Bug Summary

File:tools/clang/lib/AST/ExprConstant.cpp
Warning:line 5215, column 32
Access to field 'Index' results in a dereference of a null pointer (loaded from field 'CurrentCall')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ExprConstant.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST -I /build/llvm-toolchain-snapshot-7~svn326551/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn326551/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/tools/clang/lib/AST -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-03-02-155150-1477-1 -x c++ /build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp
1//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr constant evaluator.
11//
12// Constant expression evaluation produces four main results:
13//
14// * A success/failure flag indicating whether constant folding was successful.
15// This is the 'bool' return value used by most of the code in this file. A
16// 'false' return value indicates that constant folding has failed, and any
17// appropriate diagnostic has already been produced.
18//
19// * An evaluated result, valid only if constant folding has not failed.
20//
21// * A flag indicating if evaluation encountered (unevaluated) side-effects.
22// These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23// where it is possible to determine the evaluated result regardless.
24//
25// * A set of notes indicating why the evaluation was not a constant expression
26// (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27// too, why the expression could not be folded.
28//
29// If we are checking for a potential constant expression, failure to constant
30// fold a potential constant sub-expression will be indicated by a 'false'
31// return value (the expression could not be folded) and no diagnostic (the
32// expression is not necessarily non-constant).
33//
34//===----------------------------------------------------------------------===//
35
36#include "clang/AST/APValue.h"
37#include "clang/AST/ASTContext.h"
38#include "clang/AST/ASTDiagnostic.h"
39#include "clang/AST/ASTLambda.h"
40#include "clang/AST/CharUnits.h"
41#include "clang/AST/Expr.h"
42#include "clang/AST/RecordLayout.h"
43#include "clang/AST/StmtVisitor.h"
44#include "clang/AST/TypeLoc.h"
45#include "clang/Basic/Builtins.h"
46#include "clang/Basic/TargetInfo.h"
47#include "llvm/Support/raw_ostream.h"
48#include <cstring>
49#include <functional>
50
51#define DEBUG_TYPE"exprconstant" "exprconstant"
52
53using namespace clang;
54using llvm::APSInt;
55using llvm::APFloat;
56
57static bool IsGlobalLValue(APValue::LValueBase B);
58
59namespace {
60 struct LValue;
61 struct CallStackFrame;
62 struct EvalInfo;
63
64 static QualType getType(APValue::LValueBase B) {
65 if (!B) return QualType();
66 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
67 // FIXME: It's unclear where we're supposed to take the type from, and
68 // this actually matters for arrays of unknown bound. Using the type of
69 // the most recent declaration isn't clearly correct in general. Eg:
70 //
71 // extern int arr[]; void f() { extern int arr[3]; };
72 // constexpr int *p = &arr[1]; // valid?
73 return cast<ValueDecl>(D->getMostRecentDecl())->getType();
74
75 const Expr *Base = B.get<const Expr*>();
76
77 // For a materialized temporary, the type of the temporary we materialized
78 // may not be the type of the expression.
79 if (const MaterializeTemporaryExpr *MTE =
80 dyn_cast<MaterializeTemporaryExpr>(Base)) {
81 SmallVector<const Expr *, 2> CommaLHSs;
82 SmallVector<SubobjectAdjustment, 2> Adjustments;
83 const Expr *Temp = MTE->GetTemporaryExpr();
84 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
85 Adjustments);
86 // Keep any cv-qualifiers from the reference if we generated a temporary
87 // for it directly. Otherwise use the type after adjustment.
88 if (!Adjustments.empty())
89 return Inner->getType();
90 }
91
92 return Base->getType();
93 }
94
95 /// Get an LValue path entry, which is known to not be an array index, as a
96 /// field or base class.
97 static
98 APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
99 APValue::BaseOrMemberType Value;
100 Value.setFromOpaqueValue(E.BaseOrMember);
101 return Value;
102 }
103
104 /// Get an LValue path entry, which is known to not be an array index, as a
105 /// field declaration.
106 static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
107 return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
108 }
109 /// Get an LValue path entry, which is known to not be an array index, as a
110 /// base class declaration.
111 static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
112 return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
113 }
114 /// Determine whether this LValue path entry for a base class names a virtual
115 /// base class.
116 static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
117 return getAsBaseOrMember(E).getInt();
118 }
119
120 /// Given a CallExpr, try to get the alloc_size attribute. May return null.
121 static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
122 const FunctionDecl *Callee = CE->getDirectCallee();
123 return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
124 }
125
126 /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
127 /// This will look through a single cast.
128 ///
129 /// Returns null if we couldn't unwrap a function with alloc_size.
130 static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
131 if (!E->getType()->isPointerType())
132 return nullptr;
133
134 E = E->IgnoreParens();
135 // If we're doing a variable assignment from e.g. malloc(N), there will
136 // probably be a cast of some kind. Ignore it.
137 if (const auto *Cast = dyn_cast<CastExpr>(E))
138 E = Cast->getSubExpr()->IgnoreParens();
139
140 if (const auto *CE = dyn_cast<CallExpr>(E))
141 return getAllocSizeAttr(CE) ? CE : nullptr;
142 return nullptr;
143 }
144
145 /// Determines whether or not the given Base contains a call to a function
146 /// with the alloc_size attribute.
147 static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
148 const auto *E = Base.dyn_cast<const Expr *>();
149 return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
150 }
151
152 /// The bound to claim that an array of unknown bound has.
153 /// The value in MostDerivedArraySize is undefined in this case. So, set it
154 /// to an arbitrary value that's likely to loudly break things if it's used.
155 static const uint64_t AssumedSizeForUnsizedArray =
156 std::numeric_limits<uint64_t>::max() / 2;
157
158 /// Determines if an LValue with the given LValueBase will have an unsized
159 /// array in its designator.
160 /// Find the path length and type of the most-derived subobject in the given
161 /// path, and find the size of the containing array, if any.
162 static unsigned
163 findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
164 ArrayRef<APValue::LValuePathEntry> Path,
165 uint64_t &ArraySize, QualType &Type, bool &IsArray,
166 bool &FirstEntryIsUnsizedArray) {
167 // This only accepts LValueBases from APValues, and APValues don't support
168 // arrays that lack size info.
169 assert(!isBaseAnAllocSizeCall(Base) &&(static_cast <bool> (!isBaseAnAllocSizeCall(Base) &&
"Unsized arrays shouldn't appear here") ? void (0) : __assert_fail
("!isBaseAnAllocSizeCall(Base) && \"Unsized arrays shouldn't appear here\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 170, __extension__ __PRETTY_FUNCTION__))
170 "Unsized arrays shouldn't appear here")(static_cast <bool> (!isBaseAnAllocSizeCall(Base) &&
"Unsized arrays shouldn't appear here") ? void (0) : __assert_fail
("!isBaseAnAllocSizeCall(Base) && \"Unsized arrays shouldn't appear here\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 170, __extension__ __PRETTY_FUNCTION__))
;
171 unsigned MostDerivedLength = 0;
172 Type = getType(Base);
173
174 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
175 if (Type->isArrayType()) {
176 const ArrayType *AT = Ctx.getAsArrayType(Type);
177 Type = AT->getElementType();
178 MostDerivedLength = I + 1;
179 IsArray = true;
180
181 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
182 ArraySize = CAT->getSize().getZExtValue();
183 } else {
184 assert(I == 0 && "unexpected unsized array designator")(static_cast <bool> (I == 0 && "unexpected unsized array designator"
) ? void (0) : __assert_fail ("I == 0 && \"unexpected unsized array designator\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 184, __extension__ __PRETTY_FUNCTION__))
;
185 FirstEntryIsUnsizedArray = true;
186 ArraySize = AssumedSizeForUnsizedArray;
187 }
188 } else if (Type->isAnyComplexType()) {
189 const ComplexType *CT = Type->castAs<ComplexType>();
190 Type = CT->getElementType();
191 ArraySize = 2;
192 MostDerivedLength = I + 1;
193 IsArray = true;
194 } else if (const FieldDecl *FD = getAsField(Path[I])) {
195 Type = FD->getType();
196 ArraySize = 0;
197 MostDerivedLength = I + 1;
198 IsArray = false;
199 } else {
200 // Path[I] describes a base class.
201 ArraySize = 0;
202 IsArray = false;
203 }
204 }
205 return MostDerivedLength;
206 }
207
208 // The order of this enum is important for diagnostics.
209 enum CheckSubobjectKind {
210 CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
211 CSK_This, CSK_Real, CSK_Imag
212 };
213
214 /// A path from a glvalue to a subobject of that glvalue.
215 struct SubobjectDesignator {
216 /// True if the subobject was named in a manner not supported by C++11. Such
217 /// lvalues can still be folded, but they are not core constant expressions
218 /// and we cannot perform lvalue-to-rvalue conversions on them.
219 unsigned Invalid : 1;
220
221 /// Is this a pointer one past the end of an object?
222 unsigned IsOnePastTheEnd : 1;
223
224 /// Indicator of whether the first entry is an unsized array.
225 unsigned FirstEntryIsAnUnsizedArray : 1;
226
227 /// Indicator of whether the most-derived object is an array element.
228 unsigned MostDerivedIsArrayElement : 1;
229
230 /// The length of the path to the most-derived object of which this is a
231 /// subobject.
232 unsigned MostDerivedPathLength : 28;
233
234 /// The size of the array of which the most-derived object is an element.
235 /// This will always be 0 if the most-derived object is not an array
236 /// element. 0 is not an indicator of whether or not the most-derived object
237 /// is an array, however, because 0-length arrays are allowed.
238 ///
239 /// If the current array is an unsized array, the value of this is
240 /// undefined.
241 uint64_t MostDerivedArraySize;
242
243 /// The type of the most derived object referred to by this address.
244 QualType MostDerivedType;
245
246 typedef APValue::LValuePathEntry PathEntry;
247
248 /// The entries on the path from the glvalue to the designated subobject.
249 SmallVector<PathEntry, 8> Entries;
250
251 SubobjectDesignator() : Invalid(true) {}
252
253 explicit SubobjectDesignator(QualType T)
254 : Invalid(false), IsOnePastTheEnd(false),
255 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
256 MostDerivedPathLength(0), MostDerivedArraySize(0),
257 MostDerivedType(T) {}
258
259 SubobjectDesignator(ASTContext &Ctx, const APValue &V)
260 : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
261 FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
262 MostDerivedPathLength(0), MostDerivedArraySize(0) {
263 assert(V.isLValue() && "Non-LValue used to make an LValue designator?")(static_cast <bool> (V.isLValue() && "Non-LValue used to make an LValue designator?"
) ? void (0) : __assert_fail ("V.isLValue() && \"Non-LValue used to make an LValue designator?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 263, __extension__ __PRETTY_FUNCTION__))
;
264 if (!Invalid) {
265 IsOnePastTheEnd = V.isLValueOnePastTheEnd();
266 ArrayRef<PathEntry> VEntries = V.getLValuePath();
267 Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
268 if (V.getLValueBase()) {
269 bool IsArray = false;
270 bool FirstIsUnsizedArray = false;
271 MostDerivedPathLength = findMostDerivedSubobject(
272 Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
273 MostDerivedType, IsArray, FirstIsUnsizedArray);
274 MostDerivedIsArrayElement = IsArray;
275 FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
276 }
277 }
278 }
279
280 void setInvalid() {
281 Invalid = true;
282 Entries.clear();
283 }
284
285 /// Determine whether the most derived subobject is an array without a
286 /// known bound.
287 bool isMostDerivedAnUnsizedArray() const {
288 assert(!Invalid && "Calling this makes no sense on invalid designators")(static_cast <bool> (!Invalid && "Calling this makes no sense on invalid designators"
) ? void (0) : __assert_fail ("!Invalid && \"Calling this makes no sense on invalid designators\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 288, __extension__ __PRETTY_FUNCTION__))
;
289 return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
290 }
291
292 /// Determine what the most derived array's size is. Results in an assertion
293 /// failure if the most derived array lacks a size.
294 uint64_t getMostDerivedArraySize() const {
295 assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size")(static_cast <bool> (!isMostDerivedAnUnsizedArray() &&
"Unsized array has no size") ? void (0) : __assert_fail ("!isMostDerivedAnUnsizedArray() && \"Unsized array has no size\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 295, __extension__ __PRETTY_FUNCTION__))
;
296 return MostDerivedArraySize;
297 }
298
299 /// Determine whether this is a one-past-the-end pointer.
300 bool isOnePastTheEnd() const {
301 assert(!Invalid)(static_cast <bool> (!Invalid) ? void (0) : __assert_fail
("!Invalid", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 301, __extension__ __PRETTY_FUNCTION__))
;
302 if (IsOnePastTheEnd)
303 return true;
304 if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
305 Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
306 return true;
307 return false;
308 }
309
310 /// Check that this refers to a valid subobject.
311 bool isValidSubobject() const {
312 if (Invalid)
313 return false;
314 return !isOnePastTheEnd();
315 }
316 /// Check that this refers to a valid subobject, and if not, produce a
317 /// relevant diagnostic and set the designator as invalid.
318 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
319
320 /// Update this designator to refer to the first element within this array.
321 void addArrayUnchecked(const ConstantArrayType *CAT) {
322 PathEntry Entry;
323 Entry.ArrayIndex = 0;
324 Entries.push_back(Entry);
325
326 // This is a most-derived object.
327 MostDerivedType = CAT->getElementType();
328 MostDerivedIsArrayElement = true;
329 MostDerivedArraySize = CAT->getSize().getZExtValue();
330 MostDerivedPathLength = Entries.size();
331 }
332 /// Update this designator to refer to the first element within the array of
333 /// elements of type T. This is an array of unknown size.
334 void addUnsizedArrayUnchecked(QualType ElemTy) {
335 PathEntry Entry;
336 Entry.ArrayIndex = 0;
337 Entries.push_back(Entry);
338
339 MostDerivedType = ElemTy;
340 MostDerivedIsArrayElement = true;
341 // The value in MostDerivedArraySize is undefined in this case. So, set it
342 // to an arbitrary value that's likely to loudly break things if it's
343 // used.
344 MostDerivedArraySize = AssumedSizeForUnsizedArray;
345 MostDerivedPathLength = Entries.size();
346 }
347 /// Update this designator to refer to the given base or member of this
348 /// object.
349 void addDeclUnchecked(const Decl *D, bool Virtual = false) {
350 PathEntry Entry;
351 APValue::BaseOrMemberType Value(D, Virtual);
352 Entry.BaseOrMember = Value.getOpaqueValue();
353 Entries.push_back(Entry);
354
355 // If this isn't a base class, it's a new most-derived object.
356 if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
357 MostDerivedType = FD->getType();
358 MostDerivedIsArrayElement = false;
359 MostDerivedArraySize = 0;
360 MostDerivedPathLength = Entries.size();
361 }
362 }
363 /// Update this designator to refer to the given complex component.
364 void addComplexUnchecked(QualType EltTy, bool Imag) {
365 PathEntry Entry;
366 Entry.ArrayIndex = Imag;
367 Entries.push_back(Entry);
368
369 // This is technically a most-derived object, though in practice this
370 // is unlikely to matter.
371 MostDerivedType = EltTy;
372 MostDerivedIsArrayElement = true;
373 MostDerivedArraySize = 2;
374 MostDerivedPathLength = Entries.size();
375 }
376 void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
377 void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
378 const APSInt &N);
379 /// Add N to the address of this subobject.
380 void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
381 if (Invalid || !N) return;
382 uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
383 if (isMostDerivedAnUnsizedArray()) {
384 diagnoseUnsizedArrayPointerArithmetic(Info, E);
385 // Can't verify -- trust that the user is doing the right thing (or if
386 // not, trust that the caller will catch the bad behavior).
387 // FIXME: Should we reject if this overflows, at least?
388 Entries.back().ArrayIndex += TruncatedN;
389 return;
390 }
391
392 // [expr.add]p4: For the purposes of these operators, a pointer to a
393 // nonarray object behaves the same as a pointer to the first element of
394 // an array of length one with the type of the object as its element type.
395 bool IsArray = MostDerivedPathLength == Entries.size() &&
396 MostDerivedIsArrayElement;
397 uint64_t ArrayIndex =
398 IsArray ? Entries.back().ArrayIndex : (uint64_t)IsOnePastTheEnd;
399 uint64_t ArraySize =
400 IsArray ? getMostDerivedArraySize() : (uint64_t)1;
401
402 if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
403 // Calculate the actual index in a wide enough type, so we can include
404 // it in the note.
405 N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
406 (llvm::APInt&)N += ArrayIndex;
407 assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index")(static_cast <bool> (N.ugt(ArraySize) && "bounds check failed for in-bounds index"
) ? void (0) : __assert_fail ("N.ugt(ArraySize) && \"bounds check failed for in-bounds index\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 407, __extension__ __PRETTY_FUNCTION__))
;
408 diagnosePointerArithmetic(Info, E, N);
409 setInvalid();
410 return;
411 }
412
413 ArrayIndex += TruncatedN;
414 assert(ArrayIndex <= ArraySize &&(static_cast <bool> (ArrayIndex <= ArraySize &&
"bounds check succeeded for out-of-bounds index") ? void (0)
: __assert_fail ("ArrayIndex <= ArraySize && \"bounds check succeeded for out-of-bounds index\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 415, __extension__ __PRETTY_FUNCTION__))
415 "bounds check succeeded for out-of-bounds index")(static_cast <bool> (ArrayIndex <= ArraySize &&
"bounds check succeeded for out-of-bounds index") ? void (0)
: __assert_fail ("ArrayIndex <= ArraySize && \"bounds check succeeded for out-of-bounds index\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 415, __extension__ __PRETTY_FUNCTION__))
;
416
417 if (IsArray)
418 Entries.back().ArrayIndex = ArrayIndex;
419 else
420 IsOnePastTheEnd = (ArrayIndex != 0);
421 }
422 };
423
424 /// A stack frame in the constexpr call stack.
425 struct CallStackFrame {
426 EvalInfo &Info;
427
428 /// Parent - The caller of this stack frame.
429 CallStackFrame *Caller;
430
431 /// Callee - The function which was called.
432 const FunctionDecl *Callee;
433
434 /// This - The binding for the this pointer in this call, if any.
435 const LValue *This;
436
437 /// Arguments - Parameter bindings for this function call, indexed by
438 /// parameters' function scope indices.
439 APValue *Arguments;
440
441 // Note that we intentionally use std::map here so that references to
442 // values are stable.
443 typedef std::map<const void*, APValue> MapTy;
444 typedef MapTy::const_iterator temp_iterator;
445 /// Temporaries - Temporary lvalues materialized within this stack frame.
446 MapTy Temporaries;
447
448 /// CallLoc - The location of the call expression for this call.
449 SourceLocation CallLoc;
450
451 /// Index - The call index of this call.
452 unsigned Index;
453
454 // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
455 // on the overall stack usage of deeply-recursing constexpr evaluataions.
456 // (We should cache this map rather than recomputing it repeatedly.)
457 // But let's try this and see how it goes; we can look into caching the map
458 // as a later change.
459
460 /// LambdaCaptureFields - Mapping from captured variables/this to
461 /// corresponding data members in the closure class.
462 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
463 FieldDecl *LambdaThisCaptureField;
464
465 CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
466 const FunctionDecl *Callee, const LValue *This,
467 APValue *Arguments);
468 ~CallStackFrame();
469
470 APValue *getTemporary(const void *Key) {
471 MapTy::iterator I = Temporaries.find(Key);
472 return I == Temporaries.end() ? nullptr : &I->second;
473 }
474 APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
475 };
476
477 /// Temporarily override 'this'.
478 class ThisOverrideRAII {
479 public:
480 ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
481 : Frame(Frame), OldThis(Frame.This) {
482 if (Enable)
483 Frame.This = NewThis;
484 }
485 ~ThisOverrideRAII() {
486 Frame.This = OldThis;
487 }
488 private:
489 CallStackFrame &Frame;
490 const LValue *OldThis;
491 };
492
493 /// A partial diagnostic which we might know in advance that we are not going
494 /// to emit.
495 class OptionalDiagnostic {
496 PartialDiagnostic *Diag;
497
498 public:
499 explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
500 : Diag(Diag) {}
501
502 template<typename T>
503 OptionalDiagnostic &operator<<(const T &v) {
504 if (Diag)
505 *Diag << v;
506 return *this;
507 }
508
509 OptionalDiagnostic &operator<<(const APSInt &I) {
510 if (Diag) {
511 SmallVector<char, 32> Buffer;
512 I.toString(Buffer);
513 *Diag << StringRef(Buffer.data(), Buffer.size());
514 }
515 return *this;
516 }
517
518 OptionalDiagnostic &operator<<(const APFloat &F) {
519 if (Diag) {
520 // FIXME: Force the precision of the source value down so we don't
521 // print digits which are usually useless (we don't really care here if
522 // we truncate a digit by accident in edge cases). Ideally,
523 // APFloat::toString would automatically print the shortest
524 // representation which rounds to the correct value, but it's a bit
525 // tricky to implement.
526 unsigned precision =
527 llvm::APFloat::semanticsPrecision(F.getSemantics());
528 precision = (precision * 59 + 195) / 196;
529 SmallVector<char, 32> Buffer;
530 F.toString(Buffer, precision);
531 *Diag << StringRef(Buffer.data(), Buffer.size());
532 }
533 return *this;
534 }
535 };
536
537 /// A cleanup, and a flag indicating whether it is lifetime-extended.
538 class Cleanup {
539 llvm::PointerIntPair<APValue*, 1, bool> Value;
540
541 public:
542 Cleanup(APValue *Val, bool IsLifetimeExtended)
543 : Value(Val, IsLifetimeExtended) {}
544
545 bool isLifetimeExtended() const { return Value.getInt(); }
546 void endLifetime() {
547 *Value.getPointer() = APValue();
548 }
549 };
550
551 /// EvalInfo - This is a private struct used by the evaluator to capture
552 /// information about a subexpression as it is folded. It retains information
553 /// about the AST context, but also maintains information about the folded
554 /// expression.
555 ///
556 /// If an expression could be evaluated, it is still possible it is not a C
557 /// "integer constant expression" or constant expression. If not, this struct
558 /// captures information about how and why not.
559 ///
560 /// One bit of information passed *into* the request for constant folding
561 /// indicates whether the subexpression is "evaluated" or not according to C
562 /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
563 /// evaluate the expression regardless of what the RHS is, but C only allows
564 /// certain things in certain situations.
565 struct EvalInfo {
566 ASTContext &Ctx;
567
568 /// EvalStatus - Contains information about the evaluation.
569 Expr::EvalStatus &EvalStatus;
570
571 /// CurrentCall - The top of the constexpr call stack.
572 CallStackFrame *CurrentCall;
573
574 /// CallStackDepth - The number of calls in the call stack right now.
575 unsigned CallStackDepth;
576
577 /// NextCallIndex - The next call index to assign.
578 unsigned NextCallIndex;
579
580 /// StepsLeft - The remaining number of evaluation steps we're permitted
581 /// to perform. This is essentially a limit for the number of statements
582 /// we will evaluate.
583 unsigned StepsLeft;
584
585 /// BottomFrame - The frame in which evaluation started. This must be
586 /// initialized after CurrentCall and CallStackDepth.
587 CallStackFrame BottomFrame;
588
589 /// A stack of values whose lifetimes end at the end of some surrounding
590 /// evaluation frame.
591 llvm::SmallVector<Cleanup, 16> CleanupStack;
592
593 /// EvaluatingDecl - This is the declaration whose initializer is being
594 /// evaluated, if any.
595 APValue::LValueBase EvaluatingDecl;
596
597 /// EvaluatingDeclValue - This is the value being constructed for the
598 /// declaration whose initializer is being evaluated, if any.
599 APValue *EvaluatingDeclValue;
600
601 /// EvaluatingObject - Pair of the AST node that an lvalue represents and
602 /// the call index that that lvalue was allocated in.
603 typedef std::pair<APValue::LValueBase, unsigned> EvaluatingObject;
604
605 /// EvaluatingConstructors - Set of objects that are currently being
606 /// constructed.
607 llvm::DenseSet<EvaluatingObject> EvaluatingConstructors;
608
609 struct EvaluatingConstructorRAII {
610 EvalInfo &EI;
611 EvaluatingObject Object;
612 bool DidInsert;
613 EvaluatingConstructorRAII(EvalInfo &EI, EvaluatingObject Object)
614 : EI(EI), Object(Object) {
615 DidInsert = EI.EvaluatingConstructors.insert(Object).second;
616 }
617 ~EvaluatingConstructorRAII() {
618 if (DidInsert) EI.EvaluatingConstructors.erase(Object);
619 }
620 };
621
622 bool isEvaluatingConstructor(APValue::LValueBase Decl, unsigned CallIndex) {
623 return EvaluatingConstructors.count(EvaluatingObject(Decl, CallIndex));
624 }
625
626 /// The current array initialization index, if we're performing array
627 /// initialization.
628 uint64_t ArrayInitIndex = -1;
629
630 /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
631 /// notes attached to it will also be stored, otherwise they will not be.
632 bool HasActiveDiagnostic;
633
634 /// \brief Have we emitted a diagnostic explaining why we couldn't constant
635 /// fold (not just why it's not strictly a constant expression)?
636 bool HasFoldFailureDiagnostic;
637
638 /// \brief Whether or not we're currently speculatively evaluating.
639 bool IsSpeculativelyEvaluating;
640
641 enum EvaluationMode {
642 /// Evaluate as a constant expression. Stop if we find that the expression
643 /// is not a constant expression.
644 EM_ConstantExpression,
645
646 /// Evaluate as a potential constant expression. Keep going if we hit a
647 /// construct that we can't evaluate yet (because we don't yet know the
648 /// value of something) but stop if we hit something that could never be
649 /// a constant expression.
650 EM_PotentialConstantExpression,
651
652 /// Fold the expression to a constant. Stop if we hit a side-effect that
653 /// we can't model.
654 EM_ConstantFold,
655
656 /// Evaluate the expression looking for integer overflow and similar
657 /// issues. Don't worry about side-effects, and try to visit all
658 /// subexpressions.
659 EM_EvaluateForOverflow,
660
661 /// Evaluate in any way we know how. Don't worry about side-effects that
662 /// can't be modeled.
663 EM_IgnoreSideEffects,
664
665 /// Evaluate as a constant expression. Stop if we find that the expression
666 /// is not a constant expression. Some expressions can be retried in the
667 /// optimizer if we don't constant fold them here, but in an unevaluated
668 /// context we try to fold them immediately since the optimizer never
669 /// gets a chance to look at it.
670 EM_ConstantExpressionUnevaluated,
671
672 /// Evaluate as a potential constant expression. Keep going if we hit a
673 /// construct that we can't evaluate yet (because we don't yet know the
674 /// value of something) but stop if we hit something that could never be
675 /// a constant expression. Some expressions can be retried in the
676 /// optimizer if we don't constant fold them here, but in an unevaluated
677 /// context we try to fold them immediately since the optimizer never
678 /// gets a chance to look at it.
679 EM_PotentialConstantExpressionUnevaluated,
680
681 /// Evaluate as a constant expression. In certain scenarios, if:
682 /// - we find a MemberExpr with a base that can't be evaluated, or
683 /// - we find a variable initialized with a call to a function that has
684 /// the alloc_size attribute on it
685 /// then we may consider evaluation to have succeeded.
686 ///
687 /// In either case, the LValue returned shall have an invalid base; in the
688 /// former, the base will be the invalid MemberExpr, in the latter, the
689 /// base will be either the alloc_size CallExpr or a CastExpr wrapping
690 /// said CallExpr.
691 EM_OffsetFold,
692 } EvalMode;
693
694 /// Are we checking whether the expression is a potential constant
695 /// expression?
696 bool checkingPotentialConstantExpression() const {
697 return EvalMode == EM_PotentialConstantExpression ||
698 EvalMode == EM_PotentialConstantExpressionUnevaluated;
699 }
700
701 /// Are we checking an expression for overflow?
702 // FIXME: We should check for any kind of undefined or suspicious behavior
703 // in such constructs, not just overflow.
704 bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
705
706 EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
707 : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
708 CallStackDepth(0), NextCallIndex(1),
709 StepsLeft(getLangOpts().ConstexprStepLimit),
710 BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
711 EvaluatingDecl((const ValueDecl *)nullptr),
712 EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
713 HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
714 EvalMode(Mode) {}
715
716 void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
717 EvaluatingDecl = Base;
718 EvaluatingDeclValue = &Value;
719 EvaluatingConstructors.insert({Base, 0});
720 }
721
722 const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
723
724 bool CheckCallLimit(SourceLocation Loc) {
725 // Don't perform any constexpr calls (other than the call we're checking)
726 // when checking a potential constant expression.
727 if (checkingPotentialConstantExpression() && CallStackDepth > 1)
728 return false;
729 if (NextCallIndex == 0) {
730 // NextCallIndex has wrapped around.
