Bug Summary

File:tools/clang/lib/AST/ExprConstant.cpp
Warning:line 5387, column 57
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ExprConstant.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/AST -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp

1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr constant evaluator.
10//
11// Constant expression evaluation produces four main results:
12//
13// * A success/failure flag indicating whether constant folding was successful.
14// This is the 'bool' return value used by most of the code in this file. A
15// 'false' return value indicates that constant folding has failed, and any
16// appropriate diagnostic has already been produced.
17//
18// * An evaluated result, valid only if constant folding has not failed.
19//
20// * A flag indicating if evaluation encountered (unevaluated) side-effects.
21// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22// where it is possible to determine the evaluated result regardless.
23//
24// * A set of notes indicating why the evaluation was not a constant expression
25// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26// too, why the expression could not be folded.
27//
28// If we are checking for a potential constant expression, failure to constant
29// fold a potential constant sub-expression will be indicated by a 'false'
30// return value (the expression could not be folded) and no diagnostic (the
31// expression is not necessarily non-constant).
32//
33//===----------------------------------------------------------------------===//
34
35#include <cstring>
36#include <functional>
37#include "Interp/Context.h"
38#include "Interp/Frame.h"
39#include "Interp/State.h"
40#include "clang/AST/APValue.h"
41#include "clang/AST/ASTContext.h"
42#include "clang/AST/ASTDiagnostic.h"
43#include "clang/AST/ASTLambda.h"
44#include "clang/AST/CXXInheritance.h"
45#include "clang/AST/CharUnits.h"
46#include "clang/AST/CurrentSourceLocExprScope.h"
47#include "clang/AST/Expr.h"
48#include "clang/AST/OSLog.h"
49#include "clang/AST/OptionalDiagnostic.h"
50#include "clang/AST/RecordLayout.h"
51#include "clang/AST/StmtVisitor.h"
52#include "clang/AST/TypeLoc.h"
53#include "clang/Basic/Builtins.h"
54#include "clang/Basic/FixedPoint.h"
55#include "clang/Basic/TargetInfo.h"
56#include "llvm/ADT/Optional.h"
57#include "llvm/ADT/SmallBitVector.h"
58#include "llvm/Support/SaveAndRestore.h"
59#include "llvm/Support/raw_ostream.h"
60
61#define DEBUG_TYPE"exprconstant" "exprconstant"
62
63using namespace clang;
64using llvm::APInt;
65using llvm::APSInt;
66using llvm::APFloat;
67using llvm::Optional;
68
69namespace {
70 struct LValue;
71 class CallStackFrame;
72 class EvalInfo;
73
74 using SourceLocExprScopeGuard =
75 CurrentSourceLocExprScope::SourceLocExprScopeGuard;
76
77 static QualType getType(APValue::LValueBase B) {
78 if (!B) return QualType();
79 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
80 // FIXME: It's unclear where we're supposed to take the type from, and
81 // this actually matters for arrays of unknown bound. Eg:
82 //
83 // extern int arr[]; void f() { extern int arr[3]; };
84 // constexpr int *p = &arr[1]; // valid?
85 //
86 // For now, we take the array bound from the most recent declaration.
87 for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
88 Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
89 QualType T = Redecl->getType();
90 if (!T->isIncompleteArrayType())
91 return T;
92 }
93 return D->getType();
94 }
95
96 if (B.is<TypeInfoLValue>())
97 return B.getTypeInfoType();
98
99 if (B.is<DynamicAllocLValue>())
100 return B.getDynamicAllocType();
101
102 const Expr *Base = B.get<const Expr*>();
103
104 // For a materialized temporary, the type of the temporary we materialized
105 // may not be the type of the expression.
106 if (const MaterializeTemporaryExpr *MTE =
107 dyn_cast<MaterializeTemporaryExpr>(Base)) {
108 SmallVector<const Expr *, 2> CommaLHSs;
109 SmallVector<SubobjectAdjustment, 2> Adjustments;
110 const Expr *Temp = MTE->GetTemporaryExpr();
111 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
112 Adjustments);
113 // Keep any cv-qualifiers from the reference if we generated a temporary
114 // for it directly. Otherwise use the type after adjustment.
115 if (!Adjustments.empty())
116 return Inner->getType();
117 }
118
119 return Base->getType();
120 }
121
122 /// Get an LValue path entry, which is known to not be an array index, as a
123 /// field declaration.
124 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
125 return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
126 }
127 /// Get an LValue path entry, which is known to not be an array index, as a
128 /// base class declaration.
129 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
130 return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
131 }
132 /// Determine whether this LValue path entry for a base class names a virtual
133 /// base class.
134 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
135 return E.getAsBaseOrMember().getInt();
136 }
137
138 /// Given an expression, determine the type used to store the result of
139 /// evaluating that expression.
140 static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
141 if (E->isRValue())
142 return E->getType();
143 return Ctx.getLValueReferenceType(E->getType());
144 }
145
146 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
147 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
148 const FunctionDecl *Callee = CE->getDirectCallee();
149 return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
150 }
151
152 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
153 /// This will look through a single cast.
154 ///
155 /// Returns null if we couldn't unwrap a function with alloc_size.
156 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
157 if (!E->getType()->isPointerType())
158 return nullptr;
159
160 E = E->IgnoreParens();
161 // If we're doing a variable assignment from e.g. malloc(N), there will
162 // probably be a cast of some kind. In exotic cases, we might also see a
163 // top-level ExprWithCleanups. Ignore them either way.
164 if (const auto *FE = dyn_cast<FullExpr>(E))
165 E = FE->getSubExpr()->IgnoreParens();
166
167 if (const auto *Cast = dyn_cast<CastExpr>(E))
168 E = Cast->getSubExpr()->IgnoreParens();
169
170 if (const auto *CE = dyn_cast<CallExpr>(E))
171 return getAllocSizeAttr(CE) ? CE : nullptr;
172 return nullptr;
173 }
174
175 /// Determines whether or not the given Base contains a call to a function
176 /// with the alloc_size attribute.
177 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
178 const auto *E = Base.dyn_cast<const Expr *>();
179 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
180 }
181
182 /// The bound to claim that an array of unknown bound has.
183 /// The value in MostDerivedArraySize is undefined in this case. So, set it
184 /// to an arbitrary value that's likely to loudly break things if it's used.
185 static const uint64_t AssumedSizeForUnsizedArray =
186 std::numeric_limits<uint64_t>::max() / 2;
187
188 /// Determines if an LValue with the given LValueBase will have an unsized
189 /// array in its designator.
190 /// Find the path length and type of the most-derived subobject in the given
191 /// path, and find the size of the containing array, if any.
192 static unsigned
193 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
194 ArrayRef<APValue::LValuePathEntry> Path,
195 uint64_t &ArraySize, QualType &Type, bool &IsArray,
196 bool &FirstEntryIsUnsizedArray) {
197 // This only accepts LValueBases from APValues, and APValues don't support
198 // arrays that lack size info.
199 assert(!isBaseAnAllocSizeCall(Base) &&((!isBaseAnAllocSizeCall(Base) && "Unsized arrays shouldn't appear here"
) ? static_cast<void> (0) : __assert_fail ("!isBaseAnAllocSizeCall(Base) && \"Unsized arrays shouldn't appear here\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 200, __PRETTY_FUNCTION__))
200 "Unsized arrays shouldn't appear here")((!isBaseAnAllocSizeCall(Base) && "Unsized arrays shouldn't appear here"
) ? static_cast<void> (0) : __assert_fail ("!isBaseAnAllocSizeCall(Base) && \"Unsized arrays shouldn't appear here\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 200, __PRETTY_FUNCTION__))
;
201 unsigned MostDerivedLength = 0;
202 Type = getType(Base);
203
204 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
205 if (Type->isArrayType()) {
206 const ArrayType *AT = Ctx.getAsArrayType(Type);
207 Type = AT->getElementType();
208 MostDerivedLength = I + 1;
209 IsArray = true;
210
211 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
212 ArraySize = CAT->getSize().getZExtValue();
213 } else {
214 assert(I == 0 && "unexpected unsized array designator")((I == 0 && "unexpected unsized array designator") ? static_cast
<void> (0) : __assert_fail ("I == 0 && \"unexpected unsized array designator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 214, __PRETTY_FUNCTION__))
;
215 FirstEntryIsUnsizedArray = true;
216 ArraySize = AssumedSizeForUnsizedArray;
217 }
218 } else if (Type->isAnyComplexType()) {
219 const ComplexType *CT = Type->castAs<ComplexType>();
220 Type = CT->getElementType();
221 ArraySize = 2;
222 MostDerivedLength = I + 1;
223 IsArray = true;
224 } else if (const FieldDecl *FD = getAsField(Path[I])) {
225 Type = FD->getType();
226 ArraySize = 0;
227 MostDerivedLength = I + 1;
228 IsArray = false;
229 } else {
230 // Path[I] describes a base class.
231 ArraySize = 0;
232 IsArray = false;
233 }
234 }
235 return MostDerivedLength;
236 }
237
238 /// A path from a glvalue to a subobject of that glvalue.
239 struct SubobjectDesignator {
240 /// True if the subobject was named in a manner not supported by C++11. Such
241 /// lvalues can still be folded, but they are not core constant expressions
242 /// and we cannot perform lvalue-to-rvalue conversions on them.
243 unsigned Invalid : 1;
244
245 /// Is this a pointer one past the end of an object?
246 unsigned IsOnePastTheEnd : 1;
247
248 /// Indicator of whether the first entry is an unsized array.
249 unsigned FirstEntryIsAnUnsizedArray : 1;
250
251 /// Indicator of whether the most-derived object is an array element.
252 unsigned MostDerivedIsArrayElement : 1;
253
254 /// The length of the path to the most-derived object of which this is a
255 /// subobject.
256 unsigned MostDerivedPathLength : 28;
257
258 /// The size of the array of which the most-derived object is an element.
259 /// This will always be 0 if the most-derived object is not an array
260 /// element. 0 is not an indicator of whether or not the most-derived object
261 /// is an array, however, because 0-length arrays are allowed.
262 ///
263 /// If the current array is an unsized array, the value of this is
264 /// undefined.
265 uint64_t MostDerivedArraySize;
266
267 /// The type of the most derived object referred to by this address.
268 QualType MostDerivedType;
269
270 typedef APValue::LValuePathEntry PathEntry;
271
272 /// The entries on the path from the glvalue to the designated subobject.
273 SmallVector<PathEntry, 8> Entries;
274
275 SubobjectDesignator() : Invalid(true) {}
276
277 explicit SubobjectDesignator(QualType T)
278 : Invalid(false), IsOnePastTheEnd(false),
279 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
280 MostDerivedPathLength(0), MostDerivedArraySize(0),
281 MostDerivedType(T) {}
282
283 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
284 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
285 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
286 MostDerivedPathLength(0), MostDerivedArraySize(0) {
287 assert(V.isLValue() && "Non-LValue used to make an LValue designator?")((V.isLValue() && "Non-LValue used to make an LValue designator?"
) ? static_cast<void> (0) : __assert_fail ("V.isLValue() && \"Non-LValue used to make an LValue designator?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 287, __PRETTY_FUNCTION__))
;
288 if (!Invalid) {
289 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
290 ArrayRef<PathEntry> VEntries = V.getLValuePath();
291 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
292 if (V.getLValueBase()) {
293 bool IsArray = false;
294 bool FirstIsUnsizedArray = false;
295 MostDerivedPathLength = findMostDerivedSubobject(
296 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
297 MostDerivedType, IsArray, FirstIsUnsizedArray);
298 MostDerivedIsArrayElement = IsArray;
299 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
300 }
301 }
302 }
303
304 void truncate(ASTContext &Ctx, APValue::LValueBase Base,
305 unsigned NewLength) {
306 if (Invalid)
307 return;
308
309 assert(Base && "cannot truncate path for null pointer")((Base && "cannot truncate path for null pointer") ? static_cast
<void> (0) : __assert_fail ("Base && \"cannot truncate path for null pointer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 309, __PRETTY_FUNCTION__))
;
310 assert(NewLength <= Entries.size() && "not a truncation")((NewLength <= Entries.size() && "not a truncation"
) ? static_cast<void> (0) : __assert_fail ("NewLength <= Entries.size() && \"not a truncation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 310, __PRETTY_FUNCTION__))
;
311
312 if (NewLength == Entries.size())
313 return;
314 Entries.resize(NewLength);
315
316 bool IsArray = false;
317 bool FirstIsUnsizedArray = false;
318 MostDerivedPathLength = findMostDerivedSubobject(
319 Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
320 FirstIsUnsizedArray);
321 MostDerivedIsArrayElement = IsArray;
322 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
323 }
324
325 void setInvalid() {
326 Invalid = true;
327 Entries.clear();
328 }
329
330 /// Determine whether the most derived subobject is an array without a
331 /// known bound.
332 bool isMostDerivedAnUnsizedArray() const {
333 assert(!Invalid && "Calling this makes no sense on invalid designators")((!Invalid && "Calling this makes no sense on invalid designators"
) ? static_cast<void> (0) : __assert_fail ("!Invalid && \"Calling this makes no sense on invalid designators\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 333, __PRETTY_FUNCTION__))
;
334 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
335 }
336
337 /// Determine what the most derived array's size is. Results in an assertion
338 /// failure if the most derived array lacks a size.
339 uint64_t getMostDerivedArraySize() const {
340 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size")((!isMostDerivedAnUnsizedArray() && "Unsized array has no size"
) ? static_cast<void> (0) : __assert_fail ("!isMostDerivedAnUnsizedArray() && \"Unsized array has no size\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 340, __PRETTY_FUNCTION__))
;
341 return MostDerivedArraySize;
342 }
343
344 /// Determine whether this is a one-past-the-end pointer.
345 bool isOnePastTheEnd() const {
346 assert(!Invalid)((!Invalid) ? static_cast<void> (0) : __assert_fail ("!Invalid"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 346, __PRETTY_FUNCTION__))
;
347 if (IsOnePastTheEnd)
348 return true;
349 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
350 Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
351 MostDerivedArraySize)
352 return true;
353 return false;
354 }
355
356 /// Get the range of valid index adjustments in the form
357 /// {maximum value that can be subtracted from this pointer,
358 /// maximum value that can be added to this pointer}
359 std::pair<uint64_t, uint64_t> validIndexAdjustments() {
360 if (Invalid || isMostDerivedAnUnsizedArray())
361 return {0, 0};
362
363 // [expr.add]p4: For the purposes of these operators, a pointer to a
364 // nonarray object behaves the same as a pointer to the first element of
365 // an array of length one with the type of the object as its element type.
366 bool IsArray = MostDerivedPathLength == Entries.size() &&
367 MostDerivedIsArrayElement;
368 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
369 : (uint64_t)IsOnePastTheEnd;
370 uint64_t ArraySize =
371 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
372 return {ArrayIndex, ArraySize - ArrayIndex};
373 }
374
375 /// Check that this refers to a valid subobject.
376 bool isValidSubobject() const {
377 if (Invalid)
378 return false;
379 return !isOnePastTheEnd();
380 }
381 /// Check that this refers to a valid subobject, and if not, produce a
382 /// relevant diagnostic and set the designator as invalid.
383 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
384
385 /// Get the type of the designated object.
386 QualType getType(ASTContext &Ctx) const {
387 assert(!Invalid && "invalid designator has no subobject type")((!Invalid && "invalid designator has no subobject type"
) ? static_cast<void> (0) : __assert_fail ("!Invalid && \"invalid designator has no subobject type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 387, __PRETTY_FUNCTION__))
;
388 return MostDerivedPathLength == Entries.size()
389 ? MostDerivedType
390 : Ctx.getRecordType(getAsBaseClass(Entries.back()));
391 }
392
393 /// Update this designator to refer to the first element within this array.
394 void addArrayUnchecked(const ConstantArrayType *CAT) {
395 Entries.push_back(PathEntry::ArrayIndex(0));
396
397 // This is a most-derived object.
398 MostDerivedType = CAT->getElementType();
399 MostDerivedIsArrayElement = true;
400 MostDerivedArraySize = CAT->getSize().getZExtValue();
401 MostDerivedPathLength = Entries.size();
402 }
403 /// Update this designator to refer to the first element within the array of
404 /// elements of type T. This is an array of unknown size.
405 void addUnsizedArrayUnchecked(QualType ElemTy) {
406 Entries.push_back(PathEntry::ArrayIndex(0));
407
408 MostDerivedType = ElemTy;
409 MostDerivedIsArrayElement = true;
410 // The value in MostDerivedArraySize is undefined in this case. So, set it
411 // to an arbitrary value that's likely to loudly break things if it's
412 // used.
413 MostDerivedArraySize = AssumedSizeForUnsizedArray;
414 MostDerivedPathLength = Entries.size();
415 }
416 /// Update this designator to refer to the given base or member of this
417 /// object.
418 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
419 Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
420
421 // If this isn't a base class, it's a new most-derived object.
422 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
423 MostDerivedType = FD->getType();
424 MostDerivedIsArrayElement = false;
425 MostDerivedArraySize = 0;
426 MostDerivedPathLength = Entries.size();
427 }
428 }
429 /// Update this designator to refer to the given complex component.
430 void addComplexUnchecked(QualType EltTy, bool Imag) {
431 Entries.push_back(PathEntry::ArrayIndex(Imag));
432
433 // This is technically a most-derived object, though in practice this
434 // is unlikely to matter.
435 MostDerivedType = EltTy;
436 MostDerivedIsArrayElement = true;
437 MostDerivedArraySize = 2;
438 MostDerivedPathLength = Entries.size();
439 }
440 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
441 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
442 const APSInt &N);
443 /// Add N to the address of this subobject.
444 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
445 if (Invalid || !N) return;
446 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
447 if (isMostDerivedAnUnsizedArray()) {
448 diagnoseUnsizedArrayPointerArithmetic(Info, E);
449 // Can't verify -- trust that the user is doing the right thing (or if
450 // not, trust that the caller will catch the bad behavior).
451 // FIXME: Should we reject if this overflows, at least?
452 Entries.back() = PathEntry::ArrayIndex(
453 Entries.back().getAsArrayIndex() + TruncatedN);
454 return;
455 }
456
457 // [expr.add]p4: For the purposes of these operators, a pointer to a
458 // nonarray object behaves the same as a pointer to the first element of
459 // an array of length one with the type of the object as its element type.
460 bool IsArray = MostDerivedPathLength == Entries.size() &&
461 MostDerivedIsArrayElement;
462 uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
463 : (uint64_t)IsOnePastTheEnd;
464 uint64_t ArraySize =
465 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
466
467 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
468 // Calculate the actual index in a wide enough type, so we can include
469 // it in the note.
470 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
471 (llvm::APInt&)N += ArrayIndex;
472 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index")((N.ugt(ArraySize) && "bounds check failed for in-bounds index"
) ? static_cast<void> (0) : __assert_fail ("N.ugt(ArraySize) && \"bounds check failed for in-bounds index\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 472, __PRETTY_FUNCTION__))
;
473 diagnosePointerArithmetic(Info, E, N);
474 setInvalid();
475 return;
476 }
477
478 ArrayIndex += TruncatedN;
479 assert(ArrayIndex <= ArraySize &&((ArrayIndex <= ArraySize && "bounds check succeeded for out-of-bounds index"
) ? static_cast<void> (0) : __assert_fail ("ArrayIndex <= ArraySize && \"bounds check succeeded for out-of-bounds index\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 480, __PRETTY_FUNCTION__))
480 "bounds check succeeded for out-of-bounds index")((ArrayIndex <= ArraySize && "bounds check succeeded for out-of-bounds index"
) ? static_cast<void> (0) : __assert_fail ("ArrayIndex <= ArraySize && \"bounds check succeeded for out-of-bounds index\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 480, __PRETTY_FUNCTION__))
;
481
482 if (IsArray)
483 Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
484 else
485 IsOnePastTheEnd = (ArrayIndex != 0);
486 }
487 };
488
489 /// A stack frame in the constexpr call stack.
490 class CallStackFrame : public interp::Frame {
491 public:
492 EvalInfo &Info;
493
494 /// Parent - The caller of this stack frame.
495 CallStackFrame *Caller;
496
497 /// Callee - The function which was called.
498 const FunctionDecl *Callee;
499
500 /// This - The binding for the this pointer in this call, if any.
501 const LValue *This;
502
503 /// Arguments - Parameter bindings for this function call, indexed by
504 /// parameters' function scope indices.
505 APValue *Arguments;
506
507 /// Source location information about the default argument or default
508 /// initializer expression we're evaluating, if any.
509 CurrentSourceLocExprScope CurSourceLocExprScope;
510
511 // Note that we intentionally use std::map here so that references to
512 // values are stable.
513 typedef std::pair<const void *, unsigned> MapKeyTy;
514 typedef std::map<MapKeyTy, APValue> MapTy;
515 /// Temporaries - Temporary lvalues materialized within this stack frame.
516 MapTy Temporaries;
517
518 /// CallLoc - The location of the call expression for this call.
519 SourceLocation CallLoc;
520
521 /// Index - The call index of this call.
522 unsigned Index;
523
524 /// The stack of integers for tracking version numbers for temporaries.
525 SmallVector<unsigned, 2> TempVersionStack = {1};
526 unsigned CurTempVersion = TempVersionStack.back();
527
528 unsigned getTempVersion() const { return TempVersionStack.back(); }
529
530 void pushTempVersion() {
531 TempVersionStack.push_back(++CurTempVersion);
532 }
533
534 void popTempVersion() {
535 TempVersionStack.pop_back();
536 }
537
538 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
539 // on the overall stack usage of deeply-recursing constexpr evaluations.
540 // (We should cache this map rather than recomputing it repeatedly.)
541 // But let's try this and see how it goes; we can look into caching the map
542 // as a later change.
543
544 /// LambdaCaptureFields - Mapping from captured variables/this to
545 /// corresponding data members in the closure class.
546 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
547 FieldDecl *LambdaThisCaptureField;
548
549 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
550 const FunctionDecl *Callee, const LValue *This,
551 APValue *Arguments);
552 ~CallStackFrame();
553
554 // Return the temporary for Key whose version number is Version.
555 APValue *getTemporary(const void *Key, unsigned Version) {
556 MapKeyTy KV(Key, Version);
557 auto LB = Temporaries.lower_bound(KV);
558 if (LB != Temporaries.end() && LB->first == KV)
559 return &LB->second;
560 // Pair (Key,Version) wasn't found in the map. Check that no elements
561 // in the map have 'Key' as their key.
562 assert((LB == Temporaries.end() || LB->first.first != Key) &&(((LB == Temporaries.end() || LB->first.first != Key) &&
(LB == Temporaries.begin() || std::prev(LB)->first.first !=
Key) && "Element with key 'Key' found in map") ? static_cast
<void> (0) : __assert_fail ("(LB == Temporaries.end() || LB->first.first != Key) && (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && \"Element with key 'Key' found in map\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 564, __PRETTY_FUNCTION__))
563 (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&(((LB == Temporaries.end() || LB->first.first != Key) &&
(LB == Temporaries.begin() || std::prev(LB)->first.first !=
Key) && "Element with key 'Key' found in map") ? static_cast
<void> (0) : __assert_fail ("(LB == Temporaries.end() || LB->first.first != Key) && (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && \"Element with key 'Key' found in map\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 564, __PRETTY_FUNCTION__))
564 "Element with key 'Key' found in map")(((LB == Temporaries.end() || LB->first.first != Key) &&
(LB == Temporaries.begin() || std::prev(LB)->first.first !=
Key) && "Element with key 'Key' found in map") ? static_cast
<void> (0) : __assert_fail ("(LB == Temporaries.end() || LB->first.first != Key) && (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) && \"Element with key 'Key' found in map\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 564, __PRETTY_FUNCTION__))
;
565 return nullptr;
566 }
567
568 // Return the current temporary for Key in the map.
569 APValue *getCurrentTemporary(const void *Key) {
570 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX(2147483647 *2U +1U)));
571 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
572 return &std::prev(UB)->second;
573 return nullptr;
574 }
575
576 // Return the version number of the current temporary for Key.
577 unsigned getCurrentTemporaryVersion(const void *Key) const {
578 auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX(2147483647 *2U +1U)));
579 if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
580 return std::prev(UB)->first.second;
581 return 0;
582 }
583
584 /// Allocate storage for an object of type T in this stack frame.
585 /// Populates LV with a handle to the created object. Key identifies
586 /// the temporary within the stack frame, and must not be reused without
587 /// bumping the temporary version number.
588 template<typename KeyT>
589 APValue &createTemporary(const KeyT *Key, QualType T,
590 bool IsLifetimeExtended, LValue &LV);
591
592 void describe(llvm::raw_ostream &OS) override;
593
594 Frame *getCaller() const override { return Caller; }
595 SourceLocation getCallLocation() const override { return CallLoc; }
596 const FunctionDecl *getCallee() const override { return Callee; }
597
598 bool isStdFunction() const {
599 for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
600 if (DC->isStdNamespace())
601 return true;
602 return false;
603 }
604 };
605
606 /// Temporarily override 'this'.
607 class ThisOverrideRAII {
608 public:
609 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
610 : Frame(Frame), OldThis(Frame.This) {
611 if (Enable)
612 Frame.This = NewThis;
613 }
614 ~ThisOverrideRAII() {
615 Frame.This = OldThis;
616 }
617 private:
618 CallStackFrame &Frame;
619 const LValue *OldThis;
620 };
621}
622
623static bool HandleDestruction(EvalInfo &Info, const Expr *E,
624 const LValue &This, QualType ThisType);
625static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
626 APValue::LValueBase LVBase, APValue &Value,
627 QualType T);
628
629namespace {
630 /// A cleanup, and a flag indicating whether it is lifetime-extended.
631 class Cleanup {
632 llvm::PointerIntPair<APValue*, 1, bool> Value;
633 APValue::LValueBase Base;
634 QualType T;
635
636 public:
637 Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
638 bool IsLifetimeExtended)
639 : Value(Val, IsLifetimeExtended), Base(Base), T(T) {}
640
641 bool isLifetimeExtended() const { return Value.getInt(); }
642 bool endLifetime(EvalInfo &Info, bool RunDestructors) {
643 if (RunDestructors) {
644 SourceLocation Loc;
645 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
646 Loc = VD->getLocation();
647 else if (const Expr *E = Base.dyn_cast<const Expr*>())
648 Loc = E->getExprLoc();
649 return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
650 }
651 *Value.getPointer() = APValue();
652 return true;
653 }
654
655 bool hasSideEffect() {
656 return T.isDestructedType();
657 }
658 };
659
660 /// A reference to an object whose construction we are currently evaluating.
661 struct ObjectUnderConstruction {
662 APValue::LValueBase Base;
663 ArrayRef<APValue::LValuePathEntry> Path;
664 friend bool operator==(const ObjectUnderConstruction &LHS,
665 const ObjectUnderConstruction &RHS) {
666 return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
667 }
668 friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
669 return llvm::hash_combine(Obj.Base, Obj.Path);
670 }
671 };
672 enum class ConstructionPhase {
673 None,
674 Bases,
675 AfterBases,
676 Destroying,
677 DestroyingBases
678 };
679}
680
681namespace llvm {
682template<> struct DenseMapInfo<ObjectUnderConstruction> {
683 using Base = DenseMapInfo<APValue::LValueBase>;
684 static ObjectUnderConstruction getEmptyKey() {
685 return {Base::getEmptyKey(), {}}; }
686 static ObjectUnderConstruction getTombstoneKey() {
687 return {Base::getTombstoneKey(), {}};
688 }
689 static unsigned getHashValue(const ObjectUnderConstruction &Object) {
690 return hash_value(Object);
691 }
692 static bool isEqual(const ObjectUnderConstruction &LHS,
693 const ObjectUnderConstruction &RHS) {
694 return LHS == RHS;
695 }
696};
697}
698
699namespace {
700 /// A dynamically-allocated heap object.
701 struct DynAlloc {
702 /// The value of this heap-allocated object.
703 APValue Value;
704 /// The allocating expression; used for diagnostics. Either a CXXNewExpr
705 /// or a CallExpr (the latter is for direct calls to operator new inside
706 /// std::allocator<T>::allocate).
707 const Expr *AllocExpr = nullptr;
708
709 enum Kind {
710 New,
711 ArrayNew,
712 StdAllocator
713 };
714
715 /// Get the kind of the allocation. This must match between allocation
716 /// and deallocation.
717 Kind getKind() const {
718 if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
719 return NE->isArray() ? ArrayNew : New;
720 assert(isa<CallExpr>(AllocExpr))((isa<CallExpr>(AllocExpr)) ? static_cast<void> (
0) : __assert_fail ("isa<CallExpr>(AllocExpr)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 720, __PRETTY_FUNCTION__))
;
721 return StdAllocator;
722 }
723 };
724
725 struct DynAllocOrder {
726 bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
727 return L.getIndex() < R.getIndex();
728 }
729 };
730
731 /// EvalInfo - This is a private struct used by the evaluator to capture
732 /// information about a subexpression as it is folded. It retains information
733 /// about the AST context, but also maintains information about the folded
734 /// expression.
735 ///
736 /// If an expression could be evaluated, it is still possible it is not a C
737 /// "integer constant expression" or constant expression. If not, this struct
738 /// captures information about how and why not.
739 ///
740 /// One bit of information passed *into* the request for constant folding
741 /// indicates whether the subexpression is "evaluated" or not according to C
742 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
743 /// evaluate the expression regardless of what the RHS is, but C only allows
744 /// certain things in certain situations.
745 class EvalInfo : public interp::State {
746 public:
747 ASTContext &Ctx;
748
749 /// EvalStatus - Contains information about the evaluation.
750 Expr::EvalStatus &EvalStatus;
751
752 /// CurrentCall - The top of the constexpr call stack.
753 CallStackFrame *CurrentCall;
754
755 /// CallStackDepth - The number of calls in the call stack right now.
756 unsigned CallStackDepth;
757
758 /// NextCallIndex - The next call index to assign.
759 unsigned NextCallIndex;
760
761 /// StepsLeft - The remaining number of evaluation steps we're permitted
762 /// to perform. This is essentially a limit for the number of statements
763 /// we will evaluate.
764 unsigned StepsLeft;
765
766 /// Force the use of the experimental new constant interpreter, bailing out
767 /// with an error if a feature is not supported.
768 bool ForceNewConstInterp;
769
770 /// Enable the experimental new constant interpreter.
771 bool EnableNewConstInterp;
772
773 /// BottomFrame - The frame in which evaluation started. This must be
774 /// initialized after CurrentCall and CallStackDepth.
775 CallStackFrame BottomFrame;
776
777 /// A stack of values whose lifetimes end at the end of some surrounding
778 /// evaluation frame.
779 llvm::SmallVector<Cleanup, 16> CleanupStack;
780
781 /// EvaluatingDecl - This is the declaration whose initializer is being
782 /// evaluated, if any.
783 APValue::LValueBase EvaluatingDecl;
784
785 enum class EvaluatingDeclKind {
786 None,
787 /// We're evaluating the construction of EvaluatingDecl.
788 Ctor,
789 /// We're evaluating the destruction of EvaluatingDecl.
790 Dtor,
791 };
792 EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
793
794 /// EvaluatingDeclValue - This is the value being constructed for the
795 /// declaration whose initializer is being evaluated, if any.
796 APValue *EvaluatingDeclValue;
797
798 /// Set of objects that are currently being constructed.
799 llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
800 ObjectsUnderConstruction;
801
802 /// Current heap allocations, along with the location where each was
803 /// allocated. We use std::map here because we need stable addresses
804 /// for the stored APValues.
805 std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
806
807 /// The number of heap allocations performed so far in this evaluation.
808 unsigned NumHeapAllocs = 0;
809
810 struct EvaluatingConstructorRAII {
811 EvalInfo &EI;
812 ObjectUnderConstruction Object;
813 bool DidInsert;
814 EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
815 bool HasBases)
816 : EI(EI), Object(Object) {
817 DidInsert =
818 EI.ObjectsUnderConstruction
819 .insert({Object, HasBases ? ConstructionPhase::Bases
820 : ConstructionPhase::AfterBases})
821 .second;
822 }
823 void finishedConstructingBases() {
824 EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
825 }
826 ~EvaluatingConstructorRAII() {
827 if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
828 }
829 };
830
831 struct EvaluatingDestructorRAII {
832 EvalInfo &EI;
833 ObjectUnderConstruction Object;
834 bool DidInsert;
835 EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
836 : EI(EI), Object(Object) {
837 DidInsert = EI.ObjectsUnderConstruction
838 .insert({Object, ConstructionPhase::Destroying})
839 .second;
840 }
841 void startedDestroyingBases() {
842 EI.ObjectsUnderConstruction[Object] =
843 ConstructionPhase::DestroyingBases;
844 }
845 ~EvaluatingDestructorRAII() {
846 if (DidInsert)
847 EI.ObjectsUnderConstruction.erase(Object);
848 }
849 };
850
851 ConstructionPhase
852 isEvaluatingCtorDtor(APValue::LValueBase Base,
853 ArrayRef<APValue::LValuePathEntry> Path) {
854 return ObjectsUnderConstruction.lookup({Base, Path});
855 }
856
857 /// If we're currently speculatively evaluating, the outermost call stack
858 /// depth at which we can mutate state, otherwise 0.
859 unsigned SpeculativeEvaluationDepth = 0;
860
861 /// The current array initialization index, if we're performing array
862 /// initialization.
863 uint64_t ArrayInitIndex = -1;
864
865 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
866 /// notes attached to it will also be stored, otherwise they will not be.
867 bool HasActiveDiagnostic;
868
869 /// Have we emitted a diagnostic explaining why we couldn't constant
870 /// fold (not just why it's not strictly a constant expression)?
871 bool HasFoldFailureDiagnostic;
872
873 /// Whether or not we're in a context where the front end requires a
874 /// constant value.
875 bool InConstantContext;
876
877 /// Whether we're checking that an expression is a potential constant
878 /// expression. If so, do not fail on constructs that could become constant
879 /// later on (such as a use of an undefined global).
880 bool CheckingPotentialConstantExpression = false;
881
882 /// Whether we're checking for an expression that has undefined behavior.
883 /// If so, we will produce warnings if we encounter an operation that is
884 /// always undefined.
885 bool CheckingForUndefinedBehavior = false;
886
887 enum EvaluationMode {
888 /// Evaluate as a constant expression. Stop if we find that the expression
889 /// is not a constant expression.
890 EM_ConstantExpression,
891
892 /// Evaluate as a constant expression. Stop if we find that the expression
893 /// is not a constant expression. Some expressions can be retried in the
894 /// optimizer if we don't constant fold them here, but in an unevaluated
895 /// context we try to fold them immediately since the optimizer never
896 /// gets a chance to look at it.
897 EM_ConstantExpressionUnevaluated,
898
899 /// Fold the expression to a constant. Stop if we hit a side-effect that
900 /// we can't model.
901 EM_ConstantFold,
902
903 /// Evaluate in any way we know how. Don't worry about side-effects that
904 /// can't be modeled.
905 EM_IgnoreSideEffects,
906 } EvalMode;
907
908 /// Are we checking whether the expression is a potential constant
909 /// expression?
910 bool checkingPotentialConstantExpression() const override {
911 return CheckingPotentialConstantExpression;
912 }
913
914 /// Are we checking an expression for overflow?
915 // FIXME: We should check for any kind of undefined or suspicious behavior
916 // in such constructs, not just overflow.
917 bool checkingForUndefinedBehavior() const override {
918 return CheckingForUndefinedBehavior;
919 }
920
921 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
922 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
923 CallStackDepth(0), NextCallIndex(1),
924 StepsLeft(getLangOpts().ConstexprStepLimit),
925 ForceNewConstInterp(getLangOpts().ForceNewConstInterp),
926 EnableNewConstInterp(ForceNewConstInterp ||
927 getLangOpts().EnableNewConstInterp),
928 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
929 EvaluatingDecl((const ValueDecl *)nullptr),
930 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
931 HasFoldFailureDiagnostic(false), InConstantContext(false),
932 EvalMode(Mode) {}
933
934 ~EvalInfo() {
935 discardCleanups();
936 }
937
938 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
939 EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
940 EvaluatingDecl = Base;
941 IsEvaluatingDecl = EDK;
942 EvaluatingDeclValue = &Value;
943 }
944
945 bool CheckCallLimit(SourceLocation Loc) {
946 // Don't perform any constexpr calls (other than the call we're checking)
947 // when checking a potential constant expression.
948 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
37
Assuming the condition is false
949 return false;
950 if (NextCallIndex == 0) {
38
Assuming field 'NextCallIndex' is not equal to 0
39
Taking false branch
951 // NextCallIndex has wrapped around.
952 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
953 return false;
954 }
955 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
40
Assuming field 'CallStackDepth' is <= field 'ConstexprCallDepth'
41
Taking true branch
956 return true;
42
Returning the value 1, which participates in a condition later
957 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
958 << getLangOpts().ConstexprCallDepth;
959 return false;
960 }
961
962 std::pair<CallStackFrame *, unsigned>
963 getCallFrameAndDepth(unsigned CallIndex) {
964 assert(CallIndex && "no call index in getCallFrameAndDepth")((CallIndex && "no call index in getCallFrameAndDepth"
) ? static_cast<void> (0) : __assert_fail ("CallIndex && \"no call index in getCallFrameAndDepth\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 964, __PRETTY_FUNCTION__))
;
965 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
966 // be null in this loop.
967 unsigned Depth = CallStackDepth;
968 CallStackFrame *Frame = CurrentCall;
969 while (Frame->Index > CallIndex) {
970 Frame = Frame->Caller;
971 --Depth;
972 }
973 if (Frame->Index == CallIndex)
974 return {Frame, Depth};
975 return {nullptr, 0};
976 }
977
978 bool nextStep(const Stmt *S) {
979 if (!StepsLeft) {
980 FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
981 return false;
982 }
983 --StepsLeft;
984 return true;
985 }
986
987 APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
988
989 Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
990 Optional<DynAlloc*> Result;
991 auto It = HeapAllocs.find(DA);
992 if (It != HeapAllocs.end())
993 Result = &It->second;
994 return Result;
995 }
996
997 /// Information about a stack frame for std::allocator<T>::[de]allocate.
998 struct StdAllocatorCaller {
999 unsigned FrameIndex;
1000 QualType ElemType;
1001 explicit operator bool() const { return FrameIndex != 0; };
1002 };
1003
1004 StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1005 for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1006 Call = Call->Caller) {
1007 const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1008 if (!MD)
1009 continue;
1010 const IdentifierInfo *FnII = MD->getIdentifier();
1011 if (!FnII || !FnII->isStr(FnName))
1012 continue;
1013
1014 const auto *CTSD =
1015 dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1016 if (!CTSD)
1017 continue;
1018
1019 const IdentifierInfo *ClassII = CTSD->getIdentifier();
1020 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1021 if (CTSD->isInStdNamespace() && ClassII &&
1022 ClassII->isStr("allocator") && TAL.size() >= 1 &&
1023 TAL[0].getKind() == TemplateArgument::Type)
1024 return {Call->Index, TAL[0].getAsType()};
1025 }
1026
1027 return {};
1028 }
1029
1030 void performLifetimeExtension() {
1031 // Disable the cleanups for lifetime-extended temporaries.
1032 CleanupStack.erase(
1033 std::remove_if(CleanupStack.begin(), CleanupStack.end(),
1034 [](Cleanup &C) { return C.isLifetimeExtended(); }),
1035 CleanupStack.end());
1036 }
1037
1038 /// Throw away any remaining cleanups at the end of evaluation. If any
1039 /// cleanups would have had a side-effect, note that as an unmodeled
1040 /// side-effect and return false. Otherwise, return true.
1041 bool discardCleanups() {
1042 for (Cleanup &C : CleanupStack)
1043 if (C.hasSideEffect())
1044 if (!noteSideEffect())
1045 return false;
1046 return true;
1047 }
1048
1049 private:
1050 interp::Frame *getCurrentFrame() override { return CurrentCall; }
1051 const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1052
1053 bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
1054 void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1055
1056 void setFoldFailureDiagnostic(bool Flag) override {
1057 HasFoldFailureDiagnostic = Flag;
1058 }
1059
1060 Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1061
1062 ASTContext &getCtx() const override { return Ctx; }
1063
1064 // If we have a prior diagnostic, it will be noting that the expression
1065 // isn't a constant expression. This diagnostic is more important,
1066 // unless we require this evaluation to produce a constant expression.
1067 //
1068 // FIXME: We might want to show both diagnostics to the user in
1069 // EM_ConstantFold mode.
1070 bool hasPriorDiagnostic() override {
1071 if (!EvalStatus.Diag->empty()) {
1072 switch (EvalMode) {
1073 case EM_ConstantFold:
1074 case EM_IgnoreSideEffects:
1075 if (!HasFoldFailureDiagnostic)
1076 break;
1077 // We've already failed to fold something. Keep that diagnostic.
1078 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1079 case EM_ConstantExpression:
1080 case EM_ConstantExpressionUnevaluated:
1081 setActiveDiagnostic(false);
1082 return true;
1083 }
1084 }
1085 return false;
1086 }
1087
1088 unsigned getCallStackDepth() override { return CallStackDepth; }
1089
1090 public:
1091 /// Should we continue evaluation after encountering a side-effect that we
1092 /// couldn't model?
1093 bool keepEvaluatingAfterSideEffect() {
1094 switch (EvalMode) {
1095 case EM_IgnoreSideEffects:
1096 return true;
1097
1098 case EM_ConstantExpression:
1099 case EM_ConstantExpressionUnevaluated:
1100 case EM_ConstantFold:
1101 // By default, assume any side effect might be valid in some other
1102 // evaluation of this expression from a different context.
1103 return checkingPotentialConstantExpression() ||
1104 checkingForUndefinedBehavior();
1105 }
1106 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1106)
;
1107 }
1108
1109 /// Note that we have had a side-effect, and determine whether we should
1110 /// keep evaluating.
1111 bool noteSideEffect() {
1112 EvalStatus.HasSideEffects = true;
1113 return keepEvaluatingAfterSideEffect();
1114 }
1115
1116 /// Should we continue evaluation after encountering undefined behavior?
1117 bool keepEvaluatingAfterUndefinedBehavior() {
1118 switch (EvalMode) {
1119 case EM_IgnoreSideEffects:
1120 case EM_ConstantFold:
1121 return true;
1122
1123 case EM_ConstantExpression:
1124 case EM_ConstantExpressionUnevaluated:
1125 return checkingForUndefinedBehavior();
1126 }
1127 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1127)
;
1128 }
1129
1130 /// Note that we hit something that was technically undefined behavior, but
1131 /// that we can evaluate past it (such as signed overflow or floating-point
1132 /// division by zero.)
1133 bool noteUndefinedBehavior() override {
1134 EvalStatus.HasUndefinedBehavior = true;
1135 return keepEvaluatingAfterUndefinedBehavior();
1136 }
1137
1138 /// Should we continue evaluation as much as possible after encountering a
1139 /// construct which can't be reduced to a value?
1140 bool keepEvaluatingAfterFailure() const override {
1141 if (!StepsLeft)
1142 return false;
1143
1144 switch (EvalMode) {
1145 case EM_ConstantExpression:
1146 case EM_ConstantExpressionUnevaluated:
1147 case EM_ConstantFold:
1148 case EM_IgnoreSideEffects:
1149 return checkingPotentialConstantExpression() ||
1150 checkingForUndefinedBehavior();
1151 }
1152 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1152)
;
1153 }
1154
1155 /// Notes that we failed to evaluate an expression that other expressions
1156 /// directly depend on, and determine if we should keep evaluating. This
1157 /// should only be called if we actually intend to keep evaluating.
1158 ///
1159 /// Call noteSideEffect() instead if we may be able to ignore the value that
1160 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1161 ///
1162 /// (Foo(), 1) // use noteSideEffect
1163 /// (Foo() || true) // use noteSideEffect
1164 /// Foo() + 1 // use noteFailure
1165 LLVM_NODISCARD[[clang::warn_unused_result]] bool noteFailure() {
1166 // Failure when evaluating some expression often means there is some
1167 // subexpression whose evaluation was skipped. Therefore, (because we
1168 // don't track whether we skipped an expression when unwinding after an
1169 // evaluation failure) every evaluation failure that bubbles up from a
1170 // subexpression implies that a side-effect has potentially happened. We
1171 // skip setting the HasSideEffects flag to true until we decide to
1172 // continue evaluating after that point, which happens here.
1173 bool KeepGoing = keepEvaluatingAfterFailure();
1174 EvalStatus.HasSideEffects |= KeepGoing;
1175 return KeepGoing;
1176 }
1177
1178 class ArrayInitLoopIndex {
1179 EvalInfo &Info;
1180 uint64_t OuterIndex;
1181
1182 public:
1183 ArrayInitLoopIndex(EvalInfo &Info)
1184 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1185 Info.ArrayInitIndex = 0;
1186 }
1187 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1188
1189 operator uint64_t&() { return Info.ArrayInitIndex; }
1190 };
1191 };
1192
1193 /// Object used to treat all foldable expressions as constant expressions.
1194 struct FoldConstant {
1195 EvalInfo &Info;
1196 bool Enabled;
1197 bool HadNoPriorDiags;
1198 EvalInfo::EvaluationMode OldMode;
1199
1200 explicit FoldConstant(EvalInfo &Info, bool Enabled)
1201 : Info(Info),
1202 Enabled(Enabled),
1203 HadNoPriorDiags(Info.EvalStatus.Diag &&
1204 Info.EvalStatus.Diag->empty() &&
1205 !Info.EvalStatus.HasSideEffects),
1206 OldMode(Info.EvalMode) {
1207 if (Enabled)
1208 Info.EvalMode = EvalInfo::EM_ConstantFold;
1209 }
1210 void keepDiagnostics() { Enabled = false; }
1211 ~FoldConstant() {
1212 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1213 !Info.EvalStatus.HasSideEffects)
1214 Info.EvalStatus.Diag->clear();
1215 Info.EvalMode = OldMode;
1216 }
1217 };
1218
1219 /// RAII object used to set the current evaluation mode to ignore
1220 /// side-effects.
1221 struct IgnoreSideEffectsRAII {
1222 EvalInfo &Info;
1223 EvalInfo::EvaluationMode OldMode;
1224 explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1225 : Info(Info), OldMode(Info.EvalMode) {
1226 Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1227 }
1228
1229 ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1230 };
1231
1232 /// RAII object used to optionally suppress diagnostics and side-effects from
1233 /// a speculative evaluation.
1234 class SpeculativeEvaluationRAII {
1235 EvalInfo *Info = nullptr;
1236 Expr::EvalStatus OldStatus;
1237 unsigned OldSpeculativeEvaluationDepth;
1238
1239 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1240 Info = Other.Info;
1241 OldStatus = Other.OldStatus;
1242 OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1243 Other.Info = nullptr;
1244 }
1245
1246 void maybeRestoreState() {
1247 if (!Info)
1248 return;
1249
1250 Info->EvalStatus = OldStatus;
1251 Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1252 }
1253
1254 public:
1255 SpeculativeEvaluationRAII() = default;
1256
1257 SpeculativeEvaluationRAII(
1258 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1259 : Info(&Info), OldStatus(Info.EvalStatus),
1260 OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1261 Info.EvalStatus.Diag = NewDiag;
1262 Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1263 }
1264
1265 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1266 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1267 moveFromAndCancel(std::move(Other));
1268 }
1269
1270 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1271 maybeRestoreState();
1272 moveFromAndCancel(std::move(Other));
1273 return *this;
1274 }
1275
1276 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1277 };
1278
1279 /// RAII object wrapping a full-expression or block scope, and handling
1280 /// the ending of the lifetime of temporaries created within it.
1281 template<bool IsFullExpression>
1282 class ScopeRAII {
1283 EvalInfo &Info;
1284 unsigned OldStackSize;
1285 public:
1286 ScopeRAII(EvalInfo &Info)
1287 : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1288 // Push a new temporary version. This is needed to distinguish between
1289 // temporaries created in different iterations of a loop.
1290 Info.CurrentCall->pushTempVersion();
1291 }
1292 bool destroy(bool RunDestructors = true) {
1293 bool OK = cleanup(Info, RunDestructors, OldStackSize);
1294 OldStackSize = -1U;
1295 return OK;
1296 }
1297 ~ScopeRAII() {
1298 if (OldStackSize != -1U)
1299 destroy(false);
1300 // Body moved to a static method to encourage the compiler to inline away
1301 // instances of this class.
1302 Info.CurrentCall->popTempVersion();
1303 }
1304 private:
1305 static bool cleanup(EvalInfo &Info, bool RunDestructors,
1306 unsigned OldStackSize) {
1307 assert(OldStackSize <= Info.CleanupStack.size() &&((OldStackSize <= Info.CleanupStack.size() && "running cleanups out of order?"
) ? static_cast<void> (0) : __assert_fail ("OldStackSize <= Info.CleanupStack.size() && \"running cleanups out of order?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1308, __PRETTY_FUNCTION__))
1308 "running cleanups out of order?")((OldStackSize <= Info.CleanupStack.size() && "running cleanups out of order?"
) ? static_cast<void> (0) : __assert_fail ("OldStackSize <= Info.CleanupStack.size() && \"running cleanups out of order?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1308, __PRETTY_FUNCTION__))
;
1309
1310 // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1311 // for a full-expression scope.
1312 bool Success = true;
1313 for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1314 if (!(IsFullExpression &&
1315 Info.CleanupStack[I - 1].isLifetimeExtended())) {
1316 if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1317 Success = false;
1318 break;
1319 }
1320 }
1321 }
1322
1323 // Compact lifetime-extended cleanups.
1324 auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1325 if (IsFullExpression)
1326 NewEnd =
1327 std::remove_if(NewEnd, Info.CleanupStack.end(),
1328 [](Cleanup &C) { return !C.isLifetimeExtended(); });
1329 Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1330 return Success;
1331 }
1332 };
1333 typedef ScopeRAII<false> BlockScopeRAII;
1334 typedef ScopeRAII<true> FullExpressionRAII;
1335}
1336
1337bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1338 CheckSubobjectKind CSK) {
1339 if (Invalid)
1340 return false;
1341 if (isOnePastTheEnd()) {
1342 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1343 << CSK;
1344 setInvalid();
1345 return false;
1346 }
1347 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1348 // must actually be at least one array element; even a VLA cannot have a
1349 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1350 return true;
1351}
1352
1353void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1354 const Expr *E) {
1355 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1356 // Do not set the designator as invalid: we can represent this situation,
1357 // and correct handling of __builtin_object_size requires us to do so.
1358}
1359
1360void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1361 const Expr *E,
1362 const APSInt &N) {
1363 // If we're complaining, we must be able to statically determine the size of
1364 // the most derived array.
1365 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1366 Info.CCEDiag(E, diag::note_constexpr_array_index)
1367 << N << /*array*/ 0
1368 << static_cast<unsigned>(getMostDerivedArraySize());
1369 else
1370 Info.CCEDiag(E, diag::note_constexpr_array_index)
1371 << N << /*non-array*/ 1;
1372 setInvalid();
1373}
1374
1375CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1376 const FunctionDecl *Callee, const LValue *This,
1377 APValue *Arguments)
1378 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1379 Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1380 Info.CurrentCall = this;
1381 ++Info.CallStackDepth;
1382}
1383
1384CallStackFrame::~CallStackFrame() {
1385 assert(Info.CurrentCall == this && "calls retired out of order")((Info.CurrentCall == this && "calls retired out of order"
) ? static_cast<void> (0) : __assert_fail ("Info.CurrentCall == this && \"calls retired out of order\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1385, __PRETTY_FUNCTION__))
;
1386 --Info.CallStackDepth;
1387 Info.CurrentCall = Caller;
1388}
1389
1390static bool isRead(AccessKinds AK) {
1391 return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1392}
1393
1394static bool isModification(AccessKinds AK) {
1395 switch (AK) {
1396 case AK_Read:
1397 case AK_ReadObjectRepresentation:
1398 case AK_MemberCall:
1399 case AK_DynamicCast:
1400 case AK_TypeId:
1401 return false;
1402 case AK_Assign:
1403 case AK_Increment:
1404 case AK_Decrement:
1405 case AK_Construct:
1406 case AK_Destroy:
1407 return true;
1408 }
1409 llvm_unreachable("unknown access kind")::llvm::llvm_unreachable_internal("unknown access kind", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1409)
;
1410}
1411
1412static bool isAnyAccess(AccessKinds AK) {
1413 return isRead(AK) || isModification(AK);
1414}
1415
1416/// Is this an access per the C++ definition?
1417static bool isFormalAccess(AccessKinds AK) {
1418 return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1419}
1420
1421namespace {
1422 struct ComplexValue {
1423 private:
1424 bool IsInt;
1425
1426 public:
1427 APSInt IntReal, IntImag;
1428 APFloat FloatReal, FloatImag;
1429
1430 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1431
1432 void makeComplexFloat() { IsInt = false; }
1433 bool isComplexFloat() const { return !IsInt; }
1434 APFloat &getComplexFloatReal() { return FloatReal; }
1435 APFloat &getComplexFloatImag() { return FloatImag; }
1436
1437 void makeComplexInt() { IsInt = true; }
1438 bool isComplexInt() const { return IsInt; }
1439 APSInt &getComplexIntReal() { return IntReal; }
1440 APSInt &getComplexIntImag() { return IntImag; }
1441
1442 void moveInto(APValue &v) const {
1443 if (isComplexFloat())
1444 v = APValue(FloatReal, FloatImag);
1445 else
1446 v = APValue(IntReal, IntImag);
1447 }
1448 void setFrom(const APValue &v) {
1449 assert(v.isComplexFloat() || v.isComplexInt())((v.isComplexFloat() || v.isComplexInt()) ? static_cast<void
> (0) : __assert_fail ("v.isComplexFloat() || v.isComplexInt()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1449, __PRETTY_FUNCTION__))
;
1450 if (v.isComplexFloat()) {
1451 makeComplexFloat();
1452 FloatReal = v.getComplexFloatReal();
1453 FloatImag = v.getComplexFloatImag();
1454 } else {
1455 makeComplexInt();
1456 IntReal = v.getComplexIntReal();
1457 IntImag = v.getComplexIntImag();
1458 }
1459 }
1460 };
1461
1462 struct LValue {
1463 APValue::LValueBase Base;
1464 CharUnits Offset;
1465 SubobjectDesignator Designator;
1466 bool IsNullPtr : 1;
1467 bool InvalidBase : 1;
1468
1469 const APValue::LValueBase getLValueBase() const { return Base; }
1470 CharUnits &getLValueOffset() { return Offset; }
1471 const CharUnits &getLValueOffset() const { return Offset; }
1472 SubobjectDesignator &getLValueDesignator() { return Designator; }
1473 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1474 bool isNullPointer() const { return IsNullPtr;}
1475
1476 unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
1477 unsigned getLValueVersion() const { return Base.getVersion(); }
1478
1479 void moveInto(APValue &V) const {
1480 if (Designator.Invalid)
1481 V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1482 else {
1483 assert(!InvalidBase && "APValues can't handle invalid LValue bases")((!InvalidBase && "APValues can't handle invalid LValue bases"
) ? static_cast<void> (0) : __assert_fail ("!InvalidBase && \"APValues can't handle invalid LValue bases\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1483, __PRETTY_FUNCTION__))
;
1484 V = APValue(Base, Offset, Designator.Entries,
1485 Designator.IsOnePastTheEnd, IsNullPtr);
1486 }
1487 }
1488 void setFrom(ASTContext &Ctx, const APValue &V) {
1489 assert(V.isLValue() && "Setting LValue from a non-LValue?")((V.isLValue() && "Setting LValue from a non-LValue?"
) ? static_cast<void> (0) : __assert_fail ("V.isLValue() && \"Setting LValue from a non-LValue?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1489, __PRETTY_FUNCTION__))
;
1490 Base = V.getLValueBase();
1491 Offset = V.getLValueOffset();
1492 InvalidBase = false;
1493 Designator = SubobjectDesignator(Ctx, V);
1494 IsNullPtr = V.isNullPointer();
1495 }
1496
1497 void set(APValue::LValueBase B, bool BInvalid = false) {
1498#ifndef NDEBUG
1499 // We only allow a few types of invalid bases. Enforce that here.
1500 if (BInvalid) {
1501 const auto *E = B.get<const Expr *>();
1502 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&(((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
"Unexpected type of invalid base") ? static_cast<void>
(0) : __assert_fail ("(isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && \"Unexpected type of invalid base\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1503, __PRETTY_FUNCTION__))
1503 "Unexpected type of invalid base")(((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
"Unexpected type of invalid base") ? static_cast<void>
(0) : __assert_fail ("(isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && \"Unexpected type of invalid base\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1503, __PRETTY_FUNCTION__))
;
1504 }
1505#endif
1506
1507 Base = B;
1508 Offset = CharUnits::fromQuantity(0);
1509 InvalidBase = BInvalid;
1510 Designator = SubobjectDesignator(getType(B));
1511 IsNullPtr = false;
1512 }
1513
1514 void setNull(ASTContext &Ctx, QualType PointerTy) {
1515 Base = (Expr *)nullptr;
1516 Offset =
1517 CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1518 InvalidBase = false;
1519 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1520 IsNullPtr = true;
1521 }
1522
1523 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1524 set(B, true);
1525 }
1526
1527 std::string toString(ASTContext &Ctx, QualType T) const {
1528 APValue Printable;
1529 moveInto(Printable);
1530 return Printable.getAsString(Ctx, T);
1531 }
1532
1533 private:
1534 // Check that this LValue is not based on a null pointer. If it is, produce
1535 // a diagnostic and mark the designator as invalid.
1536 template <typename GenDiagType>
1537 bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1538 if (Designator.Invalid)
1539 return false;
1540 if (IsNullPtr) {
1541 GenDiag();
1542 Designator.setInvalid();
1543 return false;
1544 }
1545 return true;
1546 }
1547
1548 public:
1549 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1550 CheckSubobjectKind CSK) {
1551 return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1552 Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1553 });
1554 }
1555
1556 bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1557 AccessKinds AK) {
1558 return checkNullPointerDiagnosingWith([&Info, E, AK] {
1559 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1560 });
1561 }
1562
1563 // Check this LValue refers to an object. If not, set the designator to be
1564 // invalid and emit a diagnostic.
1565 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1566 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1567 Designator.checkSubobject(Info, E, CSK);
1568 }
1569
1570 void addDecl(EvalInfo &Info, const Expr *E,
1571 const Decl *D, bool Virtual = false) {
1572 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1573 Designator.addDeclUnchecked(D, Virtual);
1574 }
1575 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1576 if (!Designator.Entries.empty()) {
1577 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1578 Designator.setInvalid();
1579 return;
1580 }
1581 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1582 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType())((getType(Base)->isPointerType() || getType(Base)->isArrayType
()) ? static_cast<void> (0) : __assert_fail ("getType(Base)->isPointerType() || getType(Base)->isArrayType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1582, __PRETTY_FUNCTION__))
;
1583 Designator.FirstEntryIsAnUnsizedArray = true;
1584 Designator.addUnsizedArrayUnchecked(ElemTy);
1585 }
1586 }
1587 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1588 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1589 Designator.addArrayUnchecked(CAT);
1590 }
1591 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1592 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1593 Designator.addComplexUnchecked(EltTy, Imag);
1594 }
1595 void clearIsNullPointer() {
1596 IsNullPtr = false;
1597 }
1598 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1599 const APSInt &Index, CharUnits ElementSize) {
1600 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1601 // but we're not required to diagnose it and it's valid in C++.)
1602 if (!Index)
1603 return;
1604
1605 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1606 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1607 // offsets.
1608 uint64_t Offset64 = Offset.getQuantity();
1609 uint64_t ElemSize64 = ElementSize.getQuantity();
1610 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1611 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1612
1613 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1614 Designator.adjustIndex(Info, E, Index);
1615 clearIsNullPointer();
1616 }
1617 void adjustOffset(CharUnits N) {
1618 Offset += N;
1619 if (N.getQuantity())
1620 clearIsNullPointer();
1621 }
1622 };
1623
1624 struct MemberPtr {
1625 MemberPtr() {}
1626 explicit MemberPtr(const ValueDecl *Decl) :
1627 DeclAndIsDerivedMember(Decl, false), Path() {}
1628
1629 /// The member or (direct or indirect) field referred to by this member
1630 /// pointer, or 0 if this is a null member pointer.
1631 const ValueDecl *getDecl() const {
1632 return DeclAndIsDerivedMember.getPointer();
1633 }
1634 /// Is this actually a member of some type derived from the relevant class?
1635 bool isDerivedMember() const {
1636 return DeclAndIsDerivedMember.getInt();
1637 }
1638 /// Get the class which the declaration actually lives in.
1639 const CXXRecordDecl *getContainingRecord() const {
1640 return cast<CXXRecordDecl>(
1641 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1642 }
1643
1644 void moveInto(APValue &V) const {
1645 V = APValue(getDecl(), isDerivedMember(), Path);
1646 }
1647 void setFrom(const APValue &V) {
1648 assert(V.isMemberPointer())((V.isMemberPointer()) ? static_cast<void> (0) : __assert_fail
("V.isMemberPointer()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1648, __PRETTY_FUNCTION__))
;
1649 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1650 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1651 Path.clear();
1652 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1653 Path.insert(Path.end(), P.begin(), P.end());
1654 }
1655
1656 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1657 /// whether the member is a member of some class derived from the class type
1658 /// of the member pointer.
1659 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1660 /// Path - The path of base/derived classes from the member declaration's
1661 /// class (exclusive) to the class type of the member pointer (inclusive).
1662 SmallVector<const CXXRecordDecl*, 4> Path;
1663
1664 /// Perform a cast towards the class of the Decl (either up or down the
1665 /// hierarchy).
1666 bool castBack(const CXXRecordDecl *Class) {
1667 assert(!Path.empty())((!Path.empty()) ? static_cast<void> (0) : __assert_fail
("!Path.empty()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1667, __PRETTY_FUNCTION__))
;
1668 const CXXRecordDecl *Expected;
1669 if (Path.size() >= 2)
1670 Expected = Path[Path.size() - 2];
1671 else
1672 Expected = getContainingRecord();
1673 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1674 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1675 // if B does not contain the original member and is not a base or
1676 // derived class of the class containing the original member, the result
1677 // of the cast is undefined.
1678 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1679 // (D::*). We consider that to be a language defect.
1680 return false;
1681 }
1682 Path.pop_back();
1683 return true;
1684 }
1685 /// Perform a base-to-derived member pointer cast.
1686 bool castToDerived(const CXXRecordDecl *Derived) {
1687 if (!getDecl())
1688 return true;
1689 if (!isDerivedMember()) {
1690 Path.push_back(Derived);
1691 return true;
1692 }
1693 if (!castBack(Derived))
1694 return false;
1695 if (Path.empty())
1696 DeclAndIsDerivedMember.setInt(false);
1697 return true;
1698 }
1699 /// Perform a derived-to-base member pointer cast.
1700 bool castToBase(const CXXRecordDecl *Base) {
1701 if (!getDecl())
1702 return true;
1703 if (Path.empty())
1704 DeclAndIsDerivedMember.setInt(true);
1705 if (isDerivedMember()) {
1706 Path.push_back(Base);
1707 return true;
1708 }
1709 return castBack(Base);
1710 }
1711 };
1712
1713 /// Compare two member pointers, which are assumed to be of the same type.
1714 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1715 if (!LHS.getDecl() || !RHS.getDecl())
1716 return !LHS.getDecl() && !RHS.getDecl();
1717 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1718 return false;
1719 return LHS.Path == RHS.Path;
1720 }
1721}
1722
1723static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1724static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1725 const LValue &This, const Expr *E,
1726 bool AllowNonLiteralTypes = false);
1727static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1728 bool InvalidBaseOK = false);
1729static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1730 bool InvalidBaseOK = false);
1731static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1732 EvalInfo &Info);
1733static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1734static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1735static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1736 EvalInfo &Info);
1737static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1738static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1739static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1740 EvalInfo &Info);
1741static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1742
1743/// Evaluate an integer or fixed point expression into an APResult.
1744static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1745 EvalInfo &Info);
1746
1747/// Evaluate only a fixed point expression into an APResult.
1748static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1749 EvalInfo &Info);
1750
1751//===----------------------------------------------------------------------===//
1752// Misc utilities
1753//===----------------------------------------------------------------------===//
1754
1755/// Negate an APSInt in place, converting it to a signed form if necessary, and
1756/// preserving its value (by extending by up to one bit as needed).
1757static void negateAsSigned(APSInt &Int) {
1758 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1759 Int = Int.extend(Int.getBitWidth() + 1);
1760 Int.setIsSigned(true);
1761 }
1762 Int = -Int;
1763}
1764
1765template<typename KeyT>
1766APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1767 bool IsLifetimeExtended, LValue &LV) {
1768 unsigned Version = getTempVersion();
1769 APValue::LValueBase Base(Key, Index, Version);
1770 LV.set(Base);
1771 APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1772 assert(Result.isAbsent() && "temporary created multiple times")((Result.isAbsent() && "temporary created multiple times"
) ? static_cast<void> (0) : __assert_fail ("Result.isAbsent() && \"temporary created multiple times\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1772, __PRETTY_FUNCTION__))
;
1773
1774 // If we're creating a temporary immediately in the operand of a speculative
1775 // evaluation, don't register a cleanup to be run outside the speculative
1776 // evaluation context, since we won't actually be able to initialize this
1777 // object.
1778 if (Index <= Info.SpeculativeEvaluationDepth) {
1779 if (T.isDestructedType())
1780 Info.noteSideEffect();
1781 } else {
1782 Info.CleanupStack.push_back(Cleanup(&Result, Base, T, IsLifetimeExtended));
1783 }
1784 return Result;
1785}
1786
1787APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1788 if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1789 FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1790 return nullptr;
1791 }
1792
1793 DynamicAllocLValue DA(NumHeapAllocs++);
1794 LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1795 auto Result = HeapAllocs.emplace(std::piecewise_construct,
1796 std::forward_as_tuple(DA), std::tuple<>());
1797 assert(Result.second && "reused a heap alloc index?")((Result.second && "reused a heap alloc index?") ? static_cast
<void> (0) : __assert_fail ("Result.second && \"reused a heap alloc index?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1797, __PRETTY_FUNCTION__))
;
1798 Result.first->second.AllocExpr = E;
1799 return &Result.first->second.Value;
1800}
1801
1802/// Produce a string describing the given constexpr call.
1803void CallStackFrame::describe(raw_ostream &Out) {
1804 unsigned ArgIndex = 0;
1805 bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1806 !isa<CXXConstructorDecl>(Callee) &&
1807 cast<CXXMethodDecl>(Callee)->isInstance();
1808
1809 if (!IsMemberCall)
1810 Out << *Callee << '(';
1811
1812 if (This && IsMemberCall) {
1813 APValue Val;
1814 This->moveInto(Val);
1815 Val.printPretty(Out, Info.Ctx,
1816 This->Designator.MostDerivedType);
1817 // FIXME: Add parens around Val if needed.
1818 Out << "->" << *Callee << '(';
1819 IsMemberCall = false;
1820 }
1821
1822 for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1823 E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1824 if (ArgIndex > (unsigned)IsMemberCall)
1825 Out << ", ";
1826
1827 const ParmVarDecl *Param = *I;
1828 const APValue &Arg = Arguments[ArgIndex];
1829 Arg.printPretty(Out, Info.Ctx, Param->getType());
1830
1831 if (ArgIndex == 0 && IsMemberCall)
1832 Out << "->" << *Callee << '(';
1833 }
1834
1835 Out << ')';
1836}
1837
1838/// Evaluate an expression to see if it had side-effects, and discard its
1839/// result.
1840/// \return \c true if the caller should keep evaluating.
1841static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1842 APValue Scratch;
1843 if (!Evaluate(Scratch, Info, E))
1844 // We don't need the value, but we might have skipped a side effect here.
1845 return Info.noteSideEffect();
1846 return true;
1847}
1848
1849/// Should this call expression be treated as a string literal?
1850static bool IsStringLiteralCall(const CallExpr *E) {
1851 unsigned Builtin = E->getBuiltinCallee();
1852 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1853 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1854}
1855
1856static bool IsGlobalLValue(APValue::LValueBase B) {
1857 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1858 // constant expression of pointer type that evaluates to...
1859
1860 // ... a null pointer value, or a prvalue core constant expression of type
1861 // std::nullptr_t.
1862 if (!B) return true;
1863
1864 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1865 // ... the address of an object with static storage duration,
1866 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1867 return VD->hasGlobalStorage();
1868 // ... the address of a function,
1869 return isa<FunctionDecl>(D);
1870 }
1871
1872 if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1873 return true;
1874
1875 const Expr *E = B.get<const Expr*>();
1876 switch (E->getStmtClass()) {
1877 default:
1878 return false;
1879 case Expr::CompoundLiteralExprClass: {
1880 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1881 return CLE->isFileScope() && CLE->isLValue();
1882 }
1883 case Expr::MaterializeTemporaryExprClass:
1884 // A materialized temporary might have been lifetime-extended to static
1885 // storage duration.
1886 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1887 // A string literal has static storage duration.
1888 case Expr::StringLiteralClass:
1889 case Expr::PredefinedExprClass:
1890 case Expr::ObjCStringLiteralClass:
1891 case Expr::ObjCEncodeExprClass:
1892 case Expr::CXXUuidofExprClass:
1893 return true;
1894 case Expr::ObjCBoxedExprClass:
1895 return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
1896 case Expr::CallExprClass:
1897 return IsStringLiteralCall(cast<CallExpr>(E));
1898 // For GCC compatibility, &&label has static storage duration.
1899 case Expr::AddrLabelExprClass:
1900 return true;
1901 // A Block literal expression may be used as the initialization value for
1902 // Block variables at global or local static scope.
1903 case Expr::BlockExprClass:
1904 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1905 case Expr::ImplicitValueInitExprClass:
1906 // FIXME:
1907 // We can never form an lvalue with an implicit value initialization as its
1908 // base through expression evaluation, so these only appear in one case: the
1909 // implicit variable declaration we invent when checking whether a constexpr
1910 // constructor can produce a constant expression. We must assume that such
1911 // an expression might be a global lvalue.
1912 return true;
1913 }
1914}
1915
1916static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1917 return LVal.Base.dyn_cast<const ValueDecl*>();
1918}
1919
1920static bool IsLiteralLValue(const LValue &Value) {
1921 if (Value.getLValueCallIndex())
1922 return false;
1923 const Expr *E = Value.Base.dyn_cast<const Expr*>();
1924 return E && !isa<MaterializeTemporaryExpr>(E);
1925}
1926
1927static bool IsWeakLValue(const LValue &Value) {
1928 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1929 return Decl && Decl->isWeak();
1930}
1931
1932static bool isZeroSized(const LValue &Value) {
1933 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1934 if (Decl && isa<VarDecl>(Decl)) {
1935 QualType Ty = Decl->getType();
1936 if (Ty->isArrayType())
1937 return Ty->isIncompleteType() ||
1938 Decl->getASTContext().getTypeSize(Ty) == 0;
1939 }
1940 return false;
1941}
1942
1943static bool HasSameBase(const LValue &A, const LValue &B) {
1944 if (!A.getLValueBase())
1945 return !B.getLValueBase();
1946 if (!B.getLValueBase())
1947 return false;
1948
1949 if (A.getLValueBase().getOpaqueValue() !=
1950 B.getLValueBase().getOpaqueValue()) {
1951 const Decl *ADecl = GetLValueBaseDecl(A);
1952 if (!ADecl)
1953 return false;
1954 const Decl *BDecl = GetLValueBaseDecl(B);
1955 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
1956 return false;
1957 }
1958
1959 return IsGlobalLValue(A.getLValueBase()) ||
1960 (A.getLValueCallIndex() == B.getLValueCallIndex() &&
1961 A.getLValueVersion() == B.getLValueVersion());
1962}
1963
1964static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1965 assert(Base && "no location for a null lvalue")((Base && "no location for a null lvalue") ? static_cast
<void> (0) : __assert_fail ("Base && \"no location for a null lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 1965, __PRETTY_FUNCTION__))
;
1966 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1967 if (VD)
1968 Info.Note(VD->getLocation(), diag::note_declared_at);
1969 else if (const Expr *E = Base.dyn_cast<const Expr*>())
1970 Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
1971 else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
1972 // FIXME: Produce a note for dangling pointers too.
1973 if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
1974 Info.Note((*Alloc)->AllocExpr->getExprLoc(),
1975 diag::note_constexpr_dynamic_alloc_here);
1976 }
1977 // We have no information to show for a typeid(T) object.
1978}
1979
1980enum class CheckEvaluationResultKind {
1981 ConstantExpression,
1982 FullyInitialized,
1983};
1984
1985/// Materialized temporaries that we've already checked to determine if they're
1986/// initializsed by a constant expression.
1987using CheckedTemporaries =
1988 llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
1989
1990static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
1991 EvalInfo &Info, SourceLocation DiagLoc,
1992 QualType Type, const APValue &Value,
1993 Expr::ConstExprUsage Usage,
1994 SourceLocation SubobjectLoc,
1995 CheckedTemporaries &CheckedTemps);
1996
1997/// Check that this reference or pointer core constant expression is a valid
1998/// value for an address or reference constant expression. Return true if we
1999/// can fold this expression, whether or not it's a constant expression.
2000static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2001 QualType Type, const LValue &LVal,
2002 Expr::ConstExprUsage Usage,
2003 CheckedTemporaries &CheckedTemps) {
2004 bool IsReferenceType = Type->isReferenceType();
2005
2006 APValue::LValueBase Base = LVal.getLValueBase();
2007 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2008
2009 // Check that the object is a global. Note that the fake 'this' object we
2010 // manufacture when checking potential constant expressions is conservatively
2011 // assumed to be global here.
2012 if (!IsGlobalLValue(Base)) {
2013 if (Info.getLangOpts().CPlusPlus11) {
2014 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2015 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2016 << IsReferenceType << !Designator.Entries.empty()
2017 << !!VD << VD;
2018 NoteLValueLocation(Info, Base);
2019 } else {
2020 Info.FFDiag(Loc);
2021 }
2022 // Don't allow references to temporaries to escape.
2023 return false;
2024 }
2025 assert((Info.checkingPotentialConstantExpression() ||(((Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex
() == 0) && "have call index for global lvalue") ? static_cast
<void> (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2027, __PRETTY_FUNCTION__))
2026 LVal.getLValueCallIndex() == 0) &&(((Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex
() == 0) && "have call index for global lvalue") ? static_cast
<void> (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2027, __PRETTY_FUNCTION__))
2027 "have call index for global lvalue")(((Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex
() == 0) && "have call index for global lvalue") ? static_cast
<void> (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2027, __PRETTY_FUNCTION__))
;
2028
2029 if (Base.is<DynamicAllocLValue>()) {
2030 Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2031 << IsReferenceType << !Designator.Entries.empty();
2032 NoteLValueLocation(Info, Base);
2033 return false;
2034 }
2035
2036 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
2037 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
2038 // Check if this is a thread-local variable.
2039 if (Var->getTLSKind())
2040 // FIXME: Diagnostic!
2041 return false;
2042
2043 // A dllimport variable never acts like a constant.
2044 if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
2045 // FIXME: Diagnostic!
2046 return false;
2047 }
2048 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
2049 // __declspec(dllimport) must be handled very carefully:
2050 // We must never initialize an expression with the thunk in C++.
2051 // Doing otherwise would allow the same id-expression to yield
2052 // different addresses for the same function in different translation
2053 // units. However, this means that we must dynamically initialize the
2054 // expression with the contents of the import address table at runtime.
2055 //
2056 // The C language has no notion of ODR; furthermore, it has no notion of
2057 // dynamic initialization. This means that we are permitted to
2058 // perform initialization with the address of the thunk.
2059 if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
2060 FD->hasAttr<DLLImportAttr>())
2061 // FIXME: Diagnostic!
2062 return false;
2063 }
2064 } else if (const auto *MTE = dyn_cast_or_null<MaterializeTemporaryExpr>(
2065 Base.dyn_cast<const Expr *>())) {
2066 if (CheckedTemps.insert(MTE).second) {
2067 QualType TempType = getType(Base);
2068 if (TempType.isDestructedType()) {
2069 Info.FFDiag(MTE->getExprLoc(),
2070 diag::note_constexpr_unsupported_tempoarary_nontrivial_dtor)
2071 << TempType;
2072 return false;
2073 }
2074
2075 APValue *V = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2076 assert(V && "evasluation result refers to uninitialised temporary")((V && "evasluation result refers to uninitialised temporary"
) ? static_cast<void> (0) : __assert_fail ("V && \"evasluation result refers to uninitialised temporary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2076, __PRETTY_FUNCTION__))
;
2077 if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2078 Info, MTE->getExprLoc(), TempType, *V,
2079 Usage, SourceLocation(), CheckedTemps))
2080 return false;
2081 }
2082 }
2083
2084 // Allow address constant expressions to be past-the-end pointers. This is
2085 // an extension: the standard requires them to point to an object.
2086 if (!IsReferenceType)
2087 return true;
2088
2089 // A reference constant expression must refer to an object.
2090 if (!Base) {
2091 // FIXME: diagnostic
2092 Info.CCEDiag(Loc);
2093 return true;
2094 }
2095
2096 // Does this refer one past the end of some object?
2097 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2098 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2099 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2100 << !Designator.Entries.empty() << !!VD << VD;
2101 NoteLValueLocation(Info, Base);
2102 }
2103
2104 return true;
2105}
2106
2107/// Member pointers are constant expressions unless they point to a
2108/// non-virtual dllimport member function.
2109static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2110 SourceLocation Loc,
2111 QualType Type,
2112 const APValue &Value,
2113 Expr::ConstExprUsage Usage) {
2114 const ValueDecl *Member = Value.getMemberPointerDecl();
2115 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2116 if (!FD)
2117 return true;
2118 return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
2119 !FD->hasAttr<DLLImportAttr>();
2120}
2121
2122/// Check that this core constant expression is of literal type, and if not,
2123/// produce an appropriate diagnostic.
2124static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2125 const LValue *This = nullptr) {
2126 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2127 return true;
2128
2129 // C++1y: A constant initializer for an object o [...] may also invoke
2130 // constexpr constructors for o and its subobjects even if those objects
2131 // are of non-literal class types.
2132 //
2133 // C++11 missed this detail for aggregates, so classes like this:
2134 // struct foo_t { union { int i; volatile int j; } u; };
2135 // are not (obviously) initializable like so:
2136 // __attribute__((__require_constant_initialization__))
2137 // static const foo_t x = {{0}};
2138 // because "i" is a subobject with non-literal initialization (due to the
2139 // volatile member of the union). See:
2140 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2141 // Therefore, we use the C++1y behavior.
2142 if (This && Info.EvaluatingDecl == This->getLValueBase())
2143 return true;
2144
2145 // Prvalue constant expressions must be of literal types.
2146 if (Info.getLangOpts().CPlusPlus11)
2147 Info.FFDiag(E, diag::note_constexpr_nonliteral)
2148 << E->getType();
2149 else
2150 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2151 return false;
2152}
2153
2154static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2155 EvalInfo &Info, SourceLocation DiagLoc,
2156 QualType Type, const APValue &Value,
2157 Expr::ConstExprUsage Usage,
2158 SourceLocation SubobjectLoc,
2159 CheckedTemporaries &CheckedTemps) {
2160 if (!Value.hasValue()) {
2161 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2162 << true << Type;
2163 if (SubobjectLoc.isValid())
2164 Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2165 return false;
2166 }
2167
2168 // We allow _Atomic(T) to be initialized from anything that T can be
2169 // initialized from.
2170 if (const AtomicType *AT = Type->getAs<AtomicType>())
2171 Type = AT->getValueType();
2172
2173 // Core issue 1454: For a literal constant expression of array or class type,
2174 // each subobject of its value shall have been initialized by a constant
2175 // expression.
2176 if (Value.isArray()) {
2177 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2178 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2179 if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2180 Value.getArrayInitializedElt(I), Usage,
2181 SubobjectLoc, CheckedTemps))
2182 return false;
2183 }
2184 if (!Value.hasArrayFiller())
2185 return true;
2186 return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2187 Value.getArrayFiller(), Usage, SubobjectLoc,
2188 CheckedTemps);
2189 }
2190 if (Value.isUnion() && Value.getUnionField()) {
2191 return CheckEvaluationResult(
2192 CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2193 Value.getUnionValue(), Usage, Value.getUnionField()->getLocation(),
2194 CheckedTemps);
2195 }
2196 if (Value.isStruct()) {
2197 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2198 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2199 unsigned BaseIndex = 0;
2200 for (const CXXBaseSpecifier &BS : CD->bases()) {
2201 if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2202 Value.getStructBase(BaseIndex), Usage,
2203 BS.getBeginLoc(), CheckedTemps))
2204 return false;
2205 ++BaseIndex;
2206 }
2207 }
2208 for (const auto *I : RD->fields()) {
2209 if (I->isUnnamedBitfield())
2210 continue;
2211
2212 if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2213 Value.getStructField(I->getFieldIndex()),
2214 Usage, I->getLocation(), CheckedTemps))
2215 return false;
2216 }
2217 }
2218
2219 if (Value.isLValue() &&
2220 CERK == CheckEvaluationResultKind::ConstantExpression) {
2221 LValue LVal;
2222 LVal.setFrom(Info.Ctx, Value);
2223 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage,
2224 CheckedTemps);
2225 }
2226
2227 if (Value.isMemberPointer() &&
2228 CERK == CheckEvaluationResultKind::ConstantExpression)
2229 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
2230
2231 // Everything else is fine.
2232 return true;
2233}
2234
2235/// Check that this core constant expression value is a valid value for a
2236/// constant expression. If not, report an appropriate diagnostic. Does not
2237/// check that the expression is of literal type.
2238static bool
2239CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
2240 const APValue &Value,
2241 Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
2242 CheckedTemporaries CheckedTemps;
2243 return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2244 Info, DiagLoc, Type, Value, Usage,
2245 SourceLocation(), CheckedTemps);
2246}
2247
2248/// Check that this evaluated value is fully-initialized and can be loaded by
2249/// an lvalue-to-rvalue conversion.
2250static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2251 QualType Type, const APValue &Value) {
2252 CheckedTemporaries CheckedTemps;
2253 return CheckEvaluationResult(
2254 CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2255 Expr::EvaluateForCodeGen, SourceLocation(), CheckedTemps);
2256}
2257
2258/// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2259/// "the allocated storage is deallocated within the evaluation".
2260static bool CheckMemoryLeaks(EvalInfo &Info) {
2261 if (!Info.HeapAllocs.empty()) {
2262 // We can still fold to a constant despite a compile-time memory leak,
2263 // so long as the heap allocation isn't referenced in the result (we check
2264 // that in CheckConstantExpression).
2265 Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2266 diag::note_constexpr_memory_leak)
2267 << unsigned(Info.HeapAllocs.size() - 1);
2268 }
2269 return true;
2270}
2271
2272static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2273 // A null base expression indicates a null pointer. These are always
2274 // evaluatable, and they are false unless the offset is zero.
2275 if (!Value.getLValueBase()) {
2276 Result = !Value.getLValueOffset().isZero();
2277 return true;
2278 }
2279
2280 // We have a non-null base. These are generally known to be true, but if it's
2281 // a weak declaration it can be null at runtime.
2282 Result = true;
2283 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2284 return !Decl || !Decl->isWeak();
2285}
2286
2287static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2288 switch (Val.getKind()) {
2289 case APValue::None:
2290 case APValue::Indeterminate:
2291 return false;
2292 case APValue::Int:
2293 Result = Val.getInt().getBoolValue();
2294 return true;
2295 case APValue::FixedPoint:
2296 Result = Val.getFixedPoint().getBoolValue();
2297 return true;
2298 case APValue::Float:
2299 Result = !Val.getFloat().isZero();
2300 return true;
2301 case APValue::ComplexInt:
2302 Result = Val.getComplexIntReal().getBoolValue() ||
2303 Val.getComplexIntImag().getBoolValue();
2304 return true;
2305 case APValue::ComplexFloat:
2306 Result = !Val.getComplexFloatReal().isZero() ||
2307 !Val.getComplexFloatImag().isZero();
2308 return true;
2309 case APValue::LValue:
2310 return EvalPointerValueAsBool(Val, Result);
2311 case APValue::MemberPointer:
2312 Result = Val.getMemberPointerDecl();
2313 return true;
2314 case APValue::Vector:
2315 case APValue::Array:
2316 case APValue::Struct:
2317 case APValue::Union:
2318 case APValue::AddrLabelDiff:
2319 return false;
2320 }
2321
2322 llvm_unreachable("unknown APValue kind")::llvm::llvm_unreachable_internal("unknown APValue kind", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2322)
;
2323}
2324
2325static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2326 EvalInfo &Info) {
2327 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition")((E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"
) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && \"missing lvalue-to-rvalue conv in bool condition\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2327, __PRETTY_FUNCTION__))
;
2328 APValue Val;
2329 if (!Evaluate(Val, Info, E))
2330 return false;
2331 return HandleConversionToBool(Val, Result);
2332}
2333
2334template<typename T>
2335static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2336 const T &SrcValue, QualType DestType) {
2337 Info.CCEDiag(E, diag::note_constexpr_overflow)
2338 << SrcValue << DestType;
2339 return Info.noteUndefinedBehavior();
2340}
2341
2342static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2343 QualType SrcType, const APFloat &Value,
2344 QualType DestType, APSInt &Result) {
2345 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2346 // Determine whether we are converting to unsigned or signed.
2347 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2348
2349 Result = APSInt(DestWidth, !DestSigned);
2350 bool ignored;
2351 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2352 & APFloat::opInvalidOp)
2353 return HandleOverflow(Info, E, Value, DestType);
2354 return true;
2355}
2356
2357static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2358 QualType SrcType, QualType DestType,
2359 APFloat &Result) {
2360 APFloat Value = Result;
2361 bool ignored;
2362 Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
2363 APFloat::rmNearestTiesToEven, &ignored);
2364 return true;
2365}
2366
2367static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2368 QualType DestType, QualType SrcType,
2369 const APSInt &Value) {
2370 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2371 // Figure out if this is a truncate, extend or noop cast.
2372 // If the input is signed, do a sign extend, noop, or truncate.
2373 APSInt Result = Value.extOrTrunc(DestWidth);
2374 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2375 if (DestType->isBooleanType())
2376 Result = Value.getBoolValue();
2377 return Result;
2378}
2379
2380static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2381 QualType SrcType, const APSInt &Value,
2382 QualType DestType, APFloat &Result) {
2383 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2384 Result.convertFromAPInt(Value, Value.isSigned(),
2385 APFloat::rmNearestTiesToEven);
2386 return true;
2387}
2388
2389static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2390 APValue &Value, const FieldDecl *FD) {
2391 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield")((FD->isBitField() && "truncateBitfieldValue on non-bitfield"
) ? static_cast<void> (0) : __assert_fail ("FD->isBitField() && \"truncateBitfieldValue on non-bitfield\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2391, __PRETTY_FUNCTION__))
;
2392
2393 if (!Value.isInt()) {
2394 // Trying to store a pointer-cast-to-integer into a bitfield.
2395 // FIXME: In this case, we should provide the diagnostic for casting
2396 // a pointer to an integer.
2397 assert(Value.isLValue() && "integral value neither int nor lvalue?")((Value.isLValue() && "integral value neither int nor lvalue?"
) ? static_cast<void> (0) : __assert_fail ("Value.isLValue() && \"integral value neither int nor lvalue?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2397, __PRETTY_FUNCTION__))
;
2398 Info.FFDiag(E);
2399 return false;
2400 }
2401
2402 APSInt &Int = Value.getInt();
2403 unsigned OldBitWidth = Int.getBitWidth();
2404 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2405 if (NewBitWidth < OldBitWidth)
2406 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2407 return true;
2408}
2409
2410static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2411 llvm::APInt &Res) {
2412 APValue SVal;
2413 if (!Evaluate(SVal, Info, E))
2414 return false;
2415 if (SVal.isInt()) {
2416 Res = SVal.getInt();
2417 return true;
2418 }
2419 if (SVal.isFloat()) {
2420 Res = SVal.getFloat().bitcastToAPInt();
2421 return true;
2422 }
2423 if (SVal.isVector()) {
2424 QualType VecTy = E->getType();
2425 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2426 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2427 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2428 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2429 Res = llvm::APInt::getNullValue(VecSize);
2430 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2431 APValue &Elt = SVal.getVectorElt(i);
2432 llvm::APInt EltAsInt;
2433 if (Elt.isInt()) {
2434 EltAsInt = Elt.getInt();
2435 } else if (Elt.isFloat()) {
2436 EltAsInt = Elt.getFloat().bitcastToAPInt();
2437 } else {
2438 // Don't try to handle vectors of anything other than int or float
2439 // (not sure if it's possible to hit this case).
