Bug Summary

File:include/llvm/ObjectYAML/ELFYAML.h
Warning:line 48, column 1
The left operand of '==' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ELFYAML.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-config-compatibility-mode=true -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn349319/build-llvm/lib/ObjectYAML -I /build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML -I /build/llvm-toolchain-snapshot-8~svn349319/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn349319/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn349319/build-llvm/lib/ObjectYAML -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn349319=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-17-043027-19008-1 -x c++ /build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp

1//===- ELFYAML.cpp - ELF YAMLIO implementation ----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes for handling the YAML representation of ELF.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ObjectYAML/ELFYAML.h"
15#include "llvm/ADT/StringRef.h"
16#include "llvm/BinaryFormat/ELF.h"
17#include "llvm/Support/Casting.h"
18#include "llvm/Support/ErrorHandling.h"
19#include "llvm/Support/MipsABIFlags.h"
20#include "llvm/Support/YAMLTraits.h"
21#include <cassert>
22#include <cstdint>
23
24namespace llvm {
25
26ELFYAML::Section::~Section() = default;
27
28namespace yaml {
29
30void ScalarEnumerationTraits<ELFYAML::ELF_ET>::enumeration(
31 IO &IO, ELFYAML::ELF_ET &Value) {
32#define ECase(X) IO.enumCase(Value, #X, ELF::X)
33 ECase(ET_NONE);
34 ECase(ET_REL);
35 ECase(ET_EXEC);
36 ECase(ET_DYN);
37 ECase(ET_CORE);
38#undef ECase
39 IO.enumFallback<Hex16>(Value);
40}
41
42void ScalarEnumerationTraits<ELFYAML::ELF_PT>::enumeration(
43 IO &IO, ELFYAML::ELF_PT &Value) {
44#define ECase(X) IO.enumCase(Value, #X, ELF::X)
45 ECase(PT_NULL);
46 ECase(PT_LOAD);
47 ECase(PT_DYNAMIC);
48 ECase(PT_INTERP);
49 ECase(PT_NOTE);
50 ECase(PT_SHLIB);
51 ECase(PT_PHDR);
52 ECase(PT_TLS);
53 ECase(PT_GNU_EH_FRAME);
54#undef ECase
55 IO.enumFallback<Hex32>(Value);
56}
57
58void ScalarEnumerationTraits<ELFYAML::ELF_EM>::enumeration(
59 IO &IO, ELFYAML::ELF_EM &Value) {
60#define ECase(X) IO.enumCase(Value, #X, ELF::X)
61 ECase(EM_NONE);
62 ECase(EM_M32);
63 ECase(EM_SPARC);
64 ECase(EM_386);
65 ECase(EM_68K);
66 ECase(EM_88K);
67 ECase(EM_IAMCU);
68 ECase(EM_860);
69 ECase(EM_MIPS);
70 ECase(EM_S370);
71 ECase(EM_MIPS_RS3_LE);
72 ECase(EM_PARISC);
73 ECase(EM_VPP500);
74 ECase(EM_SPARC32PLUS);
75 ECase(EM_960);
76 ECase(EM_PPC);
77 ECase(EM_PPC64);
78 ECase(EM_S390);
79 ECase(EM_SPU);
80 ECase(EM_V800);
81 ECase(EM_FR20);
82 ECase(EM_RH32);
83 ECase(EM_RCE);
84 ECase(EM_ARM);
85 ECase(EM_ALPHA);
86 ECase(EM_SH);
87 ECase(EM_SPARCV9);
88 ECase(EM_TRICORE);
89 ECase(EM_ARC);
90 ECase(EM_H8_300);
91 ECase(EM_H8_300H);
92 ECase(EM_H8S);
93 ECase(EM_H8_500);
94 ECase(EM_IA_64);
95 ECase(EM_MIPS_X);
96 ECase(EM_COLDFIRE);
97 ECase(EM_68HC12);
98 ECase(EM_MMA);
99 ECase(EM_PCP);
100 ECase(EM_NCPU);
101 ECase(EM_NDR1);
102 ECase(EM_STARCORE);
103 ECase(EM_ME16);
104 ECase(EM_ST100);
105 ECase(EM_TINYJ);
106 ECase(EM_X86_64);
107 ECase(EM_PDSP);
108 ECase(EM_PDP10);
109 ECase(EM_PDP11);
110 ECase(EM_FX66);
111 ECase(EM_ST9PLUS);
112 ECase(EM_ST7);
113 ECase(EM_68HC16);
114 ECase(EM_68HC11);
115 ECase(EM_68HC08);
116 ECase(EM_68HC05);
117 ECase(EM_SVX);
118 ECase(EM_ST19);
119 ECase(EM_VAX);
120 ECase(EM_CRIS);
121 ECase(EM_JAVELIN);
122 ECase(EM_FIREPATH);
123 ECase(EM_ZSP);
124 ECase(EM_MMIX);
125 ECase(EM_HUANY);
126 ECase(EM_PRISM);
127 ECase(EM_AVR);
128 ECase(EM_FR30);
129 ECase(EM_D10V);
130 ECase(EM_D30V);
131 ECase(EM_V850);
132 ECase(EM_M32R);
133 ECase(EM_MN10300);
134 ECase(EM_MN10200);
135 ECase(EM_PJ);
136 ECase(EM_OPENRISC);
137 ECase(EM_ARC_COMPACT);
138 ECase(EM_XTENSA);
139 ECase(EM_VIDEOCORE);
140 ECase(EM_TMM_GPP);
141 ECase(EM_NS32K);
142 ECase(EM_TPC);
143 ECase(EM_SNP1K);
144 ECase(EM_ST200);
145 ECase(EM_IP2K);
146 ECase(EM_MAX);
147 ECase(EM_CR);
148 ECase(EM_F2MC16);
149 ECase(EM_MSP430);
150 ECase(EM_BLACKFIN);
151 ECase(EM_SE_C33);
152 ECase(EM_SEP);
153 ECase(EM_ARCA);
154 ECase(EM_UNICORE);
155 ECase(EM_EXCESS);
156 ECase(EM_DXP);
157 ECase(EM_ALTERA_NIOS2);
158 ECase(EM_CRX);
159 ECase(EM_XGATE);
160 ECase(EM_C166);
161 ECase(EM_M16C);
162 ECase(EM_DSPIC30F);
163 ECase(EM_CE);
164 ECase(EM_M32C);
165 ECase(EM_TSK3000);
166 ECase(EM_RS08);
167 ECase(EM_SHARC);
168 ECase(EM_ECOG2);
169 ECase(EM_SCORE7);
170 ECase(EM_DSP24);
171 ECase(EM_VIDEOCORE3);
172 ECase(EM_LATTICEMICO32);
173 ECase(EM_SE_C17);
174 ECase(EM_TI_C6000);
175 ECase(EM_TI_C2000);
176 ECase(EM_TI_C5500);
177 ECase(EM_MMDSP_PLUS);
178 ECase(EM_CYPRESS_M8C);
179 ECase(EM_R32C);
180 ECase(EM_TRIMEDIA);
181 ECase(EM_HEXAGON);
182 ECase(EM_8051);
183 ECase(EM_STXP7X);
184 ECase(EM_NDS32);
185 ECase(EM_ECOG1);
186 ECase(EM_ECOG1X);
187 ECase(EM_MAXQ30);
188 ECase(EM_XIMO16);
189 ECase(EM_MANIK);
190 ECase(EM_CRAYNV2);
191 ECase(EM_RX);
192 ECase(EM_METAG);
193 ECase(EM_MCST_ELBRUS);
194 ECase(EM_ECOG16);
195 ECase(EM_CR16);
196 ECase(EM_ETPU);
197 ECase(EM_SLE9X);
198 ECase(EM_L10M);
199 ECase(EM_K10M);
200 ECase(EM_AARCH64);
201 ECase(EM_AVR32);
202 ECase(EM_STM8);
203 ECase(EM_TILE64);
204 ECase(EM_TILEPRO);
205 ECase(EM_CUDA);
206 ECase(EM_TILEGX);
207 ECase(EM_CLOUDSHIELD);
208 ECase(EM_COREA_1ST);
209 ECase(EM_COREA_2ND);
210 ECase(EM_ARC_COMPACT2);
211 ECase(EM_OPEN8);
212 ECase(EM_RL78);
213 ECase(EM_VIDEOCORE5);
214 ECase(EM_78KOR);
215 ECase(EM_56800EX);
216 ECase(EM_AMDGPU);
217 ECase(EM_RISCV);
218 ECase(EM_LANAI);
219 ECase(EM_BPF);
220#undef ECase
221}
222
223void ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS>::enumeration(
224 IO &IO, ELFYAML::ELF_ELFCLASS &Value) {
225#define ECase(X) IO.enumCase(Value, #X, ELF::X)
226 // Since the semantics of ELFCLASSNONE is "invalid", just don't accept it
227 // here.
228 ECase(ELFCLASS32);
229 ECase(ELFCLASS64);
230#undef ECase
231}
232
233void ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA>::enumeration(
234 IO &IO, ELFYAML::ELF_ELFDATA &Value) {
235#define ECase(X) IO.enumCase(Value, #X, ELF::X)
236 // Since the semantics of ELFDATANONE is "invalid", just don't accept it
237 // here.
238 ECase(ELFDATA2LSB);
239 ECase(ELFDATA2MSB);
240#undef ECase
241}
242
243void ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI>::enumeration(
244 IO &IO, ELFYAML::ELF_ELFOSABI &Value) {
245#define ECase(X) IO.enumCase(Value, #X, ELF::X)
246 ECase(ELFOSABI_NONE);
247 ECase(ELFOSABI_HPUX);
248 ECase(ELFOSABI_NETBSD);
249 ECase(ELFOSABI_GNU);
250 ECase(ELFOSABI_HURD);
251 ECase(ELFOSABI_SOLARIS);
252 ECase(ELFOSABI_AIX);
253 ECase(ELFOSABI_IRIX);
254 ECase(ELFOSABI_FREEBSD);
255 ECase(ELFOSABI_TRU64);
256 ECase(ELFOSABI_MODESTO);
257 ECase(ELFOSABI_OPENBSD);
258 ECase(ELFOSABI_OPENVMS);
259 ECase(ELFOSABI_NSK);
260 ECase(ELFOSABI_AROS);
261 ECase(ELFOSABI_FENIXOS);
262 ECase(ELFOSABI_CLOUDABI);
263 ECase(ELFOSABI_AMDGPU_HSA);
264 ECase(ELFOSABI_AMDGPU_PAL);
265 ECase(ELFOSABI_AMDGPU_MESA3D);
266 ECase(ELFOSABI_ARM);
267 ECase(ELFOSABI_C6000_ELFABI);
268 ECase(ELFOSABI_C6000_LINUX);
269 ECase(ELFOSABI_STANDALONE);
270#undef ECase
271}
272
273void ScalarBitSetTraits<ELFYAML::ELF_EF>::bitset(IO &IO,
274 ELFYAML::ELF_EF &Value) {
275 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
276 assert(Object && "The IO context is not initialized")((Object && "The IO context is not initialized") ? static_cast
<void> (0) : __assert_fail ("Object && \"The IO context is not initialized\""
, "/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 276, __PRETTY_FUNCTION__))
;
277#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
278#define BCaseMask(X, M) IO.maskedBitSetCase(Value, #X, ELF::X, ELF::M)
279 switch (Object->Header.Machine) {
280 case ELF::EM_ARM:
281 BCase(EF_ARM_SOFT_FLOAT);
282 BCase(EF_ARM_VFP_FLOAT);
283 BCaseMask(EF_ARM_EABI_UNKNOWN, EF_ARM_EABIMASK);
284 BCaseMask(EF_ARM_EABI_VER1, EF_ARM_EABIMASK);
285 BCaseMask(EF_ARM_EABI_VER2, EF_ARM_EABIMASK);
286 BCaseMask(EF_ARM_EABI_VER3, EF_ARM_EABIMASK);
287 BCaseMask(EF_ARM_EABI_VER4, EF_ARM_EABIMASK);
288 BCaseMask(EF_ARM_EABI_VER5, EF_ARM_EABIMASK);
289 break;
290 case ELF::EM_MIPS:
291 BCase(EF_MIPS_NOREORDER);
292 BCase(EF_MIPS_PIC);
293 BCase(EF_MIPS_CPIC);
294 BCase(EF_MIPS_ABI2);
295 BCase(EF_MIPS_32BITMODE);
296 BCase(EF_MIPS_FP64);
297 BCase(EF_MIPS_NAN2008);
298 BCase(EF_MIPS_MICROMIPS);
299 BCase(EF_MIPS_ARCH_ASE_M16);
300 BCase(EF_MIPS_ARCH_ASE_MDMX);
301 BCaseMask(EF_MIPS_ABI_O32, EF_MIPS_ABI);
302 BCaseMask(EF_MIPS_ABI_O64, EF_MIPS_ABI);
303 BCaseMask(EF_MIPS_ABI_EABI32, EF_MIPS_ABI);
304 BCaseMask(EF_MIPS_ABI_EABI64, EF_MIPS_ABI);
305 BCaseMask(EF_MIPS_MACH_3900, EF_MIPS_MACH);
306 BCaseMask(EF_MIPS_MACH_4010, EF_MIPS_MACH);
307 BCaseMask(EF_MIPS_MACH_4100, EF_MIPS_MACH);
308 BCaseMask(EF_MIPS_MACH_4650, EF_MIPS_MACH);
309 BCaseMask(EF_MIPS_MACH_4120, EF_MIPS_MACH);
310 BCaseMask(EF_MIPS_MACH_4111, EF_MIPS_MACH);
311 BCaseMask(EF_MIPS_MACH_SB1, EF_MIPS_MACH);
312 BCaseMask(EF_MIPS_MACH_OCTEON, EF_MIPS_MACH);
313 BCaseMask(EF_MIPS_MACH_XLR, EF_MIPS_MACH);
314 BCaseMask(EF_MIPS_MACH_OCTEON2, EF_MIPS_MACH);
315 BCaseMask(EF_MIPS_MACH_OCTEON3, EF_MIPS_MACH);
316 BCaseMask(EF_MIPS_MACH_5400, EF_MIPS_MACH);
317 BCaseMask(EF_MIPS_MACH_5900, EF_MIPS_MACH);
318 BCaseMask(EF_MIPS_MACH_5500, EF_MIPS_MACH);
319 BCaseMask(EF_MIPS_MACH_9000, EF_MIPS_MACH);
320 BCaseMask(EF_MIPS_MACH_LS2E, EF_MIPS_MACH);
321 BCaseMask(EF_MIPS_MACH_LS2F, EF_MIPS_MACH);
322 BCaseMask(EF_MIPS_MACH_LS3A, EF_MIPS_MACH);
323 BCaseMask(EF_MIPS_ARCH_1, EF_MIPS_ARCH);
324 BCaseMask(EF_MIPS_ARCH_2, EF_MIPS_ARCH);
325 BCaseMask(EF_MIPS_ARCH_3, EF_MIPS_ARCH);
326 BCaseMask(EF_MIPS_ARCH_4, EF_MIPS_ARCH);
327 BCaseMask(EF_MIPS_ARCH_5, EF_MIPS_ARCH);
328 BCaseMask(EF_MIPS_ARCH_32, EF_MIPS_ARCH);
329 BCaseMask(EF_MIPS_ARCH_64, EF_MIPS_ARCH);
330 BCaseMask(EF_MIPS_ARCH_32R2, EF_MIPS_ARCH);
331 BCaseMask(EF_MIPS_ARCH_64R2, EF_MIPS_ARCH);
332 BCaseMask(EF_MIPS_ARCH_32R6, EF_MIPS_ARCH);
333 BCaseMask(EF_MIPS_ARCH_64R6, EF_MIPS_ARCH);
334 break;
335 case ELF::EM_HEXAGON:
336 BCase(EF_HEXAGON_MACH_V2);
337 BCase(EF_HEXAGON_MACH_V3);
338 BCase(EF_HEXAGON_MACH_V4);
339 BCase(EF_HEXAGON_MACH_V5);
340 BCase(EF_HEXAGON_MACH_V55);
341 BCase(EF_HEXAGON_MACH_V60);
342 BCase(EF_HEXAGON_MACH_V62);
343 BCase(EF_HEXAGON_MACH_V65);
344 BCase(EF_HEXAGON_ISA_V2);
345 BCase(EF_HEXAGON_ISA_V3);
346 BCase(EF_HEXAGON_ISA_V4);
347 BCase(EF_HEXAGON_ISA_V5);
348 BCase(EF_HEXAGON_ISA_V55);
349 BCase(EF_HEXAGON_ISA_V60);
350 BCase(EF_HEXAGON_ISA_V62);
351 BCase(EF_HEXAGON_ISA_V65);
352 break;
353 case ELF::EM_AVR:
354 BCase(EF_AVR_ARCH_AVR1);
355 BCase(EF_AVR_ARCH_AVR2);
356 BCase(EF_AVR_ARCH_AVR25);
357 BCase(EF_AVR_ARCH_AVR3);
358 BCase(EF_AVR_ARCH_AVR31);
359 BCase(EF_AVR_ARCH_AVR35);
360 BCase(EF_AVR_ARCH_AVR4);
361 BCase(EF_AVR_ARCH_AVR51);
362 BCase(EF_AVR_ARCH_AVR6);
363 BCase(EF_AVR_ARCH_AVRTINY);
364 BCase(EF_AVR_ARCH_XMEGA1);
365 BCase(EF_AVR_ARCH_XMEGA2);
366 BCase(EF_AVR_ARCH_XMEGA3);
367 BCase(EF_AVR_ARCH_XMEGA4);
368 BCase(EF_AVR_ARCH_XMEGA5);
369 BCase(EF_AVR_ARCH_XMEGA6);
370 BCase(EF_AVR_ARCH_XMEGA7);
371 break;
372 case ELF::EM_RISCV:
373 BCase(EF_RISCV_RVC);
374 BCaseMask(EF_RISCV_FLOAT_ABI_SOFT, EF_RISCV_FLOAT_ABI);
375 BCaseMask(EF_RISCV_FLOAT_ABI_SINGLE, EF_RISCV_FLOAT_ABI);
376 BCaseMask(EF_RISCV_FLOAT_ABI_DOUBLE, EF_RISCV_FLOAT_ABI);
377 BCaseMask(EF_RISCV_FLOAT_ABI_QUAD, EF_RISCV_FLOAT_ABI);
378 BCase(EF_RISCV_RVE);
379 break;
380 case ELF::EM_AMDGPU:
381 BCaseMask(EF_AMDGPU_MACH_NONE, EF_AMDGPU_MACH);
382 BCaseMask(EF_AMDGPU_MACH_R600_R600, EF_AMDGPU_MACH);
383 BCaseMask(EF_AMDGPU_MACH_R600_R630, EF_AMDGPU_MACH);
384 BCaseMask(EF_AMDGPU_MACH_R600_RS880, EF_AMDGPU_MACH);
385 BCaseMask(EF_AMDGPU_MACH_R600_RV670, EF_AMDGPU_MACH);
386 BCaseMask(EF_AMDGPU_MACH_R600_RV710, EF_AMDGPU_MACH);
387 BCaseMask(EF_AMDGPU_MACH_R600_RV730, EF_AMDGPU_MACH);
388 BCaseMask(EF_AMDGPU_MACH_R600_RV770, EF_AMDGPU_MACH);
389 BCaseMask(EF_AMDGPU_MACH_R600_CEDAR, EF_AMDGPU_MACH);
390 BCaseMask(EF_AMDGPU_MACH_R600_CYPRESS, EF_AMDGPU_MACH);
391 BCaseMask(EF_AMDGPU_MACH_R600_JUNIPER, EF_AMDGPU_MACH);
392 BCaseMask(EF_AMDGPU_MACH_R600_REDWOOD, EF_AMDGPU_MACH);
393 BCaseMask(EF_AMDGPU_MACH_R600_SUMO, EF_AMDGPU_MACH);
394 BCaseMask(EF_AMDGPU_MACH_R600_BARTS, EF_AMDGPU_MACH);
395 BCaseMask(EF_AMDGPU_MACH_R600_CAICOS, EF_AMDGPU_MACH);
396 BCaseMask(EF_AMDGPU_MACH_R600_CAYMAN, EF_AMDGPU_MACH);
397 BCaseMask(EF_AMDGPU_MACH_R600_TURKS, EF_AMDGPU_MACH);
398 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX600, EF_AMDGPU_MACH);
399 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX601, EF_AMDGPU_MACH);
400 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX700, EF_AMDGPU_MACH);
401 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX701, EF_AMDGPU_MACH);
402 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX702, EF_AMDGPU_MACH);
403 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX703, EF_AMDGPU_MACH);
404 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX704, EF_AMDGPU_MACH);
405 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX801, EF_AMDGPU_MACH);
406 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX802, EF_AMDGPU_MACH);
407 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX803, EF_AMDGPU_MACH);
408 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX810, EF_AMDGPU_MACH);
409 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX900, EF_AMDGPU_MACH);
410 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX902, EF_AMDGPU_MACH);
411 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX904, EF_AMDGPU_MACH);
412 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX906, EF_AMDGPU_MACH);
413 BCaseMask(EF_AMDGPU_MACH_AMDGCN_GFX909, EF_AMDGPU_MACH);
414 BCase(EF_AMDGPU_XNACK);
415 BCase(EF_AMDGPU_SRAM_ECC);
416 break;
417 case ELF::EM_X86_64:
418 break;
419 default:
420 llvm_unreachable("Unsupported architecture")::llvm::llvm_unreachable_internal("Unsupported architecture",
"/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 420)
;
421 }
422#undef BCase
423#undef BCaseMask
424}
425
426void ScalarEnumerationTraits<ELFYAML::ELF_SHT>::enumeration(
427 IO &IO, ELFYAML::ELF_SHT &Value) {
428 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
429 assert(Object && "The IO context is not initialized")((Object && "The IO context is not initialized") ? static_cast
<void> (0) : __assert_fail ("Object && \"The IO context is not initialized\""
, "/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 429, __PRETTY_FUNCTION__))
;
12
Assuming 'Object' is non-null
13
'?' condition is true
430#define ECase(X) IO.enumCase(Value, #X, ELF::X)
431 ECase(SHT_NULL);
14
Calling 'IO::enumCase'
432 ECase(SHT_PROGBITS);
433 ECase(SHT_SYMTAB);
434 // FIXME: Issue a diagnostic with this information.