731 FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
732 return false;
733 }
734 if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
735 return true;
736 FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
737 << getLangOpts().ConstexprCallDepth;
738 return false;
739 }
740
741 CallStackFrame *getCallFrame(unsigned CallIndex) {
742 assert(CallIndex && "no call index in getCallFrame")(static_cast <bool> (CallIndex && "no call index in getCallFrame"
) ? void (0) : __assert_fail ("CallIndex && \"no call index in getCallFrame\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 742, __extension__ __PRETTY_FUNCTION__))
;
743 // We will eventually hit BottomFrame, which has Index 1, so Frame can't
744 // be null in this loop.
745 CallStackFrame *Frame = CurrentCall;
746 while (Frame->Index > CallIndex)
747 Frame = Frame->Caller;
748 return (Frame->Index == CallIndex) ? Frame : nullptr;
749 }
750
751 bool nextStep(const Stmt *S) {
752 if (!StepsLeft) {
753 FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
754 return false;
755 }
756 --StepsLeft;
757 return true;
758 }
759
760 private:
761 /// Add a diagnostic to the diagnostics list.
762 PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
763 PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
764 EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
765 return EvalStatus.Diag->back().second;
766 }
767
768 /// Add notes containing a call stack to the current point of evaluation.
769 void addCallStack(unsigned Limit);
770
771 private:
772 OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
773 unsigned ExtraNotes, bool IsCCEDiag) {
774
775 if (EvalStatus.Diag) {
776 // If we have a prior diagnostic, it will be noting that the expression
777 // isn't a constant expression. This diagnostic is more important,
778 // unless we require this evaluation to produce a constant expression.
779 //
780 // FIXME: We might want to show both diagnostics to the user in
781 // EM_ConstantFold mode.
782 if (!EvalStatus.Diag->empty()) {
783 switch (EvalMode) {
784 case EM_ConstantFold:
785 case EM_IgnoreSideEffects:
786 case EM_EvaluateForOverflow:
787 if (!HasFoldFailureDiagnostic)
788 break;
789 // We've already failed to fold something. Keep that diagnostic.
790 LLVM_FALLTHROUGH[[clang::fallthrough]];
791 case EM_ConstantExpression:
792 case EM_PotentialConstantExpression:
793 case EM_ConstantExpressionUnevaluated:
794 case EM_PotentialConstantExpressionUnevaluated:
795 case EM_OffsetFold:
796 HasActiveDiagnostic = false;
797 return OptionalDiagnostic();
798 }
799 }
800
801 unsigned CallStackNotes = CallStackDepth - 1;
802 unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
803 if (Limit)
804 CallStackNotes = std::min(CallStackNotes, Limit + 1);
805 if (checkingPotentialConstantExpression())
806 CallStackNotes = 0;
807
808 HasActiveDiagnostic = true;
809 HasFoldFailureDiagnostic = !IsCCEDiag;
810 EvalStatus.Diag->clear();
811 EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
812 addDiag(Loc, DiagId);
813 if (!checkingPotentialConstantExpression())
814 addCallStack(Limit);
815 return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
816 }
817 HasActiveDiagnostic = false;
818 return OptionalDiagnostic();
819 }
820 public:
821 // Diagnose that the evaluation could not be folded (FF => FoldFailure)
822 OptionalDiagnostic
823 FFDiag(SourceLocation Loc,
824 diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr,
825 unsigned ExtraNotes = 0) {
826 return Diag(Loc, DiagId, ExtraNotes, false);
827 }
828
829 OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId
830 = diag::note_invalid_subexpr_in_const_expr,
831 unsigned ExtraNotes = 0) {
832 if (EvalStatus.Diag)
833 return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false);
834 HasActiveDiagnostic = false;
835 return OptionalDiagnostic();
836 }
837
838 /// Diagnose that the evaluation does not produce a C++11 core constant
839 /// expression.
840 ///
841 /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
842 /// EM_PotentialConstantExpression mode and we produce one of these.
843 OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId
844 = diag::note_invalid_subexpr_in_const_expr,
845 unsigned ExtraNotes = 0) {
846 // Don't override a previous diagnostic. Don't bother collecting
847 // diagnostics if we're evaluating for overflow.
848 if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
849 HasActiveDiagnostic = false;
850 return OptionalDiagnostic();
851 }
852 return Diag(Loc, DiagId, ExtraNotes, true);
853 }
854 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId
855 = diag::note_invalid_subexpr_in_const_expr,
856 unsigned ExtraNotes = 0) {
857 return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes);
858 }
859 /// Add a note to a prior diagnostic.
860 OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
861 if (!HasActiveDiagnostic)
862 return OptionalDiagnostic();
863 return OptionalDiagnostic(&addDiag(Loc, DiagId));
864 }
865
866 /// Add a stack of notes to a prior diagnostic.
867 void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
868 if (HasActiveDiagnostic) {
869 EvalStatus.Diag->insert(EvalStatus.Diag->end(),
870 Diags.begin(), Diags.end());
871 }
872 }
873
874 /// Should we continue evaluation after encountering a side-effect that we
875 /// couldn't model?
876 bool keepEvaluatingAfterSideEffect() {
877 switch (EvalMode) {
878 case EM_PotentialConstantExpression:
879 case EM_PotentialConstantExpressionUnevaluated:
880 case EM_EvaluateForOverflow:
881 case EM_IgnoreSideEffects:
882 return true;
883
884 case EM_ConstantExpression:
885 case EM_ConstantExpressionUnevaluated:
886 case EM_ConstantFold:
887 case EM_OffsetFold:
888 return false;
889 }
890 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 890)
;
891 }
892
893 /// Note that we have had a side-effect, and determine whether we should
894 /// keep evaluating.
895 bool noteSideEffect() {
896 EvalStatus.HasSideEffects = true;
897 return keepEvaluatingAfterSideEffect();
898 }
899
900 /// Should we continue evaluation after encountering undefined behavior?
901 bool keepEvaluatingAfterUndefinedBehavior() {
902 switch (EvalMode) {
903 case EM_EvaluateForOverflow:
904 case EM_IgnoreSideEffects:
905 case EM_ConstantFold:
906 case EM_OffsetFold:
907 return true;
908
909 case EM_PotentialConstantExpression:
910 case EM_PotentialConstantExpressionUnevaluated:
911 case EM_ConstantExpression:
912 case EM_ConstantExpressionUnevaluated:
913 return false;
914 }
915 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 915)
;
916 }
917
918 /// Note that we hit something that was technically undefined behavior, but
919 /// that we can evaluate past it (such as signed overflow or floating-point
920 /// division by zero.)
921 bool noteUndefinedBehavior() {
922 EvalStatus.HasUndefinedBehavior = true;
923 return keepEvaluatingAfterUndefinedBehavior();
924 }
925
926 /// Should we continue evaluation as much as possible after encountering a
927 /// construct which can't be reduced to a value?
928 bool keepEvaluatingAfterFailure() {
929 if (!StepsLeft)
930 return false;
931
932 switch (EvalMode) {
933 case EM_PotentialConstantExpression:
934 case EM_PotentialConstantExpressionUnevaluated:
935 case EM_EvaluateForOverflow:
936 return true;
937
938 case EM_ConstantExpression:
939 case EM_ConstantExpressionUnevaluated:
940 case EM_ConstantFold:
941 case EM_IgnoreSideEffects:
942 case EM_OffsetFold:
943 return false;
944 }
945 llvm_unreachable("Missed EvalMode case")::llvm::llvm_unreachable_internal("Missed EvalMode case", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 945)
;
946 }
947
948 /// Notes that we failed to evaluate an expression that other expressions
949 /// directly depend on, and determine if we should keep evaluating. This
950 /// should only be called if we actually intend to keep evaluating.
951 ///
952 /// Call noteSideEffect() instead if we may be able to ignore the value that
953 /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
954 ///
955 /// (Foo(), 1) // use noteSideEffect
956 /// (Foo() || true) // use noteSideEffect
957 /// Foo() + 1 // use noteFailure
958 LLVM_NODISCARD[[clang::warn_unused_result]] bool noteFailure() {
959 // Failure when evaluating some expression often means there is some
960 // subexpression whose evaluation was skipped. Therefore, (because we
961 // don't track whether we skipped an expression when unwinding after an
962 // evaluation failure) every evaluation failure that bubbles up from a
963 // subexpression implies that a side-effect has potentially happened. We
964 // skip setting the HasSideEffects flag to true until we decide to
965 // continue evaluating after that point, which happens here.
966 bool KeepGoing = keepEvaluatingAfterFailure();
967 EvalStatus.HasSideEffects |= KeepGoing;
968 return KeepGoing;
969 }
970
971 class ArrayInitLoopIndex {
972 EvalInfo &Info;
973 uint64_t OuterIndex;
974
975 public:
976 ArrayInitLoopIndex(EvalInfo &Info)
977 : Info(Info), OuterIndex(Info.ArrayInitIndex) {
978 Info.ArrayInitIndex = 0;
979 }
980 ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
981
982 operator uint64_t&() { return Info.ArrayInitIndex; }
983 };
984 };
985
986 /// Object used to treat all foldable expressions as constant expressions.
987 struct FoldConstant {
988 EvalInfo &Info;
989 bool Enabled;
990 bool HadNoPriorDiags;
991 EvalInfo::EvaluationMode OldMode;
992
993 explicit FoldConstant(EvalInfo &Info, bool Enabled)
994 : Info(Info),
995 Enabled(Enabled),
996 HadNoPriorDiags(Info.EvalStatus.Diag &&
997 Info.EvalStatus.Diag->empty() &&
998 !Info.EvalStatus.HasSideEffects),
999 OldMode(Info.EvalMode) {
1000 if (Enabled &&
1001 (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
1002 Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
1003 Info.EvalMode = EvalInfo::EM_ConstantFold;
1004 }
1005 void keepDiagnostics() { Enabled = false; }
1006 ~FoldConstant() {
1007 if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1008 !Info.EvalStatus.HasSideEffects)
1009 Info.EvalStatus.Diag->clear();
1010 Info.EvalMode = OldMode;
1011 }
1012 };
1013
1014 /// RAII object used to treat the current evaluation as the correct pointer
1015 /// offset fold for the current EvalMode
1016 struct FoldOffsetRAII {
1017 EvalInfo &Info;
1018 EvalInfo::EvaluationMode OldMode;
1019 explicit FoldOffsetRAII(EvalInfo &Info)
1020 : Info(Info), OldMode(Info.EvalMode) {
1021 if (!Info.checkingPotentialConstantExpression())
1022 Info.EvalMode = EvalInfo::EM_OffsetFold;
1023 }
1024
1025 ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
1026 };
1027
1028 /// RAII object used to optionally suppress diagnostics and side-effects from
1029 /// a speculative evaluation.
1030 class SpeculativeEvaluationRAII {
1031 EvalInfo *Info = nullptr;
1032 Expr::EvalStatus OldStatus;
1033 bool OldIsSpeculativelyEvaluating;
1034
1035 void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1036 Info = Other.Info;
1037 OldStatus = Other.OldStatus;
1038 OldIsSpeculativelyEvaluating = Other.OldIsSpeculativelyEvaluating;
1039 Other.Info = nullptr;
1040 }
1041
1042 void maybeRestoreState() {
1043 if (!Info)
1044 return;
1045
1046 Info->EvalStatus = OldStatus;
1047 Info->IsSpeculativelyEvaluating = OldIsSpeculativelyEvaluating;
1048 }
1049
1050 public:
1051 SpeculativeEvaluationRAII() = default;
1052
1053 SpeculativeEvaluationRAII(
1054 EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1055 : Info(&Info), OldStatus(Info.EvalStatus),
1056 OldIsSpeculativelyEvaluating(Info.IsSpeculativelyEvaluating) {
1057 Info.EvalStatus.Diag = NewDiag;
1058 Info.IsSpeculativelyEvaluating = true;
1059 }
1060
1061 SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
1062 SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1063 moveFromAndCancel(std::move(Other));
1064 }
1065
1066 SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1067 maybeRestoreState();
1068 moveFromAndCancel(std::move(Other));
1069 return *this;
1070 }
1071
1072 ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1073 };
1074
1075 /// RAII object wrapping a full-expression or block scope, and handling
1076 /// the ending of the lifetime of temporaries created within it.
1077 template<bool IsFullExpression>
1078 class ScopeRAII {
1079 EvalInfo &Info;
1080 unsigned OldStackSize;
1081 public:
1082 ScopeRAII(EvalInfo &Info)
1083 : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
1084 ~ScopeRAII() {
1085 // Body moved to a static method to encourage the compiler to inline away
1086 // instances of this class.
1087 cleanup(Info, OldStackSize);
1088 }
1089 private:
1090 static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
1091 unsigned NewEnd = OldStackSize;
1092 for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
1093 I != N; ++I) {
1094 if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
1095 // Full-expression cleanup of a lifetime-extended temporary: nothing
1096 // to do, just move this cleanup to the right place in the stack.
1097 std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
1098 ++NewEnd;
1099 } else {
1100 // End the lifetime of the object.
1101 Info.CleanupStack[I].endLifetime();
1102 }
1103 }
1104 Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
1105 Info.CleanupStack.end());
1106 }
1107 };
1108 typedef ScopeRAII<false> BlockScopeRAII;
1109 typedef ScopeRAII<true> FullExpressionRAII;
1110}
1111
1112bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1113 CheckSubobjectKind CSK) {
1114 if (Invalid)
1115 return false;
1116 if (isOnePastTheEnd()) {
1117 Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1118 << CSK;
1119 setInvalid();
1120 return false;
1121 }
1122 // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1123 // must actually be at least one array element; even a VLA cannot have a
1124 // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1125 return true;
1126}
1127
1128void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1129 const Expr *E) {
1130 Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1131 // Do not set the designator as invalid: we can represent this situation,
1132 // and correct handling of __builtin_object_size requires us to do so.
1133}
1134
1135void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1136 const Expr *E,
1137 const APSInt &N) {
1138 // If we're complaining, we must be able to statically determine the size of
1139 // the most derived array.
1140 if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1141 Info.CCEDiag(E, diag::note_constexpr_array_index)
1142 << N << /*array*/ 0
1143 << static_cast<unsigned>(getMostDerivedArraySize());
1144 else
1145 Info.CCEDiag(E, diag::note_constexpr_array_index)
1146 << N << /*non-array*/ 1;
1147 setInvalid();
1148}
1149
1150CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1151 const FunctionDecl *Callee, const LValue *This,
1152 APValue *Arguments)
1153 : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1154 Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1155 Info.CurrentCall = this;
1156 ++Info.CallStackDepth;
1157}
1158
1159CallStackFrame::~CallStackFrame() {
1160 assert(Info.CurrentCall == this && "calls retired out of order")(static_cast <bool> (Info.CurrentCall == this &&
"calls retired out of order") ? void (0) : __assert_fail ("Info.CurrentCall == this && \"calls retired out of order\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1160, __extension__ __PRETTY_FUNCTION__))
;
1161 --Info.CallStackDepth;
1162 Info.CurrentCall = Caller;
1163}
1164
1165APValue &CallStackFrame::createTemporary(const void *Key,
1166 bool IsLifetimeExtended) {
1167 APValue &Result = Temporaries[Key];
1168 assert(Result.isUninit() && "temporary created multiple times")(static_cast <bool> (Result.isUninit() && "temporary created multiple times"
) ? void (0) : __assert_fail ("Result.isUninit() && \"temporary created multiple times\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1168, __extension__ __PRETTY_FUNCTION__))
;
1169 Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
1170 return Result;
1171}
1172
1173static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
1174
1175void EvalInfo::addCallStack(unsigned Limit) {
1176 // Determine which calls to skip, if any.
1177 unsigned ActiveCalls = CallStackDepth - 1;
1178 unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
1179 if (Limit && Limit < ActiveCalls) {
1180 SkipStart = Limit / 2 + Limit % 2;
1181 SkipEnd = ActiveCalls - Limit / 2;
1182 }
1183
1184 // Walk the call stack and add the diagnostics.
1185 unsigned CallIdx = 0;
1186 for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
1187 Frame = Frame->Caller, ++CallIdx) {
1188 // Skip this call?
1189 if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
1190 if (CallIdx == SkipStart) {
1191 // Note that we're skipping calls.
1192 addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
1193 << unsigned(ActiveCalls - Limit);
1194 }
1195 continue;
1196 }
1197
1198 // Use a different note for an inheriting constructor, because from the
1199 // user's perspective it's not really a function at all.
1200 if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) {
1201 if (CD->isInheritingConstructor()) {
1202 addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here)
1203 << CD->getParent();
1204 continue;
1205 }
1206 }
1207
1208 SmallVector<char, 128> Buffer;
1209 llvm::raw_svector_ostream Out(Buffer);
1210 describeCall(Frame, Out);
1211 addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
1212 }
1213}
1214
1215namespace {
1216 struct ComplexValue {
1217 private:
1218 bool IsInt;
1219
1220 public:
1221 APSInt IntReal, IntImag;
1222 APFloat FloatReal, FloatImag;
1223
1224 ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1225
1226 void makeComplexFloat() { IsInt = false; }
1227 bool isComplexFloat() const { return !IsInt; }
1228 APFloat &getComplexFloatReal() { return FloatReal; }
1229 APFloat &getComplexFloatImag() { return FloatImag; }
1230
1231 void makeComplexInt() { IsInt = true; }
1232 bool isComplexInt() const { return IsInt; }
1233 APSInt &getComplexIntReal() { return IntReal; }
1234 APSInt &getComplexIntImag() { return IntImag; }
1235
1236 void moveInto(APValue &v) const {
1237 if (isComplexFloat())
1238 v = APValue(FloatReal, FloatImag);
1239 else
1240 v = APValue(IntReal, IntImag);
1241 }
1242 void setFrom(const APValue &v) {
1243 assert(v.isComplexFloat() || v.isComplexInt())(static_cast <bool> (v.isComplexFloat() || v.isComplexInt
()) ? void (0) : __assert_fail ("v.isComplexFloat() || v.isComplexInt()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1243, __extension__ __PRETTY_FUNCTION__))
;
1244 if (v.isComplexFloat()) {
1245 makeComplexFloat();
1246 FloatReal = v.getComplexFloatReal();
1247 FloatImag = v.getComplexFloatImag();
1248 } else {
1249 makeComplexInt();
1250 IntReal = v.getComplexIntReal();
1251 IntImag = v.getComplexIntImag();
1252 }
1253 }
1254 };
1255
1256 struct LValue {
1257 APValue::LValueBase Base;
1258 CharUnits Offset;
1259 unsigned InvalidBase : 1;
1260 unsigned CallIndex : 31;
1261 SubobjectDesignator Designator;
1262 bool IsNullPtr;
1263
1264 const APValue::LValueBase getLValueBase() const { return Base; }
1265 CharUnits &getLValueOffset() { return Offset; }
1266 const CharUnits &getLValueOffset() const { return Offset; }
1267 unsigned getLValueCallIndex() const { return CallIndex; }
1268 SubobjectDesignator &getLValueDesignator() { return Designator; }
1269 const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1270 bool isNullPointer() const { return IsNullPtr;}
1271
1272 void moveInto(APValue &V) const {
1273 if (Designator.Invalid)
1274 V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex,
1275 IsNullPtr);
1276 else {
1277 assert(!InvalidBase && "APValues can't handle invalid LValue bases")(static_cast <bool> (!InvalidBase && "APValues can't handle invalid LValue bases"
) ? void (0) : __assert_fail ("!InvalidBase && \"APValues can't handle invalid LValue bases\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1277, __extension__ __PRETTY_FUNCTION__))
;
1278 V = APValue(Base, Offset, Designator.Entries,
1279 Designator.IsOnePastTheEnd, CallIndex, IsNullPtr);
1280 }
1281 }
1282 void setFrom(ASTContext &Ctx, const APValue &V) {
1283 assert(V.isLValue() && "Setting LValue from a non-LValue?")(static_cast <bool> (V.isLValue() && "Setting LValue from a non-LValue?"
) ? void (0) : __assert_fail ("V.isLValue() && \"Setting LValue from a non-LValue?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1283, __extension__ __PRETTY_FUNCTION__))
;
1284 Base = V.getLValueBase();
1285 Offset = V.getLValueOffset();
1286 InvalidBase = false;
1287 CallIndex = V.getLValueCallIndex();
1288 Designator = SubobjectDesignator(Ctx, V);
1289 IsNullPtr = V.isNullPointer();
1290 }
1291
1292 void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
1293#ifndef NDEBUG
1294 // We only allow a few types of invalid bases. Enforce that here.
1295 if (BInvalid) {
1296 const auto *E = B.get<const Expr *>();
1297 assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&(static_cast <bool> ((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall
(E)) && "Unexpected type of invalid base") ? void (0)
: __assert_fail ("(isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && \"Unexpected type of invalid base\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1298, __extension__ __PRETTY_FUNCTION__))
1298 "Unexpected type of invalid base")(static_cast <bool> ((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall
(E)) && "Unexpected type of invalid base") ? void (0)
: __assert_fail ("(isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && \"Unexpected type of invalid base\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1298, __extension__ __PRETTY_FUNCTION__))
;
1299 }
1300#endif
1301
1302 Base = B;
1303 Offset = CharUnits::fromQuantity(0);
1304 InvalidBase = BInvalid;
1305 CallIndex = I;
1306 Designator = SubobjectDesignator(getType(B));
1307 IsNullPtr = false;
1308 }
1309
1310 void setNull(QualType PointerTy, uint64_t TargetVal) {
1311 Base = (Expr *)nullptr;
1312 Offset = CharUnits::fromQuantity(TargetVal);
1313 InvalidBase = false;
1314 CallIndex = 0;
1315 Designator = SubobjectDesignator(PointerTy->getPointeeType());
1316 IsNullPtr = true;
1317 }
1318
1319 void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1320 set(B, I, true);
1321 }
1322
1323 // Check that this LValue is not based on a null pointer. If it is, produce
1324 // a diagnostic and mark the designator as invalid.
1325 bool checkNullPointer(EvalInfo &Info, const Expr *E,
1326 CheckSubobjectKind CSK) {
1327 if (Designator.Invalid)
1328 return false;
1329 if (IsNullPtr) {
1330 Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1331 << CSK;
1332 Designator.setInvalid();
1333 return false;
1334 }
1335 return true;
1336 }
1337
1338 // Check this LValue refers to an object. If not, set the designator to be
1339 // invalid and emit a diagnostic.
1340 bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1341 return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1342 Designator.checkSubobject(Info, E, CSK);
1343 }
1344
1345 void addDecl(EvalInfo &Info, const Expr *E,
1346 const Decl *D, bool Virtual = false) {
1347 if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1348 Designator.addDeclUnchecked(D, Virtual);
1349 }
1350 void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1351 if (!Designator.Entries.empty()) {
1352 Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1353 Designator.setInvalid();
1354 return;
1355 }
1356 if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1357 assert(getType(Base)->isPointerType() || getType(Base)->isArrayType())(static_cast <bool> (getType(Base)->isPointerType() ||
getType(Base)->isArrayType()) ? void (0) : __assert_fail (
"getType(Base)->isPointerType() || getType(Base)->isArrayType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1357, __extension__ __PRETTY_FUNCTION__))
;
1358 Designator.FirstEntryIsAnUnsizedArray = true;
1359 Designator.addUnsizedArrayUnchecked(ElemTy);
1360 }
1361 }
1362 void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1363 if (checkSubobject(Info, E, CSK_ArrayToPointer))
1364 Designator.addArrayUnchecked(CAT);
1365 }
1366 void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1367 if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1368 Designator.addComplexUnchecked(EltTy, Imag);
1369 }
1370 void clearIsNullPointer() {
1371 IsNullPtr = false;
1372 }
1373 void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1374 const APSInt &Index, CharUnits ElementSize) {
1375 // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1376 // but we're not required to diagnose it and it's valid in C++.)
1377 if (!Index)
1378 return;
1379
1380 // Compute the new offset in the appropriate width, wrapping at 64 bits.
1381 // FIXME: When compiling for a 32-bit target, we should use 32-bit
1382 // offsets.
1383 uint64_t Offset64 = Offset.getQuantity();
1384 uint64_t ElemSize64 = ElementSize.getQuantity();
1385 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1386 Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1387
1388 if (checkNullPointer(Info, E, CSK_ArrayIndex))
1389 Designator.adjustIndex(Info, E, Index);
1390 clearIsNullPointer();
1391 }
1392 void adjustOffset(CharUnits N) {
1393 Offset += N;
1394 if (N.getQuantity())
1395 clearIsNullPointer();
1396 }
1397 };
1398
1399 struct MemberPtr {
1400 MemberPtr() {}
1401 explicit MemberPtr(const ValueDecl *Decl) :
1402 DeclAndIsDerivedMember(Decl, false), Path() {}
1403
1404 /// The member or (direct or indirect) field referred to by this member
1405 /// pointer, or 0 if this is a null member pointer.
1406 const ValueDecl *getDecl() const {
1407 return DeclAndIsDerivedMember.getPointer();
1408 }
1409 /// Is this actually a member of some type derived from the relevant class?
1410 bool isDerivedMember() const {
1411 return DeclAndIsDerivedMember.getInt();
1412 }
1413 /// Get the class which the declaration actually lives in.
1414 const CXXRecordDecl *getContainingRecord() const {
1415 return cast<CXXRecordDecl>(
1416 DeclAndIsDerivedMember.getPointer()->getDeclContext());
1417 }
1418
1419 void moveInto(APValue &V) const {
1420 V = APValue(getDecl(), isDerivedMember(), Path);
1421 }
1422 void setFrom(const APValue &V) {
1423 assert(V.isMemberPointer())(static_cast <bool> (V.isMemberPointer()) ? void (0) : __assert_fail
("V.isMemberPointer()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1423, __extension__ __PRETTY_FUNCTION__))
;
1424 DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1425 DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1426 Path.clear();
1427 ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1428 Path.insert(Path.end(), P.begin(), P.end());
1429 }
1430
1431 /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1432 /// whether the member is a member of some class derived from the class type
1433 /// of the member pointer.
1434 llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1435 /// Path - The path of base/derived classes from the member declaration's
1436 /// class (exclusive) to the class type of the member pointer (inclusive).
1437 SmallVector<const CXXRecordDecl*, 4> Path;
1438
1439 /// Perform a cast towards the class of the Decl (either up or down the
1440 /// hierarchy).
1441 bool castBack(const CXXRecordDecl *Class) {
1442 assert(!Path.empty())(static_cast <bool> (!Path.empty()) ? void (0) : __assert_fail
("!Path.empty()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1442, __extension__ __PRETTY_FUNCTION__))
;
1443 const CXXRecordDecl *Expected;
1444 if (Path.size() >= 2)
1445 Expected = Path[Path.size() - 2];
1446 else
1447 Expected = getContainingRecord();
1448 if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1449 // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1450 // if B does not contain the original member and is not a base or
1451 // derived class of the class containing the original member, the result
1452 // of the cast is undefined.
1453 // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1454 // (D::*). We consider that to be a language defect.
1455 return false;
1456 }
1457 Path.pop_back();
1458 return true;
1459 }
1460 /// Perform a base-to-derived member pointer cast.
1461 bool castToDerived(const CXXRecordDecl *Derived) {
1462 if (!getDecl())
1463 return true;
1464 if (!isDerivedMember()) {
1465 Path.push_back(Derived);
1466 return true;
1467 }
1468 if (!castBack(Derived))
1469 return false;
1470 if (Path.empty())
1471 DeclAndIsDerivedMember.setInt(false);
1472 return true;
1473 }
1474 /// Perform a derived-to-base member pointer cast.
1475 bool castToBase(const CXXRecordDecl *Base) {
1476 if (!getDecl())
1477 return true;
1478 if (Path.empty())
1479 DeclAndIsDerivedMember.setInt(true);
1480 if (isDerivedMember()) {
1481 Path.push_back(Base);
1482 return true;
1483 }
1484 return castBack(Base);
1485 }
1486 };
1487
1488 /// Compare two member pointers, which are assumed to be of the same type.
1489 static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1490 if (!LHS.getDecl() || !RHS.getDecl())
1491 return !LHS.getDecl() && !RHS.getDecl();
1492 if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1493 return false;
1494 return LHS.Path == RHS.Path;
1495 }
1496}
1497
1498static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1499static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1500 const LValue &This, const Expr *E,
1501 bool AllowNonLiteralTypes = false);
1502static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1503 bool InvalidBaseOK = false);
1504static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1505 bool InvalidBaseOK = false);
1506static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1507 EvalInfo &Info);
1508static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1509static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1510static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1511 EvalInfo &Info);
1512static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1513static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1514static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1515 EvalInfo &Info);
1516static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1517
1518//===----------------------------------------------------------------------===//
1519// Misc utilities
1520//===----------------------------------------------------------------------===//
1521
1522/// Negate an APSInt in place, converting it to a signed form if necessary, and
1523/// preserving its value (by extending by up to one bit as needed).
1524static void negateAsSigned(APSInt &Int) {
1525 if (Int.isUnsigned() || Int.isMinSignedValue()) {
1526 Int = Int.extend(Int.getBitWidth() + 1);
1527 Int.setIsSigned(true);
1528 }
1529 Int = -Int;
1530}
1531
1532/// Produce a string describing the given constexpr call.