2440 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2441 return false;
2442 }
2443 unsigned BaseEltSize = EltAsInt.getBitWidth();
2444 if (BigEndian)
2445 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2446 else
2447 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2448 }
2449 return true;
2450 }
2451 // Give up if the input isn't an int, float, or vector. For example, we
2452 // reject "(v4i16)(intptr_t)&a".
2453 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2454 return false;
2455}
2456
2457/// Perform the given integer operation, which is known to need at most BitWidth
2458/// bits, and check for overflow in the original type (if that type was not an
2459/// unsigned type).
2460template<typename Operation>
2461static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2462 const APSInt &LHS, const APSInt &RHS,
2463 unsigned BitWidth, Operation Op,
2464 APSInt &Result) {
2465 if (LHS.isUnsigned()) {
2466 Result = Op(LHS, RHS);
2467 return true;
2468 }
2469
2470 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2471 Result = Value.trunc(LHS.getBitWidth());
2472 if (Result.extend(BitWidth) != Value) {
2473 if (Info.checkingForUndefinedBehavior())
2474 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2475 diag::warn_integer_constant_overflow)
2476 << Result.toString(10) << E->getType();
2477 else
2478 return HandleOverflow(Info, E, Value, E->getType());
2479 }
2480 return true;
2481}
2482
2483/// Perform the given binary integer operation.
2484static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2485 BinaryOperatorKind Opcode, APSInt RHS,
2486 APSInt &Result) {
2487 switch (Opcode) {
2488 default:
2489 Info.FFDiag(E);
2490 return false;
2491 case BO_Mul:
2492 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2493 std::multiplies<APSInt>(), Result);
2494 case BO_Add:
2495 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2496 std::plus<APSInt>(), Result);
2497 case BO_Sub:
2498 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2499 std::minus<APSInt>(), Result);
2500 case BO_And: Result = LHS & RHS; return true;
2501 case BO_Xor: Result = LHS ^ RHS; return true;
2502 case BO_Or: Result = LHS | RHS; return true;
2503 case BO_Div:
2504 case BO_Rem:
2505 if (RHS == 0) {
2506 Info.FFDiag(E, diag::note_expr_divide_by_zero);
2507 return false;
2508 }
2509 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2510 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2511 // this operation and gives the two's complement result.
2512 if (RHS.isNegative() && RHS.isAllOnesValue() &&
2513 LHS.isSigned() && LHS.isMinSignedValue())
2514 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2515 E->getType());
2516 return true;
2517 case BO_Shl: {
2518 if (Info.getLangOpts().OpenCL)
2519 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2520 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2521 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2522 RHS.isUnsigned());
2523 else if (RHS.isSigned() && RHS.isNegative()) {
2524 // During constant-folding, a negative shift is an opposite shift. Such
2525 // a shift is not a constant expression.
2526 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2527 RHS = -RHS;
2528 goto shift_right;
2529 }
2530 shift_left:
2531 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2532 // the shifted type.
2533 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2534 if (SA != RHS) {
2535 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2536 << RHS << E->getType() << LHS.getBitWidth();
2537 } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) {
2538 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2539 // operand, and must not overflow the corresponding unsigned type.
2540 // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2541 // E1 x 2^E2 module 2^N.
2542 if (LHS.isNegative())
2543 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2544 else if (LHS.countLeadingZeros() < SA)
2545 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2546 }
2547 Result = LHS << SA;
2548 return true;
2549 }
2550 case BO_Shr: {
2551 if (Info.getLangOpts().OpenCL)
2552 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2553 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2554 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2555 RHS.isUnsigned());
2556 else if (RHS.isSigned() && RHS.isNegative()) {
2557 // During constant-folding, a negative shift is an opposite shift. Such a
2558 // shift is not a constant expression.
2559 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2560 RHS = -RHS;
2561 goto shift_left;
2562 }
2563 shift_right:
2564 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2565 // shifted type.
2566 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2567 if (SA != RHS)
2568 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2569 << RHS << E->getType() << LHS.getBitWidth();
2570 Result = LHS >> SA;
2571 return true;
2572 }
2573
2574 case BO_LT: Result = LHS < RHS; return true;
2575 case BO_GT: Result = LHS > RHS; return true;
2576 case BO_LE: Result = LHS <= RHS; return true;
2577 case BO_GE: Result = LHS >= RHS; return true;
2578 case BO_EQ: Result = LHS == RHS; return true;
2579 case BO_NE: Result = LHS != RHS; return true;
2580 case BO_Cmp:
2581 llvm_unreachable("BO_Cmp should be handled elsewhere")::llvm::llvm_unreachable_internal("BO_Cmp should be handled elsewhere"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2581)
;
2582 }
2583}
2584
2585/// Perform the given binary floating-point operation, in-place, on LHS.
2586static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
2587 APFloat &LHS, BinaryOperatorKind Opcode,
2588 const APFloat &RHS) {
2589 switch (Opcode) {
2590 default:
2591 Info.FFDiag(E);
2592 return false;
2593 case BO_Mul:
2594 LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
2595 break;
2596 case BO_Add:
2597 LHS.add(RHS, APFloat::rmNearestTiesToEven);
2598 break;
2599 case BO_Sub:
2600 LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
2601 break;
2602 case BO_Div:
2603 // [expr.mul]p4:
2604 // If the second operand of / or % is zero the behavior is undefined.
2605 if (RHS.isZero())
2606 Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2607 LHS.divide(RHS, APFloat::rmNearestTiesToEven);
2608 break;
2609 }
2610
2611 // [expr.pre]p4:
2612 // If during the evaluation of an expression, the result is not
2613 // mathematically defined [...], the behavior is undefined.
2614 // FIXME: C++ rules require us to not conform to IEEE 754 here.
2615 if (LHS.isNaN()) {
2616 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2617 return Info.noteUndefinedBehavior();
2618 }
2619 return true;
2620}
2621
2622/// Cast an lvalue referring to a base subobject to a derived class, by
2623/// truncating the lvalue's path to the given length.
2624static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
2625 const RecordDecl *TruncatedType,
2626 unsigned TruncatedElements) {
2627 SubobjectDesignator &D = Result.Designator;
2628
2629 // Check we actually point to a derived class object.
2630 if (TruncatedElements == D.Entries.size())
2631 return true;
2632 assert(TruncatedElements >= D.MostDerivedPathLength &&((TruncatedElements >= D.MostDerivedPathLength && "not casting to a derived class"
) ? static_cast<void> (0) : __assert_fail ("TruncatedElements >= D.MostDerivedPathLength && \"not casting to a derived class\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2633, __PRETTY_FUNCTION__))
2633 "not casting to a derived class")((TruncatedElements >= D.MostDerivedPathLength && "not casting to a derived class"
) ? static_cast<void> (0) : __assert_fail ("TruncatedElements >= D.MostDerivedPathLength && \"not casting to a derived class\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2633, __PRETTY_FUNCTION__))
;
2634 if (!Result.checkSubobject(Info, E, CSK_Derived))
2635 return false;
2636
2637 // Truncate the path to the subobject, and remove any derived-to-base offsets.
2638 const RecordDecl *RD = TruncatedType;
2639 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
2640 if (RD->isInvalidDecl()) return false;
2641 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2642 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
2643 if (isVirtualBaseClass(D.Entries[I]))
2644 Result.Offset -= Layout.getVBaseClassOffset(Base);
2645 else
2646 Result.Offset -= Layout.getBaseClassOffset(Base);
2647 RD = Base;
2648 }
2649 D.Entries.resize(TruncatedElements);
2650 return true;
2651}
2652
2653static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2654 const CXXRecordDecl *Derived,
2655 const CXXRecordDecl *Base,
2656 const ASTRecordLayout *RL = nullptr) {
2657 if (!RL) {
2658 if (Derived->isInvalidDecl()) return false;
2659 RL = &Info.Ctx.getASTRecordLayout(Derived);
2660 }
2661
2662 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
2663 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
2664 return true;
2665}
2666
2667static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2668 const CXXRecordDecl *DerivedDecl,
2669 const CXXBaseSpecifier *Base) {
2670 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
2671
2672 if (!Base->isVirtual())
2673 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
2674
2675 SubobjectDesignator &D = Obj.Designator;
2676 if (D.Invalid)
2677 return false;
2678
2679 // Extract most-derived object and corresponding type.
2680 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
2681 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
2682 return false;
2683
2684 // Find the virtual base class.
2685 if (DerivedDecl->isInvalidDecl()) return false;
2686 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
2687 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
2688 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
2689 return true;
2690}
2691
2692static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
2693 QualType Type, LValue &Result) {
2694 for (CastExpr::path_const_iterator PathI = E->path_begin(),
2695 PathE = E->path_end();
2696 PathI != PathE; ++PathI) {
2697 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2698 *PathI))
2699 return false;
2700 Type = (*PathI)->getType();
2701 }
2702 return true;
2703}
2704
2705/// Cast an lvalue referring to a derived class to a known base subobject.
2706static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
2707 const CXXRecordDecl *DerivedRD,
2708 const CXXRecordDecl *BaseRD) {
2709 CXXBasePaths Paths(/*FindAmbiguities=*/false,
2710 /*RecordPaths=*/true, /*DetectVirtual=*/false);
2711 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
2712 llvm_unreachable("Class must be derived from the passed in base class!")::llvm::llvm_unreachable_internal("Class must be derived from the passed in base class!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2712)
;
2713
2714 for (CXXBasePathElement &Elem : Paths.front())
2715 if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
2716 return false;
2717 return true;
2718}
2719
2720/// Update LVal to refer to the given field, which must be a member of the type
2721/// currently described by LVal.
2722static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2723 const FieldDecl *FD,
2724 const ASTRecordLayout *RL = nullptr) {
2725 if (!RL) {
2726 if (FD->getParent()->isInvalidDecl()) return false;
2727 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2728 }
2729
2730 unsigned I = FD->getFieldIndex();
2731 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
2732 LVal.addDecl(Info, E, FD);
2733 return true;
2734}
2735
2736/// Update LVal to refer to the given indirect field.
2737static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2738 LValue &LVal,
2739 const IndirectFieldDecl *IFD) {
2740 for (const auto *C : IFD->chain())
2741 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2742 return false;
2743 return true;
2744}
2745
2746/// Get the size of the given type in char units.
2747static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2748 QualType Type, CharUnits &Size) {
2749 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2750 // extension.
2751 if (Type->isVoidType() || Type->isFunctionType()) {
2752 Size = CharUnits::One();
2753 return true;
2754 }
2755
2756 if (Type->isDependentType()) {
2757 Info.FFDiag(Loc);
2758 return false;
2759 }
2760
2761 if (!Type->isConstantSizeType()) {
2762 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2763 // FIXME: Better diagnostic.
2764 Info.FFDiag(Loc);
2765 return false;
2766 }
2767
2768 Size = Info.Ctx.getTypeSizeInChars(Type);
2769 return true;
2770}
2771
2772/// Update a pointer value to model pointer arithmetic.
2773/// \param Info - Information about the ongoing evaluation.
2774/// \param E - The expression being evaluated, for diagnostic purposes.
2775/// \param LVal - The pointer value to be updated.
2776/// \param EltTy - The pointee type represented by LVal.
2777/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
2778static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2779 LValue &LVal, QualType EltTy,
2780 APSInt Adjustment) {
2781 CharUnits SizeOfPointee;
2782 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2783 return false;
2784
2785 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
2786 return true;
2787}
2788
2789static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2790 LValue &LVal, QualType EltTy,
2791 int64_t Adjustment) {
2792 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
2793 APSInt::get(Adjustment));
2794}
2795
2796/// Update an lvalue to refer to a component of a complex number.
2797/// \param Info - Information about the ongoing evaluation.
2798/// \param LVal - The lvalue to be updated.
2799/// \param EltTy - The complex number's component type.
2800/// \param Imag - False for the real component, true for the imaginary.
2801static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2802 LValue &LVal, QualType EltTy,
2803 bool Imag) {
2804 if (Imag) {
2805 CharUnits SizeOfComponent;
2806 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2807 return false;
2808 LVal.Offset += SizeOfComponent;
2809 }
2810 LVal.addComplex(Info, E, EltTy, Imag);
2811 return true;
2812}
2813
2814/// Try to evaluate the initializer for a variable declaration.
2815///
2816/// \param Info Information about the ongoing evaluation.
2817/// \param E An expression to be used when printing diagnostics.
2818/// \param VD The variable whose initializer should be obtained.
2819/// \param Frame The frame in which the variable was created. Must be null
2820/// if this variable is not local to the evaluation.
2821/// \param Result Filled in with a pointer to the value of the variable.
2822static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2823 const VarDecl *VD, CallStackFrame *Frame,
2824 APValue *&Result, const LValue *LVal) {
2825
2826 // If this is a parameter to an active constexpr function call, perform
2827 // argument substitution.
2828 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2829 // Assume arguments of a potential constant expression are unknown
2830 // constant expressions.
2831 if (Info.checkingPotentialConstantExpression())
2832 return false;
2833 if (!Frame || !Frame->Arguments) {
2834 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2835 return false;
2836 }
2837 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2838 return true;
2839 }
2840
2841 // If this is a local variable, dig out its value.
2842 if (Frame) {
2843 Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
2844 : Frame->getCurrentTemporary(VD);
2845 if (!Result) {
2846 // Assume variables referenced within a lambda's call operator that were
2847 // not declared within the call operator are captures and during checking
2848 // of a potential constant expression, assume they are unknown constant
2849 // expressions.
2850 assert(isLambdaCallOperator(Frame->Callee) &&((isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext
() != Frame->Callee || VD->isInitCapture()) && "missing value for local variable"
) ? static_cast<void> (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2852, __PRETTY_FUNCTION__))
2851 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&((isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext
() != Frame->Callee || VD->isInitCapture()) && "missing value for local variable"
) ? static_cast<void> (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2852, __PRETTY_FUNCTION__))
2852 "missing value for local variable")((isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext
() != Frame->Callee || VD->isInitCapture()) && "missing value for local variable"
) ? static_cast<void> (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2852, __PRETTY_FUNCTION__))
;
2853 if (Info.checkingPotentialConstantExpression())
2854 return false;
2855 // FIXME: implement capture evaluation during constant expr evaluation.
2856 Info.FFDiag(E->getBeginLoc(),
2857 diag::note_unimplemented_constexpr_lambda_feature_ast)
2858 << "captures not currently allowed";
2859 return false;
2860 }
2861 return true;
2862 }
2863
2864 // Dig out the initializer, and use the declaration which it's attached to.
2865 const Expr *Init = VD->getAnyInitializer(VD);
2866 if (!Init || Init->isValueDependent()) {
2867 // If we're checking a potential constant expression, the variable could be
2868 // initialized later.
2869 if (!Info.checkingPotentialConstantExpression())
2870 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2871 return false;
2872 }
2873
2874 // If we're currently evaluating the initializer of this declaration, use that
2875 // in-flight value.
2876 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2877 Result = Info.EvaluatingDeclValue;
2878 return true;
2879 }
2880
2881 // Never evaluate the initializer of a weak variable. We can't be sure that
2882 // this is the definition which will be used.
2883 if (VD->isWeak()) {
2884 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2885 return false;
2886 }
2887
2888 // Check that we can fold the initializer. In C++, we will have already done
2889 // this in the cases where it matters for conformance.
2890 SmallVector<PartialDiagnosticAt, 8> Notes;
2891 if (!VD->evaluateValue(Notes)) {
2892 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2893 Notes.size() + 1) << VD;
2894 Info.Note(VD->getLocation(), diag::note_declared_at);
2895 Info.addNotes(Notes);
2896 return false;
2897 } else if (!VD->checkInitIsICE()) {
2898 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2899 Notes.size() + 1) << VD;
2900 Info.Note(VD->getLocation(), diag::note_declared_at);
2901 Info.addNotes(Notes);
2902 }
2903
2904 Result = VD->getEvaluatedValue();
2905 return true;
2906}
2907
2908static bool IsConstNonVolatile(QualType T) {
2909 Qualifiers Quals = T.getQualifiers();
2910 return Quals.hasConst() && !Quals.hasVolatile();
2911}
2912
2913/// Get the base index of the given base class within an APValue representing
2914/// the given derived class.
2915static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2916 const CXXRecordDecl *Base) {
2917 Base = Base->getCanonicalDecl();
2918 unsigned Index = 0;
2919 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2920 E = Derived->bases_end(); I != E; ++I, ++Index) {
2921 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2922 return Index;
2923 }
2924
2925 llvm_unreachable("base class missing from derived class's bases list")::llvm::llvm_unreachable_internal("base class missing from derived class's bases list"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2925)
;
2926}
2927
2928/// Extract the value of a character from a string literal.
2929static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2930 uint64_t Index) {
2931 assert(!isa<SourceLocExpr>(Lit) &&((!isa<SourceLocExpr>(Lit) && "SourceLocExpr should have already been converted to a StringLiteral"
) ? static_cast<void> (0) : __assert_fail ("!isa<SourceLocExpr>(Lit) && \"SourceLocExpr should have already been converted to a StringLiteral\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2932, __PRETTY_FUNCTION__))
2932 "SourceLocExpr should have already been converted to a StringLiteral")((!isa<SourceLocExpr>(Lit) && "SourceLocExpr should have already been converted to a StringLiteral"
) ? static_cast<void> (0) : __assert_fail ("!isa<SourceLocExpr>(Lit) && \"SourceLocExpr should have already been converted to a StringLiteral\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2932, __PRETTY_FUNCTION__))
;
2933
2934 // FIXME: Support MakeStringConstant
2935 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
2936 std::string Str;
2937 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
2938 assert(Index <= Str.size() && "Index too large")((Index <= Str.size() && "Index too large") ? static_cast
<void> (0) : __assert_fail ("Index <= Str.size() && \"Index too large\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2938, __PRETTY_FUNCTION__))
;
2939 return APSInt::getUnsigned(Str.c_str()[Index]);
2940 }
2941
2942 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2943 Lit = PE->getFunctionName();
2944 const StringLiteral *S = cast<StringLiteral>(Lit);
2945 const ConstantArrayType *CAT =
2946 Info.Ctx.getAsConstantArrayType(S->getType());
2947 assert(CAT && "string literal isn't an array")((CAT && "string literal isn't an array") ? static_cast
<void> (0) : __assert_fail ("CAT && \"string literal isn't an array\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2947, __PRETTY_FUNCTION__))
;
2948 QualType CharType = CAT->getElementType();
2949 assert(CharType->isIntegerType() && "unexpected character type")((CharType->isIntegerType() && "unexpected character type"
) ? static_cast<void> (0) : __assert_fail ("CharType->isIntegerType() && \"unexpected character type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2949, __PRETTY_FUNCTION__))
;
2950
2951 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2952 CharType->isUnsignedIntegerType());
2953 if (Index < S->getLength())
2954 Value = S->getCodeUnit(Index);
2955 return Value;
2956}
2957
2958// Expand a string literal into an array of characters.
2959//
2960// FIXME: This is inefficient; we should probably introduce something similar
2961// to the LLVM ConstantDataArray to make this cheaper.
2962static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
2963 APValue &Result,
2964 QualType AllocType = QualType()) {
2965 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
2966 AllocType.isNull() ? S->getType() : AllocType);
2967 assert(CAT && "string literal isn't an array")((CAT && "string literal isn't an array") ? static_cast
<void> (0) : __assert_fail ("CAT && \"string literal isn't an array\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2967, __PRETTY_FUNCTION__))
;
2968 QualType CharType = CAT->getElementType();
2969 assert(CharType->isIntegerType() && "unexpected character type")((CharType->isIntegerType() && "unexpected character type"
) ? static_cast<void> (0) : __assert_fail ("CharType->isIntegerType() && \"unexpected character type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2969, __PRETTY_FUNCTION__))
;
2970
2971 unsigned Elts = CAT->getSize().getZExtValue();
2972 Result = APValue(APValue::UninitArray(),
2973 std::min(S->getLength(), Elts), Elts);
2974 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2975 CharType->isUnsignedIntegerType());
2976 if (Result.hasArrayFiller())
2977 Result.getArrayFiller() = APValue(Value);
2978 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2979 Value = S->getCodeUnit(I);
2980 Result.getArrayInitializedElt(I) = APValue(Value);
2981 }
2982}
2983
2984// Expand an array so that it has more than Index filled elements.
2985static void expandArray(APValue &Array, unsigned Index) {
2986 unsigned Size = Array.getArraySize();
2987 assert(Index < Size)((Index < Size) ? static_cast<void> (0) : __assert_fail
("Index < Size", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 2987, __PRETTY_FUNCTION__))
;
2988
2989 // Always at least double the number of elements for which we store a value.
2990 unsigned OldElts = Array.getArrayInitializedElts();
2991 unsigned NewElts = std::max(Index+1, OldElts * 2);
2992 NewElts = std::min(Size, std::max(NewElts, 8u));
2993
2994 // Copy the data across.
2995 APValue NewValue(APValue::UninitArray(), NewElts, Size);
2996 for (unsigned I = 0; I != OldElts; ++I)
2997 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2998 for (unsigned I = OldElts; I != NewElts; ++I)
2999 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3000 if (NewValue.hasArrayFiller())
3001 NewValue.getArrayFiller() = Array.getArrayFiller();
3002 Array.swap(NewValue);
3003}
3004
3005/// Determine whether a type would actually be read by an lvalue-to-rvalue
3006/// conversion. If it's of class type, we may assume that the copy operation
3007/// is trivial. Note that this is never true for a union type with fields
3008/// (because the copy always "reads" the active member) and always true for
3009/// a non-class type.
3010static bool isReadByLvalueToRvalueConversion(QualType T) {
3011 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3012 if (!RD || (RD->isUnion() && !RD->field_empty()))
3013 return true;
3014 if (RD->isEmpty())
3015 return false;
3016
3017 for (auto *Field : RD->fields())
3018 if (isReadByLvalueToRvalueConversion(Field->getType()))
3019 return true;
3020
3021 for (auto &BaseSpec : RD->bases())
3022 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3023 return true;
3024
3025 return false;
3026}
3027
3028/// Diagnose an attempt to read from any unreadable field within the specified
3029/// type, which might be a class type.
3030static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3031 QualType T) {
3032 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3033 if (!RD)
3034 return false;
3035
3036 if (!RD->hasMutableFields())
3037 return false;
3038
3039 for (auto *Field : RD->fields()) {
3040 // If we're actually going to read this field in some way, then it can't
3041 // be mutable. If we're in a union, then assigning to a mutable field
3042 // (even an empty one) can change the active member, so that's not OK.
3043 // FIXME: Add core issue number for the union case.
3044 if (Field->isMutable() &&
3045 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3046 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3047 Info.Note(Field->getLocation(), diag::note_declared_at);
3048 return true;
3049 }
3050
3051 if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3052 return true;
3053 }
3054
3055 for (auto &BaseSpec : RD->bases())
3056 if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3057 return true;
3058
3059 // All mutable fields were empty, and thus not actually read.
3060 return false;
3061}
3062
3063static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3064 APValue::LValueBase Base,
3065 bool MutableSubobject = false) {
3066 // A temporary we created.
3067 if (Base.getCallIndex())
3068 return true;
3069
3070 auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
3071 if (!Evaluating)
3072 return false;
3073
3074 auto *BaseD = Base.dyn_cast<const ValueDecl*>();
3075
3076 switch (Info.IsEvaluatingDecl) {
3077 case EvalInfo::EvaluatingDeclKind::None:
3078 return false;
3079
3080 case EvalInfo::EvaluatingDeclKind::Ctor:
3081 // The variable whose initializer we're evaluating.
3082 if (BaseD)
3083 return declaresSameEntity(Evaluating, BaseD);
3084
3085 // A temporary lifetime-extended by the variable whose initializer we're
3086 // evaluating.
3087 if (auto *BaseE = Base.dyn_cast<const Expr *>())
3088 if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3089 return declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating);
3090 return false;
3091
3092 case EvalInfo::EvaluatingDeclKind::Dtor:
3093 // C++2a [expr.const]p6:
3094 // [during constant destruction] the lifetime of a and its non-mutable
3095 // subobjects (but not its mutable subobjects) [are] considered to start
3096 // within e.
3097 //
3098 // FIXME: We can meaningfully extend this to cover non-const objects, but
3099 // we will need special handling: we should be able to access only
3100 // subobjects of such objects that are themselves declared const.
3101 if (!BaseD ||
3102 !(BaseD->getType().isConstQualified() ||
3103 BaseD->getType()->isReferenceType()) ||
3104 MutableSubobject)
3105 return false;
3106 return declaresSameEntity(Evaluating, BaseD);
3107 }
3108
3109 llvm_unreachable("unknown evaluating decl kind")::llvm::llvm_unreachable_internal("unknown evaluating decl kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3109)
;
3110}
3111
3112namespace {
3113/// A handle to a complete object (an object that is not a subobject of
3114/// another object).
3115struct CompleteObject {
3116 /// The identity of the object.
3117 APValue::LValueBase Base;
3118 /// The value of the complete object.
3119 APValue *Value;
3120 /// The type of the complete object.
3121 QualType Type;
3122
3123 CompleteObject() : Value(nullptr) {}
3124 CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3125 : Base(Base), Value(Value), Type(Type) {}
3126
3127 bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3128 // In C++14 onwards, it is permitted to read a mutable member whose
3129 // lifetime began within the evaluation.
3130 // FIXME: Should we also allow this in C++11?
3131 if (!Info.getLangOpts().CPlusPlus14)
3132 return false;
3133 return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3134 }
3135
3136 explicit operator bool() const { return !Type.isNull(); }
3137};
3138} // end anonymous namespace
3139
3140static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3141 bool IsMutable = false) {
3142 // C++ [basic.type.qualifier]p1:
3143 // - A const object is an object of type const T or a non-mutable subobject
3144 // of a const object.
3145 if (ObjType.isConstQualified() && !IsMutable)
3146 SubobjType.addConst();
3147 // - A volatile object is an object of type const T or a subobject of a
3148 // volatile object.
3149 if (ObjType.isVolatileQualified())
3150 SubobjType.addVolatile();
3151 return SubobjType;
3152}
3153
3154/// Find the designated sub-object of an rvalue.
3155template<typename SubobjectHandler>
3156typename SubobjectHandler::result_type
3157findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3158 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3159 if (Sub.Invalid)
3160 // A diagnostic will have already been produced.
3161 return handler.failed();
3162 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3163 if (Info.getLangOpts().CPlusPlus11)
3164 Info.FFDiag(E, Sub.isOnePastTheEnd()
3165 ? diag::note_constexpr_access_past_end
3166 : diag::note_constexpr_access_unsized_array)
3167 << handler.AccessKind;
3168 else
3169 Info.FFDiag(E);
3170 return handler.failed();
3171 }
3172
3173 APValue *O = Obj.Value;
3174 QualType ObjType = Obj.Type;
3175 const FieldDecl *LastField = nullptr;
3176 const FieldDecl *VolatileField = nullptr;
3177
3178 // Walk the designator's path to find the subobject.
3179 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3180 // Reading an indeterminate value is undefined, but assigning over one is OK.
3181 if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3182 (O->isIndeterminate() && handler.AccessKind != AK_Construct &&
3183 handler.AccessKind != AK_Assign &&
3184 handler.AccessKind != AK_ReadObjectRepresentation)) {
3185 if (!Info.checkingPotentialConstantExpression())
3186 Info.FFDiag(E, diag::note_constexpr_access_uninit)
3187 << handler.AccessKind << O->isIndeterminate();
3188 return handler.failed();
3189 }
3190
3191 // C++ [class.ctor]p5, C++ [class.dtor]p5:
3192 // const and volatile semantics are not applied on an object under
3193 // {con,de}struction.
3194 if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3195 ObjType->isRecordType() &&
3196 Info.isEvaluatingCtorDtor(
3197 Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3198 Sub.Entries.begin() + I)) !=
3199 ConstructionPhase::None) {
3200 ObjType = Info.Ctx.getCanonicalType(ObjType);
3201 ObjType.removeLocalConst();
3202 ObjType.removeLocalVolatile();
3203 }
3204
3205 // If this is our last pass, check that the final object type is OK.
3206 if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3207 // Accesses to volatile objects are prohibited.
3208 if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3209 if (Info.getLangOpts().CPlusPlus) {
3210 int DiagKind;
3211 SourceLocation Loc;
3212 const NamedDecl *Decl = nullptr;
3213 if (VolatileField) {
3214 DiagKind = 2;
3215 Loc = VolatileField->getLocation();
3216 Decl = VolatileField;
3217 } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3218 DiagKind = 1;
3219 Loc = VD->getLocation();
3220 Decl = VD;
3221 } else {
3222 DiagKind = 0;
3223 if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3224 Loc = E->getExprLoc();
3225 }
3226 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3227 << handler.AccessKind << DiagKind << Decl;
3228 Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3229 } else {
3230 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3231 }
3232 return handler.failed();
3233 }
3234
3235 // If we are reading an object of class type, there may still be more
3236 // things we need to check: if there are any mutable subobjects, we
3237 // cannot perform this read. (This only happens when performing a trivial
3238 // copy or assignment.)
3239 if (ObjType->isRecordType() &&
3240 !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3241 diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3242 return handler.failed();
3243 }
3244
3245 if (I == N) {
3246 if (!handler.found(*O, ObjType))
3247 return false;
3248
3249 // If we modified a bit-field, truncate it to the right width.
3250 if (isModification(handler.AccessKind) &&
3251 LastField && LastField->isBitField() &&
3252 !truncateBitfieldValue(Info, E, *O, LastField))
3253 return false;
3254
3255 return true;
3256 }
3257
3258 LastField = nullptr;
3259 if (ObjType->isArrayType()) {
3260 // Next subobject is an array element.
3261 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3262 assert(CAT && "vla in literal type?")((CAT && "vla in literal type?") ? static_cast<void
> (0) : __assert_fail ("CAT && \"vla in literal type?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3262, __PRETTY_FUNCTION__))
;
3263 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3264 if (CAT->getSize().ule(Index)) {
3265 // Note, it should not be possible to form a pointer with a valid
3266 // designator which points more than one past the end of the array.
3267 if (Info.getLangOpts().CPlusPlus11)
3268 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3269 << handler.AccessKind;
3270 else
3271 Info.FFDiag(E);
3272 return handler.failed();
3273 }
3274
3275 ObjType = CAT->getElementType();
3276
3277 if (O->getArrayInitializedElts() > Index)
3278 O = &O->getArrayInitializedElt(Index);
3279 else if (!isRead(handler.AccessKind)) {
3280 expandArray(*O, Index);
3281 O = &O->getArrayInitializedElt(Index);
3282 } else
3283 O = &O->getArrayFiller();
3284 } else if (ObjType->isAnyComplexType()) {
3285 // Next subobject is a complex number.
3286 uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3287 if (Index > 1) {
3288 if (Info.getLangOpts().CPlusPlus11)
3289 Info.FFDiag(E, diag::note_constexpr_access_past_end)
3290 << handler.AccessKind;
3291 else
3292 Info.FFDiag(E);
3293 return handler.failed();
3294 }
3295
3296 ObjType = getSubobjectType(
3297 ObjType, ObjType->castAs<ComplexType>()->getElementType());
3298
3299 assert(I == N - 1 && "extracting subobject of scalar?")((I == N - 1 && "extracting subobject of scalar?") ? static_cast
<void> (0) : __assert_fail ("I == N - 1 && \"extracting subobject of scalar?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3299, __PRETTY_FUNCTION__))
;
3300 if (O->isComplexInt()) {
3301 return handler.found(Index ? O->getComplexIntImag()
3302 : O->getComplexIntReal(), ObjType);
3303 } else {
3304 assert(O->isComplexFloat())((O->isComplexFloat()) ? static_cast<void> (0) : __assert_fail
("O->isComplexFloat()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3304, __PRETTY_FUNCTION__))
;
3305 return handler.found(Index ? O->getComplexFloatImag()
3306 : O->getComplexFloatReal(), ObjType);
3307 }
3308 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3309 if (Field->isMutable() &&
3310 !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3311 Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3312 << handler.AccessKind << Field;
3313 Info.Note(Field->getLocation(), diag::note_declared_at);
3314 return handler.failed();
3315 }
3316
3317 // Next subobject is a class, struct or union field.
3318 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3319 if (RD->isUnion()) {
3320 const FieldDecl *UnionField = O->getUnionField();
3321 if (!UnionField ||
3322 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3323 if (I == N - 1 && handler.AccessKind == AK_Construct) {
3324 // Placement new onto an inactive union member makes it active.
3325 O->setUnion(Field, APValue());
3326 } else {
3327 // FIXME: If O->getUnionValue() is absent, report that there's no
3328 // active union member rather than reporting the prior active union
3329 // member. We'll need to fix nullptr_t to not use APValue() as its
3330 // representation first.
3331 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3332 << handler.AccessKind << Field << !UnionField << UnionField;
3333 return handler.failed();
3334 }
3335 }
3336 O = &O->getUnionValue();
3337 } else
3338 O = &O->getStructField(Field->getFieldIndex());
3339
3340 ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3341 LastField = Field;
3342 if (Field->getType().isVolatileQualified())
3343 VolatileField = Field;
3344 } else {
3345 // Next subobject is a base class.
3346 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3347 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3348 O = &O->getStructBase(getBaseIndex(Derived, Base));
3349
3350 ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3351 }
3352 }
3353}
3354
3355namespace {
3356struct ExtractSubobjectHandler {
3357 EvalInfo &Info;
3358 const Expr *E;
3359 APValue &Result;
3360 const AccessKinds AccessKind;
3361
3362 typedef bool result_type;
3363 bool failed() { return false; }
3364 bool found(APValue &Subobj, QualType SubobjType) {
3365 Result = Subobj;
3366 if (AccessKind == AK_ReadObjectRepresentation)
3367 return true;
3368 return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3369 }
3370 bool found(APSInt &Value, QualType SubobjType) {
3371 Result = APValue(Value);
3372 return true;
3373 }
3374 bool found(APFloat &Value, QualType SubobjType) {
3375 Result = APValue(Value);
3376 return true;
3377 }
3378};
3379} // end anonymous namespace
3380
3381/// Extract the designated sub-object of an rvalue.
3382static bool extractSubobject(EvalInfo &Info, const Expr *E,
3383 const CompleteObject &Obj,
3384 const SubobjectDesignator &Sub, APValue &Result,
3385 AccessKinds AK = AK_Read) {
3386 assert(AK == AK_Read || AK == AK_ReadObjectRepresentation)((AK == AK_Read || AK == AK_ReadObjectRepresentation) ? static_cast
<void> (0) : __assert_fail ("AK == AK_Read || AK == AK_ReadObjectRepresentation"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3386, __PRETTY_FUNCTION__))
;
3387 ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3388 return findSubobject(Info, E, Obj, Sub, Handler);
3389}
3390
3391namespace {
3392struct ModifySubobjectHandler {
3393 EvalInfo &Info;
3394 APValue &NewVal;
3395 const Expr *E;
3396
3397 typedef bool result_type;
3398 static const AccessKinds AccessKind = AK_Assign;
3399
3400 bool checkConst(QualType QT) {
3401 // Assigning to a const object has undefined behavior.
3402 if (QT.isConstQualified()) {
3403 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3404 return false;
3405 }
3406 return true;
3407 }
3408
3409 bool failed() { return false; }
3410 bool found(APValue &Subobj, QualType SubobjType) {
3411 if (!checkConst(SubobjType))
3412 return false;
3413 // We've been given ownership of NewVal, so just swap it in.
3414 Subobj.swap(NewVal);
3415 return true;
3416 }
3417 bool found(APSInt &Value, QualType SubobjType) {
3418 if (!checkConst(SubobjType))
3419 return false;
3420 if (!NewVal.isInt()) {
3421 // Maybe trying to write a cast pointer value into a complex?
3422 Info.FFDiag(E);
3423 return false;
3424 }
3425 Value = NewVal.getInt();
3426 return true;
3427 }
3428 bool found(APFloat &Value, QualType SubobjType) {
3429 if (!checkConst(SubobjType))
3430 return false;
3431 Value = NewVal.getFloat();
3432 return true;
3433 }
3434};
3435} // end anonymous namespace
3436
3437const AccessKinds ModifySubobjectHandler::AccessKind;
3438
3439/// Update the designated sub-object of an rvalue to the given value.
3440static bool modifySubobject(EvalInfo &Info, const Expr *E,
3441 const CompleteObject &Obj,
3442 const SubobjectDesignator &Sub,
3443 APValue &NewVal) {
3444 ModifySubobjectHandler Handler = { Info, NewVal, E };
3445 return findSubobject(Info, E, Obj, Sub, Handler);
3446}
3447
3448/// Find the position where two subobject designators diverge, or equivalently
3449/// the length of the common initial subsequence.
3450static unsigned FindDesignatorMismatch(QualType ObjType,
3451 const SubobjectDesignator &A,
3452 const SubobjectDesignator &B,
3453 bool &WasArrayIndex) {
3454 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3455 for (/**/; I != N; ++I) {
3456 if (!ObjType.isNull() &&
3457 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3458 // Next subobject is an array element.
3459 if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3460 WasArrayIndex = true;
3461 return I;
3462 }
3463 if (ObjType->isAnyComplexType())
3464 ObjType = ObjType->castAs<ComplexType>()->getElementType();
3465 else
3466 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3467 } else {
3468 if (A.Entries[I].getAsBaseOrMember() !=
3469 B.Entries[I].getAsBaseOrMember()) {
3470 WasArrayIndex = false;
3471 return I;
3472 }
3473 if (const FieldDecl *FD = getAsField(A.Entries[I]))
3474 // Next subobject is a field.
3475 ObjType = FD->getType();
3476 else
3477 // Next subobject is a base class.
3478 ObjType = QualType();
3479 }
3480 }
3481 WasArrayIndex = false;
3482 return I;
3483}
3484
3485/// Determine whether the given subobject designators refer to elements of the
3486/// same array object.
3487static bool AreElementsOfSameArray(QualType ObjType,
3488 const SubobjectDesignator &A,
3489 const SubobjectDesignator &B) {
3490 if (A.Entries.size() != B.Entries.size())
3491 return false;
3492
3493 bool IsArray = A.MostDerivedIsArrayElement;
3494 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3495 // A is a subobject of the array element.
3496 return false;
3497
3498 // If A (and B) designates an array element, the last entry will be the array
3499 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3500 // of length 1' case, and the entire path must match.
3501 bool WasArrayIndex;
3502 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3503 return CommonLength >= A.Entries.size() - IsArray;
3504}
3505
3506/// Find the complete object to which an LValue refers.
3507static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3508 AccessKinds AK, const LValue &LVal,
3509 QualType LValType) {
3510 if (LVal.InvalidBase) {
3511 Info.FFDiag(E);
3512 return CompleteObject();
3513 }
3514
3515 if (!LVal.Base) {
3516 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3517 return CompleteObject();
3518 }
3519
3520 CallStackFrame *Frame = nullptr;
3521 unsigned Depth = 0;
3522 if (LVal.getLValueCallIndex()) {
3523 std::tie(Frame, Depth) =
3524 Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3525 if (!Frame) {
3526 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3527 << AK << LVal.Base.is<const ValueDecl*>();
3528 NoteLValueLocation(Info, LVal.Base);
3529 return CompleteObject();
3530 }
3531 }
3532
3533 bool IsAccess = isAnyAccess(AK);
3534
3535 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3536 // is not a constant expression (even if the object is non-volatile). We also
3537 // apply this rule to C++98, in order to conform to the expected 'volatile'
3538 // semantics.
3539 if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3540 if (Info.getLangOpts().CPlusPlus)
3541 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3542 << AK << LValType;
3543 else
3544 Info.FFDiag(E);
3545 return CompleteObject();
3546 }
3547
3548 // Compute value storage location and type of base object.
3549 APValue *BaseVal = nullptr;
3550 QualType BaseType = getType(LVal.Base);
3551
3552 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
3553 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
3554 // In C++11, constexpr, non-volatile variables initialized with constant
3555 // expressions are constant expressions too. Inside constexpr functions,
3556 // parameters are constant expressions even if they're non-const.
3557 // In C++1y, objects local to a constant expression (those with a Frame) are
3558 // both readable and writable inside constant expressions.
3559 // In C, such things can also be folded, although they are not ICEs.
3560 const VarDecl *VD = dyn_cast<VarDecl>(D);
3561 if (VD) {
3562 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
3563 VD = VDef;
3564 }
3565 if (!VD || VD->isInvalidDecl()) {
3566 Info.FFDiag(E);
3567 return CompleteObject();
3568 }
3569
3570 // Unless we're looking at a local variable or argument in a constexpr call,
3571 // the variable we're reading must be const.
3572 if (!Frame) {
3573 if (Info.getLangOpts().CPlusPlus14 &&
3574 lifetimeStartedInEvaluation(Info, LVal.Base)) {
3575 // OK, we can read and modify an object if we're in the process of
3576 // evaluating its initializer, because its lifetime began in this
3577 // evaluation.
3578 } else if (isModification(AK)) {
3579 // All the remaining cases do not permit modification of the object.
3580 Info.FFDiag(E, diag::note_constexpr_modify_global);
3581 return CompleteObject();
3582 } else if (VD->isConstexpr()) {
3583 // OK, we can read this variable.
3584 } else if (BaseType->isIntegralOrEnumerationType()) {
3585 // In OpenCL if a variable is in constant address space it is a const
3586 // value.
3587 if (!(BaseType.isConstQualified() ||
3588 (Info.getLangOpts().OpenCL &&
3589 BaseType.getAddressSpace() == LangAS::opencl_constant))) {
3590 if (!IsAccess)
3591 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3592 if (Info.getLangOpts().CPlusPlus) {
3593 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
3594 Info.Note(VD->getLocation(), diag::note_declared_at);
3595 } else {
3596 Info.FFDiag(E);
3597 }
3598 return CompleteObject();
3599 }
3600 } else if (!IsAccess) {
3601 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3602 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
3603 // We support folding of const floating-point types, in order to make
3604 // static const data members of such types (supported as an extension)
3605 // more useful.
3606 if (Info.getLangOpts().CPlusPlus11) {
3607 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3608 Info.Note(VD->getLocation(), diag::note_declared_at);
3609 } else {
3610 Info.CCEDiag(E);
3611 }
3612 } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
3613 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
3614 // Keep evaluating to see what we can do.
3615 } else {
3616 // FIXME: Allow folding of values of any literal type in all languages.
3617 if (Info.checkingPotentialConstantExpression() &&
3618 VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
3619 // The definition of this variable could be constexpr. We can't
3620 // access it right now, but may be able to in future.
3621 } else if (Info.getLangOpts().CPlusPlus11) {
3622 Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3623 Info.Note(VD->getLocation(), diag::note_declared_at);
3624 } else {
3625 Info.FFDiag(E);
3626 }
3627 return CompleteObject();
3628 }
3629 }
3630
3631 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
3632 return CompleteObject();
3633 } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
3634 Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
3635 if (!Alloc) {
3636 Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
3637 return CompleteObject();
3638 }
3639 return CompleteObject(LVal.Base, &(*Alloc)->Value,
3640 LVal.Base.getDynamicAllocType());
3641 } else {
3642 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3643
3644 if (!Frame) {
3645 if (const MaterializeTemporaryExpr *MTE =
3646 dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
3647 assert(MTE->getStorageDuration() == SD_Static &&((MTE->getStorageDuration() == SD_Static && "should have a frame for a non-global materialized temporary"
) ? static_cast<void> (0) : __assert_fail ("MTE->getStorageDuration() == SD_Static && \"should have a frame for a non-global materialized temporary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3648, __PRETTY_FUNCTION__))
3648 "should have a frame for a non-global materialized temporary")((MTE->getStorageDuration() == SD_Static && "should have a frame for a non-global materialized temporary"
) ? static_cast<void> (0) : __assert_fail ("MTE->getStorageDuration() == SD_Static && \"should have a frame for a non-global materialized temporary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3648, __PRETTY_FUNCTION__))
;
3649
3650 // Per C++1y [expr.const]p2:
3651 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
3652 // - a [...] glvalue of integral or enumeration type that refers to
3653 // a non-volatile const object [...]
3654 // [...]
3655 // - a [...] glvalue of literal type that refers to a non-volatile
3656 // object whose lifetime began within the evaluation of e.
3657 //
3658 // C++11 misses the 'began within the evaluation of e' check and
3659 // instead allows all temporaries, including things like:
3660 // int &&r = 1;
3661 // int x = ++r;
3662 // constexpr int k = r;
3663 // Therefore we use the C++14 rules in C++11 too.
3664 //
3665 // Note that temporaries whose lifetimes began while evaluating a
3666 // variable's constructor are not usable while evaluating the
3667 // corresponding destructor, not even if they're of const-qualified
3668 // types.
3669 if (!(BaseType.isConstQualified() &&
3670 BaseType->isIntegralOrEnumerationType()) &&
3671 !lifetimeStartedInEvaluation(Info, LVal.Base)) {
3672 if (!IsAccess)
3673 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3674 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
3675 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
3676 return CompleteObject();
3677 }
3678
3679 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
3680 assert(BaseVal && "got reference to unevaluated temporary")((BaseVal && "got reference to unevaluated temporary"
) ? static_cast<void> (0) : __assert_fail ("BaseVal && \"got reference to unevaluated temporary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3680, __PRETTY_FUNCTION__))
;
3681 } else {
3682 if (!IsAccess)
3683 return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
3684 APValue Val;
3685 LVal.moveInto(Val);
3686 Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
3687 << AK
3688 << Val.getAsString(Info.Ctx,
3689 Info.Ctx.getLValueReferenceType(LValType));
3690 NoteLValueLocation(Info, LVal.Base);
3691 return CompleteObject();
3692 }
3693 } else {
3694 BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
3695 assert(BaseVal && "missing value for temporary")((BaseVal && "missing value for temporary") ? static_cast
<void> (0) : __assert_fail ("BaseVal && \"missing value for temporary\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3695, __PRETTY_FUNCTION__))
;
3696 }
3697 }
3698
3699 // In C++14, we can't safely access any mutable state when we might be
3700 // evaluating after an unmodeled side effect.
3701 //
3702 // FIXME: Not all local state is mutable. Allow local constant subobjects
3703 // to be read here (but take care with 'mutable' fields).
3704 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
3705 Info.EvalStatus.HasSideEffects) ||
3706 (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
3707 return CompleteObject();
3708
3709 return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
3710}
3711
3712/// Perform an lvalue-to-rvalue conversion on the given glvalue. This
3713/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
3714/// glvalue referred to by an entity of reference type.
3715///
3716/// \param Info - Information about the ongoing evaluation.
3717/// \param Conv - The expression for which we are performing the conversion.
3718/// Used for diagnostics.
3719/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
3720/// case of a non-class type).
3721/// \param LVal - The glvalue on which we are attempting to perform this action.
3722/// \param RVal - The produced value will be placed here.
3723/// \param WantObjectRepresentation - If true, we're looking for the object
3724/// representation rather than the value, and in particular,
3725/// there is no requirement that the result be fully initialized.
3726static bool
3727handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
3728 const LValue &LVal, APValue &RVal,
3729 bool WantObjectRepresentation = false) {
3730 if (LVal.Designator.Invalid)
3731 return false;
3732
3733 // Check for special cases where there is no existing APValue to look at.
3734 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3735
3736 AccessKinds AK =
3737 WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
3738
3739 if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
3740 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
3741 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
3742 // initializer until now for such expressions. Such an expression can't be
3743 // an ICE in C, so this only matters for fold.
3744 if (Type.isVolatileQualified()) {
3745 Info.FFDiag(Conv);
3746 return false;
3747 }
3748 APValue Lit;
3749 if (!Evaluate(Lit, Info, CLE->getInitializer()))
3750 return false;
3751 CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
3752 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
3753 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
3754 // Special-case character extraction so we don't have to construct an
3755 // APValue for the whole string.
3756 assert(LVal.Designator.Entries.size() <= 1 &&((LVal.Designator.Entries.size() <= 1 && "Can only read characters from string literals"
) ? static_cast<void> (0) : __assert_fail ("LVal.Designator.Entries.size() <= 1 && \"Can only read characters from string literals\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3757, __PRETTY_FUNCTION__))
3757 "Can only read characters from string literals")((LVal.Designator.Entries.size() <= 1 && "Can only read characters from string literals"
) ? static_cast<void> (0) : __assert_fail ("LVal.Designator.Entries.size() <= 1 && \"Can only read characters from string literals\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 3757, __PRETTY_FUNCTION__))
;
3758 if (LVal.Designator.Entries.empty()) {
3759 // Fail for now for LValue to RValue conversion of an array.
3760 // (This shouldn't show up in C/C++, but it could be triggered by a
3761 // weird EvaluateAsRValue call from a tool.)
3762 Info.FFDiag(Conv);
3763 return false;
3764 }
3765 if (LVal.Designator.isOnePastTheEnd()) {
3766 if (Info.getLangOpts().CPlusPlus11)
3767 Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
3768 else
3769 Info.FFDiag(Conv);
3770 return false;
3771 }
3772 uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
3773 RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
3774 return true;
3775 }
3776 }
3777
3778 CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
3779 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
3780}
3781
3782/// Perform an assignment of Val to LVal. Takes ownership of Val.
3783static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
3784 QualType LValType, APValue &Val) {
3785 if (LVal.Designator.Invalid)
3786 return false;
3787
3788 if (!Info.getLangOpts().CPlusPlus14) {
3789 Info.FFDiag(E);
3790 return false;
3791 }
3792
3793 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3794 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
3795}
3796
3797namespace {
3798struct CompoundAssignSubobjectHandler {
3799 EvalInfo &Info;
3800 const Expr *E;
3801 QualType PromotedLHSType;
3802 BinaryOperatorKind Opcode;
3803 const APValue &RHS;
3804
3805 static const AccessKinds AccessKind = AK_Assign;
3806
3807 typedef bool result_type;
3808
3809 bool checkConst(QualType QT) {
3810 // Assigning to a const object has undefined behavior.
3811 if (QT.isConstQualified()) {
3812 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3813 return false;
3814 }
3815 return true;
3816 }
3817
3818 bool failed() { return false; }
3819 bool found(APValue &Subobj, QualType SubobjType) {
3820 switch (Subobj.getKind()) {
3821 case APValue::Int:
3822 return found(Subobj.getInt(), SubobjType);
3823 case APValue::Float:
3824 return found(Subobj.getFloat(), SubobjType);
3825 case APValue::ComplexInt:
3826 case APValue::ComplexFloat:
3827 // FIXME: Implement complex compound assignment.
3828 Info.FFDiag(E);
3829 return false;
3830 case APValue::LValue:
3831 return foundPointer(Subobj, SubobjType);
3832 default:
3833 // FIXME: can this happen?
3834 Info.FFDiag(E);
3835 return false;
3836 }
3837 }
3838 bool found(APSInt &Value, QualType SubobjType) {
3839 if (!checkConst(SubobjType))
3840 return false;
3841
3842 if (!SubobjType->isIntegerType()) {
3843 // We don't support compound assignment on integer-cast-to-pointer
3844 // values.
3845 Info.FFDiag(E);
3846 return false;
3847 }
3848
3849 if (RHS.isInt()) {
3850 APSInt LHS =
3851 HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
3852 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3853 return false;
3854 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3855 return true;
3856 } else if (RHS.isFloat()) {
3857 APFloat FValue(0.0);
3858 return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
3859 FValue) &&
3860 handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
3861 HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
3862 Value);
3863 }
3864
3865 Info.FFDiag(E);
3866 return false;
3867 }
3868 bool found(APFloat &Value, QualType SubobjType) {
3869 return checkConst(SubobjType) &&
3870 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3871 Value) &&
3872 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3873 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3874 }
3875 bool foundPointer(APValue &Subobj, QualType SubobjType) {
3876 if (!checkConst(SubobjType))
3877 return false;
3878
3879 QualType PointeeType;
3880 if (const PointerType *PT = SubobjType->getAs<PointerType>())
3881 PointeeType = PT->getPointeeType();
3882
3883 if (PointeeType.isNull() || !RHS.isInt() ||
3884 (Opcode != BO_Add && Opcode != BO_Sub)) {
3885 Info.FFDiag(E);
3886 return false;
3887 }
3888
3889 APSInt Offset = RHS.getInt();
3890 if (Opcode == BO_Sub)
3891 negateAsSigned(Offset);
3892
3893 LValue LVal;
3894 LVal.setFrom(Info.Ctx, Subobj);
3895 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3896 return false;
3897 LVal.moveInto(Subobj);
3898 return true;
3899 }
3900};
3901} // end anonymous namespace
3902
3903const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3904
3905/// Perform a compound assignment of LVal <op>= RVal.
3906static bool handleCompoundAssignment(
3907 EvalInfo &Info, const Expr *E,
3908 const LValue &LVal, QualType LValType, QualType PromotedLValType,
3909 BinaryOperatorKind Opcode, const APValue &RVal) {
3910 if (LVal.Designator.Invalid)
3911 return false;
3912
3913 if (!Info.getLangOpts().CPlusPlus14) {
3914 Info.FFDiag(E);
3915 return false;
3916 }
3917
3918 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3919 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3920 RVal };
3921 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3922}
3923
3924namespace {
3925struct IncDecSubobjectHandler {
3926 EvalInfo &Info;
3927 const UnaryOperator *E;
3928 AccessKinds AccessKind;
3929 APValue *Old;
3930
3931 typedef bool result_type;
3932
3933 bool checkConst(QualType QT) {
3934 // Assigning to a const object has undefined behavior.
3935 if (QT.isConstQualified()) {
3936 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3937 return false;
3938 }
3939 return true;
3940 }
3941
3942 bool failed() { return false; }
3943 bool found(APValue &Subobj, QualType SubobjType) {
3944 // Stash the old value. Also clear Old, so we don't clobber it later
3945 // if we're post-incrementing a complex.
3946 if (Old) {
3947 *Old = Subobj;
3948 Old = nullptr;
3949 }
3950
3951 switch (Subobj.getKind()) {
3952 case APValue::Int:
3953 return found(Subobj.getInt(), SubobjType);
3954 case APValue::Float:
3955 return found(Subobj.getFloat(), SubobjType);
3956 case APValue::ComplexInt:
3957 return found(Subobj.getComplexIntReal(),
3958 SubobjType->castAs<ComplexType>()->getElementType()
3959 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3960 case APValue::ComplexFloat:
3961 return found(Subobj.getComplexFloatReal(),
3962 SubobjType->castAs<ComplexType>()->getElementType()
3963 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3964 case APValue::LValue:
3965 return foundPointer(Subobj, SubobjType);
3966 default:
3967 // FIXME: can this happen?
3968 Info.FFDiag(E);
3969 return false;
3970 }
3971 }
3972 bool found(APSInt &Value, QualType SubobjType) {
3973 if (!checkConst(SubobjType))
3974 return false;
3975
3976 if (!SubobjType->isIntegerType()) {
3977 // We don't support increment / decrement on integer-cast-to-pointer
3978 // values.
3979 Info.FFDiag(E);
3980 return false;
3981 }
3982
3983 if (Old) *Old = APValue(Value);
3984
3985 // bool arithmetic promotes to int, and the conversion back to bool
3986 // doesn't reduce mod 2^n, so special-case it.
3987 if (SubobjType->isBooleanType()) {
3988 if (AccessKind == AK_Increment)
3989 Value = 1;
3990 else
3991 Value = !Value;
3992 return true;
3993 }
3994
3995 bool WasNegative = Value.isNegative();
3996 if (AccessKind == AK_Increment) {
3997 ++Value;
3998
3999 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4000 APSInt ActualValue(Value, /*IsUnsigned*/true);
4001 return HandleOverflow(Info, E, ActualValue, SubobjType);
4002 }
4003 } else {
4004 --Value;
4005
4006 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4007 unsigned BitWidth = Value.getBitWidth();
4008 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4009 ActualValue.setBit(BitWidth);
4010 return HandleOverflow(Info, E, ActualValue, SubobjType);
4011 }
4012 }
4013 return true;
4014 }
4015 bool found(APFloat &Value, QualType SubobjType) {
4016 if (!checkConst(SubobjType))
4017 return false;
4018
4019 if (Old) *Old = APValue(Value);
4020
4021 APFloat One(Value.getSemantics(), 1);
4022 if (AccessKind == AK_Increment)
4023 Value.add(One, APFloat::rmNearestTiesToEven);
4024 else
4025 Value.subtract(One, APFloat::rmNearestTiesToEven);
4026 return true;
4027 }
4028 bool foundPointer(APValue &Subobj, QualType SubobjType) {
4029 if (!checkConst(SubobjType))
4030 return false;
4031
4032 QualType PointeeType;
4033 if (const PointerType *PT = SubobjType->getAs<PointerType>())
4034 PointeeType = PT->getPointeeType();
4035 else {
4036 Info.FFDiag(E);
4037 return false;
4038 }
4039
4040 LValue LVal;
4041 LVal.setFrom(Info.Ctx, Subobj);
4042 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4043 AccessKind == AK_Increment ? 1 : -1))
4044 return false;
4045 LVal.moveInto(Subobj);
4046 return true;
4047 }
4048};
4049} // end anonymous namespace
4050
4051/// Perform an increment or decrement on LVal.
4052static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4053 QualType LValType, bool IsIncrement, APValue *Old) {
4054 if (LVal.Designator.Invalid)
4055 return false;
4056
4057 if (!Info.getLangOpts().CPlusPlus14) {
4058 Info.FFDiag(E);
4059 return false;
4060 }
4061
4062 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4063 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4064 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4065 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4066}
4067
4068/// Build an lvalue for the object argument of a member function call.
4069static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4070 LValue &This) {
4071 if (Object->getType()->isPointerType() && Object->isRValue())
4072 return EvaluatePointer(Object, This, Info);
4073
4074 if (Object->isGLValue())
4075 return EvaluateLValue(Object, This, Info);
4076
4077 if (Object->getType()->isLiteralType(Info.Ctx))
4078 return EvaluateTemporary(Object, This, Info);
4079
4080 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4081 return false;
4082}
4083
4084/// HandleMemberPointerAccess - Evaluate a member access operation and build an
4085/// lvalue referring to the result.
4086///
4087/// \param Info - Information about the ongoing evaluation.
4088/// \param LV - An lvalue referring to the base of the member pointer.
4089/// \param RHS - The member pointer expression.
4090/// \param IncludeMember - Specifies whether the member itself is included in
4091/// the resulting LValue subobject designator. This is not possible when
4092/// creating a bound member function.
4093/// \return The field or method declaration to which the member pointer refers,
4094/// or 0 if evaluation fails.
4095static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4096 QualType LVType,
4097 LValue &LV,
4098 const Expr *RHS,
4099 bool IncludeMember = true) {
4100 MemberPtr MemPtr;
4101 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4102 return nullptr;
4103
4104 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4105 // member value, the behavior is undefined.
4106 if (!MemPtr.getDecl()) {
4107 // FIXME: Specific diagnostic.
4108 Info.FFDiag(RHS);
4109 return nullptr;
4110 }
4111
4112 if (MemPtr.isDerivedMember()) {
4113 // This is a member of some derived class. Truncate LV appropriately.
4114 // The end of the derived-to-base path for the base object must match the
4115 // derived-to-base path for the member pointer.
4116 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4117 LV.Designator.Entries.size()) {
4118 Info.FFDiag(RHS);
4119 return nullptr;
4120 }
4121 unsigned PathLengthToMember =
4122 LV.Designator.Entries.size() - MemPtr.Path.size();
4123 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4124 const CXXRecordDecl *LVDecl = getAsBaseClass(
4125 LV.Designator.Entries[PathLengthToMember + I]);
4126 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4127 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4128 Info.FFDiag(RHS);
4129 return nullptr;
4130 }
4131 }
4132
4133 // Truncate the lvalue to the appropriate derived class.
4134 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4135 PathLengthToMember))
4136 return nullptr;
4137 } else if (!MemPtr.Path.empty()) {
4138 // Extend the LValue path with the member pointer's path.
4139 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4140 MemPtr.Path.size() + IncludeMember);
4141
4142 // Walk down to the appropriate base class.
4143 if (const PointerType *PT = LVType->getAs<PointerType>())
4144 LVType = PT->getPointeeType();
4145 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4146 assert(RD && "member pointer access on non-class-type expression")((RD && "member pointer access on non-class-type expression"
) ? static_cast<void> (0) : __assert_fail ("RD && \"member pointer access on non-class-type expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4146, __PRETTY_FUNCTION__))
;
4147 // The first class in the path is that of the lvalue.
4148 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4149 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4150 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4151 return nullptr;
4152 RD = Base;
4153 }
4154 // Finally cast to the class containing the member.
4155 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4156 MemPtr.getContainingRecord()))
4157 return nullptr;
4158 }
4159
4160 // Add the member. Note that we cannot build bound member functions here.
4161 if (IncludeMember) {
4162 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4163 if (!HandleLValueMember(Info, RHS, LV, FD))
4164 return nullptr;
4165 } else if (const IndirectFieldDecl *IFD =
4166 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4167 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4168 return nullptr;
4169 } else {
4170 llvm_unreachable("can't construct reference to bound member function")::llvm::llvm_unreachable_internal("can't construct reference to bound member function"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4170)
;
4171 }
4172 }
4173
4174 return MemPtr.getDecl();
4175}
4176
4177static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4178 const BinaryOperator *BO,
4179 LValue &LV,
4180 bool IncludeMember = true) {
4181 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI)((BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4181, __PRETTY_FUNCTION__))
;
4182
4183 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4184 if (Info.noteFailure()) {
4185 MemberPtr MemPtr;
4186 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4187 }
4188 return nullptr;
4189 }
4190
4191 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4192 BO->getRHS(), IncludeMember);
4193}
4194
4195/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4196/// the provided lvalue, which currently refers to the base object.
4197static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4198 LValue &Result) {
4199 SubobjectDesignator &D = Result.Designator;
4200 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4201 return false;
4202
4203 QualType TargetQT = E->getType();
4204 if (const PointerType *PT = TargetQT->getAs<PointerType>())
4205 TargetQT = PT->getPointeeType();
4206
4207 // Check this cast lands within the final derived-to-base subobject path.
4208 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4209 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4210 << D.MostDerivedType << TargetQT;
4211 return false;
4212 }
4213
4214 // Check the type of the final cast. We don't need to check the path,
4215 // since a cast can only be formed if the path is unique.
4216 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4217 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4218 const CXXRecordDecl *FinalType;
4219 if (NewEntriesSize == D.MostDerivedPathLength)
4220 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4221 else
4222 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4223 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4224 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4225 << D.MostDerivedType << TargetQT;
4226 return false;
4227 }
4228
4229 // Truncate the lvalue to the appropriate derived class.
4230 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4231}
4232
4233/// Get the value to use for a default-initialized object of type T.
4234static APValue getDefaultInitValue(QualType T) {
4235 if (auto *RD = T->getAsCXXRecordDecl()) {
4236 if (RD->isUnion())
4237 return APValue((const FieldDecl*)nullptr);
4238
4239 APValue Struct(APValue::UninitStruct(), RD->getNumBases(),
4240 std::distance(RD->field_begin(), RD->field_end()));
4241
4242 unsigned Index = 0;
4243 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4244 End = RD->bases_end(); I != End; ++I, ++Index)
4245 Struct.getStructBase(Index) = getDefaultInitValue(I->getType());
4246
4247 for (const auto *I : RD->fields()) {
4248 if (I->isUnnamedBitfield())
4249 continue;
4250 Struct.getStructField(I->getFieldIndex()) =
4251 getDefaultInitValue(I->getType());
4252 }
4253 return Struct;
4254 }
4255
4256 if (auto *AT =
4257 dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4258 APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4259 if (Array.hasArrayFiller())
4260 Array.getArrayFiller() = getDefaultInitValue(AT->getElementType());
4261 return Array;
4262 }
4263
4264 return APValue::IndeterminateValue();
4265}
4266
4267namespace {
4268enum EvalStmtResult {
4269 /// Evaluation failed.
4270 ESR_Failed,
4271 /// Hit a 'return' statement.
4272 ESR_Returned,
4273 /// Evaluation succeeded.
4274 ESR_Succeeded,
4275 /// Hit a 'continue' statement.
4276 ESR_Continue,
4277 /// Hit a 'break' statement.
4278 ESR_Break,
4279 /// Still scanning for 'case' or 'default' statement.
4280 ESR_CaseNotFound
4281};
4282}
4283
4284static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4285 // We don't need to evaluate the initializer for a static local.
4286 if (!VD->hasLocalStorage())
4287 return true;
4288
4289 LValue Result;
4290 APValue &Val =
4291 Info.CurrentCall->createTemporary(VD, VD->getType(), true, Result);
4292
4293 const Expr *InitE = VD->getInit();
4294 if (!InitE) {
4295 Val = getDefaultInitValue(VD->getType());
4296 return true;
4297 }
4298
4299 if (InitE->isValueDependent())
4300 return false;
4301
4302 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4303 // Wipe out any partially-computed value, to allow tracking that this
4304 // evaluation failed.
4305 Val = APValue();
4306 return false;
4307 }
4308
4309 return true;
4310}
4311
4312static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4313 bool OK = true;
4314
4315 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4316 OK &= EvaluateVarDecl(Info, VD);
4317
4318 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4319 for (auto *BD : DD->bindings())
4320 if (auto *VD = BD->getHoldingVar())
4321 OK &= EvaluateDecl(Info, VD);
4322
4323 return OK;
4324}
4325
4326
4327/// Evaluate a condition (either a variable declaration or an expression).
4328static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4329 const Expr *Cond, bool &Result) {
4330 FullExpressionRAII Scope(Info);
4331 if (CondDecl && !EvaluateDecl(Info, CondDecl))
4332 return false;
4333 if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4334 return false;
4335 return Scope.destroy();
4336}
4337
4338namespace {
4339/// A location where the result (returned value) of evaluating a
4340/// statement should be stored.
4341struct StmtResult {
4342 /// The APValue that should be filled in with the returned value.
4343 APValue &Value;
4344 /// The location containing the result, if any (used to support RVO).
4345 const LValue *Slot;
4346};
4347
4348struct TempVersionRAII {
4349 CallStackFrame &Frame;
4350
4351 TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4352 Frame.pushTempVersion();
4353 }
4354
4355 ~TempVersionRAII() {
4356 Frame.popTempVersion();
4357 }
4358};
4359
4360}
4361
4362static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4363 const Stmt *S,
4364 const SwitchCase *SC = nullptr);
4365
4366/// Evaluate the body of a loop, and translate the result as appropriate.
4367static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4368 const Stmt *Body,
4369 const SwitchCase *Case = nullptr) {
4370 BlockScopeRAII Scope(Info);
4371
4372 EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4373 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4374 ESR = ESR_Failed;
4375
4376 switch (ESR) {
4377 case ESR_Break:
4378 return ESR_Succeeded;
4379 case ESR_Succeeded:
4380 case ESR_Continue:
4381 return ESR_Continue;
4382 case ESR_Failed:
4383 case ESR_Returned:
4384 case ESR_CaseNotFound:
4385 return ESR;
4386 }
4387 llvm_unreachable("Invalid EvalStmtResult!")::llvm::llvm_unreachable_internal("Invalid EvalStmtResult!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4387)
;
4388}
4389
4390/// Evaluate a switch statement.
4391static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4392 const SwitchStmt *SS) {
4393 BlockScopeRAII Scope(Info);
4394
4395 // Evaluate the switch condition.
4396 APSInt Value;
4397 {
4398 if (const Stmt *Init = SS->getInit()) {
4399 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4400 if (ESR != ESR_Succeeded) {
4401 if (ESR != ESR_Failed && !Scope.destroy())
4402 ESR = ESR_Failed;
4403 return ESR;
4404 }
4405 }
4406
4407 FullExpressionRAII CondScope(Info);
4408 if (SS->getConditionVariable() &&
4409 !EvaluateDecl(Info, SS->getConditionVariable()))
4410 return ESR_Failed;
4411 if (!EvaluateInteger(SS->getCond(), Value, Info))
4412 return ESR_Failed;
4413 if (!CondScope.destroy())
4414 return ESR_Failed;
4415 }
4416
4417 // Find the switch case corresponding to the value of the condition.
4418 // FIXME: Cache this lookup.
4419 const SwitchCase *Found = nullptr;
4420 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4421 SC = SC->getNextSwitchCase()) {
4422 if (isa<DefaultStmt>(SC)) {
4423 Found = SC;
4424 continue;
4425 }
4426
4427 const CaseStmt *CS = cast<CaseStmt>(SC);
4428 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4429 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4430 : LHS;
4431 if (LHS <= Value && Value <= RHS) {
4432 Found = SC;
4433 break;
4434 }
4435 }
4436
4437 if (!Found)
4438 return Scope.destroy() ? ESR_Failed : ESR_Succeeded;
4439
4440 // Search the switch body for the switch case and evaluate it from there.
4441 EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4442 if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4443 return ESR_Failed;
4444
4445 switch (ESR) {
4446 case ESR_Break:
4447 return ESR_Succeeded;
4448 case ESR_Succeeded:
4449 case ESR_Continue:
4450 case ESR_Failed:
4451 case ESR_Returned:
4452 return ESR;
4453 case ESR_CaseNotFound:
4454 // This can only happen if the switch case is nested within a statement
4455 // expression. We have no intention of supporting that.
4456 Info.FFDiag(Found->getBeginLoc(),
4457 diag::note_constexpr_stmt_expr_unsupported);
4458 return ESR_Failed;
4459 }
4460 llvm_unreachable("Invalid EvalStmtResult!")::llvm::llvm_unreachable_internal("Invalid EvalStmtResult!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4460)
;
4461}
4462
4463// Evaluate a statement.
4464static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4465 const Stmt *S, const SwitchCase *Case) {
4466 if (!Info.nextStep(S))
4467 return ESR_Failed;
4468
4469 // If we're hunting down a 'case' or 'default' label, recurse through
4470 // substatements until we hit the label.
4471 if (Case) {
4472 switch (S->getStmtClass()) {
4473 case Stmt::CompoundStmtClass:
4474 // FIXME: Precompute which substatement of a compound statement we
4475 // would jump to, and go straight there rather than performing a
4476 // linear scan each time.
4477 case Stmt::LabelStmtClass:
4478 case Stmt::AttributedStmtClass:
4479 case Stmt::DoStmtClass:
4480 break;
4481
4482 case Stmt::CaseStmtClass:
4483 case Stmt::DefaultStmtClass:
4484 if (Case == S)
4485 Case = nullptr;
4486 break;
4487
4488 case Stmt::IfStmtClass: {
4489 // FIXME: Precompute which side of an 'if' we would jump to, and go
4490 // straight there rather than scanning both sides.
4491 const IfStmt *IS = cast<IfStmt>(S);
4492
4493 // Wrap the evaluation in a block scope, in case it's a DeclStmt
4494 // preceded by our switch label.
4495 BlockScopeRAII Scope(Info);
4496
4497 // Step into the init statement in case it brings an (uninitialized)
4498 // variable into scope.
4499 if (const Stmt *Init = IS->getInit()) {
4500 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4501 if (ESR != ESR_CaseNotFound) {
4502 assert(ESR != ESR_Succeeded)((ESR != ESR_Succeeded) ? static_cast<void> (0) : __assert_fail
("ESR != ESR_Succeeded", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4502, __PRETTY_FUNCTION__))
;
4503 return ESR;
4504 }
4505 }
4506
4507 // Condition variable must be initialized if it exists.
4508 // FIXME: We can skip evaluating the body if there's a condition
4509 // variable, as there can't be any case labels within it.
4510 // (The same is true for 'for' statements.)
4511
4512 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
4513 if (ESR == ESR_Failed)
4514 return ESR;
4515 if (ESR != ESR_CaseNotFound)
4516 return Scope.destroy() ? ESR : ESR_Failed;
4517 if (!IS->getElse())
4518 return ESR_CaseNotFound;
4519
4520 ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
4521 if (ESR == ESR_Failed)
4522 return ESR;
4523 if (ESR != ESR_CaseNotFound)
4524 return Scope.destroy() ? ESR : ESR_Failed;
4525 return ESR_CaseNotFound;
4526 }
4527
4528 case Stmt::WhileStmtClass: {
4529 EvalStmtResult ESR =
4530 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
4531 if (ESR != ESR_Continue)
4532 return ESR;
4533 break;
4534 }
4535
4536 case Stmt::ForStmtClass: {
4537 const ForStmt *FS = cast<ForStmt>(S);
4538 BlockScopeRAII Scope(Info);
4539
4540 // Step into the init statement in case it brings an (uninitialized)
4541 // variable into scope.
4542 if (const Stmt *Init = FS->getInit()) {
4543 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
4544 if (ESR != ESR_CaseNotFound) {
4545 assert(ESR != ESR_Succeeded)((ESR != ESR_Succeeded) ? static_cast<void> (0) : __assert_fail
("ESR != ESR_Succeeded", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 4545, __PRETTY_FUNCTION__))
;
4546 return ESR;
4547 }
4548 }
4549
4550 EvalStmtResult ESR =
4551 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
4552 if (ESR != ESR_Continue)
4553 return ESR;
4554 if (FS->getInc()) {
4555 FullExpressionRAII IncScope(Info);
4556 if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4557 return ESR_Failed;
4558 }
4559 break;
4560 }
4561
4562 case Stmt::DeclStmtClass: {
4563 // Start the lifetime of any uninitialized variables we encounter. They
4564 // might be used by the selected branch of the switch.
4565 const DeclStmt *DS = cast<DeclStmt>(S);
4566 for (const auto *D : DS->decls()) {
4567 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4568 if (VD->hasLocalStorage() && !VD->getInit())
4569 if (!EvaluateVarDecl(Info, VD))
4570 return ESR_Failed;
4571 // FIXME: If the variable has initialization that can't be jumped
4572 // over, bail out of any immediately-surrounding compound-statement
4573 // too. There can't be any case labels here.
4574 }
4575 }
4576 return ESR_CaseNotFound;
4577 }
4578
4579 default:
4580 return ESR_CaseNotFound;
4581 }
4582 }
4583
4584 switch (S->getStmtClass()) {
4585 default:
4586 if (const Expr *E = dyn_cast<Expr>(S)) {
4587 // Don't bother evaluating beyond an expression-statement which couldn't
4588 // be evaluated.
4589 // FIXME: Do we need the FullExpressionRAII object here?
4590 // VisitExprWithCleanups should create one when necessary.
4591 FullExpressionRAII Scope(Info);
4592 if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
4593 return ESR_Failed;
4594 return ESR_Succeeded;
4595 }
4596
4597 Info.FFDiag(S->getBeginLoc());
4598 return ESR_Failed;
4599
4600 case Stmt::NullStmtClass:
4601 return ESR_Succeeded;
4602
4603 case Stmt::DeclStmtClass: {
4604 const DeclStmt *DS = cast<DeclStmt>(S);
4605 for (const auto *D : DS->decls()) {
4606 // Each declaration initialization is its own full-expression.
4607 FullExpressionRAII Scope(Info);
4608 if (!EvaluateDecl(Info, D) && !Info.noteFailure())
4609 return ESR_Failed;
4610 if (!Scope.destroy())
4611 return ESR_Failed;
4612 }
4613 return ESR_Succeeded;
4614 }
4615
4616 case Stmt::ReturnStmtClass: {
4617 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
4618 FullExpressionRAII Scope(Info);
4619 if (RetExpr &&
4620 !(Result.Slot
4621 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
4622 : Evaluate(Result.Value, Info, RetExpr)))
4623 return ESR_Failed;
4624 return Scope.destroy() ? ESR_Returned : ESR_Failed;
4625 }
4626
4627 case Stmt::CompoundStmtClass: {
4628 BlockScopeRAII Scope(Info);
4629
4630 const CompoundStmt *CS = cast<CompoundStmt>(S);
4631 for (const auto *BI : CS->body()) {
4632 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
4633 if (ESR == ESR_Succeeded)
4634 Case = nullptr;
4635 else if (ESR != ESR_CaseNotFound) {
4636 if (ESR != ESR_Failed && !Scope.destroy())
4637 return ESR_Failed;
4638 return ESR;
4639 }
4640 }
4641 if (Case)
4642 return ESR_CaseNotFound;
4643 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4644 }
4645
4646 case Stmt::IfStmtClass: {
4647 const IfStmt *IS = cast<IfStmt>(S);
4648
4649 // Evaluate the condition, as either a var decl or as an expression.
4650 BlockScopeRAII Scope(Info);
4651 if (const Stmt *Init = IS->getInit()) {
4652 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4653 if (ESR != ESR_Succeeded) {
4654 if (ESR != ESR_Failed && !Scope.destroy())
4655 return ESR_Failed;
4656 return ESR;
4657 }
4658 }
4659 bool Cond;
4660 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
4661 return ESR_Failed;
4662
4663 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
4664 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
4665 if (ESR != ESR_Succeeded) {
4666 if (ESR != ESR_Failed && !Scope.destroy())
4667 return ESR_Failed;
4668 return ESR;
4669 }
4670 }
4671 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4672 }
4673
4674 case Stmt::WhileStmtClass: {
4675 const WhileStmt *WS = cast<WhileStmt>(S);
4676 while (true) {
4677 BlockScopeRAII Scope(Info);
4678 bool Continue;
4679 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
4680 Continue))
4681 return ESR_Failed;
4682 if (!Continue)
4683 break;
4684
4685 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
4686 if (ESR != ESR_Continue) {
4687 if (ESR != ESR_Failed && !Scope.destroy())
4688 return ESR_Failed;
4689 return ESR;
4690 }
4691 if (!Scope.destroy())
4692 return ESR_Failed;
4693 }
4694 return ESR_Succeeded;
4695 }
4696
4697 case Stmt::DoStmtClass: {
4698 const DoStmt *DS = cast<DoStmt>(S);
4699 bool Continue;
4700 do {
4701 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
4702 if (ESR != ESR_Continue)
4703 return ESR;
4704 Case = nullptr;
4705
4706 FullExpressionRAII CondScope(Info);
4707 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
4708 !CondScope.destroy())
4709 return ESR_Failed;
4710 } while (Continue);
4711 return ESR_Succeeded;
4712 }
4713
4714 case Stmt::ForStmtClass: {
4715 const ForStmt *FS = cast<ForStmt>(S);
4716 BlockScopeRAII ForScope(Info);
4717 if (FS->getInit()) {
4718 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4719 if (ESR != ESR_Succeeded) {
4720 if (ESR != ESR_Failed && !ForScope.destroy())
4721 return ESR_Failed;
4722 return ESR;
4723 }
4724 }
4725 while (true) {
4726 BlockScopeRAII IterScope(Info);
4727 bool Continue = true;
4728 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
4729 FS->getCond(), Continue))
4730 return ESR_Failed;
4731 if (!Continue)
4732 break;
4733
4734 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4735 if (ESR != ESR_Continue) {
4736 if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
4737 return ESR_Failed;
4738 return ESR;
4739 }
4740
4741 if (FS->getInc()) {
4742 FullExpressionRAII IncScope(Info);
4743 if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
4744 return ESR_Failed;
4745 }
4746
4747 if (!IterScope.destroy())
4748 return ESR_Failed;
4749 }
4750 return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
4751 }
4752
4753 case Stmt::CXXForRangeStmtClass: {
4754 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
4755 BlockScopeRAII Scope(Info);
4756
4757 // Evaluate the init-statement if present.
4758 if (FS->getInit()) {
4759 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4760 if (ESR != ESR_Succeeded) {
4761 if (ESR != ESR_Failed && !Scope.destroy())
4762 return ESR_Failed;
4763 return ESR;
4764 }
4765 }
4766
4767 // Initialize the __range variable.
4768 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
4769 if (ESR != ESR_Succeeded) {
4770 if (ESR != ESR_Failed && !Scope.destroy())
4771 return ESR_Failed;
4772 return ESR;
4773 }
4774
4775 // Create the __begin and __end iterators.
4776 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
4777 if (ESR != ESR_Succeeded) {
4778 if (ESR != ESR_Failed && !Scope.destroy())
4779 return ESR_Failed;
4780 return ESR;
4781 }
4782 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
4783 if (ESR != ESR_Succeeded) {
4784 if (ESR != ESR_Failed && !Scope.destroy())
4785 return ESR_Failed;
4786 return ESR;
4787 }
4788
4789 while (true) {
4790 // Condition: __begin != __end.
4791 {
4792 bool Continue = true;
4793 FullExpressionRAII CondExpr(Info);
4794 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
4795 return ESR_Failed;
4796 if (!Continue)
4797 break;
4798 }
4799
4800 // User's variable declaration, initialized by *__begin.
4801 BlockScopeRAII InnerScope(Info);
4802 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
4803 if (ESR != ESR_Succeeded) {
4804 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
4805 return ESR_Failed;
4806 return ESR;
4807 }
4808
4809 // Loop body.
4810 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4811 if (ESR != ESR_Continue) {
4812 if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
4813 return ESR_Failed;
4814 return ESR;
4815 }
4816
4817 // Increment: ++__begin
4818 if (!EvaluateIgnoredValue(Info, FS->getInc()))
4819 return ESR_Failed;
4820
4821 if (!InnerScope.destroy())
4822 return ESR_Failed;
4823 }
4824
4825 return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4826 }
4827
4828 case Stmt::SwitchStmtClass:
4829 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
4830
4831 case Stmt::ContinueStmtClass:
4832 return ESR_Continue;
4833
4834 case Stmt::BreakStmtClass:
4835 return ESR_Break;
4836
4837 case Stmt::LabelStmtClass:
4838 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
4839
4840 case Stmt::AttributedStmtClass:
4841 // As a general principle, C++11 attributes can be ignored without
4842 // any semantic impact.
4843 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
4844 Case);
4845
4846 case Stmt::CaseStmtClass:
4847 case Stmt::DefaultStmtClass:
4848 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
4849 case Stmt::CXXTryStmtClass:
4850 // Evaluate try blocks by evaluating all sub statements.
4851 return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
4852 }
4853}
4854
4855/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
4856/// default constructor. If so, we'll fold it whether or not it's marked as
4857/// constexpr. If it is marked as constexpr, we will never implicitly define it,
4858/// so we need special handling.
4859static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
4860 const CXXConstructorDecl *CD,
4861 bool IsValueInitialization) {
4862 if (!CD->isTrivial() || !CD->isDefaultConstructor())
4863 return false;
4864
4865 // Value-initialization does not call a trivial default constructor, so such a
4866 // call is a core constant expression whether or not the constructor is
4867 // constexpr.
4868 if (!CD->isConstexpr() && !IsValueInitialization) {
4869 if (Info.getLangOpts().CPlusPlus11) {
4870 // FIXME: If DiagDecl is an implicitly-declared special member function,
4871 // we should be much more explicit about why it's not constexpr.
4872 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
4873 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
4874 Info.Note(CD->getLocation(), diag::note_declared_at);
4875 } else {
4876 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
4877 }
4878 }
4879 return true;
4880}
4881
4882/// CheckConstexprFunction - Check that a function can be called in a constant
4883/// expression.
4884static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
4885 const FunctionDecl *Declaration,
4886 const FunctionDecl *Definition,
4887 const Stmt *Body) {
4888 // Potential constant expressions can contain calls to declared, but not yet
4889 // defined, constexpr functions.
4890 if (Info.checkingPotentialConstantExpression() && !Definition &&
18
Assuming the condition is false
4891 Declaration->isConstexpr())
4892 return false;
4893
4894 // Bail out if the function declaration itself is invalid. We will
4895 // have produced a relevant diagnostic while parsing it, so just
4896 // note the problematic sub-expression.
4897 if (Declaration->isInvalidDecl()) {
19
Assuming the condition is false
20
Taking false branch
4898 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4899 return false;
4900 }
4901
4902 // DR1872: An instantiated virtual constexpr function can't be called in a
4903 // constant expression (prior to C++20). We can still constant-fold such a
4904 // call.
4905 if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) &&
21
Assuming field 'CPlusPlus2a' is not equal to 0
4906 cast<CXXMethodDecl>(Declaration)->isVirtual())
4907 Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
4908
4909 if (Definition && Definition->isInvalidDecl()) {
22
Assuming 'Definition' is non-null
23
Assuming the condition is false
24
Taking false branch
4910 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4911 return false;
4912 }
4913
4914 // Can we evaluate this function call?
4915 if (Definition
24.1
'Definition' is non-null
24.1
'Definition' is non-null
24.1
'Definition' is non-null
&& Definition->isConstexpr() && Body)
25
Assuming 'Body' is non-null
26
Taking true branch
4916 return true;
4917
4918 if (Info.getLangOpts().CPlusPlus11) {
4919 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
4920
4921 // If this function is not constexpr because it is an inherited
4922 // non-constexpr constructor, diagnose that directly.
4923 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
4924 if (CD && CD->isInheritingConstructor()) {
4925 auto *Inherited = CD->getInheritedConstructor().getConstructor();
4926 if (!Inherited->isConstexpr())
4927 DiagDecl = CD = Inherited;
4928 }
4929
4930 // FIXME: If DiagDecl is an implicitly-declared special member function
4931 // or an inheriting constructor, we should be much more explicit about why
4932 // it's not constexpr.
4933 if (CD && CD->isInheritingConstructor())
4934 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
4935 << CD->getInheritedConstructor().getConstructor()->getParent();
4936 else
4937 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
4938 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
4939 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
4940 } else {
4941 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4942 }
4943 return false;
4944}
4945
4946namespace {
4947struct CheckDynamicTypeHandler {
4948 AccessKinds AccessKind;
4949 typedef bool result_type;
4950 bool failed() { return false; }
4951 bool found(APValue &Subobj, QualType SubobjType) { return true; }
4952 bool found(APSInt &Value, QualType SubobjType) { return true; }
4953 bool found(APFloat &Value, QualType SubobjType) { return true; }
4954};
4955} // end anonymous namespace
4956
4957/// Check that we can access the notional vptr of an object / determine its
4958/// dynamic type.
4959static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
4960 AccessKinds AK, bool Polymorphic) {
4961 if (This.Designator.Invalid)
4962 return false;
4963
4964 CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
4965
4966 if (!Obj)
4967 return false;
4968
4969 if (!Obj.Value) {
4970 // The object is not usable in constant expressions, so we can't inspect
4971 // its value to see if it's in-lifetime or what the active union members
4972 // are. We can still check for a one-past-the-end lvalue.
4973 if (This.Designator.isOnePastTheEnd() ||
4974 This.Designator.isMostDerivedAnUnsizedArray()) {
4975 Info.FFDiag(E, This.Designator.isOnePastTheEnd()
4976 ? diag::note_constexpr_access_past_end
4977 : diag::note_constexpr_access_unsized_array)
4978 << AK;
4979 return false;
4980 } else if (Polymorphic) {
4981 // Conservatively refuse to perform a polymorphic operation if we would
4982 // not be able to read a notional 'vptr' value.
4983 APValue Val;
4984 This.moveInto(Val);
4985 QualType StarThisType =
4986 Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
4987 Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
4988 << AK << Val.getAsString(Info.Ctx, StarThisType);
4989 return false;
4990 }
4991 return true;
4992 }
4993
4994 CheckDynamicTypeHandler Handler{AK};
4995 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
4996}
4997
4998/// Check that the pointee of the 'this' pointer in a member function call is
4999/// either within its lifetime or in its period of construction or destruction.
5000static bool
5001checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5002 const LValue &This,
5003 const CXXMethodDecl *NamedMember) {
5004 return checkDynamicType(
5005 Info, E, This,
5006 isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5007}
5008
5009struct DynamicType {
5010 /// The dynamic class type of the object.
5011 const CXXRecordDecl *Type;
5012 /// The corresponding path length in the lvalue.
5013 unsigned PathLength;
5014};
5015
5016static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5017 unsigned PathLength) {
5018 assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=((PathLength >= Designator.MostDerivedPathLength &&
PathLength <= Designator.Entries.size() && "invalid path length"
) ? static_cast<void> (0) : __assert_fail ("PathLength >= Designator.MostDerivedPathLength && PathLength <= Designator.Entries.size() && \"invalid path length\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5019, __PRETTY_FUNCTION__))
5019 Designator.Entries.size() && "invalid path length")((PathLength >= Designator.MostDerivedPathLength &&
PathLength <= Designator.Entries.size() && "invalid path length"
) ? static_cast<void> (0) : __assert_fail ("PathLength >= Designator.MostDerivedPathLength && PathLength <= Designator.Entries.size() && \"invalid path length\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5019, __PRETTY_FUNCTION__))
;
5020 return (PathLength == Designator.MostDerivedPathLength)
5021 ? Designator.MostDerivedType->getAsCXXRecordDecl()
5022 : getAsBaseClass(Designator.Entries[PathLength - 1]);
5023}
5024
5025/// Determine the dynamic type of an object.
5026static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5027 LValue &This, AccessKinds AK) {
5028 // If we don't have an lvalue denoting an object of class type, there is no
5029 // meaningful dynamic type. (We consider objects of non-class type to have no
5030 // dynamic type.)
5031 if (!checkDynamicType(Info, E, This, AK, true))
5032 return None;
5033
5034 // Refuse to compute a dynamic type in the presence of virtual bases. This
5035 // shouldn't happen other than in constant-folding situations, since literal
5036 // types can't have virtual bases.