435 ECase(SHT_STRTAB);
436 ECase(SHT_RELA);
437 ECase(SHT_HASH);
438 ECase(SHT_DYNAMIC);
439 ECase(SHT_NOTE);
440 ECase(SHT_NOBITS);
441 ECase(SHT_REL);
442 ECase(SHT_SHLIB);
443 ECase(SHT_DYNSYM);
444 ECase(SHT_INIT_ARRAY);
445 ECase(SHT_FINI_ARRAY);
446 ECase(SHT_PREINIT_ARRAY);
447 ECase(SHT_GROUP);
448 ECase(SHT_SYMTAB_SHNDX);
449 ECase(SHT_RELR);
450 ECase(SHT_LOOS);
451 ECase(SHT_ANDROID_REL);
452 ECase(SHT_ANDROID_RELA);
453 ECase(SHT_ANDROID_RELR);
454 ECase(SHT_LLVM_ODRTAB);
455 ECase(SHT_LLVM_LINKER_OPTIONS);
456 ECase(SHT_LLVM_CALL_GRAPH_PROFILE);
457 ECase(SHT_LLVM_ADDRSIG);
458 ECase(SHT_GNU_ATTRIBUTES);
459 ECase(SHT_GNU_HASH);
460 ECase(SHT_GNU_verdef);
461 ECase(SHT_GNU_verneed);
462 ECase(SHT_GNU_versym);
463 ECase(SHT_HIOS);
464 ECase(SHT_LOPROC);
465 switch (Object->Header.Machine) {
466 case ELF::EM_ARM:
467 ECase(SHT_ARM_EXIDX);
468 ECase(SHT_ARM_PREEMPTMAP);
469 ECase(SHT_ARM_ATTRIBUTES);
470 ECase(SHT_ARM_DEBUGOVERLAY);
471 ECase(SHT_ARM_OVERLAYSECTION);
472 break;
473 case ELF::EM_HEXAGON:
474 ECase(SHT_HEX_ORDERED);
475 break;
476 case ELF::EM_X86_64:
477 ECase(SHT_X86_64_UNWIND);
478 break;
479 case ELF::EM_MIPS:
480 ECase(SHT_MIPS_REGINFO);
481 ECase(SHT_MIPS_OPTIONS);
482 ECase(SHT_MIPS_ABIFLAGS);
483 break;
484 default:
485 // Nothing to do.
486 break;
487 }
488#undef ECase
489}
490
491void ScalarBitSetTraits<ELFYAML::ELF_PF>::bitset(IO &IO,
492 ELFYAML::ELF_PF &Value) {
493#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
494 BCase(PF_X);
495 BCase(PF_W);
496 BCase(PF_R);
497}
498
499void ScalarBitSetTraits<ELFYAML::ELF_SHF>::bitset(IO &IO,
500 ELFYAML::ELF_SHF &Value) {
501 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
502#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
503 BCase(SHF_WRITE);
504 BCase(SHF_ALLOC);
505 BCase(SHF_EXCLUDE);
506 BCase(SHF_EXECINSTR);
507 BCase(SHF_MERGE);
508 BCase(SHF_STRINGS);
509 BCase(SHF_INFO_LINK);
510 BCase(SHF_LINK_ORDER);
511 BCase(SHF_OS_NONCONFORMING);
512 BCase(SHF_GROUP);
513 BCase(SHF_TLS);
514 BCase(SHF_COMPRESSED);
515 switch (Object->Header.Machine) {
516 case ELF::EM_ARM:
517 BCase(SHF_ARM_PURECODE);
518 break;
519 case ELF::EM_HEXAGON:
520 BCase(SHF_HEX_GPREL);
521 break;
522 case ELF::EM_MIPS:
523 BCase(SHF_MIPS_NODUPES);
524 BCase(SHF_MIPS_NAMES);
525 BCase(SHF_MIPS_LOCAL);
526 BCase(SHF_MIPS_NOSTRIP);
527 BCase(SHF_MIPS_GPREL);
528 BCase(SHF_MIPS_MERGE);
529 BCase(SHF_MIPS_ADDR);
530 BCase(SHF_MIPS_STRING);
531 break;
532 case ELF::EM_X86_64:
533 BCase(SHF_X86_64_LARGE);
534 break;
535 default:
536 // Nothing to do.
537 break;
538 }
539#undef BCase
540}
541
542void ScalarEnumerationTraits<ELFYAML::ELF_SHN>::enumeration(
543 IO &IO, ELFYAML::ELF_SHN &Value) {
544#define ECase(X) IO.enumCase(Value, #X, ELF::X)
545 ECase(SHN_UNDEF);
546 ECase(SHN_LORESERVE);
547 ECase(SHN_LOPROC);
548 ECase(SHN_HIPROC);
549 ECase(SHN_LOOS);
550 ECase(SHN_HIOS);
551 ECase(SHN_ABS);
552 ECase(SHN_COMMON);
553 ECase(SHN_XINDEX);
554 ECase(SHN_HIRESERVE);
555 ECase(SHN_HEXAGON_SCOMMON);
556 ECase(SHN_HEXAGON_SCOMMON_1);
557 ECase(SHN_HEXAGON_SCOMMON_2);
558 ECase(SHN_HEXAGON_SCOMMON_4);
559 ECase(SHN_HEXAGON_SCOMMON_8);
560#undef ECase
561 IO.enumFallback<Hex32>(Value);
562}
563
564void ScalarEnumerationTraits<ELFYAML::ELF_STT>::enumeration(
565 IO &IO, ELFYAML::ELF_STT &Value) {
566#define ECase(X) IO.enumCase(Value, #X, ELF::X)
567 ECase(STT_NOTYPE);
568 ECase(STT_OBJECT);
569 ECase(STT_FUNC);
570 ECase(STT_SECTION);
571 ECase(STT_FILE);
572 ECase(STT_COMMON);
573 ECase(STT_TLS);
574 ECase(STT_GNU_IFUNC);
575#undef ECase
576}
577
578void ScalarEnumerationTraits<ELFYAML::ELF_STV>::enumeration(
579 IO &IO, ELFYAML::ELF_STV &Value) {
580#define ECase(X) IO.enumCase(Value, #X, ELF::X)
581 ECase(STV_DEFAULT);
582 ECase(STV_INTERNAL);
583 ECase(STV_HIDDEN);
584 ECase(STV_PROTECTED);
585#undef ECase
586}
587
588void ScalarBitSetTraits<ELFYAML::ELF_STO>::bitset(IO &IO,
589 ELFYAML::ELF_STO &Value) {
590 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
591 assert(Object && "The IO context is not initialized")((Object && "The IO context is not initialized") ? static_cast
<void> (0) : __assert_fail ("Object && \"The IO context is not initialized\""
, "/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 591, __PRETTY_FUNCTION__))
;
592#define BCase(X) IO.bitSetCase(Value, #X, ELF::X)
593 switch (Object->Header.Machine) {
594 case ELF::EM_MIPS:
595 BCase(STO_MIPS_OPTIONAL);
596 BCase(STO_MIPS_PLT);
597 BCase(STO_MIPS_PIC);
598 BCase(STO_MIPS_MICROMIPS);
599 break;
600 default:
601 break; // Nothing to do
602 }
603#undef BCase
604#undef BCaseMask
605}
606
607void ScalarEnumerationTraits<ELFYAML::ELF_RSS>::enumeration(
608 IO &IO, ELFYAML::ELF_RSS &Value) {
609#define ECase(X) IO.enumCase(Value, #X, ELF::X)
610 ECase(RSS_UNDEF);
611 ECase(RSS_GP);
612 ECase(RSS_GP0);
613 ECase(RSS_LOC);
614#undef ECase
615}
616
617void ScalarEnumerationTraits<ELFYAML::ELF_REL>::enumeration(
618 IO &IO, ELFYAML::ELF_REL &Value) {
619 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
620 assert(Object && "The IO context is not initialized")((Object && "The IO context is not initialized") ? static_cast
<void> (0) : __assert_fail ("Object && \"The IO context is not initialized\""
, "/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 620, __PRETTY_FUNCTION__))
;
621#define ELF_RELOC(X, Y) IO.enumCase(Value, #X, ELF::X);
622 switch (Object->Header.Machine) {
623 case ELF::EM_X86_64:
624#include "llvm/BinaryFormat/ELFRelocs/x86_64.def"
625 break;
626 case ELF::EM_MIPS:
627#include "llvm/BinaryFormat/ELFRelocs/Mips.def"
628 break;
629 case ELF::EM_HEXAGON:
630#include "llvm/BinaryFormat/ELFRelocs/Hexagon.def"
631 break;
632 case ELF::EM_386:
633 case ELF::EM_IAMCU:
634#include "llvm/BinaryFormat/ELFRelocs/i386.def"
635 break;
636 case ELF::EM_AARCH64:
637#include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
638 break;
639 case ELF::EM_ARM:
640#include "llvm/BinaryFormat/ELFRelocs/ARM.def"
641 break;
642 case ELF::EM_ARC:
643#include "llvm/BinaryFormat/ELFRelocs/ARC.def"
644 break;
645 case ELF::EM_RISCV:
646#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
647 break;
648 case ELF::EM_LANAI:
649#include "llvm/BinaryFormat/ELFRelocs/Lanai.def"
650 break;
651 case ELF::EM_AMDGPU:
652#include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
653 break;
654 case ELF::EM_BPF:
655#include "llvm/BinaryFormat/ELFRelocs/BPF.def"
656 break;
657 default:
658 llvm_unreachable("Unsupported architecture")::llvm::llvm_unreachable_internal("Unsupported architecture",
"/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 658)
;
659 }
660#undef ELF_RELOC
661 IO.enumFallback<Hex32>(Value);
662}
663
664void ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG>::enumeration(
665 IO &IO, ELFYAML::MIPS_AFL_REG &Value) {
666#define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X)
667 ECase(REG_NONE);
668 ECase(REG_32);
669 ECase(REG_64);
670 ECase(REG_128);
671#undef ECase
672}
673
674void ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP>::enumeration(
675 IO &IO, ELFYAML::MIPS_ABI_FP &Value) {
676#define ECase(X) IO.enumCase(Value, #X, Mips::Val_GNU_MIPS_ABI_##X)
677 ECase(FP_ANY);
678 ECase(FP_DOUBLE);
679 ECase(FP_SINGLE);
680 ECase(FP_SOFT);
681 ECase(FP_OLD_64);
682 ECase(FP_XX);
683 ECase(FP_64);
684 ECase(FP_64A);
685#undef ECase
686}
687
688void ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT>::enumeration(
689 IO &IO, ELFYAML::MIPS_AFL_EXT &Value) {
690#define ECase(X) IO.enumCase(Value, #X, Mips::AFL_##X)
691 ECase(EXT_NONE);
692 ECase(EXT_XLR);
693 ECase(EXT_OCTEON2);
694 ECase(EXT_OCTEONP);
695 ECase(EXT_LOONGSON_3A);
696 ECase(EXT_OCTEON);
697 ECase(EXT_5900);
698 ECase(EXT_4650);
699 ECase(EXT_4010);
700 ECase(EXT_4100);
701 ECase(EXT_3900);
702 ECase(EXT_10000);
703 ECase(EXT_SB1);
704 ECase(EXT_4111);
705 ECase(EXT_4120);
706 ECase(EXT_5400);
707 ECase(EXT_5500);
708 ECase(EXT_LOONGSON_2E);
709 ECase(EXT_LOONGSON_2F);
710 ECase(EXT_OCTEON3);
711#undef ECase
712}
713
714void ScalarEnumerationTraits<ELFYAML::MIPS_ISA>::enumeration(
715 IO &IO, ELFYAML::MIPS_ISA &Value) {
716 IO.enumCase(Value, "MIPS1", 1);
717 IO.enumCase(Value, "MIPS2", 2);
718 IO.enumCase(Value, "MIPS3", 3);
719 IO.enumCase(Value, "MIPS4", 4);
720 IO.enumCase(Value, "MIPS5", 5);
721 IO.enumCase(Value, "MIPS32", 32);
722 IO.enumCase(Value, "MIPS64", 64);
723}
724
725void ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE>::bitset(
726 IO &IO, ELFYAML::MIPS_AFL_ASE &Value) {
727#define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_ASE_##X)
728 BCase(DSP);
729 BCase(DSPR2);
730 BCase(EVA);
731 BCase(MCU);
732 BCase(MDMX);
733 BCase(MIPS3D);
734 BCase(MT);
735 BCase(SMARTMIPS);
736 BCase(VIRT);
737 BCase(MSA);
738 BCase(MIPS16);
739 BCase(MICROMIPS);
740 BCase(XPA);
741#undef BCase
742}
743
744void ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1>::bitset(
745 IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value) {
746#define BCase(X) IO.bitSetCase(Value, #X, Mips::AFL_FLAGS1_##X)
747 BCase(ODDSPREG);
748#undef BCase
749}
750
751void MappingTraits<ELFYAML::FileHeader>::mapping(IO &IO,
752 ELFYAML::FileHeader &FileHdr) {
753 IO.mapRequired("Class", FileHdr.Class);
754 IO.mapRequired("Data", FileHdr.Data);
755 IO.mapOptional("OSABI", FileHdr.OSABI, ELFYAML::ELF_ELFOSABI(0));
756 IO.mapRequired("Type", FileHdr.Type);
757 IO.mapRequired("Machine", FileHdr.Machine);
758 IO.mapOptional("Flags", FileHdr.Flags, ELFYAML::ELF_EF(0));
759 IO.mapOptional("Entry", FileHdr.Entry, Hex64(0));
760}
761
762void MappingTraits<ELFYAML::ProgramHeader>::mapping(
763 IO &IO, ELFYAML::ProgramHeader &Phdr) {
764 IO.mapRequired("Type", Phdr.Type);
765 IO.mapOptional("Flags", Phdr.Flags, ELFYAML::ELF_PF(0));
766 IO.mapOptional("Sections", Phdr.Sections);
767 IO.mapOptional("VAddr", Phdr.VAddr, Hex64(0));
768 IO.mapOptional("PAddr", Phdr.PAddr, Hex64(0));
769 IO.mapOptional("Align", Phdr.Align);
770}
771
772namespace {
773
774struct NormalizedOther {
775 NormalizedOther(IO &)
776 : Visibility(ELFYAML::ELF_STV(0)), Other(ELFYAML::ELF_STO(0)) {}
777 NormalizedOther(IO &, uint8_t Original)
778 : Visibility(Original & 0x3), Other(Original & ~0x3) {}
779
780 uint8_t denormalize(IO &) { return Visibility | Other; }
781
782 ELFYAML::ELF_STV Visibility;
783 ELFYAML::ELF_STO Other;
784};
785
786} // end anonymous namespace
787
788void MappingTraits<ELFYAML::Symbol>::mapping(IO &IO, ELFYAML::Symbol &Symbol) {
789 IO.mapOptional("Name", Symbol.Name, StringRef());
790 IO.mapOptional("Type", Symbol.Type, ELFYAML::ELF_STT(0));
791 IO.mapOptional("Section", Symbol.Section, StringRef());
792 IO.mapOptional("Index", Symbol.Index);
793 IO.mapOptional("Value", Symbol.Value, Hex64(0));
794 IO.mapOptional("Size", Symbol.Size, Hex64(0));
795
796 MappingNormalization<NormalizedOther, uint8_t> Keys(IO, Symbol.Other);
797 IO.mapOptional("Visibility", Keys->Visibility, ELFYAML::ELF_STV(0));
798 IO.mapOptional("Other", Keys->Other, ELFYAML::ELF_STO(0));
799}
800
801StringRef MappingTraits<ELFYAML::Symbol>::validate(IO &IO,
802 ELFYAML::Symbol &Symbol) {
803 if (Symbol.Index && Symbol.Section.data()) {
804 return "Index and Section cannot both be specified for Symbol";
805 }
806 if (Symbol.Index && *Symbol.Index == ELFYAML::ELF_SHN(ELF::SHN_XINDEX)) {
807 return "Large indexes are not supported";
808 }
809 if (Symbol.Index && *Symbol.Index < ELFYAML::ELF_SHN(ELF::SHN_LORESERVE)) {
810 return "Use a section name to define which section a symbol is defined in";
811 }
812 return StringRef();
813}
814
815void MappingTraits<ELFYAML::LocalGlobalWeakSymbols>::mapping(
816 IO &IO, ELFYAML::LocalGlobalWeakSymbols &Symbols) {
817 IO.mapOptional("Local", Symbols.Local);
818 IO.mapOptional("Global", Symbols.Global);
819 IO.mapOptional("Weak", Symbols.Weak);
820}
821
822static void commonSectionMapping(IO &IO, ELFYAML::Section &Section) {
823 IO.mapOptional("Name", Section.Name, StringRef());
824 IO.mapRequired("Type", Section.Type);
825 IO.mapOptional("Flags", Section.Flags, ELFYAML::ELF_SHF(0));
826 IO.mapOptional("Address", Section.Address, Hex64(0));
827 IO.mapOptional("Link", Section.Link, StringRef());
828 IO.mapOptional("AddressAlign", Section.AddressAlign, Hex64(0));
829 IO.mapOptional("EntSize", Section.EntSize);
830 IO.mapOptional("Info", Section.Info, StringRef());
831}
832
833static void sectionMapping(IO &IO, ELFYAML::RawContentSection &Section) {
834 commonSectionMapping(IO, Section);
835 IO.mapOptional("Content", Section.Content);
836 IO.mapOptional("Size", Section.Size, Hex64(Section.Content.binary_size()));
837}
838
839static void sectionMapping(IO &IO, ELFYAML::NoBitsSection &Section) {
840 commonSectionMapping(IO, Section);
841 IO.mapOptional("Size", Section.Size, Hex64(0));
842}
843
844static void sectionMapping(IO &IO, ELFYAML::RelocationSection &Section) {
845 commonSectionMapping(IO, Section);
846 IO.mapOptional("Relocations", Section.Relocations);
847}
848
849static void groupSectionMapping(IO &IO, ELFYAML::Group &group) {
850 commonSectionMapping(IO, group);
851 IO.mapRequired("Members", group.Members);
852}
853
854void MappingTraits<ELFYAML::SectionOrType>::mapping(
855 IO &IO, ELFYAML::SectionOrType &sectionOrType) {
856 IO.mapRequired("SectionOrType", sectionOrType.sectionNameOrType);
857}
858