1533static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1534 unsigned ArgIndex = 0;
1535 bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1536 !isa<CXXConstructorDecl>(Frame->Callee) &&
1537 cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1538
1539 if (!IsMemberCall)
1540 Out << *Frame->Callee << '(';
1541
1542 if (Frame->This && IsMemberCall) {
1543 APValue Val;
1544 Frame->This->moveInto(Val);
1545 Val.printPretty(Out, Frame->Info.Ctx,
1546 Frame->This->Designator.MostDerivedType);
1547 // FIXME: Add parens around Val if needed.
1548 Out << "->" << *Frame->Callee << '(';
1549 IsMemberCall = false;
1550 }
1551
1552 for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1553 E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1554 if (ArgIndex > (unsigned)IsMemberCall)
1555 Out << ", ";
1556
1557 const ParmVarDecl *Param = *I;
1558 const APValue &Arg = Frame->Arguments[ArgIndex];
1559 Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1560
1561 if (ArgIndex == 0 && IsMemberCall)
1562 Out << "->" << *Frame->Callee << '(';
1563 }
1564
1565 Out << ')';
1566}
1567
1568/// Evaluate an expression to see if it had side-effects, and discard its
1569/// result.
1570/// \return \c true if the caller should keep evaluating.
1571static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1572 APValue Scratch;
1573 if (!Evaluate(Scratch, Info, E))
1574 // We don't need the value, but we might have skipped a side effect here.
1575 return Info.noteSideEffect();
1576 return true;
1577}
1578
1579/// Should this call expression be treated as a string literal?
1580static bool IsStringLiteralCall(const CallExpr *E) {
1581 unsigned Builtin = E->getBuiltinCallee();
1582 return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1583 Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1584}
1585
1586static bool IsGlobalLValue(APValue::LValueBase B) {
1587 // C++11 [expr.const]p3 An address constant expression is a prvalue core
1588 // constant expression of pointer type that evaluates to...
1589
1590 // ... a null pointer value, or a prvalue core constant expression of type
1591 // std::nullptr_t.
1592 if (!B) return true;
1593
1594 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1595 // ... the address of an object with static storage duration,
1596 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1597 return VD->hasGlobalStorage();
1598 // ... the address of a function,
1599 return isa<FunctionDecl>(D);
1600 }
1601
1602 const Expr *E = B.get<const Expr*>();
1603 switch (E->getStmtClass()) {
1604 default:
1605 return false;
1606 case Expr::CompoundLiteralExprClass: {
1607 const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1608 return CLE->isFileScope() && CLE->isLValue();
1609 }
1610 case Expr::MaterializeTemporaryExprClass:
1611 // A materialized temporary might have been lifetime-extended to static
1612 // storage duration.
1613 return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1614 // A string literal has static storage duration.
1615 case Expr::StringLiteralClass:
1616 case Expr::PredefinedExprClass:
1617 case Expr::ObjCStringLiteralClass:
1618 case Expr::ObjCEncodeExprClass:
1619 case Expr::CXXTypeidExprClass:
1620 case Expr::CXXUuidofExprClass:
1621 return true;
1622 case Expr::CallExprClass:
1623 return IsStringLiteralCall(cast<CallExpr>(E));
1624 // For GCC compatibility, &&label has static storage duration.
1625 case Expr::AddrLabelExprClass:
1626 return true;
1627 // A Block literal expression may be used as the initialization value for
1628 // Block variables at global or local static scope.
1629 case Expr::BlockExprClass:
1630 return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1631 case Expr::ImplicitValueInitExprClass:
1632 // FIXME:
1633 // We can never form an lvalue with an implicit value initialization as its
1634 // base through expression evaluation, so these only appear in one case: the
1635 // implicit variable declaration we invent when checking whether a constexpr
1636 // constructor can produce a constant expression. We must assume that such
1637 // an expression might be a global lvalue.
1638 return true;
1639 }
1640}
1641
1642static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1643 assert(Base && "no location for a null lvalue")(static_cast <bool> (Base && "no location for a null lvalue"
) ? void (0) : __assert_fail ("Base && \"no location for a null lvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1643, __extension__ __PRETTY_FUNCTION__))
;
1644 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1645 if (VD)
1646 Info.Note(VD->getLocation(), diag::note_declared_at);
1647 else
1648 Info.Note(Base.get<const Expr*>()->getExprLoc(),
1649 diag::note_constexpr_temporary_here);
1650}
1651
1652/// Check that this reference or pointer core constant expression is a valid
1653/// value for an address or reference constant expression. Return true if we
1654/// can fold this expression, whether or not it's a constant expression.
1655static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1656 QualType Type, const LValue &LVal) {
1657 bool IsReferenceType = Type->isReferenceType();
1658
1659 APValue::LValueBase Base = LVal.getLValueBase();
1660 const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1661
1662 // Check that the object is a global. Note that the fake 'this' object we
1663 // manufacture when checking potential constant expressions is conservatively
1664 // assumed to be global here.
1665 if (!IsGlobalLValue(Base)) {
1666 if (Info.getLangOpts().CPlusPlus11) {
1667 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1668 Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
1669 << IsReferenceType << !Designator.Entries.empty()
1670 << !!VD << VD;
1671 NoteLValueLocation(Info, Base);
1672 } else {
1673 Info.FFDiag(Loc);
1674 }
1675 // Don't allow references to temporaries to escape.
1676 return false;
1677 }
1678 assert((Info.checkingPotentialConstantExpression() ||(static_cast <bool> ((Info.checkingPotentialConstantExpression
() || LVal.getLValueCallIndex() == 0) && "have call index for global lvalue"
) ? void (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1680, __extension__ __PRETTY_FUNCTION__))
1679 LVal.getLValueCallIndex() == 0) &&(static_cast <bool> ((Info.checkingPotentialConstantExpression
() || LVal.getLValueCallIndex() == 0) && "have call index for global lvalue"
) ? void (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1680, __extension__ __PRETTY_FUNCTION__))
1680 "have call index for global lvalue")(static_cast <bool> ((Info.checkingPotentialConstantExpression
() || LVal.getLValueCallIndex() == 0) && "have call index for global lvalue"
) ? void (0) : __assert_fail ("(Info.checkingPotentialConstantExpression() || LVal.getLValueCallIndex() == 0) && \"have call index for global lvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1680, __extension__ __PRETTY_FUNCTION__))
;
1681
1682 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1683 if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1684 // Check if this is a thread-local variable.
1685 if (Var->getTLSKind())
1686 return false;
1687
1688 // A dllimport variable never acts like a constant.
1689 if (Var->hasAttr<DLLImportAttr>())
1690 return false;
1691 }
1692 if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1693 // __declspec(dllimport) must be handled very carefully:
1694 // We must never initialize an expression with the thunk in C++.
1695 // Doing otherwise would allow the same id-expression to yield
1696 // different addresses for the same function in different translation
1697 // units. However, this means that we must dynamically initialize the
1698 // expression with the contents of the import address table at runtime.
1699 //
1700 // The C language has no notion of ODR; furthermore, it has no notion of
1701 // dynamic initialization. This means that we are permitted to
1702 // perform initialization with the address of the thunk.
1703 if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1704 return false;
1705 }
1706 }
1707
1708 // Allow address constant expressions to be past-the-end pointers. This is
1709 // an extension: the standard requires them to point to an object.
1710 if (!IsReferenceType)
1711 return true;
1712
1713 // A reference constant expression must refer to an object.
1714 if (!Base) {
1715 // FIXME: diagnostic
1716 Info.CCEDiag(Loc);
1717 return true;
1718 }
1719
1720 // Does this refer one past the end of some object?
1721 if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1722 const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1723 Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
1724 << !Designator.Entries.empty() << !!VD << VD;
1725 NoteLValueLocation(Info, Base);
1726 }
1727
1728 return true;
1729}
1730
1731/// Member pointers are constant expressions unless they point to a
1732/// non-virtual dllimport member function.
1733static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
1734 SourceLocation Loc,
1735 QualType Type,
1736 const APValue &Value) {
1737 const ValueDecl *Member = Value.getMemberPointerDecl();
1738 const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
1739 if (!FD)
1740 return true;
1741 return FD->isVirtual() || !FD->hasAttr<DLLImportAttr>();
1742}
1743
1744/// Check that this core constant expression is of literal type, and if not,
1745/// produce an appropriate diagnostic.
1746static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1747 const LValue *This = nullptr) {
1748 if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1749 return true;
1750
1751 // C++1y: A constant initializer for an object o [...] may also invoke
1752 // constexpr constructors for o and its subobjects even if those objects
1753 // are of non-literal class types.
1754 //
1755 // C++11 missed this detail for aggregates, so classes like this:
1756 // struct foo_t { union { int i; volatile int j; } u; };
1757 // are not (obviously) initializable like so:
1758 // __attribute__((__require_constant_initialization__))
1759 // static const foo_t x = {{0}};
1760 // because "i" is a subobject with non-literal initialization (due to the
1761 // volatile member of the union). See:
1762 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
1763 // Therefore, we use the C++1y behavior.
1764 if (This && Info.EvaluatingDecl == This->getLValueBase())
1765 return true;
1766
1767 // Prvalue constant expressions must be of literal types.
1768 if (Info.getLangOpts().CPlusPlus11)
1769 Info.FFDiag(E, diag::note_constexpr_nonliteral)
1770 << E->getType();
1771 else
1772 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1773 return false;
1774}
1775
1776/// Check that this core constant expression value is a valid value for a
1777/// constant expression. If not, report an appropriate diagnostic. Does not
1778/// check that the expression is of literal type.
1779static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1780 QualType Type, const APValue &Value) {
1781 if (Value.isUninit()) {
1782 Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
1783 << true << Type;
1784 return false;
1785 }
1786
1787 // We allow _Atomic(T) to be initialized from anything that T can be
1788 // initialized from.
1789 if (const AtomicType *AT = Type->getAs<AtomicType>())
1790 Type = AT->getValueType();
1791
1792 // Core issue 1454: For a literal constant expression of array or class type,
1793 // each subobject of its value shall have been initialized by a constant
1794 // expression.
1795 if (Value.isArray()) {
1796 QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1797 for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1798 if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1799 Value.getArrayInitializedElt(I)))
1800 return false;
1801 }
1802 if (!Value.hasArrayFiller())
1803 return true;
1804 return CheckConstantExpression(Info, DiagLoc, EltTy,
1805 Value.getArrayFiller());
1806 }
1807 if (Value.isUnion() && Value.getUnionField()) {
1808 return CheckConstantExpression(Info, DiagLoc,
1809 Value.getUnionField()->getType(),
1810 Value.getUnionValue());
1811 }
1812 if (Value.isStruct()) {
1813 RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1814 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1815 unsigned BaseIndex = 0;
1816 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1817 End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1818 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1819 Value.getStructBase(BaseIndex)))
1820 return false;
1821 }
1822 }
1823 for (const auto *I : RD->fields()) {
1824 if (I->isUnnamedBitfield())
1825 continue;
1826
1827 if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1828 Value.getStructField(I->getFieldIndex())))
1829 return false;
1830 }
1831 }
1832
1833 if (Value.isLValue()) {
1834 LValue LVal;
1835 LVal.setFrom(Info.Ctx, Value);
1836 return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1837 }
1838
1839 if (Value.isMemberPointer())
1840 return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value);
1841
1842 // Everything else is fine.
1843 return true;
1844}
1845
1846static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1847 return LVal.Base.dyn_cast<const ValueDecl*>();
1848}
1849
1850static bool IsLiteralLValue(const LValue &Value) {
1851 if (Value.CallIndex)
1852 return false;
1853 const Expr *E = Value.Base.dyn_cast<const Expr*>();
1854 return E && !isa<MaterializeTemporaryExpr>(E);
1855}
1856
1857static bool IsWeakLValue(const LValue &Value) {
1858 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1859 return Decl && Decl->isWeak();
1860}
1861
1862static bool isZeroSized(const LValue &Value) {
1863 const ValueDecl *Decl = GetLValueBaseDecl(Value);
1864 if (Decl && isa<VarDecl>(Decl)) {
1865 QualType Ty = Decl->getType();
1866 if (Ty->isArrayType())
1867 return Ty->isIncompleteType() ||
1868 Decl->getASTContext().getTypeSize(Ty) == 0;
1869 }
1870 return false;
1871}
1872
1873static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1874 // A null base expression indicates a null pointer. These are always
1875 // evaluatable, and they are false unless the offset is zero.
1876 if (!Value.getLValueBase()) {
1877 Result = !Value.getLValueOffset().isZero();
1878 return true;
1879 }
1880
1881 // We have a non-null base. These are generally known to be true, but if it's
1882 // a weak declaration it can be null at runtime.
1883 Result = true;
1884 const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1885 return !Decl || !Decl->isWeak();
1886}
1887
1888static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1889 switch (Val.getKind()) {
1890 case APValue::Uninitialized:
1891 return false;
1892 case APValue::Int:
1893 Result = Val.getInt().getBoolValue();
1894 return true;
1895 case APValue::Float:
1896 Result = !Val.getFloat().isZero();
1897 return true;
1898 case APValue::ComplexInt:
1899 Result = Val.getComplexIntReal().getBoolValue() ||
1900 Val.getComplexIntImag().getBoolValue();
1901 return true;
1902 case APValue::ComplexFloat:
1903 Result = !Val.getComplexFloatReal().isZero() ||
1904 !Val.getComplexFloatImag().isZero();
1905 return true;
1906 case APValue::LValue:
1907 return EvalPointerValueAsBool(Val, Result);
1908 case APValue::MemberPointer:
1909 Result = Val.getMemberPointerDecl();
1910 return true;
1911 case APValue::Vector:
1912 case APValue::Array:
1913 case APValue::Struct:
1914 case APValue::Union:
1915 case APValue::AddrLabelDiff:
1916 return false;
1917 }
1918
1919 llvm_unreachable("unknown APValue kind")::llvm::llvm_unreachable_internal("unknown APValue kind", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1919)
;
1920}
1921
1922static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1923 EvalInfo &Info) {
1924 assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition")(static_cast <bool> (E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"
) ? void (0) : __assert_fail ("E->isRValue() && \"missing lvalue-to-rvalue conv in bool condition\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1924, __extension__ __PRETTY_FUNCTION__))
;
1925 APValue Val;
1926 if (!Evaluate(Val, Info, E))
1927 return false;
1928 return HandleConversionToBool(Val, Result);
1929}
1930
1931template<typename T>
1932static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1933 const T &SrcValue, QualType DestType) {
1934 Info.CCEDiag(E, diag::note_constexpr_overflow)
1935 << SrcValue << DestType;
1936 return Info.noteUndefinedBehavior();
1937}
1938
1939static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1940 QualType SrcType, const APFloat &Value,
1941 QualType DestType, APSInt &Result) {
1942 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1943 // Determine whether we are converting to unsigned or signed.
1944 bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1945
1946 Result = APSInt(DestWidth, !DestSigned);
1947 bool ignored;
1948 if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1949 & APFloat::opInvalidOp)
1950 return HandleOverflow(Info, E, Value, DestType);
1951 return true;
1952}
1953
1954static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1955 QualType SrcType, QualType DestType,
1956 APFloat &Result) {
1957 APFloat Value = Result;
1958 bool ignored;
1959 if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1960 APFloat::rmNearestTiesToEven, &ignored)
1961 & APFloat::opOverflow)
1962 return HandleOverflow(Info, E, Value, DestType);
1963 return true;
1964}
1965
1966static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1967 QualType DestType, QualType SrcType,
1968 const APSInt &Value) {
1969 unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1970 APSInt Result = Value;
1971 // Figure out if this is a truncate, extend or noop cast.
1972 // If the input is signed, do a sign extend, noop, or truncate.
1973 Result = Result.extOrTrunc(DestWidth);
1974 Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1975 return Result;
1976}
1977
1978static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1979 QualType SrcType, const APSInt &Value,
1980 QualType DestType, APFloat &Result) {
1981 Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1982 if (Result.convertFromAPInt(Value, Value.isSigned(),
1983 APFloat::rmNearestTiesToEven)
1984 & APFloat::opOverflow)
1985 return HandleOverflow(Info, E, Value, DestType);
1986 return true;
1987}
1988
1989static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1990 APValue &Value, const FieldDecl *FD) {
1991 assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield")(static_cast <bool> (FD->isBitField() && "truncateBitfieldValue on non-bitfield"
) ? void (0) : __assert_fail ("FD->isBitField() && \"truncateBitfieldValue on non-bitfield\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1991, __extension__ __PRETTY_FUNCTION__))
;
1992
1993 if (!Value.isInt()) {
1994 // Trying to store a pointer-cast-to-integer into a bitfield.
1995 // FIXME: In this case, we should provide the diagnostic for casting
1996 // a pointer to an integer.
1997 assert(Value.isLValue() && "integral value neither int nor lvalue?")(static_cast <bool> (Value.isLValue() && "integral value neither int nor lvalue?"
) ? void (0) : __assert_fail ("Value.isLValue() && \"integral value neither int nor lvalue?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 1997, __extension__ __PRETTY_FUNCTION__))
;
1998 Info.FFDiag(E);
1999 return false;
2000 }
2001
2002 APSInt &Int = Value.getInt();
2003 unsigned OldBitWidth = Int.getBitWidth();
2004 unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2005 if (NewBitWidth < OldBitWidth)
2006 Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2007 return true;
2008}
2009
2010static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2011 llvm::APInt &Res) {
2012 APValue SVal;
2013 if (!Evaluate(SVal, Info, E))
2014 return false;
2015 if (SVal.isInt()) {
2016 Res = SVal.getInt();
2017 return true;
2018 }
2019 if (SVal.isFloat()) {
2020 Res = SVal.getFloat().bitcastToAPInt();
2021 return true;
2022 }
2023 if (SVal.isVector()) {
2024 QualType VecTy = E->getType();
2025 unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2026 QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2027 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2028 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2029 Res = llvm::APInt::getNullValue(VecSize);
2030 for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2031 APValue &Elt = SVal.getVectorElt(i);
2032 llvm::APInt EltAsInt;
2033 if (Elt.isInt()) {
2034 EltAsInt = Elt.getInt();
2035 } else if (Elt.isFloat()) {
2036 EltAsInt = Elt.getFloat().bitcastToAPInt();
2037 } else {
2038 // Don't try to handle vectors of anything other than int or float
2039 // (not sure if it's possible to hit this case).
2040 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2041 return false;
2042 }
2043 unsigned BaseEltSize = EltAsInt.getBitWidth();
2044 if (BigEndian)
2045 Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2046 else
2047 Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2048 }
2049 return true;
2050 }
2051 // Give up if the input isn't an int, float, or vector. For example, we
2052 // reject "(v4i16)(intptr_t)&a".
2053 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2054 return false;
2055}
2056
2057/// Perform the given integer operation, which is known to need at most BitWidth
2058/// bits, and check for overflow in the original type (if that type was not an
2059/// unsigned type).
2060template<typename Operation>
2061static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2062 const APSInt &LHS, const APSInt &RHS,
2063 unsigned BitWidth, Operation Op,
2064 APSInt &Result) {
2065 if (LHS.isUnsigned()) {
2066 Result = Op(LHS, RHS);
2067 return true;
2068 }
2069
2070 APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2071 Result = Value.trunc(LHS.getBitWidth());
2072 if (Result.extend(BitWidth) != Value) {
2073 if (Info.checkingForOverflow())
2074 Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2075 diag::warn_integer_constant_overflow)
2076 << Result.toString(10) << E->getType();
2077 else
2078 return HandleOverflow(Info, E, Value, E->getType());
2079 }
2080 return true;
2081}
2082
2083/// Perform the given binary integer operation.
2084static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2085 BinaryOperatorKind Opcode, APSInt RHS,
2086 APSInt &Result) {
2087 switch (Opcode) {
2088 default:
2089 Info.FFDiag(E);
2090 return false;
2091 case BO_Mul:
2092 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2093 std::multiplies<APSInt>(), Result);
2094 case BO_Add:
2095 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2096 std::plus<APSInt>(), Result);
2097 case BO_Sub:
2098 return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2099 std::minus<APSInt>(), Result);
2100 case BO_And: Result = LHS & RHS; return true;
2101 case BO_Xor: Result = LHS ^ RHS; return true;
2102 case BO_Or: Result = LHS | RHS; return true;
2103 case BO_Div:
2104 case BO_Rem:
2105 if (RHS == 0) {
2106 Info.FFDiag(E, diag::note_expr_divide_by_zero);
2107 return false;
2108 }
2109 Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2110 // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2111 // this operation and gives the two's complement result.
2112 if (RHS.isNegative() && RHS.isAllOnesValue() &&
2113 LHS.isSigned() && LHS.isMinSignedValue())
2114 return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2115 E->getType());
2116 return true;
2117 case BO_Shl: {
2118 if (Info.getLangOpts().OpenCL)
2119 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2120 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2121 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2122 RHS.isUnsigned());
2123 else if (RHS.isSigned() && RHS.isNegative()) {
2124 // During constant-folding, a negative shift is an opposite shift. Such
2125 // a shift is not a constant expression.
2126 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2127 RHS = -RHS;
2128 goto shift_right;
2129 }
2130 shift_left:
2131 // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2132 // the shifted type.
2133 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2134 if (SA != RHS) {
2135 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2136 << RHS << E->getType() << LHS.getBitWidth();
2137 } else if (LHS.isSigned()) {
2138 // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2139 // operand, and must not overflow the corresponding unsigned type.
2140 if (LHS.isNegative())
2141 Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2142 else if (LHS.countLeadingZeros() < SA)
2143 Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2144 }
2145 Result = LHS << SA;
2146 return true;
2147 }
2148 case BO_Shr: {
2149 if (Info.getLangOpts().OpenCL)
2150 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2151 RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2152 static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2153 RHS.isUnsigned());
2154 else if (RHS.isSigned() && RHS.isNegative()) {
2155 // During constant-folding, a negative shift is an opposite shift. Such a
2156 // shift is not a constant expression.
2157 Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2158 RHS = -RHS;
2159 goto shift_left;
2160 }
2161 shift_right:
2162 // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2163 // shifted type.
2164 unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2165 if (SA != RHS)
2166 Info.CCEDiag(E, diag::note_constexpr_large_shift)
2167 << RHS << E->getType() << LHS.getBitWidth();
2168 Result = LHS >> SA;
2169 return true;
2170 }
2171
2172 case BO_LT: Result = LHS < RHS; return true;
2173 case BO_GT: Result = LHS > RHS; return true;
2174 case BO_LE: Result = LHS <= RHS; return true;
2175 case BO_GE: Result = LHS >= RHS; return true;
2176 case BO_EQ: Result = LHS == RHS; return true;
2177 case BO_NE: Result = LHS != RHS; return true;
2178 }
2179}
2180
2181/// Perform the given binary floating-point operation, in-place, on LHS.
2182static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
2183 APFloat &LHS, BinaryOperatorKind Opcode,
2184 const APFloat &RHS) {
2185 switch (Opcode) {
2186 default:
2187 Info.FFDiag(E);
2188 return false;
2189 case BO_Mul:
2190 LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
2191 break;
2192 case BO_Add:
2193 LHS.add(RHS, APFloat::rmNearestTiesToEven);
2194 break;
2195 case BO_Sub:
2196 LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
2197 break;
2198 case BO_Div:
2199 LHS.divide(RHS, APFloat::rmNearestTiesToEven);
2200 break;
2201 }
2202
2203 if (LHS.isInfinity() || LHS.isNaN()) {
2204 Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2205 return Info.noteUndefinedBehavior();
2206 }
2207 return true;
2208}
2209
2210/// Cast an lvalue referring to a base subobject to a derived class, by
2211/// truncating the lvalue's path to the given length.
2212static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
2213 const RecordDecl *TruncatedType,
2214 unsigned TruncatedElements) {
2215 SubobjectDesignator &D = Result.Designator;
2216
2217 // Check we actually point to a derived class object.
2218 if (TruncatedElements == D.Entries.size())
2219 return true;
2220 assert(TruncatedElements >= D.MostDerivedPathLength &&(static_cast <bool> (TruncatedElements >= D.MostDerivedPathLength
&& "not casting to a derived class") ? void (0) : __assert_fail
("TruncatedElements >= D.MostDerivedPathLength && \"not casting to a derived class\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2221, __extension__ __PRETTY_FUNCTION__))
2221 "not casting to a derived class")(static_cast <bool> (TruncatedElements >= D.MostDerivedPathLength
&& "not casting to a derived class") ? void (0) : __assert_fail
("TruncatedElements >= D.MostDerivedPathLength && \"not casting to a derived class\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2221, __extension__ __PRETTY_FUNCTION__))
;
2222 if (!Result.checkSubobject(Info, E, CSK_Derived))
2223 return false;
2224
2225 // Truncate the path to the subobject, and remove any derived-to-base offsets.
2226 const RecordDecl *RD = TruncatedType;
2227 for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
2228 if (RD->isInvalidDecl()) return false;
2229 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2230 const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
2231 if (isVirtualBaseClass(D.Entries[I]))
2232 Result.Offset -= Layout.getVBaseClassOffset(Base);
2233 else
2234 Result.Offset -= Layout.getBaseClassOffset(Base);
2235 RD = Base;
2236 }
2237 D.Entries.resize(TruncatedElements);
2238 return true;
2239}
2240
2241static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2242 const CXXRecordDecl *Derived,
2243 const CXXRecordDecl *Base,
2244 const ASTRecordLayout *RL = nullptr) {
2245 if (!RL) {
2246 if (Derived->isInvalidDecl()) return false;
2247 RL = &Info.Ctx.getASTRecordLayout(Derived);
2248 }
2249
2250 Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
2251 Obj.addDecl(Info, E, Base, /*Virtual*/ false);
2252 return true;
2253}
2254
2255static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2256 const CXXRecordDecl *DerivedDecl,
2257 const CXXBaseSpecifier *Base) {
2258 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
2259
2260 if (!Base->isVirtual())
2261 return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
2262
2263 SubobjectDesignator &D = Obj.Designator;
2264 if (D.Invalid)
2265 return false;
2266
2267 // Extract most-derived object and corresponding type.
2268 DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
2269 if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
2270 return false;
2271
2272 // Find the virtual base class.
2273 if (DerivedDecl->isInvalidDecl()) return false;
2274 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
2275 Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
2276 Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
2277 return true;
2278}
2279
2280static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
2281 QualType Type, LValue &Result) {
2282 for (CastExpr::path_const_iterator PathI = E->path_begin(),
2283 PathE = E->path_end();
2284 PathI != PathE; ++PathI) {
2285 if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2286 *PathI))
2287 return false;
2288 Type = (*PathI)->getType();
2289 }
2290 return true;
2291}
2292
2293/// Update LVal to refer to the given field, which must be a member of the type
2294/// currently described by LVal.
2295static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2296 const FieldDecl *FD,
2297 const ASTRecordLayout *RL = nullptr) {
2298 if (!RL) {
2299 if (FD->getParent()->isInvalidDecl()) return false;
2300 RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2301 }
2302
2303 unsigned I = FD->getFieldIndex();
2304 LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
2305 LVal.addDecl(Info, E, FD);
2306 return true;
2307}
2308
2309/// Update LVal to refer to the given indirect field.
2310static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2311 LValue &LVal,
2312 const IndirectFieldDecl *IFD) {
2313 for (const auto *C : IFD->chain())
2314 if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2315 return false;
2316 return true;
2317}
2318
2319/// Get the size of the given type in char units.
2320static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2321 QualType Type, CharUnits &Size) {
2322 // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2323 // extension.
2324 if (Type->isVoidType() || Type->isFunctionType()) {
2325 Size = CharUnits::One();
2326 return true;
2327 }
2328
2329 if (Type->isDependentType()) {
2330 Info.FFDiag(Loc);
2331 return false;
2332 }
2333
2334 if (!Type->isConstantSizeType()) {
2335 // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2336 // FIXME: Better diagnostic.
2337 Info.FFDiag(Loc);
2338 return false;
2339 }
2340
2341 Size = Info.Ctx.getTypeSizeInChars(Type);
2342 return true;
2343}
2344
2345/// Update a pointer value to model pointer arithmetic.
2346/// \param Info - Information about the ongoing evaluation.
2347/// \param E - The expression being evaluated, for diagnostic purposes.
2348/// \param LVal - The pointer value to be updated.
2349/// \param EltTy - The pointee type represented by LVal.
2350/// \param Adjustment - The adjustment, in objects of type EltTy, to add.
2351static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2352 LValue &LVal, QualType EltTy,
2353 APSInt Adjustment) {
2354 CharUnits SizeOfPointee;
2355 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2356 return false;
2357
2358 LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
2359 return true;
2360}
2361
2362static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2363 LValue &LVal, QualType EltTy,
2364 int64_t Adjustment) {
2365 return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
2366 APSInt::get(Adjustment));
2367}
2368
2369/// Update an lvalue to refer to a component of a complex number.
2370/// \param Info - Information about the ongoing evaluation.
2371/// \param LVal - The lvalue to be updated.
2372/// \param EltTy - The complex number's component type.