5037 //
5038 // Note that consumers of DynamicType assume that the type has no virtual
5039 // bases, and will need modifications if this restriction is relaxed.
5040 const CXXRecordDecl *Class =
5041 This.Designator.MostDerivedType->getAsCXXRecordDecl();
5042 if (!Class || Class->getNumVBases()) {
5043 Info.FFDiag(E);
5044 return None;
5045 }
5046
5047 // FIXME: For very deep class hierarchies, it might be beneficial to use a
5048 // binary search here instead. But the overwhelmingly common case is that
5049 // we're not in the middle of a constructor, so it probably doesn't matter
5050 // in practice.
5051 ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5052 for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5053 PathLength <= Path.size(); ++PathLength) {
5054 switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5055 Path.slice(0, PathLength))) {
5056 case ConstructionPhase::Bases:
5057 case ConstructionPhase::DestroyingBases:
5058 // We're constructing or destroying a base class. This is not the dynamic
5059 // type.
5060 break;
5061
5062 case ConstructionPhase::None:
5063 case ConstructionPhase::AfterBases:
5064 case ConstructionPhase::Destroying:
5065 // We've finished constructing the base classes and not yet started
5066 // destroying them again, so this is the dynamic type.
5067 return DynamicType{getBaseClassType(This.Designator, PathLength),
5068 PathLength};
5069 }
5070 }
5071
5072 // CWG issue 1517: we're constructing a base class of the object described by
5073 // 'This', so that object has not yet begun its period of construction and
5074 // any polymorphic operation on it results in undefined behavior.
5075 Info.FFDiag(E);
5076 return None;
5077}
5078
5079/// Perform virtual dispatch.
5080static const CXXMethodDecl *HandleVirtualDispatch(
5081 EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5082 llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5083 Optional<DynamicType> DynType = ComputeDynamicType(
5084 Info, E, This,
5085 isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5086 if (!DynType)
5087 return nullptr;
5088
5089 // Find the final overrider. It must be declared in one of the classes on the
5090 // path from the dynamic type to the static type.
5091 // FIXME: If we ever allow literal types to have virtual base classes, that
5092 // won't be true.
5093 const CXXMethodDecl *Callee = Found;
5094 unsigned PathLength = DynType->PathLength;
5095 for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5096 const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5097 const CXXMethodDecl *Overrider =
5098 Found->getCorrespondingMethodDeclaredInClass(Class, false);
5099 if (Overrider) {
5100 Callee = Overrider;
5101 break;
5102 }
5103 }
5104
5105 // C++2a [class.abstract]p6:
5106 // the effect of making a virtual call to a pure virtual function [...] is
5107 // undefined
5108 if (Callee->isPure()) {
5109 Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5110 Info.Note(Callee->getLocation(), diag::note_declared_at);
5111 return nullptr;
5112 }
5113
5114 // If necessary, walk the rest of the path to determine the sequence of
5115 // covariant adjustment steps to apply.
5116 if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5117 Found->getReturnType())) {
5118 CovariantAdjustmentPath.push_back(Callee->getReturnType());
5119 for (unsigned CovariantPathLength = PathLength + 1;
5120 CovariantPathLength != This.Designator.Entries.size();
5121 ++CovariantPathLength) {
5122 const CXXRecordDecl *NextClass =
5123 getBaseClassType(This.Designator, CovariantPathLength);
5124 const CXXMethodDecl *Next =
5125 Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5126 if (Next && !Info.Ctx.hasSameUnqualifiedType(
5127 Next->getReturnType(), CovariantAdjustmentPath.back()))
5128 CovariantAdjustmentPath.push_back(Next->getReturnType());
5129 }
5130 if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5131 CovariantAdjustmentPath.back()))
5132 CovariantAdjustmentPath.push_back(Found->getReturnType());
5133 }
5134
5135 // Perform 'this' adjustment.
5136 if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5137 return nullptr;
5138
5139 return Callee;
5140}
5141
5142/// Perform the adjustment from a value returned by a virtual function to
5143/// a value of the statically expected type, which may be a pointer or
5144/// reference to a base class of the returned type.
5145static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5146 APValue &Result,
5147 ArrayRef<QualType> Path) {
5148 assert(Result.isLValue() &&((Result.isLValue() && "unexpected kind of APValue for covariant return"
) ? static_cast<void> (0) : __assert_fail ("Result.isLValue() && \"unexpected kind of APValue for covariant return\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5149, __PRETTY_FUNCTION__))
5149 "unexpected kind of APValue for covariant return")((Result.isLValue() && "unexpected kind of APValue for covariant return"
) ? static_cast<void> (0) : __assert_fail ("Result.isLValue() && \"unexpected kind of APValue for covariant return\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5149, __PRETTY_FUNCTION__))
;
5150 if (Result.isNullPointer())
5151 return true;
5152
5153 LValue LVal;
5154 LVal.setFrom(Info.Ctx, Result);
5155
5156 const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5157 for (unsigned I = 1; I != Path.size(); ++I) {
5158 const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5159 assert(OldClass && NewClass && "unexpected kind of covariant return")((OldClass && NewClass && "unexpected kind of covariant return"
) ? static_cast<void> (0) : __assert_fail ("OldClass && NewClass && \"unexpected kind of covariant return\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5159, __PRETTY_FUNCTION__))
;
5160 if (OldClass != NewClass &&
5161 !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5162 return false;
5163 OldClass = NewClass;
5164 }
5165
5166 LVal.moveInto(Result);
5167 return true;
5168}
5169
5170/// Determine whether \p Base, which is known to be a direct base class of
5171/// \p Derived, is a public base class.
5172static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5173 const CXXRecordDecl *Base) {
5174 for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5175 auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5176 if (BaseClass && declaresSameEntity(BaseClass, Base))
5177 return BaseSpec.getAccessSpecifier() == AS_public;
5178 }
5179 llvm_unreachable("Base is not a direct base of Derived")::llvm::llvm_unreachable_internal("Base is not a direct base of Derived"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5179)
;
5180}
5181
5182/// Apply the given dynamic cast operation on the provided lvalue.
5183///
5184/// This implements the hard case of dynamic_cast, requiring a "runtime check"
5185/// to find a suitable target subobject.
5186static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5187 LValue &Ptr) {
5188 // We can't do anything with a non-symbolic pointer value.
5189 SubobjectDesignator &D = Ptr.Designator;
5190 if (D.Invalid)
5191 return false;
5192
5193 // C++ [expr.dynamic.cast]p6:
5194 // If v is a null pointer value, the result is a null pointer value.
5195 if (Ptr.isNullPointer() && !E->isGLValue())
5196 return true;
5197
5198 // For all the other cases, we need the pointer to point to an object within
5199 // its lifetime / period of construction / destruction, and we need to know
5200 // its dynamic type.
5201 Optional<DynamicType> DynType =
5202 ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5203 if (!DynType)
5204 return false;
5205
5206 // C++ [expr.dynamic.cast]p7:
5207 // If T is "pointer to cv void", then the result is a pointer to the most
5208 // derived object
5209 if (E->getType()->isVoidPointerType())
5210 return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5211
5212 const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5213 assert(C && "dynamic_cast target is not void pointer nor class")((C && "dynamic_cast target is not void pointer nor class"
) ? static_cast<void> (0) : __assert_fail ("C && \"dynamic_cast target is not void pointer nor class\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5213, __PRETTY_FUNCTION__))
;
5214 CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5215
5216 auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5217 // C++ [expr.dynamic.cast]p9:
5218 if (!E->isGLValue()) {
5219 // The value of a failed cast to pointer type is the null pointer value
5220 // of the required result type.
5221 Ptr.setNull(Info.Ctx, E->getType());
5222 return true;
5223 }
5224
5225 // A failed cast to reference type throws [...] std::bad_cast.
5226 unsigned DiagKind;
5227 if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5228 DynType->Type->isDerivedFrom(C)))
5229 DiagKind = 0;
5230 else if (!Paths || Paths->begin() == Paths->end())
5231 DiagKind = 1;
5232 else if (Paths->isAmbiguous(CQT))
5233 DiagKind = 2;
5234 else {
5235 assert(Paths->front().Access != AS_public && "why did the cast fail?")((Paths->front().Access != AS_public && "why did the cast fail?"
) ? static_cast<void> (0) : __assert_fail ("Paths->front().Access != AS_public && \"why did the cast fail?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5235, __PRETTY_FUNCTION__))
;
5236 DiagKind = 3;
5237 }
5238 Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5239 << DiagKind << Ptr.Designator.getType(Info.Ctx)
5240 << Info.Ctx.getRecordType(DynType->Type)
5241 << E->getType().getUnqualifiedType();
5242 return false;
5243 };
5244
5245 // Runtime check, phase 1:
5246 // Walk from the base subobject towards the derived object looking for the
5247 // target type.
5248 for (int PathLength = Ptr.Designator.Entries.size();
5249 PathLength >= (int)DynType->PathLength; --PathLength) {
5250 const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5251 if (declaresSameEntity(Class, C))
5252 return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5253 // We can only walk across public inheritance edges.
5254 if (PathLength > (int)DynType->PathLength &&
5255 !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5256 Class))
5257 return RuntimeCheckFailed(nullptr);
5258 }
5259
5260 // Runtime check, phase 2:
5261 // Search the dynamic type for an unambiguous public base of type C.
5262 CXXBasePaths Paths(/*FindAmbiguities=*/true,
5263 /*RecordPaths=*/true, /*DetectVirtual=*/false);
5264 if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5265 Paths.front().Access == AS_public) {
5266 // Downcast to the dynamic type...
5267 if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5268 return false;
5269 // ... then upcast to the chosen base class subobject.
5270 for (CXXBasePathElement &Elem : Paths.front())
5271 if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5272 return false;
5273 return true;
5274 }
5275
5276 // Otherwise, the runtime check fails.
5277 return RuntimeCheckFailed(&Paths);
5278}
5279
5280namespace {
5281struct StartLifetimeOfUnionMemberHandler {
5282 const FieldDecl *Field;
5283
5284 static const AccessKinds AccessKind = AK_Assign;
5285
5286 typedef bool result_type;
5287 bool failed() { return false; }
5288 bool found(APValue &Subobj, QualType SubobjType) {
5289 // We are supposed to perform no initialization but begin the lifetime of
5290 // the object. We interpret that as meaning to do what default
5291 // initialization of the object would do if all constructors involved were
5292 // trivial:
5293 // * All base, non-variant member, and array element subobjects' lifetimes
5294 // begin
5295 // * No variant members' lifetimes begin
5296 // * All scalar subobjects whose lifetimes begin have indeterminate values
5297 assert(SubobjType->isUnionType())((SubobjType->isUnionType()) ? static_cast<void> (0)
: __assert_fail ("SubobjType->isUnionType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5297, __PRETTY_FUNCTION__))
;
5298 if (!declaresSameEntity(Subobj.getUnionField(), Field) ||
5299 !Subobj.getUnionValue().hasValue())
5300 Subobj.setUnion(Field, getDefaultInitValue(Field->getType()));
5301 return true;
5302 }
5303 bool found(APSInt &Value, QualType SubobjType) {
5304 llvm_unreachable("wrong value kind for union object")::llvm::llvm_unreachable_internal("wrong value kind for union object"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5304)
;
5305 }
5306 bool found(APFloat &Value, QualType SubobjType) {
5307 llvm_unreachable("wrong value kind for union object")::llvm::llvm_unreachable_internal("wrong value kind for union object"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5307)
;
5308 }
5309};
5310} // end anonymous namespace
5311
5312const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5313
5314/// Handle a builtin simple-assignment or a call to a trivial assignment
5315/// operator whose left-hand side might involve a union member access. If it
5316/// does, implicitly start the lifetime of any accessed union elements per
5317/// C++20 [class.union]5.
5318static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5319 const LValue &LHS) {
5320 if (LHS.InvalidBase || LHS.Designator.Invalid)
63
Assuming field 'InvalidBase' is false
64
Assuming field 'Invalid' is 0
65
Taking false branch
5321 return false;
5322
5323 llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5324 // C++ [class.union]p5:
5325 // define the set S(E) of subexpressions of E as follows:
5326 unsigned PathLength = LHS.Designator.Entries.size();
5327 for (const Expr *E = LHSExpr; E != nullptr;) {
66
Assuming the condition is false
67
Assuming pointer value is null
68
Loop condition is false. Execution continues on line 5381
5328 // -- If E is of the form A.B, S(E) contains the elements of S(A)...
5329 if (auto *ME = dyn_cast<MemberExpr>(E)) {
5330 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5331 // Note that we can't implicitly start the lifetime of a reference,
5332 // so we don't need to proceed any further if we reach one.
5333 if (!FD || FD->getType()->isReferenceType())
5334 break;
5335
5336 // ... and also contains A.B if B names a union member
5337 if (FD->getParent()->isUnion())
5338 UnionPathLengths.push_back({PathLength - 1, FD});
5339
5340 E = ME->getBase();
5341 --PathLength;
5342 assert(declaresSameEntity(FD,((declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .
getAsBaseOrMember().getPointer())) ? static_cast<void> (
0) : __assert_fail ("declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5344, __PRETTY_FUNCTION__))
5343 LHS.Designator.Entries[PathLength]((declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .
getAsBaseOrMember().getPointer())) ? static_cast<void> (
0) : __assert_fail ("declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5344, __PRETTY_FUNCTION__))
5344 .getAsBaseOrMember().getPointer()))((declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .
getAsBaseOrMember().getPointer())) ? static_cast<void> (
0) : __assert_fail ("declaresSameEntity(FD, LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5344, __PRETTY_FUNCTION__))
;
5345
5346 // -- If E is of the form A[B] and is interpreted as a built-in array
5347 // subscripting operator, S(E) is [S(the array operand, if any)].
5348 } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5349 // Step over an ArrayToPointerDecay implicit cast.
5350 auto *Base = ASE->getBase()->IgnoreImplicit();
5351 if (!Base->getType()->isArrayType())
5352 break;
5353
5354 E = Base;
5355 --PathLength;
5356
5357 } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5358 // Step over a derived-to-base conversion.
5359 E = ICE->getSubExpr();
5360 if (ICE->getCastKind() == CK_NoOp)
5361 continue;
5362 if (ICE->getCastKind() != CK_DerivedToBase &&
5363 ICE->getCastKind() != CK_UncheckedDerivedToBase)
5364 break;
5365 // Walk path backwards as we walk up from the base to the derived class.
5366 for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5367 --PathLength;
5368 (void)Elt;
5369 assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),((declaresSameEntity(Elt->getType()->getAsCXXRecordDecl
(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer
())) ? static_cast<void> (0) : __assert_fail ("declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5371, __PRETTY_FUNCTION__))
5370 LHS.Designator.Entries[PathLength]((declaresSameEntity(Elt->getType()->getAsCXXRecordDecl
(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer
())) ? static_cast<void> (0) : __assert_fail ("declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5371, __PRETTY_FUNCTION__))
5371 .getAsBaseOrMember().getPointer()))((declaresSameEntity(Elt->getType()->getAsCXXRecordDecl
(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer
())) ? static_cast<void> (0) : __assert_fail ("declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), LHS.Designator.Entries[PathLength] .getAsBaseOrMember().getPointer())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5371, __PRETTY_FUNCTION__))
;
5372 }
5373
5374 // -- Otherwise, S(E) is empty.
5375 } else {
5376 break;
5377 }
5378 }
5379
5380 // Common case: no unions' lifetimes are started.
5381 if (UnionPathLengths.empty())
69
Calling 'SmallVectorBase::empty'
72
Returning from 'SmallVectorBase::empty'
73
Taking false branch
5382 return true;
5383
5384 // if modification of X [would access an inactive union member], an object
5385 // of the type of X is implicitly created
5386 CompleteObject Obj =
5387 findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
74
Called C++ object pointer is null
5388 if (!Obj)
5389 return false;
5390 for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5391 llvm::reverse(UnionPathLengths)) {
5392 // Form a designator for the union object.
5393 SubobjectDesignator D = LHS.Designator;
5394 D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5395
5396 StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second};
5397 if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5398 return false;
5399 }
5400
5401 return true;
5402}
5403
5404/// Determine if a class has any fields that might need to be copied by a
5405/// trivial copy or move operation.
5406static bool hasFields(const CXXRecordDecl *RD) {
5407 if (!RD || RD->isEmpty())
5408 return false;
5409 for (auto *FD : RD->fields()) {
5410 if (FD->isUnnamedBitfield())
5411 continue;
5412 return true;
5413 }
5414 for (auto &Base : RD->bases())
5415 if (hasFields(Base.getType()->getAsCXXRecordDecl()))
5416 return true;
5417 return false;
5418}
5419
5420namespace {
5421typedef SmallVector<APValue, 8> ArgVector;
5422}
5423
5424/// EvaluateArgs - Evaluate the arguments to a function call.
5425static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
5426 EvalInfo &Info, const FunctionDecl *Callee) {
5427 bool Success = true;
5428 llvm::SmallBitVector ForbiddenNullArgs;
5429 if (Callee->hasAttr<NonNullAttr>()) {
30
Taking false branch
5430 ForbiddenNullArgs.resize(Args.size());
5431 for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
5432 if (!Attr->args_size()) {
5433 ForbiddenNullArgs.set();
5434 break;
5435 } else
5436 for (auto Idx : Attr->args()) {
5437 unsigned ASTIdx = Idx.getASTIndex();
5438 if (ASTIdx >= Args.size())
5439 continue;
5440 ForbiddenNullArgs[ASTIdx] = 1;
5441 }
5442 }
5443 }
5444 for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
31
Assuming the condition is false
32
Loop condition is false. Execution continues on line 5461
5445 if (!Evaluate(ArgValues[Idx], Info, Args[Idx])) {
5446 // If we're checking for a potential constant expression, evaluate all
5447 // initializers even if some of them fail.
5448 if (!Info.noteFailure())
5449 return false;
5450 Success = false;
5451 } else if (!ForbiddenNullArgs.empty() &&
5452 ForbiddenNullArgs[Idx] &&
5453 ArgValues[Idx].isLValue() &&
5454 ArgValues[Idx].isNullPointer()) {
5455 Info.CCEDiag(Args[Idx], diag::note_non_null_attribute_failed);
5456 if (!Info.noteFailure())
5457 return false;
5458 Success = false;
5459 }
5460 }
5461 return Success;
33
Returning the value 1 (loaded from 'Success'), which participates in a condition later
5462}
5463
5464/// Evaluate a function call.
5465static bool HandleFunctionCall(SourceLocation CallLoc,
5466 const FunctionDecl *Callee, const LValue *This,
5467 ArrayRef<const Expr*> Args, const Stmt *Body,
5468 EvalInfo &Info, APValue &Result,
5469 const LValue *ResultSlot) {
5470 ArgVector ArgValues(Args.size());
5471 if (!EvaluateArgs(Args, ArgValues, Info, Callee))
29
Calling 'EvaluateArgs'
34
Returning from 'EvaluateArgs'
35
Taking false branch
5472 return false;
5473
5474 if (!Info.CheckCallLimit(CallLoc))
36
Calling 'EvalInfo::CheckCallLimit'
43
Returning from 'EvalInfo::CheckCallLimit'
44
Taking false branch
5475 return false;
5476
5477 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
5478
5479 // For a trivial copy or move assignment, perform an APValue copy. This is
5480 // essential for unions, where the operations performed by the assignment
5481 // operator cannot be represented as statements.
5482 //
5483 // Skip this for non-union classes with no fields; in that case, the defaulted
5484 // copy/move does not actually read the object.
5485 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
45
Assuming 'Callee' is a 'CXXMethodDecl'
5486 if (MD
45.1
'MD' is non-null
45.1
'MD' is non-null
45.1
'MD' is non-null
&& MD->isDefaulted() &&
46
Assuming the condition is true
53
Taking true branch
5487 (MD->getParent()->isUnion() ||
47
Calling 'TagDecl::isUnion'
50
Returning from 'TagDecl::isUnion'
5488 (MD->isTrivial() && hasFields(MD->getParent())))) {
51
Assuming the condition is true
52
Assuming the condition is true
5489 assert
53.1
'This' is non-null
53.1
'This' is non-null
53.1
'This' is non-null
(This &&((This && (MD->isCopyAssignmentOperator() || MD->
isMoveAssignmentOperator())) ? static_cast<void> (0) : __assert_fail
("This && (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5490, __PRETTY_FUNCTION__))
54
Assuming the condition is false
55
Assuming the condition is true
56
'?' condition is true
5490 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))((This && (MD->isCopyAssignmentOperator() || MD->
isMoveAssignmentOperator())) ? static_cast<void> (0) : __assert_fail
("This && (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5490, __PRETTY_FUNCTION__))
;
5491 LValue RHS;
5492 RHS.setFrom(Info.Ctx, ArgValues[0]);
5493 APValue RHSValue;
5494 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(), RHS,
57
Assuming the condition is false
58
Taking false branch
5495 RHSValue, MD->getParent()->isUnion()))
5496 return false;
5497 if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() &&
59
Assuming field 'CPlusPlus2a' is not equal to 0
60
Assuming the condition is true
5498 !HandleUnionActiveMemberChange(Info, Args[0], *This))
61
Passing value via 2nd parameter 'LHSExpr'
62
Calling 'HandleUnionActiveMemberChange'
5499 return false;
5500 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
5501 RHSValue))
5502 return false;
5503 This->moveInto(Result);
5504 return true;
5505 } else if (MD && isLambdaCallOperator(MD)) {
5506 // We're in a lambda; determine the lambda capture field maps unless we're
5507 // just constexpr checking a lambda's call operator. constexpr checking is
5508 // done before the captures have been added to the closure object (unless
5509 // we're inferring constexpr-ness), so we don't have access to them in this
5510 // case. But since we don't need the captures to constexpr check, we can
5511 // just ignore them.
5512 if (!Info.checkingPotentialConstantExpression())
5513 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
5514 Frame.LambdaThisCaptureField);
5515 }
5516
5517 StmtResult Ret = {Result, ResultSlot};
5518 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
5519 if (ESR == ESR_Succeeded) {
5520 if (Callee->getReturnType()->isVoidType())
5521 return true;
5522 Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
5523 }
5524 return ESR == ESR_Returned;
5525}
5526
5527/// Evaluate a constructor call.
5528static bool HandleConstructorCall(const Expr *E, const LValue &This,
5529 APValue *ArgValues,
5530 const CXXConstructorDecl *Definition,
5531 EvalInfo &Info, APValue &Result) {
5532 SourceLocation CallLoc = E->getExprLoc();
5533 if (!Info.CheckCallLimit(CallLoc))
5534 return false;
5535
5536 const CXXRecordDecl *RD = Definition->getParent();
5537 if (RD->getNumVBases()) {
5538 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5539 return false;
5540 }
5541
5542 EvalInfo::EvaluatingConstructorRAII EvalObj(
5543 Info,
5544 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
5545 RD->getNumBases());
5546 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
5547
5548 // FIXME: Creating an APValue just to hold a nonexistent return value is
5549 // wasteful.
5550 APValue RetVal;
5551 StmtResult Ret = {RetVal, nullptr};
5552
5553 // If it's a delegating constructor, delegate.
5554 if (Definition->isDelegatingConstructor()) {
5555 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
5556 {
5557 FullExpressionRAII InitScope(Info);
5558 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
5559 !InitScope.destroy())
5560 return false;
5561 }
5562 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
5563 }
5564
5565 // For a trivial copy or move constructor, perform an APValue copy. This is
5566 // essential for unions (or classes with anonymous union members), where the
5567 // operations performed by the constructor cannot be represented by
5568 // ctor-initializers.
5569 //
5570 // Skip this for empty non-union classes; we should not perform an
5571 // lvalue-to-rvalue conversion on them because their copy constructor does not
5572 // actually read them.
5573 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
5574 (Definition->getParent()->isUnion() ||
5575 (Definition->isTrivial() && hasFields(Definition->getParent())))) {
5576 LValue RHS;
5577 RHS.setFrom(Info.Ctx, ArgValues[0]);
5578 return handleLValueToRValueConversion(
5579 Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
5580 RHS, Result, Definition->getParent()->isUnion());
5581 }
5582
5583 // Reserve space for the struct members.
5584 if (!RD->isUnion() && !Result.hasValue())
5585 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
5586 std::distance(RD->field_begin(), RD->field_end()));
5587
5588 if (RD->isInvalidDecl()) return false;
5589 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5590
5591 // A scope for temporaries lifetime-extended by reference members.
5592 BlockScopeRAII LifetimeExtendedScope(Info);
5593
5594 bool Success = true;
5595 unsigned BasesSeen = 0;
5596#ifndef NDEBUG
5597 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
5598#endif
5599 CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
5600 auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
5601 // We might be initializing the same field again if this is an indirect
5602 // field initialization.
5603 if (FieldIt == RD->field_end() ||
5604 FieldIt->getFieldIndex() > FD->getFieldIndex()) {
5605 assert(Indirect && "fields out of order?")((Indirect && "fields out of order?") ? static_cast<
void> (0) : __assert_fail ("Indirect && \"fields out of order?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5605, __PRETTY_FUNCTION__))
;
5606 return;
5607 }
5608
5609 // Default-initialize any fields with no explicit initializer.
5610 for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
5611 assert(FieldIt != RD->field_end() && "missing field?")((FieldIt != RD->field_end() && "missing field?") ?
static_cast<void> (0) : __assert_fail ("FieldIt != RD->field_end() && \"missing field?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5611, __PRETTY_FUNCTION__))
;
5612 if (!FieldIt->isUnnamedBitfield())
5613 Result.getStructField(FieldIt->getFieldIndex()) =
5614 getDefaultInitValue(FieldIt->getType());
5615 }
5616 ++FieldIt;
5617 };
5618 for (const auto *I : Definition->inits()) {
5619 LValue Subobject = This;
5620 LValue SubobjectParent = This;
5621 APValue *Value = &Result;
5622
5623 // Determine the subobject to initialize.
5624 FieldDecl *FD = nullptr;
5625 if (I->isBaseInitializer()) {
5626 QualType BaseType(I->getBaseClass(), 0);
5627#ifndef NDEBUG
5628 // Non-virtual base classes are initialized in the order in the class
5629 // definition. We have already checked for virtual base classes.
5630 assert(!BaseIt->isVirtual() && "virtual base for literal type")((!BaseIt->isVirtual() && "virtual base for literal type"
) ? static_cast<void> (0) : __assert_fail ("!BaseIt->isVirtual() && \"virtual base for literal type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5630, __PRETTY_FUNCTION__))
;
5631 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&((Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
"base class initializers not in expected order") ? static_cast
<void> (0) : __assert_fail ("Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && \"base class initializers not in expected order\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5632, __PRETTY_FUNCTION__))
5632 "base class initializers not in expected order")((Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
"base class initializers not in expected order") ? static_cast
<void> (0) : __assert_fail ("Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && \"base class initializers not in expected order\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5632, __PRETTY_FUNCTION__))
;
5633 ++BaseIt;
5634#endif
5635 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
5636 BaseType->getAsCXXRecordDecl(), &Layout))
5637 return false;
5638 Value = &Result.getStructBase(BasesSeen++);
5639 } else if ((FD = I->getMember())) {
5640 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
5641 return false;
5642 if (RD->isUnion()) {
5643 Result = APValue(FD);
5644 Value = &Result.getUnionValue();
5645 } else {
5646 SkipToField(FD, false);
5647 Value = &Result.getStructField(FD->getFieldIndex());
5648 }
5649 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
5650 // Walk the indirect field decl's chain to find the object to initialize,
5651 // and make sure we've initialized every step along it.
5652 auto IndirectFieldChain = IFD->chain();
5653 for (auto *C : IndirectFieldChain) {
5654 FD = cast<FieldDecl>(C);
5655 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
5656 // Switch the union field if it differs. This happens if we had
5657 // preceding zero-initialization, and we're now initializing a union
5658 // subobject other than the first.
5659 // FIXME: In this case, the values of the other subobjects are
5660 // specified, since zero-initialization sets all padding bits to zero.
5661 if (!Value->hasValue() ||
5662 (Value->isUnion() && Value->getUnionField() != FD)) {
5663 if (CD->isUnion())
5664 *Value = APValue(FD);
5665 else
5666 // FIXME: This immediately starts the lifetime of all members of an
5667 // anonymous struct. It would be preferable to strictly start member
5668 // lifetime in initialization order.
5669 *Value = getDefaultInitValue(Info.Ctx.getRecordType(CD));
5670 }
5671 // Store Subobject as its parent before updating it for the last element
5672 // in the chain.
5673 if (C == IndirectFieldChain.back())
5674 SubobjectParent = Subobject;
5675 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
5676 return false;
5677 if (CD->isUnion())
5678 Value = &Value->getUnionValue();
5679 else {
5680 if (C == IndirectFieldChain.front() && !RD->isUnion())
5681 SkipToField(FD, true);
5682 Value = &Value->getStructField(FD->getFieldIndex());
5683 }
5684 }
5685 } else {
5686 llvm_unreachable("unknown base initializer kind")::llvm::llvm_unreachable_internal("unknown base initializer kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5686)
;
5687 }
5688
5689 // Need to override This for implicit field initializers as in this case
5690 // This refers to innermost anonymous struct/union containing initializer,
5691 // not to currently constructed class.
5692 const Expr *Init = I->getInit();
5693 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
5694 isa<CXXDefaultInitExpr>(Init));
5695 FullExpressionRAII InitScope(Info);
5696 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
5697 (FD && FD->isBitField() &&
5698 !truncateBitfieldValue(Info, Init, *Value, FD))) {
5699 // If we're checking for a potential constant expression, evaluate all
5700 // initializers even if some of them fail.
5701 if (!Info.noteFailure())
5702 return false;
5703 Success = false;
5704 }
5705
5706 // This is the point at which the dynamic type of the object becomes this
5707 // class type.
5708 if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
5709 EvalObj.finishedConstructingBases();
5710 }
5711
5712 // Default-initialize any remaining fields.
5713 if (!RD->isUnion()) {
5714 for (; FieldIt != RD->field_end(); ++FieldIt) {
5715 if (!FieldIt->isUnnamedBitfield())
5716 Result.getStructField(FieldIt->getFieldIndex()) =
5717 getDefaultInitValue(FieldIt->getType());
5718 }
5719 }
5720
5721 return Success &&
5722 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
5723 LifetimeExtendedScope.destroy();
5724}
5725
5726static bool HandleConstructorCall(const Expr *E, const LValue &This,
5727 ArrayRef<const Expr*> Args,
5728 const CXXConstructorDecl *Definition,
5729 EvalInfo &Info, APValue &Result) {
5730 ArgVector ArgValues(Args.size());
5731 if (!EvaluateArgs(Args, ArgValues, Info, Definition))
5732 return false;
5733
5734 return HandleConstructorCall(E, This, ArgValues.data(), Definition,
5735 Info, Result);
5736}
5737
5738static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
5739 const LValue &This, APValue &Value,
5740 QualType T) {
5741 // Objects can only be destroyed while they're within their lifetimes.
5742 // FIXME: We have no representation for whether an object of type nullptr_t
5743 // is in its lifetime; it usually doesn't matter. Perhaps we should model it
5744 // as indeterminate instead?
5745 if (Value.isAbsent() && !T->isNullPtrType()) {
5746 APValue Printable;
5747 This.moveInto(Printable);
5748 Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
5749 << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
5750 return false;
5751 }
5752
5753 // Invent an expression for location purposes.
5754 // FIXME: We shouldn't need to do this.
5755 OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
5756
5757 // For arrays, destroy elements right-to-left.
5758 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
5759 uint64_t Size = CAT->getSize().getZExtValue();
5760 QualType ElemT = CAT->getElementType();
5761
5762 LValue ElemLV = This;
5763 ElemLV.addArray(Info, &LocE, CAT);
5764 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
5765 return false;
5766
5767 // Ensure that we have actual array elements available to destroy; the
5768 // destructors might mutate the value, so we can't run them on the array
5769 // filler.
5770 if (Size && Size > Value.getArrayInitializedElts())
5771 expandArray(Value, Value.getArraySize() - 1);
5772
5773 for (; Size != 0; --Size) {
5774 APValue &Elem = Value.getArrayInitializedElt(Size - 1);
5775 if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
5776 !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
5777 return false;
5778 }
5779
5780 // End the lifetime of this array now.
5781 Value = APValue();
5782 return true;
5783 }
5784
5785 const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5786 if (!RD) {
5787 if (T.isDestructedType()) {
5788 Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
5789 return false;
5790 }
5791
5792 Value = APValue();
5793 return true;
5794 }
5795
5796 if (RD->getNumVBases()) {
5797 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
5798 return false;
5799 }
5800
5801 const CXXDestructorDecl *DD = RD->getDestructor();
5802 if (!DD && !RD->hasTrivialDestructor()) {
5803 Info.FFDiag(CallLoc);
5804 return false;
5805 }
5806
5807 if (!DD || DD->isTrivial() ||
5808 (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
5809 // A trivial destructor just ends the lifetime of the object. Check for
5810 // this case before checking for a body, because we might not bother
5811 // building a body for a trivial destructor. Note that it doesn't matter
5812 // whether the destructor is constexpr in this case; all trivial
5813 // destructors are constexpr.
5814 //
5815 // If an anonymous union would be destroyed, some enclosing destructor must
5816 // have been explicitly defined, and the anonymous union destruction should
5817 // have no effect.
5818 Value = APValue();
5819 return true;
5820 }
5821
5822 if (!Info.CheckCallLimit(CallLoc))
5823 return false;
5824
5825 const FunctionDecl *Definition = nullptr;
5826 const Stmt *Body = DD->getBody(Definition);
5827
5828 if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
5829 return false;
5830
5831 CallStackFrame Frame(Info, CallLoc, Definition, &This, nullptr);
5832
5833 // We're now in the period of destruction of this object.
5834 unsigned BasesLeft = RD->getNumBases();
5835 EvalInfo::EvaluatingDestructorRAII EvalObj(
5836 Info,
5837 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
5838 if (!EvalObj.DidInsert) {
5839 // C++2a [class.dtor]p19:
5840 // the behavior is undefined if the destructor is invoked for an object
5841 // whose lifetime has ended
5842 // (Note that formally the lifetime ends when the period of destruction
5843 // begins, even though certain uses of the object remain valid until the
5844 // period of destruction ends.)
5845 Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
5846 return false;
5847 }
5848
5849 // FIXME: Creating an APValue just to hold a nonexistent return value is
5850 // wasteful.
5851 APValue RetVal;
5852 StmtResult Ret = {RetVal, nullptr};
5853 if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
5854 return false;
5855
5856 // A union destructor does not implicitly destroy its members.
5857 if (RD->isUnion())
5858 return true;
5859
5860 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5861
5862 // We don't have a good way to iterate fields in reverse, so collect all the
5863 // fields first and then walk them backwards.
5864 SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
5865 for (const FieldDecl *FD : llvm::reverse(Fields)) {
5866 if (FD->isUnnamedBitfield())
5867 continue;
5868
5869 LValue Subobject = This;
5870 if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
5871 return false;
5872
5873 APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
5874 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
5875 FD->getType()))
5876 return false;
5877 }
5878
5879 if (BasesLeft != 0)
5880 EvalObj.startedDestroyingBases();
5881
5882 // Destroy base classes in reverse order.
5883 for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
5884 --BasesLeft;
5885
5886 QualType BaseType = Base.getType();
5887 LValue Subobject = This;
5888 if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
5889 BaseType->getAsCXXRecordDecl(), &Layout))
5890 return false;
5891
5892 APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
5893 if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
5894 BaseType))
5895 return false;
5896 }
5897 assert(BasesLeft == 0 && "NumBases was wrong?")((BasesLeft == 0 && "NumBases was wrong?") ? static_cast
<void> (0) : __assert_fail ("BasesLeft == 0 && \"NumBases was wrong?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 5897, __PRETTY_FUNCTION__))
;
5898
5899 // The period of destruction ends now. The object is gone.
5900 Value = APValue();
5901 return true;
5902}
5903
5904namespace {
5905struct DestroyObjectHandler {
5906 EvalInfo &Info;
5907 const Expr *E;
5908 const LValue &This;
5909 const AccessKinds AccessKind;
5910
5911 typedef bool result_type;
5912 bool failed() { return false; }
5913 bool found(APValue &Subobj, QualType SubobjType) {
5914 return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
5915 SubobjType);
5916 }
5917 bool found(APSInt &Value, QualType SubobjType) {
5918 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
5919 return false;
5920 }
5921 bool found(APFloat &Value, QualType SubobjType) {
5922 Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
5923 return false;
5924 }
5925};
5926}
5927
5928/// Perform a destructor or pseudo-destructor call on the given object, which
5929/// might in general not be a complete object.
5930static bool HandleDestruction(EvalInfo &Info, const Expr *E,
5931 const LValue &This, QualType ThisType) {
5932 CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
5933 DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
5934 return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5935}
5936
5937/// Destroy and end the lifetime of the given complete object.
5938static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
5939 APValue::LValueBase LVBase, APValue &Value,
5940 QualType T) {
5941 // If we've had an unmodeled side-effect, we can't rely on mutable state
5942 // (such as the object we're about to destroy) being correct.
5943 if (Info.EvalStatus.HasSideEffects)
5944 return false;
5945
5946 LValue LV;
5947 LV.set({LVBase});
5948 return HandleDestructionImpl(Info, Loc, LV, Value, T);
5949}
5950
5951/// Perform a call to 'perator new' or to `__builtin_operator_new'.
5952static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
5953 LValue &Result) {
5954 if (Info.checkingPotentialConstantExpression() ||
5955 Info.SpeculativeEvaluationDepth)
5956 return false;
5957
5958 // This is permitted only within a call to std::allocator<T>::allocate.
5959 auto Caller = Info.getStdAllocatorCaller("allocate");
5960 if (!Caller) {
5961 Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus2a
5962 ? diag::note_constexpr_new_untyped
5963 : diag::note_constexpr_new);
5964 return false;
5965 }
5966
5967 QualType ElemType = Caller.ElemType;
5968 if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
5969 Info.FFDiag(E->getExprLoc(),
5970 diag::note_constexpr_new_not_complete_object_type)
5971 << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
5972 return false;
5973 }
5974
5975 APSInt ByteSize;
5976 if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
5977 return false;
5978 bool IsNothrow = false;
5979 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
5980 EvaluateIgnoredValue(Info, E->getArg(I));
5981 IsNothrow |= E->getType()->isNothrowT();
5982 }
5983
5984 CharUnits ElemSize;
5985 if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
5986 return false;
5987 APInt Size, Remainder;
5988 APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
5989 APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
5990 if (Remainder != 0) {
5991 // This likely indicates a bug in the implementation of 'std::allocator'.
5992 Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
5993 << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
5994 return false;
5995 }
5996
5997 if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
5998 if (IsNothrow) {
5999 Result.setNull(Info.Ctx, E->getType());
6000 return true;
6001 }
6002
6003 Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6004 return false;
6005 }
6006
6007 QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6008 ArrayType::Normal, 0);
6009 APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6010 *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6011 Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6012 return true;
6013}
6014
6015static bool hasVirtualDestructor(QualType T) {
6016 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6017 if (CXXDestructorDecl *DD = RD->getDestructor())
6018 return DD->isVirtual();
6019 return false;
6020}
6021
6022static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6023 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6024 if (CXXDestructorDecl *DD = RD->getDestructor())
6025 return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6026 return nullptr;
6027}
6028
6029/// Check that the given object is a suitable pointer to a heap allocation that
6030/// still exists and is of the right kind for the purpose of a deletion.
6031///
6032/// On success, returns the heap allocation to deallocate. On failure, produces
6033/// a diagnostic and returns None.
6034static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6035 const LValue &Pointer,
6036 DynAlloc::Kind DeallocKind) {
6037 auto PointerAsString = [&] {
6038 return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6039 };
6040
6041 DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6042 if (!DA) {
6043 Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6044 << PointerAsString();
6045 if (Pointer.Base)
6046 NoteLValueLocation(Info, Pointer.Base);
6047 return None;
6048 }
6049
6050 Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6051 if (!Alloc) {
6052 Info.FFDiag(E, diag::note_constexpr_double_delete);
6053 return None;
6054 }
6055
6056 QualType AllocType = Pointer.Base.getDynamicAllocType();
6057 if (DeallocKind != (*Alloc)->getKind()) {
6058 Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6059 << DeallocKind << (*Alloc)->getKind() << AllocType;
6060 NoteLValueLocation(Info, Pointer.Base);
6061 return None;
6062 }
6063
6064 bool Subobject = false;
6065 if (DeallocKind == DynAlloc::New) {
6066 Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6067 Pointer.Designator.isOnePastTheEnd();
6068 } else {
6069 Subobject = Pointer.Designator.Entries.size() != 1 ||
6070 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6071 }
6072 if (Subobject) {
6073 Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6074 << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6075 return None;
6076 }
6077
6078 return Alloc;
6079}
6080
6081// Perform a call to 'operator delete' or '__builtin_operator_delete'.
6082bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6083 if (Info.checkingPotentialConstantExpression() ||
6084 Info.SpeculativeEvaluationDepth)
6085 return false;
6086
6087 // This is permitted only within a call to std::allocator<T>::deallocate.
6088 if (!Info.getStdAllocatorCaller("deallocate")) {
6089 Info.FFDiag(E->getExprLoc());
6090 return true;
6091 }
6092
6093 LValue Pointer;
6094 if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6095 return false;
6096 for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6097 EvaluateIgnoredValue(Info, E->getArg(I));
6098
6099 if (Pointer.Designator.Invalid)
6100 return false;
6101
6102 // Deleting a null pointer has no effect.
6103 if (Pointer.isNullPointer())
6104 return true;
6105
6106 if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6107 return false;
6108
6109 Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6110 return true;
6111}
6112
6113//===----------------------------------------------------------------------===//
6114// Generic Evaluation
6115//===----------------------------------------------------------------------===//
6116namespace {
6117
6118class BitCastBuffer {
6119 // FIXME: We're going to need bit-level granularity when we support
6120 // bit-fields.
6121 // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6122 // we don't support a host or target where that is the case. Still, we should
6123 // use a more generic type in case we ever do.
6124 SmallVector<Optional<unsigned char>, 32> Bytes;
6125
6126 static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6127 "Need at least 8 bit unsigned char");
6128
6129 bool TargetIsLittleEndian;
6130
6131public:
6132 BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6133 : Bytes(Width.getQuantity()),
6134 TargetIsLittleEndian(TargetIsLittleEndian) {}
6135
6136 LLVM_NODISCARD[[clang::warn_unused_result]]
6137 bool readObject(CharUnits Offset, CharUnits Width,
6138 SmallVectorImpl<unsigned char> &Output) const {
6139 for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6140 // If a byte of an integer is uninitialized, then the whole integer is
6141 // uninitalized.
6142 if (!Bytes[I.getQuantity()])
6143 return false;
6144 Output.push_back(*Bytes[I.getQuantity()]);
6145 }
6146 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6147 std::reverse(Output.begin(), Output.end());
6148 return true;
6149 }
6150
6151 void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6152 if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6153 std::reverse(Input.begin(), Input.end());
6154
6155 size_t Index = 0;
6156 for (unsigned char Byte : Input) {
6157 assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?")((!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"
) ? static_cast<void> (0) : __assert_fail ("!Bytes[Offset.getQuantity() + Index] && \"overwriting a byte?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6157, __PRETTY_FUNCTION__))
;
6158 Bytes[Offset.getQuantity() + Index] = Byte;
6159 ++Index;
6160 }
6161 }
6162
6163 size_t size() { return Bytes.size(); }
6164};
6165
6166/// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6167/// target would represent the value at runtime.
6168class APValueToBufferConverter {
6169 EvalInfo &Info;
6170 BitCastBuffer Buffer;
6171 const CastExpr *BCE;
6172
6173 APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6174 const CastExpr *BCE)
6175 : Info(Info),
6176 Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6177 BCE(BCE) {}
6178
6179 bool visit(const APValue &Val, QualType Ty) {
6180 return visit(Val, Ty, CharUnits::fromQuantity(0));
6181 }
6182
6183 // Write out Val with type Ty into Buffer starting at Offset.
6184 bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6185 assert((size_t)Offset.getQuantity() <= Buffer.size())(((size_t)Offset.getQuantity() <= Buffer.size()) ? static_cast
<void> (0) : __assert_fail ("(size_t)Offset.getQuantity() <= Buffer.size()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6185, __PRETTY_FUNCTION__))
;
6186
6187 // As a special case, nullptr_t has an indeterminate value.
6188 if (Ty->isNullPtrType())
6189 return true;
6190
6191 // Dig through Src to find the byte at SrcOffset.
6192 switch (Val.getKind()) {
6193 case APValue::Indeterminate:
6194 case APValue::None:
6195 return true;
6196
6197 case APValue::Int:
6198 return visitInt(Val.getInt(), Ty, Offset);
6199 case APValue::Float:
6200 return visitFloat(Val.getFloat(), Ty, Offset);
6201 case APValue::Array:
6202 return visitArray(Val, Ty, Offset);
6203 case APValue::Struct:
6204 return visitRecord(Val, Ty, Offset);
6205
6206 case APValue::ComplexInt:
6207 case APValue::ComplexFloat:
6208 case APValue::Vector:
6209 case APValue::FixedPoint:
6210 // FIXME: We should support these.
6211
6212 case APValue::Union:
6213 case APValue::MemberPointer:
6214 case APValue::AddrLabelDiff: {
6215 Info.FFDiag(BCE->getBeginLoc(),
6216 diag::note_constexpr_bit_cast_unsupported_type)
6217 << Ty;
6218 return false;
6219 }
6220
6221 case APValue::LValue:
6222 llvm_unreachable("LValue subobject in bit_cast?")::llvm::llvm_unreachable_internal("LValue subobject in bit_cast?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6222)
;
6223 }
6224 llvm_unreachable("Unhandled APValue::ValueKind")::llvm::llvm_unreachable_internal("Unhandled APValue::ValueKind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6224)
;
6225 }
6226
6227 bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6228 const RecordDecl *RD = Ty->getAsRecordDecl();
6229 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6230
6231 // Visit the base classes.
6232 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6233 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6234 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6235 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6236
6237 if (!visitRecord(Val.getStructBase(I), BS.getType(),
6238 Layout.getBaseClassOffset(BaseDecl) + Offset))
6239 return false;
6240 }
6241 }
6242
6243 // Visit the fields.
6244 unsigned FieldIdx = 0;
6245 for (FieldDecl *FD : RD->fields()) {
6246 if (FD->isBitField()) {
6247 Info.FFDiag(BCE->getBeginLoc(),
6248 diag::note_constexpr_bit_cast_unsupported_bitfield);
6249 return false;
6250 }
6251
6252 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6253
6254 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&((FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && "only bit-fields can have sub-char alignment"
) ? static_cast<void> (0) : __assert_fail ("FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && \"only bit-fields can have sub-char alignment\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6255, __PRETTY_FUNCTION__))
6255 "only bit-fields can have sub-char alignment")((FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && "only bit-fields can have sub-char alignment"
) ? static_cast<void> (0) : __assert_fail ("FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && \"only bit-fields can have sub-char alignment\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6255, __PRETTY_FUNCTION__))
;
6256 CharUnits FieldOffset =
6257 Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6258 QualType FieldTy = FD->getType();
6259 if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6260 return false;
6261 ++FieldIdx;
6262 }
6263
6264 return true;
6265 }
6266
6267 bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6268 const auto *CAT =
6269 dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6270 if (!CAT)
6271 return false;
6272
6273 CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6274 unsigned NumInitializedElts = Val.getArrayInitializedElts();
6275 unsigned ArraySize = Val.getArraySize();
6276 // First, initialize the initialized elements.
6277 for (unsigned I = 0; I != NumInitializedElts; ++I) {
6278 const APValue &SubObj = Val.getArrayInitializedElt(I);
6279 if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6280 return false;
6281 }
6282
6283 // Next, initialize the rest of the array using the filler.
6284 if (Val.hasArrayFiller()) {
6285 const APValue &Filler = Val.getArrayFiller();
6286 for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6287 if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6288 return false;
6289 }
6290 }
6291
6292 return true;
6293 }
6294
6295 bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6296 CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
6297 SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
6298 llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
6299 Buffer.writeObject(Offset, Bytes);
6300 return true;
6301 }
6302
6303 bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6304 APSInt AsInt(Val.bitcastToAPInt());
6305 return visitInt(AsInt, Ty, Offset);
6306 }
6307
6308public:
6309 static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6310 const CastExpr *BCE) {
6311 CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6312 APValueToBufferConverter Converter(Info, DstSize, BCE);
6313 if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6314 return None;
6315 return Converter.Buffer;
6316 }
6317};
6318
6319/// Write an BitCastBuffer into an APValue.
6320class BufferToAPValueConverter {
6321 EvalInfo &Info;
6322 const BitCastBuffer &Buffer;
6323 const CastExpr *BCE;
6324
6325 BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6326 const CastExpr *BCE)
6327 : Info(Info), Buffer(Buffer), BCE(BCE) {}
6328
6329 // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6330 // with an invalid type, so anything left is a deficiency on our part (FIXME).
6331 // Ideally this will be unreachable.
6332 llvm::NoneType unsupportedType(QualType Ty) {
6333 Info.FFDiag(BCE->getBeginLoc(),
6334 diag::note_constexpr_bit_cast_unsupported_type)
6335 << Ty;
6336 return None;
6337 }
6338
6339 Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6340 const EnumType *EnumSugar = nullptr) {
6341 if (T->isNullPtrType()) {
6342 uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6343 return APValue((Expr *)nullptr,
6344 /*Offset=*/CharUnits::fromQuantity(NullValue),
6345 APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6346 }
6347
6348 CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6349 SmallVector<uint8_t, 8> Bytes;
6350 if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6351 // If this is std::byte or unsigned char, then its okay to store an
6352 // indeterminate value.
6353 bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
6354 bool IsUChar =
6355 !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
6356 T->isSpecificBuiltinType(BuiltinType::Char_U));
6357 if (!IsStdByte && !IsUChar) {
6358 QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
6359 Info.FFDiag(BCE->getExprLoc(),
6360 diag::note_constexpr_bit_cast_indet_dest)
6361 << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
6362 return None;
6363 }
6364
6365 return APValue::IndeterminateValue();
6366 }
6367
6368 APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
6369 llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
6370
6371 if (T->isIntegralOrEnumerationType()) {
6372 Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
6373 return APValue(Val);
6374 }
6375
6376 if (T->isRealFloatingType()) {
6377 const llvm::fltSemantics &Semantics =
6378 Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6379 return APValue(APFloat(Semantics, Val));
6380 }
6381
6382 return unsupportedType(QualType(T, 0));
6383 }
6384
6385 Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
6386 const RecordDecl *RD = RTy->getAsRecordDecl();
6387 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6388
6389 unsigned NumBases = 0;
6390 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6391 NumBases = CXXRD->getNumBases();
6392
6393 APValue ResultVal(APValue::UninitStruct(), NumBases,
6394 std::distance(RD->field_begin(), RD->field_end()));
6395
6396 // Visit the base classes.
6397 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6398 for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6399 const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6400 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6401 if (BaseDecl->isEmpty() ||
6402 Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
6403 continue;
6404
6405 Optional<APValue> SubObj = visitType(
6406 BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
6407 if (!SubObj)
6408 return None;
6409 ResultVal.getStructBase(I) = *SubObj;
6410 }
6411 }
6412
6413 // Visit the fields.
6414 unsigned FieldIdx = 0;
6415 for (FieldDecl *FD : RD->fields()) {
6416 // FIXME: We don't currently support bit-fields. A lot of the logic for
6417 // this is in CodeGen, so we need to factor it around.
6418 if (FD->isBitField()) {
6419 Info.FFDiag(BCE->getBeginLoc(),
6420 diag::note_constexpr_bit_cast_unsupported_bitfield);
6421 return None;
6422 }
6423
6424 uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6425 assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0)((FieldOffsetBits % Info.Ctx.getCharWidth() == 0) ? static_cast
<void> (0) : __assert_fail ("FieldOffsetBits % Info.Ctx.getCharWidth() == 0"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6425, __PRETTY_FUNCTION__))
;
6426
6427 CharUnits FieldOffset =
6428 CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
6429 Offset;
6430 QualType FieldTy = FD->getType();
6431 Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
6432 if (!SubObj)
6433 return None;
6434 ResultVal.getStructField(FieldIdx) = *SubObj;
6435 ++FieldIdx;
6436 }
6437
6438 return ResultVal;
6439 }
6440
6441 Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
6442 QualType RepresentationType = Ty->getDecl()->getIntegerType();
6443 assert(!RepresentationType.isNull() &&((!RepresentationType.isNull() && "enum forward decl should be caught by Sema"
) ? static_cast<void> (0) : __assert_fail ("!RepresentationType.isNull() && \"enum forward decl should be caught by Sema\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6444, __PRETTY_FUNCTION__))
6444 "enum forward decl should be caught by Sema")((!RepresentationType.isNull() && "enum forward decl should be caught by Sema"
) ? static_cast<void> (0) : __assert_fail ("!RepresentationType.isNull() && \"enum forward decl should be caught by Sema\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6444, __PRETTY_FUNCTION__))
;
6445 const auto *AsBuiltin =
6446 RepresentationType.getCanonicalType()->castAs<BuiltinType>();
6447 // Recurse into the underlying type. Treat std::byte transparently as
6448 // unsigned char.
6449 return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
6450 }
6451
6452 Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
6453 size_t Size = Ty->getSize().getLimitedValue();
6454 CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
6455
6456 APValue ArrayValue(APValue::UninitArray(), Size, Size);
6457 for (size_t I = 0; I != Size; ++I) {
6458 Optional<APValue> ElementValue =
6459 visitType(Ty->getElementType(), Offset + I * ElementWidth);
6460 if (!ElementValue)
6461 return None;
6462 ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
6463 }
6464
6465 return ArrayValue;
6466 }
6467
6468 Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
6469 return unsupportedType(QualType(Ty, 0));
6470 }
6471
6472 Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
6473 QualType Can = Ty.getCanonicalType();
6474
6475 switch (Can->getTypeClass()) {
6476#define TYPE(Class, Base) \
6477 case Type::Class: \
6478 return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
6479#define ABSTRACT_TYPE(Class, Base)
6480#define NON_CANONICAL_TYPE(Class, Base) \
6481 case Type::Class: \
6482 llvm_unreachable("non-canonical type should be impossible!")::llvm::llvm_unreachable_internal("non-canonical type should be impossible!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6482)
;
6483#define DEPENDENT_TYPE(Class, Base) \
6484 case Type::Class: \
6485 llvm_unreachable( \::llvm::llvm_unreachable_internal("dependent types aren't supported in the constant evaluator!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6486)
6486 "dependent types aren't supported in the constant evaluator!")::llvm::llvm_unreachable_internal("dependent types aren't supported in the constant evaluator!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6486)
;
6487#define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)case Type::Class: ::llvm::llvm_unreachable_internal("either dependent or not canonical!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6487);
\
6488 case Type::Class: \
6489 llvm_unreachable("either dependent or not canonical!")::llvm::llvm_unreachable_internal("either dependent or not canonical!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6489)
;
6490#include "clang/AST/TypeNodes.inc"
6491 }
6492 llvm_unreachable("Unhandled Type::TypeClass")::llvm::llvm_unreachable_internal("Unhandled Type::TypeClass"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6492)
;
6493 }
6494
6495public:
6496 // Pull out a full value of type DstType.
6497 static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
6498 const CastExpr *BCE) {
6499 BufferToAPValueConverter Converter(Info, Buffer, BCE);
6500 return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
6501 }
6502};
6503
6504static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
6505 QualType Ty, EvalInfo *Info,
6506 const ASTContext &Ctx,
6507 bool CheckingDest) {
6508 Ty = Ty.getCanonicalType();
6509
6510 auto diag = [&](int Reason) {
6511 if (Info)
6512 Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
6513 << CheckingDest << (Reason == 4) << Reason;
6514 return false;
6515 };
6516 auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
6517 if (Info)
6518 Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
6519 << NoteTy << Construct << Ty;
6520 return false;
6521 };
6522
6523 if (Ty->isUnionType())
6524 return diag(0);
6525 if (Ty->isPointerType())
6526 return diag(1);
6527 if (Ty->isMemberPointerType())
6528 return diag(2);
6529 if (Ty.isVolatileQualified())
6530 return diag(3);
6531
6532 if (RecordDecl *Record = Ty->getAsRecordDecl()) {
6533 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
6534 for (CXXBaseSpecifier &BS : CXXRD->bases())
6535 if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
6536 CheckingDest))
6537 return note(1, BS.getType(), BS.getBeginLoc());
6538 }
6539 for (FieldDecl *FD : Record->fields()) {
6540 if (FD->getType()->isReferenceType())
6541 return diag(4);
6542 if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
6543 CheckingDest))
6544 return note(0, FD->getType(), FD->getBeginLoc());
6545 }
6546 }
6547
6548 if (Ty->isArrayType() &&
6549 !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
6550 Info, Ctx, CheckingDest))
6551 return false;
6552
6553 return true;
6554}
6555
6556static bool checkBitCastConstexprEligibility(EvalInfo *Info,
6557 const ASTContext &Ctx,
6558 const CastExpr *BCE) {
6559 bool DestOK = checkBitCastConstexprEligibilityType(
6560 BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
6561 bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
6562 BCE->getBeginLoc(),
6563 BCE->getSubExpr()->getType(), Info, Ctx, false);
6564 return SourceOK;
6565}
6566
6567static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
6568 APValue &SourceValue,
6569 const CastExpr *BCE) {
6570 assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&((8 == 8 && Info.Ctx.getTargetInfo().getCharWidth() ==
8 && "no host or target supports non 8-bit chars") ?
static_cast<void> (0) : __assert_fail ("CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && \"no host or target supports non 8-bit chars\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6571, __PRETTY_FUNCTION__))
6571 "no host or target supports non 8-bit chars")((8 == 8 && Info.Ctx.getTargetInfo().getCharWidth() ==
8 && "no host or target supports non 8-bit chars") ?
static_cast<void> (0) : __assert_fail ("CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && \"no host or target supports non 8-bit chars\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6571, __PRETTY_FUNCTION__))
;
6572 assert(SourceValue.isLValue() &&((SourceValue.isLValue() && "LValueToRValueBitcast requires an lvalue operand!"
) ? static_cast<void> (0) : __assert_fail ("SourceValue.isLValue() && \"LValueToRValueBitcast requires an lvalue operand!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6573, __PRETTY_FUNCTION__))
6573 "LValueToRValueBitcast requires an lvalue operand!")((SourceValue.isLValue() && "LValueToRValueBitcast requires an lvalue operand!"
) ? static_cast<void> (0) : __assert_fail ("SourceValue.isLValue() && \"LValueToRValueBitcast requires an lvalue operand!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6573, __PRETTY_FUNCTION__))
;
6574
6575 if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
6576 return false;
6577
6578 LValue SourceLValue;
6579 APValue SourceRValue;
6580 SourceLValue.setFrom(Info.Ctx, SourceValue);
6581 if (!handleLValueToRValueConversion(
6582 Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
6583 SourceRValue, /*WantObjectRepresentation=*/true))
6584 return false;
6585
6586 // Read out SourceValue into a char buffer.
6587 Optional<BitCastBuffer> Buffer =
6588 APValueToBufferConverter::convert(Info, SourceRValue, BCE);
6589 if (!Buffer)
6590 return false;
6591
6592 // Write out the buffer into a new APValue.
6593 Optional<APValue> MaybeDestValue =
6594 BufferToAPValueConverter::convert(Info, *Buffer, BCE);
6595 if (!MaybeDestValue)
6596 return false;
6597
6598 DestValue = std::move(*MaybeDestValue);
6599 return true;
6600}
6601
6602template <class Derived>
6603class ExprEvaluatorBase
6604 : public ConstStmtVisitor<Derived, bool> {
6605private:
6606 Derived &getDerived() { return static_cast<Derived&>(*this); }
6607 bool DerivedSuccess(const APValue &V, const Expr *E) {
6608 return getDerived().Success(V, E);
6609 }
6610 bool DerivedZeroInitialization(const Expr *E) {
6611 return getDerived().ZeroInitialization(E);
6612 }
6613
6614 // Check whether a conditional operator with a non-constant condition is a
6615 // potential constant expression. If neither arm is a potential constant
6616 // expression, then the conditional operator is not either.
6617 template<typename ConditionalOperator>
6618 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
6619 assert(Info.checkingPotentialConstantExpression())((Info.checkingPotentialConstantExpression()) ? static_cast<
void> (0) : __assert_fail ("Info.checkingPotentialConstantExpression()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6619, __PRETTY_FUNCTION__))
;
6620
6621 // Speculatively evaluate both arms.
6622 SmallVector<PartialDiagnosticAt, 8> Diag;
6623 {
6624 SpeculativeEvaluationRAII Speculate(Info, &Diag);
6625 StmtVisitorTy::Visit(E->getFalseExpr());
6626 if (Diag.empty())
6627 return;
6628 }
6629
6630 {
6631 SpeculativeEvaluationRAII Speculate(Info, &Diag);
6632 Diag.clear();
6633 StmtVisitorTy::Visit(E->getTrueExpr());
6634 if (Diag.empty())
6635 return;
6636 }
6637
6638 Error(E, diag::note_constexpr_conditional_never_const);
6639 }
6640
6641
6642 template<typename ConditionalOperator>
6643 bool HandleConditionalOperator(const ConditionalOperator *E) {
6644 bool BoolResult;
6645 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
6646 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
6647 CheckPotentialConstantConditional(E);
6648 return false;
6649 }
6650 if (Info.noteFailure()) {
6651 StmtVisitorTy::Visit(E->getTrueExpr());
6652 StmtVisitorTy::Visit(E->getFalseExpr());
6653 }
6654 return false;
6655 }
6656
6657 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
6658 return StmtVisitorTy::Visit(EvalExpr);
6659 }
6660
6661protected:
6662 EvalInfo &Info;
6663 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
6664 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
6665
6666 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6667 return Info.CCEDiag(E, D);
6668 }
6669
6670 bool ZeroInitialization(const Expr *E) { return Error(E); }
6671
6672public:
6673 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
6674
6675 EvalInfo &getEvalInfo() { return Info; }
6676
6677 /// Report an evaluation error. This should only be called when an error is
6678 /// first discovered. When propagating an error, just return false.
6679 bool Error(const Expr *E, diag::kind D) {
6680 Info.FFDiag(E, D);
6681 return false;
6682 }
6683 bool Error(const Expr *E) {
6684 return Error(E, diag::note_invalid_subexpr_in_const_expr);
6685 }
6686
6687 bool VisitStmt(const Stmt *) {
6688 llvm_unreachable("Expression evaluator should not be called on stmts")::llvm::llvm_unreachable_internal("Expression evaluator should not be called on stmts"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6688)
;
6689 }
6690 bool VisitExpr(const Expr *E) {
6691 return Error(E);
6692 }
6693
6694 bool VisitConstantExpr(const ConstantExpr *E)
6695 { return StmtVisitorTy::Visit(E->getSubExpr()); }
6696 bool VisitParenExpr(const ParenExpr *E)
6697 { return StmtVisitorTy::Visit(E->getSubExpr()); }
6698 bool VisitUnaryExtension(const UnaryOperator *E)
6699 { return StmtVisitorTy::Visit(E->getSubExpr()); }
6700 bool VisitUnaryPlus(const UnaryOperator *E)
6701 { return StmtVisitorTy::Visit(E->getSubExpr()); }
6702 bool VisitChooseExpr(const ChooseExpr *E)
6703 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
6704 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
6705 { return StmtVisitorTy::Visit(E->getResultExpr()); }
6706 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
6707 { return StmtVisitorTy::Visit(E->getReplacement()); }
6708 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
6709 TempVersionRAII RAII(*Info.CurrentCall);
6710 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
6711 return StmtVisitorTy::Visit(E->getExpr());
6712 }
6713 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
6714 TempVersionRAII RAII(*Info.CurrentCall);
6715 // The initializer may not have been parsed yet, or might be erroneous.
6716 if (!E->getExpr())
6717 return Error(E);
6718 SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
6719 return StmtVisitorTy::Visit(E->getExpr());
6720 }
6721
6722 bool VisitExprWithCleanups(const ExprWithCleanups *E) {
6723 FullExpressionRAII Scope(Info);
6724 return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
6725 }
6726
6727 // Temporaries are registered when created, so we don't care about
6728 // CXXBindTemporaryExpr.
6729 bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
6730 return StmtVisitorTy::Visit(E->getSubExpr());
6731 }
6732
6733 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
6734 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
6735 return static_cast<Derived*>(this)->VisitCastExpr(E);
6736 }
6737 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
6738 if (!Info.Ctx.getLangOpts().CPlusPlus2a)
6739 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
6740 return static_cast<Derived*>(this)->VisitCastExpr(E);
6741 }
6742 bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
6743 return static_cast<Derived*>(this)->VisitCastExpr(E);
6744 }
6745
6746 bool VisitBinaryOperator(const BinaryOperator *E) {
6747 switch (E->getOpcode()) {
6748 default:
6749 return Error(E);
6750
6751 case BO_Comma:
6752 VisitIgnoredValue(E->getLHS());
6753 return StmtVisitorTy::Visit(E->getRHS());
6754
6755 case BO_PtrMemD:
6756 case BO_PtrMemI: {
6757 LValue Obj;
6758 if (!HandleMemberPointerAccess(Info, E, Obj))
6759 return false;
6760 APValue Result;
6761 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
6762 return false;
6763 return DerivedSuccess(Result, E);
6764 }
6765 }
6766 }
6767
6768 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
6769 // Evaluate and cache the common expression. We treat it as a temporary,
6770 // even though it's not quite the same thing.
6771 LValue CommonLV;
6772 if (!Evaluate(Info.CurrentCall->createTemporary(
6773 E->getOpaqueValue(),
6774 getStorageType(Info.Ctx, E->getOpaqueValue()), false,
6775 CommonLV),
6776 Info, E->getCommon()))
6777 return false;
6778
6779 return HandleConditionalOperator(E);
6780 }
6781
6782 bool VisitConditionalOperator(const ConditionalOperator *E) {
6783 bool IsBcpCall = false;
6784 // If the condition (ignoring parens) is a __builtin_constant_p call,
6785 // the result is a constant expression if it can be folded without
6786 // side-effects. This is an important GNU extension. See GCC PR38377
6787 // for discussion.
6788 if (const CallExpr *CallCE =
6789 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
6790 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
6791 IsBcpCall = true;
6792
6793 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
6794 // constant expression; we can't check whether it's potentially foldable.
6795 // FIXME: We should instead treat __builtin_constant_p as non-constant if
6796 // it would return 'false' in this mode.
6797 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
6798 return false;
6799
6800 FoldConstant Fold(Info, IsBcpCall);
6801 if (!HandleConditionalOperator(E)) {
6802 Fold.keepDiagnostics();
6803 return false;
6804 }
6805
6806 return true;
6807 }
6808
6809 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
6810 if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
6811 return DerivedSuccess(*Value, E);
6812
6813 const Expr *Source = E->getSourceExpr();
6814 if (!Source)
6815 return Error(E);
6816 if (Source == E) { // sanity checking.
6817 assert(0 && "OpaqueValueExpr recursively refers to itself")((0 && "OpaqueValueExpr recursively refers to itself"
) ? static_cast<void> (0) : __assert_fail ("0 && \"OpaqueValueExpr recursively refers to itself\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6817, __PRETTY_FUNCTION__))
;
6818 return Error(E);
6819 }
6820 return StmtVisitorTy::Visit(Source);
6821 }
6822
6823 bool VisitCallExpr(const CallExpr *E) {
6824 APValue Result;
6825 if (!handleCallExpr(E, Result, nullptr))
1
Calling 'ExprEvaluatorBase::handleCallExpr'
6826 return false;
6827 return DerivedSuccess(Result, E);
6828 }
6829
6830 bool handleCallExpr(const CallExpr *E, APValue &Result,
6831 const LValue *ResultSlot) {
6832 const Expr *Callee = E->getCallee()->IgnoreParens();
6833 QualType CalleeType = Callee->getType();
6834
6835 const FunctionDecl *FD = nullptr;
6836 LValue *This = nullptr, ThisVal;
6837 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
6838 bool HasQualifier = false;
6839
6840 // Extract function decl and 'this' pointer from the callee.
6841 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
2
Taking true branch
6842 const CXXMethodDecl *Member = nullptr;
6843 if (const MemberExpr *ME
3.1
'ME' is null
3.1
'ME' is null
3.1
'ME' is null
= dyn_cast<MemberExpr>(Callee)) {
3
Assuming 'Callee' is not a 'MemberExpr'
4
Taking false branch
6844 // Explicit bound member calls, such as x.f() or p->g();
6845 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
6846 return false;
6847 Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
6848 if (!Member)
6849 return Error(Callee);
6850 This = &ThisVal;
6851 HasQualifier = ME->hasQualifier();
6852 } else if (const BinaryOperator *BE
5.1
'BE' is non-null
5.1
'BE' is non-null
5.1
'BE' is non-null
= dyn_cast<BinaryOperator>(Callee)) {
5
Assuming 'Callee' is a 'BinaryOperator'
6
Taking true branch
6853 // Indirect bound member calls ('.*' or '->*').
6854 const ValueDecl *D =
6855 HandleMemberPointerAccess(Info, BE, ThisVal, false);
6856 if (!D)
7
Assuming 'D' is non-null
8
Taking false branch
6857 return false;
6858 Member = dyn_cast<CXXMethodDecl>(D);
9
Assuming 'D' is a 'CXXMethodDecl'
6859 if (!Member
9.1
'Member' is non-null
9.1
'Member' is non-null
9.1
'Member' is non-null
)
10
Taking false branch
6860 return Error(Callee);
6861 This = &ThisVal;
6862 } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
6863 if (!Info.getLangOpts().CPlusPlus2a)
6864 Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
6865 // FIXME: If pseudo-destructor calls ever start ending the lifetime of
6866 // their callee, we should start calling HandleDestruction here.
6867 // For now, we just evaluate the object argument and discard it.
6868 return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal);
6869 } else
6870 return Error(Callee);
6871 FD = Member;
6872 } else if (CalleeType->isFunctionPointerType()) {
6873 LValue Call;
6874 if (!EvaluatePointer(Callee, Call, Info))
6875 return false;
6876
6877 if (!Call.getLValueOffset().isZero())
6878 return Error(Callee);
6879 FD = dyn_cast_or_null<FunctionDecl>(
6880 Call.getLValueBase().dyn_cast<const ValueDecl*>());
6881 if (!FD)
6882 return Error(Callee);
6883 // Don't call function pointers which have been cast to some other type.
6884 // Per DR (no number yet), the caller and callee can differ in noexcept.
6885 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
6886 CalleeType->getPointeeType(), FD->getType())) {
6887 return Error(E);
6888 }
6889
6890 // Overloaded operator calls to member functions are represented as normal
6891 // calls with '*this' as the first argument.
6892 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6893 if (MD && !MD->isStatic()) {
6894 // FIXME: When selecting an implicit conversion for an overloaded
6895 // operator delete, we sometimes try to evaluate calls to conversion
6896 // operators without a 'this' parameter!
6897 if (Args.empty())
6898 return Error(E);
6899
6900 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
6901 return false;
6902 This = &ThisVal;
6903 Args = Args.slice(1);
6904 } else if (MD && MD->isLambdaStaticInvoker()) {
6905 // Map the static invoker for the lambda back to the call operator.
6906 // Conveniently, we don't have to slice out the 'this' argument (as is
6907 // being done for the non-static case), since a static member function
6908 // doesn't have an implicit argument passed in.
6909 const CXXRecordDecl *ClosureClass = MD->getParent();
6910 assert(((ClosureClass->captures_begin() == ClosureClass->captures_end
() && "Number of captures must be zero for conversion to function-ptr"
) ? static_cast<void> (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6912, __PRETTY_FUNCTION__))
6911 ClosureClass->captures_begin() == ClosureClass->captures_end() &&((ClosureClass->captures_begin() == ClosureClass->captures_end
() && "Number of captures must be zero for conversion to function-ptr"
) ? static_cast<void> (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6912, __PRETTY_FUNCTION__))
6912 "Number of captures must be zero for conversion to function-ptr")((ClosureClass->captures_begin() == ClosureClass->captures_end
() && "Number of captures must be zero for conversion to function-ptr"
) ? static_cast<void> (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6912, __PRETTY_FUNCTION__))
;
6913
6914 const CXXMethodDecl *LambdaCallOp =
6915 ClosureClass->getLambdaCallOperator();
6916
6917 // Set 'FD', the function that will be called below, to the call
6918 // operator. If the closure object represents a generic lambda, find
6919 // the corresponding specialization of the call operator.
6920
6921 if (ClosureClass->isGenericLambda()) {
6922 assert(MD->isFunctionTemplateSpecialization() &&((MD->isFunctionTemplateSpecialization() && "A generic lambda's static-invoker function must be a "
"template specialization") ? static_cast<void> (0) : __assert_fail
("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6924, __PRETTY_FUNCTION__))
6923 "A generic lambda's static-invoker function must be a "((MD->isFunctionTemplateSpecialization() && "A generic lambda's static-invoker function must be a "
"template specialization") ? static_cast<void> (0) : __assert_fail
("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6924, __PRETTY_FUNCTION__))
6924 "template specialization")((MD->isFunctionTemplateSpecialization() && "A generic lambda's static-invoker function must be a "
"template specialization") ? static_cast<void> (0) : __assert_fail
("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6924, __PRETTY_FUNCTION__))
;
6925 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
6926 FunctionTemplateDecl *CallOpTemplate =
6927 LambdaCallOp->getDescribedFunctionTemplate();
6928 void *InsertPos = nullptr;
6929 FunctionDecl *CorrespondingCallOpSpecialization =
6930 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
6931 assert(CorrespondingCallOpSpecialization &&((CorrespondingCallOpSpecialization && "We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? static_cast
<void> (0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6933, __PRETTY_FUNCTION__))
6932 "We must always have a function call operator specialization "((CorrespondingCallOpSpecialization && "We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? static_cast
<void> (0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6933, __PRETTY_FUNCTION__))
6933 "that corresponds to our static invoker specialization")((CorrespondingCallOpSpecialization && "We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? static_cast
<void> (0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6933, __PRETTY_FUNCTION__))
;
6934 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
6935 } else
6936 FD = LambdaCallOp;
6937 } else if (FD->isReplaceableGlobalAllocationFunction()) {
6938 if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
6939 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
6940 LValue Ptr;
6941 if (!HandleOperatorNewCall(Info, E, Ptr))
6942 return false;
6943 Ptr.moveInto(Result);
6944 return true;
6945 } else {
6946 return HandleOperatorDeleteCall(Info, E);
6947 }
6948 }
6949 } else
6950 return Error(E);
6951
6952 SmallVector<QualType, 4> CovariantAdjustmentPath;
6953 if (This
10.1
'This' is non-null
10.1
'This' is non-null
10.1
'This' is non-null
) {
11
Taking true branch
6954 auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
12
Assuming 'FD' is not a 'CXXMethodDecl'
6955 if (NamedMember
12.1
'NamedMember' is null
12.1
'NamedMember' is null
12.1
'NamedMember' is null
&& NamedMember->isVirtual() && !HasQualifier) {
6956 // Perform virtual dispatch, if necessary.
6957 FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
6958 CovariantAdjustmentPath);
6959 if (!FD)
6960 return false;
6961 } else {
6962 // Check that the 'this' pointer points to an object of the right type.
6963 // FIXME: If this is an assignment operator call, we may need to change
6964 // the active union member before we check this.
6965 if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
13
Assuming the condition is false
14
Taking false branch
6966 return false;
6967 }
6968 }
6969
6970 // Destructor calls are different enough that they have their own codepath.
6971 if (auto *DD
15.1
'DD' is null
15.1
'DD' is null
15.1
'DD' is null
= dyn_cast<CXXDestructorDecl>(FD)) {
15
Assuming 'FD' is not a 'CXXDestructorDecl'
16
Taking false branch
6972 assert(This && "no 'this' pointer for destructor call")((This && "no 'this' pointer for destructor call") ? static_cast
<void> (0) : __assert_fail ("This && \"no 'this' pointer for destructor call\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 6972, __PRETTY_FUNCTION__))
;
6973 return HandleDestruction(Info, E, *This,
6974 Info.Ctx.getRecordType(DD->getParent()));
6975 }
6976
6977 const FunctionDecl *Definition = nullptr;
6978 Stmt *Body = FD->getBody(Definition);
6979
6980 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
17
Calling 'CheckConstexprFunction'
27
Returning from 'CheckConstexprFunction'
6981 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
28
Calling 'HandleFunctionCall'
6982 Result, ResultSlot))
6983 return false;
6984
6985 if (!CovariantAdjustmentPath.empty() &&
6986 !HandleCovariantReturnAdjustment(Info, E, Result,
6987 CovariantAdjustmentPath))
6988 return false;
6989
6990 return true;
6991 }
6992
6993 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
6994 return StmtVisitorTy::Visit(E->getInitializer());
6995 }
6996 bool VisitInitListExpr(const InitListExpr *E) {
6997 if (E->getNumInits() == 0)
6998 return DerivedZeroInitialization(E);
6999 if (E->getNumInits() == 1)
7000 return StmtVisitorTy::Visit(E->getInit(0));
7001 return Error(E);
7002 }
7003 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7004 return DerivedZeroInitialization(E);
7005 }
7006 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7007 return DerivedZeroInitialization(E);
7008 }
7009 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7010 return DerivedZeroInitialization(E);
7011 }
7012
7013 /// A member expression where the object is a prvalue is itself a prvalue.
7014 bool VisitMemberExpr(const MemberExpr *E) {
7015 assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&((!Info.Ctx.getLangOpts().CPlusPlus11 && "missing temporary materialization conversion"
) ? static_cast<void> (0) : __assert_fail ("!Info.Ctx.getLangOpts().CPlusPlus11 && \"missing temporary materialization conversion\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7016, __PRETTY_FUNCTION__))
7016 "missing temporary materialization conversion")((!Info.Ctx.getLangOpts().CPlusPlus11 && "missing temporary materialization conversion"
) ? static_cast<void> (0) : __assert_fail ("!Info.Ctx.getLangOpts().CPlusPlus11 && \"missing temporary materialization conversion\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7016, __PRETTY_FUNCTION__))
;
7017 assert(!E->isArrow() && "missing call to bound member function?")((!E->isArrow() && "missing call to bound member function?"
) ? static_cast<void> (0) : __assert_fail ("!E->isArrow() && \"missing call to bound member function?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7017, __PRETTY_FUNCTION__))
;
7018
7019 APValue Val;
7020 if (!Evaluate(Val, Info, E->getBase()))
7021 return false;
7022
7023 QualType BaseTy = E->getBase()->getType();
7024
7025 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7026 if (!FD) return Error(E);
7027 assert(!FD->getType()->isReferenceType() && "prvalue reference?")((!FD->getType()->isReferenceType() && "prvalue reference?"
) ? static_cast<void> (0) : __assert_fail ("!FD->getType()->isReferenceType() && \"prvalue reference?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7027, __PRETTY_FUNCTION__))
;
7028 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==((BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl
() == FD->getParent()->getCanonicalDecl() && "record / field mismatch"
) ? static_cast<void> (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7029, __PRETTY_FUNCTION__))
7029 FD->getParent()->getCanonicalDecl() && "record / field mismatch")((BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl
() == FD->getParent()->getCanonicalDecl() && "record / field mismatch"
) ? static_cast<void> (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7029, __PRETTY_FUNCTION__))
;
7030
7031 // Note: there is no lvalue base here. But this case should only ever
7032 // happen in C or in C++98, where we cannot be evaluating a constexpr
7033 // constructor, which is the only case the base matters.
7034 CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7035 SubobjectDesignator Designator(BaseTy);
7036 Designator.addDeclUnchecked(FD);
7037
7038 APValue Result;
7039 return extractSubobject(Info, E, Obj, Designator, Result) &&
7040 DerivedSuccess(Result, E);
7041 }
7042
7043 bool VisitCastExpr(const CastExpr *E) {
7044 switch (E->getCastKind()) {
7045 default:
7046 break;
7047
7048 case CK_AtomicToNonAtomic: {
7049 APValue AtomicVal;
7050 // This does not need to be done in place even for class/array types:
7051 // atomic-to-non-atomic conversion implies copying the object
7052 // representation.
7053 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7054 return false;
7055 return DerivedSuccess(AtomicVal, E);
7056 }
7057
7058 case CK_NoOp:
7059 case CK_UserDefinedConversion:
7060 return StmtVisitorTy::Visit(E->getSubExpr());
7061
7062 case CK_LValueToRValue: {
7063 LValue LVal;
7064 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7065 return false;
7066 APValue RVal;
7067 // Note, we use the subexpression's type in order to retain cv-qualifiers.
7068 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7069 LVal, RVal))
7070 return false;
7071 return DerivedSuccess(RVal, E);
7072 }
7073 case CK_LValueToRValueBitCast: {
7074 APValue DestValue, SourceValue;
7075 if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7076 return false;
7077 if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7078 return false;
7079 return DerivedSuccess(DestValue, E);
7080 }
7081 }
7082
7083 return Error(E);
7084 }
7085
7086 bool VisitUnaryPostInc(const UnaryOperator *UO) {
7087 return VisitUnaryPostIncDec(UO);
7088 }
7089 bool VisitUnaryPostDec(const UnaryOperator *UO) {
7090 return VisitUnaryPostIncDec(UO);
7091 }
7092 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7093 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7094 return Error(UO);
7095
7096 LValue LVal;
7097 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7098 return false;
7099 APValue RVal;
7100 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7101 UO->isIncrementOp(), &RVal))
7102 return false;
7103 return DerivedSuccess(RVal, UO);
7104 }
7105
7106 bool VisitStmtExpr(const StmtExpr *E) {
7107 // We will have checked the full-expressions inside the statement expression
7108 // when they were completed, and don't need to check them again now.
7109 if (Info.checkingForUndefinedBehavior())
7110 return Error(E);
7111
7112 const CompoundStmt *CS = E->getSubStmt();
7113 if (CS->body_empty())
7114 return true;
7115
7116 BlockScopeRAII Scope(Info);
7117 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7118 BE = CS->body_end();
7119 /**/; ++BI) {
7120 if (BI + 1 == BE) {
7121 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7122 if (!FinalExpr) {
7123 Info.FFDiag((*BI)->getBeginLoc(),
7124 diag::note_constexpr_stmt_expr_unsupported);
7125 return false;
7126 }
7127 return this->Visit(FinalExpr) && Scope.destroy();
7128 }
7129
7130 APValue ReturnValue;
7131 StmtResult Result = { ReturnValue, nullptr };
7132 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7133 if (ESR != ESR_Succeeded) {
7134 // FIXME: If the statement-expression terminated due to 'return',
7135 // 'break', or 'continue', it would be nice to propagate that to
7136 // the outer statement evaluation rather than bailing out.
7137 if (ESR != ESR_Failed)
7138 Info.FFDiag((*BI)->getBeginLoc(),
7139 diag::note_constexpr_stmt_expr_unsupported);
7140 return false;
7141 }
7142 }
7143
7144 llvm_unreachable("Return from function from the loop above.")::llvm::llvm_unreachable_internal("Return from function from the loop above."
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7144)
;
7145 }
7146
7147 /// Visit a value which is evaluated, but whose value is ignored.
7148 void VisitIgnoredValue(const Expr *E) {
7149 EvaluateIgnoredValue(Info, E);
7150 }
7151
7152 /// Potentially visit a MemberExpr's base expression.
7153 void VisitIgnoredBaseExpression(const Expr *E) {
7154 // While MSVC doesn't evaluate the base expression, it does diagnose the
7155 // presence of side-effecting behavior.
7156 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7157 return;
7158 VisitIgnoredValue(E);
7159 }
7160};
7161
7162} // namespace
7163
7164//===----------------------------------------------------------------------===//
7165// Common base class for lvalue and temporary evaluation.
7166//===----------------------------------------------------------------------===//
7167namespace {
7168template<class Derived>
7169class LValueExprEvaluatorBase
7170 : public ExprEvaluatorBase<Derived> {
7171protected:
7172 LValue &Result;
7173 bool InvalidBaseOK;
7174 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7175 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7176
7177 bool Success(APValue::LValueBase B) {
7178 Result.set(B);
7179 return true;
7180 }
7181
7182 bool evaluatePointer(const Expr *E, LValue &Result) {
7183 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7184 }
7185
7186public:
7187 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7188 : ExprEvaluatorBaseTy(Info), Result(Result),
7189 InvalidBaseOK(InvalidBaseOK) {}
7190
7191 bool Success(const APValue &V, const Expr *E) {
7192 Result.setFrom(this->Info.Ctx, V);
7193 return true;
7194 }
7195
7196 bool VisitMemberExpr(const MemberExpr *E) {
7197 // Handle non-static data members.
7198 QualType BaseTy;
7199 bool EvalOK;
7200 if (E->isArrow()) {
7201 EvalOK = evaluatePointer(E->getBase(), Result);
7202 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7203 } else if (E->getBase()->isRValue()) {
7204 assert(E->getBase()->getType()->isRecordType())((E->getBase()->getType()->isRecordType()) ? static_cast
<void> (0) : __assert_fail ("E->getBase()->getType()->isRecordType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7204, __PRETTY_FUNCTION__))
;
7205 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7206 BaseTy = E->getBase()->getType();
7207 } else {
7208 EvalOK = this->Visit(E->getBase());
7209 BaseTy = E->getBase()->getType();
7210 }
7211 if (!EvalOK) {
7212 if (!InvalidBaseOK)
7213 return false;
7214 Result.setInvalid(E);
7215 return true;
7216 }
7217
7218 const ValueDecl *MD = E->getMemberDecl();
7219 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7220 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==((BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl
() == FD->getParent()->getCanonicalDecl() && "record / field mismatch"
) ? static_cast<void> (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7221, __PRETTY_FUNCTION__))
7221 FD->getParent()->getCanonicalDecl() && "record / field mismatch")((BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl
() == FD->getParent()->getCanonicalDecl() && "record / field mismatch"
) ? static_cast<void> (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7221, __PRETTY_FUNCTION__))
;
7222 (void)BaseTy;
7223 if (!HandleLValueMember(this->Info, E, Result, FD))
7224 return false;
7225 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7226 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7227 return false;
7228 } else
7229 return this->Error(E);
7230
7231 if (MD->getType()->isReferenceType()) {
7232 APValue RefValue;
7233 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7234 RefValue))
7235 return false;
7236 return Success(RefValue, E);
7237 }
7238 return true;
7239 }
7240
7241 bool VisitBinaryOperator(const BinaryOperator *E) {
7242 switch (E->getOpcode()) {
7243 default:
7244 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7245
7246 case BO_PtrMemD:
7247 case BO_PtrMemI:
7248 return HandleMemberPointerAccess(this->Info, E, Result);
7249 }
7250 }
7251
7252 bool VisitCastExpr(const CastExpr *E) {
7253 switch (E->getCastKind()) {
7254 default:
7255 return ExprEvaluatorBaseTy::VisitCastExpr(E);
7256
7257 case CK_DerivedToBase:
7258 case CK_UncheckedDerivedToBase:
7259 if (!this->Visit(E->getSubExpr()))
7260 return false;
7261
7262 // Now figure out the necessary offset to add to the base LV to get from
7263 // the derived class to the base class.
7264 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
7265 Result);
7266 }
7267 }
7268};
7269}
7270
7271//===----------------------------------------------------------------------===//
7272// LValue Evaluation
7273//
7274// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
7275// function designators (in C), decl references to void objects (in C), and
7276// temporaries (if building with -Wno-address-of-temporary).
7277//
7278// LValue evaluation produces values comprising a base expression of one of the
7279// following types:
7280// - Declarations
7281// * VarDecl
7282// * FunctionDecl
7283// - Literals
7284// * CompoundLiteralExpr in C (and in global scope in C++)
7285// * StringLiteral
7286// * PredefinedExpr
7287// * ObjCStringLiteralExpr
7288// * ObjCEncodeExpr
7289// * AddrLabelExpr
7290// * BlockExpr
7291// * CallExpr for a MakeStringConstant builtin
7292// - typeid(T) expressions, as TypeInfoLValues
7293// - Locals and temporaries
7294// * MaterializeTemporaryExpr
7295// * Any Expr, with a CallIndex indicating the function in which the temporary
7296// was evaluated, for cases where the MaterializeTemporaryExpr is missing
7297// from the AST (FIXME).
7298// * A MaterializeTemporaryExpr that has static storage duration, with no
7299// CallIndex, for a lifetime-extended temporary.
7300// plus an offset in bytes.