859void MappingTraits<ELFYAML::SectionName>::mapping(
860 IO &IO, ELFYAML::SectionName &sectionName) {
861 IO.mapRequired("Section", sectionName.Section);
862}
863
864static void sectionMapping(IO &IO, ELFYAML::MipsABIFlags &Section) {
865 commonSectionMapping(IO, Section);
866 IO.mapOptional("Version", Section.Version, Hex16(0));
867 IO.mapRequired("ISA", Section.ISALevel);
868 IO.mapOptional("ISARevision", Section.ISARevision, Hex8(0));
869 IO.mapOptional("ISAExtension", Section.ISAExtension,
870 ELFYAML::MIPS_AFL_EXT(Mips::AFL_EXT_NONE));
871 IO.mapOptional("ASEs", Section.ASEs, ELFYAML::MIPS_AFL_ASE(0));
872 IO.mapOptional("FpABI", Section.FpABI,
873 ELFYAML::MIPS_ABI_FP(Mips::Val_GNU_MIPS_ABI_FP_ANY));
874 IO.mapOptional("GPRSize", Section.GPRSize,
875 ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
876 IO.mapOptional("CPR1Size", Section.CPR1Size,
877 ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
878 IO.mapOptional("CPR2Size", Section.CPR2Size,
879 ELFYAML::MIPS_AFL_REG(Mips::AFL_REG_NONE));
880 IO.mapOptional("Flags1", Section.Flags1, ELFYAML::MIPS_AFL_FLAGS1(0));
881 IO.mapOptional("Flags2", Section.Flags2, Hex32(0));
882}
883
884void MappingTraits<std::unique_ptr<ELFYAML::Section>>::mapping(
885 IO &IO, std::unique_ptr<ELFYAML::Section> &Section) {
886 ELFYAML::ELF_SHT sectionType;
1
Calling defaulted default constructor for 'ELF_SHT'
3
Returning from default constructor for 'ELF_SHT'
887 if (IO.outputting())
4
Assuming the condition is false
5
Taking false branch
888 sectionType = Section->Type;
889 else
890 IO.mapRequired("Type", sectionType);
6
Calling 'IO::mapRequired'
891
892 switch (sectionType) {
893 case ELF::SHT_REL:
894 case ELF::SHT_RELA:
895 if (!IO.outputting())
896 Section.reset(new ELFYAML::RelocationSection());
897 sectionMapping(IO, *cast<ELFYAML::RelocationSection>(Section.get()));
898 break;
899 case ELF::SHT_GROUP:
900 if (!IO.outputting())
901 Section.reset(new ELFYAML::Group());
902 groupSectionMapping(IO, *cast<ELFYAML::Group>(Section.get()));
903 break;
904 case ELF::SHT_NOBITS:
905 if (!IO.outputting())
906 Section.reset(new ELFYAML::NoBitsSection());
907 sectionMapping(IO, *cast<ELFYAML::NoBitsSection>(Section.get()));
908 break;
909 case ELF::SHT_MIPS_ABIFLAGS:
910 if (!IO.outputting())
911 Section.reset(new ELFYAML::MipsABIFlags());
912 sectionMapping(IO, *cast<ELFYAML::MipsABIFlags>(Section.get()));
913 break;
914 default:
915 if (!IO.outputting())
916 Section.reset(new ELFYAML::RawContentSection());
917 sectionMapping(IO, *cast<ELFYAML::RawContentSection>(Section.get()));
918 }
919}
920
921StringRef MappingTraits<std::unique_ptr<ELFYAML::Section>>::validate(
922 IO &io, std::unique_ptr<ELFYAML::Section> &Section) {
923 const auto *RawSection = dyn_cast<ELFYAML::RawContentSection>(Section.get());
924 if (!RawSection || RawSection->Size >= RawSection->Content.binary_size())
925 return StringRef();
926 return "Section size must be greater or equal to the content size";
927}
928
929namespace {
930
931struct NormalizedMips64RelType {
932 NormalizedMips64RelType(IO &)
933 : Type(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
934 Type2(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
935 Type3(ELFYAML::ELF_REL(ELF::R_MIPS_NONE)),
936 SpecSym(ELFYAML::ELF_REL(ELF::RSS_UNDEF)) {}
937 NormalizedMips64RelType(IO &, ELFYAML::ELF_REL Original)
938 : Type(Original & 0xFF), Type2(Original >> 8 & 0xFF),
939 Type3(Original >> 16 & 0xFF), SpecSym(Original >> 24 & 0xFF) {}
940
941 ELFYAML::ELF_REL denormalize(IO &) {
942 ELFYAML::ELF_REL Res = Type | Type2 << 8 | Type3 << 16 | SpecSym << 24;
943 return Res;
944 }
945
946 ELFYAML::ELF_REL Type;
947 ELFYAML::ELF_REL Type2;
948 ELFYAML::ELF_REL Type3;
949 ELFYAML::ELF_RSS SpecSym;
950};
951
952} // end anonymous namespace
953
954void MappingTraits<ELFYAML::Relocation>::mapping(IO &IO,
955 ELFYAML::Relocation &Rel) {
956 const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
957 assert(Object && "The IO context is not initialized")((Object && "The IO context is not initialized") ? static_cast
<void> (0) : __assert_fail ("Object && \"The IO context is not initialized\""
, "/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 957, __PRETTY_FUNCTION__))
;
958
959 IO.mapRequired("Offset", Rel.Offset);
960 IO.mapOptional("Symbol", Rel.Symbol);
961
962 if (Object->Header.Machine == ELFYAML::ELF_EM(ELF::EM_MIPS) &&
963 Object->Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64)) {
964 MappingNormalization<NormalizedMips64RelType, ELFYAML::ELF_REL> Key(
965 IO, Rel.Type);
966 IO.mapRequired("Type", Key->Type);
967 IO.mapOptional("Type2", Key->Type2, ELFYAML::ELF_REL(ELF::R_MIPS_NONE));
968 IO.mapOptional("Type3", Key->Type3, ELFYAML::ELF_REL(ELF::R_MIPS_NONE));
969 IO.mapOptional("SpecSym", Key->SpecSym, ELFYAML::ELF_RSS(ELF::RSS_UNDEF));
970 } else
971 IO.mapRequired("Type", Rel.Type);
972
973 IO.mapOptional("Addend", Rel.Addend, (int64_t)0);
974}
975
976void MappingTraits<ELFYAML::Object>::mapping(IO &IO, ELFYAML::Object &Object) {
977 assert(!IO.getContext() && "The IO context is initialized already")((!IO.getContext() && "The IO context is initialized already"
) ? static_cast<void> (0) : __assert_fail ("!IO.getContext() && \"The IO context is initialized already\""
, "/build/llvm-toolchain-snapshot-8~svn349319/lib/ObjectYAML/ELFYAML.cpp"
, 977, __PRETTY_FUNCTION__))
;
978 IO.setContext(&Object);
979 IO.mapTag("!ELF", true);
980 IO.mapRequired("FileHeader", Object.Header);
981 IO.mapOptional("ProgramHeaders", Object.ProgramHeaders);
982 IO.mapOptional("Sections", Object.Sections);
983 IO.mapOptional("Symbols", Object.Symbols);
984 IO.mapOptional("DynamicSymbols", Object.DynamicSymbols);
985 IO.setContext(nullptr);
986}
987
988LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG)struct MIPS_AFL_REG { MIPS_AFL_REG() = default; MIPS_AFL_REG(
const uint8_t v) : value(v) {} MIPS_AFL_REG(const MIPS_AFL_REG
&v) = default; MIPS_AFL_REG &operator=(const MIPS_AFL_REG
&rhs) = default; MIPS_AFL_REG &operator=(const uint8_t
&rhs) { value = rhs; return *this; } operator const uint8_t
& () const { return value; } bool operator==(const MIPS_AFL_REG
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_REG &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
989LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP)struct MIPS_ABI_FP { MIPS_ABI_FP() = default; MIPS_ABI_FP(const
uint8_t v) : value(v) {} MIPS_ABI_FP(const MIPS_ABI_FP &
v) = default; MIPS_ABI_FP &operator=(const MIPS_ABI_FP &
rhs) = default; MIPS_ABI_FP &operator=(const uint8_t &
rhs) { value = rhs; return *this; } operator const uint8_t &
() const { return value; } bool operator==(const MIPS_ABI_FP
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_ABI_FP &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
990LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT)struct MIPS_AFL_EXT { MIPS_AFL_EXT() = default; MIPS_AFL_EXT(
const uint32_t v) : value(v) {} MIPS_AFL_EXT(const MIPS_AFL_EXT
&v) = default; MIPS_AFL_EXT &operator=(const MIPS_AFL_EXT
&rhs) = default; MIPS_AFL_EXT &operator=(const uint32_t
&rhs) { value = rhs; return *this; } operator const uint32_t
& () const { return value; } bool operator==(const MIPS_AFL_EXT
&rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_EXT &rhs) const { return value
< rhs.value; } uint32_t value; using BaseType = uint32_t;
};
991LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE)struct MIPS_AFL_ASE { MIPS_AFL_ASE() = default; MIPS_AFL_ASE(
const uint32_t v) : value(v) {} MIPS_AFL_ASE(const MIPS_AFL_ASE
&v) = default; MIPS_AFL_ASE &operator=(const MIPS_AFL_ASE
&rhs) = default; MIPS_AFL_ASE &operator=(const uint32_t
&rhs) { value = rhs; return *this; } operator const uint32_t
& () const { return value; } bool operator==(const MIPS_AFL_ASE
&rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_ASE &rhs) const { return value
< rhs.value; } uint32_t value; using BaseType = uint32_t;
};
992LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1)struct MIPS_AFL_FLAGS1 { MIPS_AFL_FLAGS1() = default; MIPS_AFL_FLAGS1
(const uint32_t v) : value(v) {} MIPS_AFL_FLAGS1(const MIPS_AFL_FLAGS1
&v) = default; MIPS_AFL_FLAGS1 &operator=(const MIPS_AFL_FLAGS1
&rhs) = default; MIPS_AFL_FLAGS1 &operator=(const uint32_t
&rhs) { value = rhs; return *this; } operator const uint32_t
& () const { return value; } bool operator==(const MIPS_AFL_FLAGS1
&rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_FLAGS1 &rhs) const { return value
< rhs.value; } uint32_t value; using BaseType = uint32_t;
};
993
994} // end namespace yaml
995
996} // end namespace llvm

/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/ObjectYAML/ELFYAML.h

1//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// This file declares classes for handling the YAML representation
12/// of ELF.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_OBJECTYAML_ELFYAML_H
17#define LLVM_OBJECTYAML_ELFYAML_H
18
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ObjectYAML/YAML.h"
21#include "llvm/Support/YAMLTraits.h"
22#include <cstdint>
23#include <memory>
24#include <vector>
25
26namespace llvm {
27namespace ELFYAML {
28
29// These types are invariant across 32/64-bit ELF, so for simplicity just
30// directly give them their exact sizes. We don't need to worry about
31// endianness because these are just the types in the YAMLIO structures,
32// and are appropriately converted to the necessary endianness when
33// reading/generating binary object files.
34// The naming of these types is intended to be ELF_PREFIX, where PREFIX is
35// the common prefix of the respective constants. E.g. ELF_EM corresponds
36// to the `e_machine` constants, like `EM_X86_64`.
37// In the future, these would probably be better suited by C++11 enum
38// class's with appropriate fixed underlying type.
39LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET)struct ELF_ET { ELF_ET() = default; ELF_ET(const uint16_t v) :
value(v) {} ELF_ET(const ELF_ET &v) = default; ELF_ET &
operator=(const ELF_ET &rhs) = default; ELF_ET &operator
=(const uint16_t &rhs) { value = rhs; return *this; } operator
const uint16_t & () const { return value; } bool operator
==(const ELF_ET &rhs) const { return value == rhs.value; }
bool operator==(const uint16_t &rhs) const { return value
== rhs; } bool operator<(const ELF_ET &rhs) const { return
value < rhs.value; } uint16_t value; using BaseType = uint16_t
; };
40LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT)struct ELF_PT { ELF_PT() = default; ELF_PT(const uint32_t v) :
value(v) {} ELF_PT(const ELF_PT &v) = default; ELF_PT &
operator=(const ELF_PT &rhs) = default; ELF_PT &operator
=(const uint32_t &rhs) { value = rhs; return *this; } operator
const uint32_t & () const { return value; } bool operator
==(const ELF_PT &rhs) const { return value == rhs.value; }
bool operator==(const uint32_t &rhs) const { return value
== rhs; } bool operator<(const ELF_PT &rhs) const { return
value < rhs.value; } uint32_t value; using BaseType = uint32_t
; };
41LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM)struct ELF_EM { ELF_EM() = default; ELF_EM(const uint32_t v) :
value(v) {} ELF_EM(const ELF_EM &v) = default; ELF_EM &
operator=(const ELF_EM &rhs) = default; ELF_EM &operator
=(const uint32_t &rhs) { value = rhs; return *this; } operator
const uint32_t & () const { return value; } bool operator
==(const ELF_EM &rhs) const { return value == rhs.value; }
bool operator==(const uint32_t &rhs) const { return value
== rhs; } bool operator<(const ELF_EM &rhs) const { return
value < rhs.value; } uint32_t value; using BaseType = uint32_t
; };
42LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS)struct ELF_ELFCLASS { ELF_ELFCLASS() = default; ELF_ELFCLASS(
const uint8_t v) : value(v) {} ELF_ELFCLASS(const ELF_ELFCLASS
&v) = default; ELF_ELFCLASS &operator=(const ELF_ELFCLASS
&rhs) = default; ELF_ELFCLASS &operator=(const uint8_t
&rhs) { value = rhs; return *this; } operator const uint8_t
& () const { return value; } bool operator==(const ELF_ELFCLASS
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const ELF_ELFCLASS &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
43LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA)struct ELF_ELFDATA { ELF_ELFDATA() = default; ELF_ELFDATA(const
uint8_t v) : value(v) {} ELF_ELFDATA(const ELF_ELFDATA &
v) = default; ELF_ELFDATA &operator=(const ELF_ELFDATA &
rhs) = default; ELF_ELFDATA &operator=(const uint8_t &
rhs) { value = rhs; return *this; } operator const uint8_t &
() const { return value; } bool operator==(const ELF_ELFDATA
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const ELF_ELFDATA &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
44LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI)struct ELF_ELFOSABI { ELF_ELFOSABI() = default; ELF_ELFOSABI(
const uint8_t v) : value(v) {} ELF_ELFOSABI(const ELF_ELFOSABI
&v) = default; ELF_ELFOSABI &operator=(const ELF_ELFOSABI
&rhs) = default; ELF_ELFOSABI &operator=(const uint8_t
&rhs) { value = rhs; return *this; } operator const uint8_t
& () const { return value; } bool operator==(const ELF_ELFOSABI
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const ELF_ELFOSABI &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
45// Just use 64, since it can hold 32-bit values too.
46LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF)struct ELF_EF { ELF_EF() = default; ELF_EF(const uint64_t v) :
value(v) {} ELF_EF(const ELF_EF &v) = default; ELF_EF &
operator=(const ELF_EF &rhs) = default; ELF_EF &operator
=(const uint64_t &rhs) { value = rhs; return *this; } operator
const uint64_t & () const { return value; } bool operator
==(const ELF_EF &rhs) const { return value == rhs.value; }
bool operator==(const uint64_t &rhs) const { return value
== rhs; } bool operator<(const ELF_EF &rhs) const { return
value < rhs.value; } uint64_t value; using BaseType = uint64_t
; };
47LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF)struct ELF_PF { ELF_PF() = default; ELF_PF(const uint32_t v) :
value(v) {} ELF_PF(const ELF_PF &v) = default; ELF_PF &
operator=(const ELF_PF &rhs) = default; ELF_PF &operator
=(const uint32_t &rhs) { value = rhs; return *this; } operator
const uint32_t & () const { return value; } bool operator
==(const ELF_PF &rhs) const { return value == rhs.value; }
bool operator==(const uint32_t &rhs) const { return value
== rhs; } bool operator<(const ELF_PF &rhs) const { return
value < rhs.value; } uint32_t value; using BaseType = uint32_t
; };
48LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT)struct ELF_SHT { ELF_SHT() = default; ELF_SHT(const uint32_t v
) : value(v) {} ELF_SHT(const ELF_SHT &v) = default; ELF_SHT
&operator=(const ELF_SHT &rhs) = default; ELF_SHT &
operator=(const uint32_t &rhs) { value = rhs; return *this
; } operator const uint32_t & () const { return value; } bool
operator==(const ELF_SHT &rhs) const { return value == rhs
.value; } bool operator==(const uint32_t &rhs) const { return
value == rhs; } bool operator<(const ELF_SHT &rhs) const
{ return value < rhs.value; } uint32_t value; using BaseType
= uint32_t; };
2
Returning without writing to 'this->value'
17
The left operand of '==' is a garbage value
49LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL)struct ELF_REL { ELF_REL() = default; ELF_REL(const uint32_t v
) : value(v) {} ELF_REL(const ELF_REL &v) = default; ELF_REL
&operator=(const ELF_REL &rhs) = default; ELF_REL &
operator=(const uint32_t &rhs) { value = rhs; return *this
; } operator const uint32_t & () const { return value; } bool
operator==(const ELF_REL &rhs) const { return value == rhs
.value; } bool operator==(const uint32_t &rhs) const { return
value == rhs; } bool operator<(const ELF_REL &rhs) const
{ return value < rhs.value; } uint32_t value; using BaseType
= uint32_t; };
50LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS)struct ELF_RSS { ELF_RSS() = default; ELF_RSS(const uint8_t v
) : value(v) {} ELF_RSS(const ELF_RSS &v) = default; ELF_RSS
&operator=(const ELF_RSS &rhs) = default; ELF_RSS &
operator=(const uint8_t &rhs) { value = rhs; return *this
; } operator const uint8_t & () const { return value; } bool
operator==(const ELF_RSS &rhs) const { return value == rhs
.value; } bool operator==(const uint8_t &rhs) const { return
value == rhs; } bool operator<(const ELF_RSS &rhs) const
{ return value < rhs.value; } uint8_t value; using BaseType
= uint8_t; };
51// Just use 64, since it can hold 32-bit values too.
52LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF)struct ELF_SHF { ELF_SHF() = default; ELF_SHF(const uint64_t v
) : value(v) {} ELF_SHF(const ELF_SHF &v) = default; ELF_SHF
&operator=(const ELF_SHF &rhs) = default; ELF_SHF &
operator=(const uint64_t &rhs) { value = rhs; return *this
; } operator const uint64_t & () const { return value; } bool
operator==(const ELF_SHF &rhs) const { return value == rhs
.value; } bool operator==(const uint64_t &rhs) const { return
value == rhs; } bool operator<(const ELF_SHF &rhs) const
{ return value < rhs.value; } uint64_t value; using BaseType
= uint64_t; };
53LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN)struct ELF_SHN { ELF_SHN() = default; ELF_SHN(const uint16_t v
) : value(v) {} ELF_SHN(const ELF_SHN &v) = default; ELF_SHN
&operator=(const ELF_SHN &rhs) = default; ELF_SHN &
operator=(const uint16_t &rhs) { value = rhs; return *this
; } operator const uint16_t & () const { return value; } bool
operator==(const ELF_SHN &rhs) const { return value == rhs
.value; } bool operator==(const uint16_t &rhs) const { return
value == rhs; } bool operator<(const ELF_SHN &rhs) const
{ return value < rhs.value; } uint16_t value; using BaseType
= uint16_t; };
54LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT)struct ELF_STT { ELF_STT() = default; ELF_STT(const uint8_t v
) : value(v) {} ELF_STT(const ELF_STT &v) = default; ELF_STT
&operator=(const ELF_STT &rhs) = default; ELF_STT &
operator=(const uint8_t &rhs) { value = rhs; return *this
; } operator const uint8_t & () const { return value; } bool
operator==(const ELF_STT &rhs) const { return value == rhs
.value; } bool operator==(const uint8_t &rhs) const { return
value == rhs; } bool operator<(const ELF_STT &rhs) const
{ return value < rhs.value; } uint8_t value; using BaseType
= uint8_t; };
55LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STV)struct ELF_STV { ELF_STV() = default; ELF_STV(const uint8_t v
) : value(v) {} ELF_STV(const ELF_STV &v) = default; ELF_STV
&operator=(const ELF_STV &rhs) = default; ELF_STV &
operator=(const uint8_t &rhs) { value = rhs; return *this
; } operator const uint8_t & () const { return value; } bool
operator==(const ELF_STV &rhs) const { return value == rhs
.value; } bool operator==(const uint8_t &rhs) const { return
value == rhs; } bool operator<(const ELF_STV &rhs) const
{ return value < rhs.value; } uint8_t value; using BaseType
= uint8_t; };
56LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STO)struct ELF_STO { ELF_STO() = default; ELF_STO(const uint8_t v
) : value(v) {} ELF_STO(const ELF_STO &v) = default; ELF_STO
&operator=(const ELF_STO &rhs) = default; ELF_STO &
operator=(const uint8_t &rhs) { value = rhs; return *this
; } operator const uint8_t & () const { return value; } bool
operator==(const ELF_STO &rhs) const { return value == rhs
.value; } bool operator==(const uint8_t &rhs) const { return
value == rhs; } bool operator<(const ELF_STO &rhs) const
{ return value < rhs.value; } uint8_t value; using BaseType
= uint8_t; };
57
58LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG)struct MIPS_AFL_REG { MIPS_AFL_REG() = default; MIPS_AFL_REG(
const uint8_t v) : value(v) {} MIPS_AFL_REG(const MIPS_AFL_REG
&v) = default; MIPS_AFL_REG &operator=(const MIPS_AFL_REG
&rhs) = default; MIPS_AFL_REG &operator=(const uint8_t
&rhs) { value = rhs; return *this; } operator const uint8_t
& () const { return value; } bool operator==(const MIPS_AFL_REG
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_REG &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
59LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP)struct MIPS_ABI_FP { MIPS_ABI_FP() = default; MIPS_ABI_FP(const
uint8_t v) : value(v) {} MIPS_ABI_FP(const MIPS_ABI_FP &
v) = default; MIPS_ABI_FP &operator=(const MIPS_ABI_FP &
rhs) = default; MIPS_ABI_FP &operator=(const uint8_t &
rhs) { value = rhs; return *this; } operator const uint8_t &
() const { return value; } bool operator==(const MIPS_ABI_FP
&rhs) const { return value == rhs.value; } bool operator
==(const uint8_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_ABI_FP &rhs) const { return value
< rhs.value; } uint8_t value; using BaseType = uint8_t; }
;
60LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT)struct MIPS_AFL_EXT { MIPS_AFL_EXT() = default; MIPS_AFL_EXT(
const uint32_t v) : value(v) {} MIPS_AFL_EXT(const MIPS_AFL_EXT
&v) = default; MIPS_AFL_EXT &operator=(const MIPS_AFL_EXT
&rhs) = default; MIPS_AFL_EXT &operator=(const uint32_t
&rhs) { value = rhs; return *this; } operator const uint32_t
& () const { return value; } bool operator==(const MIPS_AFL_EXT
&rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_EXT &rhs) const { return value
< rhs.value; } uint32_t value; using BaseType = uint32_t;
};
61LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE)struct MIPS_AFL_ASE { MIPS_AFL_ASE() = default; MIPS_AFL_ASE(
const uint32_t v) : value(v) {} MIPS_AFL_ASE(const MIPS_AFL_ASE
&v) = default; MIPS_AFL_ASE &operator=(const MIPS_AFL_ASE
&rhs) = default; MIPS_AFL_ASE &operator=(const uint32_t
&rhs) { value = rhs; return *this; } operator const uint32_t
& () const { return value; } bool operator==(const MIPS_AFL_ASE
&rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_ASE &rhs) const { return value
< rhs.value; } uint32_t value; using BaseType = uint32_t;
};
62LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1)struct MIPS_AFL_FLAGS1 { MIPS_AFL_FLAGS1() = default; MIPS_AFL_FLAGS1
(const uint32_t v) : value(v) {} MIPS_AFL_FLAGS1(const MIPS_AFL_FLAGS1
&v) = default; MIPS_AFL_FLAGS1 &operator=(const MIPS_AFL_FLAGS1
&rhs) = default; MIPS_AFL_FLAGS1 &operator=(const uint32_t
&rhs) { value = rhs; return *this; } operator const uint32_t
& () const { return value; } bool operator==(const MIPS_AFL_FLAGS1
&rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const MIPS_AFL_FLAGS1 &rhs) const { return value
< rhs.value; } uint32_t value; using BaseType = uint32_t;
};
63LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA)struct MIPS_ISA { MIPS_ISA() = default; MIPS_ISA(const uint32_t
v) : value(v) {} MIPS_ISA(const MIPS_ISA &v) = default; MIPS_ISA
&operator=(const MIPS_ISA &rhs) = default; MIPS_ISA &
operator=(const uint32_t &rhs) { value = rhs; return *this
; } operator const uint32_t & () const { return value; } bool
operator==(const MIPS_ISA &rhs) const { return value == rhs
.value; } bool operator==(const uint32_t &rhs) const { return
value == rhs; } bool operator<(const MIPS_ISA &rhs) const
{ return value < rhs.value; } uint32_t value; using BaseType
= uint32_t; };
64
65// For now, hardcode 64 bits everywhere that 32 or 64 would be needed
66// since 64-bit can hold 32-bit values too.
67struct FileHeader {
68 ELF_ELFCLASS Class;
69 ELF_ELFDATA Data;
70 ELF_ELFOSABI OSABI;
71 ELF_ET Type;
72 ELF_EM Machine;
73 ELF_EF Flags;
74 llvm::yaml::Hex64 Entry;
75};
76
77struct SectionName {
78 StringRef Section;
79};
80
81struct ProgramHeader {
82 ELF_PT Type;
83 ELF_PF Flags;
84 llvm::yaml::Hex64 VAddr;
85 llvm::yaml::Hex64 PAddr;
86 Optional<llvm::yaml::Hex64> Align;
87 std::vector<SectionName> Sections;
88};
89
90struct Symbol {
91 StringRef Name;
92 ELF_STT Type;
93 StringRef Section;
94 Optional<ELF_SHN> Index;
95 llvm::yaml::Hex64 Value;
96 llvm::yaml::Hex64 Size;
97 uint8_t Other;
98};
99
100struct LocalGlobalWeakSymbols {
101 std::vector<Symbol> Local;
102 std::vector<Symbol> Global;
103 std::vector<Symbol> Weak;
104};
105
106struct SectionOrType {
107 StringRef sectionNameOrType;
108};
109
110struct Section {
111 enum class SectionKind {
112 Group,
113 RawContent,
114 Relocation,
115 NoBits,
116 MipsABIFlags
117 };
118 SectionKind Kind;
119 StringRef Name;
120 ELF_SHT Type;
121 ELF_SHF Flags;
122 llvm::yaml::Hex64 Address;
123 StringRef Link;
124 StringRef Info;
125 llvm::yaml::Hex64 AddressAlign;
126 Optional<llvm::yaml::Hex64> EntSize;
127
128 Section(SectionKind Kind) : Kind(Kind) {}
129 virtual ~Section();
130};
131struct RawContentSection : Section {
132 yaml::BinaryRef Content;
133 llvm::yaml::Hex64 Size;
134
135 RawContentSection() : Section(SectionKind::RawContent) {}
136
137 static bool classof(const Section *S) {
138 return S->Kind == SectionKind::RawContent;
139 }
140};
141
142struct NoBitsSection : Section {
143 llvm::yaml::Hex64 Size;
144
145 NoBitsSection() : Section(SectionKind::NoBits) {}
146
147 static bool classof(const Section *S) {
148 return S->Kind == SectionKind::NoBits;
149 }
150};
151
152struct Group : Section {
153 // Members of a group contain a flag and a list of section indices
154 // that are part of the group.
155 std::vector<SectionOrType> Members;
156
157 Group() : Section(SectionKind::Group) {}
158
159 static bool classof(const Section *S) {
160 return S->Kind == SectionKind::Group;
161 }
162};
163
164struct Relocation {
165 llvm::yaml::Hex64 Offset;
166 int64_t Addend;
167 ELF_REL Type;
168 Optional<StringRef> Symbol;
169};
170
171struct RelocationSection : Section {
172 std::vector<Relocation> Relocations;
173
174 RelocationSection() : Section(SectionKind::Relocation) {}
175
176 static bool classof(const Section *S) {
177 return S->Kind == SectionKind::Relocation;
178 }
179};
180
181// Represents .MIPS.abiflags section
182struct MipsABIFlags : Section {
183 llvm::yaml::Hex16 Version;
184 MIPS_ISA ISALevel;
185 llvm::yaml::Hex8 ISARevision;
186 MIPS_AFL_REG GPRSize;
187 MIPS_AFL_REG CPR1Size;
188 MIPS_AFL_REG CPR2Size;
189 MIPS_ABI_FP FpABI;
190 MIPS_AFL_EXT ISAExtension;
191 MIPS_AFL_ASE ASEs;
192 MIPS_AFL_FLAGS1 Flags1;
193 llvm::yaml::Hex32 Flags2;
194
195 MipsABIFlags() : Section(SectionKind::MipsABIFlags) {}
196
197 static bool classof(const Section *S) {
198 return S->Kind == SectionKind::MipsABIFlags;
199 }
200};
201
202struct Object {
203 FileHeader Header;
204 std::vector<ProgramHeader> ProgramHeaders;
205 std::vector<std::unique_ptr<Section>> Sections;
206 // Although in reality the symbols reside in a section, it is a lot
207 // cleaner and nicer if we read them from the YAML as a separate
208 // top-level key, which automatically ensures that invariants like there
209 // being a single SHT_SYMTAB section are upheld.
210 LocalGlobalWeakSymbols Symbols;
211 LocalGlobalWeakSymbols DynamicSymbols;
212};
213
214} // end namespace ELFYAML
215} // end namespace llvm
216
217LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<llvm::ELFYAML::ProgramHeader>::value && !std::
is_same<llvm::ELFYAML::ProgramHeader, std::string>::value
&& !std::is_same<llvm::ELFYAML::ProgramHeader, llvm
::StringRef>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<llvm::ELFYAML
::ProgramHeader> { static const bool flow = false; }; } }
218LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr<llvm::ELFYAML::Section>)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<std::unique_ptr<llvm::ELFYAML::Section> >::value
&& !std::is_same<std::unique_ptr<llvm::ELFYAML
::Section>, std::string>::value && !std::is_same
<std::unique_ptr<llvm::ELFYAML::Section>, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<std::unique_ptr
<llvm::ELFYAML::Section> > { static const bool flow =
false; }; } }
219LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<llvm::ELFYAML::Symbol>::value && !std::is_same
<llvm::ELFYAML::Symbol, std::string>::value && !
