1038// Extra additions for arrays
1039//===----------------------------------------------------------------------===//
1040
1041/// Find the length of an array.
1042template <class T, std::size_t N>
1043constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1045}
1046
1047/// Adapt std::less<T> for array_pod_sort.
1048template<typename T>
1049inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1057}
1058
1059/// get_array_pod_sort_comparator - This is an internal helper function used to
1060/// get type deduction of T right.
1061template<typename T>
1062inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1065}
1066
1067/// array_pod_sort - This sorts an array with the specified start and end
1068/// extent. This is just like std::sort, except that it calls qsort instead of
1069/// using an inlined template. qsort is slightly slower than std::sort, but
1070/// most sorts are not performance critical in LLVM and std::sort has to be
1071/// template instantiated for each type, leading to significant measured code
1072/// bloat. This function should generally be used instead of std::sort where
1073/// possible.
1074///
1075/// This function assumes that you have simple POD-like types that can be
1076/// compared with std::less and can be moved with memcpy. If this isn't true,
1077/// you should use std::sort.
1078///
1079/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080/// default to std::less.
1081template<class IteratorTy>
1082inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087#ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090#endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092}
1093
1094template <class IteratorTy>
1095inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104#ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107#endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1110}
1111
1112// Provide wrappers to std::sort which shuffle the elements before sorting
1113// to help uncover non-deterministic behavior (PR35135).
1114template <typename IteratorTy>
1115inline void sort(IteratorTy Start, IteratorTy End) {
1116#ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119#endif
1120 std::sort(Start, End);
1121}
1122
1123template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1125}
1126
1127template <typename IteratorTy, typename Compare>
1128inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129#ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132#endif
1133 std::sort(Start, End, Comp);
1134}
1135
1136template <typename Container, typename Compare>
1137inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Extra additions to <algorithm>
1143//===----------------------------------------------------------------------===//
1144
1145/// For a container of pointers, deletes the pointers and then clears the
1146/// container.
1147template<typename Container>
1148void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1152}
1153
1154/// In a container of pairs (usually a map) whose second element is a pointer,
1155/// deletes the second elements and then clears the container.
1156template<typename Container>
1157void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1161}
1162
1163/// Get the size of a range. This is a wrapper function around std::distance
1164/// which is only enabled when the operation is O(1).
1165template <typename R>
1166auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1173}
1174
1175/// Provide wrappers to std::for_each which take ranges instead of having to
1176/// pass begin/end explicitly.
1177template <typename R, typename UnaryPredicate>
1178UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1180}
1181
1182/// Provide wrappers to std::all_of which take ranges instead of having to pass
1183/// begin/end explicitly.
1184template <typename R, typename UnaryPredicate>
1185bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1187}
1188
1189/// Provide wrappers to std::any_of which take ranges instead of having to pass
1190/// begin/end explicitly.
1191template <typename R, typename UnaryPredicate>
1192bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1194}
1195
1196/// Provide wrappers to std::none_of which take ranges instead of having to pass
1197/// begin/end explicitly.
1198template <typename R, typename UnaryPredicate>
1199bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1201}
1202
1203/// Provide wrappers to std::find which take ranges instead of having to pass
1204/// begin/end explicitly.
1205template <typename R, typename T>
1206auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1208}
1209
1210/// Provide wrappers to std::find_if which take ranges instead of having to pass
1211/// begin/end explicitly.
1212template <typename R, typename UnaryPredicate>
1213auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217template <typename R, typename UnaryPredicate>
1218auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1220}
1221
1222/// Provide wrappers to std::remove_if which take ranges instead of having to
1223/// pass begin/end explicitly.
1224template <typename R, typename UnaryPredicate>
1225auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1227}
1228
1229/// Provide wrappers to std::copy_if which take ranges instead of having to
1230/// pass begin/end explicitly.
1231template <typename R, typename OutputIt, typename UnaryPredicate>
1232OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1234}
1235
1236template <typename R, typename OutputIt>
1237OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1239}
1240
1241/// Wrapper function around std::find to detect if an element exists
1242/// in a container.
1243template <typename R, typename E>
1244bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1246}
1247
1248/// Wrapper function around std::count to count the number of times an element
1249/// \p Element occurs in the given range \p Range.