7301//===----------------------------------------------------------------------===//
7302namespace {
7303class LValueExprEvaluator
7304 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
7305public:
7306 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
7307 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
7308
7309 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
7310 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
7311
7312 bool VisitDeclRefExpr(const DeclRefExpr *E);
7313 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
7314 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
7315 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
7316 bool VisitMemberExpr(const MemberExpr *E);
7317 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
7318 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
7319 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
7320 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
7321 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
7322 bool VisitUnaryDeref(const UnaryOperator *E);
7323 bool VisitUnaryReal(const UnaryOperator *E);
7324 bool VisitUnaryImag(const UnaryOperator *E);
7325 bool VisitUnaryPreInc(const UnaryOperator *UO) {
7326 return VisitUnaryPreIncDec(UO);
7327 }
7328 bool VisitUnaryPreDec(const UnaryOperator *UO) {
7329 return VisitUnaryPreIncDec(UO);
7330 }
7331 bool VisitBinAssign(const BinaryOperator *BO);
7332 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
7333
7334 bool VisitCastExpr(const CastExpr *E) {
7335 switch (E->getCastKind()) {
7336 default:
7337 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
7338
7339 case CK_LValueBitCast:
7340 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7341 if (!Visit(E->getSubExpr()))
7342 return false;
7343 Result.Designator.setInvalid();
7344 return true;
7345
7346 case CK_BaseToDerived:
7347 if (!Visit(E->getSubExpr()))
7348 return false;
7349 return HandleBaseToDerivedCast(Info, E, Result);
7350
7351 case CK_Dynamic:
7352 if (!Visit(E->getSubExpr()))
7353 return false;
7354 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
7355 }
7356 }
7357};
7358} // end anonymous namespace
7359
7360/// Evaluate an expression as an lvalue. This can be legitimately called on
7361/// expressions which are not glvalues, in three cases:
7362/// * function designators in C, and
7363/// * "extern void" objects
7364/// * @selector() expressions in Objective-C
7365static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
7366 bool InvalidBaseOK) {
7367 assert(E->isGLValue() || E->getType()->isFunctionType() ||((E->isGLValue() || E->getType()->isFunctionType() ||
E->getType()->isVoidType() || isa<ObjCSelectorExpr>
(E)) ? static_cast<void> (0) : __assert_fail ("E->isGLValue() || E->getType()->isFunctionType() || E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7368, __PRETTY_FUNCTION__))
7368 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E))((E->isGLValue() || E->getType()->isFunctionType() ||
E->getType()->isVoidType() || isa<ObjCSelectorExpr>
(E)) ? static_cast<void> (0) : __assert_fail ("E->isGLValue() || E->getType()->isFunctionType() || E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7368, __PRETTY_FUNCTION__))
;
7369 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7370}
7371
7372bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
7373 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
7374 return Success(FD);
7375 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
7376 return VisitVarDecl(E, VD);
7377 if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
7378 return Visit(BD->getBinding());
7379 return Error(E);
7380}
7381
7382
7383bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
7384
7385 // If we are within a lambda's call operator, check whether the 'VD' referred
7386 // to within 'E' actually represents a lambda-capture that maps to a
7387 // data-member/field within the closure object, and if so, evaluate to the
7388 // field or what the field refers to.
7389 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
7390 isa<DeclRefExpr>(E) &&
7391 cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
7392 // We don't always have a complete capture-map when checking or inferring if
7393 // the function call operator meets the requirements of a constexpr function
7394 // - but we don't need to evaluate the captures to determine constexprness
7395 // (dcl.constexpr C++17).
7396 if (Info.checkingPotentialConstantExpression())
7397 return false;
7398
7399 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
7400 // Start with 'Result' referring to the complete closure object...
7401 Result = *Info.CurrentCall->This;
7402 // ... then update it to refer to the field of the closure object
7403 // that represents the capture.
7404 if (!HandleLValueMember(Info, E, Result, FD))
7405 return false;
7406 // And if the field is of reference type, update 'Result' to refer to what
7407 // the field refers to.
7408 if (FD->getType()->isReferenceType()) {
7409 APValue RVal;
7410 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
7411 RVal))
7412 return false;
7413 Result.setFrom(Info.Ctx, RVal);
7414 }
7415 return true;
7416 }
7417 }
7418 CallStackFrame *Frame = nullptr;
7419 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
7420 // Only if a local variable was declared in the function currently being
7421 // evaluated, do we expect to be able to find its value in the current
7422 // frame. (Otherwise it was likely declared in an enclosing context and
7423 // could either have a valid evaluatable value (for e.g. a constexpr
7424 // variable) or be ill-formed (and trigger an appropriate evaluation
7425 // diagnostic)).
7426 if (Info.CurrentCall->Callee &&
7427 Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
7428 Frame = Info.CurrentCall;
7429 }
7430 }
7431
7432 if (!VD->getType()->isReferenceType()) {
7433 if (Frame) {
7434 Result.set({VD, Frame->Index,
7435 Info.CurrentCall->getCurrentTemporaryVersion(VD)});
7436 return true;
7437 }
7438 return Success(VD);
7439 }
7440
7441 APValue *V;
7442 if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
7443 return false;
7444 if (!V->hasValue()) {
7445 // FIXME: Is it possible for V to be indeterminate here? If so, we should
7446 // adjust the diagnostic to say that.
7447 if (!Info.checkingPotentialConstantExpression())
7448 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
7449 return false;
7450 }
7451 return Success(*V, E);
7452}
7453
7454bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
7455 const MaterializeTemporaryExpr *E) {
7456 // Walk through the expression to find the materialized temporary itself.
7457 SmallVector<const Expr *, 2> CommaLHSs;
7458 SmallVector<SubobjectAdjustment, 2> Adjustments;
7459 const Expr *Inner = E->GetTemporaryExpr()->
7460 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
7461
7462 // If we passed any comma operators, evaluate their LHSs.
7463 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
7464 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
7465 return false;
7466
7467 // A materialized temporary with static storage duration can appear within the
7468 // result of a constant expression evaluation, so we need to preserve its
7469 // value for use outside this evaluation.
7470 APValue *Value;
7471 if (E->getStorageDuration() == SD_Static) {
7472 Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
7473 *Value = APValue();
7474 Result.set(E);
7475 } else {
7476 Value = &Info.CurrentCall->createTemporary(
7477 E, E->getType(), E->getStorageDuration() == SD_Automatic, Result);
7478 }
7479
7480 QualType Type = Inner->getType();
7481
7482 // Materialize the temporary itself.
7483 if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
7484 *Value = APValue();
7485 return false;
7486 }
7487
7488 // Adjust our lvalue to refer to the desired subobject.
7489 for (unsigned I = Adjustments.size(); I != 0; /**/) {
7490 --I;
7491 switch (Adjustments[I].Kind) {
7492 case SubobjectAdjustment::DerivedToBaseAdjustment:
7493 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
7494 Type, Result))
7495 return false;
7496 Type = Adjustments[I].DerivedToBase.BasePath->getType();
7497 break;
7498
7499 case SubobjectAdjustment::FieldAdjustment:
7500 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
7501 return false;
7502 Type = Adjustments[I].Field->getType();
7503 break;
7504
7505 case SubobjectAdjustment::MemberPointerAdjustment:
7506 if (!HandleMemberPointerAccess(this->Info, Type, Result,
7507 Adjustments[I].Ptr.RHS))
7508 return false;
7509 Type = Adjustments[I].Ptr.MPT->getPointeeType();
7510 break;
7511 }
7512 }
7513
7514 return true;
7515}
7516
7517bool
7518LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7519 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&(((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
"lvalue compound literal in c++?") ? static_cast<void>
(0) : __assert_fail ("(!Info.getLangOpts().CPlusPlus || E->isFileScope()) && \"lvalue compound literal in c++?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7520, __PRETTY_FUNCTION__))
7520 "lvalue compound literal in c++?")(((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
"lvalue compound literal in c++?") ? static_cast<void>
(0) : __assert_fail ("(!Info.getLangOpts().CPlusPlus || E->isFileScope()) && \"lvalue compound literal in c++?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7520, __PRETTY_FUNCTION__))
;
7521 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
7522 // only see this when folding in C, so there's no standard to follow here.
7523 return Success(E);
7524}
7525
7526bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
7527 TypeInfoLValue TypeInfo;
7528
7529 if (!E->isPotentiallyEvaluated()) {
7530 if (E->isTypeOperand())
7531 TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
7532 else
7533 TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
7534 } else {
7535 if (!Info.Ctx.getLangOpts().CPlusPlus2a) {
7536 Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
7537 << E->getExprOperand()->getType()
7538 << E->getExprOperand()->getSourceRange();
7539 }
7540
7541 if (!Visit(E->getExprOperand()))
7542 return false;
7543
7544 Optional<DynamicType> DynType =
7545 ComputeDynamicType(Info, E, Result, AK_TypeId);
7546 if (!DynType)
7547 return false;
7548
7549 TypeInfo =
7550 TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
7551 }
7552
7553 return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
7554}
7555
7556bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
7557 return Success(E);
7558}
7559
7560bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
7561 // Handle static data members.
7562 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
7563 VisitIgnoredBaseExpression(E->getBase());
7564 return VisitVarDecl(E, VD);
7565 }
7566
7567 // Handle static member functions.
7568 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
7569 if (MD->isStatic()) {
7570 VisitIgnoredBaseExpression(E->getBase());
7571 return Success(MD);
7572 }
7573 }
7574
7575 // Handle non-static data members.
7576 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
7577}
7578
7579bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
7580 // FIXME: Deal with vectors as array subscript bases.
7581 if (E->getBase()->getType()->isVectorType())
7582 return Error(E);
7583
7584 bool Success = true;
7585 if (!evaluatePointer(E->getBase(), Result)) {
7586 if (!Info.noteFailure())
7587 return false;
7588 Success = false;
7589 }
7590
7591 APSInt Index;
7592 if (!EvaluateInteger(E->getIdx(), Index, Info))
7593 return false;
7594
7595 return Success &&
7596 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
7597}
7598
7599bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
7600 return evaluatePointer(E->getSubExpr(), Result);
7601}
7602
7603bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7604 if (!Visit(E->getSubExpr()))
7605 return false;
7606 // __real is a no-op on scalar lvalues.
7607 if (E->getSubExpr()->getType()->isAnyComplexType())
7608 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
7609 return true;
7610}
7611
7612bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7613 assert(E->getSubExpr()->getType()->isAnyComplexType() &&((E->getSubExpr()->getType()->isAnyComplexType() &&
"lvalue __imag__ on scalar?") ? static_cast<void> (0) :
__assert_fail ("E->getSubExpr()->getType()->isAnyComplexType() && \"lvalue __imag__ on scalar?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7614, __PRETTY_FUNCTION__))
7614 "lvalue __imag__ on scalar?")((E->getSubExpr()->getType()->isAnyComplexType() &&
"lvalue __imag__ on scalar?") ? static_cast<void> (0) :
__assert_fail ("E->getSubExpr()->getType()->isAnyComplexType() && \"lvalue __imag__ on scalar?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7614, __PRETTY_FUNCTION__))
;
7615 if (!Visit(E->getSubExpr()))
7616 return false;
7617 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
7618 return true;
7619}
7620
7621bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
7622 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7623 return Error(UO);
7624
7625 if (!this->Visit(UO->getSubExpr()))
7626 return false;
7627
7628 return handleIncDec(
7629 this->Info, UO, Result, UO->getSubExpr()->getType(),
7630 UO->isIncrementOp(), nullptr);
7631}
7632
7633bool LValueExprEvaluator::VisitCompoundAssignOperator(
7634 const CompoundAssignOperator *CAO) {
7635 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7636 return Error(CAO);
7637
7638 APValue RHS;
7639
7640 // The overall lvalue result is the result of evaluating the LHS.
7641 if (!this->Visit(CAO->getLHS())) {
7642 if (Info.noteFailure())
7643 Evaluate(RHS, this->Info, CAO->getRHS());
7644 return false;
7645 }
7646
7647 if (!Evaluate(RHS, this->Info, CAO->getRHS()))
7648 return false;
7649
7650 return handleCompoundAssignment(
7651 this->Info, CAO,
7652 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
7653 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
7654}
7655
7656bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
7657 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7658 return Error(E);
7659
7660 APValue NewVal;
7661
7662 if (!this->Visit(E->getLHS())) {
7663 if (Info.noteFailure())
7664 Evaluate(NewVal, this->Info, E->getRHS());
7665 return false;
7666 }
7667
7668 if (!Evaluate(NewVal, this->Info, E->getRHS()))
7669 return false;
7670
7671 if (Info.getLangOpts().CPlusPlus2a &&
7672 !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
7673 return false;
7674
7675 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
7676 NewVal);
7677}
7678
7679//===----------------------------------------------------------------------===//
7680// Pointer Evaluation
7681//===----------------------------------------------------------------------===//
7682
7683/// Attempts to compute the number of bytes available at the pointer
7684/// returned by a function with the alloc_size attribute. Returns true if we
7685/// were successful. Places an unsigned number into `Result`.
7686///
7687/// This expects the given CallExpr to be a call to a function with an
7688/// alloc_size attribute.
7689static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
7690 const CallExpr *Call,
7691 llvm::APInt &Result) {
7692 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
7693
7694 assert(AllocSize && AllocSize->getElemSizeParam().isValid())((AllocSize && AllocSize->getElemSizeParam().isValid
()) ? static_cast<void> (0) : __assert_fail ("AllocSize && AllocSize->getElemSizeParam().isValid()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7694, __PRETTY_FUNCTION__))
;
7695 unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
7696 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
7697 if (Call->getNumArgs() <= SizeArgNo)
7698 return false;
7699
7700 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
7701 Expr::EvalResult ExprResult;
7702 if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
7703 return false;
7704 Into = ExprResult.Val.getInt();
7705 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
7706 return false;
7707 Into = Into.zextOrSelf(BitsInSizeT);
7708 return true;
7709 };
7710
7711 APSInt SizeOfElem;
7712 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
7713 return false;
7714
7715 if (!AllocSize->getNumElemsParam().isValid()) {
7716 Result = std::move(SizeOfElem);
7717 return true;
7718 }
7719
7720 APSInt NumberOfElems;
7721 unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
7722 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
7723 return false;
7724
7725 bool Overflow;
7726 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
7727 if (Overflow)
7728 return false;
7729
7730 Result = std::move(BytesAvailable);
7731 return true;
7732}
7733
7734/// Convenience function. LVal's base must be a call to an alloc_size
7735/// function.
7736static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
7737 const LValue &LVal,
7738 llvm::APInt &Result) {
7739 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&((isBaseAnAllocSizeCall(LVal.getLValueBase()) && "Can't get the size of a non alloc_size function"
) ? static_cast<void> (0) : __assert_fail ("isBaseAnAllocSizeCall(LVal.getLValueBase()) && \"Can't get the size of a non alloc_size function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7740, __PRETTY_FUNCTION__))
7740 "Can't get the size of a non alloc_size function")((isBaseAnAllocSizeCall(LVal.getLValueBase()) && "Can't get the size of a non alloc_size function"
) ? static_cast<void> (0) : __assert_fail ("isBaseAnAllocSizeCall(LVal.getLValueBase()) && \"Can't get the size of a non alloc_size function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7740, __PRETTY_FUNCTION__))
;
7741 const auto *Base = LVal.getLValueBase().get<const Expr *>();
7742 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
7743 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
7744}
7745
7746/// Attempts to evaluate the given LValueBase as the result of a call to
7747/// a function with the alloc_size attribute. If it was possible to do so, this
7748/// function will return true, make Result's Base point to said function call,
7749/// and mark Result's Base as invalid.
7750static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
7751 LValue &Result) {
7752 if (Base.isNull())
7753 return false;
7754
7755 // Because we do no form of static analysis, we only support const variables.
7756 //
7757 // Additionally, we can't support parameters, nor can we support static
7758 // variables (in the latter case, use-before-assign isn't UB; in the former,
7759 // we have no clue what they'll be assigned to).
7760 const auto *VD =
7761 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
7762 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
7763 return false;
7764
7765 const Expr *Init = VD->getAnyInitializer();
7766 if (!Init)
7767 return false;
7768
7769 const Expr *E = Init->IgnoreParens();
7770 if (!tryUnwrapAllocSizeCall(E))
7771 return false;
7772
7773 // Store E instead of E unwrapped so that the type of the LValue's base is
7774 // what the user wanted.
7775 Result.setInvalid(E);
7776
7777 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
7778 Result.addUnsizedArray(Info, E, Pointee);
7779 return true;
7780}
7781
7782namespace {
7783class PointerExprEvaluator
7784 : public ExprEvaluatorBase<PointerExprEvaluator> {
7785 LValue &Result;
7786 bool InvalidBaseOK;
7787
7788 bool Success(const Expr *E) {
7789 Result.set(E);
7790 return true;
7791 }
7792
7793 bool evaluateLValue(const Expr *E, LValue &Result) {
7794 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
7795 }
7796
7797 bool evaluatePointer(const Expr *E, LValue &Result) {
7798 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
7799 }
7800
7801 bool visitNonBuiltinCallExpr(const CallExpr *E);
7802public:
7803
7804 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
7805 : ExprEvaluatorBaseTy(info), Result(Result),
7806 InvalidBaseOK(InvalidBaseOK) {}
7807
7808 bool Success(const APValue &V, const Expr *E) {
7809 Result.setFrom(Info.Ctx, V);
7810 return true;
7811 }
7812 bool ZeroInitialization(const Expr *E) {
7813 Result.setNull(Info.Ctx, E->getType());
7814 return true;
7815 }
7816
7817 bool VisitBinaryOperator(const BinaryOperator *E);
7818 bool VisitCastExpr(const CastExpr* E);
7819 bool VisitUnaryAddrOf(const UnaryOperator *E);
7820 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
7821 { return Success(E); }
7822 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
7823 if (E->isExpressibleAsConstantInitializer())
7824 return Success(E);
7825 if (Info.noteFailure())
7826 EvaluateIgnoredValue(Info, E->getSubExpr());
7827 return Error(E);
7828 }
7829 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
7830 { return Success(E); }
7831 bool VisitCallExpr(const CallExpr *E);
7832 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
7833 bool VisitBlockExpr(const BlockExpr *E) {
7834 if (!E->getBlockDecl()->hasCaptures())
7835 return Success(E);
7836 return Error(E);
7837 }
7838 bool VisitCXXThisExpr(const CXXThisExpr *E) {
7839 // Can't look at 'this' when checking a potential constant expression.
7840 if (Info.checkingPotentialConstantExpression())
7841 return false;
7842 if (!Info.CurrentCall->This) {
7843 if (Info.getLangOpts().CPlusPlus11)
7844 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
7845 else
7846 Info.FFDiag(E);
7847 return false;
7848 }
7849 Result = *Info.CurrentCall->This;
7850 // If we are inside a lambda's call operator, the 'this' expression refers
7851 // to the enclosing '*this' object (either by value or reference) which is
7852 // either copied into the closure object's field that represents the '*this'
7853 // or refers to '*this'.
7854 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
7855 // Update 'Result' to refer to the data member/field of the closure object
7856 // that represents the '*this' capture.
7857 if (!HandleLValueMember(Info, E, Result,
7858 Info.CurrentCall->LambdaThisCaptureField))
7859 return false;
7860 // If we captured '*this' by reference, replace the field with its referent.
7861 if (Info.CurrentCall->LambdaThisCaptureField->getType()
7862 ->isPointerType()) {
7863 APValue RVal;
7864 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
7865 RVal))
7866 return false;
7867
7868 Result.setFrom(Info.Ctx, RVal);
7869 }
7870 }
7871 return true;
7872 }
7873
7874 bool VisitCXXNewExpr(const CXXNewExpr *E);
7875
7876 bool VisitSourceLocExpr(const SourceLocExpr *E) {
7877 assert(E->isStringType() && "SourceLocExpr isn't a pointer type?")((E->isStringType() && "SourceLocExpr isn't a pointer type?"
) ? static_cast<void> (0) : __assert_fail ("E->isStringType() && \"SourceLocExpr isn't a pointer type?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7877, __PRETTY_FUNCTION__))
;
7878 APValue LValResult = E->EvaluateInContext(
7879 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
7880 Result.setFrom(Info.Ctx, LValResult);
7881 return true;
7882 }
7883
7884 // FIXME: Missing: @protocol, @selector
7885};
7886} // end anonymous namespace
7887
7888static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
7889 bool InvalidBaseOK) {
7890 assert(E->isRValue() && E->getType()->hasPointerRepresentation())((E->isRValue() && E->getType()->hasPointerRepresentation
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->hasPointerRepresentation()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 7890, __PRETTY_FUNCTION__))
;
7891 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
7892}
7893
7894bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7895 if (E->getOpcode() != BO_Add &&
7896 E->getOpcode() != BO_Sub)
7897 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7898
7899 const Expr *PExp = E->getLHS();
7900 const Expr *IExp = E->getRHS();
7901 if (IExp->getType()->isPointerType())
7902 std::swap(PExp, IExp);
7903
7904 bool EvalPtrOK = evaluatePointer(PExp, Result);
7905 if (!EvalPtrOK && !Info.noteFailure())
7906 return false;
7907
7908 llvm::APSInt Offset;
7909 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
7910 return false;
7911
7912 if (E->getOpcode() == BO_Sub)
7913 negateAsSigned(Offset);
7914
7915 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
7916 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
7917}
7918
7919bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
7920 return evaluateLValue(E->getSubExpr(), Result);
7921}
7922
7923bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
7924 const Expr *SubExpr = E->getSubExpr();
7925
7926 switch (E->getCastKind()) {
7927 default:
7928 break;
7929 case CK_BitCast:
7930 case CK_CPointerToObjCPointerCast:
7931 case CK_BlockPointerToObjCPointerCast:
7932 case CK_AnyPointerToBlockPointerCast:
7933 case CK_AddressSpaceConversion:
7934 if (!Visit(SubExpr))
7935 return false;
7936 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
7937 // permitted in constant expressions in C++11. Bitcasts from cv void* are
7938 // also static_casts, but we disallow them as a resolution to DR1312.
7939 if (!E->getType()->isVoidPointerType()) {
7940 if (!Result.InvalidBase && !Result.Designator.Invalid &&
7941 !Result.IsNullPtr &&
7942 Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
7943 E->getType()->getPointeeType()) &&
7944 Info.getStdAllocatorCaller("allocate")) {
7945 // Inside a call to std::allocator::allocate and friends, we permit
7946 // casting from void* back to cv1 T* for a pointer that points to a
7947 // cv2 T.
7948 } else {
7949 Result.Designator.setInvalid();
7950 if (SubExpr->getType()->isVoidPointerType())
7951 CCEDiag(E, diag::note_constexpr_invalid_cast)
7952 << 3 << SubExpr->getType();
7953 else
7954 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7955 }
7956 }
7957 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
7958 ZeroInitialization(E);
7959 return true;
7960
7961 case CK_DerivedToBase:
7962 case CK_UncheckedDerivedToBase:
7963 if (!evaluatePointer(E->getSubExpr(), Result))
7964 return false;
7965 if (!Result.Base && Result.Offset.isZero())
7966 return true;
7967
7968 // Now figure out the necessary offset to add to the base LV to get from
7969 // the derived class to the base class.
7970 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
7971 castAs<PointerType>()->getPointeeType(),
7972 Result);
7973
7974 case CK_BaseToDerived:
7975 if (!Visit(E->getSubExpr()))
7976 return false;
7977 if (!Result.Base && Result.Offset.isZero())
7978 return true;
7979 return HandleBaseToDerivedCast(Info, E, Result);
7980
7981 case CK_Dynamic:
7982 if (!Visit(E->getSubExpr()))
7983 return false;
7984 return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
7985
7986 case CK_NullToPointer:
7987 VisitIgnoredValue(E->getSubExpr());
7988 return ZeroInitialization(E);
7989
7990 case CK_IntegralToPointer: {
7991 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7992
7993 APValue Value;
7994 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
7995 break;
7996
7997 if (Value.isInt()) {
7998 unsigned Size = Info.Ctx.getTypeSize(E->getType());
7999 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8000 Result.Base = (Expr*)nullptr;
8001 Result.InvalidBase = false;
8002 Result.Offset = CharUnits::fromQuantity(N);
8003 Result.Designator.setInvalid();
8004 Result.IsNullPtr = false;
8005 return true;
8006 } else {
8007 // Cast is of an lvalue, no need to change value.
8008 Result.setFrom(Info.Ctx, Value);
8009 return true;
8010 }
8011 }
8012
8013 case CK_ArrayToPointerDecay: {
8014 if (SubExpr->isGLValue()) {
8015 if (!evaluateLValue(SubExpr, Result))
8016 return false;
8017 } else {
8018 APValue &Value = Info.CurrentCall->createTemporary(
8019 SubExpr, SubExpr->getType(), false, Result);
8020 if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8021 return false;
8022 }
8023 // The result is a pointer to the first element of the array.
8024 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8025 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8026 Result.addArray(Info, E, CAT);
8027 else
8028 Result.addUnsizedArray(Info, E, AT->getElementType());
8029 return true;
8030 }
8031
8032 case CK_FunctionToPointerDecay:
8033 return evaluateLValue(SubExpr, Result);
8034
8035 case CK_LValueToRValue: {
8036 LValue LVal;
8037 if (!evaluateLValue(E->getSubExpr(), LVal))
8038 return false;
8039
8040 APValue RVal;
8041 // Note, we use the subexpression's type in order to retain cv-qualifiers.
8042 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8043 LVal, RVal))
8044 return InvalidBaseOK &&
8045 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8046 return Success(RVal, E);
8047 }
8048 }
8049
8050 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8051}
8052
8053static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8054 UnaryExprOrTypeTrait ExprKind) {
8055 // C++ [expr.alignof]p3:
8056 // When alignof is applied to a reference type, the result is the
8057 // alignment of the referenced type.
8058 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8059 T = Ref->getPointeeType();
8060
8061 if (T.getQualifiers().hasUnaligned())
8062 return CharUnits::One();
8063
8064 const bool AlignOfReturnsPreferred =
8065 Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8066
8067 // __alignof is defined to return the preferred alignment.
8068 // Before 8, clang returned the preferred alignment for alignof and _Alignof
8069 // as well.
8070 if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8071 return Info.Ctx.toCharUnitsFromBits(
8072 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8073 // alignof and _Alignof are defined to return the ABI alignment.
8074 else if (ExprKind == UETT_AlignOf)
8075 return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8076 else
8077 llvm_unreachable("GetAlignOfType on a non-alignment ExprKind")::llvm::llvm_unreachable_internal("GetAlignOfType on a non-alignment ExprKind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8077)
;
8078}
8079
8080static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8081 UnaryExprOrTypeTrait ExprKind) {
8082 E = E->IgnoreParens();
8083
8084 // The kinds of expressions that we have special-case logic here for
8085 // should be kept up to date with the special checks for those
8086 // expressions in Sema.
8087
8088 // alignof decl is always accepted, even if it doesn't make sense: we default
8089 // to 1 in those cases.
8090 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8091 return Info.Ctx.getDeclAlign(DRE->getDecl(),
8092 /*RefAsPointee*/true);
8093
8094 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8095 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8096 /*RefAsPointee*/true);
8097
8098 return GetAlignOfType(Info, E->getType(), ExprKind);
8099}
8100
8101// To be clear: this happily visits unsupported builtins. Better name welcomed.
8102bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8103 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8104 return true;
8105
8106 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8107 return false;
8108
8109 Result.setInvalid(E);
8110 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8111 Result.addUnsizedArray(Info, E, PointeeTy);
8112 return true;
8113}
8114
8115bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8116 if (IsStringLiteralCall(E))
8117 return Success(E);
8118
8119 if (unsigned BuiltinOp = E->getBuiltinCallee())
8120 return VisitBuiltinCallExpr(E, BuiltinOp);
8121
8122 return visitNonBuiltinCallExpr(E);
8123}
8124
8125bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8126 unsigned BuiltinOp) {
8127 switch (BuiltinOp) {
8128 case Builtin::BI__builtin_addressof:
8129 return evaluateLValue(E->getArg(0), Result);
8130 case Builtin::BI__builtin_assume_aligned: {
8131 // We need to be very careful here because: if the pointer does not have the
8132 // asserted alignment, then the behavior is undefined, and undefined
8133 // behavior is non-constant.
8134 if (!evaluatePointer(E->getArg(0), Result))
8135 return false;
8136
8137 LValue OffsetResult(Result);
8138 APSInt Alignment;
8139 if (!EvaluateInteger(E->getArg(1), Alignment, Info))
8140 return false;
8141 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8142
8143 if (E->getNumArgs() > 2) {
8144 APSInt Offset;
8145 if (!EvaluateInteger(E->getArg(2), Offset, Info))
8146 return false;
8147
8148 int64_t AdditionalOffset = -Offset.getZExtValue();
8149 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8150 }
8151
8152 // If there is a base object, then it must have the correct alignment.
8153 if (OffsetResult.Base) {
8154 CharUnits BaseAlignment;
8155 if (const ValueDecl *VD =
8156 OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
8157 BaseAlignment = Info.Ctx.getDeclAlign(VD);
8158 } else if (const Expr *E = OffsetResult.Base.dyn_cast<const Expr *>()) {
8159 BaseAlignment = GetAlignOfExpr(Info, E, UETT_AlignOf);
8160 } else {
8161 BaseAlignment = GetAlignOfType(
8162 Info, OffsetResult.Base.getTypeInfoType(), UETT_AlignOf);
8163 }
8164
8165 if (BaseAlignment < Align) {
8166 Result.Designator.setInvalid();
8167 // FIXME: Add support to Diagnostic for long / long long.
8168 CCEDiag(E->getArg(0),
8169 diag::note_constexpr_baa_insufficient_alignment) << 0
8170 << (unsigned)BaseAlignment.getQuantity()
8171 << (unsigned)Align.getQuantity();
8172 return false;
8173 }
8174 }
8175
8176 // The offset must also have the correct alignment.
8177 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
8178 Result.Designator.setInvalid();
8179
8180 (OffsetResult.Base
8181 ? CCEDiag(E->getArg(0),
8182 diag::note_constexpr_baa_insufficient_alignment) << 1
8183 : CCEDiag(E->getArg(0),
8184 diag::note_constexpr_baa_value_insufficient_alignment))
8185 << (int)OffsetResult.Offset.getQuantity()
8186 << (unsigned)Align.getQuantity();
8187 return false;
8188 }
8189
8190 return true;
8191 }
8192 case Builtin::BI__builtin_operator_new:
8193 return HandleOperatorNewCall(Info, E, Result);
8194 case Builtin::BI__builtin_launder:
8195 return evaluatePointer(E->getArg(0), Result);
8196 case Builtin::BIstrchr:
8197 case Builtin::BIwcschr:
8198 case Builtin::BImemchr:
8199 case Builtin::BIwmemchr:
8200 if (Info.getLangOpts().CPlusPlus11)
8201 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8202 << /*isConstexpr*/0 << /*isConstructor*/0
8203 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8204 else
8205 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8206 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8207 case Builtin::BI__builtin_strchr:
8208 case Builtin::BI__builtin_wcschr:
8209 case Builtin::BI__builtin_memchr:
8210 case Builtin::BI__builtin_char_memchr:
8211 case Builtin::BI__builtin_wmemchr: {
8212 if (!Visit(E->getArg(0)))
8213 return false;
8214 APSInt Desired;
8215 if (!EvaluateInteger(E->getArg(1), Desired, Info))
8216 return false;
8217 uint64_t MaxLength = uint64_t(-1);
8218 if (BuiltinOp != Builtin::BIstrchr &&
8219 BuiltinOp != Builtin::BIwcschr &&
8220 BuiltinOp != Builtin::BI__builtin_strchr &&
8221 BuiltinOp != Builtin::BI__builtin_wcschr) {
8222 APSInt N;
8223 if (!EvaluateInteger(E->getArg(2), N, Info))
8224 return false;
8225 MaxLength = N.getExtValue();
8226 }
8227 // We cannot find the value if there are no candidates to match against.
8228 if (MaxLength == 0u)
8229 return ZeroInitialization(E);
8230 if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
8231 Result.Designator.Invalid)
8232 return false;
8233 QualType CharTy = Result.Designator.getType(Info.Ctx);
8234 bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
8235 BuiltinOp == Builtin::BI__builtin_memchr;
8236 assert(IsRawByte ||((IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->
getArg(0)->getType()->getPointeeType())) ? static_cast<
void> (0) : __assert_fail ("IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8238, __PRETTY_FUNCTION__))
8237 Info.Ctx.hasSameUnqualifiedType(((IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->
getArg(0)->getType()->getPointeeType())) ? static_cast<
void> (0) : __assert_fail ("IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8238, __PRETTY_FUNCTION__))
8238 CharTy, E->getArg(0)->getType()->getPointeeType()))((IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->
getArg(0)->getType()->getPointeeType())) ? static_cast<
void> (0) : __assert_fail ("IsRawByte || Info.Ctx.hasSameUnqualifiedType( CharTy, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8238, __PRETTY_FUNCTION__))
;
8239 // Pointers to const void may point to objects of incomplete type.
8240 if (IsRawByte && CharTy->isIncompleteType()) {
8241 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
8242 return false;
8243 }
8244 // Give up on byte-oriented matching against multibyte elements.
8245 // FIXME: We can compare the bytes in the correct order.
8246 if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One())
8247 return false;
8248 // Figure out what value we're actually looking for (after converting to
8249 // the corresponding unsigned type if necessary).
8250 uint64_t DesiredVal;
8251 bool StopAtNull = false;
8252 switch (BuiltinOp) {
8253 case Builtin::BIstrchr:
8254 case Builtin::BI__builtin_strchr:
8255 // strchr compares directly to the passed integer, and therefore
8256 // always fails if given an int that is not a char.
8257 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
8258 E->getArg(1)->getType(),
8259 Desired),
8260 Desired))
8261 return ZeroInitialization(E);
8262 StopAtNull = true;
8263 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8264 case Builtin::BImemchr:
8265 case Builtin::BI__builtin_memchr:
8266 case Builtin::BI__builtin_char_memchr:
8267 // memchr compares by converting both sides to unsigned char. That's also
8268 // correct for strchr if we get this far (to cope with plain char being
8269 // unsigned in the strchr case).
8270 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
8271 break;
8272
8273 case Builtin::BIwcschr:
8274 case Builtin::BI__builtin_wcschr:
8275 StopAtNull = true;
8276 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8277 case Builtin::BIwmemchr:
8278 case Builtin::BI__builtin_wmemchr:
8279 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
8280 DesiredVal = Desired.getZExtValue();
8281 break;
8282 }
8283
8284 for (; MaxLength; --MaxLength) {
8285 APValue Char;
8286 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
8287 !Char.isInt())
8288 return false;
8289 if (Char.getInt().getZExtValue() == DesiredVal)
8290 return true;
8291 if (StopAtNull && !Char.getInt())
8292 break;
8293 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
8294 return false;
8295 }
8296 // Not found: return nullptr.
8297 return ZeroInitialization(E);
8298 }
8299
8300 case Builtin::BImemcpy:
8301 case Builtin::BImemmove:
8302 case Builtin::BIwmemcpy:
8303 case Builtin::BIwmemmove:
8304 if (Info.getLangOpts().CPlusPlus11)
8305 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8306 << /*isConstexpr*/0 << /*isConstructor*/0
8307 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8308 else
8309 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8310 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8311 case Builtin::BI__builtin_memcpy:
8312 case Builtin::BI__builtin_memmove:
8313 case Builtin::BI__builtin_wmemcpy:
8314 case Builtin::BI__builtin_wmemmove: {
8315 bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
8316 BuiltinOp == Builtin::BIwmemmove ||
8317 BuiltinOp == Builtin::BI__builtin_wmemcpy ||
8318 BuiltinOp == Builtin::BI__builtin_wmemmove;
8319 bool Move = BuiltinOp == Builtin::BImemmove ||
8320 BuiltinOp == Builtin::BIwmemmove ||
8321 BuiltinOp == Builtin::BI__builtin_memmove ||
8322 BuiltinOp == Builtin::BI__builtin_wmemmove;
8323
8324 // The result of mem* is the first argument.
8325 if (!Visit(E->getArg(0)))
8326 return false;
8327 LValue Dest = Result;
8328
8329 LValue Src;
8330 if (!EvaluatePointer(E->getArg(1), Src, Info))
8331 return false;
8332
8333 APSInt N;
8334 if (!EvaluateInteger(E->getArg(2), N, Info))
8335 return false;
8336 assert(!N.isSigned() && "memcpy and friends take an unsigned size")((!N.isSigned() && "memcpy and friends take an unsigned size"
) ? static_cast<void> (0) : __assert_fail ("!N.isSigned() && \"memcpy and friends take an unsigned size\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8336, __PRETTY_FUNCTION__))
;
8337
8338 // If the size is zero, we treat this as always being a valid no-op.
8339 // (Even if one of the src and dest pointers is null.)
8340 if (!N)
8341 return true;
8342
8343 // Otherwise, if either of the operands is null, we can't proceed. Don't
8344 // try to determine the type of the copied objects, because there aren't
8345 // any.
8346 if (!Src.Base || !Dest.Base) {
8347 APValue Val;
8348 (!Src.Base ? Src : Dest).moveInto(Val);
8349 Info.FFDiag(E, diag::note_constexpr_memcpy_null)
8350 << Move << WChar << !!Src.Base
8351 << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
8352 return false;
8353 }
8354 if (Src.Designator.Invalid || Dest.Designator.Invalid)
8355 return false;
8356
8357 // We require that Src and Dest are both pointers to arrays of
8358 // trivially-copyable type. (For the wide version, the designator will be
8359 // invalid if the designated object is not a wchar_t.)
8360 QualType T = Dest.Designator.getType(Info.Ctx);
8361 QualType SrcT = Src.Designator.getType(Info.Ctx);
8362 if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
8363 Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
8364 return false;
8365 }
8366 if (T->isIncompleteType()) {
8367 Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
8368 return false;
8369 }
8370 if (!T.isTriviallyCopyableType(Info.Ctx)) {
8371 Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
8372 return false;
8373 }
8374
8375 // Figure out how many T's we're copying.
8376 uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
8377 if (!WChar) {
8378 uint64_t Remainder;
8379 llvm::APInt OrigN = N;
8380 llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
8381 if (Remainder) {
8382 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8383 << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
8384 << (unsigned)TSize;
8385 return false;
8386 }
8387 }
8388
8389 // Check that the copying will remain within the arrays, just so that we
8390 // can give a more meaningful diagnostic. This implicitly also checks that
8391 // N fits into 64 bits.
8392 uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
8393 uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
8394 if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
8395 Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
8396 << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
8397 << N.toString(10, /*Signed*/false);
8398 return false;
8399 }
8400 uint64_t NElems = N.getZExtValue();
8401 uint64_t NBytes = NElems * TSize;
8402
8403 // Check for overlap.
8404 int Direction = 1;
8405 if (HasSameBase(Src, Dest)) {
8406 uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
8407 uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
8408 if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
8409 // Dest is inside the source region.
8410 if (!Move) {
8411 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8412 return false;
8413 }
8414 // For memmove and friends, copy backwards.
8415 if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
8416 !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
8417 return false;
8418 Direction = -1;
8419 } else if (!Move && SrcOffset >= DestOffset &&
8420 SrcOffset - DestOffset < NBytes) {
8421 // Src is inside the destination region for memcpy: invalid.
8422 Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
8423 return false;
8424 }
8425 }
8426
8427 while (true) {
8428 APValue Val;
8429 // FIXME: Set WantObjectRepresentation to true if we're copying a
8430 // char-like type?
8431 if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
8432 !handleAssignment(Info, E, Dest, T, Val))
8433 return false;
8434 // Do not iterate past the last element; if we're copying backwards, that
8435 // might take us off the start of the array.
8436 if (--NElems == 0)
8437 return true;
8438 if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
8439 !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
8440 return false;
8441 }
8442 }
8443
8444 default:
8445 break;
8446 }
8447
8448 return visitNonBuiltinCallExpr(E);
8449}
8450
8451static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
8452 APValue &Result, const InitListExpr *ILE,
8453 QualType AllocType);
8454
8455bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
8456 if (!Info.getLangOpts().CPlusPlus2a)
8457 Info.CCEDiag(E, diag::note_constexpr_new);
8458
8459 // We cannot speculatively evaluate a delete expression.
8460 if (Info.SpeculativeEvaluationDepth)
8461 return false;
8462
8463 FunctionDecl *OperatorNew = E->getOperatorNew();
8464
8465 bool IsNothrow = false;
8466 bool IsPlacement = false;
8467 if (OperatorNew->isReservedGlobalPlacementOperator() &&
8468 Info.CurrentCall->isStdFunction() && !E->isArray()) {
8469 // FIXME Support array placement new.
8470 assert(E->getNumPlacementArgs() == 1)((E->getNumPlacementArgs() == 1) ? static_cast<void>
(0) : __assert_fail ("E->getNumPlacementArgs() == 1", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8470, __PRETTY_FUNCTION__))
;
8471 if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
8472 return false;
8473 if (Result.Designator.Invalid)
8474 return false;
8475 IsPlacement = true;
8476 } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
8477 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
8478 << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
8479 return false;
8480 } else if (E->getNumPlacementArgs()) {
8481 // The only new-placement list we support is of the form (std::nothrow).
8482 //
8483 // FIXME: There is no restriction on this, but it's not clear that any
8484 // other form makes any sense. We get here for cases such as:
8485 //
8486 // new (std::align_val_t{N}) X(int)
8487 //
8488 // (which should presumably be valid only if N is a multiple of
8489 // alignof(int), and in any case can't be deallocated unless N is
8490 // alignof(X) and X has new-extended alignment).
8491 if (E->getNumPlacementArgs() != 1 ||
8492 !E->getPlacementArg(0)->getType()->isNothrowT())
8493 return Error(E, diag::note_constexpr_new_placement);
8494
8495 LValue Nothrow;
8496 if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
8497 return false;
8498 IsNothrow = true;
8499 }
8500
8501 const Expr *Init = E->getInitializer();
8502 const InitListExpr *ResizedArrayILE = nullptr;
8503
8504 QualType AllocType = E->getAllocatedType();
8505 if (Optional<const Expr*> ArraySize = E->getArraySize()) {
8506 const Expr *Stripped = *ArraySize;
8507 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
8508 Stripped = ICE->getSubExpr())
8509 if (ICE->getCastKind() != CK_NoOp &&
8510 ICE->getCastKind() != CK_IntegralCast)
8511 break;
8512
8513 llvm::APSInt ArrayBound;
8514 if (!EvaluateInteger(Stripped, ArrayBound, Info))
8515 return false;
8516
8517 // C++ [expr.new]p9:
8518 // The expression is erroneous if:
8519 // -- [...] its value before converting to size_t [or] applying the
8520 // second standard conversion sequence is less than zero
8521 if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
8522 if (IsNothrow)
8523 return ZeroInitialization(E);
8524
8525 Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
8526 << ArrayBound << (*ArraySize)->getSourceRange();
8527 return false;
8528 }
8529
8530 // -- its value is such that the size of the allocated object would
8531 // exceed the implementation-defined limit
8532 if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
8533 ArrayBound) >
8534 ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
8535 if (IsNothrow)
8536 return ZeroInitialization(E);
8537
8538 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
8539 << ArrayBound << (*ArraySize)->getSourceRange();
8540 return false;
8541 }
8542
8543 // -- the new-initializer is a braced-init-list and the number of
8544 // array elements for which initializers are provided [...]
8545 // exceeds the number of elements to initialize
8546 if (Init) {
8547 auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
8548 assert(CAT && "unexpected type for array initializer")((CAT && "unexpected type for array initializer") ? static_cast
<void> (0) : __assert_fail ("CAT && \"unexpected type for array initializer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8548, __PRETTY_FUNCTION__))
;
8549
8550 unsigned Bits =
8551 std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
8552 llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
8553 llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
8554 if (InitBound.ugt(AllocBound)) {
8555 if (IsNothrow)
8556 return ZeroInitialization(E);
8557
8558 Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
8559 << AllocBound.toString(10, /*Signed=*/false)
8560 << InitBound.toString(10, /*Signed=*/false)
8561 << (*ArraySize)->getSourceRange();
8562 return false;
8563 }
8564
8565 // If the sizes differ, we must have an initializer list, and we need
8566 // special handling for this case when we initialize.
8567 if (InitBound != AllocBound)
8568 ResizedArrayILE = cast<InitListExpr>(Init);
8569 }
8570
8571 AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
8572 ArrayType::Normal, 0);
8573 } else {
8574 assert(!AllocType->isArrayType() &&((!AllocType->isArrayType() && "array allocation with non-array new"
) ? static_cast<void> (0) : __assert_fail ("!AllocType->isArrayType() && \"array allocation with non-array new\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8575, __PRETTY_FUNCTION__))
8575 "array allocation with non-array new")((!AllocType->isArrayType() && "array allocation with non-array new"
) ? static_cast<void> (0) : __assert_fail ("!AllocType->isArrayType() && \"array allocation with non-array new\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8575, __PRETTY_FUNCTION__))
;
8576 }
8577
8578 APValue *Val;
8579 if (IsPlacement) {
8580 AccessKinds AK = AK_Construct;
8581 struct FindObjectHandler {
8582 EvalInfo &Info;
8583 const Expr *E;
8584 QualType AllocType;
8585 const AccessKinds AccessKind;
8586 APValue *Value;
8587
8588 typedef bool result_type;
8589 bool failed() { return false; }
8590 bool found(APValue &Subobj, QualType SubobjType) {
8591 // FIXME: Reject the cases where [basic.life]p8 would not permit the
8592 // old name of the object to be used to name the new object.
8593 if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
8594 Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
8595 SubobjType << AllocType;
8596 return false;
8597 }
8598 Value = &Subobj;
8599 return true;
8600 }
8601 bool found(APSInt &Value, QualType SubobjType) {
8602 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
8603 return false;
8604 }
8605 bool found(APFloat &Value, QualType SubobjType) {
8606 Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
8607 return false;
8608 }
8609 } Handler = {Info, E, AllocType, AK, nullptr};
8610
8611 CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
8612 if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
8613 return false;
8614
8615 Val = Handler.Value;
8616
8617 // [basic.life]p1:
8618 // The lifetime of an object o of type T ends when [...] the storage
8619 // which the object occupies is [...] reused by an object that is not
8620 // nested within o (6.6.2).
8621 *Val = APValue();
8622 } else {
8623 // Perform the allocation and obtain a pointer to the resulting object.
8624 Val = Info.createHeapAlloc(E, AllocType, Result);
8625 if (!Val)
8626 return false;
8627 }
8628
8629 if (ResizedArrayILE) {
8630 if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
8631 AllocType))
8632 return false;
8633 } else if (Init) {
8634 if (!EvaluateInPlace(*Val, Info, Result, Init))
8635 return false;
8636 } else {
8637 *Val = getDefaultInitValue(AllocType);
8638 }
8639
8640 // Array new returns a pointer to the first element, not a pointer to the
8641 // array.
8642 if (auto *AT = AllocType->getAsArrayTypeUnsafe())
8643 Result.addArray(Info, E, cast<ConstantArrayType>(AT));
8644
8645 return true;
8646}
8647//===----------------------------------------------------------------------===//
8648// Member Pointer Evaluation
8649//===----------------------------------------------------------------------===//
8650
8651namespace {
8652class MemberPointerExprEvaluator
8653 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
8654 MemberPtr &Result;
8655
8656 bool Success(const ValueDecl *D) {
8657 Result = MemberPtr(D);
8658 return true;
8659 }
8660public:
8661
8662 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
8663 : ExprEvaluatorBaseTy(Info), Result(Result) {}
8664
8665 bool Success(const APValue &V, const Expr *E) {
8666 Result.setFrom(V);
8667 return true;
8668 }
8669 bool ZeroInitialization(const Expr *E) {
8670 return Success((const ValueDecl*)nullptr);
8671 }
8672
8673 bool VisitCastExpr(const CastExpr *E);
8674 bool VisitUnaryAddrOf(const UnaryOperator *E);
8675};
8676} // end anonymous namespace
8677
8678static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
8679 EvalInfo &Info) {
8680 assert(E->isRValue() && E->getType()->isMemberPointerType())((E->isRValue() && E->getType()->isMemberPointerType
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8680, __PRETTY_FUNCTION__))
;
8681 return MemberPointerExprEvaluator(Info, Result).Visit(E);
8682}
8683
8684bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8685 switch (E->getCastKind()) {
8686 default:
8687 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8688
8689 case CK_NullToMemberPointer:
8690 VisitIgnoredValue(E->getSubExpr());
8691 return ZeroInitialization(E);
8692
8693 case CK_BaseToDerivedMemberPointer: {
8694 if (!Visit(E->getSubExpr()))
8695 return false;
8696 if (E->path_empty())
8697 return true;
8698 // Base-to-derived member pointer casts store the path in derived-to-base
8699 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
8700 // the wrong end of the derived->base arc, so stagger the path by one class.
8701 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
8702 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
8703 PathI != PathE; ++PathI) {
8704 assert(!(*PathI)->isVirtual() && "memptr cast through vbase")((!(*PathI)->isVirtual() && "memptr cast through vbase"
) ? static_cast<void> (0) : __assert_fail ("!(*PathI)->isVirtual() && \"memptr cast through vbase\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8704, __PRETTY_FUNCTION__))
;
8705 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
8706 if (!Result.castToDerived(Derived))
8707 return Error(E);
8708 }
8709 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
8710 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
8711 return Error(E);
8712 return true;
8713 }
8714
8715 case CK_DerivedToBaseMemberPointer:
8716 if (!Visit(E->getSubExpr()))
8717 return false;
8718 for (CastExpr::path_const_iterator PathI = E->path_begin(),
8719 PathE = E->path_end(); PathI != PathE; ++PathI) {
8720 assert(!(*PathI)->isVirtual() && "memptr cast through vbase")((!(*PathI)->isVirtual() && "memptr cast through vbase"
) ? static_cast<void> (0) : __assert_fail ("!(*PathI)->isVirtual() && \"memptr cast through vbase\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8720, __PRETTY_FUNCTION__))
;
8721 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
8722 if (!Result.castToBase(Base))
8723 return Error(E);
8724 }
8725 return true;
8726 }
8727}
8728
8729bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8730 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
8731 // member can be formed.
8732 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
8733}
8734
8735//===----------------------------------------------------------------------===//
8736// Record Evaluation
8737//===----------------------------------------------------------------------===//
8738
8739namespace {
8740 class RecordExprEvaluator
8741 : public ExprEvaluatorBase<RecordExprEvaluator> {
8742 const LValue &This;
8743 APValue &Result;
8744 public:
8745
8746 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
8747 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
8748
8749 bool Success(const APValue &V, const Expr *E) {
8750 Result = V;
8751 return true;
8752 }
8753 bool ZeroInitialization(const Expr *E) {
8754 return ZeroInitialization(E, E->getType());
8755 }
8756 bool ZeroInitialization(const Expr *E, QualType T);
8757
8758 bool VisitCallExpr(const CallExpr *E) {
8759 return handleCallExpr(E, Result, &This);
8760 }
8761 bool VisitCastExpr(const CastExpr *E);
8762 bool VisitInitListExpr(const InitListExpr *E);
8763 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
8764 return VisitCXXConstructExpr(E, E->getType());
8765 }
8766 bool VisitLambdaExpr(const LambdaExpr *E);
8767 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
8768 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
8769 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
8770 bool VisitBinCmp(const BinaryOperator *E);
8771 };
8772}
8773
8774/// Perform zero-initialization on an object of non-union class type.
8775/// C++11 [dcl.init]p5:
8776/// To zero-initialize an object or reference of type T means:
8777/// [...]
8778/// -- if T is a (possibly cv-qualified) non-union class type,
8779/// each non-static data member and each base-class subobject is
8780/// zero-initialized
8781static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
8782 const RecordDecl *RD,
8783 const LValue &This, APValue &Result) {
8784 assert(!RD->isUnion() && "Expected non-union class type")((!RD->isUnion() && "Expected non-union class type"
) ? static_cast<void> (0) : __assert_fail ("!RD->isUnion() && \"Expected non-union class type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8784, __PRETTY_FUNCTION__))
;
8785 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
8786 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
8787 std::distance(RD->field_begin(), RD->field_end()));
8788
8789 if (RD->isInvalidDecl()) return false;
8790 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
8791
8792 if (CD) {
8793 unsigned Index = 0;
8794 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
8795 End = CD->bases_end(); I != End; ++I, ++Index) {
8796 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
8797 LValue Subobject = This;
8798 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
8799 return false;
8800 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
8801 Result.getStructBase(Index)))
8802 return false;
8803 }
8804 }
8805
8806 for (const auto *I : RD->fields()) {
8807 // -- if T is a reference type, no initialization is performed.
8808 if (I->getType()->isReferenceType())
8809 continue;
8810
8811 LValue Subobject = This;
8812 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
8813 return false;
8814
8815 ImplicitValueInitExpr VIE(I->getType());
8816 if (!EvaluateInPlace(
8817 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
8818 return false;
8819 }
8820
8821 return true;
8822}
8823
8824bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
8825 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
8826 if (RD->isInvalidDecl()) return false;
8827 if (RD->isUnion()) {
8828 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
8829 // object's first non-static named data member is zero-initialized
8830 RecordDecl::field_iterator I = RD->field_begin();
8831 if (I == RD->field_end()) {
8832 Result = APValue((const FieldDecl*)nullptr);
8833 return true;
8834 }
8835
8836 LValue Subobject = This;
8837 if (!HandleLValueMember(Info, E, Subobject, *I))
8838 return false;
8839 Result = APValue(*I);
8840 ImplicitValueInitExpr VIE(I->getType());
8841 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
8842 }
8843
8844 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
8845 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
8846 return false;
8847 }
8848
8849 return HandleClassZeroInitialization(Info, E, RD, This, Result);
8850}
8851
8852bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
8853 switch (E->getCastKind()) {
8854 default:
8855 return ExprEvaluatorBaseTy::VisitCastExpr(E);
8856
8857 case CK_ConstructorConversion:
8858 return Visit(E->getSubExpr());
8859
8860 case CK_DerivedToBase:
8861 case CK_UncheckedDerivedToBase: {
8862 APValue DerivedObject;
8863 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
8864 return false;
8865 if (!DerivedObject.isStruct())
8866 return Error(E->getSubExpr());
8867
8868 // Derived-to-base rvalue conversion: just slice off the derived part.
8869 APValue *Value = &DerivedObject;
8870 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
8871 for (CastExpr::path_const_iterator PathI = E->path_begin(),
8872 PathE = E->path_end(); PathI != PathE; ++PathI) {
8873 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base")((!(*PathI)->isVirtual() && "record rvalue with virtual base"
) ? static_cast<void> (0) : __assert_fail ("!(*PathI)->isVirtual() && \"record rvalue with virtual base\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8873, __PRETTY_FUNCTION__))
;
8874 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
8875 Value = &Value->getStructBase(getBaseIndex(RD, Base));
8876 RD = Base;
8877 }
8878 Result = *Value;
8879 return true;
8880 }
8881 }
8882}
8883
8884bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8885 if (E->isTransparent())
8886 return Visit(E->getInit(0));
8887
8888 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
8889 if (RD->isInvalidDecl()) return false;
8890 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
8891 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
8892
8893 EvalInfo::EvaluatingConstructorRAII EvalObj(
8894 Info,
8895 ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
8896 CXXRD && CXXRD->getNumBases());
8897
8898 if (RD->isUnion()) {
8899 const FieldDecl *Field = E->getInitializedFieldInUnion();
8900 Result = APValue(Field);
8901 if (!Field)
8902 return true;
8903
8904 // If the initializer list for a union does not contain any elements, the
8905 // first element of the union is value-initialized.
8906 // FIXME: The element should be initialized from an initializer list.
8907 // Is this difference ever observable for initializer lists which
8908 // we don't build?
8909 ImplicitValueInitExpr VIE(Field->getType());
8910 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
8911
8912 LValue Subobject = This;
8913 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
8914 return false;
8915
8916 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
8917 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
8918 isa<CXXDefaultInitExpr>(InitExpr));
8919
8920 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
8921 }
8922
8923 if (!Result.hasValue())
8924 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
8925 std::distance(RD->field_begin(), RD->field_end()));
8926 unsigned ElementNo = 0;
8927 bool Success = true;
8928
8929 // Initialize base classes.
8930 if (CXXRD && CXXRD->getNumBases()) {
8931 for (const auto &Base : CXXRD->bases()) {
8932 assert(ElementNo < E->getNumInits() && "missing init for base class")((ElementNo < E->getNumInits() && "missing init for base class"
) ? static_cast<void> (0) : __assert_fail ("ElementNo < E->getNumInits() && \"missing init for base class\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 8932, __PRETTY_FUNCTION__))
;
8933 const Expr *Init = E->getInit(ElementNo);
8934
8935 LValue Subobject = This;
8936 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
8937 return false;
8938
8939 APValue &FieldVal = Result.getStructBase(ElementNo);
8940 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
8941 if (!Info.noteFailure())
8942 return false;
8943 Success = false;
8944 }
8945 ++ElementNo;
8946 }
8947
8948 EvalObj.finishedConstructingBases();
8949 }
8950
8951 // Initialize members.
8952 for (const auto *Field : RD->fields()) {
8953 // Anonymous bit-fields are not considered members of the class for
8954 // purposes of aggregate initialization.
8955 if (Field->isUnnamedBitfield())
8956 continue;
8957
8958 LValue Subobject = This;
8959
8960 bool HaveInit = ElementNo < E->getNumInits();
8961
8962 // FIXME: Diagnostics here should point to the end of the initializer
8963 // list, not the start.
8964 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
8965 Subobject, Field, &Layout))
8966 return false;
8967
8968 // Perform an implicit value-initialization for members beyond the end of
8969 // the initializer list.
8970 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
8971 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
8972
8973 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
8974 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
8975 isa<CXXDefaultInitExpr>(Init));
8976
8977 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
8978 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
8979 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
8980 FieldVal, Field))) {
8981 if (!Info.noteFailure())
8982 return false;
8983 Success = false;
8984 }
8985 }
8986
8987 return Success;
8988}
8989
8990bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
8991 QualType T) {
8992 // Note that E's type is not necessarily the type of our class here; we might
8993 // be initializing an array element instead.
8994 const CXXConstructorDecl *FD = E->getConstructor();
8995 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
8996
8997 bool ZeroInit = E->requiresZeroInitialization();
8998 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
8999 // If we've already performed zero-initialization, we're already done.
9000 if (Result.hasValue())
9001 return true;
9002
9003 if (ZeroInit)
9004 return ZeroInitialization(E, T);
9005
9006 Result = getDefaultInitValue(T);
9007 return true;
9008 }
9009
9010 const FunctionDecl *Definition = nullptr;
9011 auto Body = FD->getBody(Definition);
9012
9013 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9014 return false;
9015
9016 // Avoid materializing a temporary for an elidable copy/move constructor.
9017 if (E->isElidable() && !ZeroInit)
9018 if (const MaterializeTemporaryExpr *ME
9019 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9020 return Visit(ME->GetTemporaryExpr());
9021
9022 if (ZeroInit && !ZeroInitialization(E, T))
9023 return false;
9024
9025 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9026 return HandleConstructorCall(E, This, Args,
9027 cast<CXXConstructorDecl>(Definition), Info,
9028 Result);
9029}
9030
9031bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9032 const CXXInheritedCtorInitExpr *E) {
9033 if (!Info.CurrentCall) {
9034 assert(Info.checkingPotentialConstantExpression())((Info.checkingPotentialConstantExpression()) ? static_cast<
void> (0) : __assert_fail ("Info.checkingPotentialConstantExpression()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9034, __PRETTY_FUNCTION__))
;
9035 return false;
9036 }
9037
9038 const CXXConstructorDecl *FD = E->getConstructor();
9039 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9040 return false;
9041
9042 const FunctionDecl *Definition = nullptr;
9043 auto Body = FD->getBody(Definition);
9044
9045 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9046 return false;
9047
9048 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9049 cast<CXXConstructorDecl>(Definition), Info,
9050 Result);
9051}
9052
9053bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9054 const CXXStdInitializerListExpr *E) {
9055 const ConstantArrayType *ArrayType =
9056 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9057
9058 LValue Array;
9059 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9060 return false;
9061
9062 // Get a pointer to the first element of the array.
9063 Array.addArray(Info, E, ArrayType);
9064
9065 // FIXME: Perform the checks on the field types in SemaInit.
9066 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9067 RecordDecl::field_iterator Field = Record->field_begin();
9068 if (Field == Record->field_end())
9069 return Error(E);
9070
9071 // Start pointer.
9072 if (!Field->getType()->isPointerType() ||
9073 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9074 ArrayType->getElementType()))
9075 return Error(E);
9076
9077 // FIXME: What if the initializer_list type has base classes, etc?
9078 Result = APValue(APValue::UninitStruct(), 0, 2);
9079 Array.moveInto(Result.getStructField(0));
9080
9081 if (++Field == Record->field_end())
9082 return Error(E);
9083
9084 if (Field->getType()->isPointerType() &&
9085 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9086 ArrayType->getElementType())) {
9087 // End pointer.
9088 if (!HandleLValueArrayAdjustment(Info, E, Array,
9089 ArrayType->getElementType(),
9090 ArrayType->getSize().getZExtValue()))
9091 return false;
9092 Array.moveInto(Result.getStructField(1));
9093 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9094 // Length.
9095 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9096 else
9097 return Error(E);
9098
9099 if (++Field != Record->field_end())
9100 return Error(E);
9101
9102 return true;
9103}
9104
9105bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
9106 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
9107 if (ClosureClass->isInvalidDecl())
9108 return false;
9109
9110 const size_t NumFields =
9111 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
9112
9113 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),((NumFields == (size_t)std::distance(E->capture_init_begin
(), E->capture_init_end()) && "The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? static_cast<void> (
0) : __assert_fail ("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9116, __PRETTY_FUNCTION__))
9114 E->capture_init_end()) &&((NumFields == (size_t)std::distance(E->capture_init_begin
(), E->capture_init_end()) && "The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? static_cast<void> (
0) : __assert_fail ("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9116, __PRETTY_FUNCTION__))
9115 "The number of lambda capture initializers should equal the number of "((NumFields == (size_t)std::distance(E->capture_init_begin
(), E->capture_init_end()) && "The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? static_cast<void> (
0) : __assert_fail ("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9116, __PRETTY_FUNCTION__))
9116 "fields within the closure type")((NumFields == (size_t)std::distance(E->capture_init_begin
(), E->capture_init_end()) && "The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? static_cast<void> (
0) : __assert_fail ("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9116, __PRETTY_FUNCTION__))
;
9117
9118 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
9119 // Iterate through all the lambda's closure object's fields and initialize
9120 // them.
9121 auto *CaptureInitIt = E->capture_init_begin();
9122 const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
9123 bool Success = true;
9124 for (const auto *Field : ClosureClass->fields()) {
9125 assert(CaptureInitIt != E->capture_init_end())((CaptureInitIt != E->capture_init_end()) ? static_cast<
void> (0) : __assert_fail ("CaptureInitIt != E->capture_init_end()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9125, __PRETTY_FUNCTION__))
;
9126 // Get the initializer for this field
9127 Expr *const CurFieldInit = *CaptureInitIt++;
9128
9129 // If there is no initializer, either this is a VLA or an error has
9130 // occurred.
9131 if (!CurFieldInit)
9132 return Error(E);
9133
9134 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9135 if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
9136 if (!Info.keepEvaluatingAfterFailure())
9137 return false;
9138 Success = false;
9139 }
9140 ++CaptureIt;
9141 }
9142 return Success;
9143}
9144
9145static bool EvaluateRecord(const Expr *E, const LValue &This,
9146 APValue &Result, EvalInfo &Info) {
9147 assert(E->isRValue() && E->getType()->isRecordType() &&((E->isRValue() && E->getType()->isRecordType
() && "can't evaluate expression as a record rvalue")
? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isRecordType() && \"can't evaluate expression as a record rvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9148, __PRETTY_FUNCTION__))
9148 "can't evaluate expression as a record rvalue")((E->isRValue() && E->getType()->isRecordType
() && "can't evaluate expression as a record rvalue")
? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isRecordType() && \"can't evaluate expression as a record rvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9148, __PRETTY_FUNCTION__))
;
9149 return RecordExprEvaluator(Info, This, Result).Visit(E);
9150}
9151
9152//===----------------------------------------------------------------------===//
9153// Temporary Evaluation
9154//
9155// Temporaries are represented in the AST as rvalues, but generally behave like
9156// lvalues. The full-object of which the temporary is a subobject is implicitly
9157// materialized so that a reference can bind to it.
9158//===----------------------------------------------------------------------===//
9159namespace {
9160class TemporaryExprEvaluator
9161 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
9162public:
9163 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
9164 LValueExprEvaluatorBaseTy(Info, Result, false) {}
9165
9166 /// Visit an expression which constructs the value of this temporary.
9167 bool VisitConstructExpr(const Expr *E) {
9168 APValue &Value =
9169 Info.CurrentCall->createTemporary(E, E->getType(), false, Result);
9170 return EvaluateInPlace(Value, Info, Result, E);
9171 }
9172
9173 bool VisitCastExpr(const CastExpr *E) {
9174 switch (E->getCastKind()) {
9175 default:
9176 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
9177
9178 case CK_ConstructorConversion:
9179 return VisitConstructExpr(E->getSubExpr());
9180 }
9181 }
9182 bool VisitInitListExpr(const InitListExpr *E) {
9183 return VisitConstructExpr(E);
9184 }
9185 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9186 return VisitConstructExpr(E);
9187 }
9188 bool VisitCallExpr(const CallExpr *E) {
9189 return VisitConstructExpr(E);
9190 }
9191 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
9192 return VisitConstructExpr(E);
9193 }
9194 bool VisitLambdaExpr(const LambdaExpr *E) {
9195 return VisitConstructExpr(E);
9196 }
9197};
9198} // end anonymous namespace
9199
9200/// Evaluate an expression of record type as a temporary.
9201static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
9202 assert(E->isRValue() && E->getType()->isRecordType())((E->isRValue() && E->getType()->isRecordType
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isRecordType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9202, __PRETTY_FUNCTION__))
;
9203 return TemporaryExprEvaluator(Info, Result).Visit(E);
9204}
9205
9206//===----------------------------------------------------------------------===//
9207// Vector Evaluation
9208//===----------------------------------------------------------------------===//
9209
9210namespace {
9211 class VectorExprEvaluator
9212 : public ExprEvaluatorBase<VectorExprEvaluator> {
9213 APValue &Result;
9214 public:
9215
9216 VectorExprEvaluator(EvalInfo &info, APValue &Result)
9217 : ExprEvaluatorBaseTy(info), Result(Result) {}
9218
9219 bool Success(ArrayRef<APValue> V, const Expr *E) {
9220 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements())((V.size() == E->getType()->castAs<VectorType>()->
getNumElements()) ? static_cast<void> (0) : __assert_fail
("V.size() == E->getType()->castAs<VectorType>()->getNumElements()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9220, __PRETTY_FUNCTION__))
;
9221 // FIXME: remove this APValue copy.
9222 Result = APValue(V.data(), V.size());
9223 return true;
9224 }
9225 bool Success(const APValue &V, const Expr *E) {
9226 assert(V.isVector())((V.isVector()) ? static_cast<void> (0) : __assert_fail
("V.isVector()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9226, __PRETTY_FUNCTION__))
;
9227 Result = V;
9228 return true;
9229 }
9230 bool ZeroInitialization(const Expr *E);
9231
9232 bool VisitUnaryReal(const UnaryOperator *E)
9233 { return Visit(E->getSubExpr()); }
9234 bool VisitCastExpr(const CastExpr* E);
9235 bool VisitInitListExpr(const InitListExpr *E);
9236 bool VisitUnaryImag(const UnaryOperator *E);
9237 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
9238 // binary comparisons, binary and/or/xor,
9239 // shufflevector, ExtVectorElementExpr
9240 };
9241} // end anonymous namespace
9242
9243static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
9244 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue")((E->isRValue() && E->getType()->isVectorType
() &&"not a vector rvalue") ? static_cast<void>
(0) : __assert_fail ("E->isRValue() && E->getType()->isVectorType() &&\"not a vector rvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9244, __PRETTY_FUNCTION__))
;
9245 return VectorExprEvaluator(Info, Result).Visit(E);
9246}
9247
9248bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
9249 const VectorType *VTy = E->getType()->castAs<VectorType>();
9250 unsigned NElts = VTy->getNumElements();
9251
9252 const Expr *SE = E->getSubExpr();
9253 QualType SETy = SE->getType();
9254
9255 switch (E->getCastKind()) {
9256 case CK_VectorSplat: {
9257 APValue Val = APValue();
9258 if (SETy->isIntegerType()) {
9259 APSInt IntResult;
9260 if (!EvaluateInteger(SE, IntResult, Info))
9261 return false;
9262 Val = APValue(std::move(IntResult));
9263 } else if (SETy->isRealFloatingType()) {
9264 APFloat FloatResult(0.0);
9265 if (!EvaluateFloat(SE, FloatResult, Info))
9266 return false;
9267 Val = APValue(std::move(FloatResult));
9268 } else {
9269 return Error(E);
9270 }
9271
9272 // Splat and create vector APValue.
9273 SmallVector<APValue, 4> Elts(NElts, Val);
9274 return Success(Elts, E);
9275 }
9276 case CK_BitCast: {
9277 // Evaluate the operand into an APInt we can extract from.
9278 llvm::APInt SValInt;
9279 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
9280 return false;
9281 // Extract the elements
9282 QualType EltTy = VTy->getElementType();
9283 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
9284 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
9285 SmallVector<APValue, 4> Elts;
9286 if (EltTy->isRealFloatingType()) {
9287 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
9288 unsigned FloatEltSize = EltSize;
9289 if (&Sem == &APFloat::x87DoubleExtended())
9290 FloatEltSize = 80;
9291 for (unsigned i = 0; i < NElts; i++) {
9292 llvm::APInt Elt;
9293 if (BigEndian)
9294 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
9295 else
9296 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
9297 Elts.push_back(APValue(APFloat(Sem, Elt)));
9298 }
9299 } else if (EltTy->isIntegerType()) {
9300 for (unsigned i = 0; i < NElts; i++) {
9301 llvm::APInt Elt;
9302 if (BigEndian)
9303 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
9304 else
9305 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
9306 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
9307 }
9308 } else {
9309 return Error(E);
9310 }
9311 return Success(Elts, E);
9312 }
9313 default:
9314 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9315 }
9316}
9317
9318bool
9319VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9320 const VectorType *VT = E->getType()->castAs<VectorType>();
9321 unsigned NumInits = E->getNumInits();
9322 unsigned NumElements = VT->getNumElements();
9323
9324 QualType EltTy = VT->getElementType();
9325 SmallVector<APValue, 4> Elements;
9326
9327 // The number of initializers can be less than the number of
9328 // vector elements. For OpenCL, this can be due to nested vector
9329 // initialization. For GCC compatibility, missing trailing elements
9330 // should be initialized with zeroes.
9331 unsigned CountInits = 0, CountElts = 0;
9332 while (CountElts < NumElements) {
9333 // Handle nested vector initialization.
9334 if (CountInits < NumInits
9335 && E->getInit(CountInits)->getType()->isVectorType()) {
9336 APValue v;
9337 if (!EvaluateVector(E->getInit(CountInits), v, Info))
9338 return Error(E);
9339 unsigned vlen = v.getVectorLength();
9340 for (unsigned j = 0; j < vlen; j++)
9341 Elements.push_back(v.getVectorElt(j));
9342 CountElts += vlen;
9343 } else if (EltTy->isIntegerType()) {
9344 llvm::APSInt sInt(32);
9345 if (CountInits < NumInits) {
9346 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
9347 return false;
9348 } else // trailing integer zero.
9349 sInt = Info.Ctx.MakeIntValue(0, EltTy);
9350 Elements.push_back(APValue(sInt));
9351 CountElts++;
9352 } else {
9353 llvm::APFloat f(0.0);
9354 if (CountInits < NumInits) {
9355 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
9356 return false;
9357 } else // trailing float zero.
9358 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
9359 Elements.push_back(APValue(f));
9360 CountElts++;
9361 }
9362 CountInits++;
9363 }
9364 return Success(Elements, E);
9365}
9366
9367bool
9368VectorExprEvaluator::ZeroInitialization(const Expr *E) {
9369 const auto *VT = E->getType()->castAs<VectorType>();
9370 QualType EltTy = VT->getElementType();
9371 APValue ZeroElement;
9372 if (EltTy->isIntegerType())
9373 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
9374 else
9375 ZeroElement =
9376 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
9377
9378 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
9379 return Success(Elements, E);
9380}
9381
9382bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9383 VisitIgnoredValue(E->getSubExpr());
9384 return ZeroInitialization(E);
9385}
9386
9387//===----------------------------------------------------------------------===//
9388// Array Evaluation
9389//===----------------------------------------------------------------------===//
9390
9391namespace {
9392 class ArrayExprEvaluator
9393 : public ExprEvaluatorBase<ArrayExprEvaluator> {
9394 const LValue &This;
9395 APValue &Result;
9396 public:
9397
9398 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
9399 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
9400
9401 bool Success(const APValue &V, const Expr *E) {
9402 assert(V.isArray() && "expected array")((V.isArray() && "expected array") ? static_cast<void
> (0) : __assert_fail ("V.isArray() && \"expected array\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9402, __PRETTY_FUNCTION__))
;
9403 Result = V;
9404 return true;
9405 }
9406
9407 bool ZeroInitialization(const Expr *E) {
9408 const ConstantArrayType *CAT =
9409 Info.Ctx.getAsConstantArrayType(E->getType());
9410 if (!CAT)
9411 return Error(E);
9412
9413 Result = APValue(APValue::UninitArray(), 0,
9414 CAT->getSize().getZExtValue());
9415 if (!Result.hasArrayFiller()) return true;
9416
9417 // Zero-initialize all elements.
9418 LValue Subobject = This;
9419 Subobject.addArray(Info, E, CAT);
9420 ImplicitValueInitExpr VIE(CAT->getElementType());
9421 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
9422 }
9423
9424 bool VisitCallExpr(const CallExpr *E) {
9425 return handleCallExpr(E, Result, &This);
9426 }
9427 bool VisitInitListExpr(const InitListExpr *E,
9428 QualType AllocType = QualType());
9429 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
9430 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
9431 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
9432 const LValue &Subobject,
9433 APValue *Value, QualType Type);
9434 bool VisitStringLiteral(const StringLiteral *E,
9435 QualType AllocType = QualType()) {
9436 expandStringLiteral(Info, E, Result, AllocType);
9437 return true;
9438 }
9439 };
9440} // end anonymous namespace
9441
9442static bool EvaluateArray(const Expr *E, const LValue &This,
9443 APValue &Result, EvalInfo &Info) {
9444 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue")((E->isRValue() && E->getType()->isArrayType
() && "not an array rvalue") ? static_cast<void>
(0) : __assert_fail ("E->isRValue() && E->getType()->isArrayType() && \"not an array rvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9444, __PRETTY_FUNCTION__))
;
9445 return ArrayExprEvaluator(Info, This, Result).Visit(E);
9446}
9447
9448static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9449 APValue &Result, const InitListExpr *ILE,
9450 QualType AllocType) {
9451 assert(ILE->isRValue() && ILE->getType()->isArrayType() &&((ILE->isRValue() && ILE->getType()->isArrayType
() && "not an array rvalue") ? static_cast<void>
(0) : __assert_fail ("ILE->isRValue() && ILE->getType()->isArrayType() && \"not an array rvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9452, __PRETTY_FUNCTION__))
9452 "not an array rvalue")((ILE->isRValue() && ILE->getType()->isArrayType
() && "not an array rvalue") ? static_cast<void>
(0) : __assert_fail ("ILE->isRValue() && ILE->getType()->isArrayType() && \"not an array rvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9452, __PRETTY_FUNCTION__))
;
9453 return ArrayExprEvaluator(Info, This, Result)
9454 .VisitInitListExpr(ILE, AllocType);
9455}
9456
9457// Return true iff the given array filler may depend on the element index.
9458static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
9459 // For now, just whitelist non-class value-initialization and initialization
9460 // lists comprised of them.
9461 if (isa<ImplicitValueInitExpr>(FillerExpr))
9462 return false;
9463 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
9464 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
9465 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
9466 return true;
9467 }
9468 return false;
9469 }
9470 return true;
9471}
9472
9473bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
9474 QualType AllocType) {
9475 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
9476 AllocType.isNull() ? E->getType() : AllocType);
9477 if (!CAT)
9478 return Error(E);
9479
9480 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
9481 // an appropriately-typed string literal enclosed in braces.
9482 if (E->isStringLiteralInit()) {
9483 auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
9484 // FIXME: Support ObjCEncodeExpr here once we support it in
9485 // ArrayExprEvaluator generally.
9486 if (!SL)
9487 return Error(E);
9488 return VisitStringLiteral(SL, AllocType);
9489 }
9490
9491 bool Success = true;
9492
9493 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&(((!Result.isArray() || Result.getArrayInitializedElts() == 0
) && "zero-initialized array shouldn't have any initialized elts"
) ? static_cast<void> (0) : __assert_fail ("(!Result.isArray() || Result.getArrayInitializedElts() == 0) && \"zero-initialized array shouldn't have any initialized elts\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9494, __PRETTY_FUNCTION__))
9494 "zero-initialized array shouldn't have any initialized elts")(((!Result.isArray() || Result.getArrayInitializedElts() == 0
) && "zero-initialized array shouldn't have any initialized elts"
) ? static_cast<void> (0) : __assert_fail ("(!Result.isArray() || Result.getArrayInitializedElts() == 0) && \"zero-initialized array shouldn't have any initialized elts\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9494, __PRETTY_FUNCTION__))
;
9495 APValue Filler;
9496 if (Result.isArray() && Result.hasArrayFiller())
9497 Filler = Result.getArrayFiller();
9498
9499 unsigned NumEltsToInit = E->getNumInits();
9500 unsigned NumElts = CAT->getSize().getZExtValue();
9501 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
9502
9503 // If the initializer might depend on the array index, run it for each
9504 // array element.
9505 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
9506 NumEltsToInit = NumElts;
9507
9508 LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("exprconstant")) { llvm::dbgs() << "The number of elements to initialize: "
<< NumEltsToInit << ".\n"; } } while (false)
9509 << NumEltsToInit << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("exprconstant")) { llvm::dbgs() << "The number of elements to initialize: "
<< NumEltsToInit << ".\n"; } } while (false)
;
9510
9511 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
9512
9513 // If the array was previously zero-initialized, preserve the
9514 // zero-initialized values.
9515 if (Filler.hasValue()) {
9516 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
9517 Result.getArrayInitializedElt(I) = Filler;
9518 if (Result.hasArrayFiller())
9519 Result.getArrayFiller() = Filler;
9520 }
9521
9522 LValue Subobject = This;
9523 Subobject.addArray(Info, E, CAT);
9524 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
9525 const Expr *Init =
9526 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
9527 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
9528 Info, Subobject, Init) ||
9529 !HandleLValueArrayAdjustment(Info, Init, Subobject,
9530 CAT->getElementType(), 1)) {
9531 if (!Info.noteFailure())
9532 return false;
9533 Success = false;
9534 }
9535 }
9536
9537 if (!Result.hasArrayFiller())
9538 return Success;
9539
9540 // If we get here, we have a trivial filler, which we can just evaluate
9541 // once and splat over the rest of the array elements.
9542 assert(FillerExpr && "no array filler for incomplete init list")((FillerExpr && "no array filler for incomplete init list"
) ? static_cast<void> (0) : __assert_fail ("FillerExpr && \"no array filler for incomplete init list\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9542, __PRETTY_FUNCTION__))
;
9543 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
9544 FillerExpr) && Success;
9545}
9546
9547bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
9548 LValue CommonLV;
9549 if (E->getCommonExpr() &&
9550 !Evaluate(Info.CurrentCall->createTemporary(
9551 E->getCommonExpr(),
9552 getStorageType(Info.Ctx, E->getCommonExpr()), false,
9553 CommonLV),
9554 Info, E->getCommonExpr()->getSourceExpr()))
9555 return false;
9556
9557 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
9558
9559 uint64_t Elements = CAT->getSize().getZExtValue();
9560 Result = APValue(APValue::UninitArray(), Elements, Elements);
9561
9562 LValue Subobject = This;
9563 Subobject.addArray(Info, E, CAT);
9564
9565 bool Success = true;
9566 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
9567 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
9568 Info, Subobject, E->getSubExpr()) ||
9569 !HandleLValueArrayAdjustment(Info, E, Subobject,
9570 CAT->getElementType(), 1)) {
9571 if (!Info.noteFailure())
9572 return false;
9573 Success = false;
9574 }
9575 }
9576
9577 return Success;
9578}
9579
9580bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
9581 return VisitCXXConstructExpr(E, This, &Result, E->getType());
9582}
9583
9584bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9585 const LValue &Subobject,
9586 APValue *Value,
9587 QualType Type) {
9588 bool HadZeroInit = Value->hasValue();
9589
9590 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
9591 unsigned N = CAT->getSize().getZExtValue();
9592
9593 // Preserve the array filler if we had prior zero-initialization.
9594 APValue Filler =
9595 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
9596 : APValue();
9597
9598 *Value = APValue(APValue::UninitArray(), N, N);
9599
9600 if (HadZeroInit)
9601 for (unsigned I = 0; I != N; ++I)
9602 Value->getArrayInitializedElt(I) = Filler;
9603
9604 // Initialize the elements.
9605 LValue ArrayElt = Subobject;
9606 ArrayElt.addArray(Info, E, CAT);
9607 for (unsigned I = 0; I != N; ++I)
9608 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
9609 CAT->getElementType()) ||
9610 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
9611 CAT->getElementType(), 1))
9612 return false;
9613
9614 return true;
9615 }
9616
9617 if (!Type->isRecordType())
9618 return Error(E);
9619
9620 return RecordExprEvaluator(Info, Subobject, *Value)
9621 .VisitCXXConstructExpr(E, Type);
9622}
9623
9624//===----------------------------------------------------------------------===//
9625// Integer Evaluation
9626//
9627// As a GNU extension, we support casting pointers to sufficiently-wide integer
9628// types and back in constant folding. Integer values are thus represented
9629// either as an integer-valued APValue, or as an lvalue-valued APValue.
9630//===----------------------------------------------------------------------===//
9631
9632namespace {
9633class IntExprEvaluator
9634 : public ExprEvaluatorBase<IntExprEvaluator> {
9635 APValue &Result;
9636public:
9637 IntExprEvaluator(EvalInfo &info, APValue &result)
9638 : ExprEvaluatorBaseTy(info), Result(result) {}
9639
9640 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
9641 assert(E->getType()->isIntegralOrEnumerationType() &&((E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9642, __PRETTY_FUNCTION__))
9642 "Invalid evaluation result.")((E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9642, __PRETTY_FUNCTION__))
;
9643 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&((SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType
() && "Invalid evaluation result.") ? static_cast<
void> (0) : __assert_fail ("SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9644, __PRETTY_FUNCTION__))
9644 "Invalid evaluation result.")((SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType
() && "Invalid evaluation result.") ? static_cast<
void> (0) : __assert_fail ("SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9644, __PRETTY_FUNCTION__))
;
9645 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&((SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9646, __PRETTY_FUNCTION__))
9646 "Invalid evaluation result.")((SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9646, __PRETTY_FUNCTION__))
;
9647 Result = APValue(SI);
9648 return true;
9649 }
9650 bool Success(const llvm::APSInt &SI, const Expr *E) {
9651 return Success(SI, E, Result);
9652 }
9653
9654 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
9655 assert(E->getType()->isIntegralOrEnumerationType() &&((E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9656, __PRETTY_FUNCTION__))
9656 "Invalid evaluation result.")((E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9656, __PRETTY_FUNCTION__))
;
9657 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&((I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9658, __PRETTY_FUNCTION__))
9658 "Invalid evaluation result.")((I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9658, __PRETTY_FUNCTION__))
;
9659 Result = APValue(APSInt(I));
9660 Result.getInt().setIsUnsigned(
9661 E->getType()->isUnsignedIntegerOrEnumerationType());
9662 return true;
9663 }
9664 bool Success(const llvm::APInt &I, const Expr *E) {
9665 return Success(I, E, Result);
9666 }
9667
9668 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
9669 assert(E->getType()->isIntegralOrEnumerationType() &&((E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9670, __PRETTY_FUNCTION__))
9670 "Invalid evaluation result.")((E->getType()->isIntegralOrEnumerationType() &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9670, __PRETTY_FUNCTION__))
;
9671 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
9672 return true;
9673 }
9674 bool Success(uint64_t Value, const Expr *E) {
9675 return Success(Value, E, Result);
9676 }
9677
9678 bool Success(CharUnits Size, const Expr *E) {
9679 return Success(Size.getQuantity(), E);
9680 }
9681
9682 bool Success(const APValue &V, const Expr *E) {
9683 if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
9684 Result = V;
9685 return true;
9686 }
9687 return Success(V.getInt(), E);
9688 }
9689
9690 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
9691
9692 //===--------------------------------------------------------------------===//
9693 // Visitor Methods
9694 //===--------------------------------------------------------------------===//
9695
9696 bool VisitConstantExpr(const ConstantExpr *E);
9697
9698 bool VisitIntegerLiteral(const IntegerLiteral *E) {
9699 return Success(E->getValue(), E);
9700 }
9701 bool VisitCharacterLiteral(const CharacterLiteral *E) {
9702 return Success(E->getValue(), E);
9703 }
9704
9705 bool CheckReferencedDecl(const Expr *E, const Decl *D);
9706 bool VisitDeclRefExpr(const DeclRefExpr *E) {
9707 if (CheckReferencedDecl(E, E->getDecl()))
9708 return true;
9709
9710 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
9711 }
9712 bool VisitMemberExpr(const MemberExpr *E) {
9713 if (CheckReferencedDecl(E, E->getMemberDecl())) {
9714 VisitIgnoredBaseExpression(E->getBase());
9715 return true;
9716 }
9717
9718 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
9719 }
9720
9721 bool VisitCallExpr(const CallExpr *E);
9722 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
9723 bool VisitBinaryOperator(const BinaryOperator *E);
9724 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
9725 bool VisitUnaryOperator(const UnaryOperator *E);
9726
9727 bool VisitCastExpr(const CastExpr* E);
9728 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
9729
9730 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
9731 return Success(E->getValue(), E);
9732 }
9733
9734 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
9735 return Success(E->getValue(), E);
9736 }
9737
9738 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
9739 if (Info.ArrayInitIndex == uint64_t(-1)) {
9740 // We were asked to evaluate this subexpression independent of the
9741 // enclosing ArrayInitLoopExpr. We can't do that.
9742 Info.FFDiag(E);
9743 return false;
9744 }
9745 return Success(Info.ArrayInitIndex, E);
9746 }
9747
9748 // Note, GNU defines __null as an integer, not a pointer.
9749 bool VisitGNUNullExpr(const GNUNullExpr *E) {
9750 return ZeroInitialization(E);
9751 }
9752
9753 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
9754 return Success(E->getValue(), E);
9755 }
9756
9757 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
9758 return Success(E->getValue(), E);
9759 }
9760
9761 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
9762 return Success(E->getValue(), E);
9763 }
9764
9765 bool VisitUnaryReal(const UnaryOperator *E);
9766 bool VisitUnaryImag(const UnaryOperator *E);
9767
9768 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
9769 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
9770 bool VisitSourceLocExpr(const SourceLocExpr *E);
9771 // FIXME: Missing: array subscript of vector, member of vector
9772};
9773
9774class FixedPointExprEvaluator
9775 : public ExprEvaluatorBase<FixedPointExprEvaluator> {
9776 APValue &Result;
9777
9778 public:
9779 FixedPointExprEvaluator(EvalInfo &info, APValue &result)
9780 : ExprEvaluatorBaseTy(info), Result(result) {}
9781
9782 bool Success(const llvm::APInt &I, const Expr *E) {
9783 return Success(
9784 APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
9785 }
9786
9787 bool Success(uint64_t Value, const Expr *E) {
9788 return Success(
9789 APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
9790 }
9791
9792 bool Success(const APValue &V, const Expr *E) {
9793 return Success(V.getFixedPoint(), E);
9794 }
9795
9796 bool Success(const APFixedPoint &V, const Expr *E) {
9797 assert(E->getType()->isFixedPointType() && "Invalid evaluation result.")((E->getType()->isFixedPointType() && "Invalid evaluation result."
) ? static_cast<void> (0) : __assert_fail ("E->getType()->isFixedPointType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9797, __PRETTY_FUNCTION__))
;
9798 assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&((V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9799, __PRETTY_FUNCTION__))
9799 "Invalid evaluation result.")((V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
"Invalid evaluation result.") ? static_cast<void> (0) :
__assert_fail ("V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9799, __PRETTY_FUNCTION__))
;
9800 Result = APValue(V);
9801 return true;
9802 }
9803
9804 //===--------------------------------------------------------------------===//
9805 // Visitor Methods
9806 //===--------------------------------------------------------------------===//
9807
9808 bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
9809 return Success(E->getValue(), E);
9810 }
9811
9812 bool VisitCastExpr(const CastExpr *E);
9813 bool VisitUnaryOperator(const UnaryOperator *E);
9814 bool VisitBinaryOperator(const BinaryOperator *E);
9815};
9816} // end anonymous namespace
9817
9818/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
9819/// produce either the integer value or a pointer.