std::is_same<llvm::ELFYAML::Symbol, llvm::StringRef>::value
, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<llvm::ELFYAML
::Symbol> { static const bool flow = false; }; } }
220LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<llvm::ELFYAML::Relocation>::value && !std::is_same
<llvm::ELFYAML::Relocation, std::string>::value &&
!std::is_same<llvm::ELFYAML::Relocation, llvm::StringRef>
::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<llvm::ELFYAML
::Relocation> { static const bool flow = false; }; } }
221LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<llvm::ELFYAML::SectionOrType>::value && !std::
is_same<llvm::ELFYAML::SectionOrType, std::string>::value
&& !std::is_same<llvm::ELFYAML::SectionOrType, llvm
::StringRef>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<llvm::ELFYAML
::SectionOrType> { static const bool flow = false; }; } }
222LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionName)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<llvm::ELFYAML::SectionName>::value && !std::is_same
<llvm::ELFYAML::SectionName, std::string>::value &&
!std::is_same<llvm::ELFYAML::SectionName, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<llvm::ELFYAML
::SectionName> { static const bool flow = false; }; } }
223
224namespace llvm {
225namespace yaml {
226
227template <>
228struct ScalarEnumerationTraits<ELFYAML::ELF_ET> {
229 static void enumeration(IO &IO, ELFYAML::ELF_ET &Value);
230};
231
232template <> struct ScalarEnumerationTraits<ELFYAML::ELF_PT> {
233 static void enumeration(IO &IO, ELFYAML::ELF_PT &Value);
234};
235
236template <>
237struct ScalarEnumerationTraits<ELFYAML::ELF_EM> {
238 static void enumeration(IO &IO, ELFYAML::ELF_EM &Value);
239};
240
241template <>
242struct ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS> {
243 static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value);
244};
245
246template <>
247struct ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA> {
248 static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value);
249};
250
251template <>
252struct ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI> {
253 static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value);
254};
255
256template <>
257struct ScalarBitSetTraits<ELFYAML::ELF_EF> {
258 static void bitset(IO &IO, ELFYAML::ELF_EF &Value);
259};
260
261template <> struct ScalarBitSetTraits<ELFYAML::ELF_PF> {
262 static void bitset(IO &IO, ELFYAML::ELF_PF &Value);
263};
264
265template <>
266struct ScalarEnumerationTraits<ELFYAML::ELF_SHT> {
267 static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value);
268};
269
270template <>
271struct ScalarBitSetTraits<ELFYAML::ELF_SHF> {
272 static void bitset(IO &IO, ELFYAML::ELF_SHF &Value);
273};
274
275template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHN> {
276 static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value);
277};
278
279template <>
280struct ScalarEnumerationTraits<ELFYAML::ELF_STT> {
281 static void enumeration(IO &IO, ELFYAML::ELF_STT &Value);
282};
283
284template <>
285struct ScalarEnumerationTraits<ELFYAML::ELF_STV> {
286 static void enumeration(IO &IO, ELFYAML::ELF_STV &Value);
287};
288
289template <>
290struct ScalarBitSetTraits<ELFYAML::ELF_STO> {
291 static void bitset(IO &IO, ELFYAML::ELF_STO &Value);
292};
293
294template <>
295struct ScalarEnumerationTraits<ELFYAML::ELF_REL> {
296 static void enumeration(IO &IO, ELFYAML::ELF_REL &Value);
297};
298
299template <>
300struct ScalarEnumerationTraits<ELFYAML::ELF_RSS> {
301 static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value);
302};
303
304template <>
305struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG> {
306 static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value);
307};
308
309template <>
310struct ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP> {
311 static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value);
312};
313
314template <>
315struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT> {
316 static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value);
317};
318
319template <>
320struct ScalarEnumerationTraits<ELFYAML::MIPS_ISA> {
321 static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value);
322};
323
324template <>
325struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE> {
326 static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value);
327};
328
329template <>
330struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1> {
331 static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value);
332};
333
334template <>
335struct MappingTraits<ELFYAML::FileHeader> {
336 static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr);
337};
338
339template <> struct MappingTraits<ELFYAML::ProgramHeader> {
340 static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr);
341};
342
343template <>
344struct MappingTraits<ELFYAML::Symbol> {
345 static void mapping(IO &IO, ELFYAML::Symbol &Symbol);
346 static StringRef validate(IO &IO, ELFYAML::Symbol &Symbol);
347};
348
349template <>
350struct MappingTraits<ELFYAML::LocalGlobalWeakSymbols> {
351 static void mapping(IO &IO, ELFYAML::LocalGlobalWeakSymbols &Symbols);
352};
353
354template <> struct MappingTraits<ELFYAML::Relocation> {
355 static void mapping(IO &IO, ELFYAML::Relocation &Rel);
356};
357
358template <>
359struct MappingTraits<std::unique_ptr<ELFYAML::Section>> {
360 static void mapping(IO &IO, std::unique_ptr<ELFYAML::Section> &Section);
361 static StringRef validate(IO &io, std::unique_ptr<ELFYAML::Section> &Section);
362};
363
364template <>
365struct MappingTraits<ELFYAML::Object> {
366 static void mapping(IO &IO, ELFYAML::Object &Object);
367};
368
369template <> struct MappingTraits<ELFYAML::SectionOrType> {
370 static void mapping(IO &IO, ELFYAML::SectionOrType &sectionOrType);
371};
372
373template <> struct MappingTraits<ELFYAML::SectionName> {
374 static void mapping(IO &IO, ELFYAML::SectionName &sectionName);
375};
376
377} // end namespace yaml
378} // end namespace llvm
379
380#endif // LLVM_OBJECTYAML_ELFYAML_H

/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/Support/YAMLTraits.h

1//===- llvm/Support/YAMLTraits.h --------------------------------*- C++ -*-===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_SUPPORT_YAMLTRAITS_H
11#define LLVM_SUPPORT_YAMLTRAITS_H
12
13#include "llvm/ADT/Optional.h"
14#include "llvm/ADT/SmallVector.h"
15#include "llvm/ADT/StringExtras.h"
16#include "llvm/ADT/StringMap.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Support/AlignOf.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/Regex.h"
23#include "llvm/Support/SourceMgr.h"
24#include "llvm/Support/YAMLParser.h"
25#include "llvm/Support/raw_ostream.h"
26#include <cassert>
27#include <cctype>
28#include <cstddef>
29#include <cstdint>
30#include <iterator>
31#include <map>
32#include <memory>
33#include <new>
34#include <string>
35#include <system_error>
36#include <type_traits>
37#include <vector>
38
39namespace llvm {
40namespace yaml {
41
42enum class NodeKind : uint8_t {
43 Scalar,
44 Map,
45 Sequence,
46};
47
48struct EmptyContext {};
49
50/// This class should be specialized by any type that needs to be converted
51/// to/from a YAML mapping. For example:
52///
53/// struct MappingTraits<MyStruct> {
54/// static void mapping(IO &io, MyStruct &s) {
55/// io.mapRequired("name", s.name);
56/// io.mapRequired("size", s.size);
57/// io.mapOptional("age", s.age);
58/// }
59/// };
60template<class T>
61struct MappingTraits {
62 // Must provide:
63 // static void mapping(IO &io, T &fields);
64 // Optionally may provide:
65 // static StringRef validate(IO &io, T &fields);
66 //
67 // The optional flow flag will cause generated YAML to use a flow mapping
68 // (e.g. { a: 0, b: 1 }):
69 // static const bool flow = true;
70};
71
72/// This class is similar to MappingTraits<T> but allows you to pass in
73/// additional context for each map operation. For example:
74///
75/// struct MappingContextTraits<MyStruct, MyContext> {
76/// static void mapping(IO &io, MyStruct &s, MyContext &c) {
77/// io.mapRequired("name", s.name);
78/// io.mapRequired("size", s.size);
79/// io.mapOptional("age", s.age);
80/// ++c.TimesMapped;
81/// }
82/// };
83template <class T, class Context> struct MappingContextTraits {
84 // Must provide:
85 // static void mapping(IO &io, T &fields, Context &Ctx);
86 // Optionally may provide:
87 // static StringRef validate(IO &io, T &fields, Context &Ctx);
88 //
89 // The optional flow flag will cause generated YAML to use a flow mapping
90 // (e.g. { a: 0, b: 1 }):
91 // static const bool flow = true;
92};
93
94/// This class should be specialized by any integral type that converts
95/// to/from a YAML scalar where there is a one-to-one mapping between
96/// in-memory values and a string in YAML. For example:
97///
98/// struct ScalarEnumerationTraits<Colors> {
99/// static void enumeration(IO &io, Colors &value) {
100/// io.enumCase(value, "red", cRed);
101/// io.enumCase(value, "blue", cBlue);
102/// io.enumCase(value, "green", cGreen);
103/// }
104/// };
105template<typename T>
106struct ScalarEnumerationTraits {
107 // Must provide:
108 // static void enumeration(IO &io, T &value);
109};
110
111/// This class should be specialized by any integer type that is a union
112/// of bit values and the YAML representation is a flow sequence of
113/// strings. For example:
114///
115/// struct ScalarBitSetTraits<MyFlags> {
116/// static void bitset(IO &io, MyFlags &value) {
117/// io.bitSetCase(value, "big", flagBig);
118/// io.bitSetCase(value, "flat", flagFlat);
119/// io.bitSetCase(value, "round", flagRound);
120/// }
121/// };
122template<typename T>
123struct ScalarBitSetTraits {
124 // Must provide:
125 // static void bitset(IO &io, T &value);
126};
127
128/// Describe which type of quotes should be used when quoting is necessary.
129/// Some non-printable characters need to be double-quoted, while some others
130/// are fine with simple-quoting, and some don't need any quoting.
131enum class QuotingType { None, Single, Double };
132
133/// This class should be specialized by type that requires custom conversion
134/// to/from a yaml scalar. For example:
135///
136/// template<>
137/// struct ScalarTraits<MyType> {
138/// static void output(const MyType &val, void*, llvm::raw_ostream &out) {
139/// // stream out custom formatting
140/// out << llvm::format("%x", val);
141/// }
142/// static StringRef input(StringRef scalar, void*, MyType &value) {
143/// // parse scalar and set `value`
144/// // return empty string on success, or error string
145/// return StringRef();
146/// }
147/// static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
148/// };
149template<typename T>
150struct ScalarTraits {
151 // Must provide:
152 //
153 // Function to write the value as a string:
154 // static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
155 //
156 // Function to convert a string to a value. Returns the empty
157 // StringRef on success or an error string if string is malformed:
158 // static StringRef input(StringRef scalar, void *ctxt, T &value);
159 //
160 // Function to determine if the value should be quoted.
161 // static QuotingType mustQuote(StringRef);
162};
163
164/// This class should be specialized by type that requires custom conversion
165/// to/from a YAML literal block scalar. For example:
166///
167/// template <>
168/// struct BlockScalarTraits<MyType> {
169/// static void output(const MyType &Value, void*, llvm::raw_ostream &Out)
170/// {
171/// // stream out custom formatting
172/// Out << Value;
173/// }
174/// static StringRef input(StringRef Scalar, void*, MyType &Value) {
175/// // parse scalar and set `value`
176/// // return empty string on success, or error string
177/// return StringRef();
178/// }
179/// };
180template <typename T>
181struct BlockScalarTraits {
182 // Must provide:
183 //
184 // Function to write the value as a string:
185 // static void output(const T &Value, void *ctx, llvm::raw_ostream &Out);
186 //
187 // Function to convert a string to a value. Returns the empty
188 // StringRef on success or an error string if string is malformed:
189 // static StringRef input(StringRef Scalar, void *ctxt, T &Value);
190 //
191 // Optional:
192 // static StringRef inputTag(T &Val, std::string Tag)
193 // static void outputTag(const T &Val, raw_ostream &Out)
194};
195
196/// This class should be specialized by type that requires custom conversion
197/// to/from a YAML scalar with optional tags. For example:
198///
199/// template <>
200/// struct TaggedScalarTraits<MyType> {
201/// static void output(const MyType &Value, void*, llvm::raw_ostream
202/// &ScalarOut, llvm::raw_ostream &TagOut)
203/// {
204/// // stream out custom formatting including optional Tag
205/// Out << Value;
206/// }
207/// static StringRef input(StringRef Scalar, StringRef Tag, void*, MyType
208/// &Value) {
209/// // parse scalar and set `value`
210/// // return empty string on success, or error string
211/// return StringRef();
212/// }
213/// static QuotingType mustQuote(const MyType &Value, StringRef) {
214/// return QuotingType::Single;
215/// }
216/// };
217template <typename T> struct TaggedScalarTraits {
218 // Must provide:
219 //
220 // Function to write the value and tag as strings:
221 // static void output(const T &Value, void *ctx, llvm::raw_ostream &ScalarOut,
222 // llvm::raw_ostream &TagOut);
223 //
224 // Function to convert a string to a value. Returns the empty
225 // StringRef on success or an error string if string is malformed:
226 // static StringRef input(StringRef Scalar, StringRef Tag, void *ctxt, T
227 // &Value);
228 //
229 // Function to determine if the value should be quoted.
230 // static QuotingType mustQuote(const T &Value, StringRef Scalar);
231};
232
233/// This class should be specialized by any type that needs to be converted
234/// to/from a YAML sequence. For example:
235///
236/// template<>
237/// struct SequenceTraits<MyContainer> {
238/// static size_t size(IO &io, MyContainer &seq) {
239/// return seq.size();
240/// }
241/// static MyType& element(IO &, MyContainer &seq, size_t index) {
242/// if ( index >= seq.size() )
243/// seq.resize(index+1);
244/// return seq[index];
245/// }
246/// };
247template<typename T, typename EnableIf = void>
248struct SequenceTraits {
249 // Must provide:
250 // static size_t size(IO &io, T &seq);
251 // static T::value_type& element(IO &io, T &seq, size_t index);
252 //
253 // The following is option and will cause generated YAML to use
254 // a flow sequence (e.g. [a,b,c]).
255 // static const bool flow = true;
256};
257
258/// This class should be specialized by any type for which vectors of that
259/// type need to be converted to/from a YAML sequence.
260template<typename T, typename EnableIf = void>
261struct SequenceElementTraits {
262 // Must provide:
263 // static const bool flow;
264};
265
266/// This class should be specialized by any type that needs to be converted
267/// to/from a list of YAML documents.
268template<typename T>
269struct DocumentListTraits {
270 // Must provide:
271 // static size_t size(IO &io, T &seq);
272 // static T::value_type& element(IO &io, T &seq, size_t index);
273};
274
275/// This class should be specialized by any type that needs to be converted
276/// to/from a YAML mapping in the case where the names of the keys are not known
277/// in advance, e.g. a string map.
278template <typename T>
279struct CustomMappingTraits {
280 // static void inputOne(IO &io, StringRef key, T &elem);
281 // static void output(IO &io, T &elem);
282};
283
284/// This class should be specialized by any type that can be represented as
285/// a scalar, map, or sequence, decided dynamically. For example:
286///
287/// typedef std::unique_ptr<MyBase> MyPoly;
288///
289/// template<>
290/// struct PolymorphicTraits<MyPoly> {
291/// static NodeKind getKind(const MyPoly &poly) {
292/// return poly->getKind();
293/// }
294/// static MyScalar& getAsScalar(MyPoly &poly) {
295/// if (!poly || !isa<MyScalar>(poly))
296/// poly.reset(new MyScalar());
297/// return *cast<MyScalar>(poly.get());
298/// }
299/// // ...
300/// };
301template <typename T> struct PolymorphicTraits {
302 // Must provide:
303 // static NodeKind getKind(const T &poly);
304 // static scalar_type &getAsScalar(T &poly);
305 // static map_type &getAsMap(T &poly);
306 // static sequence_type &getAsSequence(T &poly);
307};
308
309// Only used for better diagnostics of missing traits
310template <typename T>
311struct MissingTrait;
312
313// Test if ScalarEnumerationTraits<T> is defined on type T.
314template <class T>
315struct has_ScalarEnumerationTraits
316{
317 using Signature_enumeration = void (*)(class IO&, T&);
318
319 template <typename U>
320 static char test(SameType<Signature_enumeration, &U::enumeration>*);
321
322 template <typename U>
323 static double test(...);
324
325 static bool const value =
326 (sizeof(test<ScalarEnumerationTraits<T>>(nullptr)) == 1);
327};
328
329// Test if ScalarBitSetTraits<T> is defined on type T.
330template <class T>
331struct has_ScalarBitSetTraits
332{
333 using Signature_bitset = void (*)(class IO&, T&);
334
335 template <typename U>
336 static char test(SameType<Signature_bitset, &U::bitset>*);
337
338 template <typename U>
339 static double test(...);
340
341 static bool const value = (sizeof(test<ScalarBitSetTraits<T>>(nullptr)) == 1);
342};
343
344// Test if ScalarTraits<T> is defined on type T.
345template <class T>
346struct has_ScalarTraits
347{
348 using Signature_input = StringRef (*)(StringRef, void*, T&);
349 using Signature_output = void (*)(const T&, void*, raw_ostream&);
350 using Signature_mustQuote = QuotingType (*)(StringRef);
351
352 template <typename U>
353 static char test(SameType<Signature_input, &U::input> *,
354 SameType<Signature_output, &U::output> *,
355 SameType<Signature_mustQuote, &U::mustQuote> *);
356
357 template <typename U>
358 static double test(...);
359
360 static bool const value =
361 (sizeof(test<ScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
362};
363
364// Test if BlockScalarTraits<T> is defined on type T.
365template <class T>
366struct has_BlockScalarTraits
367{
368 using Signature_input = StringRef (*)(StringRef, void *, T &);
369 using Signature_output = void (*)(const T &, void *, raw_ostream &);
370
371 template <typename U>
372 static char test(SameType<Signature_input, &U::input> *,
373 SameType<Signature_output, &U::output> *);
374
375 template <typename U>
376 static double test(...);
377
378 static bool const value =
379 (sizeof(test<BlockScalarTraits<T>>(nullptr, nullptr)) == 1);
380};
381
382// Test if TaggedScalarTraits<T> is defined on type T.
383template <class T> struct has_TaggedScalarTraits {
384 using Signature_input = StringRef (*)(StringRef, StringRef, void *, T &);
385 using Signature_output = void (*)(const T &, void *, raw_ostream &,
386 raw_ostream &);
387 using Signature_mustQuote = QuotingType (*)(const T &, StringRef);
388
389 template <typename U>
390 static char test(SameType<Signature_input, &U::input> *,
391 SameType<Signature_output, &U::output> *,
392 SameType<Signature_mustQuote, &U::mustQuote> *);
393
394 template <typename U> static double test(...);
395
396 static bool const value =
397 (sizeof(test<TaggedScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
398};
399
400// Test if MappingContextTraits<T> is defined on type T.
401template <class T, class Context> struct has_MappingTraits {
402 using Signature_mapping = void (*)(class IO &, T &, Context &);
403
404 template <typename U>
405 static char test(SameType<Signature_mapping, &U::mapping>*);
406
407 template <typename U>
408 static double test(...);
409
410 static bool const value =
411 (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
412};
413
414// Test if MappingTraits<T> is defined on type T.
415template <class T> struct has_MappingTraits<T, EmptyContext> {
416 using Signature_mapping = void (*)(class IO &, T &);
417
418 template <typename U>
419 static char test(SameType<Signature_mapping, &U::mapping> *);
420
421 template <typename U> static double test(...);
422
423 static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
424};
425
426// Test if MappingContextTraits<T>::validate() is defined on type T.
427template <class T, class Context> struct has_MappingValidateTraits {
428 using Signature_validate = StringRef (*)(class IO &, T &, Context &);
429
430 template <typename U>
431 static char test(SameType<Signature_validate, &U::validate>*);
432
433 template <typename U>
434 static double test(...);
435
436 static bool const value =
437 (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
438};
439
440// Test if MappingTraits<T>::validate() is defined on type T.
441template <class T> struct has_MappingValidateTraits<T, EmptyContext> {
442 using Signature_validate = StringRef (*)(class IO &, T &);
443
444 template <typename U>
445 static char test(SameType<Signature_validate, &U::validate> *);
446
447 template <typename U> static double test(...);
448
449 static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
450};
451
452// Test if SequenceTraits<T> is defined on type T.
453template <class T>
454struct has_SequenceMethodTraits
455{
456 using Signature_size = size_t (*)(class IO&, T&);
457
458 template <typename U>
459 static char test(SameType<Signature_size, &U::size>*);
460
461 template <typename U>
462 static double test(...);
463
464 static bool const value = (sizeof(test<SequenceTraits<T>>(nullptr)) == 1);
465};
466
467// Test if CustomMappingTraits<T> is defined on type T.
468template <class T>
469struct has_CustomMappingTraits
470{
471 using Signature_input = void (*)(IO &io, StringRef key, T &v);
472
473 template <typename U>
474 static char test(SameType<Signature_input, &U::inputOne>*);
475
476 template <typename U>
477 static double test(...);
478
479 static bool const value =
480 (sizeof(test<CustomMappingTraits<T>>(nullptr)) == 1);
481};
482
483// has_FlowTraits<int> will cause an error with some compilers because
484// it subclasses int. Using this wrapper only instantiates the
485// real has_FlowTraits only if the template type is a class.
486template <typename T, bool Enabled = std::is_class<T>::value>
487class has_FlowTraits
488{
489public:
490 static const bool value = false;
491};
492
493// Some older gcc compilers don't support straight forward tests
494// for members, so test for ambiguity cause by the base and derived
495// classes both defining the member.
496template <class T>
497struct has_FlowTraits<T, true>
498{
499 struct Fallback { bool flow; };
500 struct Derived : T, Fallback { };
501
502 template<typename C>
503 static char (&f(SameType<bool Fallback::*, &C::flow>*))[1];
504
505 template<typename C>
506 static char (&f(...))[2];
507
508 static bool const value = sizeof(f<Derived>(nullptr)) == 2;
509};
510
511// Test if SequenceTraits<T> is defined on type T
512template<typename T>
513struct has_SequenceTraits : public std::integral_constant<bool,
514 has_SequenceMethodTraits<T>::value > { };
515
516// Test if DocumentListTraits<T> is defined on type T
517template <class T>
518struct has_DocumentListTraits
519{
520 using Signature_size = size_t (*)(class IO &, T &);
521
522 template <typename U>
523 static char test(SameType<Signature_size, &U::size>*);
524
525 template <typename U>
526 static double test(...);
527
528 static bool const value = (sizeof(test<DocumentListTraits<T>>(nullptr))==1);
529};
530
531template <class T> struct has_PolymorphicTraits {
532 using Signature_getKind = NodeKind (*)(const T &);
533
534 template <typename U>
535 static char test(SameType<Signature_getKind, &U::getKind> *);
536
537 template <typename U> static double test(...);
538
539 static bool const value = (sizeof(test<PolymorphicTraits<T>>(nullptr)) == 1);
540};
541
542inline bool isNumeric(StringRef S) {
543 const static auto skipDigits = [](StringRef Input) {
544 return Input.drop_front(
545 std::min(Input.find_first_not_of("0123456789"), Input.size()));
546 };
547
548 // Make S.front() and S.drop_front().front() (if S.front() is [+-]) calls
549 // safe.
550 if (S.empty() || S.equals("+") || S.equals("-"))
551 return false;
552
553 if (S.equals(".nan") || S.equals(".NaN") || S.equals(".NAN"))
554 return true;
555
556 // Infinity and decimal numbers can be prefixed with sign.
557 StringRef Tail = (S.front() == '-' || S.front() == '+') ? S.drop_front() : S;
558
559 // Check for infinity first, because checking for hex and oct numbers is more
560 // expensive.