2373/// \param Imag - False for the real component, true for the imaginary.
2374static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2375 LValue &LVal, QualType EltTy,
2376 bool Imag) {
2377 if (Imag) {
2378 CharUnits SizeOfComponent;
2379 if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2380 return false;
2381 LVal.Offset += SizeOfComponent;
2382 }
2383 LVal.addComplex(Info, E, EltTy, Imag);
2384 return true;
2385}
2386
2387static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2388 QualType Type, const LValue &LVal,
2389 APValue &RVal);
2390
2391/// Try to evaluate the initializer for a variable declaration.
2392///
2393/// \param Info Information about the ongoing evaluation.
2394/// \param E An expression to be used when printing diagnostics.
2395/// \param VD The variable whose initializer should be obtained.
2396/// \param Frame The frame in which the variable was created. Must be null
2397/// if this variable is not local to the evaluation.
2398/// \param Result Filled in with a pointer to the value of the variable.
2399static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2400 const VarDecl *VD, CallStackFrame *Frame,
2401 APValue *&Result) {
2402
2403 // If this is a parameter to an active constexpr function call, perform
2404 // argument substitution.
2405 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2406 // Assume arguments of a potential constant expression are unknown
2407 // constant expressions.
2408 if (Info.checkingPotentialConstantExpression())
2409 return false;
2410 if (!Frame || !Frame->Arguments) {
2411 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2412 return false;
2413 }
2414 Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2415 return true;
2416 }
2417
2418 // If this is a local variable, dig out its value.
2419 if (Frame) {
2420 Result = Frame->getTemporary(VD);
2421 if (!Result) {
2422 // Assume variables referenced within a lambda's call operator that were
2423 // not declared within the call operator are captures and during checking
2424 // of a potential constant expression, assume they are unknown constant
2425 // expressions.
2426 assert(isLambdaCallOperator(Frame->Callee) &&(static_cast <bool> (isLambdaCallOperator(Frame->Callee
) && (VD->getDeclContext() != Frame->Callee || VD
->isInitCapture()) && "missing value for local variable"
) ? void (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2428, __extension__ __PRETTY_FUNCTION__))
2427 (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&(static_cast <bool> (isLambdaCallOperator(Frame->Callee
) && (VD->getDeclContext() != Frame->Callee || VD
->isInitCapture()) && "missing value for local variable"
) ? void (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2428, __extension__ __PRETTY_FUNCTION__))
2428 "missing value for local variable")(static_cast <bool> (isLambdaCallOperator(Frame->Callee
) && (VD->getDeclContext() != Frame->Callee || VD
->isInitCapture()) && "missing value for local variable"
) ? void (0) : __assert_fail ("isLambdaCallOperator(Frame->Callee) && (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && \"missing value for local variable\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2428, __extension__ __PRETTY_FUNCTION__))
;
2429 if (Info.checkingPotentialConstantExpression())
2430 return false;
2431 // FIXME: implement capture evaluation during constant expr evaluation.
2432 Info.FFDiag(E->getLocStart(),
2433 diag::note_unimplemented_constexpr_lambda_feature_ast)
2434 << "captures not currently allowed";
2435 return false;
2436 }
2437 return true;
2438 }
2439
2440 // Dig out the initializer, and use the declaration which it's attached to.
2441 const Expr *Init = VD->getAnyInitializer(VD);
2442 if (!Init || Init->isValueDependent()) {
2443 // If we're checking a potential constant expression, the variable could be
2444 // initialized later.
2445 if (!Info.checkingPotentialConstantExpression())
2446 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2447 return false;
2448 }
2449
2450 // If we're currently evaluating the initializer of this declaration, use that
2451 // in-flight value.
2452 if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2453 Result = Info.EvaluatingDeclValue;
2454 return true;
2455 }
2456
2457 // Never evaluate the initializer of a weak variable. We can't be sure that
2458 // this is the definition which will be used.
2459 if (VD->isWeak()) {
2460 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2461 return false;
2462 }
2463
2464 // Check that we can fold the initializer. In C++, we will have already done
2465 // this in the cases where it matters for conformance.
2466 SmallVector<PartialDiagnosticAt, 8> Notes;
2467 if (!VD->evaluateValue(Notes)) {
2468 Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2469 Notes.size() + 1) << VD;
2470 Info.Note(VD->getLocation(), diag::note_declared_at);
2471 Info.addNotes(Notes);
2472 return false;
2473 } else if (!VD->checkInitIsICE()) {
2474 Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2475 Notes.size() + 1) << VD;
2476 Info.Note(VD->getLocation(), diag::note_declared_at);
2477 Info.addNotes(Notes);
2478 }
2479
2480 Result = VD->getEvaluatedValue();
2481 return true;
2482}
2483
2484static bool IsConstNonVolatile(QualType T) {
2485 Qualifiers Quals = T.getQualifiers();
2486 return Quals.hasConst() && !Quals.hasVolatile();
2487}
2488
2489/// Get the base index of the given base class within an APValue representing
2490/// the given derived class.
2491static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2492 const CXXRecordDecl *Base) {
2493 Base = Base->getCanonicalDecl();
2494 unsigned Index = 0;
2495 for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2496 E = Derived->bases_end(); I != E; ++I, ++Index) {
2497 if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2498 return Index;
2499 }
2500
2501 llvm_unreachable("base class missing from derived class's bases list")::llvm::llvm_unreachable_internal("base class missing from derived class's bases list"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2501)
;
2502}
2503
2504/// Extract the value of a character from a string literal.
2505static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2506 uint64_t Index) {
2507 // FIXME: Support MakeStringConstant
2508 if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
2509 std::string Str;
2510 Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
2511 assert(Index <= Str.size() && "Index too large")(static_cast <bool> (Index <= Str.size() && "Index too large"
) ? void (0) : __assert_fail ("Index <= Str.size() && \"Index too large\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2511, __extension__ __PRETTY_FUNCTION__))
;
2512 return APSInt::getUnsigned(Str.c_str()[Index]);
2513 }
2514
2515 if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2516 Lit = PE->getFunctionName();
2517 const StringLiteral *S = cast<StringLiteral>(Lit);
2518 const ConstantArrayType *CAT =
2519 Info.Ctx.getAsConstantArrayType(S->getType());
2520 assert(CAT && "string literal isn't an array")(static_cast <bool> (CAT && "string literal isn't an array"
) ? void (0) : __assert_fail ("CAT && \"string literal isn't an array\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2520, __extension__ __PRETTY_FUNCTION__))
;
2521 QualType CharType = CAT->getElementType();
2522 assert(CharType->isIntegerType() && "unexpected character type")(static_cast <bool> (CharType->isIntegerType() &&
"unexpected character type") ? void (0) : __assert_fail ("CharType->isIntegerType() && \"unexpected character type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2522, __extension__ __PRETTY_FUNCTION__))
;
2523
2524 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2525 CharType->isUnsignedIntegerType());
2526 if (Index < S->getLength())
2527 Value = S->getCodeUnit(Index);
2528 return Value;
2529}
2530
2531// Expand a string literal into an array of characters.
2532static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2533 APValue &Result) {
2534 const StringLiteral *S = cast<StringLiteral>(Lit);
2535 const ConstantArrayType *CAT =
2536 Info.Ctx.getAsConstantArrayType(S->getType());
2537 assert(CAT && "string literal isn't an array")(static_cast <bool> (CAT && "string literal isn't an array"
) ? void (0) : __assert_fail ("CAT && \"string literal isn't an array\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2537, __extension__ __PRETTY_FUNCTION__))
;
2538 QualType CharType = CAT->getElementType();
2539 assert(CharType->isIntegerType() && "unexpected character type")(static_cast <bool> (CharType->isIntegerType() &&
"unexpected character type") ? void (0) : __assert_fail ("CharType->isIntegerType() && \"unexpected character type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2539, __extension__ __PRETTY_FUNCTION__))
;
2540
2541 unsigned Elts = CAT->getSize().getZExtValue();
2542 Result = APValue(APValue::UninitArray(),
2543 std::min(S->getLength(), Elts), Elts);
2544 APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2545 CharType->isUnsignedIntegerType());
2546 if (Result.hasArrayFiller())
2547 Result.getArrayFiller() = APValue(Value);
2548 for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2549 Value = S->getCodeUnit(I);
2550 Result.getArrayInitializedElt(I) = APValue(Value);
2551 }
2552}
2553
2554// Expand an array so that it has more than Index filled elements.
2555static void expandArray(APValue &Array, unsigned Index) {
2556 unsigned Size = Array.getArraySize();
2557 assert(Index < Size)(static_cast <bool> (Index < Size) ? void (0) : __assert_fail
("Index < Size", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2557, __extension__ __PRETTY_FUNCTION__))
;
2558
2559 // Always at least double the number of elements for which we store a value.
2560 unsigned OldElts = Array.getArrayInitializedElts();
2561 unsigned NewElts = std::max(Index+1, OldElts * 2);
2562 NewElts = std::min(Size, std::max(NewElts, 8u));
2563
2564 // Copy the data across.
2565 APValue NewValue(APValue::UninitArray(), NewElts, Size);
2566 for (unsigned I = 0; I != OldElts; ++I)
2567 NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2568 for (unsigned I = OldElts; I != NewElts; ++I)
2569 NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2570 if (NewValue.hasArrayFiller())
2571 NewValue.getArrayFiller() = Array.getArrayFiller();
2572 Array.swap(NewValue);
2573}
2574
2575/// Determine whether a type would actually be read by an lvalue-to-rvalue
2576/// conversion. If it's of class type, we may assume that the copy operation
2577/// is trivial. Note that this is never true for a union type with fields
2578/// (because the copy always "reads" the active member) and always true for
2579/// a non-class type.
2580static bool isReadByLvalueToRvalueConversion(QualType T) {
2581 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2582 if (!RD || (RD->isUnion() && !RD->field_empty()))
2583 return true;
2584 if (RD->isEmpty())
2585 return false;
2586
2587 for (auto *Field : RD->fields())
2588 if (isReadByLvalueToRvalueConversion(Field->getType()))
2589 return true;
2590
2591 for (auto &BaseSpec : RD->bases())
2592 if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2593 return true;
2594
2595 return false;
2596}
2597
2598/// Diagnose an attempt to read from any unreadable field within the specified
2599/// type, which might be a class type.
2600static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2601 QualType T) {
2602 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2603 if (!RD)
2604 return false;
2605
2606 if (!RD->hasMutableFields())
2607 return false;
2608
2609 for (auto *Field : RD->fields()) {
2610 // If we're actually going to read this field in some way, then it can't
2611 // be mutable. If we're in a union, then assigning to a mutable field
2612 // (even an empty one) can change the active member, so that's not OK.
2613 // FIXME: Add core issue number for the union case.
2614 if (Field->isMutable() &&
2615 (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2616 Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2617 Info.Note(Field->getLocation(), diag::note_declared_at);
2618 return true;
2619 }
2620
2621 if (diagnoseUnreadableFields(Info, E, Field->getType()))
2622 return true;
2623 }
2624
2625 for (auto &BaseSpec : RD->bases())
2626 if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2627 return true;
2628
2629 // All mutable fields were empty, and thus not actually read.
2630 return false;
2631}
2632
2633/// Kinds of access we can perform on an object, for diagnostics.
2634enum AccessKinds {
2635 AK_Read,
2636 AK_Assign,
2637 AK_Increment,
2638 AK_Decrement
2639};
2640
2641namespace {
2642/// A handle to a complete object (an object that is not a subobject of
2643/// another object).
2644struct CompleteObject {
2645 /// The value of the complete object.
2646 APValue *Value;
2647 /// The type of the complete object.
2648 QualType Type;
2649 bool LifetimeStartedInEvaluation;
2650
2651 CompleteObject() : Value(nullptr) {}
2652 CompleteObject(APValue *Value, QualType Type,
2653 bool LifetimeStartedInEvaluation)
2654 : Value(Value), Type(Type),
2655 LifetimeStartedInEvaluation(LifetimeStartedInEvaluation) {
2656 assert(Value && "missing value for complete object")(static_cast <bool> (Value && "missing value for complete object"
) ? void (0) : __assert_fail ("Value && \"missing value for complete object\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2656, __extension__ __PRETTY_FUNCTION__))
;
2657 }
2658
2659 explicit operator bool() const { return Value; }
2660};
2661} // end anonymous namespace
2662
2663/// Find the designated sub-object of an rvalue.
2664template<typename SubobjectHandler>
2665typename SubobjectHandler::result_type
2666findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2667 const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2668 if (Sub.Invalid)
2669 // A diagnostic will have already been produced.
2670 return handler.failed();
2671 if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
2672 if (Info.getLangOpts().CPlusPlus11)
2673 Info.FFDiag(E, Sub.isOnePastTheEnd()
2674 ? diag::note_constexpr_access_past_end
2675 : diag::note_constexpr_access_unsized_array)
2676 << handler.AccessKind;
2677 else
2678 Info.FFDiag(E);
2679 return handler.failed();
2680 }
2681
2682 APValue *O = Obj.Value;
2683 QualType ObjType = Obj.Type;
2684 const FieldDecl *LastField = nullptr;
2685 const bool MayReadMutableMembers =
2686 Obj.LifetimeStartedInEvaluation && Info.getLangOpts().CPlusPlus14;
2687
2688 // Walk the designator's path to find the subobject.
2689 for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2690 if (O->isUninit()) {
2691 if (!Info.checkingPotentialConstantExpression())
2692 Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2693 return handler.failed();
2694 }
2695
2696 if (I == N) {
2697 // If we are reading an object of class type, there may still be more
2698 // things we need to check: if there are any mutable subobjects, we
2699 // cannot perform this read. (This only happens when performing a trivial
2700 // copy or assignment.)
2701 if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2702 !MayReadMutableMembers && diagnoseUnreadableFields(Info, E, ObjType))
2703 return handler.failed();
2704
2705 if (!handler.found(*O, ObjType))
2706 return false;
2707
2708 // If we modified a bit-field, truncate it to the right width.
2709 if (handler.AccessKind != AK_Read &&
2710 LastField && LastField->isBitField() &&
2711 !truncateBitfieldValue(Info, E, *O, LastField))
2712 return false;
2713
2714 return true;
2715 }
2716
2717 LastField = nullptr;
2718 if (ObjType->isArrayType()) {
2719 // Next subobject is an array element.
2720 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2721 assert(CAT && "vla in literal type?")(static_cast <bool> (CAT && "vla in literal type?"
) ? void (0) : __assert_fail ("CAT && \"vla in literal type?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2721, __extension__ __PRETTY_FUNCTION__))
;
2722 uint64_t Index = Sub.Entries[I].ArrayIndex;
2723 if (CAT->getSize().ule(Index)) {
2724 // Note, it should not be possible to form a pointer with a valid
2725 // designator which points more than one past the end of the array.
2726 if (Info.getLangOpts().CPlusPlus11)
2727 Info.FFDiag(E, diag::note_constexpr_access_past_end)
2728 << handler.AccessKind;
2729 else
2730 Info.FFDiag(E);
2731 return handler.failed();
2732 }
2733
2734 ObjType = CAT->getElementType();
2735
2736 // An array object is represented as either an Array APValue or as an
2737 // LValue which refers to a string literal.
2738 if (O->isLValue()) {
2739 assert(I == N - 1 && "extracting subobject of character?")(static_cast <bool> (I == N - 1 && "extracting subobject of character?"
) ? void (0) : __assert_fail ("I == N - 1 && \"extracting subobject of character?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2739, __extension__ __PRETTY_FUNCTION__))
;
2740 assert(!O->hasLValuePath() || O->getLValuePath().empty())(static_cast <bool> (!O->hasLValuePath() || O->getLValuePath
().empty()) ? void (0) : __assert_fail ("!O->hasLValuePath() || O->getLValuePath().empty()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2740, __extension__ __PRETTY_FUNCTION__))
;
2741 if (handler.AccessKind != AK_Read)
2742 expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2743 *O);
2744 else
2745 return handler.foundString(*O, ObjType, Index);
2746 }
2747
2748 if (O->getArrayInitializedElts() > Index)
2749 O = &O->getArrayInitializedElt(Index);
2750 else if (handler.AccessKind != AK_Read) {
2751 expandArray(*O, Index);
2752 O = &O->getArrayInitializedElt(Index);
2753 } else
2754 O = &O->getArrayFiller();
2755 } else if (ObjType->isAnyComplexType()) {
2756 // Next subobject is a complex number.
2757 uint64_t Index = Sub.Entries[I].ArrayIndex;
2758 if (Index > 1) {
2759 if (Info.getLangOpts().CPlusPlus11)
2760 Info.FFDiag(E, diag::note_constexpr_access_past_end)
2761 << handler.AccessKind;
2762 else
2763 Info.FFDiag(E);
2764 return handler.failed();
2765 }
2766
2767 bool WasConstQualified = ObjType.isConstQualified();
2768 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2769 if (WasConstQualified)
2770 ObjType.addConst();
2771
2772 assert(I == N - 1 && "extracting subobject of scalar?")(static_cast <bool> (I == N - 1 && "extracting subobject of scalar?"
) ? void (0) : __assert_fail ("I == N - 1 && \"extracting subobject of scalar?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2772, __extension__ __PRETTY_FUNCTION__))
;
2773 if (O->isComplexInt()) {
2774 return handler.found(Index ? O->getComplexIntImag()
2775 : O->getComplexIntReal(), ObjType);
2776 } else {
2777 assert(O->isComplexFloat())(static_cast <bool> (O->isComplexFloat()) ? void (0)
: __assert_fail ("O->isComplexFloat()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2777, __extension__ __PRETTY_FUNCTION__))
;
2778 return handler.found(Index ? O->getComplexFloatImag()
2779 : O->getComplexFloatReal(), ObjType);
2780 }
2781 } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2782 // In C++14 onwards, it is permitted to read a mutable member whose
2783 // lifetime began within the evaluation.
2784 // FIXME: Should we also allow this in C++11?
2785 if (Field->isMutable() && handler.AccessKind == AK_Read &&
2786 !MayReadMutableMembers) {
2787 Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
2788 << Field;
2789 Info.Note(Field->getLocation(), diag::note_declared_at);
2790 return handler.failed();
2791 }
2792
2793 // Next subobject is a class, struct or union field.
2794 RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2795 if (RD->isUnion()) {
2796 const FieldDecl *UnionField = O->getUnionField();
2797 if (!UnionField ||
2798 UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2799 Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
2800 << handler.AccessKind << Field << !UnionField << UnionField;
2801 return handler.failed();
2802 }
2803 O = &O->getUnionValue();
2804 } else
2805 O = &O->getStructField(Field->getFieldIndex());
2806
2807 bool WasConstQualified = ObjType.isConstQualified();
2808 ObjType = Field->getType();
2809 if (WasConstQualified && !Field->isMutable())
2810 ObjType.addConst();
2811
2812 if (ObjType.isVolatileQualified()) {
2813 if (Info.getLangOpts().CPlusPlus) {
2814 // FIXME: Include a description of the path to the volatile subobject.
2815 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2816 << handler.AccessKind << 2 << Field;
2817 Info.Note(Field->getLocation(), diag::note_declared_at);
2818 } else {
2819 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2820 }
2821 return handler.failed();
2822 }
2823
2824 LastField = Field;
2825 } else {
2826 // Next subobject is a base class.
2827 const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2828 const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2829 O = &O->getStructBase(getBaseIndex(Derived, Base));
2830
2831 bool WasConstQualified = ObjType.isConstQualified();
2832 ObjType = Info.Ctx.getRecordType(Base);
2833 if (WasConstQualified)
2834 ObjType.addConst();
2835 }
2836 }
2837}
2838
2839namespace {
2840struct ExtractSubobjectHandler {
2841 EvalInfo &Info;
2842 APValue &Result;
2843
2844 static const AccessKinds AccessKind = AK_Read;
2845
2846 typedef bool result_type;
2847 bool failed() { return false; }
2848 bool found(APValue &Subobj, QualType SubobjType) {
2849 Result = Subobj;
2850 return true;
2851 }
2852 bool found(APSInt &Value, QualType SubobjType) {
2853 Result = APValue(Value);
2854 return true;
2855 }
2856 bool found(APFloat &Value, QualType SubobjType) {
2857 Result = APValue(Value);
2858 return true;
2859 }
2860 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2861 Result = APValue(extractStringLiteralCharacter(
2862 Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2863 return true;
2864 }
2865};
2866} // end anonymous namespace
2867
2868const AccessKinds ExtractSubobjectHandler::AccessKind;
2869
2870/// Extract the designated sub-object of an rvalue.
2871static bool extractSubobject(EvalInfo &Info, const Expr *E,
2872 const CompleteObject &Obj,
2873 const SubobjectDesignator &Sub,
2874 APValue &Result) {
2875 ExtractSubobjectHandler Handler = { Info, Result };
2876 return findSubobject(Info, E, Obj, Sub, Handler);
2877}
2878
2879namespace {
2880struct ModifySubobjectHandler {
2881 EvalInfo &Info;
2882 APValue &NewVal;
2883 const Expr *E;
2884
2885 typedef bool result_type;
2886 static const AccessKinds AccessKind = AK_Assign;
2887
2888 bool checkConst(QualType QT) {
2889 // Assigning to a const object has undefined behavior.
2890 if (QT.isConstQualified()) {
2891 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2892 return false;
2893 }
2894 return true;
2895 }
2896
2897 bool failed() { return false; }
2898 bool found(APValue &Subobj, QualType SubobjType) {
2899 if (!checkConst(SubobjType))
2900 return false;
2901 // We've been given ownership of NewVal, so just swap it in.
2902 Subobj.swap(NewVal);
2903 return true;
2904 }
2905 bool found(APSInt &Value, QualType SubobjType) {
2906 if (!checkConst(SubobjType))
2907 return false;
2908 if (!NewVal.isInt()) {
2909 // Maybe trying to write a cast pointer value into a complex?
2910 Info.FFDiag(E);
2911 return false;
2912 }
2913 Value = NewVal.getInt();
2914 return true;
2915 }
2916 bool found(APFloat &Value, QualType SubobjType) {
2917 if (!checkConst(SubobjType))
2918 return false;
2919 Value = NewVal.getFloat();
2920 return true;
2921 }
2922 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2923 llvm_unreachable("shouldn't encounter string elements with ExpandArrays")::llvm::llvm_unreachable_internal("shouldn't encounter string elements with ExpandArrays"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 2923)
;
2924 }
2925};
2926} // end anonymous namespace
2927
2928const AccessKinds ModifySubobjectHandler::AccessKind;
2929
2930/// Update the designated sub-object of an rvalue to the given value.
2931static bool modifySubobject(EvalInfo &Info, const Expr *E,
2932 const CompleteObject &Obj,
2933 const SubobjectDesignator &Sub,
2934 APValue &NewVal) {
2935 ModifySubobjectHandler Handler = { Info, NewVal, E };
2936 return findSubobject(Info, E, Obj, Sub, Handler);
2937}
2938
2939/// Find the position where two subobject designators diverge, or equivalently
2940/// the length of the common initial subsequence.
2941static unsigned FindDesignatorMismatch(QualType ObjType,
2942 const SubobjectDesignator &A,
2943 const SubobjectDesignator &B,
2944 bool &WasArrayIndex) {
2945 unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2946 for (/**/; I != N; ++I) {
2947 if (!ObjType.isNull() &&
2948 (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2949 // Next subobject is an array element.
2950 if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2951 WasArrayIndex = true;
2952 return I;
2953 }
2954 if (ObjType->isAnyComplexType())
2955 ObjType = ObjType->castAs<ComplexType>()->getElementType();
2956 else
2957 ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2958 } else {
2959 if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2960 WasArrayIndex = false;
2961 return I;
2962 }
2963 if (const FieldDecl *FD = getAsField(A.Entries[I]))
2964 // Next subobject is a field.
2965 ObjType = FD->getType();
2966 else
2967 // Next subobject is a base class.
2968 ObjType = QualType();
2969 }
2970 }
2971 WasArrayIndex = false;
2972 return I;
2973}
2974
2975/// Determine whether the given subobject designators refer to elements of the
2976/// same array object.
2977static bool AreElementsOfSameArray(QualType ObjType,
2978 const SubobjectDesignator &A,
2979 const SubobjectDesignator &B) {
2980 if (A.Entries.size() != B.Entries.size())
2981 return false;
2982
2983 bool IsArray = A.MostDerivedIsArrayElement;
2984 if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2985 // A is a subobject of the array element.
2986 return false;
2987
2988 // If A (and B) designates an array element, the last entry will be the array
2989 // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2990 // of length 1' case, and the entire path must match.
2991 bool WasArrayIndex;
2992 unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2993 return CommonLength >= A.Entries.size() - IsArray;
2994}
2995
2996/// Find the complete object to which an LValue refers.
2997static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2998 AccessKinds AK, const LValue &LVal,
2999 QualType LValType) {
3000 if (!LVal.Base) {
3001 Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3002 return CompleteObject();
3003 }
3004
3005 CallStackFrame *Frame = nullptr;
3006 if (LVal.CallIndex) {
3007 Frame = Info.getCallFrame(LVal.CallIndex);
3008 if (!Frame) {
3009 Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3010 << AK << LVal.Base.is<const ValueDecl*>();
3011 NoteLValueLocation(Info, LVal.Base);
3012 return CompleteObject();
3013 }
3014 }
3015
3016 // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3017 // is not a constant expression (even if the object is non-volatile). We also
3018 // apply this rule to C++98, in order to conform to the expected 'volatile'
3019 // semantics.
3020 if (LValType.isVolatileQualified()) {
3021 if (Info.getLangOpts().CPlusPlus)
3022 Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3023 << AK << LValType;
3024 else
3025 Info.FFDiag(E);
3026 return CompleteObject();
3027 }
3028
3029 // Compute value storage location and type of base object.
3030 APValue *BaseVal = nullptr;
3031 QualType BaseType = getType(LVal.Base);
3032 bool LifetimeStartedInEvaluation = Frame;
3033
3034 if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
3035 // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
3036 // In C++11, constexpr, non-volatile variables initialized with constant
3037 // expressions are constant expressions too. Inside constexpr functions,
3038 // parameters are constant expressions even if they're non-const.
3039 // In C++1y, objects local to a constant expression (those with a Frame) are
3040 // both readable and writable inside constant expressions.
3041 // In C, such things can also be folded, although they are not ICEs.
3042 const VarDecl *VD = dyn_cast<VarDecl>(D);
3043 if (VD) {
3044 if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
3045 VD = VDef;
3046 }
3047 if (!VD || VD->isInvalidDecl()) {
3048 Info.FFDiag(E);
3049 return CompleteObject();
3050 }
3051
3052 // Accesses of volatile-qualified objects are not allowed.
3053 if (BaseType.isVolatileQualified()) {
3054 if (Info.getLangOpts().CPlusPlus) {
3055 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3056 << AK << 1 << VD;
3057 Info.Note(VD->getLocation(), diag::note_declared_at);
3058 } else {
3059 Info.FFDiag(E);
3060 }
3061 return CompleteObject();
3062 }
3063
3064 // Unless we're looking at a local variable or argument in a constexpr call,
3065 // the variable we're reading must be const.
3066 if (!Frame) {
3067 if (Info.getLangOpts().CPlusPlus14 &&
3068 VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
3069 // OK, we can read and modify an object if we're in the process of
3070 // evaluating its initializer, because its lifetime began in this
3071 // evaluation.
3072 } else if (AK != AK_Read) {
3073 // All the remaining cases only permit reading.
3074 Info.FFDiag(E, diag::note_constexpr_modify_global);
3075 return CompleteObject();
3076 } else if (VD->isConstexpr()) {
3077 // OK, we can read this variable.
3078 } else if (BaseType->isIntegralOrEnumerationType()) {
3079 // In OpenCL if a variable is in constant address space it is a const value.
3080 if (!(BaseType.isConstQualified() ||
3081 (Info.getLangOpts().OpenCL &&
3082 BaseType.getAddressSpace() == LangAS::opencl_constant))) {
3083 if (Info.getLangOpts().CPlusPlus) {
3084 Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
3085 Info.Note(VD->getLocation(), diag::note_declared_at);
3086 } else {
3087 Info.FFDiag(E);
3088 }
3089 return CompleteObject();
3090 }
3091 } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
3092 // We support folding of const floating-point types, in order to make
3093 // static const data members of such types (supported as an extension)
3094 // more useful.
3095 if (Info.getLangOpts().CPlusPlus11) {
3096 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3097 Info.Note(VD->getLocation(), diag::note_declared_at);
3098 } else {
3099 Info.CCEDiag(E);
3100 }
3101 } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
3102 Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
3103 // Keep evaluating to see what we can do.
3104 } else {
3105 // FIXME: Allow folding of values of any literal type in all languages.
3106 if (Info.checkingPotentialConstantExpression() &&
3107 VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
3108 // The definition of this variable could be constexpr. We can't
3109 // access it right now, but may be able to in future.