9820///
9821/// GCC has a heinous extension which folds casts between pointer types and
9822/// pointer-sized integral types. We support this by allowing the evaluation of
9823/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
9824/// Some simple arithmetic on such values is supported (they are treated much
9825/// like char*).
9826static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
9827 EvalInfo &Info) {
9828 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType())((E->isRValue() && E->getType()->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9828, __PRETTY_FUNCTION__))
;
9829 return IntExprEvaluator(Info, Result).Visit(E);
9830}
9831
9832static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
9833 APValue Val;
9834 if (!EvaluateIntegerOrLValue(E, Val, Info))
9835 return false;
9836 if (!Val.isInt()) {
9837 // FIXME: It would be better to produce the diagnostic for casting
9838 // a pointer to an integer.
9839 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
9840 return false;
9841 }
9842 Result = Val.getInt();
9843 return true;
9844}
9845
9846bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
9847 APValue Evaluated = E->EvaluateInContext(
9848 Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
9849 return Success(Evaluated, E);
9850}
9851
9852static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
9853 EvalInfo &Info) {
9854 if (E->getType()->isFixedPointType()) {
9855 APValue Val;
9856 if (!FixedPointExprEvaluator(Info, Val).Visit(E))
9857 return false;
9858 if (!Val.isFixedPoint())
9859 return false;
9860
9861 Result = Val.getFixedPoint();
9862 return true;
9863 }
9864 return false;
9865}
9866
9867static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
9868 EvalInfo &Info) {
9869 if (E->getType()->isIntegerType()) {
9870 auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
9871 APSInt Val;
9872 if (!EvaluateInteger(E, Val, Info))
9873 return false;
9874 Result = APFixedPoint(Val, FXSema);
9875 return true;
9876 } else if (E->getType()->isFixedPointType()) {
9877 return EvaluateFixedPoint(E, Result, Info);
9878 }
9879 return false;
9880}
9881
9882/// Check whether the given declaration can be directly converted to an integral
9883/// rvalue. If not, no diagnostic is produced; there are other things we can
9884/// try.
9885bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
9886 // Enums are integer constant exprs.
9887 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
9888 // Check for signedness/width mismatches between E type and ECD value.
9889 bool SameSign = (ECD->getInitVal().isSigned()
9890 == E->getType()->isSignedIntegerOrEnumerationType());
9891 bool SameWidth = (ECD->getInitVal().getBitWidth()
9892 == Info.Ctx.getIntWidth(E->getType()));
9893 if (SameSign && SameWidth)
9894 return Success(ECD->getInitVal(), E);
9895 else {
9896 // Get rid of mismatch (otherwise Success assertions will fail)
9897 // by computing a new value matching the type of E.
9898 llvm::APSInt Val = ECD->getInitVal();
9899 if (!SameSign)
9900 Val.setIsSigned(!ECD->getInitVal().isSigned());
9901 if (!SameWidth)
9902 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
9903 return Success(Val, E);
9904 }
9905 }
9906 return false;
9907}
9908
9909/// Values returned by __builtin_classify_type, chosen to match the values
9910/// produced by GCC's builtin.
9911enum class GCCTypeClass {
9912 None = -1,
9913 Void = 0,
9914 Integer = 1,
9915 // GCC reserves 2 for character types, but instead classifies them as
9916 // integers.
9917 Enum = 3,
9918 Bool = 4,
9919 Pointer = 5,
9920 // GCC reserves 6 for references, but appears to never use it (because
9921 // expressions never have reference type, presumably).
9922 PointerToDataMember = 7,
9923 RealFloat = 8,
9924 Complex = 9,
9925 // GCC reserves 10 for functions, but does not use it since GCC version 6 due
9926 // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
9927 // GCC claims to reserve 11 for pointers to member functions, but *actually*
9928 // uses 12 for that purpose, same as for a class or struct. Maybe it
9929 // internally implements a pointer to member as a struct? Who knows.
9930 PointerToMemberFunction = 12, // Not a bug, see above.
9931 ClassOrStruct = 12,
9932 Union = 13,
9933 // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
9934 // decay to pointer. (Prior to version 6 it was only used in C++ mode).
9935 // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
9936 // literals.
9937};
9938
9939/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
9940/// as GCC.
9941static GCCTypeClass
9942EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
9943 assert(!T->isDependentType() && "unexpected dependent type")((!T->isDependentType() && "unexpected dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"unexpected dependent type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9943, __PRETTY_FUNCTION__))
;
9944
9945 QualType CanTy = T.getCanonicalType();
9946 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
9947
9948 switch (CanTy->getTypeClass()) {
9949#define TYPE(ID, BASE)
9950#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
9951#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
9952#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
9953#include "clang/AST/TypeNodes.inc"
9954 case Type::Auto:
9955 case Type::DeducedTemplateSpecialization:
9956 llvm_unreachable("unexpected non-canonical or dependent type")::llvm::llvm_unreachable_internal("unexpected non-canonical or dependent type"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 9956)
;
9957
9958 case Type::Builtin:
9959 switch (BT->getKind()) {
9960#define BUILTIN_TYPE(ID, SINGLETON_ID)
9961#define SIGNED_TYPE(ID, SINGLETON_ID) \
9962 case BuiltinType::ID: return GCCTypeClass::Integer;
9963#define FLOATING_TYPE(ID, SINGLETON_ID) \
9964 case BuiltinType::ID: return GCCTypeClass::RealFloat;
9965#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
9966 case BuiltinType::ID: break;
9967#include "clang/AST/BuiltinTypes.def"
9968 case BuiltinType::Void:
9969 return GCCTypeClass::Void;
9970
9971 case BuiltinType::Bool:
9972 return GCCTypeClass::Bool;
9973
9974 case BuiltinType::Char_U:
9975 case BuiltinType::UChar:
9976 case BuiltinType::WChar_U:
9977 case BuiltinType::Char8:
9978 case BuiltinType::Char16:
9979 case BuiltinType::Char32:
9980 case BuiltinType::UShort:
9981 case BuiltinType::UInt:
9982 case BuiltinType::ULong:
9983 case BuiltinType::ULongLong:
9984 case BuiltinType::UInt128:
9985 return GCCTypeClass::Integer;
9986
9987 case BuiltinType::UShortAccum:
9988 case BuiltinType::UAccum:
9989 case BuiltinType::ULongAccum:
9990 case BuiltinType::UShortFract:
9991 case BuiltinType::UFract:
9992 case BuiltinType::ULongFract:
9993 case BuiltinType::SatUShortAccum:
9994 case BuiltinType::SatUAccum:
9995 case BuiltinType::SatULongAccum:
9996 case BuiltinType::SatUShortFract:
9997 case BuiltinType::SatUFract:
9998 case BuiltinType::SatULongFract:
9999 return GCCTypeClass::None;
10000
10001 case BuiltinType::NullPtr:
10002
10003 case BuiltinType::ObjCId:
10004 case BuiltinType::ObjCClass:
10005 case BuiltinType::ObjCSel:
10006#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10007 case BuiltinType::Id:
10008#include "clang/Basic/OpenCLImageTypes.def"
10009#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10010 case BuiltinType::Id:
10011#include "clang/Basic/OpenCLExtensionTypes.def"
10012 case BuiltinType::OCLSampler:
10013 case BuiltinType::OCLEvent:
10014 case BuiltinType::OCLClkEvent:
10015 case BuiltinType::OCLQueue:
10016 case BuiltinType::OCLReserveID:
10017#define SVE_TYPE(Name, Id, SingletonId) \
10018 case BuiltinType::Id:
10019#include "clang/Basic/AArch64SVEACLETypes.def"
10020 return GCCTypeClass::None;
10021
10022 case BuiltinType::Dependent:
10023 llvm_unreachable("unexpected dependent type")::llvm::llvm_unreachable_internal("unexpected dependent type"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10023)
;
10024 };
10025 llvm_unreachable("unexpected placeholder type")::llvm::llvm_unreachable_internal("unexpected placeholder type"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10025)
;
10026
10027 case Type::Enum:
10028 return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
10029
10030 case Type::Pointer:
10031 case Type::ConstantArray:
10032 case Type::VariableArray:
10033 case Type::IncompleteArray:
10034 case Type::FunctionNoProto:
10035 case Type::FunctionProto:
10036 return GCCTypeClass::Pointer;
10037
10038 case Type::MemberPointer:
10039 return CanTy->isMemberDataPointerType()
10040 ? GCCTypeClass::PointerToDataMember
10041 : GCCTypeClass::PointerToMemberFunction;
10042
10043 case Type::Complex:
10044 return GCCTypeClass::Complex;
10045
10046 case Type::Record:
10047 return CanTy->isUnionType() ? GCCTypeClass::Union
10048 : GCCTypeClass::ClassOrStruct;
10049
10050 case Type::Atomic:
10051 // GCC classifies _Atomic T the same as T.
10052 return EvaluateBuiltinClassifyType(
10053 CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
10054
10055 case Type::BlockPointer:
10056 case Type::Vector:
10057 case Type::ExtVector:
10058 case Type::ObjCObject:
10059 case Type::ObjCInterface:
10060 case Type::ObjCObjectPointer:
10061 case Type::Pipe:
10062 // GCC classifies vectors as None. We follow its lead and classify all
10063 // other types that don't fit into the regular classification the same way.
10064 return GCCTypeClass::None;
10065
10066 case Type::LValueReference:
10067 case Type::RValueReference:
10068 llvm_unreachable("invalid type for expression")::llvm::llvm_unreachable_internal("invalid type for expression"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10068)
;
10069 }
10070
10071 llvm_unreachable("unexpected type class")::llvm::llvm_unreachable_internal("unexpected type class", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10071)
;
10072}
10073
10074/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10075/// as GCC.
10076static GCCTypeClass
10077EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
10078 // If no argument was supplied, default to None. This isn't
10079 // ideal, however it is what gcc does.
10080 if (E->getNumArgs() == 0)
10081 return GCCTypeClass::None;
10082
10083 // FIXME: Bizarrely, GCC treats a call with more than one argument as not
10084 // being an ICE, but still folds it to a constant using the type of the first
10085 // argument.
10086 return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
10087}
10088
10089/// EvaluateBuiltinConstantPForLValue - Determine the result of
10090/// __builtin_constant_p when applied to the given pointer.
10091///
10092/// A pointer is only "constant" if it is null (or a pointer cast to integer)
10093/// or it points to the first character of a string literal.
10094static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
10095 APValue::LValueBase Base = LV.getLValueBase();
10096 if (Base.isNull()) {
10097 // A null base is acceptable.
10098 return true;
10099 } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
10100 if (!isa<StringLiteral>(E))
10101 return false;
10102 return LV.getLValueOffset().isZero();
10103 } else if (Base.is<TypeInfoLValue>()) {
10104 // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
10105 // evaluate to true.
10106 return true;
10107 } else {
10108 // Any other base is not constant enough for GCC.
10109 return false;
10110 }
10111}
10112
10113/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
10114/// GCC as we can manage.
10115static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
10116 // This evaluation is not permitted to have side-effects, so evaluate it in
10117 // a speculative evaluation context.
10118 SpeculativeEvaluationRAII SpeculativeEval(Info);
10119
10120 // Constant-folding is always enabled for the operand of __builtin_constant_p
10121 // (even when the enclosing evaluation context otherwise requires a strict
10122 // language-specific constant expression).
10123 FoldConstant Fold(Info, true);
10124
10125 QualType ArgType = Arg->getType();
10126
10127 // __builtin_constant_p always has one operand. The rules which gcc follows
10128 // are not precisely documented, but are as follows:
10129 //
10130 // - If the operand is of integral, floating, complex or enumeration type,
10131 // and can be folded to a known value of that type, it returns 1.
10132 // - If the operand can be folded to a pointer to the first character
10133 // of a string literal (or such a pointer cast to an integral type)
10134 // or to a null pointer or an integer cast to a pointer, it returns 1.
10135 //
10136 // Otherwise, it returns 0.
10137 //
10138 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
10139 // its support for this did not work prior to GCC 9 and is not yet well
10140 // understood.
10141 if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
10142 ArgType->isAnyComplexType() || ArgType->isPointerType() ||
10143 ArgType->isNullPtrType()) {
10144 APValue V;
10145 if (!::EvaluateAsRValue(Info, Arg, V)) {
10146 Fold.keepDiagnostics();
10147 return false;
10148 }
10149
10150 // For a pointer (possibly cast to integer), there are special rules.
10151 if (V.getKind() == APValue::LValue)
10152 return EvaluateBuiltinConstantPForLValue(V);
10153
10154 // Otherwise, any constant value is good enough.
10155 return V.hasValue();
10156 }
10157
10158 // Anything else isn't considered to be sufficiently constant.
10159 return false;
10160}
10161
10162/// Retrieves the "underlying object type" of the given expression,
10163/// as used by __builtin_object_size.
10164static QualType getObjectType(APValue::LValueBase B) {
10165 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
10166 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
10167 return VD->getType();
10168 } else if (const Expr *E = B.get<const Expr*>()) {
10169 if (isa<CompoundLiteralExpr>(E))
10170 return E->getType();
10171 } else if (B.is<TypeInfoLValue>()) {
10172 return B.getTypeInfoType();
10173 } else if (B.is<DynamicAllocLValue>()) {
10174 return B.getDynamicAllocType();
10175 }
10176
10177 return QualType();
10178}
10179
10180/// A more selective version of E->IgnoreParenCasts for
10181/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
10182/// to change the type of E.
10183/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
10184///
10185/// Always returns an RValue with a pointer representation.
10186static const Expr *ignorePointerCastsAndParens(const Expr *E) {
10187 assert(E->isRValue() && E->getType()->hasPointerRepresentation())((E->isRValue() && E->getType()->hasPointerRepresentation
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->hasPointerRepresentation()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10187, __PRETTY_FUNCTION__))
;
10188
10189 auto *NoParens = E->IgnoreParens();
10190 auto *Cast = dyn_cast<CastExpr>(NoParens);
10191 if (Cast == nullptr)
10192 return NoParens;
10193
10194 // We only conservatively allow a few kinds of casts, because this code is
10195 // inherently a simple solution that seeks to support the common case.
10196 auto CastKind = Cast->getCastKind();
10197 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
10198 CastKind != CK_AddressSpaceConversion)
10199 return NoParens;
10200
10201 auto *SubExpr = Cast->getSubExpr();
10202 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
10203 return NoParens;
10204 return ignorePointerCastsAndParens(SubExpr);
10205}
10206
10207/// Checks to see if the given LValue's Designator is at the end of the LValue's
10208/// record layout. e.g.
10209/// struct { struct { int a, b; } fst, snd; } obj;
10210/// obj.fst // no
10211/// obj.snd // yes
10212/// obj.fst.a // no
10213/// obj.fst.b // no
10214/// obj.snd.a // no
10215/// obj.snd.b // yes
10216///
10217/// Please note: this function is specialized for how __builtin_object_size
10218/// views "objects".
10219///
10220/// If this encounters an invalid RecordDecl or otherwise cannot determine the
10221/// correct result, it will always return true.
10222static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
10223 assert(!LVal.Designator.Invalid)((!LVal.Designator.Invalid) ? static_cast<void> (0) : __assert_fail
("!LVal.Designator.Invalid", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10223, __PRETTY_FUNCTION__))
;
10224
10225 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
10226 const RecordDecl *Parent = FD->getParent();
10227 Invalid = Parent->isInvalidDecl();
10228 if (Invalid || Parent->isUnion())
10229 return true;
10230 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
10231 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
10232 };
10233
10234 auto &Base = LVal.getLValueBase();
10235 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
10236 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
10237 bool Invalid;
10238 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10239 return Invalid;
10240 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
10241 for (auto *FD : IFD->chain()) {
10242 bool Invalid;
10243 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
10244 return Invalid;
10245 }
10246 }
10247 }
10248
10249 unsigned I = 0;
10250 QualType BaseType = getType(Base);
10251 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
10252 // If we don't know the array bound, conservatively assume we're looking at
10253 // the final array element.
10254 ++I;
10255 if (BaseType->isIncompleteArrayType())
10256 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
10257 else
10258 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
10259 }
10260
10261 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
10262 const auto &Entry = LVal.Designator.Entries[I];
10263 if (BaseType->isArrayType()) {
10264 // Because __builtin_object_size treats arrays as objects, we can ignore
10265 // the index iff this is the last array in the Designator.
10266 if (I + 1 == E)
10267 return true;
10268 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
10269 uint64_t Index = Entry.getAsArrayIndex();
10270 if (Index + 1 != CAT->getSize())
10271 return false;
10272 BaseType = CAT->getElementType();
10273 } else if (BaseType->isAnyComplexType()) {
10274 const auto *CT = BaseType->castAs<ComplexType>();
10275 uint64_t Index = Entry.getAsArrayIndex();
10276 if (Index != 1)
10277 return false;
10278 BaseType = CT->getElementType();
10279 } else if (auto *FD = getAsField(Entry)) {
10280 bool Invalid;
10281 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
10282 return Invalid;
10283 BaseType = FD->getType();
10284 } else {
10285 assert(getAsBaseClass(Entry) && "Expecting cast to a base class")((getAsBaseClass(Entry) && "Expecting cast to a base class"
) ? static_cast<void> (0) : __assert_fail ("getAsBaseClass(Entry) && \"Expecting cast to a base class\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10285, __PRETTY_FUNCTION__))
;
10286 return false;
10287 }
10288 }
10289 return true;
10290}
10291
10292/// Tests to see if the LValue has a user-specified designator (that isn't
10293/// necessarily valid). Note that this always returns 'true' if the LValue has
10294/// an unsized array as its first designator entry, because there's currently no
10295/// way to tell if the user typed *foo or foo[0].
10296static bool refersToCompleteObject(const LValue &LVal) {
10297 if (LVal.Designator.Invalid)
10298 return false;
10299
10300 if (!LVal.Designator.Entries.empty())
10301 return LVal.Designator.isMostDerivedAnUnsizedArray();
10302
10303 if (!LVal.InvalidBase)
10304 return true;
10305
10306 // If `E` is a MemberExpr, then the first part of the designator is hiding in
10307 // the LValueBase.
10308 const auto *E = LVal.Base.dyn_cast<const Expr *>();
10309 return !E || !isa<MemberExpr>(E);
10310}
10311
10312/// Attempts to detect a user writing into a piece of memory that's impossible
10313/// to figure out the size of by just using types.
10314static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
10315 const SubobjectDesignator &Designator = LVal.Designator;
10316 // Notes:
10317 // - Users can only write off of the end when we have an invalid base. Invalid
10318 // bases imply we don't know where the memory came from.
10319 // - We used to be a bit more aggressive here; we'd only be conservative if
10320 // the array at the end was flexible, or if it had 0 or 1 elements. This
10321 // broke some common standard library extensions (PR30346), but was
10322 // otherwise seemingly fine. It may be useful to reintroduce this behavior
10323 // with some sort of whitelist. OTOH, it seems that GCC is always
10324 // conservative with the last element in structs (if it's an array), so our
10325 // current behavior is more compatible than a whitelisting approach would
10326 // be.
10327 return LVal.InvalidBase &&
10328 Designator.Entries.size() == Designator.MostDerivedPathLength &&
10329 Designator.MostDerivedIsArrayElement &&
10330 isDesignatorAtObjectEnd(Ctx, LVal);
10331}
10332
10333/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
10334/// Fails if the conversion would cause loss of precision.
10335static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
10336 CharUnits &Result) {
10337 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
10338 if (Int.ugt(CharUnitsMax))
10339 return false;
10340 Result = CharUnits::fromQuantity(Int.getZExtValue());
10341 return true;
10342}
10343
10344/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
10345/// determine how many bytes exist from the beginning of the object to either
10346/// the end of the current subobject, or the end of the object itself, depending
10347/// on what the LValue looks like + the value of Type.
10348///
10349/// If this returns false, the value of Result is undefined.
10350static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
10351 unsigned Type, const LValue &LVal,
10352 CharUnits &EndOffset) {
10353 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
10354
10355 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
10356 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
10357 return false;
10358 return HandleSizeof(Info, ExprLoc, Ty, Result);
10359 };
10360
10361 // We want to evaluate the size of the entire object. This is a valid fallback
10362 // for when Type=1 and the designator is invalid, because we're asked for an
10363 // upper-bound.
10364 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
10365 // Type=3 wants a lower bound, so we can't fall back to this.
10366 if (Type == 3 && !DetermineForCompleteObject)
10367 return false;
10368
10369 llvm::APInt APEndOffset;
10370 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10371 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10372 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10373
10374 if (LVal.InvalidBase)
10375 return false;
10376
10377 QualType BaseTy = getObjectType(LVal.getLValueBase());
10378 return CheckedHandleSizeof(BaseTy, EndOffset);
10379 }
10380
10381 // We want to evaluate the size of a subobject.
10382 const SubobjectDesignator &Designator = LVal.Designator;
10383
10384 // The following is a moderately common idiom in C:
10385 //
10386 // struct Foo { int a; char c[1]; };
10387 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
10388 // strcpy(&F->c[0], Bar);
10389 //
10390 // In order to not break too much legacy code, we need to support it.
10391 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
10392 // If we can resolve this to an alloc_size call, we can hand that back,
10393 // because we know for certain how many bytes there are to write to.
10394 llvm::APInt APEndOffset;
10395 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
10396 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
10397 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
10398
10399 // If we cannot determine the size of the initial allocation, then we can't
10400 // given an accurate upper-bound. However, we are still able to give
10401 // conservative lower-bounds for Type=3.
10402 if (Type == 1)
10403 return false;
10404 }
10405
10406 CharUnits BytesPerElem;
10407 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
10408 return false;
10409
10410 // According to the GCC documentation, we want the size of the subobject
10411 // denoted by the pointer. But that's not quite right -- what we actually
10412 // want is the size of the immediately-enclosing array, if there is one.
10413 int64_t ElemsRemaining;
10414 if (Designator.MostDerivedIsArrayElement &&
10415 Designator.Entries.size() == Designator.MostDerivedPathLength) {
10416 uint64_t ArraySize = Designator.getMostDerivedArraySize();
10417 uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
10418 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
10419 } else {
10420 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
10421 }
10422
10423 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
10424 return true;
10425}
10426
10427/// Tries to evaluate the __builtin_object_size for @p E. If successful,
10428/// returns true and stores the result in @p Size.
10429///
10430/// If @p WasError is non-null, this will report whether the failure to evaluate
10431/// is to be treated as an Error in IntExprEvaluator.
10432static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
10433 EvalInfo &Info, uint64_t &Size) {
10434 // Determine the denoted object.
10435 LValue LVal;
10436 {
10437 // The operand of __builtin_object_size is never evaluated for side-effects.
10438 // If there are any, but we can determine the pointed-to object anyway, then
10439 // ignore the side-effects.
10440 SpeculativeEvaluationRAII SpeculativeEval(Info);
10441 IgnoreSideEffectsRAII Fold(Info);
10442
10443 if (E->isGLValue()) {
10444 // It's possible for us to be given GLValues if we're called via
10445 // Expr::tryEvaluateObjectSize.
10446 APValue RVal;
10447 if (!EvaluateAsRValue(Info, E, RVal))
10448 return false;
10449 LVal.setFrom(Info.Ctx, RVal);
10450 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
10451 /*InvalidBaseOK=*/true))
10452 return false;
10453 }
10454
10455 // If we point to before the start of the object, there are no accessible
10456 // bytes.
10457 if (LVal.getLValueOffset().isNegative()) {
10458 Size = 0;
10459 return true;
10460 }
10461
10462 CharUnits EndOffset;
10463 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
10464 return false;
10465
10466 // If we've fallen outside of the end offset, just pretend there's nothing to
10467 // write to/read from.
10468 if (EndOffset <= LVal.getLValueOffset())
10469 Size = 0;
10470 else
10471 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
10472 return true;
10473}
10474
10475bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
10476 llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
10477 if (E->getResultAPValueKind() != APValue::None)
10478 return Success(E->getAPValueResult(), E);
10479 return ExprEvaluatorBaseTy::VisitConstantExpr(E);
10480}
10481
10482bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
10483 if (unsigned BuiltinOp = E->getBuiltinCallee())
10484 return VisitBuiltinCallExpr(E, BuiltinOp);
10485
10486 return ExprEvaluatorBaseTy::VisitCallExpr(E);
10487}
10488
10489bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
10490 unsigned BuiltinOp) {
10491 switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
10492 default:
10493 return ExprEvaluatorBaseTy::VisitCallExpr(E);
10494
10495 case Builtin::BI__builtin_dynamic_object_size:
10496 case Builtin::BI__builtin_object_size: {
10497 // The type was checked when we built the expression.
10498 unsigned Type =
10499 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
10500 assert(Type <= 3 && "unexpected type")((Type <= 3 && "unexpected type") ? static_cast<
void> (0) : __assert_fail ("Type <= 3 && \"unexpected type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10500, __PRETTY_FUNCTION__))
;
10501
10502 uint64_t Size;
10503 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
10504 return Success(Size, E);
10505
10506 if (E->getArg(0)->HasSideEffects(Info.Ctx))
10507 return Success((Type & 2) ? 0 : -1, E);
10508
10509 // Expression had no side effects, but we couldn't statically determine the
10510 // size of the referenced object.
10511 switch (Info.EvalMode) {
10512 case EvalInfo::EM_ConstantExpression:
10513 case EvalInfo::EM_ConstantFold:
10514 case EvalInfo::EM_IgnoreSideEffects:
10515 // Leave it to IR generation.
10516 return Error(E);
10517 case EvalInfo::EM_ConstantExpressionUnevaluated:
10518 // Reduce it to a constant now.
10519 return Success((Type & 2) ? 0 : -1, E);
10520 }
10521
10522 llvm_unreachable("unexpected EvalMode")::llvm::llvm_unreachable_internal("unexpected EvalMode", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10522)
;
10523 }
10524
10525 case Builtin::BI__builtin_os_log_format_buffer_size: {
10526 analyze_os_log::OSLogBufferLayout Layout;
10527 analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
10528 return Success(Layout.size().getQuantity(), E);
10529 }
10530
10531 case Builtin::BI__builtin_bswap16:
10532 case Builtin::BI__builtin_bswap32:
10533 case Builtin::BI__builtin_bswap64: {
10534 APSInt Val;
10535 if (!EvaluateInteger(E->getArg(0), Val, Info))
10536 return false;
10537
10538 return Success(Val.byteSwap(), E);
10539 }
10540
10541 case Builtin::BI__builtin_classify_type:
10542 return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
10543
10544 case Builtin::BI__builtin_clrsb:
10545 case Builtin::BI__builtin_clrsbl:
10546 case Builtin::BI__builtin_clrsbll: {
10547 APSInt Val;
10548 if (!EvaluateInteger(E->getArg(0), Val, Info))
10549 return false;
10550
10551 return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
10552 }
10553
10554 case Builtin::BI__builtin_clz:
10555 case Builtin::BI__builtin_clzl:
10556 case Builtin::BI__builtin_clzll:
10557 case Builtin::BI__builtin_clzs: {
10558 APSInt Val;
10559 if (!EvaluateInteger(E->getArg(0), Val, Info))
10560 return false;
10561 if (!Val)
10562 return Error(E);
10563
10564 return Success(Val.countLeadingZeros(), E);
10565 }
10566
10567 case Builtin::BI__builtin_constant_p: {
10568 const Expr *Arg = E->getArg(0);
10569 if (EvaluateBuiltinConstantP(Info, Arg))
10570 return Success(true, E);
10571 if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
10572 // Outside a constant context, eagerly evaluate to false in the presence
10573 // of side-effects in order to avoid -Wunsequenced false-positives in
10574 // a branch on __builtin_constant_p(expr).
10575 return Success(false, E);
10576 }
10577 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10578 return false;
10579 }
10580
10581 case Builtin::BI__builtin_is_constant_evaluated:
10582 return Success(Info.InConstantContext, E);
10583
10584 case Builtin::BI__builtin_ctz:
10585 case Builtin::BI__builtin_ctzl:
10586 case Builtin::BI__builtin_ctzll:
10587 case Builtin::BI__builtin_ctzs: {
10588 APSInt Val;
10589 if (!EvaluateInteger(E->getArg(0), Val, Info))
10590 return false;
10591 if (!Val)
10592 return Error(E);
10593
10594 return Success(Val.countTrailingZeros(), E);
10595 }
10596
10597 case Builtin::BI__builtin_eh_return_data_regno: {
10598 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
10599 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
10600 return Success(Operand, E);
10601 }
10602
10603 case Builtin::BI__builtin_expect:
10604 return Visit(E->getArg(0));
10605
10606 case Builtin::BI__builtin_ffs:
10607 case Builtin::BI__builtin_ffsl:
10608 case Builtin::BI__builtin_ffsll: {
10609 APSInt Val;
10610 if (!EvaluateInteger(E->getArg(0), Val, Info))
10611 return false;
10612
10613 unsigned N = Val.countTrailingZeros();
10614 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
10615 }
10616
10617 case Builtin::BI__builtin_fpclassify: {
10618 APFloat Val(0.0);
10619 if (!EvaluateFloat(E->getArg(5), Val, Info))
10620 return false;
10621 unsigned Arg;
10622 switch (Val.getCategory()) {
10623 case APFloat::fcNaN: Arg = 0; break;
10624 case APFloat::fcInfinity: Arg = 1; break;
10625 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
10626 case APFloat::fcZero: Arg = 4; break;
10627 }
10628 return Visit(E->getArg(Arg));
10629 }
10630
10631 case Builtin::BI__builtin_isinf_sign: {
10632 APFloat Val(0.0);
10633 return EvaluateFloat(E->getArg(0), Val, Info) &&
10634 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
10635 }
10636
10637 case Builtin::BI__builtin_isinf: {
10638 APFloat Val(0.0);
10639 return EvaluateFloat(E->getArg(0), Val, Info) &&
10640 Success(Val.isInfinity() ? 1 : 0, E);
10641 }
10642
10643 case Builtin::BI__builtin_isfinite: {
10644 APFloat Val(0.0);
10645 return EvaluateFloat(E->getArg(0), Val, Info) &&
10646 Success(Val.isFinite() ? 1 : 0, E);
10647 }
10648
10649 case Builtin::BI__builtin_isnan: {
10650 APFloat Val(0.0);
10651 return EvaluateFloat(E->getArg(0), Val, Info) &&
10652 Success(Val.isNaN() ? 1 : 0, E);
10653 }
10654
10655 case Builtin::BI__builtin_isnormal: {
10656 APFloat Val(0.0);
10657 return EvaluateFloat(E->getArg(0), Val, Info) &&
10658 Success(Val.isNormal() ? 1 : 0, E);
10659 }
10660
10661 case Builtin::BI__builtin_parity:
10662 case Builtin::BI__builtin_parityl:
10663 case Builtin::BI__builtin_parityll: {
10664 APSInt Val;
10665 if (!EvaluateInteger(E->getArg(0), Val, Info))
10666 return false;
10667
10668 return Success(Val.countPopulation() % 2, E);
10669 }
10670
10671 case Builtin::BI__builtin_popcount:
10672 case Builtin::BI__builtin_popcountl:
10673 case Builtin::BI__builtin_popcountll: {
10674 APSInt Val;
10675 if (!EvaluateInteger(E->getArg(0), Val, Info))
10676 return false;
10677
10678 return Success(Val.countPopulation(), E);
10679 }
10680
10681 case Builtin::BIstrlen:
10682 case Builtin::BIwcslen:
10683 // A call to strlen is not a constant expression.
10684 if (Info.getLangOpts().CPlusPlus11)
10685 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10686 << /*isConstexpr*/0 << /*isConstructor*/0
10687 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
10688 else
10689 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10690 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10691 case Builtin::BI__builtin_strlen:
10692 case Builtin::BI__builtin_wcslen: {
10693 // As an extension, we support __builtin_strlen() as a constant expression,
10694 // and support folding strlen() to a constant.
10695 LValue String;
10696 if (!EvaluatePointer(E->getArg(0), String, Info))
10697 return false;
10698
10699 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
10700
10701 // Fast path: if it's a string literal, search the string value.
10702 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
10703 String.getLValueBase().dyn_cast<const Expr *>())) {
10704 // The string literal may have embedded null characters. Find the first
10705 // one and truncate there.
10706 StringRef Str = S->getBytes();
10707 int64_t Off = String.Offset.getQuantity();
10708 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
10709 S->getCharByteWidth() == 1 &&
10710 // FIXME: Add fast-path for wchar_t too.
10711 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
10712 Str = Str.substr(Off);
10713
10714 StringRef::size_type Pos = Str.find(0);
10715 if (Pos != StringRef::npos)
10716 Str = Str.substr(0, Pos);
10717
10718 return Success(Str.size(), E);
10719 }
10720
10721 // Fall through to slow path to issue appropriate diagnostic.
10722 }
10723
10724 // Slow path: scan the bytes of the string looking for the terminating 0.
10725 for (uint64_t Strlen = 0; /**/; ++Strlen) {
10726 APValue Char;
10727 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
10728 !Char.isInt())
10729 return false;
10730 if (!Char.getInt())
10731 return Success(Strlen, E);
10732 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
10733 return false;
10734 }
10735 }
10736
10737 case Builtin::BIstrcmp:
10738 case Builtin::BIwcscmp:
10739 case Builtin::BIstrncmp:
10740 case Builtin::BIwcsncmp:
10741 case Builtin::BImemcmp:
10742 case Builtin::BIbcmp:
10743 case Builtin::BIwmemcmp:
10744 // A call to strlen is not a constant expression.
10745 if (Info.getLangOpts().CPlusPlus11)
10746 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
10747 << /*isConstexpr*/0 << /*isConstructor*/0
10748 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
10749 else
10750 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
10751 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10752 case Builtin::BI__builtin_strcmp:
10753 case Builtin::BI__builtin_wcscmp:
10754 case Builtin::BI__builtin_strncmp:
10755 case Builtin::BI__builtin_wcsncmp:
10756 case Builtin::BI__builtin_memcmp:
10757 case Builtin::BI__builtin_bcmp:
10758 case Builtin::BI__builtin_wmemcmp: {
10759 LValue String1, String2;
10760 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
10761 !EvaluatePointer(E->getArg(1), String2, Info))
10762 return false;
10763
10764 uint64_t MaxLength = uint64_t(-1);
10765 if (BuiltinOp != Builtin::BIstrcmp &&
10766 BuiltinOp != Builtin::BIwcscmp &&
10767 BuiltinOp != Builtin::BI__builtin_strcmp &&
10768 BuiltinOp != Builtin::BI__builtin_wcscmp) {
10769 APSInt N;
10770 if (!EvaluateInteger(E->getArg(2), N, Info))
10771 return false;
10772 MaxLength = N.getExtValue();
10773 }
10774
10775 // Empty substrings compare equal by definition.
10776 if (MaxLength == 0u)
10777 return Success(0, E);
10778
10779 if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
10780 !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
10781 String1.Designator.Invalid || String2.Designator.Invalid)
10782 return false;
10783
10784 QualType CharTy1 = String1.Designator.getType(Info.Ctx);
10785 QualType CharTy2 = String2.Designator.getType(Info.Ctx);
10786
10787 bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
10788 BuiltinOp == Builtin::BIbcmp ||
10789 BuiltinOp == Builtin::BI__builtin_memcmp ||
10790 BuiltinOp == Builtin::BI__builtin_bcmp;
10791
10792 assert(IsRawByte ||((IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->
getArg(0)->getType()->getPointeeType()) && Info
.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))) ? static_cast
<void> (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10795, __PRETTY_FUNCTION__))
10793 (Info.Ctx.hasSameUnqualifiedType(((IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->
getArg(0)->getType()->getPointeeType()) && Info
.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))) ? static_cast
<void> (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10795, __PRETTY_FUNCTION__))
10794 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&((IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->
getArg(0)->getType()->getPointeeType()) && Info
.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))) ? static_cast
<void> (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10795, __PRETTY_FUNCTION__))
10795 Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)))((IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->
getArg(0)->getType()->getPointeeType()) && Info
.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))) ? static_cast
<void> (0) : __assert_fail ("IsRawByte || (Info.Ctx.hasSameUnqualifiedType( CharTy1, E->getArg(0)->getType()->getPointeeType()) && Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10795, __PRETTY_FUNCTION__))
;
10796
10797 const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
10798 return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
10799 handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
10800 Char1.isInt() && Char2.isInt();
10801 };
10802 const auto &AdvanceElems = [&] {
10803 return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
10804 HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
10805 };
10806
10807 if (IsRawByte) {
10808 uint64_t BytesRemaining = MaxLength;
10809 // Pointers to const void may point to objects of incomplete type.
10810 if (CharTy1->isIncompleteType()) {
10811 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1;
10812 return false;
10813 }
10814 if (CharTy2->isIncompleteType()) {
10815 Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2;
10816 return false;
10817 }
10818 uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)};
10819 CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width);
10820 // Give up on comparing between elements with disparate widths.
10821 if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2))
10822 return false;
10823 uint64_t BytesPerElement = CharTy1Size.getQuantity();
10824 assert(BytesRemaining && "BytesRemaining should not be zero: the "((BytesRemaining && "BytesRemaining should not be zero: the "
"following loop considers at least one element") ? static_cast
<void> (0) : __assert_fail ("BytesRemaining && \"BytesRemaining should not be zero: the \" \"following loop considers at least one element\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10825, __PRETTY_FUNCTION__))
10825 "following loop considers at least one element")((BytesRemaining && "BytesRemaining should not be zero: the "
"following loop considers at least one element") ? static_cast
<void> (0) : __assert_fail ("BytesRemaining && \"BytesRemaining should not be zero: the \" \"following loop considers at least one element\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10825, __PRETTY_FUNCTION__))
;
10826 while (true) {
10827 APValue Char1, Char2;
10828 if (!ReadCurElems(Char1, Char2))
10829 return false;
10830 // We have compatible in-memory widths, but a possible type and
10831 // (for `bool`) internal representation mismatch.
10832 // Assuming two's complement representation, including 0 for `false` and
10833 // 1 for `true`, we can check an appropriate number of elements for
10834 // equality even if they are not byte-sized.
10835 APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width);
10836 APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width);
10837 if (Char1InMem.ne(Char2InMem)) {
10838 // If the elements are byte-sized, then we can produce a three-way
10839 // comparison result in a straightforward manner.
10840 if (BytesPerElement == 1u) {
10841 // memcmp always compares unsigned chars.
10842 return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E);
10843 }
10844 // The result is byte-order sensitive, and we have multibyte elements.
10845 // FIXME: We can compare the remaining bytes in the correct order.
10846 return false;
10847 }
10848 if (!AdvanceElems())
10849 return false;
10850 if (BytesRemaining <= BytesPerElement)
10851 break;
10852 BytesRemaining -= BytesPerElement;
10853 }
10854 // Enough elements are equal to account for the memcmp limit.
10855 return Success(0, E);
10856 }
10857
10858 bool StopAtNull =
10859 (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
10860 BuiltinOp != Builtin::BIwmemcmp &&
10861 BuiltinOp != Builtin::BI__builtin_memcmp &&
10862 BuiltinOp != Builtin::BI__builtin_bcmp &&
10863 BuiltinOp != Builtin::BI__builtin_wmemcmp);
10864 bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
10865 BuiltinOp == Builtin::BIwcsncmp ||
10866 BuiltinOp == Builtin::BIwmemcmp ||
10867 BuiltinOp == Builtin::BI__builtin_wcscmp ||
10868 BuiltinOp == Builtin::BI__builtin_wcsncmp ||
10869 BuiltinOp == Builtin::BI__builtin_wmemcmp;
10870
10871 for (; MaxLength; --MaxLength) {
10872 APValue Char1, Char2;
10873 if (!ReadCurElems(Char1, Char2))
10874 return false;
10875 if (Char1.getInt() != Char2.getInt()) {
10876 if (IsWide) // wmemcmp compares with wchar_t signedness.
10877 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
10878 // memcmp always compares unsigned chars.
10879 return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
10880 }
10881 if (StopAtNull && !Char1.getInt())
10882 return Success(0, E);
10883 assert(!(StopAtNull && !Char2.getInt()))((!(StopAtNull && !Char2.getInt())) ? static_cast<
void> (0) : __assert_fail ("!(StopAtNull && !Char2.getInt())"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10883, __PRETTY_FUNCTION__))
;
10884 if (!AdvanceElems())
10885 return false;
10886 }
10887 // We hit the strncmp / memcmp limit.
10888 return Success(0, E);
10889 }
10890
10891 case Builtin::BI__atomic_always_lock_free:
10892 case Builtin::BI__atomic_is_lock_free:
10893 case Builtin::BI__c11_atomic_is_lock_free: {
10894 APSInt SizeVal;
10895 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
10896 return false;
10897
10898 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
10899 // of two less than the maximum inline atomic width, we know it is
10900 // lock-free. If the size isn't a power of two, or greater than the
10901 // maximum alignment where we promote atomics, we know it is not lock-free
10902 // (at least not in the sense of atomic_is_lock_free). Otherwise,
10903 // the answer can only be determined at runtime; for example, 16-byte
10904 // atomics have lock-free implementations on some, but not all,
10905 // x86-64 processors.
10906
10907 // Check power-of-two.
10908 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
10909 if (Size.isPowerOfTwo()) {
10910 // Check against inlining width.
10911 unsigned InlineWidthBits =
10912 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
10913 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
10914 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
10915 Size == CharUnits::One() ||
10916 E->getArg(1)->isNullPointerConstant(Info.Ctx,
10917 Expr::NPC_NeverValueDependent))
10918 // OK, we will inline appropriately-aligned operations of this size,
10919 // and _Atomic(T) is appropriately-aligned.
10920 return Success(1, E);
10921
10922 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
10923 castAs<PointerType>()->getPointeeType();
10924 if (!PointeeType->isIncompleteType() &&
10925 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
10926 // OK, we will inline operations on this object.
10927 return Success(1, E);
10928 }
10929 }
10930 }
10931
10932 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
10933 Success(0, E) : Error(E);
10934 }
10935 case Builtin::BIomp_is_initial_device:
10936 // We can decide statically which value the runtime would return if called.
10937 return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
10938 case Builtin::BI__builtin_add_overflow:
10939 case Builtin::BI__builtin_sub_overflow:
10940 case Builtin::BI__builtin_mul_overflow:
10941 case Builtin::BI__builtin_sadd_overflow:
10942 case Builtin::BI__builtin_uadd_overflow:
10943 case Builtin::BI__builtin_uaddl_overflow:
10944 case Builtin::BI__builtin_uaddll_overflow:
10945 case Builtin::BI__builtin_usub_overflow:
10946 case Builtin::BI__builtin_usubl_overflow:
10947 case Builtin::BI__builtin_usubll_overflow:
10948 case Builtin::BI__builtin_umul_overflow:
10949 case Builtin::BI__builtin_umull_overflow:
10950 case Builtin::BI__builtin_umulll_overflow:
10951 case Builtin::BI__builtin_saddl_overflow:
10952 case Builtin::BI__builtin_saddll_overflow:
10953 case Builtin::BI__builtin_ssub_overflow:
10954 case Builtin::BI__builtin_ssubl_overflow:
10955 case Builtin::BI__builtin_ssubll_overflow:
10956 case Builtin::BI__builtin_smul_overflow:
10957 case Builtin::BI__builtin_smull_overflow:
10958 case Builtin::BI__builtin_smulll_overflow: {
10959 LValue ResultLValue;
10960 APSInt LHS, RHS;
10961
10962 QualType ResultType = E->getArg(2)->getType()->getPointeeType();
10963 if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
10964 !EvaluateInteger(E->getArg(1), RHS, Info) ||
10965 !EvaluatePointer(E->getArg(2), ResultLValue, Info))
10966 return false;
10967
10968 APSInt Result;
10969 bool DidOverflow = false;
10970
10971 // If the types don't have to match, enlarge all 3 to the largest of them.
10972 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
10973 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
10974 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
10975 bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
10976 ResultType->isSignedIntegerOrEnumerationType();
10977 bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
10978 ResultType->isSignedIntegerOrEnumerationType();
10979 uint64_t LHSSize = LHS.getBitWidth();
10980 uint64_t RHSSize = RHS.getBitWidth();
10981 uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
10982 uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
10983
10984 // Add an additional bit if the signedness isn't uniformly agreed to. We
10985 // could do this ONLY if there is a signed and an unsigned that both have
10986 // MaxBits, but the code to check that is pretty nasty. The issue will be
10987 // caught in the shrink-to-result later anyway.
10988 if (IsSigned && !AllSigned)
10989 ++MaxBits;
10990
10991 LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
10992 RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
10993 Result = APSInt(MaxBits, !IsSigned);
10994 }
10995
10996 // Find largest int.
10997 switch (BuiltinOp) {
10998 default:
10999 llvm_unreachable("Invalid value for BuiltinOp")::llvm::llvm_unreachable_internal("Invalid value for BuiltinOp"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 10999)
;
11000 case Builtin::BI__builtin_add_overflow:
11001 case Builtin::BI__builtin_sadd_overflow:
11002 case Builtin::BI__builtin_saddl_overflow:
11003 case Builtin::BI__builtin_saddll_overflow:
11004 case Builtin::BI__builtin_uadd_overflow:
11005 case Builtin::BI__builtin_uaddl_overflow:
11006 case Builtin::BI__builtin_uaddll_overflow:
11007 Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
11008 : LHS.uadd_ov(RHS, DidOverflow);
11009 break;
11010 case Builtin::BI__builtin_sub_overflow:
11011 case Builtin::BI__builtin_ssub_overflow:
11012 case Builtin::BI__builtin_ssubl_overflow:
11013 case Builtin::BI__builtin_ssubll_overflow:
11014 case Builtin::BI__builtin_usub_overflow:
11015 case Builtin::BI__builtin_usubl_overflow:
11016 case Builtin::BI__builtin_usubll_overflow:
11017 Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
11018 : LHS.usub_ov(RHS, DidOverflow);
11019 break;
11020 case Builtin::BI__builtin_mul_overflow:
11021 case Builtin::BI__builtin_smul_overflow:
11022 case Builtin::BI__builtin_smull_overflow:
11023 case Builtin::BI__builtin_smulll_overflow:
11024 case Builtin::BI__builtin_umul_overflow:
11025 case Builtin::BI__builtin_umull_overflow:
11026 case Builtin::BI__builtin_umulll_overflow:
11027 Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
11028 : LHS.umul_ov(RHS, DidOverflow);
11029 break;
11030 }
11031
11032 // In the case where multiple sizes are allowed, truncate and see if
11033 // the values are the same.
11034 if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11035 BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11036 BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11037 // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
11038 // since it will give us the behavior of a TruncOrSelf in the case where
11039 // its parameter <= its size. We previously set Result to be at least the
11040 // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
11041 // will work exactly like TruncOrSelf.
11042 APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
11043 Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
11044
11045 if (!APSInt::isSameValue(Temp, Result))
11046 DidOverflow = true;
11047 Result = Temp;
11048 }
11049
11050 APValue APV{Result};
11051 if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
11052 return false;
11053 return Success(DidOverflow, E);
11054 }
11055 }
11056}
11057
11058/// Determine whether this is a pointer past the end of the complete
11059/// object referred to by the lvalue.
11060static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
11061 const LValue &LV) {
11062 // A null pointer can be viewed as being "past the end" but we don't
11063 // choose to look at it that way here.
11064 if (!LV.getLValueBase())
11065 return false;
11066
11067 // If the designator is valid and refers to a subobject, we're not pointing
11068 // past the end.
11069 if (!LV.getLValueDesignator().Invalid &&
11070 !LV.getLValueDesignator().isOnePastTheEnd())
11071 return false;
11072
11073 // A pointer to an incomplete type might be past-the-end if the type's size is
11074 // zero. We cannot tell because the type is incomplete.
11075 QualType Ty = getType(LV.getLValueBase());
11076 if (Ty->isIncompleteType())
11077 return true;
11078
11079 // We're a past-the-end pointer if we point to the byte after the object,
11080 // no matter what our type or path is.
11081 auto Size = Ctx.getTypeSizeInChars(Ty);
11082 return LV.getLValueOffset() == Size;
11083}
11084
11085namespace {
11086
11087/// Data recursive integer evaluator of certain binary operators.
11088///
11089/// We use a data recursive algorithm for binary operators so that we are able
11090/// to handle extreme cases of chained binary operators without causing stack
11091/// overflow.
11092class DataRecursiveIntBinOpEvaluator {
11093 struct EvalResult {
11094 APValue Val;
11095 bool Failed;
11096
11097 EvalResult() : Failed(false) { }
11098
11099 void swap(EvalResult &RHS) {
11100 Val.swap(RHS.Val);
11101 Failed = RHS.Failed;
11102 RHS.Failed = false;
11103 }
11104 };
11105
11106 struct Job {
11107 const Expr *E;
11108 EvalResult LHSResult; // meaningful only for binary operator expression.
11109 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
11110
11111 Job() = default;
11112 Job(Job &&) = default;
11113
11114 void startSpeculativeEval(EvalInfo &Info) {
11115 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
11116 }
11117
11118 private:
11119 SpeculativeEvaluationRAII SpecEvalRAII;
11120 };
11121
11122 SmallVector<Job, 16> Queue;
11123
11124 IntExprEvaluator &IntEval;
11125 EvalInfo &Info;
11126 APValue &FinalResult;
11127
11128public:
11129 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
11130 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
11131
11132 /// True if \param E is a binary operator that we are going to handle
11133 /// data recursively.
11134 /// We handle binary operators that are comma, logical, or that have operands
11135 /// with integral or enumeration type.
11136 static bool shouldEnqueue(const BinaryOperator *E) {
11137 return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
11138 (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
11139 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
11140 E->getRHS()->getType()->isIntegralOrEnumerationType());
11141 }
11142
11143 bool Traverse(const BinaryOperator *E) {
11144 enqueue(E);
11145 EvalResult PrevResult;
11146 while (!Queue.empty())
11147 process(PrevResult);
11148
11149 if (PrevResult.Failed) return false;
11150
11151 FinalResult.swap(PrevResult.Val);
11152 return true;
11153 }
11154
11155private:
11156 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
11157 return IntEval.Success(Value, E, Result);
11158 }
11159 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
11160 return IntEval.Success(Value, E, Result);
11161 }
11162 bool Error(const Expr *E) {
11163 return IntEval.Error(E);
11164 }
11165 bool Error(const Expr *E, diag::kind D) {
11166 return IntEval.Error(E, D);
11167 }
11168
11169 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
11170 return Info.CCEDiag(E, D);
11171 }
11172
11173 // Returns true if visiting the RHS is necessary, false otherwise.
11174 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11175 bool &SuppressRHSDiags);
11176
11177 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11178 const BinaryOperator *E, APValue &Result);
11179
11180 void EvaluateExpr(const Expr *E, EvalResult &Result) {
11181 Result.Failed = !Evaluate(Result.Val, Info, E);
11182 if (Result.Failed)
11183 Result.Val = APValue();
11184 }
11185
11186 void process(EvalResult &Result);
11187
11188 void enqueue(const Expr *E) {
11189 E = E->IgnoreParens();
11190 Queue.resize(Queue.size()+1);
11191 Queue.back().E = E;
11192 Queue.back().Kind = Job::AnyExprKind;
11193 }
11194};
11195
11196}
11197
11198bool DataRecursiveIntBinOpEvaluator::
11199 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
11200 bool &SuppressRHSDiags) {
11201 if (E->getOpcode() == BO_Comma) {
11202 // Ignore LHS but note if we could not evaluate it.
11203 if (LHSResult.Failed)
11204 return Info.noteSideEffect();
11205 return true;
11206 }
11207
11208 if (E->isLogicalOp()) {
11209 bool LHSAsBool;
11210 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
11211 // We were able to evaluate the LHS, see if we can get away with not
11212 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
11213 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
11214 Success(LHSAsBool, E, LHSResult.Val);
11215 return false; // Ignore RHS
11216 }
11217 } else {
11218 LHSResult.Failed = true;
11219
11220 // Since we weren't able to evaluate the left hand side, it
11221 // might have had side effects.
11222 if (!Info.noteSideEffect())
11223 return false;
11224
11225 // We can't evaluate the LHS; however, sometimes the result
11226 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11227 // Don't ignore RHS and suppress diagnostics from this arm.
11228 SuppressRHSDiags = true;
11229 }
11230
11231 return true;
11232 }
11233
11234 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&((E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11235, __PRETTY_FUNCTION__))
11235 E->getRHS()->getType()->isIntegralOrEnumerationType())((E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11235, __PRETTY_FUNCTION__))
;
11236
11237 if (LHSResult.Failed && !Info.noteFailure())
11238 return false; // Ignore RHS;
11239
11240 return true;
11241}
11242
11243static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
11244 bool IsSub) {
11245 // Compute the new offset in the appropriate width, wrapping at 64 bits.
11246 // FIXME: When compiling for a 32-bit target, we should use 32-bit
11247 // offsets.
11248 assert(!LVal.hasLValuePath() && "have designator for integer lvalue")((!LVal.hasLValuePath() && "have designator for integer lvalue"
) ? static_cast<void> (0) : __assert_fail ("!LVal.hasLValuePath() && \"have designator for integer lvalue\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11248, __PRETTY_FUNCTION__))
;
11249 CharUnits &Offset = LVal.getLValueOffset();
11250 uint64_t Offset64 = Offset.getQuantity();
11251 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
11252 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
11253 : Offset64 + Index64);
11254}
11255
11256bool DataRecursiveIntBinOpEvaluator::
11257 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
11258 const BinaryOperator *E, APValue &Result) {
11259 if (E->getOpcode() == BO_Comma) {
11260 if (RHSResult.Failed)
11261 return false;
11262 Result = RHSResult.Val;
11263 return true;
11264 }
11265
11266 if (E->isLogicalOp()) {
11267 bool lhsResult, rhsResult;
11268 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
11269 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
11270
11271 if (LHSIsOK) {
11272 if (RHSIsOK) {
11273 if (E->getOpcode() == BO_LOr)
11274 return Success(lhsResult || rhsResult, E, Result);
11275 else
11276 return Success(lhsResult && rhsResult, E, Result);
11277 }
11278 } else {
11279 if (RHSIsOK) {
11280 // We can't evaluate the LHS; however, sometimes the result
11281 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
11282 if (rhsResult == (E->getOpcode() == BO_LOr))
11283 return Success(rhsResult, E, Result);
11284 }
11285 }
11286
11287 return false;
11288 }
11289
11290 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&((E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11291, __PRETTY_FUNCTION__))
11291 E->getRHS()->getType()->isIntegralOrEnumerationType())((E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11291, __PRETTY_FUNCTION__))
;
11292
11293 if (LHSResult.Failed || RHSResult.Failed)
11294 return false;
11295
11296 const APValue &LHSVal = LHSResult.Val;
11297 const APValue &RHSVal = RHSResult.Val;
11298
11299 // Handle cases like (unsigned long)&a + 4.
11300 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
11301 Result = LHSVal;
11302 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
11303 return true;
11304 }
11305
11306 // Handle cases like 4 + (unsigned long)&a
11307 if (E->getOpcode() == BO_Add &&
11308 RHSVal.isLValue() && LHSVal.isInt()) {
11309 Result = RHSVal;
11310 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
11311 return true;
11312 }
11313
11314 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
11315 // Handle (intptr_t)&&A - (intptr_t)&&B.
11316 if (!LHSVal.getLValueOffset().isZero() ||
11317 !RHSVal.getLValueOffset().isZero())
11318 return false;
11319 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
11320 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
11321 if (!LHSExpr || !RHSExpr)
11322 return false;
11323 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
11324 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
11325 if (!LHSAddrExpr || !RHSAddrExpr)
11326 return false;
11327 // Make sure both labels come from the same function.
11328 if (LHSAddrExpr->getLabel()->getDeclContext() !=
11329 RHSAddrExpr->getLabel()->getDeclContext())
11330 return false;
11331 Result = APValue(LHSAddrExpr, RHSAddrExpr);
11332 return true;
11333 }
11334
11335 // All the remaining cases expect both operands to be an integer
11336 if (!LHSVal.isInt() || !RHSVal.isInt())
11337 return Error(E);
11338
11339 // Set up the width and signedness manually, in case it can't be deduced
11340 // from the operation we're performing.
11341 // FIXME: Don't do this in the cases where we can deduce it.
11342 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
11343 E->getType()->isUnsignedIntegerOrEnumerationType());
11344 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
11345 RHSVal.getInt(), Value))
11346 return false;
11347 return Success(Value, E, Result);
11348}
11349
11350void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
11351 Job &job = Queue.back();
11352
11353 switch (job.Kind) {
11354 case Job::AnyExprKind: {
11355 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
11356 if (shouldEnqueue(Bop)) {
11357 job.Kind = Job::BinOpKind;
11358 enqueue(Bop->getLHS());
11359 return;
11360 }
11361 }
11362
11363 EvaluateExpr(job.E, Result);
11364 Queue.pop_back();
11365 return;
11366 }
11367
11368 case Job::BinOpKind: {
11369 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11370 bool SuppressRHSDiags = false;
11371 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
11372 Queue.pop_back();
11373 return;
11374 }
11375 if (SuppressRHSDiags)
11376 job.startSpeculativeEval(Info);
11377 job.LHSResult.swap(Result);
11378 job.Kind = Job::BinOpVisitedLHSKind;
11379 enqueue(Bop->getRHS());
11380 return;
11381 }
11382
11383 case Job::BinOpVisitedLHSKind: {
11384 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
11385 EvalResult RHS;
11386 RHS.swap(Result);
11387 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
11388 Queue.pop_back();
11389 return;
11390 }
11391 }
11392
11393 llvm_unreachable("Invalid Job::Kind!")::llvm::llvm_unreachable_internal("Invalid Job::Kind!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11393)
;
11394}
11395
11396namespace {
11397/// Used when we determine that we should fail, but can keep evaluating prior to
11398/// noting that we had a failure.
11399class DelayedNoteFailureRAII {
11400 EvalInfo &Info;
11401 bool NoteFailure;
11402
11403public:
11404 DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
11405 : Info(Info), NoteFailure(NoteFailure) {}
11406 ~DelayedNoteFailureRAII() {
11407 if (NoteFailure) {
11408 bool ContinueAfterFailure = Info.noteFailure();
11409 (void)ContinueAfterFailure;
11410 assert(ContinueAfterFailure &&((ContinueAfterFailure && "Shouldn't have kept evaluating on failure."
) ? static_cast<void> (0) : __assert_fail ("ContinueAfterFailure && \"Shouldn't have kept evaluating on failure.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11411, __PRETTY_FUNCTION__))
11411 "Shouldn't have kept evaluating on failure.")((ContinueAfterFailure && "Shouldn't have kept evaluating on failure."
) ? static_cast<void> (0) : __assert_fail ("ContinueAfterFailure && \"Shouldn't have kept evaluating on failure.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11411, __PRETTY_FUNCTION__))
;
11412 }
11413 }
11414};
11415}
11416
11417template <class SuccessCB, class AfterCB>
11418static bool
11419EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
11420 SuccessCB &&Success, AfterCB &&DoAfter) {
11421 assert(E->isComparisonOp() && "expected comparison operator")((E->isComparisonOp() && "expected comparison operator"
) ? static_cast<void> (0) : __assert_fail ("E->isComparisonOp() && \"expected comparison operator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11421, __PRETTY_FUNCTION__))
;
11422 assert((E->getOpcode() == BO_Cmp ||(((E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType
()) && "unsupported binary expression evaluation") ? static_cast
<void> (0) : __assert_fail ("(E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType()) && \"unsupported binary expression evaluation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11424, __PRETTY_FUNCTION__))
11423 E->getType()->isIntegralOrEnumerationType()) &&(((E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType
()) && "unsupported binary expression evaluation") ? static_cast
<void> (0) : __assert_fail ("(E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType()) && \"unsupported binary expression evaluation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11424, __PRETTY_FUNCTION__))
11424 "unsupported binary expression evaluation")(((E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType
()) && "unsupported binary expression evaluation") ? static_cast
<void> (0) : __assert_fail ("(E->getOpcode() == BO_Cmp || E->getType()->isIntegralOrEnumerationType()) && \"unsupported binary expression evaluation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11424, __PRETTY_FUNCTION__))
;
11425 auto Error = [&](const Expr *E) {
11426 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11427 return false;
11428 };
11429
11430 using CCR = ComparisonCategoryResult;
11431 bool IsRelational = E->isRelationalOp();
11432 bool IsEquality = E->isEqualityOp();
11433 if (E->getOpcode() == BO_Cmp) {
11434 const ComparisonCategoryInfo &CmpInfo =
11435 Info.Ctx.CompCategories.getInfoForType(E->getType());
11436 IsRelational = CmpInfo.isOrdered();
11437 IsEquality = CmpInfo.isEquality();
11438 }
11439
11440 QualType LHSTy = E->getLHS()->getType();
11441 QualType RHSTy = E->getRHS()->getType();
11442
11443 if (LHSTy->isIntegralOrEnumerationType() &&
11444 RHSTy->isIntegralOrEnumerationType()) {
11445 APSInt LHS, RHS;
11446 bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
11447 if (!LHSOK && !Info.noteFailure())
11448 return false;
11449 if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
11450 return false;
11451 if (LHS < RHS)
11452 return Success(CCR::Less, E);
11453 if (LHS > RHS)
11454 return Success(CCR::Greater, E);
11455 return Success(CCR::Equal, E);
11456 }
11457
11458 if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
11459 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
11460 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
11461
11462 bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
11463 if (!LHSOK && !Info.noteFailure())
11464 return false;
11465 if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
11466 return false;
11467 if (LHSFX < RHSFX)
11468 return Success(CCR::Less, E);
11469 if (LHSFX > RHSFX)
11470 return Success(CCR::Greater, E);
11471 return Success(CCR::Equal, E);
11472 }
11473
11474 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
11475 ComplexValue LHS, RHS;
11476 bool LHSOK;
11477 if (E->isAssignmentOp()) {
11478 LValue LV;
11479 EvaluateLValue(E->getLHS(), LV, Info);
11480 LHSOK = false;
11481 } else if (LHSTy->isRealFloatingType()) {
11482 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
11483 if (LHSOK) {
11484 LHS.makeComplexFloat();
11485 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
11486 }
11487 } else {
11488 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
11489 }
11490 if (!LHSOK && !Info.noteFailure())
11491 return false;
11492
11493 if (E->getRHS()->getType()->isRealFloatingType()) {
11494 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
11495 return false;
11496 RHS.makeComplexFloat();
11497 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
11498 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
11499 return false;
11500
11501 if (LHS.isComplexFloat()) {
11502 APFloat::cmpResult CR_r =
11503 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
11504 APFloat::cmpResult CR_i =
11505 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
11506 bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
11507 return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
11508 } else {
11509 assert(IsEquality && "invalid complex comparison")((IsEquality && "invalid complex comparison") ? static_cast
<void> (0) : __assert_fail ("IsEquality && \"invalid complex comparison\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11509, __PRETTY_FUNCTION__))
;
11510 bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
11511 LHS.getComplexIntImag() == RHS.getComplexIntImag();
11512 return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
11513 }
11514 }
11515
11516 if (LHSTy->isRealFloatingType() &&
11517 RHSTy->isRealFloatingType()) {
11518 APFloat RHS(0.0), LHS(0.0);
11519
11520 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
11521 if (!LHSOK && !Info.noteFailure())
11522 return false;
11523
11524 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
11525 return false;
11526
11527 assert(E->isComparisonOp() && "Invalid binary operator!")((E->isComparisonOp() && "Invalid binary operator!"
) ? static_cast<void> (0) : __assert_fail ("E->isComparisonOp() && \"Invalid binary operator!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11527, __PRETTY_FUNCTION__))
;
11528 auto GetCmpRes = [&]() {
11529 switch (LHS.compare(RHS)) {
11530 case APFloat::cmpEqual:
11531 return CCR::Equal;
11532 case APFloat::cmpLessThan:
11533 return CCR::Less;
11534 case APFloat::cmpGreaterThan:
11535 return CCR::Greater;
11536 case APFloat::cmpUnordered:
11537 return CCR::Unordered;
11538 }
11539 llvm_unreachable("Unrecognised APFloat::cmpResult enum")::llvm::llvm_unreachable_internal("Unrecognised APFloat::cmpResult enum"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11539)
;
11540 };
11541 return Success(GetCmpRes(), E);
11542 }
11543
11544 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
11545 LValue LHSValue, RHSValue;
11546
11547 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
11548 if (!LHSOK && !Info.noteFailure())
11549 return false;
11550
11551 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11552 return false;
11553
11554 // Reject differing bases from the normal codepath; we special-case
11555 // comparisons to null.
11556 if (!HasSameBase(LHSValue, RHSValue)) {
11557 // Inequalities and subtractions between unrelated pointers have
11558 // unspecified or undefined behavior.
11559 if (!IsEquality)
11560 return Error(E);
11561 // A constant address may compare equal to the address of a symbol.
11562 // The one exception is that address of an object cannot compare equal
11563 // to a null pointer constant.
11564 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
11565 (!RHSValue.Base && !RHSValue.Offset.isZero()))
11566 return Error(E);
11567 // It's implementation-defined whether distinct literals will have
11568 // distinct addresses. In clang, the result of such a comparison is
11569 // unspecified, so it is not a constant expression. However, we do know
11570 // that the address of a literal will be non-null.
11571 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
11572 LHSValue.Base && RHSValue.Base)
11573 return Error(E);
11574 // We can't tell whether weak symbols will end up pointing to the same
11575 // object.
11576 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
11577 return Error(E);
11578 // We can't compare the address of the start of one object with the
11579 // past-the-end address of another object, per C++ DR1652.
11580 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
11581 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
11582 (RHSValue.Base && RHSValue.Offset.isZero() &&
11583 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
11584 return Error(E);
11585 // We can't tell whether an object is at the same address as another
11586 // zero sized object.
11587 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
11588 (LHSValue.Base && isZeroSized(RHSValue)))
11589 return Error(E);
11590 return Success(CCR::Nonequal, E);
11591 }
11592
11593 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
11594 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
11595
11596 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
11597 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
11598
11599 // C++11 [expr.rel]p3:
11600 // Pointers to void (after pointer conversions) can be compared, with a
11601 // result defined as follows: If both pointers represent the same
11602 // address or are both the null pointer value, the result is true if the
11603 // operator is <= or >= and false otherwise; otherwise the result is
11604 // unspecified.
11605 // We interpret this as applying to pointers to *cv* void.
11606 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
11607 Info.CCEDiag(E, diag::note_constexpr_void_comparison);
11608
11609 // C++11 [expr.rel]p2:
11610 // - If two pointers point to non-static data members of the same object,
11611 // or to subobjects or array elements fo such members, recursively, the
11612 // pointer to the later declared member compares greater provided the
11613 // two members have the same access control and provided their class is
11614 // not a union.
11615 // [...]
11616 // - Otherwise pointer comparisons are unspecified.
11617 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
11618 bool WasArrayIndex;
11619 unsigned Mismatch = FindDesignatorMismatch(
11620 getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
11621 // At the point where the designators diverge, the comparison has a
11622 // specified value if:
11623 // - we are comparing array indices
11624 // - we are comparing fields of a union, or fields with the same access
11625 // Otherwise, the result is unspecified and thus the comparison is not a
11626 // constant expression.
11627 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
11628 Mismatch < RHSDesignator.Entries.size()) {
11629 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
11630 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
11631 if (!LF && !RF)
11632 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
11633 else if (!LF)
11634 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
11635 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
11636 << RF->getParent() << RF;
11637 else if (!RF)
11638 Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
11639 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
11640 << LF->getParent() << LF;
11641 else if (!LF->getParent()->isUnion() &&
11642 LF->getAccess() != RF->getAccess())
11643 Info.CCEDiag(E,
11644 diag::note_constexpr_pointer_comparison_differing_access)
11645 << LF << LF->getAccess() << RF << RF->getAccess()
11646 << LF->getParent();
11647 }
11648 }
11649
11650 // The comparison here must be unsigned, and performed with the same
11651 // width as the pointer.
11652 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
11653 uint64_t CompareLHS = LHSOffset.getQuantity();
11654 uint64_t CompareRHS = RHSOffset.getQuantity();
11655 assert(PtrSize <= 64 && "Unexpected pointer width")((PtrSize <= 64 && "Unexpected pointer width") ? static_cast
<void> (0) : __assert_fail ("PtrSize <= 64 && \"Unexpected pointer width\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11655, __PRETTY_FUNCTION__))
;
11656 uint64_t Mask = ~0ULL >> (64 - PtrSize);
11657 CompareLHS &= Mask;
11658 CompareRHS &= Mask;
11659
11660 // If there is a base and this is a relational operator, we can only
11661 // compare pointers within the object in question; otherwise, the result
11662 // depends on where the object is located in memory.
11663 if (!LHSValue.Base.isNull() && IsRelational) {
11664 QualType BaseTy = getType(LHSValue.Base);
11665 if (BaseTy->isIncompleteType())
11666 return Error(E);
11667 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
11668 uint64_t OffsetLimit = Size.getQuantity();
11669 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
11670 return Error(E);
11671 }
11672
11673 if (CompareLHS < CompareRHS)
11674 return Success(CCR::Less, E);
11675 if (CompareLHS > CompareRHS)
11676 return Success(CCR::Greater, E);
11677 return Success(CCR::Equal, E);
11678 }
11679
11680 if (LHSTy->isMemberPointerType()) {
11681 assert(IsEquality && "unexpected member pointer operation")((IsEquality && "unexpected member pointer operation"
) ? static_cast<void> (0) : __assert_fail ("IsEquality && \"unexpected member pointer operation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11681, __PRETTY_FUNCTION__))
;
11682 assert(RHSTy->isMemberPointerType() && "invalid comparison")((RHSTy->isMemberPointerType() && "invalid comparison"
) ? static_cast<void> (0) : __assert_fail ("RHSTy->isMemberPointerType() && \"invalid comparison\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11682, __PRETTY_FUNCTION__))
;
11683
11684 MemberPtr LHSValue, RHSValue;
11685
11686 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
11687 if (!LHSOK && !Info.noteFailure())
11688 return false;
11689
11690 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11691 return false;
11692
11693 // C++11 [expr.eq]p2:
11694 // If both operands are null, they compare equal. Otherwise if only one is
11695 // null, they compare unequal.
11696 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
11697 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
11698 return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
11699 }
11700
11701 // Otherwise if either is a pointer to a virtual member function, the
11702 // result is unspecified.
11703 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
11704 if (MD->isVirtual())
11705 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
11706 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
11707 if (MD->isVirtual())
11708 Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
11709
11710 // Otherwise they compare equal if and only if they would refer to the
11711 // same member of the same most derived object or the same subobject if
11712 // they were dereferenced with a hypothetical object of the associated
11713 // class type.
11714 bool Equal = LHSValue == RHSValue;
11715 return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
11716 }
11717
11718 if (LHSTy->isNullPtrType()) {
11719 assert(E->isComparisonOp() && "unexpected nullptr operation")((E->isComparisonOp() && "unexpected nullptr operation"
) ? static_cast<void> (0) : __assert_fail ("E->isComparisonOp() && \"unexpected nullptr operation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11719, __PRETTY_FUNCTION__))
;
11720 assert(RHSTy->isNullPtrType() && "missing pointer conversion")((RHSTy->isNullPtrType() && "missing pointer conversion"
) ? static_cast<void> (0) : __assert_fail ("RHSTy->isNullPtrType() && \"missing pointer conversion\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11720, __PRETTY_FUNCTION__))
;
11721 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
11722 // are compared, the result is true of the operator is <=, >= or ==, and
11723 // false otherwise.
11724 return Success(CCR::Equal, E);
11725 }
11726
11727 return DoAfter();
11728}
11729
11730bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
11731 if (!CheckLiteralType(Info, E))
11732 return false;
11733
11734 auto OnSuccess = [&](ComparisonCategoryResult ResKind,
11735 const BinaryOperator *E) {
11736 // Evaluation succeeded. Lookup the information for the comparison category
11737 // type and fetch the VarDecl for the result.
11738 const ComparisonCategoryInfo &CmpInfo =
11739 Info.Ctx.CompCategories.getInfoForType(E->getType());
11740 const VarDecl *VD =
11741 CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD;
11742 // Check and evaluate the result as a constant expression.
11743 LValue LV;
11744 LV.set(VD);
11745 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
11746 return false;
11747 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
11748 };
11749 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
11750 return ExprEvaluatorBaseTy::VisitBinCmp(E);
11751 });
11752}
11753
11754bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
11755 // We don't call noteFailure immediately because the assignment happens after
11756 // we evaluate LHS and RHS.
11757 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
11758 return Error(E);
11759
11760 DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
11761 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
11762 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
11763
11764 assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||(((!E->getLHS()->getType()->isIntegralOrEnumerationType
() || !E->getRHS()->getType()->isIntegralOrEnumerationType
()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? static_cast<void> (0) : __assert_fail ("(!E->getLHS()->getType()->isIntegralOrEnumerationType() || !E->getRHS()->getType()->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11766, __PRETTY_FUNCTION__))
11765 !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&(((!E->getLHS()->getType()->isIntegralOrEnumerationType
() || !E->getRHS()->getType()->isIntegralOrEnumerationType
()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? static_cast<void> (0) : __assert_fail ("(!E->getLHS()->getType()->isIntegralOrEnumerationType() || !E->getRHS()->getType()->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11766, __PRETTY_FUNCTION__))
11766 "DataRecursiveIntBinOpEvaluator should have handled integral types")(((!E->getLHS()->getType()->isIntegralOrEnumerationType
() || !E->getRHS()->getType()->isIntegralOrEnumerationType
()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? static_cast<void> (0) : __assert_fail ("(!E->getLHS()->getType()->isIntegralOrEnumerationType() || !E->getRHS()->getType()->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11766, __PRETTY_FUNCTION__))
;
11767
11768 if (E->isComparisonOp()) {
11769 // Evaluate builtin binary comparisons by evaluating them as C++2a three-way
11770 // comparisons and then translating the result.
11771 auto OnSuccess = [&](ComparisonCategoryResult ResKind,
11772 const BinaryOperator *E) {
11773 using CCR = ComparisonCategoryResult;
11774 bool IsEqual = ResKind == CCR::Equal,
11775 IsLess = ResKind == CCR::Less,
11776 IsGreater = ResKind == CCR::Greater;
11777 auto Op = E->getOpcode();
11778 switch (Op) {
11779 default:
11780 llvm_unreachable("unsupported binary operator")::llvm::llvm_unreachable_internal("unsupported binary operator"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11780)
;
11781 case BO_EQ:
11782 case BO_NE:
11783 return Success(IsEqual == (Op == BO_EQ), E);
11784 case BO_LT: return Success(IsLess, E);
11785 case BO_GT: return Success(IsGreater, E);
11786 case BO_LE: return Success(IsEqual || IsLess, E);
11787 case BO_GE: return Success(IsEqual || IsGreater, E);
11788 }
11789 };
11790 return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
11791 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
11792 });
11793 }
11794
11795 QualType LHSTy = E->getLHS()->getType();
11796 QualType RHSTy = E->getRHS()->getType();
11797
11798 if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
11799 E->getOpcode() == BO_Sub) {
11800 LValue LHSValue, RHSValue;
11801
11802 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
11803 if (!LHSOK && !Info.noteFailure())
11804 return false;
11805
11806 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
11807 return false;
11808
11809 // Reject differing bases from the normal codepath; we special-case
11810 // comparisons to null.
11811 if (!HasSameBase(LHSValue, RHSValue)) {
11812 // Handle &&A - &&B.
11813 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
11814 return Error(E);
11815 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
11816 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
11817 if (!LHSExpr || !RHSExpr)
11818 return Error(E);
11819 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
11820 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
11821 if (!LHSAddrExpr || !RHSAddrExpr)
11822 return Error(E);
11823 // Make sure both labels come from the same function.
11824 if (LHSAddrExpr->getLabel()->getDeclContext() !=
11825 RHSAddrExpr->getLabel()->getDeclContext())
11826 return Error(E);
11827 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
11828 }
11829 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
11830 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
11831
11832 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
11833 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
11834
11835 // C++11 [expr.add]p6:
11836 // Unless both pointers point to elements of the same array object, or
11837 // one past the last element of the array object, the behavior is
11838 // undefined.
11839 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
11840 !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
11841 RHSDesignator))
11842 Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
11843
11844 QualType Type = E->getLHS()->getType();
11845 QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
11846
11847 CharUnits ElementSize;
11848 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
11849 return false;
11850
11851 // As an extension, a type may have zero size (empty struct or union in
11852 // C, array of zero length). Pointer subtraction in such cases has
11853 // undefined behavior, so is not constant.
11854 if (ElementSize.isZero()) {
11855 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
11856 << ElementType;
11857 return false;
11858 }
11859
11860 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
11861 // and produce incorrect results when it overflows. Such behavior
11862 // appears to be non-conforming, but is common, so perhaps we should
11863 // assume the standard intended for such cases to be undefined behavior
11864 // and check for them.
11865
11866 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
11867 // overflow in the final conversion to ptrdiff_t.
11868 APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
11869 APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
11870 APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
11871 false);
11872 APSInt TrueResult = (LHS - RHS) / ElemSize;
11873 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
11874
11875 if (Result.extend(65) != TrueResult &&
11876 !HandleOverflow(Info, E, TrueResult, E->getType()))
11877 return false;
11878 return Success(Result, E);
11879 }
11880
11881 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
11882}
11883
11884/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
11885/// a result as the expression's type.
11886bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
11887 const UnaryExprOrTypeTraitExpr *E) {
11888 switch(E->getKind()) {
11889 case UETT_PreferredAlignOf:
11890 case UETT_AlignOf: {
11891 if (E->isArgumentType())
11892 return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
11893 E);
11894 else
11895 return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
11896 E);
11897 }
11898
11899 case UETT_VecStep: {
11900 QualType Ty = E->getTypeOfArgument();
11901
11902 if (Ty->isVectorType()) {
11903 unsigned n = Ty->castAs<VectorType>()->getNumElements();
11904
11905 // The vec_step built-in functions that take a 3-component
11906 // vector return 4. (OpenCL 1.1 spec 6.11.12)
11907 if (n == 3)
11908 n = 4;
11909
11910 return Success(n, E);
11911 } else
11912 return Success(1, E);
11913 }
11914
11915 case UETT_SizeOf: {
11916 QualType SrcTy = E->getTypeOfArgument();
11917 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
11918 // the result is the size of the referenced type."
11919 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
11920 SrcTy = Ref->getPointeeType();
11921
11922 CharUnits Sizeof;
11923 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
11924 return false;
11925 return Success(Sizeof, E);
11926 }
11927 case UETT_OpenMPRequiredSimdAlign:
11928 assert(E->isArgumentType())((E->isArgumentType()) ? static_cast<void> (0) : __assert_fail
("E->isArgumentType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11928, __PRETTY_FUNCTION__))
;
11929 return Success(
11930 Info.Ctx.toCharUnitsFromBits(
11931 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
11932 .getQuantity(),
11933 E);
11934 }
11935
11936 llvm_unreachable("unknown expr/type trait")::llvm::llvm_unreachable_internal("unknown expr/type trait", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11936)
;
11937}
11938
11939bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
11940 CharUnits Result;
11941 unsigned n = OOE->getNumComponents();
11942 if (n == 0)
11943 return Error(OOE);
11944 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
11945 for (unsigned i = 0; i != n; ++i) {
11946 OffsetOfNode ON = OOE->getComponent(i);
11947 switch (ON.getKind()) {
11948 case OffsetOfNode::Array: {
11949 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
11950 APSInt IdxResult;
11951 if (!EvaluateInteger(Idx, IdxResult, Info))
11952 return false;
11953 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
11954 if (!AT)
11955 return Error(OOE);
11956 CurrentType = AT->getElementType();
11957 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
11958 Result += IdxResult.getSExtValue() * ElementSize;
11959 break;
11960 }
11961
11962 case OffsetOfNode::Field: {
11963 FieldDecl *MemberDecl = ON.getField();
11964 const RecordType *RT = CurrentType->getAs<RecordType>();
11965 if (!RT)
11966 return Error(OOE);
11967 RecordDecl *RD = RT->getDecl();
11968 if (RD->isInvalidDecl()) return false;
11969 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
11970 unsigned i = MemberDecl->getFieldIndex();
11971 assert(i < RL.getFieldCount() && "offsetof field in wrong type")((i < RL.getFieldCount() && "offsetof field in wrong type"
) ? static_cast<void> (0) : __assert_fail ("i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11971, __PRETTY_FUNCTION__))
;
11972 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
11973 CurrentType = MemberDecl->getType().getNonReferenceType();
11974 break;
11975 }
11976
11977 case OffsetOfNode::Identifier:
11978 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 11978)
;
11979
11980 case OffsetOfNode::Base: {
11981 CXXBaseSpecifier *BaseSpec = ON.getBase();
11982 if (BaseSpec->isVirtual())
11983 return Error(OOE);
11984
11985 // Find the layout of the class whose base we are looking into.
11986 const RecordType *RT = CurrentType->getAs<RecordType>();
11987 if (!RT)
11988 return Error(OOE);
11989 RecordDecl *RD = RT->getDecl();
11990 if (RD->isInvalidDecl()) return false;
11991 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
11992
11993 // Find the base class itself.
11994 CurrentType = BaseSpec->getType();
11995 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
11996 if (!BaseRT)
11997 return Error(OOE);
11998
11999 // Add the offset to the base.
12000 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
12001 break;
12002 }
12003 }
12004 }
12005 return Success(Result, OOE);
12006}
12007
12008bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12009 switch (E->getOpcode()) {
12010 default:
12011 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
12012 // See C99 6.6p3.
12013 return Error(E);
12014 case UO_Extension:
12015 // FIXME: Should extension allow i-c-e extension expressions in its scope?
12016 // If so, we could clear the diagnostic ID.
12017 return Visit(E->getSubExpr());
12018 case UO_Plus:
12019 // The result is just the value.
12020 return Visit(E->getSubExpr());
12021 case UO_Minus: {
12022 if (!Visit(E->getSubExpr()))
12023 return false;
12024 if (!Result.isInt()) return Error(E);
12025 const APSInt &Value = Result.getInt();
12026 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
12027 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
12028 E->getType()))
12029 return false;
12030 return Success(-Value, E);
12031 }
12032 case UO_Not: {
12033 if (!Visit(E->getSubExpr()))
12034 return false;
12035 if (!Result.isInt()) return Error(E);
12036 return Success(~Result.getInt(), E);
12037 }
12038 case UO_LNot: {
12039 bool bres;
12040 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12041 return false;
12042 return Success(!bres, E);
12043 }
12044 }
12045}
12046
12047/// HandleCast - This is used to evaluate implicit or explicit casts where the
12048/// result type is integer.
12049bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
12050 const Expr *SubExpr = E->getSubExpr();
12051 QualType DestType = E->getType();
12052 QualType SrcType = SubExpr->getType();
12053
12054 switch (E->getCastKind()) {
12055 case CK_BaseToDerived:
12056 case CK_DerivedToBase:
12057 case CK_UncheckedDerivedToBase:
12058 case CK_Dynamic:
12059 case CK_ToUnion:
12060 case CK_ArrayToPointerDecay:
12061 case CK_FunctionToPointerDecay:
12062 case CK_NullToPointer:
12063 case CK_NullToMemberPointer:
12064 case CK_BaseToDerivedMemberPointer:
12065 case CK_DerivedToBaseMemberPointer:
12066 case CK_ReinterpretMemberPointer:
12067 case CK_ConstructorConversion:
12068 case CK_IntegralToPointer:
12069 case CK_ToVoid:
12070 case CK_VectorSplat:
12071 case CK_IntegralToFloating:
12072 case CK_FloatingCast:
12073 case CK_CPointerToObjCPointerCast:
12074 case CK_BlockPointerToObjCPointerCast:
12075 case CK_AnyPointerToBlockPointerCast:
12076 case CK_ObjCObjectLValueCast:
12077 case CK_FloatingRealToComplex:
12078 case CK_FloatingComplexToReal:
12079 case CK_FloatingComplexCast:
12080 case CK_FloatingComplexToIntegralComplex:
12081 case CK_IntegralRealToComplex:
12082 case CK_IntegralComplexCast:
12083 case CK_IntegralComplexToFloatingComplex:
12084 case CK_BuiltinFnToFnPtr:
12085 case CK_ZeroToOCLOpaqueType:
12086 case CK_NonAtomicToAtomic:
12087 case CK_AddressSpaceConversion:
12088 case CK_IntToOCLSampler:
12089 case CK_FixedPointCast:
12090 case CK_IntegralToFixedPoint:
12091 llvm_unreachable("invalid cast kind for integral value")::llvm::llvm_unreachable_internal("invalid cast kind for integral value"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12091)
;
12092
12093 case CK_BitCast:
12094 case CK_Dependent:
12095 case CK_LValueBitCast:
12096 case CK_ARCProduceObject:
12097 case CK_ARCConsumeObject:
12098 case CK_ARCReclaimReturnedObject:
12099 case CK_ARCExtendBlockObject:
12100 case CK_CopyAndAutoreleaseBlockObject:
12101 return Error(E);
12102
12103 case CK_UserDefinedConversion:
12104 case CK_LValueToRValue:
12105 case CK_AtomicToNonAtomic:
12106 case CK_NoOp:
12107 case CK_LValueToRValueBitCast:
12108 return ExprEvaluatorBaseTy::VisitCastExpr(E);
12109
12110 case CK_MemberPointerToBoolean:
12111 case CK_PointerToBoolean:
12112 case CK_IntegralToBoolean:
12113 case CK_FloatingToBoolean:
12114 case CK_BooleanToSignedIntegral:
12115 case CK_FloatingComplexToBoolean:
12116 case CK_IntegralComplexToBoolean: {
12117 bool BoolResult;
12118 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
12119 return false;
12120 uint64_t IntResult = BoolResult;
12121 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
12122 IntResult = (uint64_t)-1;
12123 return Success(IntResult, E);
12124 }
12125
12126 case CK_FixedPointToIntegral: {
12127 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
12128 if (!EvaluateFixedPoint(SubExpr, Src, Info))
12129 return false;
12130 bool Overflowed;
12131 llvm::APSInt Result = Src.convertToInt(
12132 Info.Ctx.getIntWidth(DestType),
12133 DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
12134 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12135 return false;
12136 return Success(Result, E);
12137 }
12138
12139 case CK_FixedPointToBoolean: {
12140 // Unsigned padding does not affect this.
12141 APValue Val;
12142 if (!Evaluate(Val, Info, SubExpr))
12143 return false;
12144 return Success(Val.getFixedPoint().getBoolValue(), E);
12145 }
12146
12147 case CK_IntegralCast: {
12148 if (!Visit(SubExpr))
12149 return false;
12150
12151 if (!Result.isInt()) {
12152 // Allow casts of address-of-label differences if they are no-ops
12153 // or narrowing. (The narrowing case isn't actually guaranteed to
12154 // be constant-evaluatable except in some narrow cases which are hard
12155 // to detect here. We let it through on the assumption the user knows
12156 // what they are doing.)
12157 if (Result.isAddrLabelDiff())
12158 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
12159 // Only allow casts of lvalues if they are lossless.
12160 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
12161 }
12162
12163 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
12164 Result.getInt()), E);
12165 }
12166
12167 case CK_PointerToIntegral: {
12168 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
12169
12170 LValue LV;
12171 if (!EvaluatePointer(SubExpr, LV, Info))
12172 return false;
12173
12174 if (LV.getLValueBase()) {
12175 // Only allow based lvalue casts if they are lossless.
12176 // FIXME: Allow a larger integer size than the pointer size, and allow
12177 // narrowing back down to pointer width in subsequent integral casts.
12178 // FIXME: Check integer type's active bits, not its type size.