561 if (Tail.equals(".inf") || Tail.equals(".Inf") || Tail.equals(".INF"))
562 return true;
563
564 // Section 10.3.2 Tag Resolution
565 // YAML 1.2 Specification prohibits Base 8 and Base 16 numbers prefixed with
566 // [-+], so S should be used instead of Tail.
567 if (S.startswith("0o"))
568 return S.size() > 2 &&
569 S.drop_front(2).find_first_not_of("01234567") == StringRef::npos;
570
571 if (S.startswith("0x"))
572 return S.size() > 2 && S.drop_front(2).find_first_not_of(
573 "0123456789abcdefABCDEF") == StringRef::npos;
574
575 // Parse float: [-+]? (\. [0-9]+ | [0-9]+ (\. [0-9]* )?) ([eE] [-+]? [0-9]+)?
576 S = Tail;
577
578 // Handle cases when the number starts with '.' and hence needs at least one
579 // digit after dot (as opposed by number which has digits before the dot), but
580 // doesn't have one.
581 if (S.startswith(".") &&
582 (S.equals(".") ||
583 (S.size() > 1 && std::strchr("0123456789", S[1]) == nullptr)))
584 return false;
585
586 if (S.startswith("E") || S.startswith("e"))
587 return false;
588
589 enum ParseState {
590 Default,
591 FoundDot,
592 FoundExponent,
593 };
594 ParseState State = Default;
595
596 S = skipDigits(S);
597
598 // Accept decimal integer.
599 if (S.empty())
600 return true;
601
602 if (S.front() == '.') {
603 State = FoundDot;
604 S = S.drop_front();
605 } else if (S.front() == 'e' || S.front() == 'E') {
606 State = FoundExponent;
607 S = S.drop_front();
608 } else {
609 return false;
610 }
611
612 if (State == FoundDot) {
613 S = skipDigits(S);
614 if (S.empty())
615 return true;
616
617 if (S.front() == 'e' || S.front() == 'E') {
618 State = FoundExponent;
619 S = S.drop_front();
620 } else {
621 return false;
622 }
623 }
624
625 assert(State == FoundExponent && "Should have found exponent at this point.")((State == FoundExponent && "Should have found exponent at this point."
) ? static_cast<void> (0) : __assert_fail ("State == FoundExponent && \"Should have found exponent at this point.\""
, "/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/Support/YAMLTraits.h"
, 625, __PRETTY_FUNCTION__))
;
626 if (S.empty())
627 return false;
628
629 if (S.front() == '+' || S.front() == '-') {
630 S = S.drop_front();
631 if (S.empty())
632 return false;
633 }
634
635 return skipDigits(S).empty();
636}
637
638inline bool isNull(StringRef S) {
639 return S.equals("null") || S.equals("Null") || S.equals("NULL") ||
640 S.equals("~");
641}
642
643inline bool isBool(StringRef S) {
644 return S.equals("true") || S.equals("True") || S.equals("TRUE") ||
645 S.equals("false") || S.equals("False") || S.equals("FALSE");
646}
647
648// 5.1. Character Set
649// The allowed character range explicitly excludes the C0 control block #x0-#x1F
650// (except for TAB #x9, LF #xA, and CR #xD which are allowed), DEL #x7F, the C1
651// control block #x80-#x9F (except for NEL #x85 which is allowed), the surrogate
652// block #xD800-#xDFFF, #xFFFE, and #xFFFF.
653inline QuotingType needsQuotes(StringRef S) {
654 if (S.empty())
655 return QuotingType::Single;
656 if (isspace(S.front()) || isspace(S.back()))
657 return QuotingType::Single;
658 if (isNull(S))
659 return QuotingType::Single;
660 if (isBool(S))
661 return QuotingType::Single;
662 if (isNumeric(S))
663 return QuotingType::Single;
664
665 // 7.3.3 Plain Style
666 // Plain scalars must not begin with most indicators, as this would cause
667 // ambiguity with other YAML constructs.
668 static constexpr char Indicators[] = R"(-?:\,[]{}#&*!|>'"%@`)";
669 if (S.find_first_of(Indicators) == 0)
670 return QuotingType::Single;
671
672 QuotingType MaxQuotingNeeded = QuotingType::None;
673 for (unsigned char C : S) {
674 // Alphanum is safe.
675 if (isAlnum(C))
676 continue;
677
678 switch (C) {
679 // Safe scalar characters.
680 case '_':
681 case '-':
682 case '^':
683 case '.':
684 case ',':
685 case ' ':
686 // TAB (0x9) is allowed in unquoted strings.
687 case 0x9:
688 continue;
689 // LF(0xA) and CR(0xD) may delimit values and so require at least single
690 // quotes.
691 case 0xA:
692 case 0xD:
693 MaxQuotingNeeded = QuotingType::Single;
694 continue;
695 // DEL (0x7F) are excluded from the allowed character range.
696 case 0x7F:
697 return QuotingType::Double;
698 // Forward slash is allowed to be unquoted, but we quote it anyway. We have
699 // many tests that use FileCheck against YAML output, and this output often
700 // contains paths. If we quote backslashes but not forward slashes then
701 // paths will come out either quoted or unquoted depending on which platform
702 // the test is run on, making FileCheck comparisons difficult.
703 case '/':
704 default: {
705 // C0 control block (0x0 - 0x1F) is excluded from the allowed character
706 // range.
707 if (C <= 0x1F)
708 return QuotingType::Double;
709
710 // Always double quote UTF-8.
711 if ((C & 0x80) != 0)
712 return QuotingType::Double;
713
714 // The character is not safe, at least simple quoting needed.
715 MaxQuotingNeeded = QuotingType::Single;
716 }
717 }
718 }
719
720 return MaxQuotingNeeded;
721}
722
723template <typename T, typename Context>
724struct missingTraits
725 : public std::integral_constant<bool,
726 !has_ScalarEnumerationTraits<T>::value &&
727 !has_ScalarBitSetTraits<T>::value &&
728 !has_ScalarTraits<T>::value &&
729 !has_BlockScalarTraits<T>::value &&
730 !has_TaggedScalarTraits<T>::value &&
731 !has_MappingTraits<T, Context>::value &&
732 !has_SequenceTraits<T>::value &&
733 !has_CustomMappingTraits<T>::value &&
734 !has_DocumentListTraits<T>::value &&
735 !has_PolymorphicTraits<T>::value> {};
736
737template <typename T, typename Context>
738struct validatedMappingTraits
739 : public std::integral_constant<
740 bool, has_MappingTraits<T, Context>::value &&
741 has_MappingValidateTraits<T, Context>::value> {};
742
743template <typename T, typename Context>
744struct unvalidatedMappingTraits
745 : public std::integral_constant<
746 bool, has_MappingTraits<T, Context>::value &&
747 !has_MappingValidateTraits<T, Context>::value> {};
748
749// Base class for Input and Output.
750class IO {
751public:
752 IO(void *Ctxt = nullptr);
753 virtual ~IO();
754
755 virtual bool outputting() = 0;
756
757 virtual unsigned beginSequence() = 0;
758 virtual bool preflightElement(unsigned, void *&) = 0;
759 virtual void postflightElement(void*) = 0;
760 virtual void endSequence() = 0;
761 virtual bool canElideEmptySequence() = 0;
762
763 virtual unsigned beginFlowSequence() = 0;
764 virtual bool preflightFlowElement(unsigned, void *&) = 0;
765 virtual void postflightFlowElement(void*) = 0;
766 virtual void endFlowSequence() = 0;
767
768 virtual bool mapTag(StringRef Tag, bool Default=false) = 0;
769 virtual void beginMapping() = 0;
770 virtual void endMapping() = 0;
771 virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0;
772 virtual void postflightKey(void*) = 0;
773 virtual std::vector<StringRef> keys() = 0;
774
775 virtual void beginFlowMapping() = 0;
776 virtual void endFlowMapping() = 0;
777
778 virtual void beginEnumScalar() = 0;
779 virtual bool matchEnumScalar(const char*, bool) = 0;
780 virtual bool matchEnumFallback() = 0;
781 virtual void endEnumScalar() = 0;
782
783 virtual bool beginBitSetScalar(bool &) = 0;
784 virtual bool bitSetMatch(const char*, bool) = 0;
785 virtual void endBitSetScalar() = 0;
786
787 virtual void scalarString(StringRef &, QuotingType) = 0;
788 virtual void blockScalarString(StringRef &) = 0;
789 virtual void scalarTag(std::string &) = 0;
790
791 virtual NodeKind getNodeKind() = 0;
792
793 virtual void setError(const Twine &) = 0;
794
795 template <typename T>
796 void enumCase(T &Val, const char* Str, const T ConstVal) {
797 if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) {
798 Val = ConstVal;
799 }
800 }
801
802 // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
803 template <typename T>
804 void enumCase(T &Val, const char* Str, const uint32_t ConstVal) {
805 if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) {
15
Assuming the condition is true
16
Calling 'ELF_SHT::operator=='
806 Val = ConstVal;
807 }
808 }
809
810 template <typename FBT, typename T>
811 void enumFallback(T &Val) {
812 if (matchEnumFallback()) {
813 EmptyContext Context;
814 // FIXME: Force integral conversion to allow strong typedefs to convert.
815 FBT Res = static_cast<typename FBT::BaseType>(Val);
816 yamlize(*this, Res, true, Context);
817 Val = static_cast<T>(static_cast<typename FBT::BaseType>(Res));
818 }
819 }
820
821 template <typename T>
822 void bitSetCase(T &Val, const char* Str, const T ConstVal) {
823 if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
824 Val = static_cast<T>(Val | ConstVal);
825 }
826 }
827
828 // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
829 template <typename T>
830 void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) {
831 if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
832 Val = static_cast<T>(Val | ConstVal);
833 }
834 }
835
836 template <typename T>
837 void maskedBitSetCase(T &Val, const char *Str, T ConstVal, T Mask) {
838 if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
839 Val = Val | ConstVal;
840 }
841
842 template <typename T>
843 void maskedBitSetCase(T &Val, const char *Str, uint32_t ConstVal,
844 uint32_t Mask) {
845 if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
846 Val = Val | ConstVal;
847 }
848
849 void *getContext();
850 void setContext(void *);
851
852 template <typename T> void mapRequired(const char *Key, T &Val) {
853 EmptyContext Ctx;
854 this->processKey(Key, Val, true, Ctx);
7
Calling 'IO::processKey'
855 }
856
857 template <typename T, typename Context>
858 void mapRequired(const char *Key, T &Val, Context &Ctx) {
859 this->processKey(Key, Val, true, Ctx);
860 }
861
862 template <typename T> void mapOptional(const char *Key, T &Val) {
863 EmptyContext Ctx;
864 mapOptionalWithContext(Key, Val, Ctx);
865 }
866
867 template <typename T>
868 void mapOptional(const char *Key, T &Val, const T &Default) {
869 EmptyContext Ctx;
870 mapOptionalWithContext(Key, Val, Default, Ctx);
871 }
872
873 template <typename T, typename Context>
874 typename std::enable_if<has_SequenceTraits<T>::value, void>::type
875 mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
876 // omit key/value instead of outputting empty sequence
877 if (this->canElideEmptySequence() && !(Val.begin() != Val.end()))
878 return;
879 this->processKey(Key, Val, false, Ctx);
880 }
881
882 template <typename T, typename Context>
883 void mapOptionalWithContext(const char *Key, Optional<T> &Val, Context &Ctx) {
884 this->processKeyWithDefault(Key, Val, Optional<T>(), /*Required=*/false,
885 Ctx);
886 }
887
888 template <typename T, typename Context>
889 typename std::enable_if<!has_SequenceTraits<T>::value, void>::type
890 mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
891 this->processKey(Key, Val, false, Ctx);
892 }
893
894 template <typename T, typename Context>
895 void mapOptionalWithContext(const char *Key, T &Val, const T &Default,
896 Context &Ctx) {
897 this->processKeyWithDefault(Key, Val, Default, false, Ctx);
898 }
899
900private:
901 template <typename T, typename Context>
902 void processKeyWithDefault(const char *Key, Optional<T> &Val,
903 const Optional<T> &DefaultValue, bool Required,
904 Context &Ctx) {
905 assert(DefaultValue.hasValue() == false &&((DefaultValue.hasValue() == false && "Optional<T> shouldn't have a value!"
) ? static_cast<void> (0) : __assert_fail ("DefaultValue.hasValue() == false && \"Optional<T> shouldn't have a value!\""
, "/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/Support/YAMLTraits.h"
, 906, __PRETTY_FUNCTION__))
906 "Optional<T> shouldn't have a value!")((DefaultValue.hasValue() == false && "Optional<T> shouldn't have a value!"
) ? static_cast<void> (0) : __assert_fail ("DefaultValue.hasValue() == false && \"Optional<T> shouldn't have a value!\""
, "/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/Support/YAMLTraits.h"
, 906, __PRETTY_FUNCTION__))
;
907 void *SaveInfo;
908 bool UseDefault = true;
909 const bool sameAsDefault = outputting() && !Val.hasValue();
910 if (!outputting() && !Val.hasValue())
911 Val = T();
912 if (Val.hasValue() &&
913 this->preflightKey(Key, Required, sameAsDefault, UseDefault,
914 SaveInfo)) {
915 yamlize(*this, Val.getValue(), Required, Ctx);
916 this->postflightKey(SaveInfo);
917 } else {
918 if (UseDefault)
919 Val = DefaultValue;
920 }
921 }
922
923 template <typename T, typename Context>
924 void processKeyWithDefault(const char *Key, T &Val, const T &DefaultValue,
925 bool Required, Context &Ctx) {
926 void *SaveInfo;
927 bool UseDefault;
928 const bool sameAsDefault = outputting() && Val == DefaultValue;
929 if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault,
930 SaveInfo) ) {
931 yamlize(*this, Val, Required, Ctx);
932 this->postflightKey(SaveInfo);
933 }
934 else {
935 if ( UseDefault )
936 Val = DefaultValue;
937 }
938 }
939
940 template <typename T, typename Context>
941 void processKey(const char *Key, T &Val, bool Required, Context &Ctx) {
942 void *SaveInfo;
943 bool UseDefault;
944 if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) {
8
Assuming the condition is true
9
Taking true branch
945 yamlize(*this, Val, Required, Ctx);
10
Calling 'yamlize<llvm::ELFYAML::ELF_SHT>'
946 this->postflightKey(SaveInfo);
947 }
948 }
949
950private:
951 void *Ctxt;
952};
953
954namespace detail {
955
956template <typename T, typename Context>
957void doMapping(IO &io, T &Val, Context &Ctx) {
958 MappingContextTraits<T, Context>::mapping(io, Val, Ctx);
959}
960
961template <typename T> void doMapping(IO &io, T &Val, EmptyContext &Ctx) {
962 MappingTraits<T>::mapping(io, Val);
963}
964
965} // end namespace detail
966
967template <typename T>
968typename std::enable_if<has_ScalarEnumerationTraits<T>::value, void>::type
969yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
970 io.beginEnumScalar();
971 ScalarEnumerationTraits<T>::enumeration(io, Val);
11
Calling 'ScalarEnumerationTraits::enumeration'
972 io.endEnumScalar();
973}
974
975template <typename T>
976typename std::enable_if<has_ScalarBitSetTraits<T>::value, void>::type
977yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
978 bool DoClear;
979 if ( io.beginBitSetScalar(DoClear) ) {
980 if ( DoClear )
981 Val = static_cast<T>(0);
982 ScalarBitSetTraits<T>::bitset(io, Val);
983 io.endBitSetScalar();
984 }
985}
986
987template <typename T>
988typename std::enable_if<has_ScalarTraits<T>::value, void>::type
989yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
990 if ( io.outputting() ) {
991 std::string Storage;
992 raw_string_ostream Buffer(Storage);
993 ScalarTraits<T>::output(Val, io.getContext(), Buffer);
994 StringRef Str = Buffer.str();
995 io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
996 }
997 else {
998 StringRef Str;
999 io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
1000 StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val);
1001 if ( !Result.empty() ) {
1002 io.setError(Twine(Result));
1003 }
1004 }
1005}
1006
1007template <typename T>
1008typename std::enable_if<has_BlockScalarTraits<T>::value, void>::type
1009yamlize(IO &YamlIO, T &Val, bool, EmptyContext &Ctx) {
1010 if (YamlIO.outputting()) {
1011 std::string Storage;
1012 raw_string_ostream Buffer(Storage);
1013 BlockScalarTraits<T>::output(Val, YamlIO.getContext(), Buffer);
1014 StringRef Str = Buffer.str();
1015 YamlIO.blockScalarString(Str);
1016 } else {
1017 StringRef Str;
1018 YamlIO.blockScalarString(Str);
1019 StringRef Result =
1020 BlockScalarTraits<T>::input(Str, YamlIO.getContext(), Val);
1021 if (!Result.empty())
1022 YamlIO.setError(Twine(Result));
1023 }
1024}
1025
1026template <typename T>
1027typename std::enable_if<has_TaggedScalarTraits<T>::value, void>::type
1028yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1029 if (io.outputting()) {
1030 std::string ScalarStorage, TagStorage;
1031 raw_string_ostream ScalarBuffer(ScalarStorage), TagBuffer(TagStorage);
1032 TaggedScalarTraits<T>::output(Val, io.getContext(), ScalarBuffer,
1033 TagBuffer);
1034 io.scalarTag(TagBuffer.str());
1035 StringRef ScalarStr = ScalarBuffer.str();
1036 io.scalarString(ScalarStr,
1037 TaggedScalarTraits<T>::mustQuote(Val, ScalarStr));
1038 } else {
1039 std::string Tag;
1040 io.scalarTag(Tag);
1041 StringRef Str;
1042 io.scalarString(Str, QuotingType::None);
1043 StringRef Result =
1044 TaggedScalarTraits<T>::input(Str, Tag, io.getContext(), Val);
1045 if (!Result.empty()) {
1046 io.setError(Twine(Result));
1047 }
1048 }
1049}
1050
1051template <typename T, typename Context>
1052typename std::enable_if<validatedMappingTraits<T, Context>::value, void>::type
1053yamlize(IO &io, T &Val, bool, Context &Ctx) {
1054 if (has_FlowTraits<MappingTraits<T>>::value)
1055 io.beginFlowMapping();
1056 else
1057 io.beginMapping();
1058 if (io.outputting()) {
1059 StringRef Err = MappingTraits<T>::validate(io, Val);
1060 if (!Err.empty()) {
1061 errs() << Err << "\n";
1062 assert(Err.empty() && "invalid struct trying to be written as yaml")((Err.empty() && "invalid struct trying to be written as yaml"
) ? static_cast<void> (0) : __assert_fail ("Err.empty() && \"invalid struct trying to be written as yaml\""
, "/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/Support/YAMLTraits.h"
, 1062, __PRETTY_FUNCTION__))
;
1063 }
1064 }
1065 detail::doMapping(io, Val, Ctx);
1066 if (!io.outputting()) {
1067 StringRef Err = MappingTraits<T>::validate(io, Val);
1068 if (!Err.empty())
1069 io.setError(Err);
1070 }
1071 if (has_FlowTraits<MappingTraits<T>>::value)
1072 io.endFlowMapping();
1073 else
1074 io.endMapping();
1075}
1076
1077template <typename T, typename Context>