1250template <typename R, typename E>
1251auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1254}
1255
1256/// Wrapper function around std::count_if to count the number of times an
1257/// element satisfying a given predicate occurs in a range.
1258template <typename R, typename UnaryPredicate>
1259auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1262}
1263
1264/// Wrapper function around std::transform to apply a function to a range and
1265/// store the result elsewhere.
1266template <typename R, typename OutputIt, typename UnaryPredicate>
1267OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1269}
1270
1271/// Provide wrappers to std::partition which take ranges instead of having to
1272/// pass begin/end explicitly.
1273template <typename R, typename UnaryPredicate>
1274auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1276}
1277
1278/// Provide wrappers to std::lower_bound which take ranges instead of having to
1279/// pass begin/end explicitly.
1280template <typename R, typename T>
1281auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range),
1283 std::forward<T>(Value));
1284}
1285
1286template <typename R, typename T, typename Compare>
1287auto lower_bound(R &&Range, T &&Value, Compare C)
1288 -> decltype(adl_begin(Range)) {
1289 return std::lower_bound(adl_begin(Range), adl_end(Range),
1290 std::forward<T>(Value), C);
1291}
1292
1293/// Provide wrappers to std::upper_bound which take ranges instead of having to
1294/// pass begin/end explicitly.
1295template <typename R, typename T>
1296auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1297 return std::upper_bound(adl_begin(Range), adl_end(Range),
1298 std::forward<T>(Value));
1299}
1300
1301template <typename R, typename T, typename Compare>
1302auto upper_bound(R &&Range, T &&Value, Compare C)
1303 -> decltype(adl_begin(Range)) {
1304 return std::upper_bound(adl_begin(Range), adl_end(Range),
1305 std::forward<T>(Value), C);
1306}
1307
1308template <typename R>
1309void stable_sort(R &&Range) {
1310 std::stable_sort(adl_begin(Range), adl_end(Range));
1311}
1312
1313template <typename R, typename Compare>
1314void stable_sort(R &&Range, Compare C) {
1315 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1316}
1317
1318/// Binary search for the first index where a predicate is true.
1319/// Returns the first I in [Lo, Hi) where C(I) is true, or Hi if it never is.
1320/// Requires that C is always false below some limit, and always true above it.
1321///
1322/// Example:
1323/// size_t DawnModernEra = bsearch(1776, 2050, [](size_t Year){
1324/// return Presidents.for(Year).twitterHandle() != None;
1325/// });
1326///
1327/// Note the return value differs from std::binary_search!
1328template <typename Predicate>
1329size_t bsearch(size_t Lo, size_t Hi, Predicate P) {
1330 while (Lo != Hi) {
1331 assert(Hi > Lo)((Hi > Lo) ? static_cast<void> (0) : __assert_fail (
"Hi > Lo", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 size_t Mid = Lo + (Hi - Lo) / 2;
1333 if (P(Mid))
1334 Hi = Mid;
1335 else
1336 Lo = Mid + 1;
1337 }
1338 return Hi;
1339}
1340
1341/// Binary search for the first iterator where a predicate is true.
1342/// Returns the first I in [Lo, Hi) where C(*I) is true, or Hi if it never is.
1343/// Requires that C is always false below some limit, and always true above it.
1344template <typename It, typename Predicate,
1345 typename Val = decltype(*std::declval<It>())>
1346It bsearch(It Lo, It Hi, Predicate P) {
1347 return std::lower_bound(Lo, Hi, 0u,
1348 [&](const Val &V, unsigned) { return !P(V); });
1349}
1350
1351/// Binary search for the first iterator in a range where a predicate is true.
1352/// Requires that C is always false below some limit, and always true above it.
1353template <typename R, typename Predicate>
1354auto bsearch(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1355 return bsearch(adl_begin(Range), adl_end(Range), P);
1356}
1357
1358/// Wrapper function around std::equal to detect if all elements
1359/// in a container are same.