12179 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
12180 return Error(E);
12181
12182 LV.Designator.setInvalid();
12183 LV.moveInto(Result);
12184 return true;
12185 }
12186
12187 APSInt AsInt;
12188 APValue V;
12189 LV.moveInto(V);
12190 if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
12191 llvm_unreachable("Can't cast this!")::llvm::llvm_unreachable_internal("Can't cast this!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12191)
;
12192
12193 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
12194 }
12195
12196 case CK_IntegralComplexToReal: {
12197 ComplexValue C;
12198 if (!EvaluateComplex(SubExpr, C, Info))
12199 return false;
12200 return Success(C.getComplexIntReal(), E);
12201 }
12202
12203 case CK_FloatingToIntegral: {
12204 APFloat F(0.0);
12205 if (!EvaluateFloat(SubExpr, F, Info))
12206 return false;
12207
12208 APSInt Value;
12209 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
12210 return false;
12211 return Success(Value, E);
12212 }
12213 }
12214
12215 llvm_unreachable("unknown cast resulting in integral value")::llvm::llvm_unreachable_internal("unknown cast resulting in integral value"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12215)
;
12216}
12217
12218bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12219 if (E->getSubExpr()->getType()->isAnyComplexType()) {
12220 ComplexValue LV;
12221 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12222 return false;
12223 if (!LV.isComplexInt())
12224 return Error(E);
12225 return Success(LV.getComplexIntReal(), E);
12226 }
12227
12228 return Visit(E->getSubExpr());
12229}
12230
12231bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12232 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
12233 ComplexValue LV;
12234 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
12235 return false;
12236 if (!LV.isComplexInt())
12237 return Error(E);
12238 return Success(LV.getComplexIntImag(), E);
12239 }
12240
12241 VisitIgnoredValue(E->getSubExpr());
12242 return Success(0, E);
12243}
12244
12245bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
12246 return Success(E->getPackLength(), E);
12247}
12248
12249bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
12250 return Success(E->getValue(), E);
12251}
12252
12253bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12254 switch (E->getOpcode()) {
12255 default:
12256 // Invalid unary operators
12257 return Error(E);
12258 case UO_Plus:
12259 // The result is just the value.
12260 return Visit(E->getSubExpr());
12261 case UO_Minus: {
12262 if (!Visit(E->getSubExpr())) return false;
12263 if (!Result.isFixedPoint())
12264 return Error(E);
12265 bool Overflowed;
12266 APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
12267 if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
12268 return false;
12269 return Success(Negated, E);
12270 }
12271 case UO_LNot: {
12272 bool bres;
12273 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
12274 return false;
12275 return Success(!bres, E);
12276 }
12277 }
12278}
12279
12280bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
12281 const Expr *SubExpr = E->getSubExpr();
12282 QualType DestType = E->getType();
12283 assert(DestType->isFixedPointType() &&((DestType->isFixedPointType() && "Expected destination type to be a fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestType->isFixedPointType() && \"Expected destination type to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12284, __PRETTY_FUNCTION__))
12284 "Expected destination type to be a fixed point type")((DestType->isFixedPointType() && "Expected destination type to be a fixed point type"
) ? static_cast<void> (0) : __assert_fail ("DestType->isFixedPointType() && \"Expected destination type to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12284, __PRETTY_FUNCTION__))
;
12285 auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
12286
12287 switch (E->getCastKind()) {
12288 case CK_FixedPointCast: {
12289 APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
12290 if (!EvaluateFixedPoint(SubExpr, Src, Info))
12291 return false;
12292 bool Overflowed;
12293 APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
12294 if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
12295 return false;
12296 return Success(Result, E);
12297 }
12298 case CK_IntegralToFixedPoint: {
12299 APSInt Src;
12300 if (!EvaluateInteger(SubExpr, Src, Info))
12301 return false;
12302
12303 bool Overflowed;
12304 APFixedPoint IntResult = APFixedPoint::getFromIntValue(
12305 Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
12306
12307 if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType))
12308 return false;
12309
12310 return Success(IntResult, E);
12311 }
12312 case CK_NoOp:
12313 case CK_LValueToRValue:
12314 return ExprEvaluatorBaseTy::VisitCastExpr(E);
12315 default:
12316 return Error(E);
12317 }
12318}
12319
12320bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12321 const Expr *LHS = E->getLHS();
12322 const Expr *RHS = E->getRHS();
12323 FixedPointSemantics ResultFXSema =
12324 Info.Ctx.getFixedPointSemantics(E->getType());
12325
12326 APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
12327 if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
12328 return false;
12329 APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
12330 if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
12331 return false;
12332
12333 switch (E->getOpcode()) {
12334 case BO_Add: {
12335 bool AddOverflow, ConversionOverflow;
12336 APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow)
12337 .convert(ResultFXSema, &ConversionOverflow);
12338 if ((AddOverflow || ConversionOverflow) &&
12339 !HandleOverflow(Info, E, Result, E->getType()))
12340 return false;
12341 return Success(Result, E);
12342 }
12343 default:
12344 return false;
12345 }
12346 llvm_unreachable("Should've exited before this")::llvm::llvm_unreachable_internal("Should've exited before this"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12346)
;
12347}
12348
12349//===----------------------------------------------------------------------===//
12350// Float Evaluation
12351//===----------------------------------------------------------------------===//
12352
12353namespace {
12354class FloatExprEvaluator
12355 : public ExprEvaluatorBase<FloatExprEvaluator> {
12356 APFloat &Result;
12357public:
12358 FloatExprEvaluator(EvalInfo &info, APFloat &result)
12359 : ExprEvaluatorBaseTy(info), Result(result) {}
12360
12361 bool Success(const APValue &V, const Expr *e) {
12362 Result = V.getFloat();
12363 return true;
12364 }
12365
12366 bool ZeroInitialization(const Expr *E) {
12367 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
12368 return true;
12369 }
12370
12371 bool VisitCallExpr(const CallExpr *E);
12372
12373 bool VisitUnaryOperator(const UnaryOperator *E);
12374 bool VisitBinaryOperator(const BinaryOperator *E);
12375 bool VisitFloatingLiteral(const FloatingLiteral *E);
12376 bool VisitCastExpr(const CastExpr *E);
12377
12378 bool VisitUnaryReal(const UnaryOperator *E);
12379 bool VisitUnaryImag(const UnaryOperator *E);
12380
12381 // FIXME: Missing: array subscript of vector, member of vector
12382};
12383} // end anonymous namespace
12384
12385static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
12386 assert(E->isRValue() && E->getType()->isRealFloatingType())((E->isRValue() && E->getType()->isRealFloatingType
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isRealFloatingType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12386, __PRETTY_FUNCTION__))
;
12387 return FloatExprEvaluator(Info, Result).Visit(E);
12388}
12389
12390static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
12391 QualType ResultTy,
12392 const Expr *Arg,
12393 bool SNaN,
12394 llvm::APFloat &Result) {
12395 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
12396 if (!S) return false;
12397
12398 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
12399
12400 llvm::APInt fill;
12401
12402 // Treat empty strings as if they were zero.
12403 if (S->getString().empty())
12404 fill = llvm::APInt(32, 0);
12405 else if (S->getString().getAsInteger(0, fill))
12406 return false;
12407
12408 if (Context.getTargetInfo().isNan2008()) {
12409 if (SNaN)
12410 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
12411 else
12412 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
12413 } else {
12414 // Prior to IEEE 754-2008, architectures were allowed to choose whether
12415 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
12416 // a different encoding to what became a standard in 2008, and for pre-
12417 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
12418 // sNaN. This is now known as "legacy NaN" encoding.
12419 if (SNaN)
12420 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
12421 else
12422 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
12423 }
12424
12425 return true;
12426}
12427
12428bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
12429 switch (E->getBuiltinCallee()) {
12430 default:
12431 return ExprEvaluatorBaseTy::VisitCallExpr(E);
12432
12433 case Builtin::BI__builtin_huge_val:
12434 case Builtin::BI__builtin_huge_valf:
12435 case Builtin::BI__builtin_huge_vall:
12436 case Builtin::BI__builtin_huge_valf128:
12437 case Builtin::BI__builtin_inf:
12438 case Builtin::BI__builtin_inff:
12439 case Builtin::BI__builtin_infl:
12440 case Builtin::BI__builtin_inff128: {
12441 const llvm::fltSemantics &Sem =
12442 Info.Ctx.getFloatTypeSemantics(E->getType());
12443 Result = llvm::APFloat::getInf(Sem);
12444 return true;
12445 }
12446
12447 case Builtin::BI__builtin_nans:
12448 case Builtin::BI__builtin_nansf:
12449 case Builtin::BI__builtin_nansl:
12450 case Builtin::BI__builtin_nansf128:
12451 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
12452 true, Result))
12453 return Error(E);
12454 return true;
12455
12456 case Builtin::BI__builtin_nan:
12457 case Builtin::BI__builtin_nanf:
12458 case Builtin::BI__builtin_nanl:
12459 case Builtin::BI__builtin_nanf128:
12460 // If this is __builtin_nan() turn this into a nan, otherwise we
12461 // can't constant fold it.
12462 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
12463 false, Result))
12464 return Error(E);
12465 return true;
12466
12467 case Builtin::BI__builtin_fabs:
12468 case Builtin::BI__builtin_fabsf:
12469 case Builtin::BI__builtin_fabsl:
12470 case Builtin::BI__builtin_fabsf128:
12471 if (!EvaluateFloat(E->getArg(0), Result, Info))
12472 return false;
12473
12474 if (Result.isNegative())
12475 Result.changeSign();
12476 return true;
12477
12478 // FIXME: Builtin::BI__builtin_powi
12479 // FIXME: Builtin::BI__builtin_powif
12480 // FIXME: Builtin::BI__builtin_powil
12481
12482 case Builtin::BI__builtin_copysign:
12483 case Builtin::BI__builtin_copysignf:
12484 case Builtin::BI__builtin_copysignl:
12485 case Builtin::BI__builtin_copysignf128: {
12486 APFloat RHS(0.);
12487 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
12488 !EvaluateFloat(E->getArg(1), RHS, Info))
12489 return false;
12490 Result.copySign(RHS);
12491 return true;
12492 }
12493 }
12494}
12495
12496bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
12497 if (E->getSubExpr()->getType()->isAnyComplexType()) {
12498 ComplexValue CV;
12499 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
12500 return false;
12501 Result = CV.FloatReal;
12502 return true;
12503 }
12504
12505 return Visit(E->getSubExpr());
12506}
12507
12508bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
12509 if (E->getSubExpr()->getType()->isAnyComplexType()) {
12510 ComplexValue CV;
12511 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
12512 return false;
12513 Result = CV.FloatImag;
12514 return true;
12515 }
12516
12517 VisitIgnoredValue(E->getSubExpr());
12518 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
12519 Result = llvm::APFloat::getZero(Sem);
12520 return true;
12521}
12522
12523bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
12524 switch (E->getOpcode()) {
12525 default: return Error(E);
12526 case UO_Plus:
12527 return EvaluateFloat(E->getSubExpr(), Result, Info);
12528 case UO_Minus:
12529 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
12530 return false;
12531 Result.changeSign();
12532 return true;
12533 }
12534}
12535
12536bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12537 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
12538 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12539
12540 APFloat RHS(0.0);
12541 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
12542 if (!LHSOK && !Info.noteFailure())
12543 return false;
12544 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
12545 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
12546}
12547
12548bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
12549 Result = E->getValue();
12550 return true;
12551}
12552
12553bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
12554 const Expr* SubExpr = E->getSubExpr();
12555
12556 switch (E->getCastKind()) {
12557 default:
12558 return ExprEvaluatorBaseTy::VisitCastExpr(E);
12559
12560 case CK_IntegralToFloating: {
12561 APSInt IntResult;
12562 return EvaluateInteger(SubExpr, IntResult, Info) &&
12563 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
12564 E->getType(), Result);
12565 }
12566
12567 case CK_FloatingCast: {
12568 if (!Visit(SubExpr))
12569 return false;
12570 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
12571 Result);
12572 }
12573
12574 case CK_FloatingComplexToReal: {
12575 ComplexValue V;
12576 if (!EvaluateComplex(SubExpr, V, Info))
12577 return false;
12578 Result = V.getComplexFloatReal();
12579 return true;
12580 }
12581 }
12582}
12583
12584//===----------------------------------------------------------------------===//
12585// Complex Evaluation (for float and integer)
12586//===----------------------------------------------------------------------===//
12587
12588namespace {
12589class ComplexExprEvaluator
12590 : public ExprEvaluatorBase<ComplexExprEvaluator> {
12591 ComplexValue &Result;
12592
12593public:
12594 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
12595 : ExprEvaluatorBaseTy(info), Result(Result) {}
12596
12597 bool Success(const APValue &V, const Expr *e) {
12598 Result.setFrom(V);
12599 return true;
12600 }
12601
12602 bool ZeroInitialization(const Expr *E);
12603
12604 //===--------------------------------------------------------------------===//
12605 // Visitor Methods
12606 //===--------------------------------------------------------------------===//
12607
12608 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
12609 bool VisitCastExpr(const CastExpr *E);
12610 bool VisitBinaryOperator(const BinaryOperator *E);
12611 bool VisitUnaryOperator(const UnaryOperator *E);
12612 bool VisitInitListExpr(const InitListExpr *E);
12613};
12614} // end anonymous namespace
12615
12616static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
12617 EvalInfo &Info) {
12618 assert(E->isRValue() && E->getType()->isAnyComplexType())((E->isRValue() && E->getType()->isAnyComplexType
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isAnyComplexType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12618, __PRETTY_FUNCTION__))
;
12619 return ComplexExprEvaluator(Info, Result).Visit(E);
12620}
12621
12622bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
12623 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
12624 if (ElemTy->isRealFloatingType()) {
12625 Result.makeComplexFloat();
12626 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
12627 Result.FloatReal = Zero;
12628 Result.FloatImag = Zero;
12629 } else {
12630 Result.makeComplexInt();
12631 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
12632 Result.IntReal = Zero;
12633 Result.IntImag = Zero;
12634 }
12635 return true;
12636}
12637
12638bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
12639 const Expr* SubExpr = E->getSubExpr();
12640
12641 if (SubExpr->getType()->isRealFloatingType()) {
12642 Result.makeComplexFloat();
12643 APFloat &Imag = Result.FloatImag;
12644 if (!EvaluateFloat(SubExpr, Imag, Info))
12645 return false;
12646
12647 Result.FloatReal = APFloat(Imag.getSemantics());
12648 return true;
12649 } else {
12650 assert(SubExpr->getType()->isIntegerType() &&((SubExpr->getType()->isIntegerType() && "Unexpected imaginary literal."
) ? static_cast<void> (0) : __assert_fail ("SubExpr->getType()->isIntegerType() && \"Unexpected imaginary literal.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12651, __PRETTY_FUNCTION__))
12651 "Unexpected imaginary literal.")((SubExpr->getType()->isIntegerType() && "Unexpected imaginary literal."
) ? static_cast<void> (0) : __assert_fail ("SubExpr->getType()->isIntegerType() && \"Unexpected imaginary literal.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12651, __PRETTY_FUNCTION__))
;
12652
12653 Result.makeComplexInt();
12654 APSInt &Imag = Result.IntImag;
12655 if (!EvaluateInteger(SubExpr, Imag, Info))
12656 return false;
12657
12658 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
12659 return true;
12660 }
12661}
12662
12663bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
12664
12665 switch (E->getCastKind()) {
12666 case CK_BitCast:
12667 case CK_BaseToDerived:
12668 case CK_DerivedToBase:
12669 case CK_UncheckedDerivedToBase:
12670 case CK_Dynamic:
12671 case CK_ToUnion:
12672 case CK_ArrayToPointerDecay:
12673 case CK_FunctionToPointerDecay:
12674 case CK_NullToPointer:
12675 case CK_NullToMemberPointer:
12676 case CK_BaseToDerivedMemberPointer:
12677 case CK_DerivedToBaseMemberPointer:
12678 case CK_MemberPointerToBoolean:
12679 case CK_ReinterpretMemberPointer:
12680 case CK_ConstructorConversion:
12681 case CK_IntegralToPointer:
12682 case CK_PointerToIntegral:
12683 case CK_PointerToBoolean:
12684 case CK_ToVoid:
12685 case CK_VectorSplat:
12686 case CK_IntegralCast:
12687 case CK_BooleanToSignedIntegral:
12688 case CK_IntegralToBoolean:
12689 case CK_IntegralToFloating:
12690 case CK_FloatingToIntegral:
12691 case CK_FloatingToBoolean:
12692 case CK_FloatingCast:
12693 case CK_CPointerToObjCPointerCast:
12694 case CK_BlockPointerToObjCPointerCast:
12695 case CK_AnyPointerToBlockPointerCast:
12696 case CK_ObjCObjectLValueCast:
12697 case CK_FloatingComplexToReal:
12698 case CK_FloatingComplexToBoolean:
12699 case CK_IntegralComplexToReal:
12700 case CK_IntegralComplexToBoolean:
12701 case CK_ARCProduceObject:
12702 case CK_ARCConsumeObject:
12703 case CK_ARCReclaimReturnedObject:
12704 case CK_ARCExtendBlockObject:
12705 case CK_CopyAndAutoreleaseBlockObject:
12706 case CK_BuiltinFnToFnPtr:
12707 case CK_ZeroToOCLOpaqueType:
12708 case CK_NonAtomicToAtomic:
12709 case CK_AddressSpaceConversion:
12710 case CK_IntToOCLSampler:
12711 case CK_FixedPointCast:
12712 case CK_FixedPointToBoolean:
12713 case CK_FixedPointToIntegral:
12714 case CK_IntegralToFixedPoint:
12715 llvm_unreachable("invalid cast kind for complex value")::llvm::llvm_unreachable_internal("invalid cast kind for complex value"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12715)
;
12716
12717 case CK_LValueToRValue:
12718 case CK_AtomicToNonAtomic:
12719 case CK_NoOp:
12720 case CK_LValueToRValueBitCast:
12721 return ExprEvaluatorBaseTy::VisitCastExpr(E);
12722
12723 case CK_Dependent:
12724 case CK_LValueBitCast:
12725 case CK_UserDefinedConversion:
12726 return Error(E);
12727
12728 case CK_FloatingRealToComplex: {
12729 APFloat &Real = Result.FloatReal;
12730 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
12731 return false;
12732
12733 Result.makeComplexFloat();
12734 Result.FloatImag = APFloat(Real.getSemantics());
12735 return true;
12736 }
12737
12738 case CK_FloatingComplexCast: {
12739 if (!Visit(E->getSubExpr()))
12740 return false;
12741
12742 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12743 QualType From
12744 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12745
12746 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
12747 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
12748 }
12749
12750 case CK_FloatingComplexToIntegralComplex: {
12751 if (!Visit(E->getSubExpr()))
12752 return false;
12753
12754 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12755 QualType From
12756 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12757 Result.makeComplexInt();
12758 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
12759 To, Result.IntReal) &&
12760 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
12761 To, Result.IntImag);
12762 }
12763
12764 case CK_IntegralRealToComplex: {
12765 APSInt &Real = Result.IntReal;
12766 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
12767 return false;
12768
12769 Result.makeComplexInt();
12770 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
12771 return true;
12772 }
12773
12774 case CK_IntegralComplexCast: {
12775 if (!Visit(E->getSubExpr()))
12776 return false;
12777
12778 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12779 QualType From
12780 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12781
12782 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
12783 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
12784 return true;
12785 }
12786
12787 case CK_IntegralComplexToFloatingComplex: {
12788 if (!Visit(E->getSubExpr()))
12789 return false;
12790
12791 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
12792 QualType From
12793 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
12794 Result.makeComplexFloat();
12795 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
12796 To, Result.FloatReal) &&
12797 HandleIntToFloatCast(Info, E, From, Result.IntImag,
12798 To, Result.FloatImag);
12799 }
12800 }
12801
12802 llvm_unreachable("unknown cast resulting in complex value")::llvm::llvm_unreachable_internal("unknown cast resulting in complex value"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12802)
;
12803}
12804
12805bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12806 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
12807 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12808
12809 // Track whether the LHS or RHS is real at the type system level. When this is
12810 // the case we can simplify our evaluation strategy.
12811 bool LHSReal = false, RHSReal = false;
12812
12813 bool LHSOK;
12814 if (E->getLHS()->getType()->isRealFloatingType()) {
12815 LHSReal = true;
12816 APFloat &Real = Result.FloatReal;
12817 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
12818 if (LHSOK) {
12819 Result.makeComplexFloat();
12820 Result.FloatImag = APFloat(Real.getSemantics());
12821 }
12822 } else {
12823 LHSOK = Visit(E->getLHS());
12824 }
12825 if (!LHSOK && !Info.noteFailure())
12826 return false;
12827
12828 ComplexValue RHS;
12829 if (E->getRHS()->getType()->isRealFloatingType()) {
12830 RHSReal = true;
12831 APFloat &Real = RHS.FloatReal;
12832 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
12833 return false;
12834 RHS.makeComplexFloat();
12835 RHS.FloatImag = APFloat(Real.getSemantics());
12836 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12837 return false;
12838
12839 assert(!(LHSReal && RHSReal) &&((!(LHSReal && RHSReal) && "Cannot have both operands of a complex operation be real."
) ? static_cast<void> (0) : __assert_fail ("!(LHSReal && RHSReal) && \"Cannot have both operands of a complex operation be real.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12840, __PRETTY_FUNCTION__))
12840 "Cannot have both operands of a complex operation be real.")((!(LHSReal && RHSReal) && "Cannot have both operands of a complex operation be real."
) ? static_cast<void> (0) : __assert_fail ("!(LHSReal && RHSReal) && \"Cannot have both operands of a complex operation be real.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12840, __PRETTY_FUNCTION__))
;
12841 switch (E->getOpcode()) {
12842 default: return Error(E);
12843 case BO_Add:
12844 if (Result.isComplexFloat()) {
12845 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
12846 APFloat::rmNearestTiesToEven);
12847 if (LHSReal)
12848 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
12849 else if (!RHSReal)
12850 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
12851 APFloat::rmNearestTiesToEven);
12852 } else {
12853 Result.getComplexIntReal() += RHS.getComplexIntReal();
12854 Result.getComplexIntImag() += RHS.getComplexIntImag();
12855 }
12856 break;
12857 case BO_Sub:
12858 if (Result.isComplexFloat()) {
12859 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
12860 APFloat::rmNearestTiesToEven);
12861 if (LHSReal) {
12862 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
12863 Result.getComplexFloatImag().changeSign();
12864 } else if (!RHSReal) {
12865 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
12866 APFloat::rmNearestTiesToEven);
12867 }
12868 } else {
12869 Result.getComplexIntReal() -= RHS.getComplexIntReal();
12870 Result.getComplexIntImag() -= RHS.getComplexIntImag();
12871 }
12872 break;
12873 case BO_Mul:
12874 if (Result.isComplexFloat()) {
12875 // This is an implementation of complex multiplication according to the
12876 // constraints laid out in C11 Annex G. The implementation uses the
12877 // following naming scheme:
12878 // (a + ib) * (c + id)
12879 ComplexValue LHS = Result;
12880 APFloat &A = LHS.getComplexFloatReal();
12881 APFloat &B = LHS.getComplexFloatImag();
12882 APFloat &C = RHS.getComplexFloatReal();
12883 APFloat &D = RHS.getComplexFloatImag();
12884 APFloat &ResR = Result.getComplexFloatReal();
12885 APFloat &ResI = Result.getComplexFloatImag();
12886 if (LHSReal) {
12887 assert(!RHSReal && "Cannot have two real operands for a complex op!")((!RHSReal && "Cannot have two real operands for a complex op!"
) ? static_cast<void> (0) : __assert_fail ("!RHSReal && \"Cannot have two real operands for a complex op!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 12887, __PRETTY_FUNCTION__))
;
12888 ResR = A * C;
12889 ResI = A * D;
12890 } else if (RHSReal) {
12891 ResR = C * A;
12892 ResI = C * B;
12893 } else {
12894 // In the fully general case, we need to handle NaNs and infinities
12895 // robustly.
12896 APFloat AC = A * C;
12897 APFloat BD = B * D;
12898 APFloat AD = A * D;
12899 APFloat BC = B * C;
12900 ResR = AC - BD;
12901 ResI = AD + BC;
12902 if (ResR.isNaN() && ResI.isNaN()) {
12903 bool Recalc = false;
12904 if (A.isInfinity() || B.isInfinity()) {
12905 A = APFloat::copySign(
12906 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
12907 B = APFloat::copySign(
12908 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
12909 if (C.isNaN())
12910 C = APFloat::copySign(APFloat(C.getSemantics()), C);
12911 if (D.isNaN())
12912 D = APFloat::copySign(APFloat(D.getSemantics()), D);
12913 Recalc = true;
12914 }
12915 if (C.isInfinity() || D.isInfinity()) {
12916 C = APFloat::copySign(
12917 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
12918 D = APFloat::copySign(
12919 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
12920 if (A.isNaN())
12921 A = APFloat::copySign(APFloat(A.getSemantics()), A);
12922 if (B.isNaN())
12923 B = APFloat::copySign(APFloat(B.getSemantics()), B);
12924 Recalc = true;
12925 }
12926 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
12927 AD.isInfinity() || BC.isInfinity())) {
12928 if (A.isNaN())
12929 A = APFloat::copySign(APFloat(A.getSemantics()), A);
12930 if (B.isNaN())
12931 B = APFloat::copySign(APFloat(B.getSemantics()), B);
12932 if (C.isNaN())
12933 C = APFloat::copySign(APFloat(C.getSemantics()), C);
12934 if (D.isNaN())
12935 D = APFloat::copySign(APFloat(D.getSemantics()), D);
12936 Recalc = true;
12937 }
12938 if (Recalc) {
12939 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
12940 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
12941 }
12942 }
12943 }
12944 } else {
12945 ComplexValue LHS = Result;
12946 Result.getComplexIntReal() =
12947 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
12948 LHS.getComplexIntImag() * RHS.getComplexIntImag());
12949 Result.getComplexIntImag() =
12950 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
12951 LHS.getComplexIntImag() * RHS.getComplexIntReal());
12952 }
12953 break;
12954 case BO_Div:
12955 if (Result.isComplexFloat()) {
12956 // This is an implementation of complex division according to the
12957 // constraints laid out in C11 Annex G. The implementation uses the
12958 // following naming scheme:
12959 // (a + ib) / (c + id)
12960 ComplexValue LHS = Result;
12961 APFloat &A = LHS.getComplexFloatReal();
12962 APFloat &B = LHS.getComplexFloatImag();
12963 APFloat &C = RHS.getComplexFloatReal();
12964 APFloat &D = RHS.getComplexFloatImag();
12965 APFloat &ResR = Result.getComplexFloatReal();
12966 APFloat &ResI = Result.getComplexFloatImag();
12967 if (RHSReal) {
12968 ResR = A / C;
12969 ResI = B / C;
12970 } else {
12971 if (LHSReal) {
12972 // No real optimizations we can do here, stub out with zero.
12973 B = APFloat::getZero(A.getSemantics());
12974 }
12975 int DenomLogB = 0;
12976 APFloat MaxCD = maxnum(abs(C), abs(D));
12977 if (MaxCD.isFinite()) {
12978 DenomLogB = ilogb(MaxCD);
12979 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
12980 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
12981 }
12982 APFloat Denom = C * C + D * D;
12983 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
12984 APFloat::rmNearestTiesToEven);
12985 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
12986 APFloat::rmNearestTiesToEven);
12987 if (ResR.isNaN() && ResI.isNaN()) {
12988 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
12989 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
12990 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
12991 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
12992 D.isFinite()) {
12993 A = APFloat::copySign(
12994 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
12995 B = APFloat::copySign(
12996 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
12997 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
12998 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
12999 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
13000 C = APFloat::copySign(
13001 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
13002 D = APFloat::copySign(
13003 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
13004 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
13005 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
13006 }
13007 }
13008 }
13009 } else {
13010 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
13011 return Error(E, diag::note_expr_divide_by_zero);
13012
13013 ComplexValue LHS = Result;
13014 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
13015 RHS.getComplexIntImag() * RHS.getComplexIntImag();
13016 Result.getComplexIntReal() =
13017 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
13018 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
13019 Result.getComplexIntImag() =
13020 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
13021 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
13022 }
13023 break;
13024 }
13025
13026 return true;
13027}
13028
13029bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13030 // Get the operand value into 'Result'.
13031 if (!Visit(E->getSubExpr()))
13032 return false;
13033
13034 switch (E->getOpcode()) {
13035 default:
13036 return Error(E);
13037 case UO_Extension:
13038 return true;
13039 case UO_Plus:
13040 // The result is always just the subexpr.
13041 return true;
13042 case UO_Minus:
13043 if (Result.isComplexFloat()) {
13044 Result.getComplexFloatReal().changeSign();
13045 Result.getComplexFloatImag().changeSign();
13046 }
13047 else {
13048 Result.getComplexIntReal() = -Result.getComplexIntReal();
13049 Result.getComplexIntImag() = -Result.getComplexIntImag();
13050 }
13051 return true;
13052 case UO_Not:
13053 if (Result.isComplexFloat())
13054 Result.getComplexFloatImag().changeSign();
13055 else
13056 Result.getComplexIntImag() = -Result.getComplexIntImag();
13057 return true;
13058 }
13059}
13060
13061bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
13062 if (E->getNumInits() == 2) {
13063 if (E->getType()->isComplexType()) {
13064 Result.makeComplexFloat();
13065 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
13066 return false;
13067 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
13068 return false;
13069 } else {
13070 Result.makeComplexInt();
13071 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
13072 return false;
13073 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
13074 return false;
13075 }
13076 return true;
13077 }
13078 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
13079}
13080
13081//===----------------------------------------------------------------------===//
13082// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
13083// implicit conversion.
13084//===----------------------------------------------------------------------===//
13085
13086namespace {
13087class AtomicExprEvaluator :
13088 public ExprEvaluatorBase<AtomicExprEvaluator> {
13089 const LValue *This;
13090 APValue &Result;
13091public:
13092 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
13093 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
13094
13095 bool Success(const APValue &V, const Expr *E) {
13096 Result = V;
13097 return true;
13098 }
13099
13100 bool ZeroInitialization(const Expr *E) {
13101 ImplicitValueInitExpr VIE(
13102 E->getType()->castAs<AtomicType>()->getValueType());
13103 // For atomic-qualified class (and array) types in C++, initialize the
13104 // _Atomic-wrapped subobject directly, in-place.
13105 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
13106 : Evaluate(Result, Info, &VIE);
13107 }
13108
13109 bool VisitCastExpr(const CastExpr *E) {
13110 switch (E->getCastKind()) {
13111 default:
13112 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13113 case CK_NonAtomicToAtomic:
13114 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
13115 : Evaluate(Result, Info, E->getSubExpr());
13116 }
13117 }
13118};
13119} // end anonymous namespace
13120
13121static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
13122 EvalInfo &Info) {
13123 assert(E->isRValue() && E->getType()->isAtomicType())((E->isRValue() && E->getType()->isAtomicType
()) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isAtomicType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13123, __PRETTY_FUNCTION__))
;
13124 return AtomicExprEvaluator(Info, This, Result).Visit(E);
13125}
13126
13127//===----------------------------------------------------------------------===//
13128// Void expression evaluation, primarily for a cast to void on the LHS of a
13129// comma operator
13130//===----------------------------------------------------------------------===//
13131
13132namespace {
13133class VoidExprEvaluator
13134 : public ExprEvaluatorBase<VoidExprEvaluator> {
13135public:
13136 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
13137
13138 bool Success(const APValue &V, const Expr *e) { return true; }
13139
13140 bool ZeroInitialization(const Expr *E) { return true; }
13141
13142 bool VisitCastExpr(const CastExpr *E) {
13143 switch (E->getCastKind()) {
13144 default:
13145 return ExprEvaluatorBaseTy::VisitCastExpr(E);
13146 case CK_ToVoid:
13147 VisitIgnoredValue(E->getSubExpr());
13148 return true;
13149 }
13150 }
13151
13152 bool VisitCallExpr(const CallExpr *E) {
13153 switch (E->getBuiltinCallee()) {
13154 case Builtin::BI__assume:
13155 case Builtin::BI__builtin_assume:
13156 // The argument is not evaluated!
13157 return true;
13158
13159 case Builtin::BI__builtin_operator_delete:
13160 return HandleOperatorDeleteCall(Info, E);
13161
13162 default:
13163 break;
13164 }
13165
13166 return ExprEvaluatorBaseTy::VisitCallExpr(E);
13167 }
13168
13169 bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
13170};
13171} // end anonymous namespace
13172
13173bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
13174 // We cannot speculatively evaluate a delete expression.
13175 if (Info.SpeculativeEvaluationDepth)
13176 return false;
13177
13178 FunctionDecl *OperatorDelete = E->getOperatorDelete();
13179 if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
13180 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13181 << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
13182 return false;
13183 }
13184
13185 const Expr *Arg = E->getArgument();
13186
13187 LValue Pointer;
13188 if (!EvaluatePointer(Arg, Pointer, Info))
13189 return false;
13190 if (Pointer.Designator.Invalid)
13191 return false;
13192
13193 // Deleting a null pointer has no effect.
13194 if (Pointer.isNullPointer()) {
13195 // This is the only case where we need to produce an extension warning:
13196 // the only other way we can succeed is if we find a dynamic allocation,
13197 // and we will have warned when we allocated it in that case.
13198 if (!Info.getLangOpts().CPlusPlus2a)
13199 Info.CCEDiag(E, diag::note_constexpr_new);
13200 return true;
13201 }
13202
13203 Optional<DynAlloc *> Alloc = CheckDeleteKind(
13204 Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
13205 if (!Alloc)
13206 return false;
13207 QualType AllocType = Pointer.Base.getDynamicAllocType();
13208
13209 // For the non-array case, the designator must be empty if the static type
13210 // does not have a virtual destructor.
13211 if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
13212 !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
13213 Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
13214 << Arg->getType()->getPointeeType() << AllocType;
13215 return false;
13216 }
13217
13218 // For a class type with a virtual destructor, the selected operator delete
13219 // is the one looked up when building the destructor.
13220 if (!E->isArrayForm() && !E->isGlobalDelete()) {
13221 const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
13222 if (VirtualDelete &&
13223 !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
13224 Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
13225 << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
13226 return false;
13227 }
13228 }
13229
13230 if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
13231 (*Alloc)->Value, AllocType))
13232 return false;
13233
13234 if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
13235 // The element was already erased. This means the destructor call also
13236 // deleted the object.
13237 // FIXME: This probably results in undefined behavior before we get this
13238 // far, and should be diagnosed elsewhere first.
13239 Info.FFDiag(E, diag::note_constexpr_double_delete);
13240 return false;
13241 }
13242
13243 return true;
13244}
13245
13246static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
13247 assert(E->isRValue() && E->getType()->isVoidType())((E->isRValue() && E->getType()->isVoidType(
)) ? static_cast<void> (0) : __assert_fail ("E->isRValue() && E->getType()->isVoidType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13247, __PRETTY_FUNCTION__))
;
13248 return VoidExprEvaluator(Info).Visit(E);
13249}
13250
13251//===----------------------------------------------------------------------===//
13252// Top level Expr::EvaluateAsRValue method.
13253//===----------------------------------------------------------------------===//
13254
13255static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
13256 // In C, function designators are not lvalues, but we evaluate them as if they
13257 // are.
13258 QualType T = E->getType();
13259 if (E->isGLValue() || T->isFunctionType()) {
13260 LValue LV;
13261 if (!EvaluateLValue(E, LV, Info))
13262 return false;
13263 LV.moveInto(Result);
13264 } else if (T->isVectorType()) {
13265 if (!EvaluateVector(E, Result, Info))
13266 return false;
13267 } else if (T->isIntegralOrEnumerationType()) {
13268 if (!IntExprEvaluator(Info, Result).Visit(E))
13269 return false;
13270 } else if (T->hasPointerRepresentation()) {
13271 LValue LV;
13272 if (!EvaluatePointer(E, LV, Info))
13273 return false;
13274 LV.moveInto(Result);
13275 } else if (T->isRealFloatingType()) {
13276 llvm::APFloat F(0.0);
13277 if (!EvaluateFloat(E, F, Info))
13278 return false;
13279 Result = APValue(F);
13280 } else if (T->isAnyComplexType()) {
13281 ComplexValue C;
13282 if (!EvaluateComplex(E, C, Info))
13283 return false;
13284 C.moveInto(Result);
13285 } else if (T->isFixedPointType()) {
13286 if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
13287 } else if (T->isMemberPointerType()) {
13288 MemberPtr P;
13289 if (!EvaluateMemberPointer(E, P, Info))
13290 return false;
13291 P.moveInto(Result);
13292 return true;
13293 } else if (T->isArrayType()) {
13294 LValue LV;
13295 APValue &Value =
13296 Info.CurrentCall->createTemporary(E, T, false, LV);
13297 if (!EvaluateArray(E, LV, Value, Info))
13298 return false;
13299 Result = Value;
13300 } else if (T->isRecordType()) {
13301 LValue LV;
13302 APValue &Value = Info.CurrentCall->createTemporary(E, T, false, LV);
13303 if (!EvaluateRecord(E, LV, Value, Info))
13304 return false;
13305 Result = Value;
13306 } else if (T->isVoidType()) {
13307 if (!Info.getLangOpts().CPlusPlus11)
13308 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
13309 << E->getType();
13310 if (!EvaluateVoid(E, Info))
13311 return false;
13312 } else if (T->isAtomicType()) {
13313 QualType Unqual = T.getAtomicUnqualifiedType();
13314 if (Unqual->isArrayType() || Unqual->isRecordType()) {
13315 LValue LV;
13316 APValue &Value = Info.CurrentCall->createTemporary(E, Unqual, false, LV);
13317 if (!EvaluateAtomic(E, &LV, Value, Info))
13318 return false;
13319 } else {
13320 if (!EvaluateAtomic(E, nullptr, Result, Info))
13321 return false;
13322 }
13323 } else if (Info.getLangOpts().CPlusPlus11) {
13324 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
13325 return false;
13326 } else {
13327 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
13328 return false;
13329 }
13330
13331 return true;
13332}
13333
13334/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
13335/// cases, the in-place evaluation is essential, since later initializers for
13336/// an object can indirectly refer to subobjects which were initialized earlier.
13337static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
13338 const Expr *E, bool AllowNonLiteralTypes) {
13339 assert(!E->isValueDependent())((!E->isValueDependent()) ? static_cast<void> (0) : __assert_fail
("!E->isValueDependent()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13339, __PRETTY_FUNCTION__))
;
13340
13341 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
13342 return false;
13343
13344 if (E->isRValue()) {
13345 // Evaluate arrays and record types in-place, so that later initializers can
13346 // refer to earlier-initialized members of the object.
13347 QualType T = E->getType();
13348 if (T->isArrayType())
13349 return EvaluateArray(E, This, Result, Info);
13350 else if (T->isRecordType())
13351 return EvaluateRecord(E, This, Result, Info);
13352 else if (T->isAtomicType()) {
13353 QualType Unqual = T.getAtomicUnqualifiedType();
13354 if (Unqual->isArrayType() || Unqual->isRecordType())
13355 return EvaluateAtomic(E, &This, Result, Info);
13356 }
13357 }
13358
13359 // For any other type, in-place evaluation is unimportant.
13360 return Evaluate(Result, Info, E);
13361}
13362
13363/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
13364/// lvalue-to-rvalue cast if it is an lvalue.
13365static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
13366 if (Info.EnableNewConstInterp) {
13367 auto &InterpCtx = Info.Ctx.getInterpContext();
13368 switch (InterpCtx.evaluateAsRValue(Info, E, Result)) {
13369 case interp::InterpResult::Success:
13370 return true;
13371 case interp::InterpResult::Fail:
13372 return false;
13373 case interp::InterpResult::Bail:
13374 break;
13375 }
13376 }
13377
13378 if (E->getType().isNull())
13379 return false;
13380
13381 if (!CheckLiteralType(Info, E))
13382 return false;
13383
13384 if (!::Evaluate(Result, Info, E))
13385 return false;
13386
13387 if (E->isGLValue()) {
13388 LValue LV;
13389 LV.setFrom(Info.Ctx, Result);
13390 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
13391 return false;
13392 }
13393
13394 // Check this core constant expression is a constant expression.
13395 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result) &&
13396 CheckMemoryLeaks(Info);
13397}
13398
13399static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
13400 const ASTContext &Ctx, bool &IsConst) {
13401 // Fast-path evaluations of integer literals, since we sometimes see files
13402 // containing vast quantities of these.
13403 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
13404 Result.Val = APValue(APSInt(L->getValue(),
13405 L->getType()->isUnsignedIntegerType()));
13406 IsConst = true;
13407 return true;
13408 }
13409
13410 // This case should be rare, but we need to check it before we check on
13411 // the type below.
13412 if (Exp->getType().isNull()) {
13413 IsConst = false;
13414 return true;
13415 }
13416
13417 // FIXME: Evaluating values of large array and record types can cause
13418 // performance problems. Only do so in C++11 for now.
13419 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
13420 Exp->getType()->isRecordType()) &&
13421 !Ctx.getLangOpts().CPlusPlus11) {
13422 IsConst = false;
13423 return true;
13424 }
13425 return false;
13426}
13427
13428static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
13429 Expr::SideEffectsKind SEK) {
13430 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
13431 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
13432}
13433
13434static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
13435 const ASTContext &Ctx, EvalInfo &Info) {
13436 bool IsConst;
13437 if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
13438 return IsConst;
13439
13440 return EvaluateAsRValue(Info, E, Result.Val);
13441}
13442
13443static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
13444 const ASTContext &Ctx,
13445 Expr::SideEffectsKind AllowSideEffects,
13446 EvalInfo &Info) {
13447 if (!E->getType()->isIntegralOrEnumerationType())
13448 return false;
13449
13450 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
13451 !ExprResult.Val.isInt() ||
13452 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13453 return false;
13454
13455 return true;
13456}
13457
13458static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
13459 const ASTContext &Ctx,
13460 Expr::SideEffectsKind AllowSideEffects,
13461 EvalInfo &Info) {
13462 if (!E->getType()->isFixedPointType())
13463 return false;
13464
13465 if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
13466 return false;
13467
13468 if (!ExprResult.Val.isFixedPoint() ||
13469 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13470 return false;
13471
13472 return true;
13473}
13474
13475/// EvaluateAsRValue - Return true if this is a constant which we can fold using
13476/// any crazy technique (that has nothing to do with language standards) that
13477/// we want to. If this function returns true, it returns the folded constant
13478/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
13479/// will be applied to the result.
13480bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
13481 bool InConstantContext) const {
13482 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13483, __PRETTY_FUNCTION__))
13483 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13483, __PRETTY_FUNCTION__))
;
13484 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13485 Info.InConstantContext = InConstantContext;
13486 return ::EvaluateAsRValue(this, Result, Ctx, Info);
13487}
13488
13489bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
13490 bool InConstantContext) const {
13491 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13492, __PRETTY_FUNCTION__))
13492 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13492, __PRETTY_FUNCTION__))
;
13493 EvalResult Scratch;
13494 return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
13495 HandleConversionToBool(Scratch.Val, Result);
13496}
13497
13498bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
13499 SideEffectsKind AllowSideEffects,
13500 bool InConstantContext) const {
13501 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13502, __PRETTY_FUNCTION__))
13502 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13502, __PRETTY_FUNCTION__))
;
13503 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13504 Info.InConstantContext = InConstantContext;
13505 return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
13506}
13507
13508bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
13509 SideEffectsKind AllowSideEffects,
13510 bool InConstantContext) const {
13511 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13512, __PRETTY_FUNCTION__))
13512 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13512, __PRETTY_FUNCTION__))
;
13513 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
13514 Info.InConstantContext = InConstantContext;
13515 return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
13516}
13517
13518bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
13519 SideEffectsKind AllowSideEffects,
13520 bool InConstantContext) const {
13521 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13522, __PRETTY_FUNCTION__))
13522 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13522, __PRETTY_FUNCTION__))
;
13523
13524 if (!getType()->isRealFloatingType())
13525 return false;
13526
13527 EvalResult ExprResult;
13528 if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
13529 !ExprResult.Val.isFloat() ||
13530 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
13531 return false;
13532
13533 Result = ExprResult.Val.getFloat();
13534 return true;
13535}
13536
13537bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
13538 bool InConstantContext) const {
13539 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13540, __PRETTY_FUNCTION__))
13540 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13540, __PRETTY_FUNCTION__))
;
13541
13542 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
13543 Info.InConstantContext = InConstantContext;
13544 LValue LV;
13545 CheckedTemporaries CheckedTemps;
13546 if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
13547 Result.HasSideEffects ||
13548 !CheckLValueConstantExpression(Info, getExprLoc(),
13549 Ctx.getLValueReferenceType(getType()), LV,
13550 Expr::EvaluateForCodeGen, CheckedTemps))
13551 return false;
13552
13553 LV.moveInto(Result.Val);
13554 return true;
13555}
13556
13557bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
13558 const ASTContext &Ctx) const {
13559 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13560, __PRETTY_FUNCTION__))
13560 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13560, __PRETTY_FUNCTION__))
;
13561
13562 EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
13563 EvalInfo Info(Ctx, Result, EM);
13564 Info.InConstantContext = true;
13565
13566 if (!::Evaluate(Result.Val, Info, this) || Result.HasSideEffects)
13567 return false;
13568
13569 if (!Info.discardCleanups())
13570 llvm_unreachable("Unhandled cleanup; missing full expression marker?")::llvm::llvm_unreachable_internal("Unhandled cleanup; missing full expression marker?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13570)
;
13571
13572 return CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
13573 Result.Val, Usage) &&
13574 CheckMemoryLeaks(Info);
13575}
13576
13577bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
13578 const VarDecl *VD,
13579 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
13580 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13581, __PRETTY_FUNCTION__))
13581 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13581, __PRETTY_FUNCTION__))
;
13582
13583 // FIXME: Evaluating initializers for large array and record types can cause
13584 // performance problems. Only do so in C++11 for now.
13585 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
13586 !Ctx.getLangOpts().CPlusPlus11)
13587 return false;
13588
13589 Expr::EvalStatus EStatus;
13590 EStatus.Diag = &Notes;
13591
13592 EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
13593 ? EvalInfo::EM_ConstantExpression
13594 : EvalInfo::EM_ConstantFold);
13595 Info.setEvaluatingDecl(VD, Value);
13596 Info.InConstantContext = true;
13597
13598 SourceLocation DeclLoc = VD->getLocation();
13599 QualType DeclTy = VD->getType();
13600
13601 if (Info.EnableNewConstInterp) {
13602 auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
13603 switch (InterpCtx.evaluateAsInitializer(Info, VD, Value)) {
13604 case interp::InterpResult::Fail:
13605 // Bail out if an error was encountered.
13606 return false;
13607 case interp::InterpResult::Success:
13608 // Evaluation succeeded and value was set.
13609 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value);
13610 case interp::InterpResult::Bail:
13611 // Evaluate the value again for the tree evaluator to use.
13612 break;
13613 }
13614 }
13615
13616 LValue LVal;
13617 LVal.set(VD);
13618
13619 // C++11 [basic.start.init]p2:
13620 // Variables with static storage duration or thread storage duration shall be
13621 // zero-initialized before any other initialization takes place.
13622 // This behavior is not present in C.
13623 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
13624 !DeclTy->isReferenceType()) {
13625 ImplicitValueInitExpr VIE(DeclTy);
13626 if (!EvaluateInPlace(Value, Info, LVal, &VIE,
13627 /*AllowNonLiteralTypes=*/true))
13628 return false;
13629 }
13630
13631 if (!EvaluateInPlace(Value, Info, LVal, this,
13632 /*AllowNonLiteralTypes=*/true) ||
13633 EStatus.HasSideEffects)
13634 return false;
13635
13636 // At this point, any lifetime-extended temporaries are completely
13637 // initialized.
13638 Info.performLifetimeExtension();
13639
13640 if (!Info.discardCleanups())
13641 llvm_unreachable("Unhandled cleanup; missing full expression marker?")::llvm::llvm_unreachable_internal("Unhandled cleanup; missing full expression marker?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13641)
;
13642
13643 return CheckConstantExpression(Info, DeclLoc, DeclTy, Value) &&
13644 CheckMemoryLeaks(Info);
13645}
13646
13647bool VarDecl::evaluateDestruction(
13648 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
13649 assert(getEvaluatedValue() && !getEvaluatedValue()->isAbsent() &&((getEvaluatedValue() && !getEvaluatedValue()->isAbsent
() && "cannot evaluate destruction of non-constant-initialized variable"
) ? static_cast<void> (0) : __assert_fail ("getEvaluatedValue() && !getEvaluatedValue()->isAbsent() && \"cannot evaluate destruction of non-constant-initialized variable\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13650, __PRETTY_FUNCTION__))
13650 "cannot evaluate destruction of non-constant-initialized variable")((getEvaluatedValue() && !getEvaluatedValue()->isAbsent
() && "cannot evaluate destruction of non-constant-initialized variable"
) ? static_cast<void> (0) : __assert_fail ("getEvaluatedValue() && !getEvaluatedValue()->isAbsent() && \"cannot evaluate destruction of non-constant-initialized variable\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13650, __PRETTY_FUNCTION__))
;
13651
13652 Expr::EvalStatus EStatus;
13653 EStatus.Diag = &Notes;
13654
13655 // Make a copy of the value for the destructor to mutate.
13656 APValue DestroyedValue = *getEvaluatedValue();
13657
13658 EvalInfo Info(getASTContext(), EStatus, EvalInfo::EM_ConstantExpression);
13659 Info.setEvaluatingDecl(this, DestroyedValue,
13660 EvalInfo::EvaluatingDeclKind::Dtor);
13661 Info.InConstantContext = true;
13662
13663 SourceLocation DeclLoc = getLocation();
13664 QualType DeclTy = getType();
13665
13666 LValue LVal;
13667 LVal.set(this);
13668
13669 // FIXME: Consider storing whether this variable has constant destruction in
13670 // the EvaluatedStmt so that CodeGen can query it.
13671 if (!HandleDestruction(Info, DeclLoc, LVal.Base, DestroyedValue, DeclTy) ||
13672 EStatus.HasSideEffects)
13673 return false;
13674
13675 if (!Info.discardCleanups())
13676 llvm_unreachable("Unhandled cleanup; missing full expression marker?")::llvm::llvm_unreachable_internal("Unhandled cleanup; missing full expression marker?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13676)
;
13677
13678 ensureEvaluatedStmt()->HasConstantDestruction = true;
13679 return true;
13680}
13681
13682/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
13683/// constant folded, but discard the result.
13684bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
13685 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13686, __PRETTY_FUNCTION__))
13686 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13686, __PRETTY_FUNCTION__))
;
13687
13688 EvalResult Result;
13689 return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
13690 !hasUnacceptableSideEffect(Result, SEK);
13691}
13692
13693APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
13694 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
13695 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13696, __PRETTY_FUNCTION__))
13696 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13696, __PRETTY_FUNCTION__))
;
13697
13698 EvalResult EVResult;
13699 EVResult.Diag = Diag;
13700 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13701 Info.InConstantContext = true;
13702
13703 bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
13704 (void)Result;
13705 assert(Result && "Could not evaluate expression")((Result && "Could not evaluate expression") ? static_cast
<void> (0) : __assert_fail ("Result && \"Could not evaluate expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13705, __PRETTY_FUNCTION__))
;
13706 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer")((EVResult.Val.isInt() && "Expression did not evaluate to integer"
) ? static_cast<void> (0) : __assert_fail ("EVResult.Val.isInt() && \"Expression did not evaluate to integer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13706, __PRETTY_FUNCTION__))
;
13707
13708 return EVResult.Val.getInt();
13709}
13710
13711APSInt Expr::EvaluateKnownConstIntCheckOverflow(
13712 const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
13713 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13714, __PRETTY_FUNCTION__))
13714 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13714, __PRETTY_FUNCTION__))
;
13715
13716 EvalResult EVResult;
13717 EVResult.Diag = Diag;
13718 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13719 Info.InConstantContext = true;
13720 Info.CheckingForUndefinedBehavior = true;
13721
13722 bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
13723 (void)Result;
13724 assert(Result && "Could not evaluate expression")((Result && "Could not evaluate expression") ? static_cast
<void> (0) : __assert_fail ("Result && \"Could not evaluate expression\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13724, __PRETTY_FUNCTION__))
;
13725 assert(EVResult.Val.isInt() && "Expression did not evaluate to integer")((EVResult.Val.isInt() && "Expression did not evaluate to integer"
) ? static_cast<void> (0) : __assert_fail ("EVResult.Val.isInt() && \"Expression did not evaluate to integer\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13725, __PRETTY_FUNCTION__))
;
13726
13727 return EVResult.Val.getInt();
13728}
13729
13730void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
13731 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13732, __PRETTY_FUNCTION__))
13732 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13732, __PRETTY_FUNCTION__))
;
13733
13734 bool IsConst;
13735 EvalResult EVResult;
13736 if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
13737 EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
13738 Info.CheckingForUndefinedBehavior = true;
13739 (void)::EvaluateAsRValue(Info, this, EVResult.Val);
13740 }
13741}
13742
13743bool Expr::EvalResult::isGlobalLValue() const {
13744 assert(Val.isLValue())((Val.isLValue()) ? static_cast<void> (0) : __assert_fail
("Val.isLValue()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13744, __PRETTY_FUNCTION__))
;
13745 return IsGlobalLValue(Val.getLValueBase());
13746}
13747
13748
13749/// isIntegerConstantExpr - this recursive routine will test if an expression is
13750/// an integer constant expression.
13751
13752/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
13753/// comma, etc
13754
13755// CheckICE - This function does the fundamental ICE checking: the returned
13756// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
13757// and a (possibly null) SourceLocation indicating the location of the problem.
13758//
13759// Note that to reduce code duplication, this helper does no evaluation
13760// itself; the caller checks whether the expression is evaluatable, and
13761// in the rare cases where CheckICE actually cares about the evaluated
13762// value, it calls into Evaluate.
13763
13764namespace {
13765
13766enum ICEKind {
13767 /// This expression is an ICE.
13768 IK_ICE,
13769 /// This expression is not an ICE, but if it isn't evaluated, it's
13770 /// a legal subexpression for an ICE. This return value is used to handle
13771 /// the comma operator in C99 mode, and non-constant subexpressions.
13772 IK_ICEIfUnevaluated,
13773 /// This expression is not an ICE, and is not a legal subexpression for one.
13774 IK_NotICE
13775};
13776
13777struct ICEDiag {
13778 ICEKind Kind;
13779 SourceLocation Loc;
13780
13781 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
13782};
13783
13784}
13785
13786static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
13787
13788static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
13789
13790static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
13791 Expr::EvalResult EVResult;
13792 Expr::EvalStatus Status;
13793 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
13794
13795 Info.InConstantContext = true;
13796 if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
13797 !EVResult.Val.isInt())
13798 return ICEDiag(IK_NotICE, E->getBeginLoc());
13799
13800 return NoDiag();
13801}
13802
13803static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
13804 assert(!E->isValueDependent() && "Should not see value dependent exprs!")((!E->isValueDependent() && "Should not see value dependent exprs!"
) ? static_cast<void> (0) : __assert_fail ("!E->isValueDependent() && \"Should not see value dependent exprs!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13804, __PRETTY_FUNCTION__))
;
13805 if (!E->getType()->isIntegralOrEnumerationType())
13806 return ICEDiag(IK_NotICE, E->getBeginLoc());
13807
13808 switch (E->getStmtClass()) {
13809#define ABSTRACT_STMT(Node)
13810#define STMT(Node, Base) case Expr::Node##Class:
13811#define EXPR(Node, Base)
13812#include "clang/AST/StmtNodes.inc"
13813 case Expr::PredefinedExprClass:
13814 case Expr::FloatingLiteralClass:
13815 case Expr::ImaginaryLiteralClass:
13816 case Expr::StringLiteralClass:
13817 case Expr::ArraySubscriptExprClass:
13818 case Expr::OMPArraySectionExprClass:
13819 case Expr::MemberExprClass:
13820 case Expr::CompoundAssignOperatorClass:
13821 case Expr::CompoundLiteralExprClass:
13822 case Expr::ExtVectorElementExprClass:
13823 case Expr::DesignatedInitExprClass:
13824 case Expr::ArrayInitLoopExprClass:
13825 case Expr::ArrayInitIndexExprClass:
13826 case Expr::NoInitExprClass:
13827 case Expr::DesignatedInitUpdateExprClass:
13828 case Expr::ImplicitValueInitExprClass:
13829 case Expr::ParenListExprClass:
13830 case Expr::VAArgExprClass:
13831 case Expr::AddrLabelExprClass:
13832 case Expr::StmtExprClass:
13833 case Expr::CXXMemberCallExprClass:
13834 case Expr::CUDAKernelCallExprClass:
13835 case Expr::CXXDynamicCastExprClass:
13836 case Expr::CXXTypeidExprClass:
13837 case Expr::CXXUuidofExprClass:
13838 case Expr::MSPropertyRefExprClass:
13839 case Expr::MSPropertySubscriptExprClass:
13840 case Expr::CXXNullPtrLiteralExprClass:
13841 case Expr::UserDefinedLiteralClass:
13842 case Expr::CXXThisExprClass:
13843 case Expr::CXXThrowExprClass:
13844 case Expr::CXXNewExprClass:
13845 case Expr::CXXDeleteExprClass:
13846 case Expr::CXXPseudoDestructorExprClass:
13847 case Expr::UnresolvedLookupExprClass:
13848 case Expr::TypoExprClass:
13849 case Expr::DependentScopeDeclRefExprClass:
13850 case Expr::CXXConstructExprClass:
13851 case Expr::CXXInheritedCtorInitExprClass:
13852 case Expr::CXXStdInitializerListExprClass:
13853 case Expr::CXXBindTemporaryExprClass:
13854 case Expr::ExprWithCleanupsClass:
13855 case Expr::CXXTemporaryObjectExprClass:
13856 case Expr::CXXUnresolvedConstructExprClass:
13857 case Expr::CXXDependentScopeMemberExprClass:
13858 case Expr::UnresolvedMemberExprClass:
13859 case Expr::ObjCStringLiteralClass:
13860 case Expr::ObjCBoxedExprClass:
13861 case Expr::ObjCArrayLiteralClass:
13862 case Expr::ObjCDictionaryLiteralClass:
13863 case Expr::ObjCEncodeExprClass:
13864 case Expr::ObjCMessageExprClass:
13865 case Expr::ObjCSelectorExprClass:
13866 case Expr::ObjCProtocolExprClass:
13867 case Expr::ObjCIvarRefExprClass:
13868 case Expr::ObjCPropertyRefExprClass:
13869 case Expr::ObjCSubscriptRefExprClass:
13870 case Expr::ObjCIsaExprClass:
13871 case Expr::ObjCAvailabilityCheckExprClass:
13872 case Expr::ShuffleVectorExprClass:
13873 case Expr::ConvertVectorExprClass:
13874 case Expr::BlockExprClass:
13875 case Expr::NoStmtClass:
13876 case Expr::OpaqueValueExprClass:
13877 case Expr::PackExpansionExprClass:
13878 case Expr::SubstNonTypeTemplateParmPackExprClass:
13879 case Expr::FunctionParmPackExprClass:
13880 case Expr::AsTypeExprClass:
13881 case Expr::ObjCIndirectCopyRestoreExprClass:
13882 case Expr::MaterializeTemporaryExprClass:
13883 case Expr::PseudoObjectExprClass:
13884 case Expr::AtomicExprClass:
13885 case Expr::LambdaExprClass:
13886 case Expr::CXXFoldExprClass:
13887 case Expr::CoawaitExprClass:
13888 case Expr::DependentCoawaitExprClass:
13889 case Expr::CoyieldExprClass:
13890 return ICEDiag(IK_NotICE, E->getBeginLoc());
13891
13892 case Expr::InitListExprClass: {
13893 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
13894 // form "T x = { a };" is equivalent to "T x = a;".
13895 // Unless we're initializing a reference, T is a scalar as it is known to be
13896 // of integral or enumeration type.
13897 if (E->isRValue())
13898 if (cast<InitListExpr>(E)->getNumInits() == 1)
13899 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
13900 return ICEDiag(IK_NotICE, E->getBeginLoc());
13901 }
13902
13903 case Expr::SizeOfPackExprClass:
13904 case Expr::GNUNullExprClass:
13905 case Expr::SourceLocExprClass:
13906 return NoDiag();
13907
13908 case Expr::SubstNonTypeTemplateParmExprClass:
13909 return
13910 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
13911
13912 case Expr::ConstantExprClass:
13913 return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
13914
13915 case Expr::ParenExprClass:
13916 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
13917 case Expr::GenericSelectionExprClass:
13918 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
13919 case Expr::IntegerLiteralClass:
13920 case Expr::FixedPointLiteralClass:
13921 case Expr::CharacterLiteralClass:
13922 case Expr::ObjCBoolLiteralExprClass:
13923 case Expr::CXXBoolLiteralExprClass:
13924 case Expr::CXXScalarValueInitExprClass:
13925 case Expr::TypeTraitExprClass:
13926 case Expr::ArrayTypeTraitExprClass:
13927 case Expr::ExpressionTraitExprClass:
13928 case Expr::CXXNoexceptExprClass:
13929 return NoDiag();
13930 case Expr::CallExprClass:
13931 case Expr::CXXOperatorCallExprClass: {
13932 // C99 6.6/3 allows function calls within unevaluated subexpressions of
13933 // constant expressions, but they can never be ICEs because an ICE cannot
13934 // contain an operand of (pointer to) function type.
13935 const CallExpr *CE = cast<CallExpr>(E);
13936 if (CE->getBuiltinCallee())
13937 return CheckEvalInICE(E, Ctx);
13938 return ICEDiag(IK_NotICE, E->getBeginLoc());
13939 }
13940 case Expr::DeclRefExprClass: {
13941 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
13942 return NoDiag();
13943 const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
13944 if (Ctx.getLangOpts().CPlusPlus &&
13945 D && IsConstNonVolatile(D->getType())) {
13946 // Parameter variables are never constants. Without this check,
13947 // getAnyInitializer() can find a default argument, which leads
13948 // to chaos.
13949 if (isa<ParmVarDecl>(D))
13950 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
13951
13952 // C++ 7.1.5.1p2
13953 // A variable of non-volatile const-qualified integral or enumeration
13954 // type initialized by an ICE can be used in ICEs.
13955 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
13956 if (!Dcl->getType()->isIntegralOrEnumerationType())
13957 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
13958
13959 const VarDecl *VD;
13960 // Look for a declaration of this variable that has an initializer, and
13961 // check whether it is an ICE.
13962 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
13963 return NoDiag();
13964 else
13965 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
13966 }
13967 }
13968 return ICEDiag(IK_NotICE, E->getBeginLoc());
13969 }
13970 case Expr::UnaryOperatorClass: {
13971 const UnaryOperator *Exp = cast<UnaryOperator>(E);
13972 switch (Exp->getOpcode()) {
13973 case UO_PostInc:
13974 case UO_PostDec:
13975 case UO_PreInc:
13976 case UO_PreDec:
13977 case UO_AddrOf:
13978 case UO_Deref:
13979 case UO_Coawait:
13980 // C99 6.6/3 allows increment and decrement within unevaluated
13981 // subexpressions of constant expressions, but they can never be ICEs
13982 // because an ICE cannot contain an lvalue operand.
13983 return ICEDiag(IK_NotICE, E->getBeginLoc());
13984 case UO_Extension:
13985 case UO_LNot:
13986 case UO_Plus:
13987 case UO_Minus:
13988 case UO_Not:
13989 case UO_Real:
13990 case UO_Imag:
13991 return CheckICE(Exp->getSubExpr(), Ctx);
13992 }
13993 llvm_unreachable("invalid unary operator class")::llvm::llvm_unreachable_internal("invalid unary operator class"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 13993)
;
13994 }
13995 case Expr::OffsetOfExprClass: {
13996 // Note that per C99, offsetof must be an ICE. And AFAIK, using
13997 // EvaluateAsRValue matches the proposed gcc behavior for cases like
13998 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
13999 // compliance: we should warn earlier for offsetof expressions with
14000 // array subscripts that aren't ICEs, and if the array subscripts
14001 // are ICEs, the value of the offsetof must be an integer constant.
14002 return CheckEvalInICE(E, Ctx);
14003 }
14004 case Expr::UnaryExprOrTypeTraitExprClass: {
14005 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
14006 if ((Exp->getKind() == UETT_SizeOf) &&
14007 Exp->getTypeOfArgument()->isVariableArrayType())
14008 return ICEDiag(IK_NotICE, E->getBeginLoc());
14009 return NoDiag();
14010 }
14011 case Expr::BinaryOperatorClass: {
14012 const BinaryOperator *Exp = cast<BinaryOperator>(E);
14013 switch (Exp->getOpcode()) {
14014 case BO_PtrMemD:
14015 case BO_PtrMemI:
14016 case BO_Assign:
14017 case BO_MulAssign:
14018 case BO_DivAssign:
14019 case BO_RemAssign:
14020 case BO_AddAssign:
14021 case BO_SubAssign:
14022 case BO_ShlAssign:
14023 case BO_ShrAssign:
14024 case BO_AndAssign:
14025 case BO_XorAssign:
14026 case BO_OrAssign:
14027 // C99 6.6/3 allows assignments within unevaluated subexpressions of
14028 // constant expressions, but they can never be ICEs because an ICE cannot
14029 // contain an lvalue operand.
14030 return ICEDiag(IK_NotICE, E->getBeginLoc());
14031
14032 case BO_Mul:
14033 case BO_Div:
14034 case BO_Rem:
14035 case BO_Add:
14036 case BO_Sub:
14037 case BO_Shl:
14038 case BO_Shr:
14039 case BO_LT:
14040 case BO_GT:
14041 case BO_LE:
14042 case BO_GE:
14043 case BO_EQ:
14044 case BO_NE:
14045 case BO_And:
14046 case BO_Xor:
14047 case BO_Or:
14048 case BO_Comma:
14049 case BO_Cmp: {
14050 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14051 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14052 if (Exp->getOpcode() == BO_Div ||
14053 Exp->getOpcode() == BO_Rem) {
14054 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
14055 // we don't evaluate one.
14056 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
14057 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
14058 if (REval == 0)
14059 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14060 if (REval.isSigned() && REval.isAllOnesValue()) {
14061 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
14062 if (LEval.isMinSignedValue())
14063 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14064 }
14065 }
14066 }
14067 if (Exp->getOpcode() == BO_Comma) {
14068 if (Ctx.getLangOpts().C99) {
14069 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
14070 // if it isn't evaluated.
14071 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
14072 return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
14073 } else {
14074 // In both C89 and C++, commas in ICEs are illegal.
14075 return ICEDiag(IK_NotICE, E->getBeginLoc());
14076 }
14077 }
14078 return Worst(LHSResult, RHSResult);
14079 }
14080 case BO_LAnd:
14081 case BO_LOr: {
14082 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
14083 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
14084 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
14085 // Rare case where the RHS has a comma "side-effect"; we need
14086 // to actually check the condition to see whether the side
14087 // with the comma is evaluated.
14088 if ((Exp->getOpcode() == BO_LAnd) !=
14089 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
14090 return RHSResult;
14091 return NoDiag();
14092 }
14093
14094 return Worst(LHSResult, RHSResult);
14095 }
14096 }
14097 llvm_unreachable("invalid binary operator kind")::llvm::llvm_unreachable_internal("invalid binary operator kind"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14097)
;
14098 }
14099 case Expr::ImplicitCastExprClass:
14100 case Expr::CStyleCastExprClass:
14101 case Expr::CXXFunctionalCastExprClass:
14102 case Expr::CXXStaticCastExprClass:
14103 case Expr::CXXReinterpretCastExprClass:
14104 case Expr::CXXConstCastExprClass:
14105 case Expr::ObjCBridgedCastExprClass: {
14106 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
14107 if (isa<ExplicitCastExpr>(E)) {
14108 if (const FloatingLiteral *FL
14109 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
14110 unsigned DestWidth = Ctx.getIntWidth(E->getType());
14111 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
14112 APSInt IgnoredVal(DestWidth, !DestSigned);
14113 bool Ignored;
14114 // If the value does not fit in the destination type, the behavior is
14115 // undefined, so we are not required to treat it as a constant
14116 // expression.
14117 if (FL->getValue().convertToInteger(IgnoredVal,
14118 llvm::APFloat::rmTowardZero,
14119 &Ignored) & APFloat::opInvalidOp)
14120 return ICEDiag(IK_NotICE, E->getBeginLoc());
14121 return NoDiag();
14122 }
14123 }
14124 switch (cast<CastExpr>(E)->getCastKind()) {
14125 case CK_LValueToRValue:
14126 case CK_AtomicToNonAtomic:
14127 case CK_NonAtomicToAtomic:
14128 case CK_NoOp:
14129 case CK_IntegralToBoolean:
14130 case CK_IntegralCast:
14131 return CheckICE(SubExpr, Ctx);
14132 default:
14133 return ICEDiag(IK_NotICE, E->getBeginLoc());
14134 }
14135 }
14136 case Expr::BinaryConditionalOperatorClass: {
14137 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
14138 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
14139 if (CommonResult.Kind == IK_NotICE) return CommonResult;
14140 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14141 if (FalseResult.Kind == IK_NotICE) return FalseResult;
14142 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
14143 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
14144 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
14145 return FalseResult;
14146 }
14147 case Expr::ConditionalOperatorClass: {
14148 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
14149 // If the condition (ignoring parens) is a __builtin_constant_p call,
14150 // then only the true side is actually considered in an integer constant
14151 // expression, and it is fully evaluated. This is an important GNU
14152 // extension. See GCC PR38377 for discussion.
14153 if (const CallExpr *CallCE
14154 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
14155 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
14156 return CheckEvalInICE(E, Ctx);
14157 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
14158 if (CondResult.Kind == IK_NotICE)
14159 return CondResult;
14160
14161 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
14162 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
14163
14164 if (TrueResult.Kind == IK_NotICE)
14165 return TrueResult;
14166 if (FalseResult.Kind == IK_NotICE)
14167 return FalseResult;
14168 if (CondResult.Kind == IK_ICEIfUnevaluated)
14169 return CondResult;
14170 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
14171 return NoDiag();
14172 // Rare case where the diagnostics depend on which side is evaluated
14173 // Note that if we get here, CondResult is 0, and at least one of
14174 // TrueResult and FalseResult is non-zero.
14175 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
14176 return FalseResult;
14177 return TrueResult;
14178 }
14179 case Expr::CXXDefaultArgExprClass:
14180 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
14181 case Expr::CXXDefaultInitExprClass:
14182 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
14183 case Expr::ChooseExprClass: {
14184 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
14185 }
14186 case Expr::BuiltinBitCastExprClass: {
14187 if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
14188 return ICEDiag(IK_NotICE, E->getBeginLoc());
14189 return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
14190 }
14191 }
14192
14193 llvm_unreachable("Invalid StmtClass!")::llvm::llvm_unreachable_internal("Invalid StmtClass!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14193)
;
14194}
14195
14196/// Evaluate an expression as a C++11 integral constant expression.
14197static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
14198 const Expr *E,
14199 llvm::APSInt *Value,
14200 SourceLocation *Loc) {
14201 if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
14202 if (Loc) *Loc = E->getExprLoc();
14203 return false;
14204 }
14205
14206 APValue Result;
14207 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
14208 return false;
14209
14210 if (!Result.isInt()) {
14211 if (Loc) *Loc = E->getExprLoc();
14212 return false;
14213 }
14214
14215 if (Value) *Value = Result.getInt();
14216 return true;
14217}
14218
14219bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
14220 SourceLocation *Loc) const {
14221 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14222, __PRETTY_FUNCTION__))
14222 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14222, __PRETTY_FUNCTION__))
;
14223
14224 if (Ctx.getLangOpts().CPlusPlus11)
14225 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
14226
14227 ICEDiag D = CheckICE(this, Ctx);
14228 if (D.Kind != IK_ICE) {
14229 if (Loc) *Loc = D.Loc;
14230 return false;
14231 }
14232 return true;
14233}
14234
14235bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
14236 SourceLocation *Loc, bool isEvaluated) const {
14237 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14238, __PRETTY_FUNCTION__))
14238 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14238, __PRETTY_FUNCTION__))
;
14239
14240 if (Ctx.getLangOpts().CPlusPlus11)
14241 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
14242
14243 if (!isIntegerConstantExpr(Ctx, Loc))
14244 return false;
14245
14246 // The only possible side-effects here are due to UB discovered in the
14247 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
14248 // required to treat the expression as an ICE, so we produce the folded
14249 // value.
14250 EvalResult ExprResult;
14251 Expr::EvalStatus Status;
14252 EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
14253 Info.InConstantContext = true;
14254
14255 if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
14256 llvm_unreachable("ICE cannot be evaluated!")::llvm::llvm_unreachable_internal("ICE cannot be evaluated!",
"/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14256)
;
14257
14258 Value = ExprResult.Val.getInt();
14259 return true;
14260}
14261
14262bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
14263 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14264, __PRETTY_FUNCTION__))
14264 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14264, __PRETTY_FUNCTION__))
;
14265
14266 return CheckICE(this, Ctx).Kind == IK_ICE;
14267}
14268
14269bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
14270 SourceLocation *Loc) const {
14271 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14272, __PRETTY_FUNCTION__))
14272 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14272, __PRETTY_FUNCTION__))
;
14273
14274 // We support this checking in C++98 mode in order to diagnose compatibility
14275 // issues.
14276 assert(Ctx.getLangOpts().CPlusPlus)((Ctx.getLangOpts().CPlusPlus) ? static_cast<void> (0) :
__assert_fail ("Ctx.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14276, __PRETTY_FUNCTION__))
;
14277
14278 // Build evaluation settings.
14279 Expr::EvalStatus Status;
14280 SmallVector<PartialDiagnosticAt, 8> Diags;
14281 Status.Diag = &Diags;
14282 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14283
14284 APValue Scratch;
14285 bool IsConstExpr =
14286 ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
14287 // FIXME: We don't produce a diagnostic for this, but the callers that
14288 // call us on arbitrary full-expressions should generally not care.
14289 Info.discardCleanups() && !Status.HasSideEffects;
14290
14291 if (!Diags.empty()) {
14292 IsConstExpr = false;
14293 if (Loc) *Loc = Diags[0].first;
14294 } else if (!IsConstExpr) {
14295 // FIXME: This shouldn't happen.
14296 if (Loc) *Loc = getExprLoc();
14297 }
14298
14299 return IsConstExpr;
14300}
14301
14302bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
14303 const FunctionDecl *Callee,
14304 ArrayRef<const Expr*> Args,
14305 const Expr *This) const {
14306 assert(!isValueDependent() &&((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14307, __PRETTY_FUNCTION__))
14307 "Expression evaluator can't be called on a dependent expression.")((!isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14307, __PRETTY_FUNCTION__))
;
14308
14309 Expr::EvalStatus Status;
14310 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
14311 Info.InConstantContext = true;
14312
14313 LValue ThisVal;
14314 const LValue *ThisPtr = nullptr;
14315 if (This) {
14316#ifndef NDEBUG
14317 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
14318 assert(MD && "Don't provide `this` for non-methods.")((MD && "Don't provide `this` for non-methods.") ? static_cast
<void> (0) : __assert_fail ("MD && \"Don't provide `this` for non-methods.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14318, __PRETTY_FUNCTION__))
;
14319 assert(!MD->isStatic() && "Don't provide `this` for static methods.")((!MD->isStatic() && "Don't provide `this` for static methods."
) ? static_cast<void> (0) : __assert_fail ("!MD->isStatic() && \"Don't provide `this` for static methods.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14319, __PRETTY_FUNCTION__))
;
14320#endif
14321 if (EvaluateObjectArgument(Info, This, ThisVal))
14322 ThisPtr = &ThisVal;
14323 if (Info.EvalStatus.HasSideEffects)
14324 return false;
14325 }
14326
14327 ArgVector ArgValues(Args.size());
14328 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
14329 I != E; ++I) {
14330 if ((*I)->isValueDependent() ||
14331 !Evaluate(ArgValues[I - Args.begin()], Info, *I))
14332 // If evaluation fails, throw away the argument entirely.
14333 ArgValues[I - Args.begin()] = APValue();
14334 if (Info.EvalStatus.HasSideEffects)
14335 return false;
14336 }
14337
14338 // Build fake call to Callee.
14339 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
14340 ArgValues.data());
14341 return Evaluate(Value, Info, this) && Info.discardCleanups() &&
14342 !Info.EvalStatus.HasSideEffects;
14343}
14344
14345bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
14346 SmallVectorImpl<
14347 PartialDiagnosticAt> &Diags) {
14348 // FIXME: It would be useful to check constexpr function templates, but at the
14349 // moment the constant expression evaluator cannot cope with the non-rigorous
14350 // ASTs which we build for dependent expressions.
14351 if (FD->isDependentContext())
14352 return true;
14353
14354 Expr::EvalStatus Status;
14355 Status.Diag = &Diags;
14356
14357 EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
14358 Info.InConstantContext = true;
14359 Info.CheckingPotentialConstantExpression = true;
14360
14361 // The constexpr VM attempts to compile all methods to bytecode here.
14362 if (Info.EnableNewConstInterp) {
14363 auto &InterpCtx = Info.Ctx.getInterpContext();
14364 switch (InterpCtx.isPotentialConstantExpr(Info, FD)) {
14365 case interp::InterpResult::Success:
14366 case interp::InterpResult::Fail:
14367 return Diags.empty();
14368 case interp::InterpResult::Bail:
14369 break;
14370 }
14371 }
14372
14373 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
14374 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
14375
14376 // Fabricate an arbitrary expression on the stack and pretend that it
14377 // is a temporary being used as the 'this' pointer.
14378 LValue This;
14379 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
14380 This.set({&VIE, Info.CurrentCall->Index});
14381
14382 ArrayRef<const Expr*> Args;
14383
14384 APValue Scratch;
14385 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
14386 // Evaluate the call as a constant initializer, to allow the construction
14387 // of objects of non-literal types.
14388 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
14389 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
14390 } else {
14391 SourceLocation Loc = FD->getLocation();
14392 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
14393 Args, FD->getBody(), Info, Scratch, nullptr);
14394 }
14395
14396 return Diags.empty();
14397}
14398
14399bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
14400 const FunctionDecl *FD,
14401 SmallVectorImpl<
14402 PartialDiagnosticAt> &Diags) {
14403 assert(!E->isValueDependent() &&((!E->isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!E->isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14404, __PRETTY_FUNCTION__))
14404 "Expression evaluator can't be called on a dependent expression.")((!E->isValueDependent() && "Expression evaluator can't be called on a dependent expression."
) ? static_cast<void> (0) : __assert_fail ("!E->isValueDependent() && \"Expression evaluator can't be called on a dependent expression.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14404, __PRETTY_FUNCTION__))
;
14405
14406 Expr::EvalStatus Status;
14407 Status.Diag = &Diags;
14408
14409 EvalInfo Info(FD->getASTContext(), Status,
14410 EvalInfo::EM_ConstantExpressionUnevaluated);
14411 Info.InConstantContext = true;
14412 Info.CheckingPotentialConstantExpression = true;
14413
14414 // Fabricate a call stack frame to give the arguments a plausible cover story.
14415 ArrayRef<const Expr*> Args;
14416 ArgVector ArgValues(0);
14417 bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
14418 (void)Success;
14419 assert(Success &&((Success && "Failed to set up arguments for potential constant evaluation"
) ? static_cast<void> (0) : __assert_fail ("Success && \"Failed to set up arguments for potential constant evaluation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14420, __PRETTY_FUNCTION__))
14420 "Failed to set up arguments for potential constant evaluation")((Success && "Failed to set up arguments for potential constant evaluation"
) ? static_cast<void> (0) : __assert_fail ("Success && \"Failed to set up arguments for potential constant evaluation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/AST/ExprConstant.cpp"
, 14420, __PRETTY_FUNCTION__))
;
14421 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
14422
14423 APValue ResultScratch;
14424 Evaluate(ResultScratch, Info, E);
14425 return Diags.empty();
14426}
14427
14428bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
14429 unsigned Type) const {
14430 if (!getType()->isPointerType())
14431 return false;
14432
14433 Expr::EvalStatus Status;
14434 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
14435 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
14436}

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/Redeclarable.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/AddressSpaces.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/IdentifierTable.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/OperatorKinds.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/PragmaKinds.h"
32#include "clang/Basic/SourceLocation.h"
33#include "clang/Basic/Specifiers.h"
34#include "clang/Basic/Visibility.h"
35#include "llvm/ADT/APSInt.h"
36#include "llvm/ADT/ArrayRef.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/iterator_range.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/Compiler.h"
44#include "llvm/Support/TrailingObjects.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <string>
49#include <utility>
50
51namespace clang {
52
53class ASTContext;
54struct ASTTemplateArgumentListInfo;
55class Attr;
56class CompoundStmt;
57class DependentFunctionTemplateSpecializationInfo;
58class EnumDecl;
59class Expr;
60class FunctionTemplateDecl;
61class FunctionTemplateSpecializationInfo;
62class LabelStmt;
63class MemberSpecializationInfo;
64class Module;
65class NamespaceDecl;
66class ParmVarDecl;
67class RecordDecl;
68class Stmt;
69class StringLiteral;
70class TagDecl;
71class TemplateArgumentList;
72class TemplateArgumentListInfo;
73class TemplateParameterList;
74class TypeAliasTemplateDecl;
75class TypeLoc;
76class UnresolvedSetImpl;
77class VarTemplateDecl;
78
79/// A container of type source information.
80///
81/// A client can read the relevant info using TypeLoc wrappers, e.g:
82/// @code
83/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
84/// TL.getBeginLoc().print(OS, SrcMgr);
85/// @endcode
86class alignas(8) TypeSourceInfo {
87 // Contains a memory block after the class, used for type source information,
88 // allocated by ASTContext.
89 friend class ASTContext;
90
91 QualType Ty;
92
93 TypeSourceInfo(QualType ty) : Ty(ty) {}
94
95public:
96 /// Return the type wrapped by this type source info.
97 QualType getType() const { return Ty; }
98
99 /// Return the TypeLoc wrapper for the type source info.
100 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
101
102 /// Override the type stored in this TypeSourceInfo. Use with caution!
103 void overrideType(QualType T) { Ty = T; }
104};
105
106/// The top declaration context.
107class TranslationUnitDecl : public Decl, public DeclContext {
108 ASTContext &Ctx;
109
110 /// The (most recently entered) anonymous namespace for this
111 /// translation unit, if one has been created.
112 NamespaceDecl *AnonymousNamespace = nullptr;
113
114 explicit TranslationUnitDecl(ASTContext &ctx);
115
116 virtual void anchor();
117
118public:
119 ASTContext &getASTContext() const { return Ctx; }
120
121 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
122 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
123
124 static TranslationUnitDecl *Create(ASTContext &C);
125
126 // Implement isa/cast/dyncast/etc.
127 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
128 static bool classofKind(Kind K) { return K == TranslationUnit; }
129 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
130 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
131 }
132 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
133 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
134 }
135};
136
137/// Represents a `#pragma comment` line. Always a child of
138/// TranslationUnitDecl.
139class PragmaCommentDecl final
140 : public Decl,
141 private llvm::TrailingObjects<PragmaCommentDecl, char> {
142 friend class ASTDeclReader;
143 friend class ASTDeclWriter;
144 friend TrailingObjects;
145
146 PragmaMSCommentKind CommentKind;
147
148 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
149 PragmaMSCommentKind CommentKind)
150 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
151
152 virtual void anchor();
153
154public:
155 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
156 SourceLocation CommentLoc,
157 PragmaMSCommentKind CommentKind,
158 StringRef Arg);
159 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
160 unsigned ArgSize);
161
162 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
163
164 StringRef getArg() const { return getTrailingObjects<char>(); }
165
166 // Implement isa/cast/dyncast/etc.
167 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
168 static bool classofKind(Kind K) { return K == PragmaComment; }
169};
170
171/// Represents a `#pragma detect_mismatch` line. Always a child of
172/// TranslationUnitDecl.
173class PragmaDetectMismatchDecl final
174 : public Decl,
175 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
176 friend class ASTDeclReader;
177 friend class ASTDeclWriter;
178 friend TrailingObjects;
179
180 size_t ValueStart;
181
182 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
183 size_t ValueStart)
184 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
185
186 virtual void anchor();
187
188public:
189 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
190 TranslationUnitDecl *DC,
191 SourceLocation Loc, StringRef Name,
192 StringRef Value);
193 static PragmaDetectMismatchDecl *
194 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
195
196 StringRef getName() const { return getTrailingObjects<char>(); }
197 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
198
199 // Implement isa/cast/dyncast/etc.
200 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
201 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
202};
203
204/// Declaration context for names declared as extern "C" in C++. This
205/// is neither the semantic nor lexical context for such declarations, but is
206/// used to check for conflicts with other extern "C" declarations. Example:
207///
208/// \code
209/// namespace N { extern "C" void f(); } // #1
210/// void N::f() {} // #2
211/// namespace M { extern "C" void f(); } // #3
212/// \endcode
213///
214/// The semantic context of #1 is namespace N and its lexical context is the
215/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
216/// context is the TU. However, both declarations are also visible in the
217/// extern "C" context.
218///
219/// The declaration at #3 finds it is a redeclaration of \c N::f through
220/// lookup in the extern "C" context.
221class ExternCContextDecl : public Decl, public DeclContext {
222 explicit ExternCContextDecl(TranslationUnitDecl *TU)
223 : Decl(ExternCContext, TU, SourceLocation()),
224 DeclContext(ExternCContext) {}
225
226 virtual void anchor();
227
228public:
229 static ExternCContextDecl *Create(const ASTContext &C,
230 TranslationUnitDecl *TU);
231
232 // Implement isa/cast/dyncast/etc.
233 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
234 static bool classofKind(Kind K) { return K == ExternCContext; }
235 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
236 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
237 }
238 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
239 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
240 }
241};
242
243/// This represents a decl that may have a name. Many decls have names such
244/// as ObjCMethodDecl, but not \@class, etc.
245///
246/// Note that not every NamedDecl is actually named (e.g., a struct might
247/// be anonymous), and not every name is an identifier.
248class NamedDecl : public Decl {
249 /// The name of this declaration, which is typically a normal
250 /// identifier but may also be a special kind of name (C++
251 /// constructor, Objective-C selector, etc.)
252 DeclarationName Name;
253
254 virtual void anchor();
255
256private:
257 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
258
259protected:
260 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
261 : Decl(DK, DC, L), Name(N) {}
262
263public:
264 /// Get the identifier that names this declaration, if there is one.
265 ///
266 /// This will return NULL if this declaration has no name (e.g., for
267 /// an unnamed class) or if the name is a special name (C++ constructor,
268 /// Objective-C selector, etc.).
269 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
270
271 /// Get the name of identifier for this declaration as a StringRef.
272 ///
273 /// This requires that the declaration have a name and that it be a simple
274 /// identifier.
275 StringRef getName() const {
276 assert(Name.isIdentifier() && "Name is not a simple identifier")((Name.isIdentifier() && "Name is not a simple identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.isIdentifier() && \"Name is not a simple identifier\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 276, __PRETTY_FUNCTION__))
;
277 return getIdentifier() ? getIdentifier()->getName() : "";
278 }
279
280 /// Get a human-readable name for the declaration, even if it is one of the
281 /// special kinds of names (C++ constructor, Objective-C selector, etc).
282 ///
283 /// Creating this name requires expensive string manipulation, so it should
284 /// be called only when performance doesn't matter. For simple declarations,
285 /// getNameAsCString() should suffice.
286 //
287 // FIXME: This function should be renamed to indicate that it is not just an
288 // alternate form of getName(), and clients should move as appropriate.
289 //
290 // FIXME: Deprecated, move clients to getName().
291 std::string getNameAsString() const { return Name.getAsString(); }
292
293 virtual void printName(raw_ostream &os) const;
294
295 /// Get the actual, stored name of the declaration, which may be a special
296 /// name.
297 DeclarationName getDeclName() const { return Name; }
298
299 /// Set the name of this declaration.
300 void setDeclName(DeclarationName N) { Name = N; }
301
302 /// Returns a human-readable qualified name for this declaration, like
303 /// A::B::i, for i being member of namespace A::B.
304 ///
305 /// If the declaration is not a member of context which can be named (record,
306 /// namespace), it will return the same result as printName().
307 ///
308 /// Creating this name is expensive, so it should be called only when
309 /// performance doesn't matter.
310 void printQualifiedName(raw_ostream &OS) const;
311 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
312
313 /// Print only the nested name specifier part of a fully-qualified name,
314 /// including the '::' at the end. E.g.
315 /// when `printQualifiedName(D)` prints "A::B::i",
316 /// this function prints "A::B::".
317 void printNestedNameSpecifier(raw_ostream &OS) const;
318 void printNestedNameSpecifier(raw_ostream &OS,
319 const PrintingPolicy &Policy) const;
320
321 // FIXME: Remove string version.
322 std::string getQualifiedNameAsString() const;
323
324 /// Appends a human-readable name for this declaration into the given stream.
325 ///
326 /// This is the method invoked by Sema when displaying a NamedDecl
327 /// in a diagnostic. It does not necessarily produce the same
328 /// result as printName(); for example, class template
329 /// specializations are printed with their template arguments.
330 virtual void getNameForDiagnostic(raw_ostream &OS,
331 const PrintingPolicy &Policy,
332 bool Qualified) const;
333
334 /// Determine whether this declaration, if known to be well-formed within
335 /// its context, will replace the declaration OldD if introduced into scope.