1078typename std::enable_if<unvalidatedMappingTraits<T, Context>::value, void>::type
1079yamlize(IO &io, T &Val, bool, Context &Ctx) {
1080 if (has_FlowTraits<MappingTraits<T>>::value) {
1081 io.beginFlowMapping();
1082 detail::doMapping(io, Val, Ctx);
1083 io.endFlowMapping();
1084 } else {
1085 io.beginMapping();
1086 detail::doMapping(io, Val, Ctx);
1087 io.endMapping();
1088 }
1089}
1090
1091template <typename T>
1092typename std::enable_if<has_CustomMappingTraits<T>::value, void>::type
1093yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1094 if ( io.outputting() ) {
1095 io.beginMapping();
1096 CustomMappingTraits<T>::output(io, Val);
1097 io.endMapping();
1098 } else {
1099 io.beginMapping();
1100 for (StringRef key : io.keys())
1101 CustomMappingTraits<T>::inputOne(io, key, Val);
1102 io.endMapping();
1103 }
1104}
1105
1106template <typename T>
1107typename std::enable_if<has_PolymorphicTraits<T>::value, void>::type
1108yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1109 switch (io.outputting() ? PolymorphicTraits<T>::getKind(Val)
1110 : io.getNodeKind()) {
1111 case NodeKind::Scalar:
1112 return yamlize(io, PolymorphicTraits<T>::getAsScalar(Val), true, Ctx);
1113 case NodeKind::Map:
1114 return yamlize(io, PolymorphicTraits<T>::getAsMap(Val), true, Ctx);
1115 case NodeKind::Sequence:
1116 return yamlize(io, PolymorphicTraits<T>::getAsSequence(Val), true, Ctx);
1117 }
1118}
1119
1120template <typename T>
1121typename std::enable_if<missingTraits<T, EmptyContext>::value, void>::type
1122yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1123 char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
1124}
1125
1126template <typename T, typename Context>
1127typename std::enable_if<has_SequenceTraits<T>::value, void>::type
1128yamlize(IO &io, T &Seq, bool, Context &Ctx) {
1129 if ( has_FlowTraits< SequenceTraits<T>>::value ) {
1130 unsigned incnt = io.beginFlowSequence();
1131 unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
1132 for(unsigned i=0; i < count; ++i) {
1133 void *SaveInfo;
1134 if ( io.preflightFlowElement(i, SaveInfo) ) {
1135 yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
1136 io.postflightFlowElement(SaveInfo);
1137 }
1138 }
1139 io.endFlowSequence();
1140 }
1141 else {
1142 unsigned incnt = io.beginSequence();
1143 unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
1144 for(unsigned i=0; i < count; ++i) {
1145 void *SaveInfo;
1146 if ( io.preflightElement(i, SaveInfo) ) {
1147 yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
1148 io.postflightElement(SaveInfo);
1149 }
1150 }
1151 io.endSequence();
1152 }
1153}
1154
1155template<>
1156struct ScalarTraits<bool> {
1157 static void output(const bool &, void* , raw_ostream &);
1158 static StringRef input(StringRef, void *, bool &);
1159 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1160};
1161
1162template<>
1163struct ScalarTraits<StringRef> {
1164 static void output(const StringRef &, void *, raw_ostream &);
1165 static StringRef input(StringRef, void *, StringRef &);
1166 static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
1167};
1168
1169template<>
1170struct ScalarTraits<std::string> {
1171 static void output(const std::string &, void *, raw_ostream &);
1172 static StringRef input(StringRef, void *, std::string &);
1173 static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
1174};
1175
1176template<>
1177struct ScalarTraits<uint8_t> {
1178 static void output(const uint8_t &, void *, raw_ostream &);
1179 static StringRef input(StringRef, void *, uint8_t &);
1180 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1181};
1182
1183template<>
1184struct ScalarTraits<uint16_t> {
1185 static void output(const uint16_t &, void *, raw_ostream &);
1186 static StringRef input(StringRef, void *, uint16_t &);
1187 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1188};
1189
1190template<>
1191struct ScalarTraits<uint32_t> {
1192 static void output(const uint32_t &, void *, raw_ostream &);
1193 static StringRef input(StringRef, void *, uint32_t &);
1194 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1195};
1196
1197template<>
1198struct ScalarTraits<uint64_t> {
1199 static void output(const uint64_t &, void *, raw_ostream &);
1200 static StringRef input(StringRef, void *, uint64_t &);
1201 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1202};
1203
1204template<>
1205struct ScalarTraits<int8_t> {
1206 static void output(const int8_t &, void *, raw_ostream &);
1207 static StringRef input(StringRef, void *, int8_t &);
1208 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1209};
1210
1211template<>
1212struct ScalarTraits<int16_t> {
1213 static void output(const int16_t &, void *, raw_ostream &);
1214 static StringRef input(StringRef, void *, int16_t &);
1215 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1216};
1217
1218template<>
1219struct ScalarTraits<int32_t> {
1220 static void output(const int32_t &, void *, raw_ostream &);
1221 static StringRef input(StringRef, void *, int32_t &);
1222 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1223};
1224
1225template<>
1226struct ScalarTraits<int64_t> {
1227 static void output(const int64_t &, void *, raw_ostream &);
1228 static StringRef input(StringRef, void *, int64_t &);
1229 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1230};
1231
1232template<>
1233struct ScalarTraits<float> {
1234 static void output(const float &, void *, raw_ostream &);
1235 static StringRef input(StringRef, void *, float &);
1236 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1237};
1238
1239template<>
1240struct ScalarTraits<double> {
1241 static void output(const double &, void *, raw_ostream &);
1242 static StringRef input(StringRef, void *, double &);
1243 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1244};
1245
1246// For endian types, we just use the existing ScalarTraits for the underlying
1247// type. This way endian aware types are supported whenever a ScalarTraits
1248// is defined for the underlying type.
1249template <typename value_type, support::endianness endian, size_t alignment>
1250struct ScalarTraits<support::detail::packed_endian_specific_integral<
1251 value_type, endian, alignment>> {
1252 using endian_type =
1253 support::detail::packed_endian_specific_integral<value_type, endian,
1254 alignment>;
1255
1256 static void output(const endian_type &E, void *Ctx, raw_ostream &Stream) {
1257 ScalarTraits<value_type>::output(static_cast<value_type>(E), Ctx, Stream);
1258 }
1259
1260 static StringRef input(StringRef Str, void *Ctx, endian_type &E) {
1261 value_type V;
1262 auto R = ScalarTraits<value_type>::input(Str, Ctx, V);
1263 E = static_cast<endian_type>(V);
1264 return R;
1265 }
1266
1267 static QuotingType mustQuote(StringRef Str) {
1268 return ScalarTraits<value_type>::mustQuote(Str);
1269 }
1270};
1271
1272// Utility for use within MappingTraits<>::mapping() method
1273// to [de]normalize an object for use with YAML conversion.
1274template <typename TNorm, typename TFinal>
1275struct MappingNormalization {
1276 MappingNormalization(IO &i_o, TFinal &Obj)
1277 : io(i_o), BufPtr(nullptr), Result(Obj) {
1278 if ( io.outputting() ) {
1279 BufPtr = new (&Buffer) TNorm(io, Obj);
1280 }
1281 else {
1282 BufPtr = new (&Buffer) TNorm(io);
1283 }
1284 }
1285
1286 ~MappingNormalization() {
1287 if ( ! io.outputting() ) {
1288 Result = BufPtr->denormalize(io);
1289 }
1290 BufPtr->~TNorm();
1291 }
1292
1293 TNorm* operator->() { return BufPtr; }
1294
1295private:
1296 using Storage = AlignedCharArrayUnion<TNorm>;
1297
1298 Storage Buffer;
1299 IO &io;
1300 TNorm *BufPtr;
1301 TFinal &Result;
1302};
1303
1304// Utility for use within MappingTraits<>::mapping() method
1305// to [de]normalize an object for use with YAML conversion.
1306template <typename TNorm, typename TFinal>
1307struct MappingNormalizationHeap {
1308 MappingNormalizationHeap(IO &i_o, TFinal &Obj, BumpPtrAllocator *allocator)
1309 : io(i_o), Result(Obj) {
1310 if ( io.outputting() ) {
1311 BufPtr = new (&Buffer) TNorm(io, Obj);
1312 }
1313 else if (allocator) {
1314 BufPtr = allocator->Allocate<TNorm>();
1315 new (BufPtr) TNorm(io);
1316 } else {
1317 BufPtr = new TNorm(io);
1318 }
1319 }
1320
1321 ~MappingNormalizationHeap() {
1322 if ( io.outputting() ) {
1323 BufPtr->~TNorm();
1324 }
1325 else {
1326 Result = BufPtr->denormalize(io);
1327 }
1328 }
1329
1330 TNorm* operator->() { return BufPtr; }
1331
1332private:
1333 using Storage = AlignedCharArrayUnion<TNorm>;
1334
1335 Storage Buffer;
1336 IO &io;
1337 TNorm *BufPtr = nullptr;
1338 TFinal &Result;
1339};
1340
1341///
1342/// The Input class is used to parse a yaml document into in-memory structs
1343/// and vectors.
1344///
1345/// It works by using YAMLParser to do a syntax parse of the entire yaml
1346/// document, then the Input class builds a graph of HNodes which wraps
1347/// each yaml Node. The extra layer is buffering. The low level yaml
1348/// parser only lets you look at each node once. The buffering layer lets
1349/// you search and interate multiple times. This is necessary because
1350/// the mapRequired() method calls may not be in the same order
1351/// as the keys in the document.
1352///
1353class Input : public IO {
1354public:
1355 // Construct a yaml Input object from a StringRef and optional
1356 // user-data. The DiagHandler can be specified to provide
1357 // alternative error reporting.
1358 Input(StringRef InputContent,
1359 void *Ctxt = nullptr,
1360 SourceMgr::DiagHandlerTy DiagHandler = nullptr,
1361 void *DiagHandlerCtxt = nullptr);
1362 Input(MemoryBufferRef Input,
1363 void *Ctxt = nullptr,
1364 SourceMgr::DiagHandlerTy DiagHandler = nullptr,
1365 void *DiagHandlerCtxt = nullptr);
1366 ~Input() override;
1367
1368 // Check if there was an syntax or semantic error during parsing.
1369 std::error_code error();
1370
1371private:
1372 bool outputting() override;
1373 bool mapTag(StringRef, bool) override;
1374 void beginMapping() override;
1375 void endMapping() override;
1376 bool preflightKey(const char *, bool, bool, bool &, void *&) override;
1377 void postflightKey(void *) override;
1378 std::vector<StringRef> keys() override;
1379 void beginFlowMapping() override;
1380 void endFlowMapping() override;
1381 unsigned beginSequence() override;
1382 void endSequence() override;
1383 bool preflightElement(unsigned index, void *&) override;
1384 void postflightElement(void *) override;
1385 unsigned beginFlowSequence() override;
1386 bool preflightFlowElement(unsigned , void *&) override;
1387 void postflightFlowElement(void *) override;
1388 void endFlowSequence() override;
1389 void beginEnumScalar() override;
1390 bool matchEnumScalar(const char*, bool) override;
1391 bool matchEnumFallback() override;
1392 void endEnumScalar() override;
1393 bool beginBitSetScalar(bool &) override;
1394 bool bitSetMatch(const char *, bool ) override;
1395 void endBitSetScalar() override;
1396 void scalarString(StringRef &, QuotingType) override;
1397 void blockScalarString(StringRef &) override;
1398 void scalarTag(std::string &) override;
1399 NodeKind getNodeKind() override;
1400 void setError(const Twine &message) override;
1401 bool canElideEmptySequence() override;
1402
1403 class HNode {
1404 virtual void anchor();
1405
1406 public:
1407 HNode(Node *n) : _node(n) { }
1408 virtual ~HNode() = default;
1409
1410 static bool classof(const HNode *) { return true; }
1411
1412 Node *_node;
1413 };
1414
1415 class EmptyHNode : public HNode {
1416 void anchor() override;
1417
1418 public:
1419 EmptyHNode(Node *n) : HNode(n) { }
1420
1421 static bool classof(const HNode *n) { return NullNode::classof(n->_node); }
1422
1423 static bool classof(const EmptyHNode *) { return true; }
1424 };
1425
1426 class ScalarHNode : public HNode {
1427 void anchor() override;
1428
1429 public:
1430 ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { }
1431
1432 StringRef value() const { return _value; }
1433
1434 static bool classof(const HNode *n) {
1435 return ScalarNode::classof(n->_node) ||
1436 BlockScalarNode::classof(n->_node);
1437 }
1438
1439 static bool classof(const ScalarHNode *) { return true; }
1440
1441 protected:
1442 StringRef _value;
1443 };
1444
1445 class MapHNode : public HNode {
1446 void anchor() override;
1447
1448 public:
1449 MapHNode(Node *n) : HNode(n) { }
1450
1451 static bool classof(const HNode *n) {
1452 return MappingNode::classof(n->_node);
1453 }
1454
1455 static bool classof(const MapHNode *) { return true; }
1456
1457 using NameToNode = StringMap<std::unique_ptr<HNode>>;
1458
1459 NameToNode Mapping;
1460 SmallVector<std::string, 6> ValidKeys;
1461 };
1462
1463 class SequenceHNode : public HNode {
1464 void anchor() override;
1465
1466 public:
1467 SequenceHNode(Node *n) : HNode(n) { }
1468
1469 static bool classof(const HNode *n) {
1470 return SequenceNode::classof(n->_node);
1471 }
1472
1473 static bool classof(const SequenceHNode *) { return true; }
1474
1475 std::vector<std::unique_ptr<HNode>> Entries;
1476 };
1477
1478 std::unique_ptr<Input::HNode> createHNodes(Node *node);
1479 void setError(HNode *hnode, const Twine &message);
1480 void setError(Node *node, const Twine &message);
1481
1482public:
1483 // These are only used by operator>>. They could be private
1484 // if those templated things could be made friends.
1485 bool setCurrentDocument();
1486 bool nextDocument();
1487
1488 /// Returns the current node that's being parsed by the YAML Parser.
1489 const Node *getCurrentNode() const;
1490
1491private:
1492 SourceMgr SrcMgr; // must be before Strm
1493 std::unique_ptr<llvm::yaml::Stream> Strm;
1494 std::unique_ptr<HNode> TopNode;
1495 std::error_code EC;
1496 BumpPtrAllocator StringAllocator;
1497 document_iterator DocIterator;
1498 std::vector<bool> BitValuesUsed;
1499 HNode *CurrentNode = nullptr;
1500 bool ScalarMatchFound;
1501};
1502
1503///
1504/// The Output class is used to generate a yaml document from in-memory structs
1505/// and vectors.
1506///
1507class Output : public IO {
1508public:
1509 Output(raw_ostream &, void *Ctxt = nullptr, int WrapColumn = 70);
1510 ~Output() override;
1511
1512 /// Set whether or not to output optional values which are equal
1513 /// to the default value. By default, when outputting if you attempt
1514 /// to write a value that is equal to the default, the value gets ignored.
1515 /// Sometimes, it is useful to be able to see these in the resulting YAML
1516 /// anyway.
1517 void setWriteDefaultValues(bool Write) { WriteDefaultValues = Write; }
1518
1519 bool outputting() override;
1520 bool mapTag(StringRef, bool) override;
1521 void beginMapping() override;
1522 void endMapping() override;
1523 bool preflightKey(const char *key, bool, bool, bool &, void *&) override;
1524 void postflightKey(void *) override;
1525 std::vector<StringRef> keys() override;
1526 void beginFlowMapping() override;
1527 void endFlowMapping() override;
1528 unsigned beginSequence() override;
1529 void endSequence() override;
1530 bool preflightElement(unsigned, void *&) override;
1531 void postflightElement(void *) override;
1532 unsigned beginFlowSequence() override;
1533 bool preflightFlowElement(unsigned, void *&) override;
1534 void postflightFlowElement(void *) override;
1535 void endFlowSequence() override;
1536 void beginEnumScalar() override;
1537 bool matchEnumScalar(const char*, bool) override;
1538 bool matchEnumFallback() override;
1539 void endEnumScalar() override;
1540 bool beginBitSetScalar(bool &) override;
1541 bool bitSetMatch(const char *, bool ) override;
1542 void endBitSetScalar() override;
1543 void scalarString(StringRef &, QuotingType) override;
1544 void blockScalarString(StringRef &) override;
1545 void scalarTag(std::string &) override;
1546 NodeKind getNodeKind() override;
1547 void setError(const Twine &message) override;
1548 bool canElideEmptySequence() override;
1549
1550 // These are only used by operator<<. They could be private
1551 // if that templated operator could be made a friend.
1552 void beginDocuments();
1553 bool preflightDocument(unsigned);
1554 void postflightDocument();
1555 void endDocuments();
1556
1557private:
1558 void output(StringRef s);
1559 void outputUpToEndOfLine(StringRef s);
1560 void newLineCheck();
1561 void outputNewLine();
1562 void paddedKey(StringRef key);
1563 void flowKey(StringRef Key);
1564
1565 enum InState {
1566 inSeqFirstElement,
1567 inSeqOtherElement,
1568 inFlowSeqFirstElement,
1569 inFlowSeqOtherElement,
1570 inMapFirstKey,
1571 inMapOtherKey,
1572 inFlowMapFirstKey,
1573 inFlowMapOtherKey
1574 };
1575
1576 static bool inSeqAnyElement(InState State);
1577 static bool inFlowSeqAnyElement(InState State);
1578 static bool inMapAnyKey(InState State);
1579 static bool inFlowMapAnyKey(InState State);
1580
1581 raw_ostream &Out;
1582 int WrapColumn;
1583 SmallVector<InState, 8> StateStack;
1584 int Column = 0;
1585 int ColumnAtFlowStart = 0;
1586 int ColumnAtMapFlowStart = 0;
1587 bool NeedBitValueComma = false;
1588 bool NeedFlowSequenceComma = false;
1589 bool EnumerationMatchFound = false;
1590 bool NeedsNewLine = false;
1591 bool WriteDefaultValues = false;
1592};
1593
1594/// YAML I/O does conversion based on types. But often native data types
1595/// are just a typedef of built in intergral types (e.g. int). But the C++
1596/// type matching system sees through the typedef and all the typedefed types
1597/// look like a built in type. This will cause the generic YAML I/O conversion
1598/// to be used. To provide better control over the YAML conversion, you can
1599/// use this macro instead of typedef. It will create a class with one field
1600/// and automatic conversion operators to and from the base type.