3110 } else if (Info.getLangOpts().CPlusPlus11) {
3111 Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3112 Info.Note(VD->getLocation(), diag::note_declared_at);
3113 } else {
3114 Info.FFDiag(E);
3115 }
3116 return CompleteObject();
3117 }
3118 }
3119
3120 if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
3121 return CompleteObject();
3122 } else {
3123 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3124
3125 if (!Frame) {
3126 if (const MaterializeTemporaryExpr *MTE =
3127 dyn_cast<MaterializeTemporaryExpr>(Base)) {
3128 assert(MTE->getStorageDuration() == SD_Static &&(static_cast <bool> (MTE->getStorageDuration() == SD_Static
&& "should have a frame for a non-global materialized temporary"
) ? void (0) : __assert_fail ("MTE->getStorageDuration() == SD_Static && \"should have a frame for a non-global materialized temporary\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3129, __extension__ __PRETTY_FUNCTION__))
3129 "should have a frame for a non-global materialized temporary")(static_cast <bool> (MTE->getStorageDuration() == SD_Static
&& "should have a frame for a non-global materialized temporary"
) ? void (0) : __assert_fail ("MTE->getStorageDuration() == SD_Static && \"should have a frame for a non-global materialized temporary\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3129, __extension__ __PRETTY_FUNCTION__))
;
3130
3131 // Per C++1y [expr.const]p2:
3132 // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
3133 // - a [...] glvalue of integral or enumeration type that refers to
3134 // a non-volatile const object [...]
3135 // [...]
3136 // - a [...] glvalue of literal type that refers to a non-volatile
3137 // object whose lifetime began within the evaluation of e.
3138 //
3139 // C++11 misses the 'began within the evaluation of e' check and
3140 // instead allows all temporaries, including things like:
3141 // int &&r = 1;
3142 // int x = ++r;
3143 // constexpr int k = r;
3144 // Therefore we use the C++14 rules in C++11 too.
3145 const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
3146 const ValueDecl *ED = MTE->getExtendingDecl();
3147 if (!(BaseType.isConstQualified() &&
3148 BaseType->isIntegralOrEnumerationType()) &&
3149 !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
3150 Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
3151 Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
3152 return CompleteObject();
3153 }
3154
3155 BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
3156 assert(BaseVal && "got reference to unevaluated temporary")(static_cast <bool> (BaseVal && "got reference to unevaluated temporary"
) ? void (0) : __assert_fail ("BaseVal && \"got reference to unevaluated temporary\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3156, __extension__ __PRETTY_FUNCTION__))
;
3157 LifetimeStartedInEvaluation = true;
3158 } else {
3159 Info.FFDiag(E);
3160 return CompleteObject();
3161 }
3162 } else {
3163 BaseVal = Frame->getTemporary(Base);
3164 assert(BaseVal && "missing value for temporary")(static_cast <bool> (BaseVal && "missing value for temporary"
) ? void (0) : __assert_fail ("BaseVal && \"missing value for temporary\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3164, __extension__ __PRETTY_FUNCTION__))
;
3165 }
3166
3167 // Volatile temporary objects cannot be accessed in constant expressions.
3168 if (BaseType.isVolatileQualified()) {
3169 if (Info.getLangOpts().CPlusPlus) {
3170 Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3171 << AK << 0;
3172 Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
3173 } else {
3174 Info.FFDiag(E);
3175 }
3176 return CompleteObject();
3177 }
3178 }
3179
3180 // During the construction of an object, it is not yet 'const'.
3181 // FIXME: This doesn't do quite the right thing for const subobjects of the
3182 // object under construction.
3183 if (Info.isEvaluatingConstructor(LVal.getLValueBase(), LVal.CallIndex)) {
3184 BaseType = Info.Ctx.getCanonicalType(BaseType);
3185 BaseType.removeLocalConst();
3186 LifetimeStartedInEvaluation = true;
3187 }
3188
3189 // In C++14, we can't safely access any mutable state when we might be
3190 // evaluating after an unmodeled side effect.
3191 //
3192 // FIXME: Not all local state is mutable. Allow local constant subobjects
3193 // to be read here (but take care with 'mutable' fields).
3194 if ((Frame && Info.getLangOpts().CPlusPlus14 &&
3195 Info.EvalStatus.HasSideEffects) ||
3196 (AK != AK_Read && Info.IsSpeculativelyEvaluating))
3197 return CompleteObject();
3198
3199 return CompleteObject(BaseVal, BaseType, LifetimeStartedInEvaluation);
3200}
3201
3202/// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
3203/// can also be used for 'lvalue-to-lvalue' conversions for looking up the
3204/// glvalue referred to by an entity of reference type.
3205///
3206/// \param Info - Information about the ongoing evaluation.
3207/// \param Conv - The expression for which we are performing the conversion.
3208/// Used for diagnostics.
3209/// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
3210/// case of a non-class type).
3211/// \param LVal - The glvalue on which we are attempting to perform this action.
3212/// \param RVal - The produced value will be placed here.
3213static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
3214 QualType Type,
3215 const LValue &LVal, APValue &RVal) {
3216 if (LVal.Designator.Invalid)
3217 return false;
3218
3219 // Check for special cases where there is no existing APValue to look at.
3220 const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3221 if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
3222 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
3223 // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
3224 // initializer until now for such expressions. Such an expression can't be
3225 // an ICE in C, so this only matters for fold.
3226 if (Type.isVolatileQualified()) {
3227 Info.FFDiag(Conv);
3228 return false;
3229 }
3230 APValue Lit;
3231 if (!Evaluate(Lit, Info, CLE->getInitializer()))
3232 return false;
3233 CompleteObject LitObj(&Lit, Base->getType(), false);
3234 return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
3235 } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
3236 // We represent a string literal array as an lvalue pointing at the
3237 // corresponding expression, rather than building an array of chars.
3238 // FIXME: Support ObjCEncodeExpr, MakeStringConstant
3239 APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
3240 CompleteObject StrObj(&Str, Base->getType(), false);
3241 return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
3242 }
3243 }
3244
3245 CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
3246 return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
3247}
3248
3249/// Perform an assignment of Val to LVal. Takes ownership of Val.
3250static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
3251 QualType LValType, APValue &Val) {
3252 if (LVal.Designator.Invalid)
3253 return false;
3254
3255 if (!Info.getLangOpts().CPlusPlus14) {
3256 Info.FFDiag(E);
3257 return false;
3258 }
3259
3260 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3261 return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
3262}
3263
3264namespace {
3265struct CompoundAssignSubobjectHandler {
3266 EvalInfo &Info;
3267 const Expr *E;
3268 QualType PromotedLHSType;
3269 BinaryOperatorKind Opcode;
3270 const APValue &RHS;
3271
3272 static const AccessKinds AccessKind = AK_Assign;
3273
3274 typedef bool result_type;
3275
3276 bool checkConst(QualType QT) {
3277 // Assigning to a const object has undefined behavior.
3278 if (QT.isConstQualified()) {
3279 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3280 return false;
3281 }
3282 return true;
3283 }
3284
3285 bool failed() { return false; }
3286 bool found(APValue &Subobj, QualType SubobjType) {
3287 switch (Subobj.getKind()) {
3288 case APValue::Int:
3289 return found(Subobj.getInt(), SubobjType);
3290 case APValue::Float:
3291 return found(Subobj.getFloat(), SubobjType);
3292 case APValue::ComplexInt:
3293 case APValue::ComplexFloat:
3294 // FIXME: Implement complex compound assignment.
3295 Info.FFDiag(E);
3296 return false;
3297 case APValue::LValue:
3298 return foundPointer(Subobj, SubobjType);
3299 default:
3300 // FIXME: can this happen?
3301 Info.FFDiag(E);
3302 return false;
3303 }
3304 }
3305 bool found(APSInt &Value, QualType SubobjType) {
3306 if (!checkConst(SubobjType))
3307 return false;
3308
3309 if (!SubobjType->isIntegerType() || !RHS.isInt()) {
3310 // We don't support compound assignment on integer-cast-to-pointer
3311 // values.
3312 Info.FFDiag(E);
3313 return false;
3314 }
3315
3316 APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
3317 SubobjType, Value);
3318 if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3319 return false;
3320 Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3321 return true;
3322 }
3323 bool found(APFloat &Value, QualType SubobjType) {
3324 return checkConst(SubobjType) &&
3325 HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3326 Value) &&
3327 handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3328 HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3329 }
3330 bool foundPointer(APValue &Subobj, QualType SubobjType) {
3331 if (!checkConst(SubobjType))
3332 return false;
3333
3334 QualType PointeeType;
3335 if (const PointerType *PT = SubobjType->getAs<PointerType>())
3336 PointeeType = PT->getPointeeType();
3337
3338 if (PointeeType.isNull() || !RHS.isInt() ||
3339 (Opcode != BO_Add && Opcode != BO_Sub)) {
3340 Info.FFDiag(E);
3341 return false;
3342 }
3343
3344 APSInt Offset = RHS.getInt();
3345 if (Opcode == BO_Sub)
3346 negateAsSigned(Offset);
3347
3348 LValue LVal;
3349 LVal.setFrom(Info.Ctx, Subobj);
3350 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3351 return false;
3352 LVal.moveInto(Subobj);
3353 return true;
3354 }
3355 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3356 llvm_unreachable("shouldn't encounter string elements here")::llvm::llvm_unreachable_internal("shouldn't encounter string elements here"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3356)
;
3357 }
3358};
3359} // end anonymous namespace
3360
3361const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3362
3363/// Perform a compound assignment of LVal <op>= RVal.
3364static bool handleCompoundAssignment(
3365 EvalInfo &Info, const Expr *E,
3366 const LValue &LVal, QualType LValType, QualType PromotedLValType,
3367 BinaryOperatorKind Opcode, const APValue &RVal) {
3368 if (LVal.Designator.Invalid)
3369 return false;
3370
3371 if (!Info.getLangOpts().CPlusPlus14) {
3372 Info.FFDiag(E);
3373 return false;
3374 }
3375
3376 CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3377 CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3378 RVal };
3379 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3380}
3381
3382namespace {
3383struct IncDecSubobjectHandler {
3384 EvalInfo &Info;
3385 const UnaryOperator *E;
3386 AccessKinds AccessKind;
3387 APValue *Old;
3388
3389 typedef bool result_type;
3390
3391 bool checkConst(QualType QT) {
3392 // Assigning to a const object has undefined behavior.
3393 if (QT.isConstQualified()) {
3394 Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3395 return false;
3396 }
3397 return true;
3398 }
3399
3400 bool failed() { return false; }
3401 bool found(APValue &Subobj, QualType SubobjType) {
3402 // Stash the old value. Also clear Old, so we don't clobber it later
3403 // if we're post-incrementing a complex.
3404 if (Old) {
3405 *Old = Subobj;
3406 Old = nullptr;
3407 }
3408
3409 switch (Subobj.getKind()) {
3410 case APValue::Int:
3411 return found(Subobj.getInt(), SubobjType);
3412 case APValue::Float:
3413 return found(Subobj.getFloat(), SubobjType);
3414 case APValue::ComplexInt:
3415 return found(Subobj.getComplexIntReal(),
3416 SubobjType->castAs<ComplexType>()->getElementType()
3417 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3418 case APValue::ComplexFloat:
3419 return found(Subobj.getComplexFloatReal(),
3420 SubobjType->castAs<ComplexType>()->getElementType()
3421 .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3422 case APValue::LValue:
3423 return foundPointer(Subobj, SubobjType);
3424 default:
3425 // FIXME: can this happen?
3426 Info.FFDiag(E);
3427 return false;
3428 }
3429 }
3430 bool found(APSInt &Value, QualType SubobjType) {
3431 if (!checkConst(SubobjType))
3432 return false;
3433
3434 if (!SubobjType->isIntegerType()) {
3435 // We don't support increment / decrement on integer-cast-to-pointer
3436 // values.
3437 Info.FFDiag(E);
3438 return false;
3439 }
3440
3441 if (Old) *Old = APValue(Value);
3442
3443 // bool arithmetic promotes to int, and the conversion back to bool
3444 // doesn't reduce mod 2^n, so special-case it.
3445 if (SubobjType->isBooleanType()) {
3446 if (AccessKind == AK_Increment)
3447 Value = 1;
3448 else
3449 Value = !Value;
3450 return true;
3451 }
3452
3453 bool WasNegative = Value.isNegative();
3454 if (AccessKind == AK_Increment) {
3455 ++Value;
3456
3457 if (!WasNegative && Value.isNegative() && E->canOverflow()) {
3458 APSInt ActualValue(Value, /*IsUnsigned*/true);
3459 return HandleOverflow(Info, E, ActualValue, SubobjType);
3460 }
3461 } else {
3462 --Value;
3463
3464 if (WasNegative && !Value.isNegative() && E->canOverflow()) {
3465 unsigned BitWidth = Value.getBitWidth();
3466 APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3467 ActualValue.setBit(BitWidth);
3468 return HandleOverflow(Info, E, ActualValue, SubobjType);
3469 }
3470 }
3471 return true;
3472 }
3473 bool found(APFloat &Value, QualType SubobjType) {
3474 if (!checkConst(SubobjType))
3475 return false;
3476
3477 if (Old) *Old = APValue(Value);
3478
3479 APFloat One(Value.getSemantics(), 1);
3480 if (AccessKind == AK_Increment)
3481 Value.add(One, APFloat::rmNearestTiesToEven);
3482 else
3483 Value.subtract(One, APFloat::rmNearestTiesToEven);
3484 return true;
3485 }
3486 bool foundPointer(APValue &Subobj, QualType SubobjType) {
3487 if (!checkConst(SubobjType))
3488 return false;
3489
3490 QualType PointeeType;
3491 if (const PointerType *PT = SubobjType->getAs<PointerType>())
3492 PointeeType = PT->getPointeeType();
3493 else {
3494 Info.FFDiag(E);
3495 return false;
3496 }
3497
3498 LValue LVal;
3499 LVal.setFrom(Info.Ctx, Subobj);
3500 if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3501 AccessKind == AK_Increment ? 1 : -1))
3502 return false;
3503 LVal.moveInto(Subobj);
3504 return true;
3505 }
3506 bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3507 llvm_unreachable("shouldn't encounter string elements here")::llvm::llvm_unreachable_internal("shouldn't encounter string elements here"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3507)
;
3508 }
3509};
3510} // end anonymous namespace
3511
3512/// Perform an increment or decrement on LVal.
3513static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3514 QualType LValType, bool IsIncrement, APValue *Old) {
3515 if (LVal.Designator.Invalid)
3516 return false;
3517
3518 if (!Info.getLangOpts().CPlusPlus14) {
3519 Info.FFDiag(E);
3520 return false;
3521 }
3522
3523 AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3524 CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3525 IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
3526 return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3527}
3528
3529/// Build an lvalue for the object argument of a member function call.
3530static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3531 LValue &This) {
3532 if (Object->getType()->isPointerType())
3533 return EvaluatePointer(Object, This, Info);
3534
3535 if (Object->isGLValue())
3536 return EvaluateLValue(Object, This, Info);
3537
3538 if (Object->getType()->isLiteralType(Info.Ctx))
3539 return EvaluateTemporary(Object, This, Info);
3540
3541 Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3542 return false;
3543}
3544
3545/// HandleMemberPointerAccess - Evaluate a member access operation and build an
3546/// lvalue referring to the result.
3547///
3548/// \param Info - Information about the ongoing evaluation.
3549/// \param LV - An lvalue referring to the base of the member pointer.
3550/// \param RHS - The member pointer expression.
3551/// \param IncludeMember - Specifies whether the member itself is included in
3552/// the resulting LValue subobject designator. This is not possible when
3553/// creating a bound member function.
3554/// \return The field or method declaration to which the member pointer refers,
3555/// or 0 if evaluation fails.
3556static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3557 QualType LVType,
3558 LValue &LV,
3559 const Expr *RHS,
3560 bool IncludeMember = true) {
3561 MemberPtr MemPtr;
3562 if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3563 return nullptr;
3564
3565 // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3566 // member value, the behavior is undefined.
3567 if (!MemPtr.getDecl()) {
3568 // FIXME: Specific diagnostic.
3569 Info.FFDiag(RHS);
3570 return nullptr;
3571 }
3572
3573 if (MemPtr.isDerivedMember()) {
3574 // This is a member of some derived class. Truncate LV appropriately.
3575 // The end of the derived-to-base path for the base object must match the
3576 // derived-to-base path for the member pointer.
3577 if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3578 LV.Designator.Entries.size()) {
3579 Info.FFDiag(RHS);
3580 return nullptr;
3581 }
3582 unsigned PathLengthToMember =
3583 LV.Designator.Entries.size() - MemPtr.Path.size();
3584 for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3585 const CXXRecordDecl *LVDecl = getAsBaseClass(
3586 LV.Designator.Entries[PathLengthToMember + I]);
3587 const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3588 if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3589 Info.FFDiag(RHS);
3590 return nullptr;
3591 }
3592 }
3593
3594 // Truncate the lvalue to the appropriate derived class.
3595 if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3596 PathLengthToMember))
3597 return nullptr;
3598 } else if (!MemPtr.Path.empty()) {
3599 // Extend the LValue path with the member pointer's path.
3600 LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3601 MemPtr.Path.size() + IncludeMember);
3602
3603 // Walk down to the appropriate base class.
3604 if (const PointerType *PT = LVType->getAs<PointerType>())
3605 LVType = PT->getPointeeType();
3606 const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3607 assert(RD && "member pointer access on non-class-type expression")(static_cast <bool> (RD && "member pointer access on non-class-type expression"
) ? void (0) : __assert_fail ("RD && \"member pointer access on non-class-type expression\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3607, __extension__ __PRETTY_FUNCTION__))
;
3608 // The first class in the path is that of the lvalue.
3609 for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3610 const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3611 if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3612 return nullptr;
3613 RD = Base;
3614 }
3615 // Finally cast to the class containing the member.
3616 if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3617 MemPtr.getContainingRecord()))
3618 return nullptr;
3619 }
3620
3621 // Add the member. Note that we cannot build bound member functions here.
3622 if (IncludeMember) {
3623 if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3624 if (!HandleLValueMember(Info, RHS, LV, FD))
3625 return nullptr;
3626 } else if (const IndirectFieldDecl *IFD =
3627 dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3628 if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3629 return nullptr;
3630 } else {
3631 llvm_unreachable("can't construct reference to bound member function")::llvm::llvm_unreachable_internal("can't construct reference to bound member function"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3631)
;
3632 }
3633 }
3634
3635 return MemPtr.getDecl();
3636}
3637
3638static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3639 const BinaryOperator *BO,
3640 LValue &LV,
3641 bool IncludeMember = true) {
3642 assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI)(static_cast <bool> (BO->getOpcode() == BO_PtrMemD ||
BO->getOpcode() == BO_PtrMemI) ? void (0) : __assert_fail
("BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3642, __extension__ __PRETTY_FUNCTION__))
;
3643
3644 if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3645 if (Info.noteFailure()) {
3646 MemberPtr MemPtr;
3647 EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3648 }
3649 return nullptr;
3650 }
3651
3652 return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3653 BO->getRHS(), IncludeMember);
3654}
3655
3656/// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3657/// the provided lvalue, which currently refers to the base object.
3658static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3659 LValue &Result) {
3660 SubobjectDesignator &D = Result.Designator;
3661 if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3662 return false;
3663
3664 QualType TargetQT = E->getType();
3665 if (const PointerType *PT = TargetQT->getAs<PointerType>())
3666 TargetQT = PT->getPointeeType();
3667
3668 // Check this cast lands within the final derived-to-base subobject path.
3669 if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3670 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3671 << D.MostDerivedType << TargetQT;
3672 return false;
3673 }
3674
3675 // Check the type of the final cast. We don't need to check the path,
3676 // since a cast can only be formed if the path is unique.
3677 unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3678 const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3679 const CXXRecordDecl *FinalType;
3680 if (NewEntriesSize == D.MostDerivedPathLength)
3681 FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3682 else
3683 FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3684 if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3685 Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3686 << D.MostDerivedType << TargetQT;
3687 return false;
3688 }
3689
3690 // Truncate the lvalue to the appropriate derived class.
3691 return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3692}
3693
3694namespace {
3695enum EvalStmtResult {
3696 /// Evaluation failed.
3697 ESR_Failed,
3698 /// Hit a 'return' statement.
3699 ESR_Returned,
3700 /// Evaluation succeeded.
3701 ESR_Succeeded,
3702 /// Hit a 'continue' statement.
3703 ESR_Continue,
3704 /// Hit a 'break' statement.
3705 ESR_Break,
3706 /// Still scanning for 'case' or 'default' statement.
3707 ESR_CaseNotFound
3708};
3709}
3710
3711static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
3712 // We don't need to evaluate the initializer for a static local.
3713 if (!VD->hasLocalStorage())
3714 return true;
3715
3716 LValue Result;
3717 Result.set(VD, Info.CurrentCall->Index);
3718 APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3719
3720 const Expr *InitE = VD->getInit();
3721 if (!InitE) {
3722 Info.FFDiag(VD->getLocStart(), diag::note_constexpr_uninitialized)
3723 << false << VD->getType();
3724 Val = APValue();
3725 return false;
3726 }
3727
3728 if (InitE->isValueDependent())
3729 return false;
3730
3731 if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3732 // Wipe out any partially-computed value, to allow tracking that this
3733 // evaluation failed.
3734 Val = APValue();
3735 return false;
3736 }
3737
3738 return true;
3739}
3740
3741static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3742 bool OK = true;
3743
3744 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
3745 OK &= EvaluateVarDecl(Info, VD);
3746
3747 if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
3748 for (auto *BD : DD->bindings())
3749 if (auto *VD = BD->getHoldingVar())
3750 OK &= EvaluateDecl(Info, VD);
3751
3752 return OK;
3753}
3754
3755
3756/// Evaluate a condition (either a variable declaration or an expression).
3757static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3758 const Expr *Cond, bool &Result) {
3759 FullExpressionRAII Scope(Info);
3760 if (CondDecl && !EvaluateDecl(Info, CondDecl))
3761 return false;
3762 return EvaluateAsBooleanCondition(Cond, Result, Info);
3763}
3764
3765namespace {
3766/// \brief A location where the result (returned value) of evaluating a
3767/// statement should be stored.
3768struct StmtResult {
3769 /// The APValue that should be filled in with the returned value.
3770 APValue &Value;
3771 /// The location containing the result, if any (used to support RVO).
3772 const LValue *Slot;
3773};
3774}
3775
3776static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3777 const Stmt *S,
3778 const SwitchCase *SC = nullptr);
3779
3780/// Evaluate the body of a loop, and translate the result as appropriate.
3781static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3782 const Stmt *Body,
3783 const SwitchCase *Case = nullptr) {
3784 BlockScopeRAII Scope(Info);
3785 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3786 case ESR_Break:
3787 return ESR_Succeeded;
3788 case ESR_Succeeded:
3789 case ESR_Continue:
3790 return ESR_Continue;
3791 case ESR_Failed:
3792 case ESR_Returned:
3793 case ESR_CaseNotFound:
3794 return ESR;
3795 }
3796 llvm_unreachable("Invalid EvalStmtResult!")::llvm::llvm_unreachable_internal("Invalid EvalStmtResult!", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3796)
;
3797}
3798
3799/// Evaluate a switch statement.
3800static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3801 const SwitchStmt *SS) {
3802 BlockScopeRAII Scope(Info);
3803
3804 // Evaluate the switch condition.
3805 APSInt Value;
3806 {
3807 FullExpressionRAII Scope(Info);
3808 if (const Stmt *Init = SS->getInit()) {
3809 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3810 if (ESR != ESR_Succeeded)
3811 return ESR;
3812 }
3813 if (SS->getConditionVariable() &&
3814 !EvaluateDecl(Info, SS->getConditionVariable()))
3815 return ESR_Failed;
3816 if (!EvaluateInteger(SS->getCond(), Value, Info))
3817 return ESR_Failed;
3818 }
3819
3820 // Find the switch case corresponding to the value of the condition.
3821 // FIXME: Cache this lookup.
3822 const SwitchCase *Found = nullptr;
3823 for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3824 SC = SC->getNextSwitchCase()) {
3825 if (isa<DefaultStmt>(SC)) {
3826 Found = SC;
3827 continue;
3828 }
3829
3830 const CaseStmt *CS = cast<CaseStmt>(SC);
3831 APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3832 APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3833 : LHS;
3834 if (LHS <= Value && Value <= RHS) {
3835 Found = SC;
3836 break;
3837 }
3838 }
3839
3840 if (!Found)
3841 return ESR_Succeeded;
3842
3843 // Search the switch body for the switch case and evaluate it from there.
3844 switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3845 case ESR_Break:
3846 return ESR_Succeeded;
3847 case ESR_Succeeded:
3848 case ESR_Continue:
3849 case ESR_Failed:
3850 case ESR_Returned:
3851 return ESR;
3852 case ESR_CaseNotFound:
3853 // This can only happen if the switch case is nested within a statement
3854 // expression. We have no intention of supporting that.
3855 Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3856 return ESR_Failed;
3857 }
3858 llvm_unreachable("Invalid EvalStmtResult!")::llvm::llvm_unreachable_internal("Invalid EvalStmtResult!", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 3858)
;
3859}
3860
3861// Evaluate a statement.
3862static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3863 const Stmt *S, const SwitchCase *Case) {
3864 if (!Info.nextStep(S))
3865 return ESR_Failed;
3866
3867 // If we're hunting down a 'case' or 'default' label, recurse through
3868 // substatements until we hit the label.
3869 if (Case) {
3870 // FIXME: We don't start the lifetime of objects whose initialization we
3871 // jump over. However, such objects must be of class type with a trivial
3872 // default constructor that initialize all subobjects, so must be empty,
3873 // so this almost never matters.
3874 switch (S->getStmtClass()) {
3875 case Stmt::CompoundStmtClass:
3876 // FIXME: Precompute which substatement of a compound statement we
3877 // would jump to, and go straight there rather than performing a
3878 // linear scan each time.
3879 case Stmt::LabelStmtClass:
3880 case Stmt::AttributedStmtClass:
3881 case Stmt::DoStmtClass:
3882 break;
3883
3884 case Stmt::CaseStmtClass:
3885 case Stmt::DefaultStmtClass:
3886 if (Case == S)
3887 Case = nullptr;
3888 break;
3889
3890 case Stmt::IfStmtClass: {
3891 // FIXME: Precompute which side of an 'if' we would jump to, and go
3892 // straight there rather than scanning both sides.
3893 const IfStmt *IS = cast<IfStmt>(S);
3894
3895 // Wrap the evaluation in a block scope, in case it's a DeclStmt
3896 // preceded by our switch label.
3897 BlockScopeRAII Scope(Info);
3898
3899 EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3900 if (ESR != ESR_CaseNotFound || !IS->getElse())
3901 return ESR;
3902 return EvaluateStmt(Result, Info, IS->getElse(), Case);
3903 }
3904
3905 case Stmt::WhileStmtClass: {
3906 EvalStmtResult ESR =
3907 EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3908 if (ESR != ESR_Continue)
3909 return ESR;
3910 break;
3911 }
3912
3913 case Stmt::ForStmtClass: {
3914 const ForStmt *FS = cast<ForStmt>(S);
3915 EvalStmtResult ESR =
3916 EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3917 if (ESR != ESR_Continue)
3918 return ESR;
3919 if (FS->getInc()) {
3920 FullExpressionRAII IncScope(Info);
3921 if (!EvaluateIgnoredValue(Info, FS->getInc()))
3922 return ESR_Failed;
3923 }
3924 break;
3925 }
3926
3927 case Stmt::DeclStmtClass:
3928 // FIXME: If the variable has initialization that can't be jumped over,
3929 // bail out of any immediately-surrounding compound-statement too.
3930 default:
3931 return ESR_CaseNotFound;
3932 }
3933 }
3934
3935 switch (S->getStmtClass()) {
3936 default:
3937 if (const Expr *E = dyn_cast<Expr>(S)) {
3938 // Don't bother evaluating beyond an expression-statement which couldn't
3939 // be evaluated.
3940 FullExpressionRAII Scope(Info);
3941 if (!EvaluateIgnoredValue(Info, E))
3942 return ESR_Failed;
3943 return ESR_Succeeded;
3944 }
3945
3946 Info.FFDiag(S->getLocStart());
3947 return ESR_Failed;
3948
3949 case Stmt::NullStmtClass:
3950 return ESR_Succeeded;
3951
3952 case Stmt::DeclStmtClass: {
3953 const DeclStmt *DS = cast<DeclStmt>(S);
3954 for (const auto *DclIt : DS->decls()) {
3955 // Each declaration initialization is its own full-expression.
3956 // FIXME: This isn't quite right; if we're performing aggregate
3957 // initialization, each braced subexpression is its own full-expression.