336 ///
337 /// A declaration will replace another declaration if, for example, it is
338 /// a redeclaration of the same variable or function, but not if it is a
339 /// declaration of a different kind (function vs. class) or an overloaded
340 /// function.
341 ///
342 /// \param IsKnownNewer \c true if this declaration is known to be newer
343 /// than \p OldD (for instance, if this declaration is newly-created).
344 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
345
346 /// Determine whether this declaration has linkage.
347 bool hasLinkage() const;
348
349 using Decl::isModulePrivate;
350 using Decl::setModulePrivate;
351
352 /// Determine whether this declaration is a C++ class member.
353 bool isCXXClassMember() const {
354 const DeclContext *DC = getDeclContext();
355
356 // C++0x [class.mem]p1:
357 // The enumerators of an unscoped enumeration defined in
358 // the class are members of the class.
359 if (isa<EnumDecl>(DC))
360 DC = DC->getRedeclContext();
361
362 return DC->isRecord();
363 }
364
365 /// Determine whether the given declaration is an instance member of
366 /// a C++ class.
367 bool isCXXInstanceMember() const;
368
369 /// Determine what kind of linkage this entity has.
370 ///
371 /// This is not the linkage as defined by the standard or the codegen notion
372 /// of linkage. It is just an implementation detail that is used to compute
373 /// those.
374 Linkage getLinkageInternal() const;
375
376 /// Get the linkage from a semantic point of view. Entities in
377 /// anonymous namespaces are external (in c++98).
378 Linkage getFormalLinkage() const {
379 return clang::getFormalLinkage(getLinkageInternal());
380 }
381
382 /// True if this decl has external linkage.
383 bool hasExternalFormalLinkage() const {
384 return isExternalFormalLinkage(getLinkageInternal());
385 }
386
387 bool isExternallyVisible() const {
388 return clang::isExternallyVisible(getLinkageInternal());
389 }
390
391 /// Determine whether this declaration can be redeclared in a
392 /// different translation unit.
393 bool isExternallyDeclarable() const {
394 return isExternallyVisible() && !getOwningModuleForLinkage();
395 }
396
397 /// Determines the visibility of this entity.
398 Visibility getVisibility() const {
399 return getLinkageAndVisibility().getVisibility();
400 }
401
402 /// Determines the linkage and visibility of this entity.
403 LinkageInfo getLinkageAndVisibility() const;
404
405 /// Kinds of explicit visibility.
406 enum ExplicitVisibilityKind {
407 /// Do an LV computation for, ultimately, a type.
408 /// Visibility may be restricted by type visibility settings and
409 /// the visibility of template arguments.
410 VisibilityForType,
411
412 /// Do an LV computation for, ultimately, a non-type declaration.
413 /// Visibility may be restricted by value visibility settings and
414 /// the visibility of template arguments.
415 VisibilityForValue
416 };
417
418 /// If visibility was explicitly specified for this
419 /// declaration, return that visibility.
420 Optional<Visibility>
421 getExplicitVisibility(ExplicitVisibilityKind kind) const;
422
423 /// True if the computed linkage is valid. Used for consistency
424 /// checking. Should always return true.
425 bool isLinkageValid() const;
426
427 /// True if something has required us to compute the linkage
428 /// of this declaration.
429 ///
430 /// Language features which can retroactively change linkage (like a
431 /// typedef name for linkage purposes) may need to consider this,
432 /// but hopefully only in transitory ways during parsing.
433 bool hasLinkageBeenComputed() const {
434 return hasCachedLinkage();
435 }
436
437 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
438 /// the underlying named decl.
439 NamedDecl *getUnderlyingDecl() {
440 // Fast-path the common case.
441 if (this->getKind() != UsingShadow &&
442 this->getKind() != ConstructorUsingShadow &&
443 this->getKind() != ObjCCompatibleAlias &&
444 this->getKind() != NamespaceAlias)
445 return this;
446
447 return getUnderlyingDeclImpl();
448 }
449 const NamedDecl *getUnderlyingDecl() const {
450 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
451 }
452
453 NamedDecl *getMostRecentDecl() {
454 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
455 }
456 const NamedDecl *getMostRecentDecl() const {
457 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
458 }
459
460 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
461
462 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
463 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
464};
465
466inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
467 ND.printName(OS);
468 return OS;
469}
470
471/// Represents the declaration of a label. Labels also have a
472/// corresponding LabelStmt, which indicates the position that the label was
473/// defined at. For normal labels, the location of the decl is the same as the
474/// location of the statement. For GNU local labels (__label__), the decl
475/// location is where the __label__ is.
476class LabelDecl : public NamedDecl {
477 LabelStmt *TheStmt;
478 StringRef MSAsmName;
479 bool MSAsmNameResolved = false;
480
481 /// For normal labels, this is the same as the main declaration
482 /// label, i.e., the location of the identifier; for GNU local labels,
483 /// this is the location of the __label__ keyword.
484 SourceLocation LocStart;
485
486 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
487 LabelStmt *S, SourceLocation StartL)
488 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
489
490 void anchor() override;
491
492public:
493 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
494 SourceLocation IdentL, IdentifierInfo *II);
495 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
496 SourceLocation IdentL, IdentifierInfo *II,
497 SourceLocation GnuLabelL);
498 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
499
500 LabelStmt *getStmt() const { return TheStmt; }
501 void setStmt(LabelStmt *T) { TheStmt = T; }
502
503 bool isGnuLocal() const { return LocStart != getLocation(); }
504 void setLocStart(SourceLocation L) { LocStart = L; }
505
506 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
507 return SourceRange(LocStart, getLocation());
508 }
509
510 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
511 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
512 void setMSAsmLabel(StringRef Name);
513 StringRef getMSAsmLabel() const { return MSAsmName; }
514 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
515
516 // Implement isa/cast/dyncast/etc.
517 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
518 static bool classofKind(Kind K) { return K == Label; }
519};
520
521/// Represent a C++ namespace.
522class NamespaceDecl : public NamedDecl, public DeclContext,
523 public Redeclarable<NamespaceDecl>
524{
525 /// The starting location of the source range, pointing
526 /// to either the namespace or the inline keyword.
527 SourceLocation LocStart;
528
529 /// The ending location of the source range.
530 SourceLocation RBraceLoc;
531
532 /// A pointer to either the anonymous namespace that lives just inside
533 /// this namespace or to the first namespace in the chain (the latter case
534 /// only when this is not the first in the chain), along with a
535 /// boolean value indicating whether this is an inline namespace.
536 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
537
538 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
539 SourceLocation StartLoc, SourceLocation IdLoc,
540 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
541
542 using redeclarable_base = Redeclarable<NamespaceDecl>;
543
544 NamespaceDecl *getNextRedeclarationImpl() override;
545 NamespaceDecl *getPreviousDeclImpl() override;
546 NamespaceDecl *getMostRecentDeclImpl() override;
547
548public:
549 friend class ASTDeclReader;
550 friend class ASTDeclWriter;
551
552 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
553 bool Inline, SourceLocation StartLoc,
554 SourceLocation IdLoc, IdentifierInfo *Id,
555 NamespaceDecl *PrevDecl);
556
557 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
558
559 using redecl_range = redeclarable_base::redecl_range;
560 using redecl_iterator = redeclarable_base::redecl_iterator;
561
562 using redeclarable_base::redecls_begin;
563 using redeclarable_base::redecls_end;
564 using redeclarable_base::redecls;
565 using redeclarable_base::getPreviousDecl;
566 using redeclarable_base::getMostRecentDecl;
567 using redeclarable_base::isFirstDecl;
568
569 /// Returns true if this is an anonymous namespace declaration.
570 ///
571 /// For example:
572 /// \code
573 /// namespace {
574 /// ...
575 /// };
576 /// \endcode
577 /// q.v. C++ [namespace.unnamed]
578 bool isAnonymousNamespace() const {
579 return !getIdentifier();
580 }
581
582 /// Returns true if this is an inline namespace declaration.
583 bool isInline() const {
584 return AnonOrFirstNamespaceAndInline.getInt();
585 }
586
587 /// Set whether this is an inline namespace declaration.
588 void setInline(bool Inline) {
589 AnonOrFirstNamespaceAndInline.setInt(Inline);
590 }
591
592 /// Get the original (first) namespace declaration.
593 NamespaceDecl *getOriginalNamespace();
594
595 /// Get the original (first) namespace declaration.
596 const NamespaceDecl *getOriginalNamespace() const;
597
598 /// Return true if this declaration is an original (first) declaration
599 /// of the namespace. This is false for non-original (subsequent) namespace
600 /// declarations and anonymous namespaces.
601 bool isOriginalNamespace() const;
602
603 /// Retrieve the anonymous namespace nested inside this namespace,
604 /// if any.
605 NamespaceDecl *getAnonymousNamespace() const {
606 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
607 }
608
609 void setAnonymousNamespace(NamespaceDecl *D) {
610 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
611 }
612
613 /// Retrieves the canonical declaration of this namespace.
614 NamespaceDecl *getCanonicalDecl() override {
615 return getOriginalNamespace();
616 }
617 const NamespaceDecl *getCanonicalDecl() const {
618 return getOriginalNamespace();
619 }
620
621 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
622 return SourceRange(LocStart, RBraceLoc);
623 }
624
625 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
626 SourceLocation getRBraceLoc() const { return RBraceLoc; }
627 void setLocStart(SourceLocation L) { LocStart = L; }
628 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
629
630 // Implement isa/cast/dyncast/etc.
631 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
632 static bool classofKind(Kind K) { return K == Namespace; }
633 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
634 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
635 }
636 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
637 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
638 }
639};
640
641/// Represent the declaration of a variable (in which case it is
642/// an lvalue) a function (in which case it is a function designator) or
643/// an enum constant.
644class ValueDecl : public NamedDecl {
645 QualType DeclType;
646
647 void anchor() override;
648
649protected:
650 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
651 DeclarationName N, QualType T)
652 : NamedDecl(DK, DC, L, N), DeclType(T) {}
653
654public:
655 QualType getType() const { return DeclType; }
656 void setType(QualType newType) { DeclType = newType; }
657
658 /// Determine whether this symbol is weakly-imported,
659 /// or declared with the weak or weak-ref attr.
660 bool isWeak() const;
661
662 // Implement isa/cast/dyncast/etc.
663 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
664 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
665};
666
667/// A struct with extended info about a syntactic
668/// name qualifier, to be used for the case of out-of-line declarations.
669struct QualifierInfo {
670 NestedNameSpecifierLoc QualifierLoc;
671
672 /// The number of "outer" template parameter lists.
673 /// The count includes all of the template parameter lists that were matched
674 /// against the template-ids occurring into the NNS and possibly (in the
675 /// case of an explicit specialization) a final "template <>".
676 unsigned NumTemplParamLists = 0;
677
678 /// A new-allocated array of size NumTemplParamLists,
679 /// containing pointers to the "outer" template parameter lists.
680 /// It includes all of the template parameter lists that were matched
681 /// against the template-ids occurring into the NNS and possibly (in the
682 /// case of an explicit specialization) a final "template <>".
683 TemplateParameterList** TemplParamLists = nullptr;
684
685 QualifierInfo() = default;
686 QualifierInfo(const QualifierInfo &) = delete;
687 QualifierInfo& operator=(const QualifierInfo &) = delete;
688
689 /// Sets info about "outer" template parameter lists.
690 void setTemplateParameterListsInfo(ASTContext &Context,
691 ArrayRef<TemplateParameterList *> TPLists);
692};
693
694/// Represents a ValueDecl that came out of a declarator.
695/// Contains type source information through TypeSourceInfo.
696class DeclaratorDecl : public ValueDecl {
697 // A struct representing both a TInfo and a syntactic qualifier,
698 // to be used for the (uncommon) case of out-of-line declarations.
699 struct ExtInfo : public QualifierInfo {
700 TypeSourceInfo *TInfo;
701 };
702
703 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
704
705 /// The start of the source range for this declaration,
706 /// ignoring outer template declarations.
707 SourceLocation InnerLocStart;
708
709 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
710 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
711 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
712
713protected:
714 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
715 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
716 SourceLocation StartL)
717 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
718
719public:
720 friend class ASTDeclReader;
721 friend class ASTDeclWriter;
722
723 TypeSourceInfo *getTypeSourceInfo() const {
724 return hasExtInfo()
725 ? getExtInfo()->TInfo
726 : DeclInfo.get<TypeSourceInfo*>();
727 }
728
729 void setTypeSourceInfo(TypeSourceInfo *TI) {
730 if (hasExtInfo())
731 getExtInfo()->TInfo = TI;
732 else
733 DeclInfo = TI;
734 }
735
736 /// Return start of source range ignoring outer template declarations.
737 SourceLocation getInnerLocStart() const { return InnerLocStart; }
738 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
739
740 /// Return start of source range taking into account any outer template
741 /// declarations.
742 SourceLocation getOuterLocStart() const;
743
744 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
745
746 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
747 return getOuterLocStart();
748 }
749
750 /// Retrieve the nested-name-specifier that qualifies the name of this
751 /// declaration, if it was present in the source.
752 NestedNameSpecifier *getQualifier() const {
753 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
754 : nullptr;
755 }
756
757 /// Retrieve the nested-name-specifier (with source-location
758 /// information) that qualifies the name of this declaration, if it was
759 /// present in the source.
760 NestedNameSpecifierLoc getQualifierLoc() const {
761 return hasExtInfo() ? getExtInfo()->QualifierLoc
762 : NestedNameSpecifierLoc();
763 }
764
765 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
766
767 unsigned getNumTemplateParameterLists() const {
768 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
769 }
770
771 TemplateParameterList *getTemplateParameterList(unsigned index) const {
772 assert(index < getNumTemplateParameterLists())((index < getNumTemplateParameterLists()) ? static_cast<
void> (0) : __assert_fail ("index < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 772, __PRETTY_FUNCTION__))
;
773 return getExtInfo()->TemplParamLists[index];
774 }
775
776 void setTemplateParameterListsInfo(ASTContext &Context,
777 ArrayRef<TemplateParameterList *> TPLists);
778
779 SourceLocation getTypeSpecStartLoc() const;
780
781 // Implement isa/cast/dyncast/etc.
782 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
783 static bool classofKind(Kind K) {
784 return K >= firstDeclarator && K <= lastDeclarator;
785 }
786};
787
788/// Structure used to store a statement, the constant value to
789/// which it was evaluated (if any), and whether or not the statement
790/// is an integral constant expression (if known).
791struct EvaluatedStmt {
792 /// Whether this statement was already evaluated.
793 bool WasEvaluated : 1;
794
795 /// Whether this statement is being evaluated.
796 bool IsEvaluating : 1;
797
798 /// Whether we already checked whether this statement was an
799 /// integral constant expression.
800 bool CheckedICE : 1;
801
802 /// Whether we are checking whether this statement is an
803 /// integral constant expression.
804 bool CheckingICE : 1;
805
806 /// Whether this statement is an integral constant expression,
807 /// or in C++11, whether the statement is a constant expression. Only
808 /// valid if CheckedICE is true.
809 bool IsICE : 1;
810
811 /// Whether this variable is known to have constant destruction. That is,
812 /// whether running the destructor on the initial value is a side-effect
813 /// (and doesn't inspect any state that might have changed during program
814 /// execution). This is currently only computed if the destructor is
815 /// non-trivial.
816 bool HasConstantDestruction : 1;
817
818 Stmt *Value;
819 APValue Evaluated;
820
821 EvaluatedStmt()
822 : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
823 CheckingICE(false), IsICE(false), HasConstantDestruction(false) {}
824};
825
826/// Represents a variable declaration or definition.
827class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
828public:
829 /// Initialization styles.
830 enum InitializationStyle {
831 /// C-style initialization with assignment
832 CInit,
833
834 /// Call-style initialization (C++98)
835 CallInit,
836
837 /// Direct list-initialization (C++11)
838 ListInit
839 };
840
841 /// Kinds of thread-local storage.
842 enum TLSKind {
843 /// Not a TLS variable.
844 TLS_None,
845
846 /// TLS with a known-constant initializer.
847 TLS_Static,
848
849 /// TLS with a dynamic initializer.
850 TLS_Dynamic
851 };
852
853 /// Return the string used to specify the storage class \p SC.
854 ///
855 /// It is illegal to call this function with SC == None.
856 static const char *getStorageClassSpecifierString(StorageClass SC);
857
858protected:
859 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
860 // have allocated the auxiliary struct of information there.
861 //
862 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
863 // this as *many* VarDecls are ParmVarDecls that don't have default
864 // arguments. We could save some space by moving this pointer union to be
865 // allocated in trailing space when necessary.
866 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
867
868 /// The initializer for this variable or, for a ParmVarDecl, the
869 /// C++ default argument.
870 mutable InitType Init;
871
872private:
873 friend class ASTDeclReader;
874 friend class ASTNodeImporter;
875 friend class StmtIteratorBase;
876
877 class VarDeclBitfields {
878 friend class ASTDeclReader;
879 friend class VarDecl;
880
881 unsigned SClass : 3;
882 unsigned TSCSpec : 2;
883 unsigned InitStyle : 2;
884
885 /// Whether this variable is an ARC pseudo-__strong variable; see
886 /// isARCPseudoStrong() for details.
887 unsigned ARCPseudoStrong : 1;
888 };
889 enum { NumVarDeclBits = 8 };
890
891protected:
892 enum { NumParameterIndexBits = 8 };
893
894 enum DefaultArgKind {
895 DAK_None,
896 DAK_Unparsed,
897 DAK_Uninstantiated,
898 DAK_Normal
899 };
900
901 class ParmVarDeclBitfields {
902 friend class ASTDeclReader;
903 friend class ParmVarDecl;
904
905 unsigned : NumVarDeclBits;
906
907 /// Whether this parameter inherits a default argument from a
908 /// prior declaration.
909 unsigned HasInheritedDefaultArg : 1;
910
911 /// Describes the kind of default argument for this parameter. By default
912 /// this is none. If this is normal, then the default argument is stored in
913 /// the \c VarDecl initializer expression unless we were unable to parse
914 /// (even an invalid) expression for the default argument.
915 unsigned DefaultArgKind : 2;
916
917 /// Whether this parameter undergoes K&R argument promotion.
918 unsigned IsKNRPromoted : 1;
919
920 /// Whether this parameter is an ObjC method parameter or not.
921 unsigned IsObjCMethodParam : 1;
922
923 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
924 /// Otherwise, the number of function parameter scopes enclosing
925 /// the function parameter scope in which this parameter was
926 /// declared.
927 unsigned ScopeDepthOrObjCQuals : 7;
928
929 /// The number of parameters preceding this parameter in the
930 /// function parameter scope in which it was declared.
931 unsigned ParameterIndex : NumParameterIndexBits;
932 };
933
934 class NonParmVarDeclBitfields {
935 friend class ASTDeclReader;
936 friend class ImplicitParamDecl;
937 friend class VarDecl;
938
939 unsigned : NumVarDeclBits;
940
941 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
942 /// Whether this variable is a definition which was demoted due to
943 /// module merge.
944 unsigned IsThisDeclarationADemotedDefinition : 1;
945
946 /// Whether this variable is the exception variable in a C++ catch
947 /// or an Objective-C @catch statement.
948 unsigned ExceptionVar : 1;
949
950 /// Whether this local variable could be allocated in the return
951 /// slot of its function, enabling the named return value optimization
952 /// (NRVO).
953 unsigned NRVOVariable : 1;
954
955 /// Whether this variable is the for-range-declaration in a C++0x
956 /// for-range statement.
957 unsigned CXXForRangeDecl : 1;
958
959 /// Whether this variable is the for-in loop declaration in Objective-C.
960 unsigned ObjCForDecl : 1;
961
962 /// Whether this variable is (C++1z) inline.
963 unsigned IsInline : 1;
964
965 /// Whether this variable has (C++1z) inline explicitly specified.
966 unsigned IsInlineSpecified : 1;
967
968 /// Whether this variable is (C++0x) constexpr.
969 unsigned IsConstexpr : 1;
970
971 /// Whether this variable is the implicit variable for a lambda
972 /// init-capture.
973 unsigned IsInitCapture : 1;
974
975 /// Whether this local extern variable's previous declaration was
976 /// declared in the same block scope. This controls whether we should merge
977 /// the type of this declaration with its previous declaration.
978 unsigned PreviousDeclInSameBlockScope : 1;
979
980 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
981 /// something else.
982 unsigned ImplicitParamKind : 3;
983
984 unsigned EscapingByref : 1;
985 };
986
987 union {
988 unsigned AllBits;
989 VarDeclBitfields VarDeclBits;
990 ParmVarDeclBitfields ParmVarDeclBits;
991 NonParmVarDeclBitfields NonParmVarDeclBits;
992 };
993
994 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
995 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
996 TypeSourceInfo *TInfo, StorageClass SC);
997
998 using redeclarable_base = Redeclarable<VarDecl>;
999
1000 VarDecl *getNextRedeclarationImpl() override {
1001 return getNextRedeclaration();
1002 }
1003
1004 VarDecl *getPreviousDeclImpl() override {
1005 return getPreviousDecl();
1006 }
1007
1008 VarDecl *getMostRecentDeclImpl() override {
1009 return getMostRecentDecl();
1010 }
1011
1012public:
1013 using redecl_range = redeclarable_base::redecl_range;
1014 using redecl_iterator = redeclarable_base::redecl_iterator;
1015
1016 using redeclarable_base::redecls_begin;
1017 using redeclarable_base::redecls_end;
1018 using redeclarable_base::redecls;
1019 using redeclarable_base::getPreviousDecl;
1020 using redeclarable_base::getMostRecentDecl;
1021 using redeclarable_base::isFirstDecl;
1022
1023 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1024 SourceLocation StartLoc, SourceLocation IdLoc,
1025 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1026 StorageClass S);
1027
1028 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1029
1030 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1031
1032 /// Returns the storage class as written in the source. For the
1033 /// computed linkage of symbol, see getLinkage.
1034 StorageClass getStorageClass() const {
1035 return (StorageClass) VarDeclBits.SClass;
1036 }
1037 void setStorageClass(StorageClass SC);
1038
1039 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1040 VarDeclBits.TSCSpec = TSC;
1041 assert(VarDeclBits.TSCSpec == TSC && "truncation")((VarDeclBits.TSCSpec == TSC && "truncation") ? static_cast
<void> (0) : __assert_fail ("VarDeclBits.TSCSpec == TSC && \"truncation\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1041, __PRETTY_FUNCTION__))
;
1042 }
1043 ThreadStorageClassSpecifier getTSCSpec() const {
1044 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1045 }
1046 TLSKind getTLSKind() const;
1047
1048 /// Returns true if a variable with function scope is a non-static local
1049 /// variable.
1050 bool hasLocalStorage() const {
1051 if (getStorageClass() == SC_None) {
1052 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1053 // used to describe variables allocated in global memory and which are
1054 // accessed inside a kernel(s) as read-only variables. As such, variables
1055 // in constant address space cannot have local storage.
1056 if (getType().getAddressSpace() == LangAS::opencl_constant)
1057 return false;
1058 // Second check is for C++11 [dcl.stc]p4.
1059 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1060 }
1061
1062 // Global Named Register (GNU extension)
1063 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1064 return false;
1065
1066 // Return true for: Auto, Register.
1067 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1068
1069 return getStorageClass() >= SC_Auto;
1070 }
1071
1072 /// Returns true if a variable with function scope is a static local
1073 /// variable.
1074 bool isStaticLocal() const {
1075 return (getStorageClass() == SC_Static ||
1076 // C++11 [dcl.stc]p4
1077 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1078 && !isFileVarDecl();
1079 }
1080
1081 /// Returns true if a variable has extern or __private_extern__
1082 /// storage.
1083 bool hasExternalStorage() const {
1084 return getStorageClass() == SC_Extern ||
1085 getStorageClass() == SC_PrivateExtern;
1086 }
1087
1088 /// Returns true for all variables that do not have local storage.
1089 ///
1090 /// This includes all global variables as well as static variables declared
1091 /// within a function.
1092 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1093
1094 /// Get the storage duration of this variable, per C++ [basic.stc].
1095 StorageDuration getStorageDuration() const {
1096 return hasLocalStorage() ? SD_Automatic :
1097 getTSCSpec() ? SD_Thread : SD_Static;
1098 }
1099
1100 /// Compute the language linkage.
1101 LanguageLinkage getLanguageLinkage() const;
1102
1103 /// Determines whether this variable is a variable with external, C linkage.
1104 bool isExternC() const;
1105
1106 /// Determines whether this variable's context is, or is nested within,
1107 /// a C++ extern "C" linkage spec.
1108 bool isInExternCContext() const;
1109
1110 /// Determines whether this variable's context is, or is nested within,
1111 /// a C++ extern "C++" linkage spec.
1112 bool isInExternCXXContext() const;
1113
1114 /// Returns true for local variable declarations other than parameters.
1115 /// Note that this includes static variables inside of functions. It also
1116 /// includes variables inside blocks.
1117 ///
1118 /// void foo() { int x; static int y; extern int z; }
1119 bool isLocalVarDecl() const {
1120 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1121 return false;
1122 if (const DeclContext *DC = getLexicalDeclContext())
1123 return DC->getRedeclContext()->isFunctionOrMethod();
1124 return false;
1125 }
1126
1127 /// Similar to isLocalVarDecl but also includes parameters.
1128 bool isLocalVarDeclOrParm() const {
1129 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1130 }
1131
1132 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1133 bool isFunctionOrMethodVarDecl() const {
1134 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1135 return false;
1136 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1137 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1138 }
1139
1140 /// Determines whether this is a static data member.
1141 ///
1142 /// This will only be true in C++, and applies to, e.g., the
1143 /// variable 'x' in:
1144 /// \code
1145 /// struct S {
1146 /// static int x;
1147 /// };
1148 /// \endcode
1149 bool isStaticDataMember() const {
1150 // If it wasn't static, it would be a FieldDecl.
1151 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1152 }
1153
1154 VarDecl *getCanonicalDecl() override;
1155 const VarDecl *getCanonicalDecl() const {
1156 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1157 }
1158
1159 enum DefinitionKind {
1160 /// This declaration is only a declaration.
1161 DeclarationOnly,
1162
1163 /// This declaration is a tentative definition.
1164 TentativeDefinition,
1165
1166 /// This declaration is definitely a definition.
1167 Definition
1168 };
1169
1170 /// Check whether this declaration is a definition. If this could be
1171 /// a tentative definition (in C), don't check whether there's an overriding
1172 /// definition.
1173 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1174 DefinitionKind isThisDeclarationADefinition() const {
1175 return isThisDeclarationADefinition(getASTContext());
1176 }
1177
1178 /// Check whether this variable is defined in this translation unit.
1179 DefinitionKind hasDefinition(ASTContext &) const;
1180 DefinitionKind hasDefinition() const {
1181 return hasDefinition(getASTContext());
1182 }
1183
1184 /// Get the tentative definition that acts as the real definition in a TU.
1185 /// Returns null if there is a proper definition available.
1186 VarDecl *getActingDefinition();
1187 const VarDecl *getActingDefinition() const {
1188 return const_cast<VarDecl*>(this)->getActingDefinition();
1189 }
1190
1191 /// Get the real (not just tentative) definition for this declaration.
1192 VarDecl *getDefinition(ASTContext &);
1193 const VarDecl *getDefinition(ASTContext &C) const {
1194 return const_cast<VarDecl*>(this)->getDefinition(C);
1195 }
1196 VarDecl *getDefinition() {
1197 return getDefinition(getASTContext());
1198 }
1199 const VarDecl *getDefinition() const {
1200 return const_cast<VarDecl*>(this)->getDefinition();
1201 }
1202
1203 /// Determine whether this is or was instantiated from an out-of-line
1204 /// definition of a static data member.
1205 bool isOutOfLine() const override;
1206
1207 /// Returns true for file scoped variable declaration.
1208 bool isFileVarDecl() const {
1209 Kind K = getKind();
1210 if (K == ParmVar || K == ImplicitParam)
1211 return false;
1212
1213 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1214 return true;
1215
1216 if (isStaticDataMember())
1217 return true;
1218
1219 return false;
1220 }
1221
1222 /// Get the initializer for this variable, no matter which
1223 /// declaration it is attached to.
1224 const Expr *getAnyInitializer() const {
1225 const VarDecl *D;
1226 return getAnyInitializer(D);
1227 }
1228
1229 /// Get the initializer for this variable, no matter which
1230 /// declaration it is attached to. Also get that declaration.
1231 const Expr *getAnyInitializer(const VarDecl *&D) const;
1232
1233 bool hasInit() const;
1234 const Expr *getInit() const {
1235 return const_cast<VarDecl *>(this)->getInit();
1236 }
1237 Expr *getInit();
1238
1239 /// Retrieve the address of the initializer expression.
1240 Stmt **getInitAddress();
1241
1242 void setInit(Expr *I);
1243
1244 /// Get the initializing declaration of this variable, if any. This is
1245 /// usually the definition, except that for a static data member it can be
1246 /// the in-class declaration.
1247 VarDecl *getInitializingDeclaration();
1248 const VarDecl *getInitializingDeclaration() const {
1249 return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1250 }
1251
1252 /// Determine whether this variable's value might be usable in a
1253 /// constant expression, according to the relevant language standard.
1254 /// This only checks properties of the declaration, and does not check
1255 /// whether the initializer is in fact a constant expression.
1256 bool mightBeUsableInConstantExpressions(ASTContext &C) const;
1257
1258 /// Determine whether this variable's value can be used in a
1259 /// constant expression, according to the relevant language standard,
1260 /// including checking whether it was initialized by a constant expression.
1261 bool isUsableInConstantExpressions(ASTContext &C) const;
1262
1263 EvaluatedStmt *ensureEvaluatedStmt() const;
1264
1265 /// Attempt to evaluate the value of the initializer attached to this
1266 /// declaration, and produce notes explaining why it cannot be evaluated or is
1267 /// not a constant expression. Returns a pointer to the value if evaluation
1268 /// succeeded, 0 otherwise.
1269 APValue *evaluateValue() const;
1270 APValue *evaluateValue(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1271
1272 /// Return the already-evaluated value of this variable's
1273 /// initializer, or NULL if the value is not yet known. Returns pointer
1274 /// to untyped APValue if the value could not be evaluated.
1275 APValue *getEvaluatedValue() const;
1276
1277 /// Evaluate the destruction of this variable to determine if it constitutes
1278 /// constant destruction.
1279 ///
1280 /// \pre isInitICE()
1281 /// \return \c true if this variable has constant destruction, \c false if
1282 /// not.
1283 bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1284
1285 /// Determines whether it is already known whether the
1286 /// initializer is an integral constant expression or not.
1287 bool isInitKnownICE() const;
1288
1289 /// Determines whether the initializer is an integral constant
1290 /// expression, or in C++11, whether the initializer is a constant
1291 /// expression.
1292 ///
1293 /// \pre isInitKnownICE()
1294 bool isInitICE() const;
1295
1296 /// Determine whether the value of the initializer attached to this
1297 /// declaration is an integral constant expression.
1298 bool checkInitIsICE() const;
1299
1300 void setInitStyle(InitializationStyle Style) {
1301 VarDeclBits.InitStyle = Style;
1302 }
1303
1304 /// The style of initialization for this declaration.
1305 ///
1306 /// C-style initialization is "int x = 1;". Call-style initialization is
1307 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1308 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1309 /// expression for class types. List-style initialization is C++11 syntax,
1310 /// e.g. "int x{1};". Clients can distinguish between different forms of
1311 /// initialization by checking this value. In particular, "int x = {1};" is
1312 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1313 /// Init expression in all three cases is an InitListExpr.
1314 InitializationStyle getInitStyle() const {
1315 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1316 }
1317
1318 /// Whether the initializer is a direct-initializer (list or call).
1319 bool isDirectInit() const {
1320 return getInitStyle() != CInit;
1321 }
1322
1323 /// If this definition should pretend to be a declaration.
1324 bool isThisDeclarationADemotedDefinition() const {
1325 return isa<ParmVarDecl>(this) ? false :
1326 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1327 }
1328
1329 /// This is a definition which should be demoted to a declaration.
1330 ///
1331 /// In some cases (mostly module merging) we can end up with two visible
1332 /// definitions one of which needs to be demoted to a declaration to keep
1333 /// the AST invariants.
1334 void demoteThisDefinitionToDeclaration() {
1335 assert(isThisDeclarationADefinition() && "Not a definition!")((isThisDeclarationADefinition() && "Not a definition!"
) ? static_cast<void> (0) : __assert_fail ("isThisDeclarationADefinition() && \"Not a definition!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1335, __PRETTY_FUNCTION__))
;
1336 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!")((!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(this) && \"Cannot demote ParmVarDecls!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1336, __PRETTY_FUNCTION__))
;
1337 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1338 }
1339
1340 /// Determine whether this variable is the exception variable in a
1341 /// C++ catch statememt or an Objective-C \@catch statement.
1342 bool isExceptionVariable() const {
1343 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1344 }
1345 void setExceptionVariable(bool EV) {
1346 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1346, __PRETTY_FUNCTION__))
;
1347 NonParmVarDeclBits.ExceptionVar = EV;
1348 }
1349
1350 /// Determine whether this local variable can be used with the named
1351 /// return value optimization (NRVO).
1352 ///
1353 /// The named return value optimization (NRVO) works by marking certain
1354 /// non-volatile local variables of class type as NRVO objects. These
1355 /// locals can be allocated within the return slot of their containing
1356 /// function, in which case there is no need to copy the object to the
1357 /// return slot when returning from the function. Within the function body,
1358 /// each return that returns the NRVO object will have this variable as its
1359 /// NRVO candidate.
1360 bool isNRVOVariable() const {
1361 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1362 }
1363 void setNRVOVariable(bool NRVO) {
1364 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1364, __PRETTY_FUNCTION__))
;
1365 NonParmVarDeclBits.NRVOVariable = NRVO;
1366 }
1367
1368 /// Determine whether this variable is the for-range-declaration in
1369 /// a C++0x for-range statement.
1370 bool isCXXForRangeDecl() const {
1371 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1372 }
1373 void setCXXForRangeDecl(bool FRD) {
1374 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1374, __PRETTY_FUNCTION__))
;
1375 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1376 }
1377
1378 /// Determine whether this variable is a for-loop declaration for a
1379 /// for-in statement in Objective-C.
1380 bool isObjCForDecl() const {
1381 return NonParmVarDeclBits.ObjCForDecl;
1382 }
1383
1384 void setObjCForDecl(bool FRD) {
1385 NonParmVarDeclBits.ObjCForDecl = FRD;
1386 }
1387
1388 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1389 /// pseudo-__strong variable has a __strong-qualified type but does not
1390 /// actually retain the object written into it. Generally such variables are
1391 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1392 /// the variable is annotated with the objc_externally_retained attribute, 2)
1393 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1394 /// loop.
1395 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1396 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1397
1398 /// Whether this variable is (C++1z) inline.
1399 bool isInline() const {
1400 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1401 }
1402 bool isInlineSpecified() const {
1403 return isa<ParmVarDecl>(this) ? false
1404 : NonParmVarDeclBits.IsInlineSpecified;
1405 }
1406 void setInlineSpecified() {
1407 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1407, __PRETTY_FUNCTION__))
;
1408 NonParmVarDeclBits.IsInline = true;
1409 NonParmVarDeclBits.IsInlineSpecified = true;
1410 }
1411 void setImplicitlyInline() {
1412 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1412, __PRETTY_FUNCTION__))
;
1413 NonParmVarDeclBits.IsInline = true;
1414 }
1415
1416 /// Whether this variable is (C++11) constexpr.
1417 bool isConstexpr() const {
1418 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1419 }
1420 void setConstexpr(bool IC) {
1421 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1421, __PRETTY_FUNCTION__))
;
1422 NonParmVarDeclBits.IsConstexpr = IC;
1423 }
1424
1425 /// Whether this variable is the implicit variable for a lambda init-capture.
1426 bool isInitCapture() const {
1427 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1428 }
1429 void setInitCapture(bool IC) {
1430 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1430, __PRETTY_FUNCTION__))
;
1431 NonParmVarDeclBits.IsInitCapture = IC;
1432 }
1433
1434 /// Determine whether this variable is actually a function parameter pack or
1435 /// init-capture pack.
1436 bool isParameterPack() const;
1437
1438 /// Whether this local extern variable declaration's previous declaration
1439 /// was declared in the same block scope. Only correct in C++.
1440 bool isPreviousDeclInSameBlockScope() const {
1441 return isa<ParmVarDecl>(this)
1442 ? false
1443 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1444 }
1445 void setPreviousDeclInSameBlockScope(bool Same) {
1446 assert(!isa<ParmVarDecl>(this))((!isa<ParmVarDecl>(this)) ? static_cast<void> (0
) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1446, __PRETTY_FUNCTION__))
;
1447 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1448 }
1449
1450 /// Indicates the capture is a __block variable that is captured by a block
1451 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1452 /// returns false).
1453 bool isEscapingByref() const;
1454
1455 /// Indicates the capture is a __block variable that is never captured by an
1456 /// escaping block.
1457 bool isNonEscapingByref() const;
1458
1459 void setEscapingByref() {
1460 NonParmVarDeclBits.EscapingByref = true;
1461 }
1462
1463 /// Retrieve the variable declaration from which this variable could
1464 /// be instantiated, if it is an instantiation (rather than a non-template).
1465 VarDecl *getTemplateInstantiationPattern() const;
1466
1467 /// If this variable is an instantiated static data member of a
1468 /// class template specialization, returns the templated static data member
1469 /// from which it was instantiated.
1470 VarDecl *getInstantiatedFromStaticDataMember() const;
1471
1472 /// If this variable is an instantiation of a variable template or a
1473 /// static data member of a class template, determine what kind of
1474 /// template specialization or instantiation this is.
1475 TemplateSpecializationKind getTemplateSpecializationKind() const;
1476
1477 /// Get the template specialization kind of this variable for the purposes of
1478 /// template instantiation. This differs from getTemplateSpecializationKind()
1479 /// for an instantiation of a class-scope explicit specialization.
1480 TemplateSpecializationKind
1481 getTemplateSpecializationKindForInstantiation() const;
1482
1483 /// If this variable is an instantiation of a variable template or a
1484 /// static data member of a class template, determine its point of
1485 /// instantiation.
1486 SourceLocation getPointOfInstantiation() const;
1487
1488 /// If this variable is an instantiation of a static data member of a
1489 /// class template specialization, retrieves the member specialization
1490 /// information.
1491 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1492
1493 /// For a static data member that was instantiated from a static
1494 /// data member of a class template, set the template specialiation kind.
1495 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1496 SourceLocation PointOfInstantiation = SourceLocation());
1497
1498 /// Specify that this variable is an instantiation of the
1499 /// static data member VD.
1500 void setInstantiationOfStaticDataMember(VarDecl *VD,
1501 TemplateSpecializationKind TSK);
1502
1503 /// Retrieves the variable template that is described by this
1504 /// variable declaration.
1505 ///
1506 /// Every variable template is represented as a VarTemplateDecl and a
1507 /// VarDecl. The former contains template properties (such as
1508 /// the template parameter lists) while the latter contains the
1509 /// actual description of the template's
1510 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1511 /// VarDecl that from a VarTemplateDecl, while
1512 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1513 /// a VarDecl.
1514 VarTemplateDecl *getDescribedVarTemplate() const;
1515
1516 void setDescribedVarTemplate(VarTemplateDecl *Template);
1517
1518 // Is this variable known to have a definition somewhere in the complete
1519 // program? This may be true even if the declaration has internal linkage and
1520 // has no definition within this source file.
1521 bool isKnownToBeDefined() const;
1522
1523 /// Is destruction of this variable entirely suppressed? If so, the variable
1524 /// need not have a usable destructor at all.
1525 bool isNoDestroy(const ASTContext &) const;
1526
1527 /// Do we need to emit an exit-time destructor for this variable, and if so,
1528 /// what kind?
1529 QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1530
1531 // Implement isa/cast/dyncast/etc.
1532 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1533 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1534};
1535
1536class ImplicitParamDecl : public VarDecl {
1537 void anchor() override;
1538
1539public:
1540 /// Defines the kind of the implicit parameter: is this an implicit parameter
1541 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1542 /// context or something else.
1543 enum ImplicitParamKind : unsigned {
1544 /// Parameter for Objective-C 'self' argument
1545 ObjCSelf,
1546
1547 /// Parameter for Objective-C '_cmd' argument
1548 ObjCCmd,
1549
1550 /// Parameter for C++ 'this' argument
1551 CXXThis,
1552
1553 /// Parameter for C++ virtual table pointers
1554 CXXVTT,
1555
1556 /// Parameter for captured context
1557 CapturedContext,
1558
1559 /// Other implicit parameter
1560 Other,
1561 };
1562
1563 /// Create implicit parameter.
1564 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1565 SourceLocation IdLoc, IdentifierInfo *Id,
1566 QualType T, ImplicitParamKind ParamKind);
1567 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1568 ImplicitParamKind ParamKind);
1569
1570 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1571
1572 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1573 IdentifierInfo *Id, QualType Type,
1574 ImplicitParamKind ParamKind)
1575 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1576 /*TInfo=*/nullptr, SC_None) {
1577 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1578 setImplicit();
1579 }
1580
1581 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1582 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1583 SourceLocation(), /*Id=*/nullptr, Type,
1584 /*TInfo=*/nullptr, SC_None) {
1585 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1586 setImplicit();
1587 }
1588
1589 /// Returns the implicit parameter kind.
1590 ImplicitParamKind getParameterKind() const {
1591 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1592 }
1593
1594 // Implement isa/cast/dyncast/etc.
1595 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1596 static bool classofKind(Kind K) { return K == ImplicitParam; }
1597};
1598
1599/// Represents a parameter to a function.
1600class ParmVarDecl : public VarDecl {
1601public:
1602 enum { MaxFunctionScopeDepth = 255 };
1603 enum { MaxFunctionScopeIndex = 255 };
1604
1605protected:
1606 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1607 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1608 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1609 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1610 assert(ParmVarDeclBits.HasInheritedDefaultArg == false)((ParmVarDeclBits.HasInheritedDefaultArg == false) ? static_cast
<void> (0) : __assert_fail ("ParmVarDeclBits.HasInheritedDefaultArg == false"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1610, __PRETTY_FUNCTION__))
;
1611 assert(ParmVarDeclBits.DefaultArgKind == DAK_None)((ParmVarDeclBits.DefaultArgKind == DAK_None) ? static_cast<
void> (0) : __assert_fail ("ParmVarDeclBits.DefaultArgKind == DAK_None"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1611, __PRETTY_FUNCTION__))
;
1612 assert(ParmVarDeclBits.IsKNRPromoted == false)((ParmVarDeclBits.IsKNRPromoted == false) ? static_cast<void
> (0) : __assert_fail ("ParmVarDeclBits.IsKNRPromoted == false"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1612, __PRETTY_FUNCTION__))
;
1613 assert(ParmVarDeclBits.IsObjCMethodParam == false)((ParmVarDeclBits.IsObjCMethodParam == false) ? static_cast<
void> (0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam == false"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1613, __PRETTY_FUNCTION__))
;
1614 setDefaultArg(DefArg);
1615 }
1616
1617public:
1618 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1619 SourceLocation StartLoc,
1620 SourceLocation IdLoc, IdentifierInfo *Id,
1621 QualType T, TypeSourceInfo *TInfo,
1622 StorageClass S, Expr *DefArg);
1623
1624 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1625
1626 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1627
1628 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1629 ParmVarDeclBits.IsObjCMethodParam = true;
1630 setParameterIndex(parameterIndex);
1631 }
1632
1633 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1634 assert(!ParmVarDeclBits.IsObjCMethodParam)((!ParmVarDeclBits.IsObjCMethodParam) ? static_cast<void>
(0) : __assert_fail ("!ParmVarDeclBits.IsObjCMethodParam", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1634, __PRETTY_FUNCTION__))
;
1635
1636 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1637 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth((ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1638, __PRETTY_FUNCTION__))
1638 && "truncation!")((ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1638, __PRETTY_FUNCTION__))
;
1639
1640 setParameterIndex(parameterIndex);
1641 }
1642
1643 bool isObjCMethodParameter() const {
1644 return ParmVarDeclBits.IsObjCMethodParam;
1645 }
1646
1647 unsigned getFunctionScopeDepth() const {
1648 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1649 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1650 }
1651
1652 /// Returns the index of this parameter in its prototype or method scope.
1653 unsigned getFunctionScopeIndex() const {
1654 return getParameterIndex();
1655 }
1656
1657 ObjCDeclQualifier getObjCDeclQualifier() const {
1658 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1659 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1660 }
1661 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1662 assert(ParmVarDeclBits.IsObjCMethodParam)((ParmVarDeclBits.IsObjCMethodParam) ? static_cast<void>
(0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1662, __PRETTY_FUNCTION__))
;
1663 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1664 }
1665
1666 /// True if the value passed to this parameter must undergo
1667 /// K&R-style default argument promotion:
1668 ///
1669 /// C99 6.5.2.2.
1670 /// If the expression that denotes the called function has a type
1671 /// that does not include a prototype, the integer promotions are
1672 /// performed on each argument, and arguments that have type float
1673 /// are promoted to double.
1674 bool isKNRPromoted() const {
1675 return ParmVarDeclBits.IsKNRPromoted;
1676 }
1677 void setKNRPromoted(bool promoted) {
1678 ParmVarDeclBits.IsKNRPromoted = promoted;
1679 }
1680
1681 Expr *getDefaultArg();
1682 const Expr *getDefaultArg() const {
1683 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1684 }
1685
1686 void setDefaultArg(Expr *defarg);
1687
1688 /// Retrieve the source range that covers the entire default
1689 /// argument.
1690 SourceRange getDefaultArgRange() const;
1691 void setUninstantiatedDefaultArg(Expr *arg);
1692 Expr *getUninstantiatedDefaultArg();
1693 const Expr *getUninstantiatedDefaultArg() const {
1694 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1695 }
1696
1697 /// Determines whether this parameter has a default argument,
1698 /// either parsed or not.
1699 bool hasDefaultArg() const;
1700
1701 /// Determines whether this parameter has a default argument that has not
1702 /// yet been parsed. This will occur during the processing of a C++ class
1703 /// whose member functions have default arguments, e.g.,
1704 /// @code
1705 /// class X {
1706 /// public:
1707 /// void f(int x = 17); // x has an unparsed default argument now
1708 /// }; // x has a regular default argument now
1709 /// @endcode
1710 bool hasUnparsedDefaultArg() const {
1711 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1712 }
1713
1714 bool hasUninstantiatedDefaultArg() const {
1715 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1716 }
1717
1718 /// Specify that this parameter has an unparsed default argument.
1719 /// The argument will be replaced with a real default argument via
1720 /// setDefaultArg when the class definition enclosing the function
1721 /// declaration that owns this default argument is completed.
1722 void setUnparsedDefaultArg() {
1723 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1724 }
1725
1726 bool hasInheritedDefaultArg() const {
1727 return ParmVarDeclBits.HasInheritedDefaultArg;
1728 }
1729
1730 void setHasInheritedDefaultArg(bool I = true) {
1731 ParmVarDeclBits.HasInheritedDefaultArg = I;
1732 }
1733
1734 QualType getOriginalType() const;
1735
1736 /// Sets the function declaration that owns this
1737 /// ParmVarDecl. Since ParmVarDecls are often created before the
1738 /// FunctionDecls that own them, this routine is required to update
1739 /// the DeclContext appropriately.
1740 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1741
1742 // Implement isa/cast/dyncast/etc.
1743 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1744 static bool classofKind(Kind K) { return K == ParmVar; }
1745
1746private:
1747 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1748
1749 void setParameterIndex(unsigned parameterIndex) {
1750 if (parameterIndex >= ParameterIndexSentinel) {
1751 setParameterIndexLarge(parameterIndex);
1752 return;
1753 }
1754
1755 ParmVarDeclBits.ParameterIndex = parameterIndex;
1756 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!")((ParmVarDeclBits.ParameterIndex == parameterIndex &&
"truncation!") ? static_cast<void> (0) : __assert_fail
("ParmVarDeclBits.ParameterIndex == parameterIndex && \"truncation!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 1756, __PRETTY_FUNCTION__))
;
1757 }
1758 unsigned getParameterIndex() const {
1759 unsigned d = ParmVarDeclBits.ParameterIndex;
1760 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1761 }
1762
1763 void setParameterIndexLarge(unsigned parameterIndex);
1764 unsigned getParameterIndexLarge() const;
1765};
1766
1767enum class MultiVersionKind {
1768 None,
1769 Target,
1770 CPUSpecific,
1771 CPUDispatch
1772};
1773
1774/// Represents a function declaration or definition.
1775///
1776/// Since a given function can be declared several times in a program,
1777/// there may be several FunctionDecls that correspond to that
1778/// function. Only one of those FunctionDecls will be found when
1779/// traversing the list of declarations in the context of the
1780/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1781/// contains all of the information known about the function. Other,
1782/// previous declarations of the function are available via the
1783/// getPreviousDecl() chain.
1784class FunctionDecl : public DeclaratorDecl,
1785 public DeclContext,
1786 public Redeclarable<FunctionDecl> {
1787 // This class stores some data in DeclContext::FunctionDeclBits
1788 // to save some space. Use the provided accessors to access it.
1789public:
1790 /// The kind of templated function a FunctionDecl can be.
1791 enum TemplatedKind {
1792 // Not templated.
1793 TK_NonTemplate,
1794 // The pattern in a function template declaration.
1795 TK_FunctionTemplate,
1796 // A non-template function that is an instantiation or explicit
1797 // specialization of a member of a templated class.
1798 TK_MemberSpecialization,
1799 // An instantiation or explicit specialization of a function template.
1800 // Note: this might have been instantiated from a templated class if it
1801 // is a class-scope explicit specialization.
1802 TK_FunctionTemplateSpecialization,
1803 // A function template specialization that hasn't yet been resolved to a
1804 // particular specialized function template.
1805 TK_DependentFunctionTemplateSpecialization
1806 };
1807
1808private:
1809 /// A new[]'d array of pointers to VarDecls for the formal
1810 /// parameters of this function. This is null if a prototype or if there are
1811 /// no formals.
1812 ParmVarDecl **ParamInfo = nullptr;
1813
1814 LazyDeclStmtPtr Body;
1815
1816 unsigned ODRHash;
1817
1818 /// End part of this FunctionDecl's source range.
1819 ///
1820 /// We could compute the full range in getSourceRange(). However, when we're
1821 /// dealing with a function definition deserialized from a PCH/AST file,
1822 /// we can only compute the full range once the function body has been
1823 /// de-serialized, so it's far better to have the (sometimes-redundant)
1824 /// EndRangeLoc.
1825 SourceLocation EndRangeLoc;
1826
1827 /// The template or declaration that this declaration
1828 /// describes or was instantiated from, respectively.
1829 ///
1830 /// For non-templates, this value will be NULL. For function
1831 /// declarations that describe a function template, this will be a
1832 /// pointer to a FunctionTemplateDecl. For member functions
1833 /// of class template specializations, this will be a MemberSpecializationInfo
1834 /// pointer containing information about the specialization.
1835 /// For function template specializations, this will be a
1836 /// FunctionTemplateSpecializationInfo, which contains information about
1837 /// the template being specialized and the template arguments involved in
1838 /// that specialization.
1839 llvm::PointerUnion4<FunctionTemplateDecl *,
1840 MemberSpecializationInfo *,
1841 FunctionTemplateSpecializationInfo *,
1842 DependentFunctionTemplateSpecializationInfo *>
1843 TemplateOrSpecialization;
1844
1845 /// Provides source/type location info for the declaration name embedded in
1846 /// the DeclaratorDecl base class.
1847 DeclarationNameLoc DNLoc;
1848
1849 /// Specify that this function declaration is actually a function
1850 /// template specialization.
1851 ///
1852 /// \param C the ASTContext.
1853 ///
1854 /// \param Template the function template that this function template
1855 /// specialization specializes.
1856 ///
1857 /// \param TemplateArgs the template arguments that produced this
1858 /// function template specialization from the template.
1859 ///
1860 /// \param InsertPos If non-NULL, the position in the function template
1861 /// specialization set where the function template specialization data will
1862 /// be inserted.
1863 ///
1864 /// \param TSK the kind of template specialization this is.
1865 ///
1866 /// \param TemplateArgsAsWritten location info of template arguments.
1867 ///
1868 /// \param PointOfInstantiation point at which the function template
1869 /// specialization was first instantiated.
1870 void setFunctionTemplateSpecialization(ASTContext &C,
1871 FunctionTemplateDecl *Template,
1872 const TemplateArgumentList *TemplateArgs,
1873 void *InsertPos,
1874 TemplateSpecializationKind TSK,
1875 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1876 SourceLocation PointOfInstantiation);
1877
1878 /// Specify that this record is an instantiation of the
1879 /// member function FD.
1880 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1881 TemplateSpecializationKind TSK);
1882
1883 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1884
1885 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1886 // need to access this bit but we want to avoid making ASTDeclWriter
1887 // a friend of FunctionDeclBitfields just for this.
1888 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1889
1890 /// Whether an ODRHash has been stored.
1891 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1892
1893 /// State that an ODRHash has been stored.
1894 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1895
1896protected:
1897 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1898 const DeclarationNameInfo &NameInfo, QualType T,
1899 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1900 ConstexprSpecKind ConstexprKind);
1901
1902 using redeclarable_base = Redeclarable<FunctionDecl>;
1903
1904 FunctionDecl *getNextRedeclarationImpl() override {
1905 return getNextRedeclaration();
1906 }
1907
1908 FunctionDecl *getPreviousDeclImpl() override {
1909 return getPreviousDecl();
1910 }
1911
1912 FunctionDecl *getMostRecentDeclImpl() override {
1913 return getMostRecentDecl();
1914 }
1915
1916public:
1917 friend class ASTDeclReader;
1918 friend class ASTDeclWriter;
1919
1920 using redecl_range = redeclarable_base::redecl_range;
1921 using redecl_iterator = redeclarable_base::redecl_iterator;
1922
1923 using redeclarable_base::redecls_begin;
1924 using redeclarable_base::redecls_end;
1925 using redeclarable_base::redecls;
1926 using redeclarable_base::getPreviousDecl;
1927 using redeclarable_base::getMostRecentDecl;
1928 using redeclarable_base::isFirstDecl;
1929
1930 static FunctionDecl *
1931 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1932 SourceLocation NLoc, DeclarationName N, QualType T,
1933 TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
1934 bool hasWrittenPrototype = true,
1935 ConstexprSpecKind ConstexprKind = CSK_unspecified) {
1936 DeclarationNameInfo NameInfo(N, NLoc);
1937 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
1938 isInlineSpecified, hasWrittenPrototype,
1939 ConstexprKind);
1940 }
1941
1942 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1943 SourceLocation StartLoc,
1944 const DeclarationNameInfo &NameInfo, QualType T,
1945 TypeSourceInfo *TInfo, StorageClass SC,
1946 bool isInlineSpecified, bool hasWrittenPrototype,
1947 ConstexprSpecKind ConstexprKind);
1948
1949 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1950
1951 DeclarationNameInfo getNameInfo() const {
1952 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1953 }
1954
1955 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
1956 bool Qualified) const override;
1957
1958 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
1959
1960 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1961
1962 // Function definitions.
1963 //
1964 // A function declaration may be:
1965 // - a non defining declaration,
1966 // - a definition. A function may be defined because:
1967 // - it has a body, or will have it in the case of late parsing.
1968 // - it has an uninstantiated body. The body does not exist because the
1969 // function is not used yet, but the declaration is considered a
1970 // definition and does not allow other definition of this function.
1971 // - it does not have a user specified body, but it does not allow
1972 // redefinition, because it is deleted/defaulted or is defined through
1973 // some other mechanism (alias, ifunc).
1974
1975 /// Returns true if the function has a body.
1976 ///
1977 /// The function body might be in any of the (re-)declarations of this
1978 /// function. The variant that accepts a FunctionDecl pointer will set that
1979 /// function declaration to the actual declaration containing the body (if
1980 /// there is one).
1981 bool hasBody(const FunctionDecl *&Definition) const;
1982
1983 bool hasBody() const override {
1984 const FunctionDecl* Definition;
1985 return hasBody(Definition);
1986 }
1987
1988 /// Returns whether the function has a trivial body that does not require any
1989 /// specific codegen.
1990 bool hasTrivialBody() const;
1991
1992 /// Returns true if the function has a definition that does not need to be
1993 /// instantiated.
1994 ///
1995 /// The variant that accepts a FunctionDecl pointer will set that function
1996 /// declaration to the declaration that is a definition (if there is one).
1997 bool isDefined(const FunctionDecl *&Definition) const;
1998
1999 virtual bool isDefined() const {
2000 const FunctionDecl* Definition;
2001 return isDefined(Definition);
2002 }
2003
2004 /// Get the definition for this declaration.
2005 FunctionDecl *getDefinition() {
2006 const FunctionDecl *Definition;
2007 if (isDefined(Definition))
2008 return const_cast<FunctionDecl *>(Definition);
2009 return nullptr;
2010 }
2011 const FunctionDecl *getDefinition() const {
2012 return const_cast<FunctionDecl *>(this)->getDefinition();
2013 }
2014
2015 /// Retrieve the body (definition) of the function. The function body might be
2016 /// in any of the (re-)declarations of this function. The variant that accepts
2017 /// a FunctionDecl pointer will set that function declaration to the actual
2018 /// declaration containing the body (if there is one).
2019 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2020 /// unnecessary AST de-serialization of the body.
2021 Stmt *getBody(const FunctionDecl *&Definition) const;
2022
2023 Stmt *getBody() const override {
2024 const FunctionDecl* Definition;
2025 return getBody(Definition);
2026 }
2027
2028 /// Returns whether this specific declaration of the function is also a
2029 /// definition that does not contain uninstantiated body.
2030 ///
2031 /// This does not determine whether the function has been defined (e.g., in a
2032 /// previous definition); for that information, use isDefined.
2033 bool isThisDeclarationADefinition() const {
2034 return isDeletedAsWritten() || isDefaulted() || Body || hasSkippedBody() ||
2035 isLateTemplateParsed() || willHaveBody() || hasDefiningAttr();
2036 }
2037
2038 /// Returns whether this specific declaration of the function has a body.
2039 bool doesThisDeclarationHaveABody() const {
2040 return Body || isLateTemplateParsed();
2041 }
2042
2043 void setBody(Stmt *B);
2044 void setLazyBody(uint64_t Offset) { Body = Offset; }
2045
2046 /// Whether this function is variadic.
2047 bool isVariadic() const;
2048
2049 /// Whether this function is marked as virtual explicitly.
2050 bool isVirtualAsWritten() const {
2051 return FunctionDeclBits.IsVirtualAsWritten;
2052 }
2053
2054 /// State that this function is marked as virtual explicitly.
2055 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2056
2057 /// Whether this virtual function is pure, i.e. makes the containing class
2058 /// abstract.
2059 bool isPure() const { return FunctionDeclBits.IsPure; }
2060 void setPure(bool P = true);
2061
2062 /// Whether this templated function will be late parsed.
2063 bool isLateTemplateParsed() const {
2064 return FunctionDeclBits.IsLateTemplateParsed;
2065 }
2066
2067 /// State that this templated function will be late parsed.
2068 void setLateTemplateParsed(bool ILT = true) {
2069 FunctionDeclBits.IsLateTemplateParsed = ILT;
2070 }
2071
2072 /// Whether this function is "trivial" in some specialized C++ senses.
2073 /// Can only be true for default constructors, copy constructors,
2074 /// copy assignment operators, and destructors. Not meaningful until
2075 /// the class has been fully built by Sema.
2076 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2077 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2078
2079 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2080 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2081
2082 /// Whether this function is defaulted per C++0x. Only valid for
2083 /// special member functions.
2084 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2085 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2086
2087 /// Whether this function is explicitly defaulted per C++0x. Only valid
2088 /// for special member functions.
2089 bool isExplicitlyDefaulted() const {
2090 return FunctionDeclBits.IsExplicitlyDefaulted;
2091 }
2092
2093 /// State that this function is explicitly defaulted per C++0x. Only valid
2094 /// for special member functions.
2095 void setExplicitlyDefaulted(bool ED = true) {
2096 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2097 }
2098
2099 /// Whether falling off this function implicitly returns null/zero.
2100 /// If a more specific implicit return value is required, front-ends
2101 /// should synthesize the appropriate return statements.
2102 bool hasImplicitReturnZero() const {
2103 return FunctionDeclBits.HasImplicitReturnZero;
2104 }
2105
2106 /// State that falling off this function implicitly returns null/zero.
2107 /// If a more specific implicit return value is required, front-ends
2108 /// should synthesize the appropriate return statements.
2109 void setHasImplicitReturnZero(bool IRZ) {
2110 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2111 }
2112
2113 /// Whether this function has a prototype, either because one
2114 /// was explicitly written or because it was "inherited" by merging
2115 /// a declaration without a prototype with a declaration that has a
2116 /// prototype.
2117 bool hasPrototype() const {
2118 return hasWrittenPrototype() || hasInheritedPrototype();
2119 }
2120
2121 /// Whether this function has a written prototype.
2122 bool hasWrittenPrototype() const {
2123 return FunctionDeclBits.HasWrittenPrototype;
2124 }
2125
2126 /// State that this function has a written prototype.
2127 void setHasWrittenPrototype(bool P = true) {
2128 FunctionDeclBits.HasWrittenPrototype = P;
2129 }
2130
2131 /// Whether this function inherited its prototype from a
2132 /// previous declaration.
2133 bool hasInheritedPrototype() const {
2134 return FunctionDeclBits.HasInheritedPrototype;
2135 }
2136
2137 /// State that this function inherited its prototype from a
2138 /// previous declaration.
2139 void setHasInheritedPrototype(bool P = true) {
2140 FunctionDeclBits.HasInheritedPrototype = P;
2141 }
2142
2143 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2144 bool isConstexpr() const {
2145 return FunctionDeclBits.ConstexprKind != CSK_unspecified;
2146 }
2147 void setConstexprKind(ConstexprSpecKind CSK) {
2148 FunctionDeclBits.ConstexprKind = CSK;
2149 }
2150 ConstexprSpecKind getConstexprKind() const {
2151 return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2152 }
2153 bool isConstexprSpecified() const {
2154 return FunctionDeclBits.ConstexprKind == CSK_constexpr;
2155 }
2156 bool isConsteval() const {
2157 return FunctionDeclBits.ConstexprKind == CSK_consteval;
2158 }
2159
2160 /// Whether the instantiation of this function is pending.
2161 /// This bit is set when the decision to instantiate this function is made
2162 /// and unset if and when the function body is created. That leaves out
2163 /// cases where instantiation did not happen because the template definition
2164 /// was not seen in this TU. This bit remains set in those cases, under the
2165 /// assumption that the instantiation will happen in some other TU.
2166 bool instantiationIsPending() const {
2167 return FunctionDeclBits.InstantiationIsPending;
2168 }
2169
2170 /// State that the instantiation of this function is pending.
2171 /// (see instantiationIsPending)
2172 void setInstantiationIsPending(bool IC) {
2173 FunctionDeclBits.InstantiationIsPending = IC;
2174 }
2175
2176 /// Indicates the function uses __try.
2177 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2178 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2179
2180 /// Whether this function has been deleted.
2181 ///
2182 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2183 /// acts like a normal function, except that it cannot actually be
2184 /// called or have its address taken. Deleted functions are
2185 /// typically used in C++ overload resolution to attract arguments
2186 /// whose type or lvalue/rvalue-ness would permit the use of a
2187 /// different overload that would behave incorrectly. For example,
2188 /// one might use deleted functions to ban implicit conversion from
2189 /// a floating-point number to an Integer type:
2190 ///
2191 /// @code
2192 /// struct Integer {
2193 /// Integer(long); // construct from a long
2194 /// Integer(double) = delete; // no construction from float or double
2195 /// Integer(long double) = delete; // no construction from long double
2196 /// };
2197 /// @endcode
2198 // If a function is deleted, its first declaration must be.
2199 bool isDeleted() const {
2200 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2201 }
2202
2203 bool isDeletedAsWritten() const {
2204 return FunctionDeclBits.IsDeleted && !isDefaulted();
2205 }
2206
2207 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2208
2209 /// Determines whether this function is "main", which is the
2210 /// entry point into an executable program.
2211 bool isMain() const;
2212
2213 /// Determines whether this function is a MSVCRT user defined entry
2214 /// point.
2215 bool isMSVCRTEntryPoint() const;
2216
2217 /// Determines whether this operator new or delete is one
2218 /// of the reserved global placement operators:
2219 /// void *operator new(size_t, void *);
2220 /// void *operator new[](size_t, void *);
2221 /// void operator delete(void *, void *);
2222 /// void operator delete[](void *, void *);
2223 /// These functions have special behavior under [new.delete.placement]:
2224 /// These functions are reserved, a C++ program may not define
2225 /// functions that displace the versions in the Standard C++ library.
2226 /// The provisions of [basic.stc.dynamic] do not apply to these
2227 /// reserved placement forms of operator new and operator delete.
2228 ///
2229 /// This function must be an allocation or deallocation function.
2230 bool isReservedGlobalPlacementOperator() const;
2231
2232 /// Determines whether this function is one of the replaceable
2233 /// global allocation functions:
2234 /// void *operator new(size_t);
2235 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2236 /// void *operator new[](size_t);
2237 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2238 /// void operator delete(void *) noexcept;
2239 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2240 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2241 /// void operator delete[](void *) noexcept;
2242 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2243 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2244 /// These functions have special behavior under C++1y [expr.new]:
2245 /// An implementation is allowed to omit a call to a replaceable global
2246 /// allocation function. [...]
2247 ///
2248 /// If this function is an aligned allocation/deallocation function, return
2249 /// true through IsAligned.
2250 bool isReplaceableGlobalAllocationFunction(bool *IsAligned = nullptr) const;
2251
2252 /// Determine whether this is a destroying operator delete.
2253 bool isDestroyingOperatorDelete() const;
2254
2255 /// Compute the language linkage.
2256 LanguageLinkage getLanguageLinkage() const;
2257
2258 /// Determines whether this function is a function with
2259 /// external, C linkage.
2260 bool isExternC() const;
2261
2262 /// Determines whether this function's context is, or is nested within,
2263 /// a C++ extern "C" linkage spec.
2264 bool isInExternCContext() const;
2265
2266 /// Determines whether this function's context is, or is nested within,
2267 /// a C++ extern "C++" linkage spec.
2268 bool isInExternCXXContext() const;
2269
2270 /// Determines whether this is a global function.
2271 bool isGlobal() const;
2272
2273 /// Determines whether this function is known to be 'noreturn', through
2274 /// an attribute on its declaration or its type.
2275 bool isNoReturn() const;
2276
2277 /// True if the function was a definition but its body was skipped.
2278 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2279 void setHasSkippedBody(bool Skipped = true) {
2280 FunctionDeclBits.HasSkippedBody = Skipped;
2281 }
2282
2283 /// True if this function will eventually have a body, once it's fully parsed.
2284 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2285 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2286
2287 /// True if this function is considered a multiversioned function.
2288 bool isMultiVersion() const {
2289 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2290 }
2291
2292 /// Sets the multiversion state for this declaration and all of its
2293 /// redeclarations.
2294 void setIsMultiVersion(bool V = true) {
2295 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2296 }
2297
2298 /// Gets the kind of multiversioning attribute this declaration has. Note that
2299 /// this can return a value even if the function is not multiversion, such as
2300 /// the case of 'target'.
2301 MultiVersionKind getMultiVersionKind() const;
2302
2303
2304 /// True if this function is a multiversioned dispatch function as a part of
2305 /// the cpu_specific/cpu_dispatch functionality.
2306 bool isCPUDispatchMultiVersion() const;
2307 /// True if this function is a multiversioned processor specific function as a
2308 /// part of the cpu_specific/cpu_dispatch functionality.
2309 bool isCPUSpecificMultiVersion() const;
2310
2311 /// True if this function is a multiversioned dispatch function as a part of
2312 /// the target functionality.
2313 bool isTargetMultiVersion() const;
2314
2315 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2316
2317 FunctionDecl *getCanonicalDecl() override;
2318 const FunctionDecl *getCanonicalDecl() const {
2319 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2320 }
2321
2322 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2323
2324 // ArrayRef interface to parameters.
2325 ArrayRef<ParmVarDecl *> parameters() const {
2326 return {ParamInfo, getNumParams()};
2327 }
2328 MutableArrayRef<ParmVarDecl *> parameters() {
2329 return {ParamInfo, getNumParams()};
2330 }
2331
2332 // Iterator access to formal parameters.
2333 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2334 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2335
2336 bool param_empty() const { return parameters().empty(); }
2337 param_iterator param_begin() { return parameters().begin(); }
2338 param_iterator param_end() { return parameters().end(); }
2339 param_const_iterator param_begin() const { return parameters().begin(); }
2340 param_const_iterator param_end() const { return parameters().end(); }
2341 size_t param_size() const { return parameters().size(); }
2342
2343 /// Return the number of parameters this function must have based on its
2344 /// FunctionType. This is the length of the ParamInfo array after it has been
2345 /// created.
2346 unsigned getNumParams() const;
2347
2348 const ParmVarDecl *getParamDecl(unsigned i) const {
2349 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2349, __PRETTY_FUNCTION__))
;
2350 return ParamInfo[i];
2351 }
2352 ParmVarDecl *getParamDecl(unsigned i) {
2353 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2353, __PRETTY_FUNCTION__))
;
2354 return ParamInfo[i];
2355 }
2356 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2357 setParams(getASTContext(), NewParamInfo);
2358 }
2359
2360 /// Returns the minimum number of arguments needed to call this function. This
2361 /// may be fewer than the number of function parameters, if some of the
2362 /// parameters have default arguments (in C++).
2363 unsigned getMinRequiredArguments() const;
2364
2365 QualType getReturnType() const {
2366 return getType()->castAs<FunctionType>()->getReturnType();
2367 }
2368
2369 /// Attempt to compute an informative source range covering the
2370 /// function return type. This may omit qualifiers and other information with
2371 /// limited representation in the AST.
2372 SourceRange getReturnTypeSourceRange() const;
2373
2374 /// Get the declared return type, which may differ from the actual return
2375 /// type if the return type is deduced.
2376 QualType getDeclaredReturnType() const {
2377 auto *TSI = getTypeSourceInfo();
2378 QualType T = TSI ? TSI->getType() : getType();
2379 return T->castAs<FunctionType>()->getReturnType();
2380 }
2381
2382 /// Gets the ExceptionSpecificationType as declared.
2383 ExceptionSpecificationType getExceptionSpecType() const {
2384 auto *TSI = getTypeSourceInfo();
2385 QualType T = TSI ? TSI->getType() : getType();
2386 const auto *FPT = T->getAs<FunctionProtoType>();
2387 return FPT ? FPT->getExceptionSpecType() : EST_None;
2388 }
2389
2390 /// Attempt to compute an informative source range covering the
2391 /// function exception specification, if any.
2392 SourceRange getExceptionSpecSourceRange() const;
2393
2394 /// Determine the type of an expression that calls this function.
2395 QualType getCallResultType() const {
2396 return getType()->castAs<FunctionType>()->getCallResultType(
2397 getASTContext());
2398 }
2399
2400 /// Returns the storage class as written in the source. For the
2401 /// computed linkage of symbol, see getLinkage.
2402 StorageClass getStorageClass() const {
2403 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2404 }
2405
2406 /// Sets the storage class as written in the source.
2407 void setStorageClass(StorageClass SClass) {
2408 FunctionDeclBits.SClass = SClass;
2409 }
2410
2411 /// Determine whether the "inline" keyword was specified for this
2412 /// function.
2413 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2414
2415 /// Set whether the "inline" keyword was specified for this function.
2416 void setInlineSpecified(bool I) {
2417 FunctionDeclBits.IsInlineSpecified = I;
2418 FunctionDeclBits.IsInline = I;
2419 }
2420
2421 /// Flag that this function is implicitly inline.
2422 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2423
2424 /// Determine whether this function should be inlined, because it is
2425 /// either marked "inline" or "constexpr" or is a member function of a class
2426 /// that was defined in the class body.
2427 bool isInlined() const { return FunctionDeclBits.IsInline; }
2428
2429 bool isInlineDefinitionExternallyVisible() const;
2430
2431 bool isMSExternInline() const;
2432
2433 bool doesDeclarationForceExternallyVisibleDefinition() const;
2434
2435 bool isStatic() const { return getStorageClass() == SC_Static; }
2436
2437 /// Whether this function declaration represents an C++ overloaded
2438 /// operator, e.g., "operator+".
2439 bool isOverloadedOperator() const {
2440 return getOverloadedOperator() != OO_None;
2441 }
2442
2443 OverloadedOperatorKind getOverloadedOperator() const;
2444
2445 const IdentifierInfo *getLiteralIdentifier() const;
2446
2447 /// If this function is an instantiation of a member function
2448 /// of a class template specialization, retrieves the function from
2449 /// which it was instantiated.
2450 ///
2451 /// This routine will return non-NULL for (non-templated) member
2452 /// functions of class templates and for instantiations of function
2453 /// templates. For example, given:
2454 ///
2455 /// \code
2456 /// template<typename T>
2457 /// struct X {
2458 /// void f(T);
2459 /// };
2460 /// \endcode
2461 ///
2462 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2463 /// whose parent is the class template specialization X<int>. For
2464 /// this declaration, getInstantiatedFromFunction() will return
2465 /// the FunctionDecl X<T>::A. When a complete definition of
2466 /// X<int>::A is required, it will be instantiated from the
2467 /// declaration returned by getInstantiatedFromMemberFunction().
2468 FunctionDecl *getInstantiatedFromMemberFunction() const;
2469
2470 /// What kind of templated function this is.
2471 TemplatedKind getTemplatedKind() const;
2472
2473 /// If this function is an instantiation of a member function of a
2474 /// class template specialization, retrieves the member specialization
2475 /// information.
2476 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2477
2478 /// Specify that this record is an instantiation of the
2479 /// member function FD.
2480 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2481 TemplateSpecializationKind TSK) {
2482 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2483 }
2484
2485 /// Retrieves the function template that is described by this
2486 /// function declaration.
2487 ///
2488 /// Every function template is represented as a FunctionTemplateDecl
2489 /// and a FunctionDecl (or something derived from FunctionDecl). The
2490 /// former contains template properties (such as the template
2491 /// parameter lists) while the latter contains the actual
2492 /// description of the template's
2493 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2494 /// FunctionDecl that describes the function template,
2495 /// getDescribedFunctionTemplate() retrieves the
2496 /// FunctionTemplateDecl from a FunctionDecl.
2497 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2498
2499 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2500
2501 /// Determine whether this function is a function template
2502 /// specialization.
2503 bool isFunctionTemplateSpecialization() const {
2504 return getPrimaryTemplate() != nullptr;
2505 }
2506
2507 /// If this function is actually a function template specialization,
2508 /// retrieve information about this function template specialization.
2509 /// Otherwise, returns NULL.
2510 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2511
2512 /// Determines whether this function is a function template
2513 /// specialization or a member of a class template specialization that can
2514 /// be implicitly instantiated.
2515 bool isImplicitlyInstantiable() const;
2516
2517 /// Determines if the given function was instantiated from a
2518 /// function template.
2519 bool isTemplateInstantiation() const;
2520
2521 /// Retrieve the function declaration from which this function could
2522 /// be instantiated, if it is an instantiation (rather than a non-template
2523 /// or a specialization, for example).
2524 FunctionDecl *getTemplateInstantiationPattern() const;
2525
2526 /// Retrieve the primary template that this function template
2527 /// specialization either specializes or was instantiated from.
2528 ///
2529 /// If this function declaration is not a function template specialization,
2530 /// returns NULL.
2531 FunctionTemplateDecl *getPrimaryTemplate() const;
2532
2533 /// Retrieve the template arguments used to produce this function
2534 /// template specialization from the primary template.
2535 ///
2536 /// If this function declaration is not a function template specialization,
2537 /// returns NULL.
2538 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2539
2540 /// Retrieve the template argument list as written in the sources,
2541 /// if any.
2542 ///
2543 /// If this function declaration is not a function template specialization
2544 /// or if it had no explicit template argument list, returns NULL.
2545 /// Note that it an explicit template argument list may be written empty,
2546 /// e.g., template<> void foo<>(char* s);
2547 const ASTTemplateArgumentListInfo*
2548 getTemplateSpecializationArgsAsWritten() const;
2549
2550 /// Specify that this function declaration is actually a function
2551 /// template specialization.
2552 ///
2553 /// \param Template the function template that this function template
2554 /// specialization specializes.
2555 ///
2556 /// \param TemplateArgs the template arguments that produced this
2557 /// function template specialization from the template.
2558 ///
2559 /// \param InsertPos If non-NULL, the position in the function template
2560 /// specialization set where the function template specialization data will
2561 /// be inserted.
2562 ///
2563 /// \param TSK the kind of template specialization this is.
2564 ///
2565 /// \param TemplateArgsAsWritten location info of template arguments.
2566 ///
2567 /// \param PointOfInstantiation point at which the function template
2568 /// specialization was first instantiated.
2569 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2570 const TemplateArgumentList *TemplateArgs,
2571 void *InsertPos,
2572 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2573 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2574 SourceLocation PointOfInstantiation = SourceLocation()) {
2575 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2576 InsertPos, TSK, TemplateArgsAsWritten,
2577 PointOfInstantiation);
2578 }
2579
2580 /// Specifies that this function declaration is actually a
2581 /// dependent function template specialization.
2582 void setDependentTemplateSpecialization(ASTContext &Context,
2583 const UnresolvedSetImpl &Templates,
2584 const TemplateArgumentListInfo &TemplateArgs);
2585
2586 DependentFunctionTemplateSpecializationInfo *
2587 getDependentSpecializationInfo() const;
2588
2589 /// Determine what kind of template instantiation this function
2590 /// represents.
2591 TemplateSpecializationKind getTemplateSpecializationKind() const;
2592
2593 /// Determine the kind of template specialization this function represents
2594 /// for the purpose of template instantiation.
2595 TemplateSpecializationKind
2596 getTemplateSpecializationKindForInstantiation() const;
2597
2598 /// Determine what kind of template instantiation this function
2599 /// represents.
2600 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2601 SourceLocation PointOfInstantiation = SourceLocation());
2602
2603 /// Retrieve the (first) point of instantiation of a function template
2604 /// specialization or a member of a class template specialization.
2605 ///
2606 /// \returns the first point of instantiation, if this function was
2607 /// instantiated from a template; otherwise, returns an invalid source
2608 /// location.
2609 SourceLocation getPointOfInstantiation() const;
2610
2611 /// Determine whether this is or was instantiated from an out-of-line
2612 /// definition of a member function.
2613 bool isOutOfLine() const override;
2614
2615 /// Identify a memory copying or setting function.
2616 /// If the given function is a memory copy or setting function, returns
2617 /// the corresponding Builtin ID. If the function is not a memory function,
2618 /// returns 0.
2619 unsigned getMemoryFunctionKind() const;
2620
2621 /// Returns ODRHash of the function. This value is calculated and
2622 /// stored on first call, then the stored value returned on the other calls.
2623 unsigned getODRHash();
2624
2625 /// Returns cached ODRHash of the function. This must have been previously
2626 /// computed and stored.
2627 unsigned getODRHash() const;
2628
2629 // Implement isa/cast/dyncast/etc.
2630 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2631 static bool classofKind(Kind K) {
2632 return K >= firstFunction && K <= lastFunction;
2633 }
2634 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2635 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2636 }
2637 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2638 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2639 }
2640};
2641
2642/// Represents a member of a struct/union/class.
2643class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2644 unsigned BitField : 1;
2645 unsigned Mutable : 1;
2646 mutable unsigned CachedFieldIndex : 30;
2647
2648 /// The kinds of value we can store in InitializerOrBitWidth.
2649 ///
2650 /// Note that this is compatible with InClassInitStyle except for
2651 /// ISK_CapturedVLAType.
2652 enum InitStorageKind {
2653 /// If the pointer is null, there's nothing special. Otherwise,
2654 /// this is a bitfield and the pointer is the Expr* storing the
2655 /// bit-width.
2656 ISK_NoInit = (unsigned) ICIS_NoInit,
2657
2658 /// The pointer is an (optional due to delayed parsing) Expr*
2659 /// holding the copy-initializer.
2660 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2661
2662 /// The pointer is an (optional due to delayed parsing) Expr*
2663 /// holding the list-initializer.
2664 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2665
2666 /// The pointer is a VariableArrayType* that's been captured;
2667 /// the enclosing context is a lambda or captured statement.
2668 ISK_CapturedVLAType,
2669 };
2670
2671 /// If this is a bitfield with a default member initializer, this
2672 /// structure is used to represent the two expressions.
2673 struct InitAndBitWidth {
2674 Expr *Init;
2675 Expr *BitWidth;
2676 };
2677
2678 /// Storage for either the bit-width, the in-class initializer, or
2679 /// both (via InitAndBitWidth), or the captured variable length array bound.
2680 ///
2681 /// If the storage kind is ISK_InClassCopyInit or
2682 /// ISK_InClassListInit, but the initializer is null, then this
2683 /// field has an in-class initializer that has not yet been parsed
2684 /// and attached.
2685 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2686 // overwhelmingly common case that we have none of these things.
2687 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2688
2689protected:
2690 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2691 SourceLocation IdLoc, IdentifierInfo *Id,
2692 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2693 InClassInitStyle InitStyle)
2694 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2695 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2696 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2697 if (BW)
2698 setBitWidth(BW);
2699 }
2700
2701public:
2702 friend class ASTDeclReader;
2703 friend class ASTDeclWriter;
2704
2705 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2706 SourceLocation StartLoc, SourceLocation IdLoc,
2707 IdentifierInfo *Id, QualType T,
2708 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2709 InClassInitStyle InitStyle);
2710
2711 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2712
2713 /// Returns the index of this field within its record,
2714 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2715 unsigned getFieldIndex() const;
2716
2717 /// Determines whether this field is mutable (C++ only).
2718 bool isMutable() const { return Mutable; }
2719
2720 /// Determines whether this field is a bitfield.
2721 bool isBitField() const { return BitField; }
2722
2723 /// Determines whether this is an unnamed bitfield.
2724 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2725
2726 /// Determines whether this field is a
2727 /// representative for an anonymous struct or union. Such fields are
2728 /// unnamed and are implicitly generated by the implementation to
2729 /// store the data for the anonymous union or struct.
2730 bool isAnonymousStructOrUnion() const;
2731
2732 Expr *getBitWidth() const {
2733 if (!BitField)
2734 return nullptr;
2735 void *Ptr = InitStorage.getPointer();
2736 if (getInClassInitStyle())
2737 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2738 return static_cast<Expr*>(Ptr);
2739 }
2740
2741 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2742
2743 /// Set the bit-field width for this member.
2744 // Note: used by some clients (i.e., do not remove it).
2745 void setBitWidth(Expr *Width) {
2746 assert(!hasCapturedVLAType() && !BitField &&((!hasCapturedVLAType() && !BitField && "bit width or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2747, __PRETTY_FUNCTION__))
2747 "bit width or captured type already set")((!hasCapturedVLAType() && !BitField && "bit width or captured type already set"
) ? static_cast<void> (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2747, __PRETTY_FUNCTION__))
;
2748 assert(Width && "no bit width specified")((Width && "no bit width specified") ? static_cast<
void> (0) : __assert_fail ("Width && \"no bit width specified\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2748, __PRETTY_FUNCTION__))
;
2749 InitStorage.setPointer(
2750 InitStorage.getInt()
2751 ? new (getASTContext())
2752 InitAndBitWidth{getInClassInitializer(), Width}
2753 : static_cast<void*>(Width));
2754 BitField = true;
2755 }
2756
2757 /// Remove the bit-field width from this member.
2758 // Note: used by some clients (i.e., do not remove it).
2759 void removeBitWidth() {
2760 assert(isBitField() && "no bitfield width to remove")((isBitField() && "no bitfield width to remove") ? static_cast
<void> (0) : __assert_fail ("isBitField() && \"no bitfield width to remove\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2760, __PRETTY_FUNCTION__))
;
2761 InitStorage.setPointer(getInClassInitializer());
2762 BitField = false;
2763 }
2764
2765 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2766 /// at all and instead act as a separator between contiguous runs of other
2767 /// bit-fields.
2768 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2769
2770 /// Determine if this field is a subobject of zero size, that is, either a
2771 /// zero-length bit-field or a field of empty class type with the
2772 /// [[no_unique_address]] attribute.
2773 bool isZeroSize(const ASTContext &Ctx) const;
2774
2775 /// Get the kind of (C++11) default member initializer that this field has.
2776 InClassInitStyle getInClassInitStyle() const {
2777 InitStorageKind storageKind = InitStorage.getInt();
2778 return (storageKind == ISK_CapturedVLAType
2779 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2780 }
2781
2782 /// Determine whether this member has a C++11 default member initializer.
2783 bool hasInClassInitializer() const {
2784 return getInClassInitStyle() != ICIS_NoInit;
2785 }
2786
2787 /// Get the C++11 default member initializer for this member, or null if one
2788 /// has not been set. If a valid declaration has a default member initializer,
2789 /// but this returns null, then we have not parsed and attached it yet.
2790 Expr *getInClassInitializer() const {
2791 if (!hasInClassInitializer())
2792 return nullptr;
2793 void *Ptr = InitStorage.getPointer();
2794 if (BitField)
2795 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2796 return static_cast<Expr*>(Ptr);
2797 }
2798
2799 /// Set the C++11 in-class initializer for this member.
2800 void setInClassInitializer(Expr *Init) {
2801 assert(hasInClassInitializer() && !getInClassInitializer())((hasInClassInitializer() && !getInClassInitializer()
) ? static_cast<void> (0) : __assert_fail ("hasInClassInitializer() && !getInClassInitializer()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2801, __PRETTY_FUNCTION__))
;
2802 if (BitField)
2803 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2804 else
2805 InitStorage.setPointer(Init);
2806 }
2807
2808 /// Remove the C++11 in-class initializer from this member.
2809 void removeInClassInitializer() {
2810 assert(hasInClassInitializer() && "no initializer to remove")((hasInClassInitializer() && "no initializer to remove"
) ? static_cast<void> (0) : __assert_fail ("hasInClassInitializer() && \"no initializer to remove\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2810, __PRETTY_FUNCTION__))
;
2811 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2812 }
2813
2814 /// Determine whether this member captures the variable length array
2815 /// type.
2816 bool hasCapturedVLAType() const {
2817 return InitStorage.getInt() == ISK_CapturedVLAType;
2818 }
2819
2820 /// Get the captured variable length array type.
2821 const VariableArrayType *getCapturedVLAType() const {
2822 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2823 InitStorage.getPointer())
2824 : nullptr;
2825 }
2826
2827 /// Set the captured variable length array type for this field.
2828 void setCapturedVLAType(const VariableArrayType *VLAType);
2829
2830 /// Returns the parent of this field declaration, which
2831 /// is the struct in which this field is defined.
2832 const RecordDecl *getParent() const {
2833 return cast<RecordDecl>(getDeclContext());
2834 }
2835
2836 RecordDecl *getParent() {
2837 return cast<RecordDecl>(getDeclContext());
2838 }
2839
2840 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2841
2842 /// Retrieves the canonical declaration of this field.
2843 FieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2844 const FieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2845
2846 // Implement isa/cast/dyncast/etc.
2847 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2848 static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
2849};
2850
2851/// An instance of this object exists for each enum constant
2852/// that is defined. For example, in "enum X {a,b}", each of a/b are
2853/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
2854/// TagType for the X EnumDecl.
2855class EnumConstantDecl : public ValueDecl, public Mergeable<EnumConstantDecl> {
2856 Stmt *Init; // an integer constant expression
2857 llvm::APSInt Val; // The value.
2858
2859protected:
2860 EnumConstantDecl(DeclContext *DC, SourceLocation L,
2861 IdentifierInfo *Id, QualType T, Expr *E,
2862 const llvm::APSInt &V)
2863 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
2864
2865public:
2866 friend class StmtIteratorBase;
2867
2868 static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
2869 SourceLocation L, IdentifierInfo *Id,
2870 QualType T, Expr *E,
2871 const llvm::APSInt &V);
2872 static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2873
2874 const Expr *getInitExpr() const { return (const Expr*) Init; }
2875 Expr *getInitExpr() { return (Expr*) Init; }
2876 const llvm::APSInt &getInitVal() const { return Val; }
2877
2878 void setInitExpr(Expr *E) { Init = (Stmt*) E; }
2879 void setInitVal(const llvm::APSInt &V) { Val = V; }
2880
2881 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2882
2883 /// Retrieves the canonical declaration of this enumerator.
2884 EnumConstantDecl *getCanonicalDecl() override { return getFirstDecl(); }
2885 const EnumConstantDecl *getCanonicalDecl() const { return getFirstDecl(); }
2886
2887 // Implement isa/cast/dyncast/etc.