1360template <typename R>
1361bool is_splat(R &&Range) {
1362 size_t range_size = size(Range);
1363 return range_size != 0 && (range_size == 1 ||
1364 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1365}
1366
1367/// Given a range of type R, iterate the entire range and return a
1368/// SmallVector with elements of the vector. This is useful, for example,
1369/// when you want to iterate a range and then sort the results.
1370template <unsigned Size, typename R>
1371SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1372to_vector(R &&Range) {
1373 return {adl_begin(Range), adl_end(Range)};
1374}
1375
1376/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1377/// `erase_if` which is equivalent to:
1378///
1379/// C.erase(remove_if(C, pred), C.end());
1380///
1381/// This version works for any container with an erase method call accepting
1382/// two iterators.
1383template <typename Container, typename UnaryPredicate>
1384void erase_if(Container &C, UnaryPredicate P) {
1385 C.erase(remove_if(C, P), C.end());
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Extra additions to <memory>
1390//===----------------------------------------------------------------------===//
1391
1392// Implement make_unique according to N3656.
1393
1394/// Constructs a `new T()` with the given args and returns a
1395/// `unique_ptr<T>` which owns the object.
1396///
1397/// Example:
1398///
1399/// auto p = make_unique<int>();
1400/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1401template <class T, class... Args>
1402typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1403make_unique(Args &&... args) {
1404 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
15
Memory is allocated
1405}
1406
1407/// Constructs a `new T[n]` with the given args and returns a
1408/// `unique_ptr<T[]>` which owns the object.
1409///
1410/// \param n size of the new array.
1411///
1412/// Example:
1413///
1414/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1415template <class T>
1416typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1417 std::unique_ptr<T>>::type
1418make_unique(size_t n) {
1419 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1420}
1421
1422/// This function isn't used and is only here to provide better compile errors.
1423template <class T, class... Args>
1424typename std::enable_if<std::extent<T>::value != 0>::type
1425make_unique(Args &&...) = delete;
1426
1427struct FreeDeleter {
1428 void operator()(void* v) {
1429 ::free(v);
1430 }
1431};
1432
1433template<typename First, typename Second>
1434struct pair_hash {
1435 size_t operator()(const std::pair<First, Second> &P) const {
1436 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1437 }
1438};
1439
1440/// A functor like C++14's std::less<void> in its absence.
1441struct less {
1442 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1443 return std::forward<A>(a) < std::forward<B>(b);
1444 }
1445};
1446
1447/// A functor like C++14's std::equal<void> in its absence.
1448struct equal {
1449 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1450 return std::forward<A>(a) == std::forward<B>(b);
1451 }
1452};
1453
1454/// Binary functor that adapts to any other binary functor after dereferencing
1455/// operands.
1456template <typename T> struct deref {
1457 T func;
1458
1459 // Could be further improved to cope with non-derivable functors and
1460 // non-binary functors (should be a variadic template member function
1461 // operator()).
1462 template <typename A, typename B>
1463 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1464 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return func(*lhs, *rhs);
1467 }
1468};
1469
1470namespace detail {
1471
1472template <typename R> class enumerator_iter;
1473
1474template <typename R> struct result_pair {
1475 friend class enumerator_iter<R>;
1476
1477 result_pair() = default;
1478 result_pair(std::size_t Index, IterOfRange<R> Iter)
1479 : Index(Index), Iter(Iter) {}
1480
1481 result_pair<R> &operator=(const result_pair<R> &Other) {
1482 Index = Other.Index;
1483 Iter = Other.Iter;
1484 return *this;
1485 }
1486
1487 std::size_t index() const { return Index; }
1488 const ValueOfRange<R> &value() const { return *Iter; }
1489 ValueOfRange<R> &value() { return *Iter; }
1490
1491private:
1492 std::size_t Index = std::numeric_limits<std::size_t>::max();
1493 IterOfRange<R> Iter;
1494};
1495
1496template <typename R>
1497class enumerator_iter
1498 : public iterator_facade_base<
1499 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1500 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1501 typename std::iterator_traits<IterOfRange<R>>::pointer,
1502 typename std::iterator_traits<IterOfRange<R>>::reference> {
1503 using result_type = result_pair<R>;
1504
1505public:
1506 explicit enumerator_iter(IterOfRange<R> EndIter)
1507 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1508
1509 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1510 : Result(Index, Iter) {}
1511
1512 result_type &operator*() { return Result; }
1513 const result_type &operator*() const { return Result; }
1514
1515 enumerator_iter<R> &operator++() {
1516 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1516, __PRETTY_FUNCTION__))
;
1517 ++Result.Iter;
1518 ++Result.Index;
1519 return *this;
1520 }
1521
1522 bool operator==(const enumerator_iter<R> &RHS) const {
1523 // Don't compare indices here, only iterators. It's possible for an end
1524 // iterator to have different indices depending on whether it was created
1525 // by calling std::end() versus incrementing a valid iterator.