3958 FullExpressionRAII Scope(Info);
3959 if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
3960 return ESR_Failed;
3961 }
3962 return ESR_Succeeded;
3963 }
3964
3965 case Stmt::ReturnStmtClass: {
3966 const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3967 FullExpressionRAII Scope(Info);
3968 if (RetExpr &&
3969 !(Result.Slot
3970 ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
3971 : Evaluate(Result.Value, Info, RetExpr)))
3972 return ESR_Failed;
3973 return ESR_Returned;
3974 }
3975
3976 case Stmt::CompoundStmtClass: {
3977 BlockScopeRAII Scope(Info);
3978
3979 const CompoundStmt *CS = cast<CompoundStmt>(S);
3980 for (const auto *BI : CS->body()) {
3981 EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3982 if (ESR == ESR_Succeeded)
3983 Case = nullptr;
3984 else if (ESR != ESR_CaseNotFound)
3985 return ESR;
3986 }
3987 return Case ? ESR_CaseNotFound : ESR_Succeeded;
3988 }
3989
3990 case Stmt::IfStmtClass: {
3991 const IfStmt *IS = cast<IfStmt>(S);
3992
3993 // Evaluate the condition, as either a var decl or as an expression.
3994 BlockScopeRAII Scope(Info);
3995 if (const Stmt *Init = IS->getInit()) {
3996 EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3997 if (ESR != ESR_Succeeded)
3998 return ESR;
3999 }
4000 bool Cond;
4001 if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
4002 return ESR_Failed;
4003
4004 if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
4005 EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
4006 if (ESR != ESR_Succeeded)
4007 return ESR;
4008 }
4009 return ESR_Succeeded;
4010 }
4011
4012 case Stmt::WhileStmtClass: {
4013 const WhileStmt *WS = cast<WhileStmt>(S);
4014 while (true) {
4015 BlockScopeRAII Scope(Info);
4016 bool Continue;
4017 if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
4018 Continue))
4019 return ESR_Failed;
4020 if (!Continue)
4021 break;
4022
4023 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
4024 if (ESR != ESR_Continue)
4025 return ESR;
4026 }
4027 return ESR_Succeeded;
4028 }
4029
4030 case Stmt::DoStmtClass: {
4031 const DoStmt *DS = cast<DoStmt>(S);
4032 bool Continue;
4033 do {
4034 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
4035 if (ESR != ESR_Continue)
4036 return ESR;
4037 Case = nullptr;
4038
4039 FullExpressionRAII CondScope(Info);
4040 if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
4041 return ESR_Failed;
4042 } while (Continue);
4043 return ESR_Succeeded;
4044 }
4045
4046 case Stmt::ForStmtClass: {
4047 const ForStmt *FS = cast<ForStmt>(S);
4048 BlockScopeRAII Scope(Info);
4049 if (FS->getInit()) {
4050 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4051 if (ESR != ESR_Succeeded)
4052 return ESR;
4053 }
4054 while (true) {
4055 BlockScopeRAII Scope(Info);
4056 bool Continue = true;
4057 if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
4058 FS->getCond(), Continue))
4059 return ESR_Failed;
4060 if (!Continue)
4061 break;
4062
4063 EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4064 if (ESR != ESR_Continue)
4065 return ESR;
4066
4067 if (FS->getInc()) {
4068 FullExpressionRAII IncScope(Info);
4069 if (!EvaluateIgnoredValue(Info, FS->getInc()))
4070 return ESR_Failed;
4071 }
4072 }
4073 return ESR_Succeeded;
4074 }
4075
4076 case Stmt::CXXForRangeStmtClass: {
4077 const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
4078 BlockScopeRAII Scope(Info);
4079
4080 // Initialize the __range variable.
4081 EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
4082 if (ESR != ESR_Succeeded)
4083 return ESR;
4084
4085 // Create the __begin and __end iterators.
4086 ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
4087 if (ESR != ESR_Succeeded)
4088 return ESR;
4089 ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
4090 if (ESR != ESR_Succeeded)
4091 return ESR;
4092
4093 while (true) {
4094 // Condition: __begin != __end.
4095 {
4096 bool Continue = true;
4097 FullExpressionRAII CondExpr(Info);
4098 if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
4099 return ESR_Failed;
4100 if (!Continue)
4101 break;
4102 }
4103
4104 // User's variable declaration, initialized by *__begin.
4105 BlockScopeRAII InnerScope(Info);
4106 ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
4107 if (ESR != ESR_Succeeded)
4108 return ESR;
4109
4110 // Loop body.
4111 ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4112 if (ESR != ESR_Continue)
4113 return ESR;
4114
4115 // Increment: ++__begin
4116 if (!EvaluateIgnoredValue(Info, FS->getInc()))
4117 return ESR_Failed;
4118 }
4119
4120 return ESR_Succeeded;
4121 }
4122
4123 case Stmt::SwitchStmtClass:
4124 return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
4125
4126 case Stmt::ContinueStmtClass:
4127 return ESR_Continue;
4128
4129 case Stmt::BreakStmtClass:
4130 return ESR_Break;
4131
4132 case Stmt::LabelStmtClass:
4133 return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
4134
4135 case Stmt::AttributedStmtClass:
4136 // As a general principle, C++11 attributes can be ignored without
4137 // any semantic impact.
4138 return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
4139 Case);
4140
4141 case Stmt::CaseStmtClass:
4142 case Stmt::DefaultStmtClass:
4143 return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
4144 }
4145}
4146
4147/// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
4148/// default constructor. If so, we'll fold it whether or not it's marked as
4149/// constexpr. If it is marked as constexpr, we will never implicitly define it,
4150/// so we need special handling.
4151static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
4152 const CXXConstructorDecl *CD,
4153 bool IsValueInitialization) {
4154 if (!CD->isTrivial() || !CD->isDefaultConstructor())
4155 return false;
4156
4157 // Value-initialization does not call a trivial default constructor, so such a
4158 // call is a core constant expression whether or not the constructor is
4159 // constexpr.
4160 if (!CD->isConstexpr() && !IsValueInitialization) {
4161 if (Info.getLangOpts().CPlusPlus11) {
4162 // FIXME: If DiagDecl is an implicitly-declared special member function,
4163 // we should be much more explicit about why it's not constexpr.
4164 Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
4165 << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
4166 Info.Note(CD->getLocation(), diag::note_declared_at);
4167 } else {
4168 Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
4169 }
4170 }
4171 return true;
4172}
4173
4174/// CheckConstexprFunction - Check that a function can be called in a constant
4175/// expression.
4176static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
4177 const FunctionDecl *Declaration,
4178 const FunctionDecl *Definition,
4179 const Stmt *Body) {
4180 // Potential constant expressions can contain calls to declared, but not yet
4181 // defined, constexpr functions.
4182 if (Info.checkingPotentialConstantExpression() && !Definition &&
4183 Declaration->isConstexpr())
4184 return false;
4185
4186 // Bail out with no diagnostic if the function declaration itself is invalid.
4187 // We will have produced a relevant diagnostic while parsing it.
4188 if (Declaration->isInvalidDecl())
4189 return false;
4190
4191 // Can we evaluate this function call?
4192 if (Definition && Definition->isConstexpr() &&
4193 !Definition->isInvalidDecl() && Body)
4194 return true;
4195
4196 if (Info.getLangOpts().CPlusPlus11) {
4197 const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
4198
4199 // If this function is not constexpr because it is an inherited
4200 // non-constexpr constructor, diagnose that directly.
4201 auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
4202 if (CD && CD->isInheritingConstructor()) {
4203 auto *Inherited = CD->getInheritedConstructor().getConstructor();
4204 if (!Inherited->isConstexpr())
4205 DiagDecl = CD = Inherited;
4206 }
4207
4208 // FIXME: If DiagDecl is an implicitly-declared special member function
4209 // or an inheriting constructor, we should be much more explicit about why
4210 // it's not constexpr.
4211 if (CD && CD->isInheritingConstructor())
4212 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
4213 << CD->getInheritedConstructor().getConstructor()->getParent();
4214 else
4215 Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
4216 << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
4217 Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
4218 } else {
4219 Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4220 }
4221 return false;
4222}
4223
4224/// Determine if a class has any fields that might need to be copied by a
4225/// trivial copy or move operation.
4226static bool hasFields(const CXXRecordDecl *RD) {
4227 if (!RD || RD->isEmpty())
4228 return false;
4229 for (auto *FD : RD->fields()) {
4230 if (FD->isUnnamedBitfield())
4231 continue;
4232 return true;
4233 }
4234 for (auto &Base : RD->bases())
4235 if (hasFields(Base.getType()->getAsCXXRecordDecl()))
4236 return true;
4237 return false;
4238}
4239
4240namespace {
4241typedef SmallVector<APValue, 8> ArgVector;
4242}
4243
4244/// EvaluateArgs - Evaluate the arguments to a function call.
4245static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
4246 EvalInfo &Info) {
4247 bool Success = true;
4248 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
4249 I != E; ++I) {
4250 if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
4251 // If we're checking for a potential constant expression, evaluate all
4252 // initializers even if some of them fail.
4253 if (!Info.noteFailure())
4254 return false;
4255 Success = false;
4256 }
4257 }
4258 return Success;
4259}
4260
4261/// Evaluate a function call.
4262static bool HandleFunctionCall(SourceLocation CallLoc,
4263 const FunctionDecl *Callee, const LValue *This,
4264 ArrayRef<const Expr*> Args, const Stmt *Body,
4265 EvalInfo &Info, APValue &Result,
4266 const LValue *ResultSlot) {
4267 ArgVector ArgValues(Args.size());
4268 if (!EvaluateArgs(Args, ArgValues, Info))
4269 return false;
4270
4271 if (!Info.CheckCallLimit(CallLoc))
4272 return false;
4273
4274 CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
4275
4276 // For a trivial copy or move assignment, perform an APValue copy. This is
4277 // essential for unions, where the operations performed by the assignment
4278 // operator cannot be represented as statements.
4279 //
4280 // Skip this for non-union classes with no fields; in that case, the defaulted
4281 // copy/move does not actually read the object.
4282 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
4283 if (MD && MD->isDefaulted() &&
4284 (MD->getParent()->isUnion() ||
4285 (MD->isTrivial() && hasFields(MD->getParent())))) {
4286 assert(This &&(static_cast <bool> (This && (MD->isCopyAssignmentOperator
() || MD->isMoveAssignmentOperator())) ? void (0) : __assert_fail
("This && (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4287, __extension__ __PRETTY_FUNCTION__))
4287 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))(static_cast <bool> (This && (MD->isCopyAssignmentOperator
() || MD->isMoveAssignmentOperator())) ? void (0) : __assert_fail
("This && (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4287, __extension__ __PRETTY_FUNCTION__))
;
4288 LValue RHS;
4289 RHS.setFrom(Info.Ctx, ArgValues[0]);
4290 APValue RHSValue;
4291 if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
4292 RHS, RHSValue))
4293 return false;
4294 if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
4295 RHSValue))
4296 return false;
4297 This->moveInto(Result);
4298 return true;
4299 } else if (MD && isLambdaCallOperator(MD)) {
4300 // We're in a lambda; determine the lambda capture field maps.
4301 MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
4302 Frame.LambdaThisCaptureField);
4303 }
4304
4305 StmtResult Ret = {Result, ResultSlot};
4306 EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
4307 if (ESR == ESR_Succeeded) {
4308 if (Callee->getReturnType()->isVoidType())
4309 return true;
4310 Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return);
4311 }
4312 return ESR == ESR_Returned;
4313}
4314
4315/// Evaluate a constructor call.
4316static bool HandleConstructorCall(const Expr *E, const LValue &This,
4317 APValue *ArgValues,
4318 const CXXConstructorDecl *Definition,
4319 EvalInfo &Info, APValue &Result) {
4320 SourceLocation CallLoc = E->getExprLoc();
4321 if (!Info.CheckCallLimit(CallLoc))
4322 return false;
4323
4324 const CXXRecordDecl *RD = Definition->getParent();
4325 if (RD->getNumVBases()) {
4326 Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
4327 return false;
4328 }
4329
4330 EvalInfo::EvaluatingConstructorRAII EvalObj(
4331 Info, {This.getLValueBase(), This.CallIndex});
4332 CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
4333
4334 // FIXME: Creating an APValue just to hold a nonexistent return value is
4335 // wasteful.
4336 APValue RetVal;
4337 StmtResult Ret = {RetVal, nullptr};
4338
4339 // If it's a delegating constructor, delegate.
4340 if (Definition->isDelegatingConstructor()) {
4341 CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
4342 {
4343 FullExpressionRAII InitScope(Info);
4344 if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
4345 return false;
4346 }
4347 return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4348 }
4349
4350 // For a trivial copy or move constructor, perform an APValue copy. This is
4351 // essential for unions (or classes with anonymous union members), where the
4352 // operations performed by the constructor cannot be represented by
4353 // ctor-initializers.
4354 //
4355 // Skip this for empty non-union classes; we should not perform an
4356 // lvalue-to-rvalue conversion on them because their copy constructor does not
4357 // actually read them.
4358 if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
4359 (Definition->getParent()->isUnion() ||
4360 (Definition->isTrivial() && hasFields(Definition->getParent())))) {
4361 LValue RHS;
4362 RHS.setFrom(Info.Ctx, ArgValues[0]);
4363 return handleLValueToRValueConversion(
4364 Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
4365 RHS, Result);
4366 }
4367
4368 // Reserve space for the struct members.
4369 if (!RD->isUnion() && Result.isUninit())
4370 Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4371 std::distance(RD->field_begin(), RD->field_end()));
4372
4373 if (RD->isInvalidDecl()) return false;
4374 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4375
4376 // A scope for temporaries lifetime-extended by reference members.
4377 BlockScopeRAII LifetimeExtendedScope(Info);
4378
4379 bool Success = true;
4380 unsigned BasesSeen = 0;
4381#ifndef NDEBUG
4382 CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
4383#endif
4384 for (const auto *I : Definition->inits()) {
4385 LValue Subobject = This;
4386 LValue SubobjectParent = This;
4387 APValue *Value = &Result;
4388
4389 // Determine the subobject to initialize.
4390 FieldDecl *FD = nullptr;
4391 if (I->isBaseInitializer()) {
4392 QualType BaseType(I->getBaseClass(), 0);
4393#ifndef NDEBUG
4394 // Non-virtual base classes are initialized in the order in the class
4395 // definition. We have already checked for virtual base classes.
4396 assert(!BaseIt->isVirtual() && "virtual base for literal type")(static_cast <bool> (!BaseIt->isVirtual() &&
"virtual base for literal type") ? void (0) : __assert_fail (
"!BaseIt->isVirtual() && \"virtual base for literal type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4396, __extension__ __PRETTY_FUNCTION__))
;
4397 assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&(static_cast <bool> (Info.Ctx.hasSameType(BaseIt->getType
(), BaseType) && "base class initializers not in expected order"
) ? void (0) : __assert_fail ("Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && \"base class initializers not in expected order\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4398, __extension__ __PRETTY_FUNCTION__))
4398 "base class initializers not in expected order")(static_cast <bool> (Info.Ctx.hasSameType(BaseIt->getType
(), BaseType) && "base class initializers not in expected order"
) ? void (0) : __assert_fail ("Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && \"base class initializers not in expected order\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4398, __extension__ __PRETTY_FUNCTION__))
;
4399 ++BaseIt;
4400#endif
4401 if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
4402 BaseType->getAsCXXRecordDecl(), &Layout))
4403 return false;
4404 Value = &Result.getStructBase(BasesSeen++);
4405 } else if ((FD = I->getMember())) {
4406 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
4407 return false;
4408 if (RD->isUnion()) {
4409 Result = APValue(FD);
4410 Value = &Result.getUnionValue();
4411 } else {
4412 Value = &Result.getStructField(FD->getFieldIndex());
4413 }
4414 } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
4415 // Walk the indirect field decl's chain to find the object to initialize,
4416 // and make sure we've initialized every step along it.
4417 auto IndirectFieldChain = IFD->chain();
4418 for (auto *C : IndirectFieldChain) {
4419 FD = cast<FieldDecl>(C);
4420 CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
4421 // Switch the union field if it differs. This happens if we had
4422 // preceding zero-initialization, and we're now initializing a union
4423 // subobject other than the first.
4424 // FIXME: In this case, the values of the other subobjects are
4425 // specified, since zero-initialization sets all padding bits to zero.
4426 if (Value->isUninit() ||
4427 (Value->isUnion() && Value->getUnionField() != FD)) {
4428 if (CD->isUnion())
4429 *Value = APValue(FD);
4430 else
4431 *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
4432 std::distance(CD->field_begin(), CD->field_end()));
4433 }
4434 // Store Subobject as its parent before updating it for the last element
4435 // in the chain.
4436 if (C == IndirectFieldChain.back())
4437 SubobjectParent = Subobject;
4438 if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
4439 return false;
4440 if (CD->isUnion())
4441 Value = &Value->getUnionValue();
4442 else
4443 Value = &Value->getStructField(FD->getFieldIndex());
4444 }
4445 } else {
4446 llvm_unreachable("unknown base initializer kind")::llvm::llvm_unreachable_internal("unknown base initializer kind"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4446)
;
4447 }
4448
4449 // Need to override This for implicit field initializers as in this case
4450 // This refers to innermost anonymous struct/union containing initializer,
4451 // not to currently constructed class.
4452 const Expr *Init = I->getInit();
4453 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
4454 isa<CXXDefaultInitExpr>(Init));
4455 FullExpressionRAII InitScope(Info);
4456 if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
4457 (FD && FD->isBitField() &&
4458 !truncateBitfieldValue(Info, Init, *Value, FD))) {
4459 // If we're checking for a potential constant expression, evaluate all
4460 // initializers even if some of them fail.
4461 if (!Info.noteFailure())
4462 return false;
4463 Success = false;
4464 }
4465 }
4466
4467 return Success &&
4468 EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4469}
4470
4471static bool HandleConstructorCall(const Expr *E, const LValue &This,
4472 ArrayRef<const Expr*> Args,
4473 const CXXConstructorDecl *Definition,
4474 EvalInfo &Info, APValue &Result) {
4475 ArgVector ArgValues(Args.size());
4476 if (!EvaluateArgs(Args, ArgValues, Info))
4477 return false;
4478
4479 return HandleConstructorCall(E, This, ArgValues.data(), Definition,
4480 Info, Result);
4481}
4482
4483//===----------------------------------------------------------------------===//
4484// Generic Evaluation
4485//===----------------------------------------------------------------------===//
4486namespace {
4487
4488template <class Derived>
4489class ExprEvaluatorBase
4490 : public ConstStmtVisitor<Derived, bool> {
4491private:
4492 Derived &getDerived() { return static_cast<Derived&>(*this); }
4493 bool DerivedSuccess(const APValue &V, const Expr *E) {
4494 return getDerived().Success(V, E);
4495 }
4496 bool DerivedZeroInitialization(const Expr *E) {
4497 return getDerived().ZeroInitialization(E);
4498 }
4499
4500 // Check whether a conditional operator with a non-constant condition is a
4501 // potential constant expression. If neither arm is a potential constant
4502 // expression, then the conditional operator is not either.
4503 template<typename ConditionalOperator>
4504 void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4505 assert(Info.checkingPotentialConstantExpression())(static_cast <bool> (Info.checkingPotentialConstantExpression
()) ? void (0) : __assert_fail ("Info.checkingPotentialConstantExpression()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4505, __extension__ __PRETTY_FUNCTION__))
;
4506
4507 // Speculatively evaluate both arms.
4508 SmallVector<PartialDiagnosticAt, 8> Diag;
4509 {
4510 SpeculativeEvaluationRAII Speculate(Info, &Diag);
4511 StmtVisitorTy::Visit(E->getFalseExpr());
4512 if (Diag.empty())
4513 return;
4514 }
4515
4516 {
4517 SpeculativeEvaluationRAII Speculate(Info, &Diag);
4518 Diag.clear();
4519 StmtVisitorTy::Visit(E->getTrueExpr());
4520 if (Diag.empty())
4521 return;
4522 }
4523
4524 Error(E, diag::note_constexpr_conditional_never_const);
4525 }
4526
4527
4528 template<typename ConditionalOperator>
4529 bool HandleConditionalOperator(const ConditionalOperator *E) {
4530 bool BoolResult;
4531 if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4532 if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
4533 CheckPotentialConstantConditional(E);
4534 return false;
4535 }
4536 if (Info.noteFailure()) {
4537 StmtVisitorTy::Visit(E->getTrueExpr());
4538 StmtVisitorTy::Visit(E->getFalseExpr());
4539 }
4540 return false;
4541 }
4542
4543 Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4544 return StmtVisitorTy::Visit(EvalExpr);
4545 }
4546
4547protected:
4548 EvalInfo &Info;
4549 typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4550 typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4551
4552 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4553 return Info.CCEDiag(E, D);
4554 }
4555
4556 bool ZeroInitialization(const Expr *E) { return Error(E); }
4557
4558public:
4559 ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4560
4561 EvalInfo &getEvalInfo() { return Info; }
4562
4563 /// Report an evaluation error. This should only be called when an error is
4564 /// first discovered. When propagating an error, just return false.
4565 bool Error(const Expr *E, diag::kind D) {
4566 Info.FFDiag(E, D);
4567 return false;
4568 }
4569 bool Error(const Expr *E) {
4570 return Error(E, diag::note_invalid_subexpr_in_const_expr);
4571 }
4572
4573 bool VisitStmt(const Stmt *) {
4574 llvm_unreachable("Expression evaluator should not be called on stmts")::llvm::llvm_unreachable_internal("Expression evaluator should not be called on stmts"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4574)
;
4575 }
4576 bool VisitExpr(const Expr *E) {
4577 return Error(E);
4578 }
4579
4580 bool VisitParenExpr(const ParenExpr *E)
4581 { return StmtVisitorTy::Visit(E->getSubExpr()); }
4582 bool VisitUnaryExtension(const UnaryOperator *E)
4583 { return StmtVisitorTy::Visit(E->getSubExpr()); }
4584 bool VisitUnaryPlus(const UnaryOperator *E)
4585 { return StmtVisitorTy::Visit(E->getSubExpr()); }
4586 bool VisitChooseExpr(const ChooseExpr *E)
4587 { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
4588 bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4589 { return StmtVisitorTy::Visit(E->getResultExpr()); }
4590 bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4591 { return StmtVisitorTy::Visit(E->getReplacement()); }
4592 bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
4593 { return StmtVisitorTy::Visit(E->getExpr()); }
4594 bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4595 // The initializer may not have been parsed yet, or might be erroneous.
4596 if (!E->getExpr())
4597 return Error(E);
4598 return StmtVisitorTy::Visit(E->getExpr());
4599 }
4600 // We cannot create any objects for which cleanups are required, so there is
4601 // nothing to do here; all cleanups must come from unevaluated subexpressions.
4602 bool VisitExprWithCleanups(const ExprWithCleanups *E)
4603 { return StmtVisitorTy::Visit(E->getSubExpr()); }
4604
4605 bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4606 CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4607 return static_cast<Derived*>(this)->VisitCastExpr(E);
4608 }
4609 bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4610 CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4611 return static_cast<Derived*>(this)->VisitCastExpr(E);
4612 }
4613
4614 bool VisitBinaryOperator(const BinaryOperator *E) {
4615 switch (E->getOpcode()) {
4616 default:
4617 return Error(E);
4618
4619 case BO_Comma:
4620 VisitIgnoredValue(E->getLHS());
4621 return StmtVisitorTy::Visit(E->getRHS());
4622
4623 case BO_PtrMemD:
4624 case BO_PtrMemI: {
4625 LValue Obj;
4626 if (!HandleMemberPointerAccess(Info, E, Obj))
4627 return false;
4628 APValue Result;
4629 if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4630 return false;
4631 return DerivedSuccess(Result, E);
4632 }
4633 }
4634 }
4635
4636 bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4637 // Evaluate and cache the common expression. We treat it as a temporary,
4638 // even though it's not quite the same thing.
4639 if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4640 Info, E->getCommon()))
4641 return false;
4642
4643 return HandleConditionalOperator(E);
4644 }
4645
4646 bool VisitConditionalOperator(const ConditionalOperator *E) {
4647 bool IsBcpCall = false;
4648 // If the condition (ignoring parens) is a __builtin_constant_p call,
4649 // the result is a constant expression if it can be folded without
4650 // side-effects. This is an important GNU extension. See GCC PR38377
4651 // for discussion.
4652 if (const CallExpr *CallCE =
4653 dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4654 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4655 IsBcpCall = true;
4656
4657 // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4658 // constant expression; we can't check whether it's potentially foldable.
4659 if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4660 return false;
4661
4662 FoldConstant Fold(Info, IsBcpCall);
4663 if (!HandleConditionalOperator(E)) {
4664 Fold.keepDiagnostics();
4665 return false;
4666 }
4667
4668 return true;
4669 }
4670
4671 bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4672 if (APValue *Value = Info.CurrentCall->getTemporary(E))
4673 return DerivedSuccess(*Value, E);
4674
4675 const Expr *Source = E->getSourceExpr();
4676 if (!Source)
4677 return Error(E);
4678 if (Source == E) { // sanity checking.
4679 assert(0 && "OpaqueValueExpr recursively refers to itself")(static_cast <bool> (0 && "OpaqueValueExpr recursively refers to itself"
) ? void (0) : __assert_fail ("0 && \"OpaqueValueExpr recursively refers to itself\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4679, __extension__ __PRETTY_FUNCTION__))
;
4680 return Error(E);
4681 }
4682 return StmtVisitorTy::Visit(Source);
4683 }
4684
4685 bool VisitCallExpr(const CallExpr *E) {
4686 APValue Result;
4687 if (!handleCallExpr(E, Result, nullptr))
4688 return false;
4689 return DerivedSuccess(Result, E);
4690 }
4691
4692 bool handleCallExpr(const CallExpr *E, APValue &Result,
4693 const LValue *ResultSlot) {
4694 const Expr *Callee = E->getCallee()->IgnoreParens();
4695 QualType CalleeType = Callee->getType();
4696
4697 const FunctionDecl *FD = nullptr;
4698 LValue *This = nullptr, ThisVal;
4699 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4700 bool HasQualifier = false;
4701
4702 // Extract function decl and 'this' pointer from the callee.
4703 if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4704 const ValueDecl *Member = nullptr;
4705 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4706 // Explicit bound member calls, such as x.f() or p->g();
4707 if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4708 return false;
4709 Member = ME->getMemberDecl();
4710 This = &ThisVal;
4711 HasQualifier = ME->hasQualifier();
4712 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4713 // Indirect bound member calls ('.*' or '->*').
4714 Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4715 if (!Member) return false;
4716 This = &ThisVal;
4717 } else
4718 return Error(Callee);
4719
4720 FD = dyn_cast<FunctionDecl>(Member);
4721 if (!FD)
4722 return Error(Callee);
4723 } else if (CalleeType->isFunctionPointerType()) {
4724 LValue Call;
4725 if (!EvaluatePointer(Callee, Call, Info))
4726 return false;
4727
4728 if (!Call.getLValueOffset().isZero())
4729 return Error(Callee);
4730 FD = dyn_cast_or_null<FunctionDecl>(
4731 Call.getLValueBase().dyn_cast<const ValueDecl*>());
4732 if (!FD)
4733 return Error(Callee);
4734 // Don't call function pointers which have been cast to some other type.
4735 // Per DR (no number yet), the caller and callee can differ in noexcept.
4736 if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
4737 CalleeType->getPointeeType(), FD->getType())) {
4738 return Error(E);
4739 }
4740
4741 // Overloaded operator calls to member functions are represented as normal
4742 // calls with '*this' as the first argument.
4743 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4744 if (MD && !MD->isStatic()) {
4745 // FIXME: When selecting an implicit conversion for an overloaded
4746 // operator delete, we sometimes try to evaluate calls to conversion
4747 // operators without a 'this' parameter!
4748 if (Args.empty())
4749 return Error(E);
4750
4751 if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4752 return false;
4753 This = &ThisVal;
4754 Args = Args.slice(1);
4755 } else if (MD && MD->isLambdaStaticInvoker()) {
4756 // Map the static invoker for the lambda back to the call operator.
4757 // Conveniently, we don't have to slice out the 'this' argument (as is
4758 // being done for the non-static case), since a static member function
4759 // doesn't have an implicit argument passed in.
4760 const CXXRecordDecl *ClosureClass = MD->getParent();
4761 assert((static_cast <bool> (ClosureClass->captures_begin() ==
ClosureClass->captures_end() && "Number of captures must be zero for conversion to function-ptr"
) ? void (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4763, __extension__ __PRETTY_FUNCTION__))
4762 ClosureClass->captures_begin() == ClosureClass->captures_end() &&(static_cast <bool> (ClosureClass->captures_begin() ==
ClosureClass->captures_end() && "Number of captures must be zero for conversion to function-ptr"
) ? void (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4763, __extension__ __PRETTY_FUNCTION__))
4763 "Number of captures must be zero for conversion to function-ptr")(static_cast <bool> (ClosureClass->captures_begin() ==
ClosureClass->captures_end() && "Number of captures must be zero for conversion to function-ptr"
) ? void (0) : __assert_fail ("ClosureClass->captures_begin() == ClosureClass->captures_end() && \"Number of captures must be zero for conversion to function-ptr\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4763, __extension__ __PRETTY_FUNCTION__))
;
4764
4765 const CXXMethodDecl *LambdaCallOp =
4766 ClosureClass->getLambdaCallOperator();
4767
4768 // Set 'FD', the function that will be called below, to the call
4769 // operator. If the closure object represents a generic lambda, find
4770 // the corresponding specialization of the call operator.