2888 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2889 static bool classofKind(Kind K) { return K == EnumConstant; }
2890};
2891
2892/// Represents a field injected from an anonymous union/struct into the parent
2893/// scope. These are always implicit.
2894class IndirectFieldDecl : public ValueDecl,
2895 public Mergeable<IndirectFieldDecl> {
2896 NamedDecl **Chaining;
2897 unsigned ChainingSize;
2898
2899 IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L,
2900 DeclarationName N, QualType T,
2901 MutableArrayRef<NamedDecl *> CH);
2902
2903 void anchor() override;
2904
2905public:
2906 friend class ASTDeclReader;
2907
2908 static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
2909 SourceLocation L, IdentifierInfo *Id,
2910 QualType T, llvm::MutableArrayRef<NamedDecl *> CH);
2911
2912 static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2913
2914 using chain_iterator = ArrayRef<NamedDecl *>::const_iterator;
2915
2916 ArrayRef<NamedDecl *> chain() const {
2917 return llvm::makeArrayRef(Chaining, ChainingSize);
2918 }
2919 chain_iterator chain_begin() const { return chain().begin(); }
2920 chain_iterator chain_end() const { return chain().end(); }
2921
2922 unsigned getChainingSize() const { return ChainingSize; }
2923
2924 FieldDecl *getAnonField() const {
2925 assert(chain().size() >= 2)((chain().size() >= 2) ? static_cast<void> (0) : __assert_fail
("chain().size() >= 2", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2925, __PRETTY_FUNCTION__))
;
2926 return cast<FieldDecl>(chain().back());
2927 }
2928
2929 VarDecl *getVarDecl() const {
2930 assert(chain().size() >= 2)((chain().size() >= 2) ? static_cast<void> (0) : __assert_fail
("chain().size() >= 2", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 2930, __PRETTY_FUNCTION__))
;
2931 return dyn_cast<VarDecl>(chain().front());
2932 }
2933
2934 IndirectFieldDecl *getCanonicalDecl() override { return getFirstDecl(); }
2935 const IndirectFieldDecl *getCanonicalDecl() const { return getFirstDecl(); }
2936
2937 // Implement isa/cast/dyncast/etc.
2938 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2939 static bool classofKind(Kind K) { return K == IndirectField; }
2940};
2941
2942/// Represents a declaration of a type.
2943class TypeDecl : public NamedDecl {
2944 friend class ASTContext;
2945
2946 /// This indicates the Type object that represents
2947 /// this TypeDecl. It is a cache maintained by
2948 /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
2949 /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
2950 mutable const Type *TypeForDecl = nullptr;
2951
2952 /// The start of the source range for this declaration.
2953 SourceLocation LocStart;
2954
2955 void anchor() override;
2956
2957protected:
2958 TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
2959 SourceLocation StartL = SourceLocation())
2960 : NamedDecl(DK, DC, L, Id), LocStart(StartL) {}
2961
2962public:
2963 // Low-level accessor. If you just want the type defined by this node,
2964 // check out ASTContext::getTypeDeclType or one of
2965 // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
2966 // already know the specific kind of node this is.
2967 const Type *getTypeForDecl() const { return TypeForDecl; }
2968 void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
2969
2970 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
2971 void setLocStart(SourceLocation L) { LocStart = L; }
2972 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
2973 if (LocStart.isValid())
2974 return SourceRange(LocStart, getLocation());
2975 else
2976 return SourceRange(getLocation());
2977 }
2978
2979 // Implement isa/cast/dyncast/etc.
2980 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2981 static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
2982};
2983
2984/// Base class for declarations which introduce a typedef-name.
2985class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
2986 struct alignas(8) ModedTInfo {
2987 TypeSourceInfo *first;
2988 QualType second;
2989 };
2990
2991 /// If int part is 0, we have not computed IsTransparentTag.
2992 /// Otherwise, IsTransparentTag is (getInt() >> 1).
2993 mutable llvm::PointerIntPair<
2994 llvm::PointerUnion<TypeSourceInfo *, ModedTInfo *>, 2>
2995 MaybeModedTInfo;
2996
2997 void anchor() override;
2998
2999protected:
3000 TypedefNameDecl(Kind DK, ASTContext &C, DeclContext *DC,
3001 SourceLocation StartLoc, SourceLocation IdLoc,
3002 IdentifierInfo *Id, TypeSourceInfo *TInfo)
3003 : TypeDecl(DK, DC, IdLoc, Id, StartLoc), redeclarable_base(C),
3004 MaybeModedTInfo(TInfo, 0) {}
3005
3006 using redeclarable_base = Redeclarable<TypedefNameDecl>;
3007
3008 TypedefNameDecl *getNextRedeclarationImpl() override {
3009 return getNextRedeclaration();
3010 }
3011
3012 TypedefNameDecl *getPreviousDeclImpl() override {
3013 return getPreviousDecl();
3014 }
3015
3016 TypedefNameDecl *getMostRecentDeclImpl() override {
3017 return getMostRecentDecl();
3018 }
3019
3020public:
3021 using redecl_range = redeclarable_base::redecl_range;
3022 using redecl_iterator = redeclarable_base::redecl_iterator;
3023
3024 using redeclarable_base::redecls_begin;
3025 using redeclarable_base::redecls_end;
3026 using redeclarable_base::redecls;
3027 using redeclarable_base::getPreviousDecl;
3028 using redeclarable_base::getMostRecentDecl;
3029 using redeclarable_base::isFirstDecl;
3030
3031 bool isModed() const {
3032 return MaybeModedTInfo.getPointer().is<ModedTInfo *>();
3033 }
3034
3035 TypeSourceInfo *getTypeSourceInfo() const {
3036 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->first
3037 : MaybeModedTInfo.getPointer().get<TypeSourceInfo *>();
3038 }
3039
3040 QualType getUnderlyingType() const {
3041 return isModed() ? MaybeModedTInfo.getPointer().get<ModedTInfo *>()->second
3042 : MaybeModedTInfo.getPointer()
3043 .get<TypeSourceInfo *>()
3044 ->getType();
3045 }
3046
3047 void setTypeSourceInfo(TypeSourceInfo *newType) {
3048 MaybeModedTInfo.setPointer(newType);
3049 }
3050
3051 void setModedTypeSourceInfo(TypeSourceInfo *unmodedTSI, QualType modedTy) {
3052 MaybeModedTInfo.setPointer(new (getASTContext(), 8)
3053 ModedTInfo({unmodedTSI, modedTy}));
3054 }
3055
3056 /// Retrieves the canonical declaration of this typedef-name.
3057 TypedefNameDecl *getCanonicalDecl() override { return getFirstDecl(); }
3058 const TypedefNameDecl *getCanonicalDecl() const { return getFirstDecl(); }
3059
3060 /// Retrieves the tag declaration for which this is the typedef name for
3061 /// linkage purposes, if any.
3062 ///
3063 /// \param AnyRedecl Look for the tag declaration in any redeclaration of
3064 /// this typedef declaration.
3065 TagDecl *getAnonDeclWithTypedefName(bool AnyRedecl = false) const;
3066
3067 /// Determines if this typedef shares a name and spelling location with its
3068 /// underlying tag type, as is the case with the NS_ENUM macro.
3069 bool isTransparentTag() const {
3070 if (MaybeModedTInfo.getInt())
3071 return MaybeModedTInfo.getInt() & 0x2;
3072 return isTransparentTagSlow();
3073 }
3074
3075 // Implement isa/cast/dyncast/etc.
3076 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3077 static bool classofKind(Kind K) {
3078 return K >= firstTypedefName && K <= lastTypedefName;
3079 }
3080
3081private:
3082 bool isTransparentTagSlow() const;
3083};
3084
3085/// Represents the declaration of a typedef-name via the 'typedef'
3086/// type specifier.
3087class TypedefDecl : public TypedefNameDecl {
3088 TypedefDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3089 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3090 : TypedefNameDecl(Typedef, C, DC, StartLoc, IdLoc, Id, TInfo) {}
3091
3092public:
3093 static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
3094 SourceLocation StartLoc, SourceLocation IdLoc,
3095 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3096 static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3097
3098 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3099
3100 // Implement isa/cast/dyncast/etc.
3101 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3102 static bool classofKind(Kind K) { return K == Typedef; }
3103};
3104
3105/// Represents the declaration of a typedef-name via a C++11
3106/// alias-declaration.
3107class TypeAliasDecl : public TypedefNameDecl {
3108 /// The template for which this is the pattern, if any.
3109 TypeAliasTemplateDecl *Template;
3110
3111 TypeAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3112 SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo)
3113 : TypedefNameDecl(TypeAlias, C, DC, StartLoc, IdLoc, Id, TInfo),
3114 Template(nullptr) {}
3115
3116public:
3117 static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
3118 SourceLocation StartLoc, SourceLocation IdLoc,
3119 IdentifierInfo *Id, TypeSourceInfo *TInfo);
3120 static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3121
3122 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3123
3124 TypeAliasTemplateDecl *getDescribedAliasTemplate() const { return Template; }
3125 void setDescribedAliasTemplate(TypeAliasTemplateDecl *TAT) { Template = TAT; }
3126
3127 // Implement isa/cast/dyncast/etc.
3128 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3129 static bool classofKind(Kind K) { return K == TypeAlias; }
3130};
3131
3132/// Represents the declaration of a struct/union/class/enum.
3133class TagDecl : public TypeDecl,
3134 public DeclContext,
3135 public Redeclarable<TagDecl> {
3136 // This class stores some data in DeclContext::TagDeclBits
3137 // to save some space. Use the provided accessors to access it.
3138public:
3139 // This is really ugly.
3140 using TagKind = TagTypeKind;
3141
3142private:
3143 SourceRange BraceRange;
3144
3145 // A struct representing syntactic qualifier info,
3146 // to be used for the (uncommon) case of out-of-line declarations.
3147 using ExtInfo = QualifierInfo;
3148
3149 /// If the (out-of-line) tag declaration name
3150 /// is qualified, it points to the qualifier info (nns and range);
3151 /// otherwise, if the tag declaration is anonymous and it is part of
3152 /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
3153 /// otherwise, if the tag declaration is anonymous and it is used as a
3154 /// declaration specifier for variables, it points to the first VarDecl (used
3155 /// for mangling);
3156 /// otherwise, it is a null (TypedefNameDecl) pointer.
3157 llvm::PointerUnion<TypedefNameDecl *, ExtInfo *> TypedefNameDeclOrQualifier;
3158
3159 bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo *>(); }
3160 ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo *>(); }
3161 const ExtInfo *getExtInfo() const {
3162 return TypedefNameDeclOrQualifier.get<ExtInfo *>();
3163 }
3164
3165protected:
3166 TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3167 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3168 SourceLocation StartL);
3169
3170 using redeclarable_base = Redeclarable<TagDecl>;
3171
3172 TagDecl *getNextRedeclarationImpl() override {
3173 return getNextRedeclaration();
3174 }
3175
3176 TagDecl *getPreviousDeclImpl() override {
3177 return getPreviousDecl();
3178 }
3179
3180 TagDecl *getMostRecentDeclImpl() override {
3181 return getMostRecentDecl();
3182 }
3183
3184 /// Completes the definition of this tag declaration.
3185 ///
3186 /// This is a helper function for derived classes.
3187 void completeDefinition();
3188
3189 /// True if this decl is currently being defined.
3190 void setBeingDefined(bool V = true) { TagDeclBits.IsBeingDefined = V; }
3191
3192 /// Indicates whether it is possible for declarations of this kind
3193 /// to have an out-of-date definition.
3194 ///
3195 /// This option is only enabled when modules are enabled.
3196 void setMayHaveOutOfDateDef(bool V = true) {
3197 TagDeclBits.MayHaveOutOfDateDef = V;
3198 }
3199
3200public:
3201 friend class ASTDeclReader;
3202 friend class ASTDeclWriter;
3203
3204 using redecl_range = redeclarable_base::redecl_range;
3205 using redecl_iterator = redeclarable_base::redecl_iterator;
3206
3207 using redeclarable_base::redecls_begin;
3208 using redeclarable_base::redecls_end;
3209 using redeclarable_base::redecls;
3210 using redeclarable_base::getPreviousDecl;
3211 using redeclarable_base::getMostRecentDecl;
3212 using redeclarable_base::isFirstDecl;
3213
3214 SourceRange getBraceRange() const { return BraceRange; }
3215 void setBraceRange(SourceRange R) { BraceRange = R; }
3216
3217 /// Return SourceLocation representing start of source
3218 /// range ignoring outer template declarations.
3219 SourceLocation getInnerLocStart() const { return getBeginLoc(); }
3220
3221 /// Return SourceLocation representing start of source
3222 /// range taking into account any outer template declarations.
3223 SourceLocation getOuterLocStart() const;
3224 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
3225
3226 TagDecl *getCanonicalDecl() override;
3227 const TagDecl *getCanonicalDecl() const {
3228 return const_cast<TagDecl*>(this)->getCanonicalDecl();
3229 }
3230
3231 /// Return true if this declaration is a completion definition of the type.
3232 /// Provided for consistency.
3233 bool isThisDeclarationADefinition() const {
3234 return isCompleteDefinition();
3235 }
3236
3237 /// Return true if this decl has its body fully specified.
3238 bool isCompleteDefinition() const { return TagDeclBits.IsCompleteDefinition; }
3239
3240 /// True if this decl has its body fully specified.
3241 void setCompleteDefinition(bool V = true) {
3242 TagDeclBits.IsCompleteDefinition = V;
3243 }
3244
3245 /// Return true if this complete decl is
3246 /// required to be complete for some existing use.
3247 bool isCompleteDefinitionRequired() const {
3248 return TagDeclBits.IsCompleteDefinitionRequired;
3249 }
3250
3251 /// True if this complete decl is
3252 /// required to be complete for some existing use.
3253 void setCompleteDefinitionRequired(bool V = true) {
3254 TagDeclBits.IsCompleteDefinitionRequired = V;
3255 }
3256
3257 /// Return true if this decl is currently being defined.
3258 bool isBeingDefined() const { return TagDeclBits.IsBeingDefined; }
3259
3260 /// True if this tag declaration is "embedded" (i.e., defined or declared
3261 /// for the very first time) in the syntax of a declarator.
3262 bool isEmbeddedInDeclarator() const {
3263 return TagDeclBits.IsEmbeddedInDeclarator;
3264 }
3265
3266 /// True if this tag declaration is "embedded" (i.e., defined or declared
3267 /// for the very first time) in the syntax of a declarator.
3268 void setEmbeddedInDeclarator(bool isInDeclarator) {
3269 TagDeclBits.IsEmbeddedInDeclarator = isInDeclarator;
3270 }
3271
3272 /// True if this tag is free standing, e.g. "struct foo;".
3273 bool isFreeStanding() const { return TagDeclBits.IsFreeStanding; }
3274
3275 /// True if this tag is free standing, e.g. "struct foo;".
3276 void setFreeStanding(bool isFreeStanding = true) {
3277 TagDeclBits.IsFreeStanding = isFreeStanding;
3278 }
3279
3280 /// Indicates whether it is possible for declarations of this kind
3281 /// to have an out-of-date definition.
3282 ///
3283 /// This option is only enabled when modules are enabled.
3284 bool mayHaveOutOfDateDef() const { return TagDeclBits.MayHaveOutOfDateDef; }
3285
3286 /// Whether this declaration declares a type that is
3287 /// dependent, i.e., a type that somehow depends on template
3288 /// parameters.
3289 bool isDependentType() const { return isDependentContext(); }
3290
3291 /// Starts the definition of this tag declaration.
3292 ///
3293 /// This method should be invoked at the beginning of the definition
3294 /// of this tag declaration. It will set the tag type into a state
3295 /// where it is in the process of being defined.
3296 void startDefinition();
3297
3298 /// Returns the TagDecl that actually defines this
3299 /// struct/union/class/enum. When determining whether or not a
3300 /// struct/union/class/enum has a definition, one should use this
3301 /// method as opposed to 'isDefinition'. 'isDefinition' indicates
3302 /// whether or not a specific TagDecl is defining declaration, not
3303 /// whether or not the struct/union/class/enum type is defined.
3304 /// This method returns NULL if there is no TagDecl that defines
3305 /// the struct/union/class/enum.
3306 TagDecl *getDefinition() const;
3307
3308 StringRef getKindName() const {
3309 return TypeWithKeyword::getTagTypeKindName(getTagKind());
3310 }
3311
3312 TagKind getTagKind() const {
3313 return static_cast<TagKind>(TagDeclBits.TagDeclKind);
3314 }
3315
3316 void setTagKind(TagKind TK) { TagDeclBits.TagDeclKind = TK; }
3317
3318 bool isStruct() const { return getTagKind() == TTK_Struct; }
3319 bool isInterface() const { return getTagKind() == TTK_Interface; }
3320 bool isClass() const { return getTagKind() == TTK_Class; }
3321 bool isUnion() const { return getTagKind() == TTK_Union; }
48
Assuming the condition is false
49
Returning zero, which participates in a condition later
3322 bool isEnum() const { return getTagKind() == TTK_Enum; }
3323
3324 /// Is this tag type named, either directly or via being defined in
3325 /// a typedef of this type?
3326 ///
3327 /// C++11 [basic.link]p8:
3328 /// A type is said to have linkage if and only if:
3329 /// - it is a class or enumeration type that is named (or has a
3330 /// name for linkage purposes) and the name has linkage; ...
3331 /// C++11 [dcl.typedef]p9:
3332 /// If the typedef declaration defines an unnamed class (or enum),
3333 /// the first typedef-name declared by the declaration to be that
3334 /// class type (or enum type) is used to denote the class type (or
3335 /// enum type) for linkage purposes only.
3336 ///
3337 /// C does not have an analogous rule, but the same concept is
3338 /// nonetheless useful in some places.
3339 bool hasNameForLinkage() const {
3340 return (getDeclName() || getTypedefNameForAnonDecl());
3341 }
3342
3343 TypedefNameDecl *getTypedefNameForAnonDecl() const {
3344 return hasExtInfo() ? nullptr
3345 : TypedefNameDeclOrQualifier.get<TypedefNameDecl *>();
3346 }
3347
3348 void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
3349
3350 /// Retrieve the nested-name-specifier that qualifies the name of this
3351 /// declaration, if it was present in the source.
3352 NestedNameSpecifier *getQualifier() const {
3353 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
3354 : nullptr;
3355 }
3356
3357 /// Retrieve the nested-name-specifier (with source-location
3358 /// information) that qualifies the name of this declaration, if it was
3359 /// present in the source.
3360 NestedNameSpecifierLoc getQualifierLoc() const {
3361 return hasExtInfo() ? getExtInfo()->QualifierLoc
3362 : NestedNameSpecifierLoc();
3363 }
3364
3365 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
3366
3367 unsigned getNumTemplateParameterLists() const {
3368 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
3369 }
3370
3371 TemplateParameterList *getTemplateParameterList(unsigned i) const {
3372 assert(i < getNumTemplateParameterLists())((i < getNumTemplateParameterLists()) ? static_cast<void
> (0) : __assert_fail ("i < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 3372, __PRETTY_FUNCTION__))
;
3373 return getExtInfo()->TemplParamLists[i];
3374 }
3375
3376 void setTemplateParameterListsInfo(ASTContext &Context,
3377 ArrayRef<TemplateParameterList *> TPLists);
3378
3379 // Implement isa/cast/dyncast/etc.
3380 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3381 static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
3382
3383 static DeclContext *castToDeclContext(const TagDecl *D) {
3384 return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
3385 }
3386
3387 static TagDecl *castFromDeclContext(const DeclContext *DC) {
3388 return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
3389 }
3390};
3391
3392/// Represents an enum. In C++11, enums can be forward-declared
3393/// with a fixed underlying type, and in C we allow them to be forward-declared
3394/// with no underlying type as an extension.
3395class EnumDecl : public TagDecl {
3396 // This class stores some data in DeclContext::EnumDeclBits
3397 // to save some space. Use the provided accessors to access it.
3398
3399 /// This represent the integer type that the enum corresponds
3400 /// to for code generation purposes. Note that the enumerator constants may
3401 /// have a different type than this does.
3402 ///
3403 /// If the underlying integer type was explicitly stated in the source
3404 /// code, this is a TypeSourceInfo* for that type. Otherwise this type
3405 /// was automatically deduced somehow, and this is a Type*.
3406 ///
3407 /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
3408 /// some cases it won't.
3409 ///
3410 /// The underlying type of an enumeration never has any qualifiers, so
3411 /// we can get away with just storing a raw Type*, and thus save an
3412 /// extra pointer when TypeSourceInfo is needed.
3413 llvm::PointerUnion<const Type *, TypeSourceInfo *> IntegerType;
3414
3415 /// The integer type that values of this type should
3416 /// promote to. In C, enumerators are generally of an integer type
3417 /// directly, but gcc-style large enumerators (and all enumerators
3418 /// in C++) are of the enum type instead.
3419 QualType PromotionType;
3420
3421 /// If this enumeration is an instantiation of a member enumeration
3422 /// of a class template specialization, this is the member specialization
3423 /// information.
3424 MemberSpecializationInfo *SpecializationInfo = nullptr;
3425
3426 /// Store the ODRHash after first calculation.
3427 /// The corresponding flag HasODRHash is in EnumDeclBits
3428 /// and can be accessed with the provided accessors.
3429 unsigned ODRHash;
3430
3431 EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
3432 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
3433 bool Scoped, bool ScopedUsingClassTag, bool Fixed);
3434
3435 void anchor() override;
3436
3437 void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3438 TemplateSpecializationKind TSK);
3439
3440 /// Sets the width in bits required to store all the
3441 /// non-negative enumerators of this enum.
3442 void setNumPositiveBits(unsigned Num) {
3443 EnumDeclBits.NumPositiveBits = Num;
3444 assert(EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount")((EnumDeclBits.NumPositiveBits == Num && "can't store this bitcount"
) ? static_cast<void> (0) : __assert_fail ("EnumDeclBits.NumPositiveBits == Num && \"can't store this bitcount\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 3444, __PRETTY_FUNCTION__))
;
3445 }
3446
3447 /// Returns the width in bits required to store all the
3448 /// negative enumerators of this enum. (see getNumNegativeBits)
3449 void setNumNegativeBits(unsigned Num) { EnumDeclBits.NumNegativeBits = Num; }
3450
3451 /// True if this tag declaration is a scoped enumeration. Only
3452 /// possible in C++11 mode.
3453 void setScoped(bool Scoped = true) { EnumDeclBits.IsScoped = Scoped; }
3454
3455 /// If this tag declaration is a scoped enum,
3456 /// then this is true if the scoped enum was declared using the class
3457 /// tag, false if it was declared with the struct tag. No meaning is
3458 /// associated if this tag declaration is not a scoped enum.
3459 void setScopedUsingClassTag(bool ScopedUCT = true) {
3460 EnumDeclBits.IsScopedUsingClassTag = ScopedUCT;
3461 }
3462
3463 /// True if this is an Objective-C, C++11, or
3464 /// Microsoft-style enumeration with a fixed underlying type.
3465 void setFixed(bool Fixed = true) { EnumDeclBits.IsFixed = Fixed; }
3466
3467 /// True if a valid hash is stored in ODRHash.
3468 bool hasODRHash() const { return EnumDeclBits.HasODRHash; }
3469 void setHasODRHash(bool Hash = true) { EnumDeclBits.HasODRHash = Hash; }
3470
3471public:
3472 friend class ASTDeclReader;
3473
3474 EnumDecl *getCanonicalDecl() override {
3475 return cast<EnumDecl>(TagDecl::getCanonicalDecl());
3476 }
3477 const EnumDecl *getCanonicalDecl() const {
3478 return const_cast<EnumDecl*>(this)->getCanonicalDecl();
3479 }
3480
3481 EnumDecl *getPreviousDecl() {
3482 return cast_or_null<EnumDecl>(
3483 static_cast<TagDecl *>(this)->getPreviousDecl());
3484 }
3485 const EnumDecl *getPreviousDecl() const {
3486 return const_cast<EnumDecl*>(this)->getPreviousDecl();
3487 }
3488
3489 EnumDecl *getMostRecentDecl() {
3490 return cast<EnumDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3491 }
3492 const EnumDecl *getMostRecentDecl() const {
3493 return const_cast<EnumDecl*>(this)->getMostRecentDecl();
3494 }
3495
3496 EnumDecl *getDefinition() const {
3497 return cast_or_null<EnumDecl>(TagDecl::getDefinition());
3498 }
3499
3500 static EnumDecl *Create(ASTContext &C, DeclContext *DC,
3501 SourceLocation StartLoc, SourceLocation IdLoc,
3502 IdentifierInfo *Id, EnumDecl *PrevDecl,
3503 bool IsScoped, bool IsScopedUsingClassTag,
3504 bool IsFixed);
3505 static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3506
3507 /// When created, the EnumDecl corresponds to a
3508 /// forward-declared enum. This method is used to mark the
3509 /// declaration as being defined; its enumerators have already been
3510 /// added (via DeclContext::addDecl). NewType is the new underlying
3511 /// type of the enumeration type.
3512 void completeDefinition(QualType NewType,
3513 QualType PromotionType,
3514 unsigned NumPositiveBits,
3515 unsigned NumNegativeBits);
3516
3517 // Iterates through the enumerators of this enumeration.
3518 using enumerator_iterator = specific_decl_iterator<EnumConstantDecl>;
3519 using enumerator_range =
3520 llvm::iterator_range<specific_decl_iterator<EnumConstantDecl>>;
3521
3522 enumerator_range enumerators() const {
3523 return enumerator_range(enumerator_begin(), enumerator_end());
3524 }
3525
3526 enumerator_iterator enumerator_begin() const {
3527 const EnumDecl *E = getDefinition();
3528 if (!E)
3529 E = this;
3530 return enumerator_iterator(E->decls_begin());
3531 }
3532
3533 enumerator_iterator enumerator_end() const {
3534 const EnumDecl *E = getDefinition();
3535 if (!E)
3536 E = this;
3537 return enumerator_iterator(E->decls_end());
3538 }
3539
3540 /// Return the integer type that enumerators should promote to.
3541 QualType getPromotionType() const { return PromotionType; }
3542
3543 /// Set the promotion type.
3544 void setPromotionType(QualType T) { PromotionType = T; }
3545
3546 /// Return the integer type this enum decl corresponds to.
3547 /// This returns a null QualType for an enum forward definition with no fixed
3548 /// underlying type.
3549 QualType getIntegerType() const {
3550 if (!IntegerType)
3551 return QualType();
3552 if (const Type *T = IntegerType.dyn_cast<const Type*>())
3553 return QualType(T, 0);
3554 return IntegerType.get<TypeSourceInfo*>()->getType().getUnqualifiedType();
3555 }
3556
3557 /// Set the underlying integer type.
3558 void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
3559
3560 /// Set the underlying integer type source info.
3561 void setIntegerTypeSourceInfo(TypeSourceInfo *TInfo) { IntegerType = TInfo; }
3562
3563 /// Return the type source info for the underlying integer type,
3564 /// if no type source info exists, return 0.
3565 TypeSourceInfo *getIntegerTypeSourceInfo() const {
3566 return IntegerType.dyn_cast<TypeSourceInfo*>();
3567 }
3568
3569 /// Retrieve the source range that covers the underlying type if
3570 /// specified.
3571 SourceRange getIntegerTypeRange() const LLVM_READONLY__attribute__((__pure__));
3572
3573 /// Returns the width in bits required to store all the
3574 /// non-negative enumerators of this enum.
3575 unsigned getNumPositiveBits() const { return EnumDeclBits.NumPositiveBits; }
3576
3577 /// Returns the width in bits required to store all the
3578 /// negative enumerators of this enum. These widths include
3579 /// the rightmost leading 1; that is:
3580 ///
3581 /// MOST NEGATIVE ENUMERATOR PATTERN NUM NEGATIVE BITS
3582 /// ------------------------ ------- -----------------
3583 /// -1 1111111 1
3584 /// -10 1110110 5
3585 /// -101 1001011 8
3586 unsigned getNumNegativeBits() const { return EnumDeclBits.NumNegativeBits; }
3587
3588 /// Returns true if this is a C++11 scoped enumeration.
3589 bool isScoped() const { return EnumDeclBits.IsScoped; }
3590
3591 /// Returns true if this is a C++11 scoped enumeration.
3592 bool isScopedUsingClassTag() const {
3593 return EnumDeclBits.IsScopedUsingClassTag;
3594 }
3595
3596 /// Returns true if this is an Objective-C, C++11, or
3597 /// Microsoft-style enumeration with a fixed underlying type.
3598 bool isFixed() const { return EnumDeclBits.IsFixed; }
3599
3600 unsigned getODRHash();
3601
3602 /// Returns true if this can be considered a complete type.
3603 bool isComplete() const {
3604 // IntegerType is set for fixed type enums and non-fixed but implicitly
3605 // int-sized Microsoft enums.
3606 return isCompleteDefinition() || IntegerType;
3607 }
3608
3609 /// Returns true if this enum is either annotated with
3610 /// enum_extensibility(closed) or isn't annotated with enum_extensibility.
3611 bool isClosed() const;
3612
3613 /// Returns true if this enum is annotated with flag_enum and isn't annotated
3614 /// with enum_extensibility(open).
3615 bool isClosedFlag() const;
3616
3617 /// Returns true if this enum is annotated with neither flag_enum nor
3618 /// enum_extensibility(open).
3619 bool isClosedNonFlag() const;
3620
3621 /// Retrieve the enum definition from which this enumeration could
3622 /// be instantiated, if it is an instantiation (rather than a non-template).
3623 EnumDecl *getTemplateInstantiationPattern() const;
3624
3625 /// Returns the enumeration (declared within the template)
3626 /// from which this enumeration type was instantiated, or NULL if
3627 /// this enumeration was not instantiated from any template.
3628 EnumDecl *getInstantiatedFromMemberEnum() const;
3629
3630 /// If this enumeration is a member of a specialization of a
3631 /// templated class, determine what kind of template specialization
3632 /// or instantiation this is.
3633 TemplateSpecializationKind getTemplateSpecializationKind() const;
3634
3635 /// For an enumeration member that was instantiated from a member
3636 /// enumeration of a templated class, set the template specialiation kind.
3637 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3638 SourceLocation PointOfInstantiation = SourceLocation());
3639
3640 /// If this enumeration is an instantiation of a member enumeration of
3641 /// a class template specialization, retrieves the member specialization
3642 /// information.
3643 MemberSpecializationInfo *getMemberSpecializationInfo() const {
3644 return SpecializationInfo;
3645 }
3646
3647 /// Specify that this enumeration is an instantiation of the
3648 /// member enumeration ED.
3649 void setInstantiationOfMemberEnum(EnumDecl *ED,
3650 TemplateSpecializationKind TSK) {
3651 setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
3652 }
3653
3654 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3655 static bool classofKind(Kind K) { return K == Enum; }
3656};
3657
3658/// Represents a struct/union/class. For example:
3659/// struct X; // Forward declaration, no "body".
3660/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
3661/// This decl will be marked invalid if *any* members are invalid.
3662class RecordDecl : public TagDecl {
3663 // This class stores some data in DeclContext::RecordDeclBits
3664 // to save some space. Use the provided accessors to access it.
3665public:
3666 friend class DeclContext;
3667 /// Enum that represents the different ways arguments are passed to and
3668 /// returned from function calls. This takes into account the target-specific
3669 /// and version-specific rules along with the rules determined by the
3670 /// language.
3671 enum ArgPassingKind : unsigned {
3672 /// The argument of this type can be passed directly in registers.
3673 APK_CanPassInRegs,
3674
3675 /// The argument of this type cannot be passed directly in registers.
3676 /// Records containing this type as a subobject are not forced to be passed
3677 /// indirectly. This value is used only in C++. This value is required by
3678 /// C++ because, in uncommon situations, it is possible for a class to have
3679 /// only trivial copy/move constructors even when one of its subobjects has
3680 /// a non-trivial copy/move constructor (if e.g. the corresponding copy/move
3681 /// constructor in the derived class is deleted).
3682 APK_CannotPassInRegs,
3683
3684 /// The argument of this type cannot be passed directly in registers.
3685 /// Records containing this type as a subobject are forced to be passed
3686 /// indirectly.
3687 APK_CanNeverPassInRegs
3688 };
3689
3690protected:
3691 RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3692 SourceLocation StartLoc, SourceLocation IdLoc,
3693 IdentifierInfo *Id, RecordDecl *PrevDecl);
3694
3695public:
3696 static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3697 SourceLocation StartLoc, SourceLocation IdLoc,
3698 IdentifierInfo *Id, RecordDecl* PrevDecl = nullptr);
3699 static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
3700
3701 RecordDecl *getPreviousDecl() {
3702 return cast_or_null<RecordDecl>(
3703 static_cast<TagDecl *>(this)->getPreviousDecl());
3704 }
3705 const RecordDecl *getPreviousDecl() const {
3706 return const_cast<RecordDecl*>(this)->getPreviousDecl();
3707 }
3708
3709 RecordDecl *getMostRecentDecl() {
3710 return cast<RecordDecl>(static_cast<TagDecl *>(this)->getMostRecentDecl());
3711 }
3712 const RecordDecl *getMostRecentDecl() const {
3713 return const_cast<RecordDecl*>(this)->getMostRecentDecl();
3714 }
3715
3716 bool hasFlexibleArrayMember() const {
3717 return RecordDeclBits.HasFlexibleArrayMember;
3718 }
3719
3720 void setHasFlexibleArrayMember(bool V) {
3721 RecordDeclBits.HasFlexibleArrayMember = V;
3722 }
3723
3724 /// Whether this is an anonymous struct or union. To be an anonymous
3725 /// struct or union, it must have been declared without a name and
3726 /// there must be no objects of this type declared, e.g.,
3727 /// @code
3728 /// union { int i; float f; };
3729 /// @endcode
3730 /// is an anonymous union but neither of the following are:
3731 /// @code
3732 /// union X { int i; float f; };
3733 /// union { int i; float f; } obj;
3734 /// @endcode
3735 bool isAnonymousStructOrUnion() const {
3736 return RecordDeclBits.AnonymousStructOrUnion;
3737 }
3738
3739 void setAnonymousStructOrUnion(bool Anon) {
3740 RecordDeclBits.AnonymousStructOrUnion = Anon;
3741 }
3742
3743 bool hasObjectMember() const { return RecordDeclBits.HasObjectMember; }
3744 void setHasObjectMember(bool val) { RecordDeclBits.HasObjectMember = val; }
3745
3746 bool hasVolatileMember() const { return RecordDeclBits.HasVolatileMember; }
3747
3748 void setHasVolatileMember(bool val) {
3749 RecordDeclBits.HasVolatileMember = val;
3750 }
3751
3752 bool hasLoadedFieldsFromExternalStorage() const {
3753 return RecordDeclBits.LoadedFieldsFromExternalStorage;
3754 }
3755
3756 void setHasLoadedFieldsFromExternalStorage(bool val) const {
3757 RecordDeclBits.LoadedFieldsFromExternalStorage = val;
3758 }
3759
3760 /// Functions to query basic properties of non-trivial C structs.
3761 bool isNonTrivialToPrimitiveDefaultInitialize() const {
3762 return RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize;
3763 }
3764
3765 void setNonTrivialToPrimitiveDefaultInitialize(bool V) {
3766 RecordDeclBits.NonTrivialToPrimitiveDefaultInitialize = V;
3767 }
3768
3769 bool isNonTrivialToPrimitiveCopy() const {
3770 return RecordDeclBits.NonTrivialToPrimitiveCopy;
3771 }
3772
3773 void setNonTrivialToPrimitiveCopy(bool V) {
3774 RecordDeclBits.NonTrivialToPrimitiveCopy = V;
3775 }
3776
3777 bool isNonTrivialToPrimitiveDestroy() const {
3778 return RecordDeclBits.NonTrivialToPrimitiveDestroy;
3779 }
3780
3781 void setNonTrivialToPrimitiveDestroy(bool V) {
3782 RecordDeclBits.NonTrivialToPrimitiveDestroy = V;
3783 }
3784
3785 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
3786 return RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion;
3787 }
3788
3789 void setHasNonTrivialToPrimitiveDefaultInitializeCUnion(bool V) {
3790 RecordDeclBits.HasNonTrivialToPrimitiveDefaultInitializeCUnion = V;
3791 }
3792
3793 bool hasNonTrivialToPrimitiveDestructCUnion() const {
3794 return RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion;
3795 }
3796
3797 void setHasNonTrivialToPrimitiveDestructCUnion(bool V) {
3798 RecordDeclBits.HasNonTrivialToPrimitiveDestructCUnion = V;
3799 }
3800
3801 bool hasNonTrivialToPrimitiveCopyCUnion() const {
3802 return RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion;
3803 }
3804
3805 void setHasNonTrivialToPrimitiveCopyCUnion(bool V) {
3806 RecordDeclBits.HasNonTrivialToPrimitiveCopyCUnion = V;
3807 }
3808
3809 /// Determine whether this class can be passed in registers. In C++ mode,
3810 /// it must have at least one trivial, non-deleted copy or move constructor.
3811 /// FIXME: This should be set as part of completeDefinition.
3812 bool canPassInRegisters() const {
3813 return getArgPassingRestrictions() == APK_CanPassInRegs;
3814 }
3815
3816 ArgPassingKind getArgPassingRestrictions() const {
3817 return static_cast<ArgPassingKind>(RecordDeclBits.ArgPassingRestrictions);
3818 }
3819
3820 void setArgPassingRestrictions(ArgPassingKind Kind) {
3821 RecordDeclBits.ArgPassingRestrictions = Kind;
3822 }
3823
3824 bool isParamDestroyedInCallee() const {
3825 return RecordDeclBits.ParamDestroyedInCallee;
3826 }
3827
3828 void setParamDestroyedInCallee(bool V) {
3829 RecordDeclBits.ParamDestroyedInCallee = V;
3830 }
3831
3832 /// Determines whether this declaration represents the
3833 /// injected class name.
3834 ///
3835 /// The injected class name in C++ is the name of the class that
3836 /// appears inside the class itself. For example:
3837 ///
3838 /// \code
3839 /// struct C {
3840 /// // C is implicitly declared here as a synonym for the class name.
3841 /// };
3842 ///
3843 /// C::C c; // same as "C c;"
3844 /// \endcode
3845 bool isInjectedClassName() const;
3846
3847 /// Determine whether this record is a class describing a lambda
3848 /// function object.
3849 bool isLambda() const;
3850
3851 /// Determine whether this record is a record for captured variables in
3852 /// CapturedStmt construct.
3853 bool isCapturedRecord() const;
3854
3855 /// Mark the record as a record for captured variables in CapturedStmt
3856 /// construct.
3857 void setCapturedRecord();
3858
3859 /// Returns the RecordDecl that actually defines
3860 /// this struct/union/class. When determining whether or not a
3861 /// struct/union/class is completely defined, one should use this
3862 /// method as opposed to 'isCompleteDefinition'.
3863 /// 'isCompleteDefinition' indicates whether or not a specific
3864 /// RecordDecl is a completed definition, not whether or not the
3865 /// record type is defined. This method returns NULL if there is
3866 /// no RecordDecl that defines the struct/union/tag.
3867 RecordDecl *getDefinition() const {
3868 return cast_or_null<RecordDecl>(TagDecl::getDefinition());
3869 }
3870
3871 // Iterator access to field members. The field iterator only visits
3872 // the non-static data members of this class, ignoring any static
3873 // data members, functions, constructors, destructors, etc.
3874 using field_iterator = specific_decl_iterator<FieldDecl>;
3875 using field_range = llvm::iterator_range<specific_decl_iterator<FieldDecl>>;
3876
3877 field_range fields() const { return field_range(field_begin(), field_end()); }
3878 field_iterator field_begin() const;
3879
3880 field_iterator field_end() const {
3881 return field_iterator(decl_iterator());
3882 }
3883
3884 // Whether there are any fields (non-static data members) in this record.
3885 bool field_empty() const {
3886 return field_begin() == field_end();
3887 }
3888
3889 /// Note that the definition of this type is now complete.
3890 virtual void completeDefinition();
3891
3892 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3893 static bool classofKind(Kind K) {
3894 return K >= firstRecord && K <= lastRecord;
3895 }
3896
3897 /// Get whether or not this is an ms_struct which can
3898 /// be turned on with an attribute, pragma, or -mms-bitfields
3899 /// commandline option.
3900 bool isMsStruct(const ASTContext &C) const;
3901
3902 /// Whether we are allowed to insert extra padding between fields.
3903 /// These padding are added to help AddressSanitizer detect
3904 /// intra-object-overflow bugs.
3905 bool mayInsertExtraPadding(bool EmitRemark = false) const;
3906
3907 /// Finds the first data member which has a name.
3908 /// nullptr is returned if no named data member exists.
3909 const FieldDecl *findFirstNamedDataMember() const;
3910
3911private:
3912 /// Deserialize just the fields.
3913 void LoadFieldsFromExternalStorage() const;
3914};
3915
3916class FileScopeAsmDecl : public Decl {
3917 StringLiteral *AsmString;
3918 SourceLocation RParenLoc;
3919
3920 FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
3921 SourceLocation StartL, SourceLocation EndL)
3922 : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
3923
3924 virtual void anchor();
3925
3926public:
3927 static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
3928 StringLiteral *Str, SourceLocation AsmLoc,
3929 SourceLocation RParenLoc);
3930
3931 static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3932
3933 SourceLocation getAsmLoc() const { return getLocation(); }
3934 SourceLocation getRParenLoc() const { return RParenLoc; }
3935 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3936 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
3937 return SourceRange(getAsmLoc(), getRParenLoc());
3938 }
3939
3940 const StringLiteral *getAsmString() const { return AsmString; }
3941 StringLiteral *getAsmString() { return AsmString; }
3942 void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
3943
3944 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3945 static bool classofKind(Kind K) { return K == FileScopeAsm; }
3946};
3947
3948/// Represents a block literal declaration, which is like an
3949/// unnamed FunctionDecl. For example:
3950/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
3951class BlockDecl : public Decl, public DeclContext {
3952 // This class stores some data in DeclContext::BlockDeclBits
3953 // to save some space. Use the provided accessors to access it.
3954public:
3955 /// A class which contains all the information about a particular
3956 /// captured value.
3957 class Capture {
3958 enum {
3959 flag_isByRef = 0x1,
3960 flag_isNested = 0x2
3961 };
3962
3963 /// The variable being captured.
3964 llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
3965
3966 /// The copy expression, expressed in terms of a DeclRef (or
3967 /// BlockDeclRef) to the captured variable. Only required if the
3968 /// variable has a C++ class type.
3969 Expr *CopyExpr;
3970
3971 public:
3972 Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
3973 : VariableAndFlags(variable,
3974 (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
3975 CopyExpr(copy) {}
3976
3977 /// The variable being captured.
3978 VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
3979
3980 /// Whether this is a "by ref" capture, i.e. a capture of a __block
3981 /// variable.
3982 bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
3983
3984 bool isEscapingByref() const {
3985 return getVariable()->isEscapingByref();
3986 }
3987
3988 bool isNonEscapingByref() const {
3989 return getVariable()->isNonEscapingByref();
3990 }
3991
3992 /// Whether this is a nested capture, i.e. the variable captured
3993 /// is not from outside the immediately enclosing function/block.
3994 bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
3995
3996 bool hasCopyExpr() const { return CopyExpr != nullptr; }
3997 Expr *getCopyExpr() const { return CopyExpr; }
3998 void setCopyExpr(Expr *e) { CopyExpr = e; }
3999 };
4000
4001private:
4002 /// A new[]'d array of pointers to ParmVarDecls for the formal
4003 /// parameters of this function. This is null if a prototype or if there are
4004 /// no formals.
4005 ParmVarDecl **ParamInfo = nullptr;
4006 unsigned NumParams = 0;
4007
4008 Stmt *Body = nullptr;
4009 TypeSourceInfo *SignatureAsWritten = nullptr;
4010
4011 const Capture *Captures = nullptr;
4012 unsigned NumCaptures = 0;
4013
4014 unsigned ManglingNumber = 0;
4015 Decl *ManglingContextDecl = nullptr;
4016
4017protected:
4018 BlockDecl(DeclContext *DC, SourceLocation CaretLoc);
4019
4020public:
4021 static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
4022 static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4023
4024 SourceLocation getCaretLocation() const { return getLocation(); }
4025
4026 bool isVariadic() const { return BlockDeclBits.IsVariadic; }
4027 void setIsVariadic(bool value) { BlockDeclBits.IsVariadic = value; }
4028
4029 CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
4030 Stmt *getBody() const override { return (Stmt*) Body; }
4031 void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
4032
4033 void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
4034 TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
4035
4036 // ArrayRef access to formal parameters.
4037 ArrayRef<ParmVarDecl *> parameters() const {
4038 return {ParamInfo, getNumParams()};
4039 }
4040 MutableArrayRef<ParmVarDecl *> parameters() {
4041 return {ParamInfo, getNumParams()};
4042 }
4043
4044 // Iterator access to formal parameters.
4045 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
4046 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
4047
4048 bool param_empty() const { return parameters().empty(); }
4049 param_iterator param_begin() { return parameters().begin(); }
4050 param_iterator param_end() { return parameters().end(); }
4051 param_const_iterator param_begin() const { return parameters().begin(); }
4052 param_const_iterator param_end() const { return parameters().end(); }
4053 size_t param_size() const { return parameters().size(); }
4054
4055 unsigned getNumParams() const { return NumParams; }
4056
4057 const ParmVarDecl *getParamDecl(unsigned i) const {
4058 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4058, __PRETTY_FUNCTION__))
;
4059 return ParamInfo[i];
4060 }
4061 ParmVarDecl *getParamDecl(unsigned i) {
4062 assert(i < getNumParams() && "Illegal param #")((i < getNumParams() && "Illegal param #") ? static_cast
<void> (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4062, __PRETTY_FUNCTION__))
;
4063 return ParamInfo[i];
4064 }
4065
4066 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo);
4067
4068 /// True if this block (or its nested blocks) captures
4069 /// anything of local storage from its enclosing scopes.
4070 bool hasCaptures() const { return NumCaptures || capturesCXXThis(); }
4071
4072 /// Returns the number of captured variables.
4073 /// Does not include an entry for 'this'.
4074 unsigned getNumCaptures() const { return NumCaptures; }
4075
4076 using capture_const_iterator = ArrayRef<Capture>::const_iterator;
4077
4078 ArrayRef<Capture> captures() const { return {Captures, NumCaptures}; }
4079
4080 capture_const_iterator capture_begin() const { return captures().begin(); }
4081 capture_const_iterator capture_end() const { return captures().end(); }
4082
4083 bool capturesCXXThis() const { return BlockDeclBits.CapturesCXXThis; }
4084 void setCapturesCXXThis(bool B = true) { BlockDeclBits.CapturesCXXThis = B; }
4085
4086 bool blockMissingReturnType() const {
4087 return BlockDeclBits.BlockMissingReturnType;
4088 }
4089
4090 void setBlockMissingReturnType(bool val = true) {
4091 BlockDeclBits.BlockMissingReturnType = val;
4092 }
4093
4094 bool isConversionFromLambda() const {
4095 return BlockDeclBits.IsConversionFromLambda;
4096 }
4097
4098 void setIsConversionFromLambda(bool val = true) {
4099 BlockDeclBits.IsConversionFromLambda = val;
4100 }
4101
4102 bool doesNotEscape() const { return BlockDeclBits.DoesNotEscape; }
4103 void setDoesNotEscape(bool B = true) { BlockDeclBits.DoesNotEscape = B; }
4104
4105 bool canAvoidCopyToHeap() const {
4106 return BlockDeclBits.CanAvoidCopyToHeap;
4107 }
4108 void setCanAvoidCopyToHeap(bool B = true) {
4109 BlockDeclBits.CanAvoidCopyToHeap = B;
4110 }
4111
4112 bool capturesVariable(const VarDecl *var) const;
4113
4114 void setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4115 bool CapturesCXXThis);
4116
4117 unsigned getBlockManglingNumber() const { return ManglingNumber; }
4118
4119 Decl *getBlockManglingContextDecl() const { return ManglingContextDecl; }
4120
4121 void setBlockMangling(unsigned Number, Decl *Ctx) {
4122 ManglingNumber = Number;
4123 ManglingContextDecl = Ctx;
4124 }
4125
4126 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4127
4128 // Implement isa/cast/dyncast/etc.
4129 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4130 static bool classofKind(Kind K) { return K == Block; }
4131 static DeclContext *castToDeclContext(const BlockDecl *D) {
4132 return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
4133 }
4134 static BlockDecl *castFromDeclContext(const DeclContext *DC) {
4135 return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
4136 }
4137};
4138
4139/// Represents the body of a CapturedStmt, and serves as its DeclContext.
4140class CapturedDecl final
4141 : public Decl,
4142 public DeclContext,
4143 private llvm::TrailingObjects<CapturedDecl, ImplicitParamDecl *> {
4144protected:
4145 size_t numTrailingObjects(OverloadToken<ImplicitParamDecl>) {
4146 return NumParams;
4147 }
4148
4149private:
4150 /// The number of parameters to the outlined function.
4151 unsigned NumParams;
4152
4153 /// The position of context parameter in list of parameters.
4154 unsigned ContextParam;
4155
4156 /// The body of the outlined function.
4157 llvm::PointerIntPair<Stmt *, 1, bool> BodyAndNothrow;
4158
4159 explicit CapturedDecl(DeclContext *DC, unsigned NumParams);
4160
4161 ImplicitParamDecl *const *getParams() const {
4162 return getTrailingObjects<ImplicitParamDecl *>();
4163 }
4164
4165 ImplicitParamDecl **getParams() {
4166 return getTrailingObjects<ImplicitParamDecl *>();
4167 }
4168
4169public:
4170 friend class ASTDeclReader;
4171 friend class ASTDeclWriter;
4172 friend TrailingObjects;
4173
4174 static CapturedDecl *Create(ASTContext &C, DeclContext *DC,
4175 unsigned NumParams);
4176 static CapturedDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4177 unsigned NumParams);
4178
4179 Stmt *getBody() const override;
4180 void setBody(Stmt *B);
4181
4182 bool isNothrow() const;
4183 void setNothrow(bool Nothrow = true);
4184
4185 unsigned getNumParams() const { return NumParams; }
4186
4187 ImplicitParamDecl *getParam(unsigned i) const {
4188 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4188, __PRETTY_FUNCTION__))
;
4189 return getParams()[i];
4190 }
4191 void setParam(unsigned i, ImplicitParamDecl *P) {
4192 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4192, __PRETTY_FUNCTION__))
;
4193 getParams()[i] = P;
4194 }
4195
4196 // ArrayRef interface to parameters.
4197 ArrayRef<ImplicitParamDecl *> parameters() const {
4198 return {getParams(), getNumParams()};
4199 }
4200 MutableArrayRef<ImplicitParamDecl *> parameters() {
4201 return {getParams(), getNumParams()};
4202 }
4203
4204 /// Retrieve the parameter containing captured variables.
4205 ImplicitParamDecl *getContextParam() const {
4206 assert(ContextParam < NumParams)((ContextParam < NumParams) ? static_cast<void> (0) :
__assert_fail ("ContextParam < NumParams", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4206, __PRETTY_FUNCTION__))
;
4207 return getParam(ContextParam);
4208 }
4209 void setContextParam(unsigned i, ImplicitParamDecl *P) {
4210 assert(i < NumParams)((i < NumParams) ? static_cast<void> (0) : __assert_fail
("i < NumParams", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4210, __PRETTY_FUNCTION__))
;
4211 ContextParam = i;
4212 setParam(i, P);
4213 }
4214 unsigned getContextParamPosition() const { return ContextParam; }
4215
4216 using param_iterator = ImplicitParamDecl *const *;
4217 using param_range = llvm::iterator_range<param_iterator>;
4218
4219 /// Retrieve an iterator pointing to the first parameter decl.
4220 param_iterator param_begin() const { return getParams(); }
4221 /// Retrieve an iterator one past the last parameter decl.
4222 param_iterator param_end() const { return getParams() + NumParams; }
4223
4224 // Implement isa/cast/dyncast/etc.
4225 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4226 static bool classofKind(Kind K) { return K == Captured; }
4227 static DeclContext *castToDeclContext(const CapturedDecl *D) {
4228 return static_cast<DeclContext *>(const_cast<CapturedDecl *>(D));
4229 }
4230 static CapturedDecl *castFromDeclContext(const DeclContext *DC) {
4231 return static_cast<CapturedDecl *>(const_cast<DeclContext *>(DC));
4232 }
4233};
4234
4235/// Describes a module import declaration, which makes the contents
4236/// of the named module visible in the current translation unit.
4237///
4238/// An import declaration imports the named module (or submodule). For example:
4239/// \code
4240/// @import std.vector;
4241/// \endcode
4242///
4243/// Import declarations can also be implicitly generated from
4244/// \#include/\#import directives.
4245class ImportDecl final : public Decl,
4246 llvm::TrailingObjects<ImportDecl, SourceLocation> {
4247 friend class ASTContext;
4248 friend class ASTDeclReader;
4249 friend class ASTReader;
4250 friend TrailingObjects;
4251
4252 /// The imported module, along with a bit that indicates whether
4253 /// we have source-location information for each identifier in the module
4254 /// name.
4255 ///
4256 /// When the bit is false, we only have a single source location for the
4257 /// end of the import declaration.
4258 llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
4259
4260 /// The next import in the list of imports local to the translation
4261 /// unit being parsed (not loaded from an AST file).
4262 ImportDecl *NextLocalImport = nullptr;
4263
4264 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4265 ArrayRef<SourceLocation> IdentifierLocs);
4266
4267 ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
4268 SourceLocation EndLoc);
4269
4270 ImportDecl(EmptyShell Empty) : Decl(Import, Empty) {}
4271
4272public:
4273 /// Create a new module import declaration.
4274 static ImportDecl *Create(ASTContext &C, DeclContext *DC,
4275 SourceLocation StartLoc, Module *Imported,
4276 ArrayRef<SourceLocation> IdentifierLocs);
4277
4278 /// Create a new module import declaration for an implicitly-generated
4279 /// import.
4280 static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
4281 SourceLocation StartLoc, Module *Imported,
4282 SourceLocation EndLoc);
4283
4284 /// Create a new, deserialized module import declaration.
4285 static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4286 unsigned NumLocations);
4287
4288 /// Retrieve the module that was imported by the import declaration.
4289 Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
4290
4291 /// Retrieves the locations of each of the identifiers that make up
4292 /// the complete module name in the import declaration.
4293 ///
4294 /// This will return an empty array if the locations of the individual
4295 /// identifiers aren't available.
4296 ArrayRef<SourceLocation> getIdentifierLocs() const;
4297
4298 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
4299
4300 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4301 static bool classofKind(Kind K) { return K == Import; }
4302};
4303
4304/// Represents a C++ Modules TS module export declaration.
4305///
4306/// For example:
4307/// \code
4308/// export void foo();
4309/// \endcode
4310class ExportDecl final : public Decl, public DeclContext {
4311 virtual void anchor();
4312
4313private:
4314 friend class ASTDeclReader;
4315
4316 /// The source location for the right brace (if valid).
4317 SourceLocation RBraceLoc;
4318
4319 ExportDecl(DeclContext *DC, SourceLocation ExportLoc)
4320 : Decl(Export, DC, ExportLoc), DeclContext(Export),
4321 RBraceLoc(SourceLocation()) {}
4322
4323public:
4324 static ExportDecl *Create(ASTContext &C, DeclContext *DC,
4325 SourceLocation ExportLoc);
4326 static ExportDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4327
4328 SourceLocation getExportLoc() const { return getLocation(); }
4329 SourceLocation getRBraceLoc() const { return RBraceLoc; }
4330 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
4331
4332 bool hasBraces() const { return RBraceLoc.isValid(); }
4333
4334 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
4335 if (hasBraces())
4336 return RBraceLoc;
4337 // No braces: get the end location of the (only) declaration in context
4338 // (if present).
4339 return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
4340 }
4341
4342 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
4343 return SourceRange(getLocation(), getEndLoc());
4344 }
4345
4346 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4347 static bool classofKind(Kind K) { return K == Export; }
4348 static DeclContext *castToDeclContext(const ExportDecl *D) {
4349 return static_cast<DeclContext *>(const_cast<ExportDecl*>(D));
4350 }
4351 static ExportDecl *castFromDeclContext(const DeclContext *DC) {
4352 return static_cast<ExportDecl *>(const_cast<DeclContext*>(DC));
4353 }
4354};
4355
4356/// Represents an empty-declaration.
4357class EmptyDecl : public Decl {
4358 EmptyDecl(DeclContext *DC, SourceLocation L) : Decl(Empty, DC, L) {}
4359
4360 virtual void anchor();
4361
4362public:
4363 static EmptyDecl *Create(ASTContext &C, DeclContext *DC,
4364 SourceLocation L);
4365 static EmptyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4366
4367 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4368 static bool classofKind(Kind K) { return K == Empty; }
4369};
4370
4371/// Insertion operator for diagnostics. This allows sending NamedDecl's
4372/// into a diagnostic with <<.
4373inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
4374 const NamedDecl* ND) {
4375 DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4376 DiagnosticsEngine::ak_nameddecl);
4377 return DB;
4378}
4379inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
4380 const NamedDecl* ND) {
4381 PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
4382 DiagnosticsEngine::ak_nameddecl);
4383 return PD;
4384}
4385
4386template<typename decl_type>
4387void Redeclarable<decl_type>::setPreviousDecl(decl_type *PrevDecl) {
4388 // Note: This routine is implemented here because we need both NamedDecl
4389 // and Redeclarable to be defined.
4390 assert(RedeclLink.isFirst() &&((RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("RedeclLink.isFirst() && \"setPreviousDecl on a decl already in a redeclaration chain\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4391, __PRETTY_FUNCTION__))
4391 "setPreviousDecl on a decl already in a redeclaration chain")((RedeclLink.isFirst() && "setPreviousDecl on a decl already in a redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("RedeclLink.isFirst() && \"setPreviousDecl on a decl already in a redeclaration chain\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4391, __PRETTY_FUNCTION__))
;
4392
4393 if (PrevDecl) {
4394 // Point to previous. Make sure that this is actually the most recent
4395 // redeclaration, or we can build invalid chains. If the most recent
4396 // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
4397 First = PrevDecl->getFirstDecl();
4398 assert(First->RedeclLink.isFirst() && "Expected first")((First->RedeclLink.isFirst() && "Expected first")
? static_cast<void> (0) : __assert_fail ("First->RedeclLink.isFirst() && \"Expected first\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4398, __PRETTY_FUNCTION__))
;
4399 decl_type *MostRecent = First->getNextRedeclaration();
4400 RedeclLink = PreviousDeclLink(cast<decl_type>(MostRecent));
4401
4402 // If the declaration was previously visible, a redeclaration of it remains
4403 // visible even if it wouldn't be visible by itself.
4404 static_cast<decl_type*>(this)->IdentifierNamespace |=
4405 MostRecent->getIdentifierNamespace() &
4406 (Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Type);
4407 } else {
4408 // Make this first.
4409 First = static_cast<decl_type*>(this);
4410 }
4411
4412 // First one will point to this one as latest.
4413 First->RedeclLink.setLatest(static_cast<decl_type*>(this));
4414
4415 assert(!isa<NamedDecl>(static_cast<decl_type*>(this)) ||((!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->
isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("!isa<NamedDecl>(static_cast<decl_type*>(this)) || cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4416, __PRETTY_FUNCTION__))
4416 cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid())((!isa<NamedDecl>(static_cast<decl_type*>(this)) ||
cast<NamedDecl>(static_cast<decl_type*>(this))->
isLinkageValid()) ? static_cast<void> (0) : __assert_fail
("!isa<NamedDecl>(static_cast<decl_type*>(this)) || cast<NamedDecl>(static_cast<decl_type*>(this))->isLinkageValid()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include/clang/AST/Decl.h"
, 4416, __PRETTY_FUNCTION__))
;
4417}
4418
4419// Inline function definitions.
4420
4421/// Check if the given decl is complete.
4422///
4423/// We use this function to break a cycle between the inline definitions in
4424/// Type.h and Decl.h.
4425inline bool IsEnumDeclComplete(EnumDecl *ED) {
4426 return ED->isComplete();
4427}
4428
4429/// Check if the given decl is scoped.
4430///
4431/// We use this function to break a cycle between the inline definitions in
4432/// Type.h and Decl.h.
4433inline bool IsEnumDeclScoped(EnumDecl *ED) {
4434 return ED->isScoped();
4435}
4436
4437} // namespace clang
4438
4439#endif // LLVM_CLANG_AST_DECL_H

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/MemAlloc.h"
21#include "llvm/Support/type_traits.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdlib>
27#include <cstring>
28#include <initializer_list>
29#include <iterator>
30#include <memory>
31#include <new>
32#include <type_traits>
33#include <utility>
34
35namespace llvm {
36
37/// This is all the non-templated stuff common to all SmallVectors.
38class SmallVectorBase {
39protected:
40 void *BeginX;
41 unsigned Size = 0, Capacity;
42
43 SmallVectorBase() = delete;
44 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
45 : BeginX(FirstEl), Capacity(TotalCapacity) {}
46
47 /// This is an implementation of the grow() method which only works
48 /// on POD-like data types and is out of line to reduce code duplication.
49 void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
50
51public:
52 size_t size() const { return Size; }
53 size_t capacity() const { return Capacity; }
54
55 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; }
70
Assuming field 'Size' is not equal to 0, which participates in a condition later
71
Returning zero, which participates in a condition later
56
57 /// Set the array size to \p N, which the current array must have enough
58 /// capacity for.
59 ///
60 /// This does not construct or destroy any elements in the vector.
61 ///
62 /// Clients can use this in conjunction with capacity() to write past the end
63 /// of the buffer when they know that more elements are available, and only
64 /// update the size later. This avoids the cost of value initializing elements
65 /// which will only be overwritten.
66 void set_size(size_t N) {
67 assert(N <= capacity())((N <= capacity()) ? static_cast<void> (0) : __assert_fail
("N <= capacity()", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 67, __PRETTY_FUNCTION__))
;
68 Size = N;
69 }
70};
71
72/// Figure out the offset of the first element.
73template <class T, typename = void> struct SmallVectorAlignmentAndSize {
74 AlignedCharArrayUnion<SmallVectorBase> Base;
75 AlignedCharArrayUnion<T> FirstEl;
76};
77
78/// This is the part of SmallVectorTemplateBase which does not depend on whether
79/// the type T is a POD. The extra dummy template argument is used by ArrayRef
80/// to avoid unnecessarily requiring T to be complete.
81template <typename T, typename = void>
82class SmallVectorTemplateCommon : public SmallVectorBase {
83 /// Find the address of the first element. For this pointer math to be valid
84 /// with small-size of 0 for T with lots of alignment, it's important that
85 /// SmallVectorStorage is properly-aligned even for small-size of 0.
86 void *getFirstEl() const {
87 return const_cast<void *>(reinterpret_cast<const void *>(
88 reinterpret_cast<const char *>(this) +
89 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
90 }
91 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
92
93protected:
94 SmallVectorTemplateCommon(size_t Size)
95 : SmallVectorBase(getFirstEl(), Size) {}
96
97 void grow_pod(size_t MinCapacity, size_t TSize) {
98 SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
99 }
100
101 /// Return true if this is a smallvector which has not had dynamic
102 /// memory allocated for it.
103 bool isSmall() const { return BeginX == getFirstEl(); }
104
105 /// Put this vector in a state of being small.
106 void resetToSmall() {
107 BeginX = getFirstEl();
108 Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
109 }
110
111public:
112 using size_type = size_t;
113 using difference_type = ptrdiff_t;
114 using value_type = T;
115 using iterator = T *;
116 using const_iterator = const T *;
117
118 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
119 using reverse_iterator = std::reverse_iterator<iterator>;
120
121 using reference = T &;
122 using const_reference = const T &;
123 using pointer = T *;
124 using const_pointer = const T *;
125
126 // forward iterator creation methods.
127 iterator begin() { return (iterator)this->BeginX; }
128 const_iterator begin() const { return (const_iterator)this->BeginX; }
129 iterator end() { return begin() + size(); }
130 const_iterator end() const { return begin() + size(); }
131
132 // reverse iterator creation methods.
133 reverse_iterator rbegin() { return reverse_iterator(end()); }
134 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
135 reverse_iterator rend() { return reverse_iterator(begin()); }
136 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
137
138 size_type size_in_bytes() const { return size() * sizeof(T); }
139 size_type max_size() const { return size_type(-1) / sizeof(T); }
140
141 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
142
143 /// Return a pointer to the vector's buffer, even if empty().
144 pointer data() { return pointer(begin()); }
145 /// Return a pointer to the vector's buffer, even if empty().
146 const_pointer data() const { return const_pointer(begin()); }
147
148 reference operator[](size_type idx) {
149 assert(idx < size())((idx < size()) ? static_cast<void> (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 149, __PRETTY_FUNCTION__))
;
150 return begin()[idx];
151 }
152 const_reference operator[](size_type idx) const {
153 assert(idx < size())((idx < size()) ? static_cast<void> (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 153, __PRETTY_FUNCTION__))
;
154 return begin()[idx];
155 }
156
157 reference front() {
158 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 158, __PRETTY_FUNCTION__))
;
159 return begin()[0];
160 }
161 const_reference front() const {
162 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 162, __PRETTY_FUNCTION__))
;
163 return begin()[0];
164 }
165
166 reference back() {
167 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 167, __PRETTY_FUNCTION__))
;
168 return end()[-1];
169 }
170 const_reference back() const {
171 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 171, __PRETTY_FUNCTION__))
;
172 return end()[-1];
173 }
174};
175
176/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
177/// implementations that are designed to work with non-POD-like T's.
178template <typename T, bool = is_trivially_copyable<T>::value>
179class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
180protected:
181 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
182
183 static void destroy_range(T *S, T *E) {
184 while (S != E) {
185 --E;
186 E->~T();
187 }
188 }
189
190 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
191 /// constructing elements as needed.
192 template<typename It1, typename It2>
193 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
194 std::uninitialized_copy(std::make_move_iterator(I),
195 std::make_move_iterator(E), Dest);
196 }
197
198 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
199 /// constructing elements as needed.
200 template<typename It1, typename It2>
201 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
202 std::uninitialized_copy(I, E, Dest);
203 }
204
205 /// Grow the allocated memory (without initializing new elements), doubling
206 /// the size of the allocated memory. Guarantees space for at least one more
207 /// element, or MinSize more elements if specified.
208 void grow(size_t MinSize = 0);
209
210public:
211 void push_back(const T &Elt) {
212 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
213 this->grow();
214 ::new ((void*) this->end()) T(Elt);
215 this->set_size(this->size() + 1);
216 }
217
218 void push_back(T &&Elt) {
219 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
220 this->grow();
221 ::new ((void*) this->end()) T(::std::move(Elt));
222 this->set_size(this->size() + 1);
223 }
224
225 void pop_back() {
226 this->set_size(this->size() - 1);
227 this->end()->~T();
228 }
229};
230
231// Define this out-of-line to dissuade the C++ compiler from inlining it.
232template <typename T, bool TriviallyCopyable>
233void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
234 if (MinSize > UINT32_MAX(4294967295U))
235 report_bad_alloc_error("SmallVector capacity overflow during allocation");
236
237 // Always grow, even from zero.
238 size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
239 NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX(4294967295U)));
240 T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
241
242 // Move the elements over.
243 this->uninitialized_move(this->begin(), this->end(), NewElts);
244
245 // Destroy the original elements.
246 destroy_range(this->begin(), this->end());
247
248 // If this wasn't grown from the inline copy, deallocate the old space.
249 if (!this->isSmall())
250 free(this->begin());
251
252 this->BeginX = NewElts;
253 this->Capacity = NewCapacity;
254}
255
256/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
257/// method implementations that are designed to work with POD-like T's.
258template <typename T>
259class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
260protected:
261 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
262
263 // No need to do a destroy loop for POD's.
264 static void destroy_range(T *, T *) {}
265
266 /// Move the range [I, E) onto the uninitialized memory
267 /// starting with "Dest", constructing elements into it as needed.
268 template<typename It1, typename It2>
269 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
270 // Just do a copy.
271 uninitialized_copy(I, E, Dest);
272 }
273
274 /// Copy the range [I, E) onto the uninitialized memory
275 /// starting with "Dest", constructing elements into it as needed.
276 template<typename It1, typename It2>
277 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
278 // Arbitrary iterator types; just use the basic implementation.
279 std::uninitialized_copy(I, E, Dest);
280 }
281
282 /// Copy the range [I, E) onto the uninitialized memory
283 /// starting with "Dest", constructing elements into it as needed.
284 template <typename T1, typename T2>
285 static void uninitialized_copy(
286 T1 *I, T1 *E, T2 *Dest,
287 typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
288 T2>::value>::type * = nullptr) {
289 // Use memcpy for PODs iterated by pointers (which includes SmallVector
290 // iterators): std::uninitialized_copy optimizes to memmove, but we can
291 // use memcpy here. Note that I and E are iterators and thus might be
292 // invalid for memcpy if they are equal.
293 if (I != E)
294 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
295 }
296
297 /// Double the size of the allocated memory, guaranteeing space for at
298 /// least one more element or MinSize if specified.
299 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
300
301public:
302 void push_back(const T &Elt) {
303 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
304 this->grow();
305 memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
306 this->set_size(this->size() + 1);
307 }
308
309 void pop_back() { this->set_size(this->size() - 1); }
310};
311
312/// This class consists of common code factored out of the SmallVector class to
313/// reduce code duplication based on the SmallVector 'N' template parameter.
314template <typename T>
315class SmallVectorImpl : public SmallVectorTemplateBase<T> {
316 using SuperClass = SmallVectorTemplateBase<T>;
317
318public:
319 using iterator = typename SuperClass::iterator;
320 using const_iterator = typename SuperClass::const_iterator;
321 using reference = typename SuperClass::reference;
322 using size_type = typename SuperClass::size_type;
323
324protected:
325 // Default ctor - Initialize to empty.
326 explicit SmallVectorImpl(unsigned N)
327 : SmallVectorTemplateBase<T>(N) {}
328
329public:
330 SmallVectorImpl(const SmallVectorImpl &) = delete;
331
332 ~SmallVectorImpl() {
333 // Subclass has already destructed this vector's elements.
334 // If this wasn't grown from the inline copy, deallocate the old space.
335 if (!this->isSmall())
336 free(this->begin());
337 }
338
339 void clear() {
340 this->destroy_range(this->begin(), this->end());
341 this->Size = 0;
342 }
343
344 void resize(size_type N) {
345 if (N < this->size()) {
346 this->destroy_range(this->begin()+N, this->end());
347 this->set_size(N);
348 } else if (N > this->size()) {
349 if (this->capacity() < N)
350 this->grow(N);
351 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
352 new (&*I) T();
353 this->set_size(N);
354 }
355 }
356
357 void resize(size_type N, const T &NV) {
358 if (N < this->size()) {
359 this->destroy_range(this->begin()+N, this->end());
360 this->set_size(N);
361 } else if (N > this->size()) {
362 if (this->capacity() < N)
363 this->grow(N);
364 std::uninitialized_fill(this->end(), this->begin()+N, NV);
365 this->set_size(N);
366 }
367 }
368
369 void reserve(size_type N) {
370 if (this->capacity() < N)
371 this->grow(N);
372 }
373
374 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
375 T Result = ::std::move(this->back());
376 this->pop_back();
377 return Result;
378 }
379
380 void swap(SmallVectorImpl &RHS);
381
382 /// Add the specified range to the end of the SmallVector.
383 template <typename in_iter,
384 typename = typename std::enable_if<std::is_convertible<
385 typename std::iterator_traits<in_iter>::iterator_category,
386 std::input_iterator_tag>::value>::type>
387 void append(in_iter in_start, in_iter in_end) {
388 size_type NumInputs = std::distance(in_start, in_end);
389 if (NumInputs > this->capacity() - this->size())
390 this->grow(this->size()+NumInputs);
391
392 this->uninitialized_copy(in_start, in_end, this->end());
393 this->set_size(this->size() + NumInputs);
394 }
395
396 /// Append \p NumInputs copies of \p Elt to the end.
397 void append(size_type NumInputs, const T &Elt) {
398 if (NumInputs > this->capacity() - this->size())
399 this->grow(this->size()+NumInputs);
400
401 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
402 this->set_size(this->size() + NumInputs);
403 }
404
405 void append(std::initializer_list<T> IL) {
406 append(IL.begin(), IL.end());
407 }
408
409 // FIXME: Consider assigning over existing elements, rather than clearing &
410 // re-initializing them - for all assign(...) variants.
411
412 void assign(size_type NumElts, const T &Elt) {
413 clear();
414 if (this->capacity() < NumElts)
415 this->grow(NumElts);
416 this->set_size(NumElts);
417 std::uninitialized_fill(this->begin(), this->end(), Elt);
418 }
419
420 template <typename in_iter,
421 typename = typename std::enable_if<std::is_convertible<
422 typename std::iterator_traits<in_iter>::iterator_category,
423 std::input_iterator_tag>::value>::type>
424 void assign(in_iter in_start, in_iter in_end) {
425 clear();
426 append(in_start, in_end);
427 }
428
429 void assign(std::initializer_list<T> IL) {
430 clear();
431 append(IL);
432 }
433
434 iterator erase(const_iterator CI) {
435 // Just cast away constness because this is a non-const member function.
436 iterator I = const_cast<iterator>(CI);
437
438 assert(I >= this->begin() && "Iterator to erase is out of bounds.")((I >= this->begin() && "Iterator to erase is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Iterator to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 438, __PRETTY_FUNCTION__))
;
439 assert(I < this->end() && "Erasing at past-the-end iterator.")((I < this->end() && "Erasing at past-the-end iterator."
) ? static_cast<void> (0) : __assert_fail ("I < this->end() && \"Erasing at past-the-end iterator.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 439, __PRETTY_FUNCTION__))
;
440
441 iterator N = I;
442 // Shift all elts down one.
443 std::move(I+1, this->end(), I);
444 // Drop the last elt.
445 this->pop_back();
446 return(N);
447 }
448
449 iterator erase(const_iterator CS, const_iterator CE) {
450 // Just cast away constness because this is a non-const member function.
451 iterator S = const_cast<iterator>(CS);
452 iterator E = const_cast<iterator>(CE);
453
454 assert(S >= this->begin() && "Range to erase is out of bounds.")((S >= this->begin() && "Range to erase is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("S >= this->begin() && \"Range to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 454, __PRETTY_FUNCTION__))
;
455 assert(S <= E && "Trying to erase invalid range.")((S <= E && "Trying to erase invalid range.") ? static_cast
<void> (0) : __assert_fail ("S <= E && \"Trying to erase invalid range.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(E <= this->end() && "Trying to erase past the end.")((E <= this->end() && "Trying to erase past the end."
) ? static_cast<void> (0) : __assert_fail ("E <= this->end() && \"Trying to erase past the end.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 456, __PRETTY_FUNCTION__))
;
457
458 iterator N = S;
459 // Shift all elts down.
460 iterator I = std::move(E, this->end(), S);
461 // Drop the last elts.
462 this->destroy_range(I, this->end());
463 this->set_size(I - this->begin());
464 return(N);
465 }
466
467 iterator insert(iterator I, T &&Elt) {
468 if (I == this->end()) { // Important special case for empty vector.
469 this->push_back(::std::move(Elt));
470 return this->end()-1;
471 }
472
473 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 473, __PRETTY_FUNCTION__))
;
474 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 474, __PRETTY_FUNCTION__))
;
475
476 if (this->size() >= this->capacity()) {
477 size_t EltNo = I-this->begin();
478 this->grow();
479 I = this->begin()+EltNo;
480 }
481
482 ::new ((void*) this->end()) T(::std::move(this->back()));
483 // Push everything else over.
484 std::move_backward(I, this->end()-1, this->end());
485 this->set_size(this->size() + 1);
486
487 // If we just moved the element we're inserting, be sure to update
488 // the reference.
489 T *EltPtr = &Elt;
490 if (I <= EltPtr && EltPtr < this->end())
491 ++EltPtr;
492
493 *I = ::std::move(*EltPtr);
494 return I;
495 }
496
497 iterator insert(iterator I, const T &Elt) {
498 if (I == this->end()) { // Important special case for empty vector.
499 this->push_back(Elt);
500 return this->end()-1;
501 }
502
503 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 503, __PRETTY_FUNCTION__))
;
504 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 504, __PRETTY_FUNCTION__))
;
505
506 if (this->size() >= this->capacity()) {
507 size_t EltNo = I-this->begin();
508 this->grow();
509 I = this->begin()+EltNo;
510 }
511 ::new ((void*) this->end()) T(std::move(this->back()));
512 // Push everything else over.
513 std::move_backward(I, this->end()-1, this->end());
514 this->set_size(this->size() + 1);
515
516 // If we just moved the element we're inserting, be sure to update
517 // the reference.
518 const T *EltPtr = &Elt;
519 if (I <= EltPtr && EltPtr < this->end())
520 ++EltPtr;
521
522 *I = *EltPtr;
523 return I;
524 }
525
526 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
527 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
528 size_t InsertElt = I - this->begin();
529
530 if (I == this->end()) { // Important special case for empty vector.
531 append(NumToInsert, Elt);
532 return this->begin()+InsertElt;
533 }
534
535 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 535, __PRETTY_FUNCTION__))
;
536 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 536, __PRETTY_FUNCTION__))
;
537
538 // Ensure there is enough space.
539 reserve(this->size() + NumToInsert);
540
541 // Uninvalidate the iterator.
542 I = this->begin()+InsertElt;
543
544 // If there are more elements between the insertion point and the end of the
545 // range than there are being inserted, we can use a simple approach to
546 // insertion. Since we already reserved space, we know that this won't
547 // reallocate the vector.
548 if (size_t(this->end()-I) >= NumToInsert) {
549 T *OldEnd = this->end();
550 append(std::move_iterator<iterator>(this->end() - NumToInsert),
551 std::move_iterator<iterator>(this->end()));
552
553 // Copy the existing elements that get replaced.
554 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
555
556 std::fill_n(I, NumToInsert, Elt);
557 return I;
558 }
559
560 // Otherwise, we're inserting more elements than exist already, and we're
561 // not inserting at the end.
562
563 // Move over the elements that we're about to overwrite.
564 T *OldEnd = this->end();
565 this->set_size(this->size() + NumToInsert);
566 size_t NumOverwritten = OldEnd-I;
567 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
568
569 // Replace the overwritten part.
570 std::fill_n(I, NumOverwritten, Elt);
571
572 // Insert the non-overwritten middle part.
573 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
574 return I;
575 }
576
577 template <typename ItTy,
578 typename = typename std::enable_if<std::is_convertible<
579 typename std::iterator_traits<ItTy>::iterator_category,
580 std::input_iterator_tag>::value>::type>
581 iterator insert(iterator I, ItTy From, ItTy To) {
582 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
583 size_t InsertElt = I - this->begin();
584
585 if (I == this->end()) { // Important special case for empty vector.
586 append(From, To);
587 return this->begin()+InsertElt;
588 }
589
590 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 590, __PRETTY_FUNCTION__))
;
591 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/ADT/SmallVector.h"
, 591, __PRETTY_FUNCTION__))
;
592
593 size_t NumToInsert = std::distance(From, To);
594
595 // Ensure there is enough space.
596 reserve(this->size() + NumToInsert);
597
598 // Uninvalidate the iterator.
599 I = this->begin()+InsertElt;
600
601 // If there are more elements between the insertion point and the end of the
602 // range than there are being inserted, we can use a simple approach to
603 // insertion. Since we already reserved space, we know that this won't
604 // reallocate the vector.
605 if (size_t(this->end()-I) >= NumToInsert) {
606 T *OldEnd = this->end();
607 append(std::move_iterator<iterator>(this->end() - NumToInsert),
608 std::move_iterator<iterator>(this->end()));
609
610 // Copy the existing elements that get replaced.
611 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
612
613 std::copy(From, To, I);
614 return I;
615 }
616
617 // Otherwise, we're inserting more elements than exist already, and we're
618 // not inserting at the end.
619
620 // Move over the elements that we're about to overwrite.
621 T *OldEnd = this->end();
622 this->set_size(this->size() + NumToInsert);
623 size_t NumOverwritten = OldEnd-I;
624 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
625
626 // Replace the overwritten part.
627 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
628 *J = *From;
629 ++J; ++From;
630 }
631
632 // Insert the non-overwritten middle part.
633 this->uninitialized_copy(From, To, OldEnd);
634 return I;
635 }
636
637 void insert(iterator I, std::initializer_list<T> IL) {
638 insert(I, IL.begin(), IL.end());
639 }
640
641 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
642 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
643 this->grow();
644 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
645 this->set_size(this->size() + 1);
646 return this->back();
647 }
648
649 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
650
651 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
652
653 bool operator==(const SmallVectorImpl &RHS) const {
654 if (this->size() != RHS.size()) return false;
655 return std::equal(this->begin(), this->end(), RHS.begin());
656 }
657 bool operator!=(const SmallVectorImpl &RHS) const {
658 return !(*this == RHS);
659 }
660
661 bool operator<(const SmallVectorImpl &RHS) const {
662 return std::lexicographical_compare(this->begin(), this->end(),
663 RHS.begin(), RHS.end());
664 }
665};
666
667template <typename T>
668void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
669 if (this == &RHS) return;
670
671 // We can only avoid copying elements if neither vector is small.
672 if (!this->isSmall() && !RHS.isSmall()) {
673 std::swap(this->BeginX, RHS.BeginX);
674 std::swap(this->Size, RHS.Size);
675 std::swap(this->Capacity, RHS.Capacity);
676 return;
677 }
678 if (RHS.size() > this->capacity())
679 this->grow(RHS.size());
680 if (this->size() > RHS.capacity())
681 RHS.grow(this->size());
682
683 // Swap the shared elements.
684 size_t NumShared = this->size();
685 if (NumShared > RHS.size()) NumShared = RHS.size();
686 for (size_type i = 0; i != NumShared; ++i)
687 std::swap((*this)[i], RHS[i]);
688
689 // Copy over the extra elts.
690 if (this->size() > RHS.size()) {
691 size_t EltDiff = this->size() - RHS.size();
692 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
693 RHS.set_size(RHS.size() + EltDiff);
694 this->destroy_range(this->begin()+NumShared, this->end());
695 this->set_size(NumShared);
696 } else if (RHS.size() > this->size()) {
697 size_t EltDiff = RHS.size() - this->size();
698 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
699 this->set_size(this->size() + EltDiff);
700 this->destroy_range(RHS.begin()+NumShared, RHS.end());
701 RHS.set_size(NumShared);
702 }
703}
704
705template <typename T>
706SmallVectorImpl<T> &SmallVectorImpl<T>::
707 operator=(const SmallVectorImpl<T> &RHS) {
708 // Avoid self-assignment.
709 if (this == &RHS) return *this;
710
711 // If we already have sufficient space, assign the common elements, then
712 // destroy any excess.
713 size_t RHSSize = RHS.size();
714 size_t CurSize = this->size();
715 if (CurSize >= RHSSize) {
716 // Assign common elements.
717 iterator NewEnd;
718 if (RHSSize)
719 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
720 else
721 NewEnd = this->begin();
722
723 // Destroy excess elements.
724 this->destroy_range(NewEnd, this->end());
725
726 // Trim.
727 this->set_size(RHSSize);
728 return *this;
729 }
730
731 // If we have to grow to have enough elements, destroy the current elements.
732 // This allows us to avoid copying them during the grow.
733 // FIXME: don't do this if they're efficiently moveable.
734 if (this->capacity() < RHSSize) {
735 // Destroy current elements.
736 this->destroy_range(this->begin(), this->end());
737 this->set_size(0);
738 CurSize = 0;
739 this->grow(RHSSize);
740 } else if (CurSize) {
741 // Otherwise, use assignment for the already-constructed elements.
742 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
743 }
744
745 // Copy construct the new elements in place.
746 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
747 this->begin()+CurSize);
748
749 // Set end.
750 this->set_size(RHSSize);
751 return *this;
752}
753
754template <typename T>
755SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
756 // Avoid self-assignment.
757 if (this == &RHS) return *this;
758
759 // If the RHS isn't small, clear this vector and then steal its buffer.
760 if (!RHS.isSmall()) {
761 this->destroy_range(this->begin(), this->end());
762 if (!this->isSmall()) free(this->begin());
763 this->BeginX = RHS.BeginX;
764 this->Size = RHS.Size;
765 this->Capacity = RHS.Capacity;
766 RHS.resetToSmall();
767 return *this;
768 }
769
770 // If we already have sufficient space, assign the common elements, then
771 // destroy any excess.
772 size_t RHSSize = RHS.size();
773 size_t CurSize = this->size();
774 if (CurSize >= RHSSize) {
775 // Assign common elements.
776 iterator NewEnd = this->begin();
777 if (RHSSize)
778 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
779
780 // Destroy excess elements and trim the bounds.
781 this->destroy_range(NewEnd, this->end());
782 this->set_size(RHSSize);
783
784 // Clear the RHS.
785 RHS.clear();
786
787 return *this;
788 }
789
790 // If we have to grow to have enough elements, destroy the current elements.
791 // This allows us to avoid copying them during the grow.
792 // FIXME: this may not actually make any sense if we can efficiently move
793 // elements.
794 if (this->capacity() < RHSSize) {
795 // Destroy current elements.
796 this->destroy_range(this->begin(), this->end());
797 this->set_size(0);
798 CurSize = 0;
799 this->grow(RHSSize);
800 } else if (CurSize) {
801 // Otherwise, use assignment for the already-constructed elements.
802 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
803 }
804
805 // Move-construct the new elements in place.
806 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
807 this->begin()+CurSize);
808
809 // Set end.
810 this->set_size(RHSSize);
811
812 RHS.clear();
813 return *this;
814}
815
816/// Storage for the SmallVector elements. This is specialized for the N=0 case
817/// to avoid allocating unnecessary storage.
818template <typename T, unsigned N>
819struct SmallVectorStorage {
820 AlignedCharArrayUnion<T> InlineElts[N];
821};
822
823/// We need the storage to be properly aligned even for small-size of 0 so that
824/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
825/// well-defined.
826template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
827
828/// This is a 'vector' (really, a variable-sized array), optimized
829/// for the case when the array is small. It contains some number of elements
830/// in-place, which allows it to avoid heap allocation when the actual number of
831/// elements is below that threshold. This allows normal "small" cases to be
832/// fast without losing generality for large inputs.
833///
834/// Note that this does not attempt to be exception safe.
835///
836template <typename T, unsigned N>
837class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
838public:
839 SmallVector() : SmallVectorImpl<T>(N) {}
840
841 ~SmallVector() {
842 // Destroy the constructed elements in the vector.
843 this->destroy_range(this->begin(), this->end());
844 }
845
846 explicit SmallVector(size_t Size, const T &Value = T())
847 : SmallVectorImpl<T>(N) {
848 this->assign(Size, Value);
849 }
850
851 template <typename ItTy,
852 typename = typename std::enable_if<std::is_convertible<
853 typename std::iterator_traits<ItTy>::iterator_category,
854 std::input_iterator_tag>::value>::type>
855 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
856 this->append(S, E);
857 }
858
859 template <typename RangeTy>
860 explicit SmallVector(const iterator_range<RangeTy> &R)
861 : SmallVectorImpl<T>(N) {
862 this->append(R.begin(), R.end());
863 }
864
865 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
866 this->assign(IL);
867 }
868
869 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
870 if (!RHS.empty())
871 SmallVectorImpl<T>::operator=(RHS);
872 }
873
874 const SmallVector &operator=(const SmallVector &RHS) {
875 SmallVectorImpl<T>::operator=(RHS);
876 return *this;
877 }
878
879 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
880 if (!RHS.empty())
881 SmallVectorImpl<T>::operator=(::std::move(RHS));
882 }
883
884 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
885 if (!RHS.empty())
886 SmallVectorImpl<T>::operator=(::std::move(RHS));
887 }
888
889 const SmallVector &operator=(SmallVector &&RHS) {
890 SmallVectorImpl<T>::operator=(::std::move(RHS));
891 return *this;
892 }
893
894 const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
895 SmallVectorImpl<T>::operator=(::std::move(RHS));
896 return *this;
897 }
898
899 const SmallVector &operator=(std::initializer_list<T> IL) {
900 this->assign(IL);
901 return *this;
902 }
903};
904
905template <typename T, unsigned N>
906inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
907 return X.capacity_in_bytes();
908}
909
910} // end namespace llvm
911
912namespace std {
913
914 /// Implement std::swap in terms of SmallVector swap.
915 template<typename T>
916 inline void
917 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
918 LHS.swap(RHS);
919 }
920
921 /// Implement std::swap in terms of SmallVector swap.
922 template<typename T, unsigned N>
923 inline void
924 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
925 LHS.swap(RHS);
926 }
927
928} // end namespace std
929
930#endif // LLVM_ADT_SMALLVECTOR_H