1601/// Based on BOOST_STRONG_TYPEDEF
1602#define LLVM_YAML_STRONG_TYPEDEF(_base, _type)struct _type { _type() = default; _type(const _base v) : value
(v) {} _type(const _type &v) = default; _type &operator
=(const _type &rhs) = default; _type &operator=(const
_base &rhs) { value = rhs; return *this; } operator const
_base & () const { return value; } bool operator==(const
_type &rhs) const { return value == rhs.value; } bool operator
==(const _base &rhs) const { return value == rhs; } bool operator
<(const _type &rhs) const { return value < rhs.value
; } _base value; using BaseType = _base; };
\
1603 struct _type { \
1604 _type() = default; \
1605 _type(const _base v) : value(v) {} \
1606 _type(const _type &v) = default; \
1607 _type &operator=(const _type &rhs) = default; \
1608 _type &operator=(const _base &rhs) { value = rhs; return *this; } \
1609 operator const _base & () const { return value; } \
1610 bool operator==(const _type &rhs) const { return value == rhs.value; } \
1611 bool operator==(const _base &rhs) const { return value == rhs; } \
1612 bool operator<(const _type &rhs) const { return value < rhs.value; } \
1613 _base value; \
1614 using BaseType = _base; \
1615 };
1616
1617///
1618/// Use these types instead of uintXX_t in any mapping to have
1619/// its yaml output formatted as hexadecimal.
1620///
1621LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8)struct Hex8 { Hex8() = default; Hex8(const uint8_t v) : value
(v) {} Hex8(const Hex8 &v) = default; Hex8 &operator=
(const Hex8 &rhs) = default; Hex8 &operator=(const uint8_t
&rhs) { value = rhs; return *this; } operator const uint8_t
& () const { return value; } bool operator==(const Hex8 &
rhs) const { return value == rhs.value; } bool operator==(const
uint8_t &rhs) const { return value == rhs; } bool operator
<(const Hex8 &rhs) const { return value < rhs.value
; } uint8_t value; using BaseType = uint8_t; };
1622LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16)struct Hex16 { Hex16() = default; Hex16(const uint16_t v) : value
(v) {} Hex16(const Hex16 &v) = default; Hex16 &operator
=(const Hex16 &rhs) = default; Hex16 &operator=(const
uint16_t &rhs) { value = rhs; return *this; } operator const
uint16_t & () const { return value; } bool operator==(const
Hex16 &rhs) const { return value == rhs.value; } bool operator
==(const uint16_t &rhs) const { return value == rhs; } bool
operator<(const Hex16 &rhs) const { return value <
rhs.value; } uint16_t value; using BaseType = uint16_t; };
1623LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32)struct Hex32 { Hex32() = default; Hex32(const uint32_t v) : value
(v) {} Hex32(const Hex32 &v) = default; Hex32 &operator
=(const Hex32 &rhs) = default; Hex32 &operator=(const
uint32_t &rhs) { value = rhs; return *this; } operator const
uint32_t & () const { return value; } bool operator==(const
Hex32 &rhs) const { return value == rhs.value; } bool operator
==(const uint32_t &rhs) const { return value == rhs; } bool
operator<(const Hex32 &rhs) const { return value <
rhs.value; } uint32_t value; using BaseType = uint32_t; };
1624LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64)struct Hex64 { Hex64() = default; Hex64(const uint64_t v) : value
(v) {} Hex64(const Hex64 &v) = default; Hex64 &operator
=(const Hex64 &rhs) = default; Hex64 &operator=(const
uint64_t &rhs) { value = rhs; return *this; } operator const
uint64_t & () const { return value; } bool operator==(const
Hex64 &rhs) const { return value == rhs.value; } bool operator
==(const uint64_t &rhs) const { return value == rhs; } bool
operator<(const Hex64 &rhs) const { return value <
rhs.value; } uint64_t value; using BaseType = uint64_t; };
1625
1626template<>
1627struct ScalarTraits<Hex8> {
1628 static void output(const Hex8 &, void *, raw_ostream &);
1629 static StringRef input(StringRef, void *, Hex8 &);
1630 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1631};
1632
1633template<>
1634struct ScalarTraits<Hex16> {
1635 static void output(const Hex16 &, void *, raw_ostream &);
1636 static StringRef input(StringRef, void *, Hex16 &);
1637 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1638};
1639
1640template<>
1641struct ScalarTraits<Hex32> {
1642 static void output(const Hex32 &, void *, raw_ostream &);
1643 static StringRef input(StringRef, void *, Hex32 &);
1644 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1645};
1646
1647template<>
1648struct ScalarTraits<Hex64> {
1649 static void output(const Hex64 &, void *, raw_ostream &);
1650 static StringRef input(StringRef, void *, Hex64 &);
1651 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1652};
1653
1654// Define non-member operator>> so that Input can stream in a document list.
1655template <typename T>
1656inline
1657typename std::enable_if<has_DocumentListTraits<T>::value, Input &>::type
1658operator>>(Input &yin, T &docList) {
1659 int i = 0;
1660 EmptyContext Ctx;
1661 while ( yin.setCurrentDocument() ) {
1662 yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true, Ctx);
1663 if ( yin.error() )
1664 return yin;
1665 yin.nextDocument();
1666 ++i;
1667 }
1668 return yin;
1669}
1670
1671// Define non-member operator>> so that Input can stream in a map as a document.
1672template <typename T>
1673inline typename std::enable_if<has_MappingTraits<T, EmptyContext>::value,
1674 Input &>::type
1675operator>>(Input &yin, T &docMap) {
1676 EmptyContext Ctx;
1677 yin.setCurrentDocument();
1678 yamlize(yin, docMap, true, Ctx);
1679 return yin;
1680}
1681
1682// Define non-member operator>> so that Input can stream in a sequence as
1683// a document.
1684template <typename T>
1685inline
1686typename std::enable_if<has_SequenceTraits<T>::value, Input &>::type
1687operator>>(Input &yin, T &docSeq) {
1688 EmptyContext Ctx;
1689 if (yin.setCurrentDocument())
1690 yamlize(yin, docSeq, true, Ctx);
1691 return yin;
1692}
1693
1694// Define non-member operator>> so that Input can stream in a block scalar.
1695template <typename T>
1696inline
1697typename std::enable_if<has_BlockScalarTraits<T>::value, Input &>::type
1698operator>>(Input &In, T &Val) {
1699 EmptyContext Ctx;
1700 if (In.setCurrentDocument())
1701 yamlize(In, Val, true, Ctx);
1702 return In;
1703}
1704
1705// Define non-member operator>> so that Input can stream in a string map.
1706template <typename T>
1707inline
1708typename std::enable_if<has_CustomMappingTraits<T>::value, Input &>::type
1709operator>>(Input &In, T &Val) {
1710 EmptyContext Ctx;
1711 if (In.setCurrentDocument())
1712 yamlize(In, Val, true, Ctx);
1713 return In;
1714}
1715
1716// Define non-member operator>> so that Input can stream in a polymorphic type.
1717template <typename T>
1718inline typename std::enable_if<has_PolymorphicTraits<T>::value, Input &>::type
1719operator>>(Input &In, T &Val) {
1720 EmptyContext Ctx;
1721 if (In.setCurrentDocument())
1722 yamlize(In, Val, true, Ctx);
1723 return In;
1724}
1725
1726// Provide better error message about types missing a trait specialization
1727template <typename T>
1728inline typename std::enable_if<missingTraits<T, EmptyContext>::value,
1729 Input &>::type
1730operator>>(Input &yin, T &docSeq) {
1731 char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
1732 return yin;
1733}
1734
1735// Define non-member operator<< so that Output can stream out document list.
1736template <typename T>
1737inline
1738typename std::enable_if<has_DocumentListTraits<T>::value, Output &>::type
1739operator<<(Output &yout, T &docList) {
1740 EmptyContext Ctx;
1741 yout.beginDocuments();
1742 const size_t count = DocumentListTraits<T>::size(yout, docList);
1743 for(size_t i=0; i < count; ++i) {
1744 if ( yout.preflightDocument(i) ) {
1745 yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true,
1746 Ctx);
1747 yout.postflightDocument();
1748 }
1749 }
1750 yout.endDocuments();
1751 return yout;
1752}
1753
1754// Define non-member operator<< so that Output can stream out a map.
1755template <typename T>
1756inline typename std::enable_if<has_MappingTraits<T, EmptyContext>::value,
1757 Output &>::type
1758operator<<(Output &yout, T &map) {
1759 EmptyContext Ctx;
1760 yout.beginDocuments();
1761 if ( yout.preflightDocument(0) ) {
1762 yamlize(yout, map, true, Ctx);
1763 yout.postflightDocument();
1764 }
1765 yout.endDocuments();
1766 return yout;
1767}
1768
1769// Define non-member operator<< so that Output can stream out a sequence.
1770template <typename T>
1771inline
1772typename std::enable_if<has_SequenceTraits<T>::value, Output &>::type
1773operator<<(Output &yout, T &seq) {
1774 EmptyContext Ctx;
1775 yout.beginDocuments();
1776 if ( yout.preflightDocument(0) ) {
1777 yamlize(yout, seq, true, Ctx);
1778 yout.postflightDocument();
1779 }
1780 yout.endDocuments();
1781 return yout;
1782}
1783
1784// Define non-member operator<< so that Output can stream out a block scalar.
1785template <typename T>
1786inline
1787typename std::enable_if<has_BlockScalarTraits<T>::value, Output &>::type
1788operator<<(Output &Out, T &Val) {
1789 EmptyContext Ctx;
1790 Out.beginDocuments();
1791 if (Out.preflightDocument(0)) {
1792 yamlize(Out, Val, true, Ctx);
1793 Out.postflightDocument();
1794 }
1795 Out.endDocuments();
1796 return Out;
1797}
1798
1799// Define non-member operator<< so that Output can stream out a string map.
1800template <typename T>
1801inline
1802typename std::enable_if<has_CustomMappingTraits<T>::value, Output &>::type
1803operator<<(Output &Out, T &Val) {
1804 EmptyContext Ctx;
1805 Out.beginDocuments();
1806 if (Out.preflightDocument(0)) {
1807 yamlize(Out, Val, true, Ctx);
1808 Out.postflightDocument();
1809 }
1810 Out.endDocuments();
1811 return Out;
1812}
1813
1814// Define non-member operator<< so that Output can stream out a polymorphic
1815// type.
1816template <typename T>
1817inline typename std::enable_if<has_PolymorphicTraits<T>::value, Output &>::type
1818operator<<(Output &Out, T &Val) {
1819 EmptyContext Ctx;
1820 Out.beginDocuments();
1821 if (Out.preflightDocument(0)) {
1822 // FIXME: The parser does not support explicit documents terminated with a
1823 // plain scalar; the end-marker is included as part of the scalar token.
1824 assert(PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && "plain scalar documents are not supported")((PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar
&& "plain scalar documents are not supported") ? static_cast
<void> (0) : __assert_fail ("PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && \"plain scalar documents are not supported\""
, "/build/llvm-toolchain-snapshot-8~svn349319/include/llvm/Support/YAMLTraits.h"
, 1824, __PRETTY_FUNCTION__))
;
1825 yamlize(Out, Val, true, Ctx);
1826 Out.postflightDocument();
1827 }
1828 Out.endDocuments();
1829 return Out;
1830}
1831
1832// Provide better error message about types missing a trait specialization
1833template <typename T>
1834inline typename std::enable_if<missingTraits<T, EmptyContext>::value,
1835 Output &>::type
1836operator<<(Output &yout, T &seq) {
1837 char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
1838 return yout;
1839}
1840
1841template <bool B> struct IsFlowSequenceBase {};
1842template <> struct IsFlowSequenceBase<true> { static const bool flow = true; };
1843
1844template <typename T, bool Flow>
1845struct SequenceTraitsImpl : IsFlowSequenceBase<Flow> {
1846private:
1847 using type = typename T::value_type;
1848
1849public:
1850 static size_t size(IO &io, T &seq) { return seq.size(); }
1851
1852 static type &element(IO &io, T &seq, size_t index) {
1853 if (index >= seq.size())
1854 seq.resize(index + 1);
1855 return seq[index];
1856 }
1857};
1858
1859// Simple helper to check an expression can be used as a bool-valued template
1860// argument.
1861template <bool> struct CheckIsBool { static const bool value = true; };
1862
1863// If T has SequenceElementTraits, then vector<T> and SmallVector<T, N> have
1864// SequenceTraits that do the obvious thing.
1865template <typename T>
1866struct SequenceTraits<std::vector<T>,
1867 typename std::enable_if<CheckIsBool<
1868 SequenceElementTraits<T>::flow>::value>::type>
1869 : SequenceTraitsImpl<std::vector<T>, SequenceElementTraits<T>::flow> {};
1870template <typename T, unsigned N>
1871struct SequenceTraits<SmallVector<T, N>,
1872 typename std::enable_if<CheckIsBool<
1873 SequenceElementTraits<T>::flow>::value>::type>
1874 : SequenceTraitsImpl<SmallVector<T, N>, SequenceElementTraits<T>::flow> {};
1875
1876// Sequences of fundamental types use flow formatting.
1877template <typename T>
1878struct SequenceElementTraits<
1879 T, typename std::enable_if<std::is_fundamental<T>::value>::type> {
1880 static const bool flow = true;
1881};
1882
1883// Sequences of strings use block formatting.
1884template<> struct SequenceElementTraits<std::string> {
1885 static const bool flow = false;
1886};
1887template<> struct SequenceElementTraits<StringRef> {
1888 static const bool flow = false;
1889};
1890template<> struct SequenceElementTraits<std::pair<std::string, std::string>> {
1891 static const bool flow = false;
1892};
1893
1894/// Implementation of CustomMappingTraits for std::map<std::string, T>.
1895template <typename T> struct StdMapStringCustomMappingTraitsImpl {
1896 using map_type = std::map<std::string, T>;
1897
1898 static void inputOne(IO &io, StringRef key, map_type &v) {
1899 io.mapRequired(key.str().c_str(), v[key]);
1900 }
1901
1902 static void output(IO &io, map_type &v) {
1903 for (auto &p : v)
1904 io.mapRequired(p.first.c_str(), p.second);
1905 }
1906};
1907
1908} // end namespace yaml
1909} // end namespace llvm
1910
1911#define LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(TYPE, FLOW)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<TYPE>::value && !std::is_same<TYPE, std::string
>::value && !std::is_same<TYPE, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<TYPE>
{ static const bool flow = FLOW; }; } }
\
1912 namespace llvm { \
1913 namespace yaml { \
1914 static_assert( \
1915 !std::is_fundamental<TYPE>::value && \
1916 !std::is_same<TYPE, std::string>::value && \
1917 !std::is_same<TYPE, llvm::StringRef>::value, \
1918 "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"); \
1919 template <> struct SequenceElementTraits<TYPE> { \
1920 static const bool flow = FLOW; \
1921 }; \
1922 } \
1923 }
1924
1925/// Utility for declaring that a std::vector of a particular type
1926/// should be considered a YAML sequence.
1927#define LLVM_YAML_IS_SEQUENCE_VECTOR(type)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<type>::value && !std::is_same<type, std::string
>::value && !std::is_same<type, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<type>
{ static const bool flow = false; }; } }
\
1928 LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, false)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<type>::value && !std::is_same<type, std::string
>::value && !std::is_same<type, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<type>
{ static const bool flow = false; }; } }
1929
1930/// Utility for declaring that a std::vector of a particular type
1931/// should be considered a YAML flow sequence.
1932#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(type)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<type>::value && !std::is_same<type, std::string
>::value && !std::is_same<type, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<type>
{ static const bool flow = true; }; } }
\
1933 LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, true)namespace llvm { namespace yaml { static_assert( !std::is_fundamental
<type>::value && !std::is_same<type, std::string
>::value && !std::is_same<type, llvm::StringRef
>::value, "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"
); template <> struct SequenceElementTraits<type>
{ static const bool flow = true; }; } }
1934
1935#define LLVM_YAML_DECLARE_MAPPING_TRAITS(Type)namespace llvm { namespace yaml { template <> struct MappingTraits
<Type> { static void mapping(IO &IO, Type &Obj)
; }; } }
\
1936 namespace llvm { \
1937 namespace yaml { \
1938 template <> struct MappingTraits<Type> { \
1939 static void mapping(IO &IO, Type &Obj); \
1940 }; \
1941 } \
1942 }
1943
1944#define LLVM_YAML_DECLARE_ENUM_TRAITS(Type)namespace llvm { namespace yaml { template <> struct ScalarEnumerationTraits
<Type> { static void enumeration(IO &io, Type &
Value); }; } }
\
1945 namespace llvm { \
1946 namespace yaml { \
1947 template <> struct ScalarEnumerationTraits<Type> { \
1948 static void enumeration(IO &io, Type &Value); \
1949 }; \
1950 } \
1951 }
1952
1953#define LLVM_YAML_DECLARE_BITSET_TRAITS(Type)namespace llvm { namespace yaml { template <> struct ScalarBitSetTraits
<Type> { static void bitset(IO &IO, Type &Options
); }; } }
\
1954 namespace llvm { \
1955 namespace yaml { \
1956 template <> struct ScalarBitSetTraits<Type> { \
1957 static void bitset(IO &IO, Type &Options); \
1958 }; \
1959 } \
1960 }
1961
1962#define LLVM_YAML_DECLARE_SCALAR_TRAITS(Type, MustQuote)namespace llvm { namespace yaml { template <> struct ScalarTraits
<Type> { static void output(const Type &Value, void
*ctx, raw_ostream &Out); static StringRef input(StringRef
Scalar, void *ctxt, Type &Value); static QuotingType mustQuote
(StringRef) { return MustQuote; } }; } }
\
1963 namespace llvm { \
1964 namespace yaml { \
1965 template <> struct ScalarTraits<Type> { \
1966 static void output(const Type &Value, void *ctx, raw_ostream &Out); \
1967 static StringRef input(StringRef Scalar, void *ctxt, Type &Value); \
1968 static QuotingType mustQuote(StringRef) { return MustQuote; } \
1969 }; \
1970 } \
1971 }
1972
1973/// Utility for declaring that a std::vector of a particular type
1974/// should be considered a YAML document list.
1975#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type)namespace llvm { namespace yaml { template <unsigned N>
struct DocumentListTraits<SmallVector<_type, N>>
: public SequenceTraitsImpl<SmallVector<_type, N>, false
> {}; template <> struct DocumentListTraits<std::
vector<_type>> : public SequenceTraitsImpl<std::vector
<_type>, false> {}; } }
\
1976 namespace llvm { \
1977 namespace yaml { \
1978 template <unsigned N> \
1979 struct DocumentListTraits<SmallVector<_type, N>> \
1980 : public SequenceTraitsImpl<SmallVector<_type, N>, false> {}; \
1981 template <> \
1982 struct DocumentListTraits<std::vector<_type>> \
1983 : public SequenceTraitsImpl<std::vector<_type>, false> {}; \
1984 } \
1985 }
1986
1987/// Utility for declaring that std::map<std::string, _type> should be considered
1988/// a YAML map.
1989#define LLVM_YAML_IS_STRING_MAP(_type)namespace llvm { namespace yaml { template <> struct CustomMappingTraits
<std::map<std::string, _type>> : public StdMapStringCustomMappingTraitsImpl
<_type> {}; } }
\
1990 namespace llvm { \
1991 namespace yaml { \
1992 template <> \
1993 struct CustomMappingTraits<std::map<std::string, _type>> \
1994 : public StdMapStringCustomMappingTraitsImpl<_type> {}; \
1995 } \
1996 }
1997
1998#endif // LLVM_SUPPORT_YAMLTRAITS_H