1526 return Result.Iter == RHS.Result.Iter;
1527 }
1528
1529 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1530 Result = Other.Result;
1531 return *this;
1532 }
1533
1534private:
1535 result_type Result;
1536};
1537
1538template <typename R> class enumerator {
1539public:
1540 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1541
1542 enumerator_iter<R> begin() {
1543 return enumerator_iter<R>(0, std::begin(TheRange));
1544 }
1545
1546 enumerator_iter<R> end() {
1547 return enumerator_iter<R>(std::end(TheRange));
1548 }
1549
1550private:
1551 R TheRange;
1552};
1553
1554} // end namespace detail
1555
1556/// Given an input range, returns a new range whose values are are pair (A,B)
1557/// such that A is the 0-based index of the item in the sequence, and B is
1558/// the value from the original sequence. Example:
1559///
1560/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1561/// for (auto X : enumerate(Items)) {
1562/// printf("Item %d - %c\n", X.index(), X.value());
1563/// }
1564///
1565/// Output:
1566/// Item 0 - A
1567/// Item 1 - B
1568/// Item 2 - C
1569/// Item 3 - D
1570///
1571template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1572 return detail::enumerator<R>(std::forward<R>(TheRange));
1573}
1574
1575namespace detail {
1576
1577template <typename F, typename Tuple, std::size_t... I>
1578auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1579 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1580 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1581}
1582
1583} // end namespace detail
1584
1585/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1586/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1587/// return the result.
1588template <typename F, typename Tuple>
1589auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1590 std::forward<F>(f), std::forward<Tuple>(t),
1591 build_index_impl<
1592 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1593 using Indices = build_index_impl<
1594 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1595
1596 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1597 Indices{});
1598}
1599
1600/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1601/// time. Not meant for use with random-access iterators.
1602template <typename IterTy>
1603bool hasNItems(
1604 IterTy &&Begin, IterTy &&End, unsigned N,
1605 typename std::enable_if<
1606 !std::is_same<
1607 typename std::iterator_traits<typename std::remove_reference<
1608 decltype(Begin)>::type>::iterator_category,
1609 std::random_access_iterator_tag>::value,
1610 void>::type * = nullptr) {
1611 for (; N; --N, ++Begin)
1612 if (Begin == End)
1613 return false; // Too few.
1614 return Begin == End;
1615}
1616
1617/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1618/// time. Not meant for use with random-access iterators.
1619template <typename IterTy>
1620bool hasNItemsOrMore(
1621 IterTy &&Begin, IterTy &&End, unsigned N,
1622 typename std::enable_if<
1623 !std::is_same<
1624 typename std::iterator_traits<typename std::remove_reference<
1625 decltype(Begin)>::type>::iterator_category,
1626 std::random_access_iterator_tag>::value,
1627 void>::type * = nullptr) {
1628 for (; N; --N, ++Begin)
1629 if (Begin == End)
1630 return false; // Too few.
1631 return true;
1632}
1633
1634/// Returns a raw pointer that represents the same address as the argument.
1635///
1636/// The late bound return should be removed once we move to C++14 to better
1637/// align with the C++20 declaration. Also, this implementation can be removed
1638/// once we move to C++20 where it's defined as std::to_addres()
1639///
1640/// The std::pointer_traits<>::to_address(p) variations of these overloads has
1641/// not been implemented.
1642template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1643 return P.operator->();
1644}
1645template <class T> constexpr T *to_address(T *P) { return P; }
1646
1647} // end namespace llvm
1648
1649#endif // LLVM_ADT_STLEXTRAS_H