4771
4772 if (ClosureClass->isGenericLambda()) {
4773 assert(MD->isFunctionTemplateSpecialization() &&(static_cast <bool> (MD->isFunctionTemplateSpecialization
() && "A generic lambda's static-invoker function must be a "
"template specialization") ? void (0) : __assert_fail ("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4775, __extension__ __PRETTY_FUNCTION__))
4774 "A generic lambda's static-invoker function must be a "(static_cast <bool> (MD->isFunctionTemplateSpecialization
() && "A generic lambda's static-invoker function must be a "
"template specialization") ? void (0) : __assert_fail ("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4775, __extension__ __PRETTY_FUNCTION__))
4775 "template specialization")(static_cast <bool> (MD->isFunctionTemplateSpecialization
() && "A generic lambda's static-invoker function must be a "
"template specialization") ? void (0) : __assert_fail ("MD->isFunctionTemplateSpecialization() && \"A generic lambda's static-invoker function must be a \" \"template specialization\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4775, __extension__ __PRETTY_FUNCTION__))
;
4776 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
4777 FunctionTemplateDecl *CallOpTemplate =
4778 LambdaCallOp->getDescribedFunctionTemplate();
4779 void *InsertPos = nullptr;
4780 FunctionDecl *CorrespondingCallOpSpecialization =
4781 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
4782 assert(CorrespondingCallOpSpecialization &&(static_cast <bool> (CorrespondingCallOpSpecialization &&
"We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? void
(0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4784, __extension__ __PRETTY_FUNCTION__))
4783 "We must always have a function call operator specialization "(static_cast <bool> (CorrespondingCallOpSpecialization &&
"We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? void
(0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4784, __extension__ __PRETTY_FUNCTION__))
4784 "that corresponds to our static invoker specialization")(static_cast <bool> (CorrespondingCallOpSpecialization &&
"We must always have a function call operator specialization "
"that corresponds to our static invoker specialization") ? void
(0) : __assert_fail ("CorrespondingCallOpSpecialization && \"We must always have a function call operator specialization \" \"that corresponds to our static invoker specialization\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4784, __extension__ __PRETTY_FUNCTION__))
;
4785 FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
4786 } else
4787 FD = LambdaCallOp;
4788 }
4789
4790
4791 } else
4792 return Error(E);
4793
4794 if (This && !This->checkSubobject(Info, E, CSK_This))
4795 return false;
4796
4797 // DR1358 allows virtual constexpr functions in some cases. Don't allow
4798 // calls to such functions in constant expressions.
4799 if (This && !HasQualifier &&
4800 isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4801 return Error(E, diag::note_constexpr_virtual_call);
4802
4803 const FunctionDecl *Definition = nullptr;
4804 Stmt *Body = FD->getBody(Definition);
4805
4806 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
4807 !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4808 Result, ResultSlot))
4809 return false;
4810
4811 return true;
4812 }
4813
4814 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4815 return StmtVisitorTy::Visit(E->getInitializer());
4816 }
4817 bool VisitInitListExpr(const InitListExpr *E) {
4818 if (E->getNumInits() == 0)
4819 return DerivedZeroInitialization(E);
4820 if (E->getNumInits() == 1)
4821 return StmtVisitorTy::Visit(E->getInit(0));
4822 return Error(E);
4823 }
4824 bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4825 return DerivedZeroInitialization(E);
4826 }
4827 bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4828 return DerivedZeroInitialization(E);
4829 }
4830 bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4831 return DerivedZeroInitialization(E);
4832 }
4833
4834 /// A member expression where the object is a prvalue is itself a prvalue.
4835 bool VisitMemberExpr(const MemberExpr *E) {
4836 assert(!E->isArrow() && "missing call to bound member function?")(static_cast <bool> (!E->isArrow() && "missing call to bound member function?"
) ? void (0) : __assert_fail ("!E->isArrow() && \"missing call to bound member function?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4836, __extension__ __PRETTY_FUNCTION__))
;
4837
4838 APValue Val;
4839 if (!Evaluate(Val, Info, E->getBase()))
4840 return false;
4841
4842 QualType BaseTy = E->getBase()->getType();
4843
4844 const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4845 if (!FD) return Error(E);
4846 assert(!FD->getType()->isReferenceType() && "prvalue reference?")(static_cast <bool> (!FD->getType()->isReferenceType
() && "prvalue reference?") ? void (0) : __assert_fail
("!FD->getType()->isReferenceType() && \"prvalue reference?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4846, __extension__ __PRETTY_FUNCTION__))
;
4847 assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==(static_cast <bool> (BaseTy->castAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4848, __extension__ __PRETTY_FUNCTION__))
4848 FD->getParent()->getCanonicalDecl() && "record / field mismatch")(static_cast <bool> (BaseTy->castAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4848, __extension__ __PRETTY_FUNCTION__))
;
4849
4850 CompleteObject Obj(&Val, BaseTy, true);
4851 SubobjectDesignator Designator(BaseTy);
4852 Designator.addDeclUnchecked(FD);
4853
4854 APValue Result;
4855 return extractSubobject(Info, E, Obj, Designator, Result) &&
4856 DerivedSuccess(Result, E);
4857 }
4858
4859 bool VisitCastExpr(const CastExpr *E) {
4860 switch (E->getCastKind()) {
4861 default:
4862 break;
4863
4864 case CK_AtomicToNonAtomic: {
4865 APValue AtomicVal;
4866 // This does not need to be done in place even for class/array types:
4867 // atomic-to-non-atomic conversion implies copying the object
4868 // representation.
4869 if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
4870 return false;
4871 return DerivedSuccess(AtomicVal, E);
4872 }
4873
4874 case CK_NoOp:
4875 case CK_UserDefinedConversion:
4876 return StmtVisitorTy::Visit(E->getSubExpr());
4877
4878 case CK_LValueToRValue: {
4879 LValue LVal;
4880 if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4881 return false;
4882 APValue RVal;
4883 // Note, we use the subexpression's type in order to retain cv-qualifiers.
4884 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4885 LVal, RVal))
4886 return false;
4887 return DerivedSuccess(RVal, E);
4888 }
4889 }
4890
4891 return Error(E);
4892 }
4893
4894 bool VisitUnaryPostInc(const UnaryOperator *UO) {
4895 return VisitUnaryPostIncDec(UO);
4896 }
4897 bool VisitUnaryPostDec(const UnaryOperator *UO) {
4898 return VisitUnaryPostIncDec(UO);
4899 }
4900 bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4901 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4902 return Error(UO);
4903
4904 LValue LVal;
4905 if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4906 return false;
4907 APValue RVal;
4908 if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4909 UO->isIncrementOp(), &RVal))
4910 return false;
4911 return DerivedSuccess(RVal, UO);
4912 }
4913
4914 bool VisitStmtExpr(const StmtExpr *E) {
4915 // We will have checked the full-expressions inside the statement expression
4916 // when they were completed, and don't need to check them again now.
4917 if (Info.checkingForOverflow())
4918 return Error(E);
4919
4920 BlockScopeRAII Scope(Info);
4921 const CompoundStmt *CS = E->getSubStmt();
4922 if (CS->body_empty())
4923 return true;
4924
4925 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4926 BE = CS->body_end();
4927 /**/; ++BI) {
4928 if (BI + 1 == BE) {
4929 const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4930 if (!FinalExpr) {
4931 Info.FFDiag((*BI)->getLocStart(),
4932 diag::note_constexpr_stmt_expr_unsupported);
4933 return false;
4934 }
4935 return this->Visit(FinalExpr);
4936 }
4937
4938 APValue ReturnValue;
4939 StmtResult Result = { ReturnValue, nullptr };
4940 EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
4941 if (ESR != ESR_Succeeded) {
4942 // FIXME: If the statement-expression terminated due to 'return',
4943 // 'break', or 'continue', it would be nice to propagate that to
4944 // the outer statement evaluation rather than bailing out.
4945 if (ESR != ESR_Failed)
4946 Info.FFDiag((*BI)->getLocStart(),
4947 diag::note_constexpr_stmt_expr_unsupported);
4948 return false;
4949 }
4950 }
4951
4952 llvm_unreachable("Return from function from the loop above.")::llvm::llvm_unreachable_internal("Return from function from the loop above."
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 4952)
;
4953 }
4954
4955 /// Visit a value which is evaluated, but whose value is ignored.
4956 void VisitIgnoredValue(const Expr *E) {
4957 EvaluateIgnoredValue(Info, E);
4958 }
4959
4960 /// Potentially visit a MemberExpr's base expression.
4961 void VisitIgnoredBaseExpression(const Expr *E) {
4962 // While MSVC doesn't evaluate the base expression, it does diagnose the
4963 // presence of side-effecting behavior.
4964 if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
4965 return;
4966 VisitIgnoredValue(E);
4967 }
4968};
4969
4970}
4971
4972//===----------------------------------------------------------------------===//
4973// Common base class for lvalue and temporary evaluation.
4974//===----------------------------------------------------------------------===//
4975namespace {
4976template<class Derived>
4977class LValueExprEvaluatorBase
4978 : public ExprEvaluatorBase<Derived> {
4979protected:
4980 LValue &Result;
4981 bool InvalidBaseOK;
4982 typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4983 typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4984
4985 bool Success(APValue::LValueBase B) {
4986 Result.set(B);
4987 return true;
4988 }
4989
4990 bool evaluatePointer(const Expr *E, LValue &Result) {
4991 return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
4992 }
4993
4994public:
4995 LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
4996 : ExprEvaluatorBaseTy(Info), Result(Result),
4997 InvalidBaseOK(InvalidBaseOK) {}
4998
4999 bool Success(const APValue &V, const Expr *E) {
5000 Result.setFrom(this->Info.Ctx, V);
5001 return true;
5002 }
5003
5004 bool VisitMemberExpr(const MemberExpr *E) {
5005 // Handle non-static data members.
5006 QualType BaseTy;
5007 bool EvalOK;
5008 if (E->isArrow()) {
5009 EvalOK = evaluatePointer(E->getBase(), Result);
5010 BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
5011 } else if (E->getBase()->isRValue()) {
5012 assert(E->getBase()->getType()->isRecordType())(static_cast <bool> (E->getBase()->getType()->
isRecordType()) ? void (0) : __assert_fail ("E->getBase()->getType()->isRecordType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5012, __extension__ __PRETTY_FUNCTION__))
;
5013 EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
5014 BaseTy = E->getBase()->getType();
5015 } else {
5016 EvalOK = this->Visit(E->getBase());
5017 BaseTy = E->getBase()->getType();
5018 }
5019 if (!EvalOK) {
5020 if (!InvalidBaseOK)
5021 return false;
5022 Result.setInvalid(E);
5023 return true;
5024 }
5025
5026 const ValueDecl *MD = E->getMemberDecl();
5027 if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
5028 assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==(static_cast <bool> (BaseTy->getAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5029, __extension__ __PRETTY_FUNCTION__))
5029 FD->getParent()->getCanonicalDecl() && "record / field mismatch")(static_cast <bool> (BaseTy->getAs<RecordType>
()->getDecl()->getCanonicalDecl() == FD->getParent()
->getCanonicalDecl() && "record / field mismatch")
? void (0) : __assert_fail ("BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() == FD->getParent()->getCanonicalDecl() && \"record / field mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5029, __extension__ __PRETTY_FUNCTION__))
;
5030 (void)BaseTy;
5031 if (!HandleLValueMember(this->Info, E, Result, FD))
5032 return false;
5033 } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
5034 if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
5035 return false;
5036 } else
5037 return this->Error(E);
5038
5039 if (MD->getType()->isReferenceType()) {
5040 APValue RefValue;
5041 if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
5042 RefValue))
5043 return false;
5044 return Success(RefValue, E);
5045 }
5046 return true;
5047 }
5048
5049 bool VisitBinaryOperator(const BinaryOperator *E) {
5050 switch (E->getOpcode()) {
5051 default:
5052 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5053
5054 case BO_PtrMemD:
5055 case BO_PtrMemI:
5056 return HandleMemberPointerAccess(this->Info, E, Result);
5057 }
5058 }
5059
5060 bool VisitCastExpr(const CastExpr *E) {
5061 switch (E->getCastKind()) {
5062 default:
5063 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5064
5065 case CK_DerivedToBase:
5066 case CK_UncheckedDerivedToBase:
5067 if (!this->Visit(E->getSubExpr()))
5068 return false;
5069
5070 // Now figure out the necessary offset to add to the base LV to get from
5071 // the derived class to the base class.
5072 return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
5073 Result);
5074 }
5075 }
5076};
5077}
5078
5079//===----------------------------------------------------------------------===//
5080// LValue Evaluation
5081//
5082// This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
5083// function designators (in C), decl references to void objects (in C), and
5084// temporaries (if building with -Wno-address-of-temporary).
5085//
5086// LValue evaluation produces values comprising a base expression of one of the
5087// following types:
5088// - Declarations
5089// * VarDecl
5090// * FunctionDecl
5091// - Literals
5092// * CompoundLiteralExpr in C (and in global scope in C++)
5093// * StringLiteral
5094// * CXXTypeidExpr
5095// * PredefinedExpr
5096// * ObjCStringLiteralExpr
5097// * ObjCEncodeExpr
5098// * AddrLabelExpr
5099// * BlockExpr
5100// * CallExpr for a MakeStringConstant builtin
5101// - Locals and temporaries
5102// * MaterializeTemporaryExpr
5103// * Any Expr, with a CallIndex indicating the function in which the temporary
5104// was evaluated, for cases where the MaterializeTemporaryExpr is missing
5105// from the AST (FIXME).
5106// * A MaterializeTemporaryExpr that has static storage duration, with no
5107// CallIndex, for a lifetime-extended temporary.
5108// plus an offset in bytes.
5109//===----------------------------------------------------------------------===//
5110namespace {
5111class LValueExprEvaluator
5112 : public LValueExprEvaluatorBase<LValueExprEvaluator> {
5113public:
5114 LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
5115 LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
5116
5117 bool VisitVarDecl(const Expr *E, const VarDecl *VD);
5118 bool VisitUnaryPreIncDec(const UnaryOperator *UO);
5119
5120 bool VisitDeclRefExpr(const DeclRefExpr *E);
5121 bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
5122 bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
5123 bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
5124 bool VisitMemberExpr(const MemberExpr *E);
5125 bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
5126 bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
5127 bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
5128 bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
5129 bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
5130 bool VisitUnaryDeref(const UnaryOperator *E);
5131 bool VisitUnaryReal(const UnaryOperator *E);
5132 bool VisitUnaryImag(const UnaryOperator *E);
5133 bool VisitUnaryPreInc(const UnaryOperator *UO) {
5134 return VisitUnaryPreIncDec(UO);
5135 }
5136 bool VisitUnaryPreDec(const UnaryOperator *UO) {
5137 return VisitUnaryPreIncDec(UO);
5138 }
5139 bool VisitBinAssign(const BinaryOperator *BO);
5140 bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
5141
5142 bool VisitCastExpr(const CastExpr *E) {
5143 switch (E->getCastKind()) {
5144 default:
5145 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5146
5147 case CK_LValueBitCast:
5148 this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5149 if (!Visit(E->getSubExpr()))
5150 return false;
5151 Result.Designator.setInvalid();
5152 return true;
5153
5154 case CK_BaseToDerived:
5155 if (!Visit(E->getSubExpr()))
5156 return false;
5157 return HandleBaseToDerivedCast(Info, E, Result);
5158 }
5159 }
5160};
5161} // end anonymous namespace
5162
5163/// Evaluate an expression as an lvalue. This can be legitimately called on
5164/// expressions which are not glvalues, in three cases:
5165/// * function designators in C, and
5166/// * "extern void" objects
5167/// * @selector() expressions in Objective-C
5168static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
5169 bool InvalidBaseOK) {
5170 assert(E->isGLValue() || E->getType()->isFunctionType() ||(static_cast <bool> (E->isGLValue() || E->getType
()->isFunctionType() || E->getType()->isVoidType() ||
isa<ObjCSelectorExpr>(E)) ? void (0) : __assert_fail (
"E->isGLValue() || E->getType()->isFunctionType() || E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5171, __extension__ __PRETTY_FUNCTION__))
5171 E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E))(static_cast <bool> (E->isGLValue() || E->getType
()->isFunctionType() || E->getType()->isVoidType() ||
isa<ObjCSelectorExpr>(E)) ? void (0) : __assert_fail (
"E->isGLValue() || E->getType()->isFunctionType() || E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E)"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5171, __extension__ __PRETTY_FUNCTION__))
;
5172 return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
5173}
5174
5175bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
5176 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
1
Taking false branch
5177 return Success(FD);
5178 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
2
Assuming 'VD' is non-null
3
Taking true branch
5179 return VisitVarDecl(E, VD);
4
Calling 'LValueExprEvaluator::VisitVarDecl'
5180 if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
5181 return Visit(BD->getBinding());
5182 return Error(E);
5183}
5184
5185
5186bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
5187
5188 // If we are within a lambda's call operator, check whether the 'VD' referred
5189 // to within 'E' actually represents a lambda-capture that maps to a
5190 // data-member/field within the closure object, and if so, evaluate to the
5191 // field or what the field refers to.
5192 if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee)) {
5
Assuming pointer value is null
5193 if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
5194 if (Info.checkingPotentialConstantExpression())
5195 return false;
5196 // Start with 'Result' referring to the complete closure object...
5197 Result = *Info.CurrentCall->This;
5198 // ... then update it to refer to the field of the closure object
5199 // that represents the capture.
5200 if (!HandleLValueMember(Info, E, Result, FD))
5201 return false;
5202 // And if the field is of reference type, update 'Result' to refer to what
5203 // the field refers to.
5204 if (FD->getType()->isReferenceType()) {
5205 APValue RVal;
5206 if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
5207 RVal))
5208 return false;
5209 Result.setFrom(Info.Ctx, RVal);
5210 }
5211 return true;
5212 }
5213 }
5214 CallStackFrame *Frame = nullptr;
5215 if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
6
Access to field 'Index' results in a dereference of a null pointer (loaded from field 'CurrentCall')
5216 // Only if a local variable was declared in the function currently being
5217 // evaluated, do we expect to be able to find its value in the current
5218 // frame. (Otherwise it was likely declared in an enclosing context and
5219 // could either have a valid evaluatable value (for e.g. a constexpr
5220 // variable) or be ill-formed (and trigger an appropriate evaluation
5221 // diagnostic)).
5222 if (Info.CurrentCall->Callee &&
5223 Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
5224 Frame = Info.CurrentCall;
5225 }
5226 }
5227
5228 if (!VD->getType()->isReferenceType()) {
5229 if (Frame) {
5230 Result.set(VD, Frame->Index);
5231 return true;
5232 }
5233 return Success(VD);
5234 }
5235
5236 APValue *V;
5237 if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
5238 return false;
5239 if (V->isUninit()) {
5240 if (!Info.checkingPotentialConstantExpression())
5241 Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
5242 return false;
5243 }
5244 return Success(*V, E);
5245}
5246
5247bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
5248 const MaterializeTemporaryExpr *E) {
5249 // Walk through the expression to find the materialized temporary itself.
5250 SmallVector<const Expr *, 2> CommaLHSs;
5251 SmallVector<SubobjectAdjustment, 2> Adjustments;
5252 const Expr *Inner = E->GetTemporaryExpr()->
5253 skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
5254
5255 // If we passed any comma operators, evaluate their LHSs.
5256 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
5257 if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
5258 return false;
5259
5260 // A materialized temporary with static storage duration can appear within the
5261 // result of a constant expression evaluation, so we need to preserve its
5262 // value for use outside this evaluation.
5263 APValue *Value;
5264 if (E->getStorageDuration() == SD_Static) {
5265 Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
5266 *Value = APValue();
5267 Result.set(E);
5268 } else {
5269 Value = &Info.CurrentCall->
5270 createTemporary(E, E->getStorageDuration() == SD_Automatic);
5271 Result.set(E, Info.CurrentCall->Index);
5272 }
5273
5274 QualType Type = Inner->getType();
5275
5276 // Materialize the temporary itself.
5277 if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
5278 (E->getStorageDuration() == SD_Static &&
5279 !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
5280 *Value = APValue();
5281 return false;
5282 }
5283
5284 // Adjust our lvalue to refer to the desired subobject.
5285 for (unsigned I = Adjustments.size(); I != 0; /**/) {
5286 --I;
5287 switch (Adjustments[I].Kind) {
5288 case SubobjectAdjustment::DerivedToBaseAdjustment:
5289 if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
5290 Type, Result))
5291 return false;
5292 Type = Adjustments[I].DerivedToBase.BasePath->getType();
5293 break;
5294
5295 case SubobjectAdjustment::FieldAdjustment:
5296 if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
5297 return false;
5298 Type = Adjustments[I].Field->getType();
5299 break;
5300
5301 case SubobjectAdjustment::MemberPointerAdjustment:
5302 if (!HandleMemberPointerAccess(this->Info, Type, Result,
5303 Adjustments[I].Ptr.RHS))
5304 return false;
5305 Type = Adjustments[I].Ptr.MPT->getPointeeType();
5306 break;
5307 }
5308 }
5309
5310 return true;
5311}
5312
5313bool
5314LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
5315 assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&(static_cast <bool> ((!Info.getLangOpts().CPlusPlus || E
->isFileScope()) && "lvalue compound literal in c++?"
) ? void (0) : __assert_fail ("(!Info.getLangOpts().CPlusPlus || E->isFileScope()) && \"lvalue compound literal in c++?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5316, __extension__ __PRETTY_FUNCTION__))
5316 "lvalue compound literal in c++?")(static_cast <bool> ((!Info.getLangOpts().CPlusPlus || E
->isFileScope()) && "lvalue compound literal in c++?"
) ? void (0) : __assert_fail ("(!Info.getLangOpts().CPlusPlus || E->isFileScope()) && \"lvalue compound literal in c++?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5316, __extension__ __PRETTY_FUNCTION__))
;
5317 // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
5318 // only see this when folding in C, so there's no standard to follow here.
5319 return Success(E);
5320}
5321
5322bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
5323 if (!E->isPotentiallyEvaluated())
5324 return Success(E);
5325
5326 Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic)
5327 << E->getExprOperand()->getType()
5328 << E->getExprOperand()->getSourceRange();
5329 return false;
5330}
5331
5332bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
5333 return Success(E);
5334}
5335
5336bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
5337 // Handle static data members.
5338 if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
5339 VisitIgnoredBaseExpression(E->getBase());
5340 return VisitVarDecl(E, VD);
5341 }
5342
5343 // Handle static member functions.
5344 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
5345 if (MD->isStatic()) {
5346 VisitIgnoredBaseExpression(E->getBase());
5347 return Success(MD);
5348 }
5349 }
5350
5351 // Handle non-static data members.
5352 return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
5353}
5354
5355bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
5356 // FIXME: Deal with vectors as array subscript bases.
5357 if (E->getBase()->getType()->isVectorType())
5358 return Error(E);
5359
5360 bool Success = true;
5361 if (!evaluatePointer(E->getBase(), Result)) {
5362 if (!Info.noteFailure())
5363 return false;
5364 Success = false;
5365 }
5366
5367 APSInt Index;
5368 if (!EvaluateInteger(E->getIdx(), Index, Info))
5369 return false;
5370
5371 return Success &&
5372 HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
5373}
5374
5375bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
5376 return evaluatePointer(E->getSubExpr(), Result);
5377}
5378
5379bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5380 if (!Visit(E->getSubExpr()))
5381 return false;
5382 // __real is a no-op on scalar lvalues.
5383 if (E->getSubExpr()->getType()->isAnyComplexType())
5384 HandleLValueComplexElement(Info, E, Result, E->getType(), false);
5385 return true;
5386}
5387
5388bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5389 assert(E->getSubExpr()->getType()->isAnyComplexType() &&(static_cast <bool> (E->getSubExpr()->getType()->
isAnyComplexType() && "lvalue __imag__ on scalar?") ?
void (0) : __assert_fail ("E->getSubExpr()->getType()->isAnyComplexType() && \"lvalue __imag__ on scalar?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5390, __extension__ __PRETTY_FUNCTION__))
5390 "lvalue __imag__ on scalar?")(static_cast <bool> (E->getSubExpr()->getType()->
isAnyComplexType() && "lvalue __imag__ on scalar?") ?
void (0) : __assert_fail ("E->getSubExpr()->getType()->isAnyComplexType() && \"lvalue __imag__ on scalar?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5390, __extension__ __PRETTY_FUNCTION__))
;
5391 if (!Visit(E->getSubExpr()))
5392 return false;
5393 HandleLValueComplexElement(Info, E, Result, E->getType(), true);
5394 return true;
5395}
5396
5397bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
5398 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5399 return Error(UO);
5400
5401 if (!this->Visit(UO->getSubExpr()))
5402 return false;
5403
5404 return handleIncDec(
5405 this->Info, UO, Result, UO->getSubExpr()->getType(),
5406 UO->isIncrementOp(), nullptr);
5407}
5408
5409bool LValueExprEvaluator::VisitCompoundAssignOperator(
5410 const CompoundAssignOperator *CAO) {
5411 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5412 return Error(CAO);
5413
5414 APValue RHS;
5415
5416 // The overall lvalue result is the result of evaluating the LHS.
5417 if (!this->Visit(CAO->getLHS())) {
5418 if (Info.noteFailure())
5419 Evaluate(RHS, this->Info, CAO->getRHS());
5420 return false;
5421 }
5422
5423 if (!Evaluate(RHS, this->Info, CAO->getRHS()))
5424 return false;
5425
5426 return handleCompoundAssignment(
5427 this->Info, CAO,
5428 Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
5429 CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
5430}
5431
5432bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
5433 if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5434 return Error(E);
5435
5436 APValue NewVal;
5437
5438 if (!this->Visit(E->getLHS())) {
5439 if (Info.noteFailure())
5440 Evaluate(NewVal, this->Info, E->getRHS());
5441 return false;
5442 }
5443
5444 if (!Evaluate(NewVal, this->Info, E->getRHS()))
5445 return false;
5446
5447 return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
5448 NewVal);
5449}
5450
5451//===----------------------------------------------------------------------===//
5452// Pointer Evaluation
5453//===----------------------------------------------------------------------===//
5454
5455/// \brief Attempts to compute the number of bytes available at the pointer
5456/// returned by a function with the alloc_size attribute. Returns true if we
5457/// were successful. Places an unsigned number into `Result`.
5458///
5459/// This expects the given CallExpr to be a call to a function with an
5460/// alloc_size attribute.
5461static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
5462 const CallExpr *Call,
5463 llvm::APInt &Result) {
5464 const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
5465
5466 // alloc_size args are 1-indexed, 0 means not present.
5467 assert(AllocSize && AllocSize->getElemSizeParam() != 0)(static_cast <bool> (AllocSize && AllocSize->
getElemSizeParam() != 0) ? void (0) : __assert_fail ("AllocSize && AllocSize->getElemSizeParam() != 0"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5467, __extension__ __PRETTY_FUNCTION__))
;
5468 unsigned SizeArgNo = AllocSize->getElemSizeParam() - 1;
5469 unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
5470 if (Call->getNumArgs() <= SizeArgNo)
5471 return false;
5472
5473 auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
5474 if (!E->EvaluateAsInt(Into, Ctx, Expr::SE_AllowSideEffects))
5475 return false;
5476 if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
5477 return false;
5478 Into = Into.zextOrSelf(BitsInSizeT);
5479 return true;
5480 };
5481
5482 APSInt SizeOfElem;
5483 if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
5484 return false;
5485
5486 if (!AllocSize->getNumElemsParam()) {
5487 Result = std::move(SizeOfElem);
5488 return true;
5489 }
5490
5491 APSInt NumberOfElems;
5492 // Argument numbers start at 1
5493 unsigned NumArgNo = AllocSize->getNumElemsParam() - 1;
5494 if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
5495 return false;
5496
5497 bool Overflow;
5498 llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
5499 if (Overflow)
5500 return false;
5501
5502 Result = std::move(BytesAvailable);
5503 return true;
5504}
5505
5506/// \brief Convenience function. LVal's base must be a call to an alloc_size
5507/// function.
5508static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
5509 const LValue &LVal,
5510 llvm::APInt &Result) {
5511 assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&(static_cast <bool> (isBaseAnAllocSizeCall(LVal.getLValueBase
()) && "Can't get the size of a non alloc_size function"
) ? void (0) : __assert_fail ("isBaseAnAllocSizeCall(LVal.getLValueBase()) && \"Can't get the size of a non alloc_size function\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5512, __extension__ __PRETTY_FUNCTION__))
5512 "Can't get the size of a non alloc_size function")(static_cast <bool> (isBaseAnAllocSizeCall(LVal.getLValueBase
()) && "Can't get the size of a non alloc_size function"
) ? void (0) : __assert_fail ("isBaseAnAllocSizeCall(LVal.getLValueBase()) && \"Can't get the size of a non alloc_size function\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5512, __extension__ __PRETTY_FUNCTION__))
;
5513 const auto *Base = LVal.getLValueBase().get<const Expr *>();
5514 const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
5515 return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
5516}
5517
5518/// \brief Attempts to evaluate the given LValueBase as the result of a call to
5519/// a function with the alloc_size attribute. If it was possible to do so, this
5520/// function will return true, make Result's Base point to said function call,
5521/// and mark Result's Base as invalid.
5522static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
5523 LValue &Result) {
5524 if (Base.isNull())
5525 return false;
5526
5527 // Because we do no form of static analysis, we only support const variables.
5528 //
5529 // Additionally, we can't support parameters, nor can we support static
5530 // variables (in the latter case, use-before-assign isn't UB; in the former,
5531 // we have no clue what they'll be assigned to).
5532 const auto *VD =
5533 dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
5534 if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
5535 return false;
5536
5537 const Expr *Init = VD->getAnyInitializer();
5538 if (!Init)
5539 return false;
5540
5541 const Expr *E = Init->IgnoreParens();
5542 if (!tryUnwrapAllocSizeCall(E))
5543 return false;
5544
5545 // Store E instead of E unwrapped so that the type of the LValue's base is
5546 // what the user wanted.
5547 Result.setInvalid(E);
5548
5549 QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
5550 Result.addUnsizedArray(Info, E, Pointee);
5551 return true;
5552}
5553
5554namespace {
5555class PointerExprEvaluator
5556 : public ExprEvaluatorBase<PointerExprEvaluator> {
5557 LValue &Result;
5558 bool InvalidBaseOK;
5559
5560 bool Success(const Expr *E) {
5561 Result.set(E);
5562 return true;
5563 }
5564
5565 bool evaluateLValue(const Expr *E, LValue &Result) {
5566 return EvaluateLValue(E, Result, Info, InvalidBaseOK);
5567 }
5568
5569 bool evaluatePointer(const Expr *E, LValue &Result) {
5570 return EvaluatePointer(E, Result, Info, InvalidBaseOK);
5571 }
5572
5573 bool visitNonBuiltinCallExpr(const CallExpr *E);
5574public:
5575
5576 PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
5577 : ExprEvaluatorBaseTy(info), Result(Result),
5578 InvalidBaseOK(InvalidBaseOK) {}
5579
5580 bool Success(const APValue &V, const Expr *E) {
5581 Result.setFrom(Info.Ctx, V);
5582 return true;
5583 }
5584 bool ZeroInitialization(const Expr *E) {
5585 auto TargetVal = Info.Ctx.getTargetNullPointerValue(E->getType());
5586 Result.setNull(E->getType(), TargetVal);
5587 return true;
5588 }
5589
5590 bool VisitBinaryOperator(const BinaryOperator *E);
5591 bool VisitCastExpr(const CastExpr* E);
5592 bool VisitUnaryAddrOf(const UnaryOperator *E);
5593 bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
5594 { return Success(E); }
5595 bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
5596 if (Info.noteFailure())
5597 EvaluateIgnoredValue(Info, E->getSubExpr());
5598 return Error(E);
5599 }
5600 bool VisitAddrLabelExpr(const AddrLabelExpr *E)
5601 { return Success(E); }
5602 bool VisitCallExpr(const CallExpr *E);
5603 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
5604 bool VisitBlockExpr(const BlockExpr *E) {
5605 if (!E->getBlockDecl()->hasCaptures())
5606 return Success(E);
5607 return Error(E);
5608 }
5609 bool VisitCXXThisExpr(const CXXThisExpr *E) {
5610 // Can't look at 'this' when checking a potential constant expression.
5611 if (Info.checkingPotentialConstantExpression())
5612 return false;
5613 if (!Info.CurrentCall->This) {
5614 if (Info.getLangOpts().CPlusPlus11)
5615 Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
5616 else
5617 Info.FFDiag(E);
5618 return false;
5619 }
5620 Result = *Info.CurrentCall->This;
5621 // If we are inside a lambda's call operator, the 'this' expression refers
5622 // to the enclosing '*this' object (either by value or reference) which is
5623 // either copied into the closure object's field that represents the '*this'
5624 // or refers to '*this'.
5625 if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
5626 // Update 'Result' to refer to the data member/field of the closure object
5627 // that represents the '*this' capture.
5628 if (!HandleLValueMember(Info, E, Result,
5629 Info.CurrentCall->LambdaThisCaptureField))
5630 return false;
5631 // If we captured '*this' by reference, replace the field with its referent.
5632 if (Info.CurrentCall->LambdaThisCaptureField->getType()
5633 ->isPointerType()) {
5634 APValue RVal;
5635 if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
5636 RVal))
5637 return false;
5638
5639 Result.setFrom(Info.Ctx, RVal);
5640 }
5641 }
5642 return true;
5643 }
5644
5645 // FIXME: Missing: @protocol, @selector
5646};
5647} // end anonymous namespace
5648
5649static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
5650 bool InvalidBaseOK) {
5651 assert(E->isRValue() && E->getType()->hasPointerRepresentation())(static_cast <bool> (E->isRValue() && E->
getType()->hasPointerRepresentation()) ? void (0) : __assert_fail
("E->isRValue() && E->getType()->hasPointerRepresentation()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 5651, __extension__ __PRETTY_FUNCTION__))
;
5652 return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
5653}
5654
5655bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5656 if (E->getOpcode() != BO_Add &&
5657 E->getOpcode() != BO_Sub)
5658 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5659
5660 const Expr *PExp = E->getLHS();
5661 const Expr *IExp = E->getRHS();
5662 if (IExp->getType()->isPointerType())
5663 std::swap(PExp, IExp);
5664
5665 bool EvalPtrOK = evaluatePointer(PExp, Result);
5666 if (!EvalPtrOK && !Info.noteFailure())
5667 return false;
5668
5669 llvm::APSInt Offset;
5670 if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
5671 return false;
5672
5673 if (E->getOpcode() == BO_Sub)
5674 negateAsSigned(Offset);
5675
5676 QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
5677 return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
5678}
5679
5680bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5681 return evaluateLValue(E->getSubExpr(), Result);
5682}
5683
5684bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
5685 const Expr* SubExpr = E->getSubExpr();
5686
5687 switch (E->getCastKind()) {
5688 default:
5689 break;
5690
5691 case CK_BitCast:
5692 case CK_CPointerToObjCPointerCast:
5693 case CK_BlockPointerToObjCPointerCast:
5694 case CK_AnyPointerToBlockPointerCast:
5695 case CK_AddressSpaceConversion:
5696 if (!Visit(SubExpr))
5697 return false;
5698 // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
5699 // permitted in constant expressions in C++11. Bitcasts from cv void* are
5700 // also static_casts, but we disallow them as a resolution to DR1312.
5701 if (!E->getType()->isVoidPointerType()) {
5702 Result.Designator.setInvalid();
5703 if (SubExpr->getType()->isVoidPointerType())
5704 CCEDiag(E, diag::note_constexpr_invalid_cast)
5705 << 3 << SubExpr->getType();
5706 else
5707 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5708 }
5709 if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
5710 ZeroInitialization(E);
5711 return true;
5712
5713 case CK_DerivedToBase:
5714 case CK_UncheckedDerivedToBase:
5715 if (!evaluatePointer(E->getSubExpr(), Result))
5716 return false;
5717 if (!Result.Base && Result.Offset.isZero())
5718 return true;
5719
5720 // Now figure out the necessary offset to add to the base LV to get from
5721 // the derived class to the base class.
5722 return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
5723 castAs<PointerType>()->getPointeeType(),
5724 Result);
5725
5726 case CK_BaseToDerived:
5727 if (!Visit(E->getSubExpr()))
5728 return false;
5729 if (!Result.Base && Result.Offset.isZero())
5730 return true;
5731 return HandleBaseToDerivedCast(Info, E, Result);
5732
5733 case CK_NullToPointer:
5734 VisitIgnoredValue(E->getSubExpr());
5735 return ZeroInitialization(E);
5736
5737 case CK_IntegralToPointer: {
5738 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5739
5740 APValue Value;
5741 if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5742 break;
5743
5744 if (Value.isInt()) {
5745 unsigned Size = Info.Ctx.getTypeSize(E->getType());
5746 uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5747 Result.Base = (Expr*)nullptr;
5748 Result.InvalidBase = false;
5749 Result.Offset = CharUnits::fromQuantity(N);
5750 Result.CallIndex = 0;
5751 Result.Designator.setInvalid();
5752 Result.IsNullPtr = false;
5753 return true;
5754 } else {
5755 // Cast is of an lvalue, no need to change value.
5756 Result.setFrom(Info.Ctx, Value);
5757 return true;
5758 }
5759 }
5760
5761 case CK_ArrayToPointerDecay: {
5762 if (SubExpr->isGLValue()) {
5763 if (!evaluateLValue(SubExpr, Result))
5764 return false;
5765 } else {
5766 Result.set(SubExpr, Info.CurrentCall->Index);
5767 if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
5768 Info, Result, SubExpr))
5769 return false;
5770 }
5771 // The result is a pointer to the first element of the array.
5772 auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
5773 if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5774 Result.addArray(Info, E, CAT);
5775 else
5776 Result.addUnsizedArray(Info, E, AT->getElementType());
5777 return true;
5778 }
5779
5780 case CK_FunctionToPointerDecay:
5781 return evaluateLValue(SubExpr, Result);
5782
5783 case CK_LValueToRValue: {
5784 LValue LVal;
5785 if (!evaluateLValue(E->getSubExpr(), LVal))
5786 return false;
5787
5788 APValue RVal;
5789 // Note, we use the subexpression's type in order to retain cv-qualifiers.
5790 if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
5791 LVal, RVal))
5792 return InvalidBaseOK &&
5793 evaluateLValueAsAllocSize(Info, LVal.Base, Result);
5794 return Success(RVal, E);
5795 }
5796 }
5797
5798 return ExprEvaluatorBaseTy::VisitCastExpr(E);
5799}
5800
5801static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5802 // C++ [expr.alignof]p3:
5803 // When alignof is applied to a reference type, the result is the
5804 // alignment of the referenced type.
5805 if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5806 T = Ref->getPointeeType();
5807
5808 // __alignof is defined to return the preferred alignment.
5809 if (T.getQualifiers().hasUnaligned())
5810 return CharUnits::One();
5811 return Info.Ctx.toCharUnitsFromBits(
5812 Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5813}
5814
5815static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5816 E = E->IgnoreParens();
5817
5818 // The kinds of expressions that we have special-case logic here for
5819 // should be kept up to date with the special checks for those
5820 // expressions in Sema.
5821
5822 // alignof decl is always accepted, even if it doesn't make sense: we default
5823 // to 1 in those cases.
5824 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5825 return Info.Ctx.getDeclAlign(DRE->getDecl(),
5826 /*RefAsPointee*/true);
5827
5828 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5829 return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5830 /*RefAsPointee*/true);
5831
5832 return GetAlignOfType(Info, E->getType());
5833}
5834
5835// To be clear: this happily visits unsupported builtins. Better name welcomed.
5836bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
5837 if (ExprEvaluatorBaseTy::VisitCallExpr(E))
5838 return true;
5839
5840 if (!(InvalidBaseOK && getAllocSizeAttr(E)))
5841 return false;
5842
5843 Result.setInvalid(E);
5844 QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
5845 Result.addUnsizedArray(Info, E, PointeeTy);
5846 return true;
5847}
5848
5849bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5850 if (IsStringLiteralCall(E))
5851 return Success(E);
5852
5853 if (unsigned BuiltinOp = E->getBuiltinCallee())
5854 return VisitBuiltinCallExpr(E, BuiltinOp);
5855
5856 return visitNonBuiltinCallExpr(E);
5857}
5858
5859bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
5860 unsigned BuiltinOp) {
5861 switch (BuiltinOp) {
5862 case Builtin::BI__builtin_addressof:
5863 return evaluateLValue(E->getArg(0), Result);
5864 case Builtin::BI__builtin_assume_aligned: {
5865 // We need to be very careful here because: if the pointer does not have the
5866 // asserted alignment, then the behavior is undefined, and undefined
5867 // behavior is non-constant.
5868 if (!evaluatePointer(E->getArg(0), Result))
5869 return false;
5870
5871 LValue OffsetResult(Result);
5872 APSInt Alignment;
5873 if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5874 return false;
5875 CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
5876
5877 if (E->getNumArgs() > 2) {
5878 APSInt Offset;
5879 if (!EvaluateInteger(E->getArg(2), Offset, Info))
5880 return false;
5881
5882 int64_t AdditionalOffset = -Offset.getZExtValue();
5883 OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5884 }
5885
5886 // If there is a base object, then it must have the correct alignment.
5887 if (OffsetResult.Base) {
5888 CharUnits BaseAlignment;
5889 if (const ValueDecl *VD =
5890 OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
5891 BaseAlignment = Info.Ctx.getDeclAlign(VD);
5892 } else {
5893 BaseAlignment =
5894 GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5895 }
5896
5897 if (BaseAlignment < Align) {
5898 Result.Designator.setInvalid();
5899 // FIXME: Add support to Diagnostic for long / long long.
5900 CCEDiag(E->getArg(0),
5901 diag::note_constexpr_baa_insufficient_alignment) << 0
5902 << (unsigned)BaseAlignment.getQuantity()
5903 << (unsigned)Align.getQuantity();
5904 return false;
5905 }
5906 }
5907
5908 // The offset must also have the correct alignment.
5909 if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
5910 Result.Designator.setInvalid();
5911
5912 (OffsetResult.Base
5913 ? CCEDiag(E->getArg(0),
5914 diag::note_constexpr_baa_insufficient_alignment) << 1
5915 : CCEDiag(E->getArg(0),
5916 diag::note_constexpr_baa_value_insufficient_alignment))
5917 << (int)OffsetResult.Offset.getQuantity()
5918 << (unsigned)Align.getQuantity();
5919 return false;
5920 }
5921
5922 return true;
5923 }
5924
5925 case Builtin::BIstrchr:
5926 case Builtin::BIwcschr:
5927 case Builtin::BImemchr:
5928 case Builtin::BIwmemchr:
5929 if (Info.getLangOpts().CPlusPlus11)
5930 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
5931 << /*isConstexpr*/0 << /*isConstructor*/0
5932 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
5933 else
5934 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
5935 LLVM_FALLTHROUGH[[clang::fallthrough]];
5936 case Builtin::BI__builtin_strchr:
5937 case Builtin::BI__builtin_wcschr:
5938 case Builtin::BI__builtin_memchr:
5939 case Builtin::BI__builtin_char_memchr:
5940 case Builtin::BI__builtin_wmemchr: {
5941 if (!Visit(E->getArg(0)))
5942 return false;
5943 APSInt Desired;
5944 if (!EvaluateInteger(E->getArg(1), Desired, Info))
5945 return false;
5946 uint64_t MaxLength = uint64_t(-1);
5947 if (BuiltinOp != Builtin::BIstrchr &&
5948 BuiltinOp != Builtin::BIwcschr &&
5949 BuiltinOp != Builtin::BI__builtin_strchr &&
5950 BuiltinOp != Builtin::BI__builtin_wcschr) {
5951 APSInt N;
5952 if (!EvaluateInteger(E->getArg(2), N, Info))
5953 return false;
5954 MaxLength = N.getExtValue();
5955 }
5956
5957 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
5958
5959 // Figure out what value we're actually looking for (after converting to
5960 // the corresponding unsigned type if necessary).
5961 uint64_t DesiredVal;
5962 bool StopAtNull = false;
5963 switch (BuiltinOp) {
5964 case Builtin::BIstrchr:
5965 case Builtin::BI__builtin_strchr:
5966 // strchr compares directly to the passed integer, and therefore
5967 // always fails if given an int that is not a char.
5968 if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
5969 E->getArg(1)->getType(),
5970 Desired),
5971 Desired))
5972 return ZeroInitialization(E);
5973 StopAtNull = true;
5974 LLVM_FALLTHROUGH[[clang::fallthrough]];
5975 case Builtin::BImemchr:
5976 case Builtin::BI__builtin_memchr:
5977 case Builtin::BI__builtin_char_memchr:
5978 // memchr compares by converting both sides to unsigned char. That's also
5979 // correct for strchr if we get this far (to cope with plain char being
5980 // unsigned in the strchr case).
5981 DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
5982 break;
5983
5984 case Builtin::BIwcschr:
5985 case Builtin::BI__builtin_wcschr:
5986 StopAtNull = true;
5987 LLVM_FALLTHROUGH[[clang::fallthrough]];
5988 case Builtin::BIwmemchr:
5989 case Builtin::BI__builtin_wmemchr:
5990 // wcschr and wmemchr are given a wchar_t to look for. Just use it.
5991 DesiredVal = Desired.getZExtValue();
5992 break;
5993 }
5994
5995 for (; MaxLength; --MaxLength) {
5996 APValue Char;
5997 if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
5998 !Char.isInt())
5999 return false;
6000 if (Char.getInt().getZExtValue() == DesiredVal)
6001 return true;
6002 if (StopAtNull && !Char.getInt())
6003 break;
6004 if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
6005 return false;
6006 }
6007 // Not found: return nullptr.
6008 return ZeroInitialization(E);
6009 }
6010
6011 default:
6012 return visitNonBuiltinCallExpr(E);
6013 }
6014}
6015
6016//===----------------------------------------------------------------------===//
6017// Member Pointer Evaluation
6018//===----------------------------------------------------------------------===//
6019
6020namespace {
6021class MemberPointerExprEvaluator
6022 : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
6023 MemberPtr &Result;
6024
6025 bool Success(const ValueDecl *D) {
6026 Result = MemberPtr(D);
6027 return true;
6028 }
6029public:
6030
6031 MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
6032 : ExprEvaluatorBaseTy(Info), Result(Result) {}
6033
6034 bool Success(const APValue &V, const Expr *E) {
6035 Result.setFrom(V);
6036 return true;
6037 }
6038 bool ZeroInitialization(const Expr *E) {
6039 return Success((const ValueDecl*)nullptr);
6040 }
6041
6042 bool VisitCastExpr(const CastExpr *E);
6043 bool VisitUnaryAddrOf(const UnaryOperator *E);
6044};
6045} // end anonymous namespace
6046
6047static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
6048 EvalInfo &Info) {
6049 assert(E->isRValue() && E->getType()->isMemberPointerType())(static_cast <bool> (E->isRValue() && E->
getType()->isMemberPointerType()) ? void (0) : __assert_fail
("E->isRValue() && E->getType()->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6049, __extension__ __PRETTY_FUNCTION__))
;
6050 return MemberPointerExprEvaluator(Info, Result).Visit(E);
6051}
6052
6053bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
6054 switch (E->getCastKind()) {
6055 default:
6056 return ExprEvaluatorBaseTy::VisitCastExpr(E);
6057
6058 case CK_NullToMemberPointer:
6059 VisitIgnoredValue(E->getSubExpr());
6060 return ZeroInitialization(E);
6061
6062 case CK_BaseToDerivedMemberPointer: {
6063 if (!Visit(E->getSubExpr()))
6064 return false;
6065 if (E->path_empty())
6066 return true;
6067 // Base-to-derived member pointer casts store the path in derived-to-base
6068 // order, so iterate backwards. The CXXBaseSpecifier also provides us with
6069 // the wrong end of the derived->base arc, so stagger the path by one class.
6070 typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
6071 for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
6072 PathI != PathE; ++PathI) {
6073 assert(!(*PathI)->isVirtual() && "memptr cast through vbase")(static_cast <bool> (!(*PathI)->isVirtual() &&
"memptr cast through vbase") ? void (0) : __assert_fail ("!(*PathI)->isVirtual() && \"memptr cast through vbase\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6073, __extension__ __PRETTY_FUNCTION__))
;
6074 const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
6075 if (!Result.castToDerived(Derived))
6076 return Error(E);
6077 }
6078 const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
6079 if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
6080 return Error(E);
6081 return true;
6082 }
6083
6084 case CK_DerivedToBaseMemberPointer:
6085 if (!Visit(E->getSubExpr()))
6086 return false;
6087 for (CastExpr::path_const_iterator PathI = E->path_begin(),
6088 PathE = E->path_end(); PathI != PathE; ++PathI) {
6089 assert(!(*PathI)->isVirtual() && "memptr cast through vbase")(static_cast <bool> (!(*PathI)->isVirtual() &&
"memptr cast through vbase") ? void (0) : __assert_fail ("!(*PathI)->isVirtual() && \"memptr cast through vbase\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6089, __extension__ __PRETTY_FUNCTION__))
;
6090 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
6091 if (!Result.castToBase(Base))
6092 return Error(E);
6093 }
6094 return true;
6095 }
6096}
6097
6098bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
6099 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
6100 // member can be formed.
6101 return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
6102}
6103
6104//===----------------------------------------------------------------------===//
6105// Record Evaluation
6106//===----------------------------------------------------------------------===//
6107
6108namespace {
6109 class RecordExprEvaluator
6110 : public ExprEvaluatorBase<RecordExprEvaluator> {
6111 const LValue &This;
6112 APValue &Result;
6113 public:
6114
6115 RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
6116 : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
6117
6118 bool Success(const APValue &V, const Expr *E) {
6119 Result = V;
6120 return true;
6121 }
6122 bool ZeroInitialization(const Expr *E) {
6123 return ZeroInitialization(E, E->getType());
6124 }
6125 bool ZeroInitialization(const Expr *E, QualType T);
6126
6127 bool VisitCallExpr(const CallExpr *E) {
6128 return handleCallExpr(E, Result, &This);
6129 }
6130 bool VisitCastExpr(const CastExpr *E);
6131 bool VisitInitListExpr(const InitListExpr *E);
6132 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
6133 return VisitCXXConstructExpr(E, E->getType());
6134 }
6135 bool VisitLambdaExpr(const LambdaExpr *E);
6136 bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
6137 bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
6138 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
6139 };
6140}
6141
6142/// Perform zero-initialization on an object of non-union class type.
6143/// C++11 [dcl.init]p5:
6144/// To zero-initialize an object or reference of type T means:
6145/// [...]
6146/// -- if T is a (possibly cv-qualified) non-union class type,
6147/// each non-static data member and each base-class subobject is
6148/// zero-initialized
6149static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
6150 const RecordDecl *RD,
6151 const LValue &This, APValue &Result) {
6152 assert(!RD->isUnion() && "Expected non-union class type")(static_cast <bool> (!RD->isUnion() && "Expected non-union class type"
) ? void (0) : __assert_fail ("!RD->isUnion() && \"Expected non-union class type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6152, __extension__ __PRETTY_FUNCTION__))
;
6153 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
6154 Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
6155 std::distance(RD->field_begin(), RD->field_end()));
6156
6157 if (RD->isInvalidDecl()) return false;
6158 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6159
6160 if (CD) {
6161 unsigned Index = 0;
6162 for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
6163 End = CD->bases_end(); I != End; ++I, ++Index) {
6164 const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
6165 LValue Subobject = This;
6166 if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
6167 return false;
6168 if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
6169 Result.getStructBase(Index)))
6170 return false;
6171 }
6172 }
6173
6174 for (const auto *I : RD->fields()) {
6175 // -- if T is a reference type, no initialization is performed.
6176 if (I->getType()->isReferenceType())
6177 continue;
6178
6179 LValue Subobject = This;
6180 if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
6181 return false;
6182
6183 ImplicitValueInitExpr VIE(I->getType());
6184 if (!EvaluateInPlace(
6185 Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
6186 return false;
6187 }
6188
6189 return true;
6190}
6191
6192bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
6193 const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
6194 if (RD->isInvalidDecl()) return false;
6195 if (RD->isUnion()) {
6196 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
6197 // object's first non-static named data member is zero-initialized
6198 RecordDecl::field_iterator I = RD->field_begin();
6199 if (I == RD->field_end()) {
6200 Result = APValue((const FieldDecl*)nullptr);
6201 return true;
6202 }
6203
6204 LValue Subobject = This;
6205 if (!HandleLValueMember(Info, E, Subobject, *I))
6206 return false;
6207 Result = APValue(*I);
6208 ImplicitValueInitExpr VIE(I->getType());
6209 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
6210 }
6211
6212 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
6213 Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
6214 return false;
6215 }
6216
6217 return HandleClassZeroInitialization(Info, E, RD, This, Result);
6218}
6219
6220bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
6221 switch (E->getCastKind()) {
6222 default:
6223 return ExprEvaluatorBaseTy::VisitCastExpr(E);
6224
6225 case CK_ConstructorConversion:
6226 return Visit(E->getSubExpr());
6227
6228 case CK_DerivedToBase:
6229 case CK_UncheckedDerivedToBase: {
6230 APValue DerivedObject;
6231 if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
6232 return false;
6233 if (!DerivedObject.isStruct())
6234 return Error(E->getSubExpr());
6235
6236 // Derived-to-base rvalue conversion: just slice off the derived part.
6237 APValue *Value = &DerivedObject;
6238 const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
6239 for (CastExpr::path_const_iterator PathI = E->path_begin(),
6240 PathE = E->path_end(); PathI != PathE; ++PathI) {
6241 assert(!(*PathI)->isVirtual() && "record rvalue with virtual base")(static_cast <bool> (!(*PathI)->isVirtual() &&
"record rvalue with virtual base") ? void (0) : __assert_fail
("!(*PathI)->isVirtual() && \"record rvalue with virtual base\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6241, __extension__ __PRETTY_FUNCTION__))
;
6242 const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
6243 Value = &Value->getStructBase(getBaseIndex(RD, Base));
6244 RD = Base;
6245 }
6246 Result = *Value;
6247 return true;
6248 }
6249 }
6250}
6251
6252bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6253 if (E->isTransparent())
6254 return Visit(E->getInit(0));
6255
6256 const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
6257 if (RD->isInvalidDecl()) return false;
6258 const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6259
6260 if (RD->isUnion()) {
6261 const FieldDecl *Field = E->getInitializedFieldInUnion();
6262 Result = APValue(Field);
6263 if (!Field)
6264 return true;
6265
6266 // If the initializer list for a union does not contain any elements, the
6267 // first element of the union is value-initialized.
6268 // FIXME: The element should be initialized from an initializer list.
6269 // Is this difference ever observable for initializer lists which
6270 // we don't build?
6271 ImplicitValueInitExpr VIE(Field->getType());
6272 const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
6273
6274 LValue Subobject = This;
6275 if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
6276 return false;
6277
6278 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
6279 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
6280 isa<CXXDefaultInitExpr>(InitExpr));
6281
6282 return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
6283 }
6284
6285 auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
6286 if (Result.isUninit())
6287 Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
6288 std::distance(RD->field_begin(), RD->field_end()));
6289 unsigned ElementNo = 0;
6290 bool Success = true;
6291
6292 // Initialize base classes.
6293 if (CXXRD) {
6294 for (const auto &Base : CXXRD->bases()) {
6295 assert(ElementNo < E->getNumInits() && "missing init for base class")(static_cast <bool> (ElementNo < E->getNumInits()
&& "missing init for base class") ? void (0) : __assert_fail
("ElementNo < E->getNumInits() && \"missing init for base class\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6295, __extension__ __PRETTY_FUNCTION__))
;
6296 const Expr *Init = E->getInit(ElementNo);
6297
6298 LValue Subobject = This;
6299 if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
6300 return false;
6301
6302 APValue &FieldVal = Result.getStructBase(ElementNo);
6303 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
6304 if (!Info.noteFailure())
6305 return false;
6306 Success = false;
6307 }
6308 ++ElementNo;
6309 }
6310 }
6311
6312 // Initialize members.
6313 for (const auto *Field : RD->fields()) {
6314 // Anonymous bit-fields are not considered members of the class for
6315 // purposes of aggregate initialization.
6316 if (Field->isUnnamedBitfield())
6317 continue;
6318
6319 LValue Subobject = This;
6320
6321 bool HaveInit = ElementNo < E->getNumInits();
6322
6323 // FIXME: Diagnostics here should point to the end of the initializer
6324 // list, not the start.
6325 if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
6326 Subobject, Field, &Layout))
6327 return false;
6328
6329 // Perform an implicit value-initialization for members beyond the end of
6330 // the initializer list.
6331 ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
6332 const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
6333
6334 // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
6335 ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
6336 isa<CXXDefaultInitExpr>(Init));
6337
6338 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
6339 if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
6340 (Field->isBitField() && !truncateBitfieldValue(Info, Init,
6341 FieldVal, Field))) {
6342 if (!Info.noteFailure())
6343 return false;
6344 Success = false;
6345 }
6346 }
6347
6348 return Success;
6349}
6350
6351bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
6352 QualType T) {
6353 // Note that E's type is not necessarily the type of our class here; we might
6354 // be initializing an array element instead.
6355 const CXXConstructorDecl *FD = E->getConstructor();
6356 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
6357
6358 bool ZeroInit = E->requiresZeroInitialization();
6359 if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
6360 // If we've already performed zero-initialization, we're already done.
6361 if (!Result.isUninit())
6362 return true;
6363
6364 // We can get here in two different ways:
6365 // 1) We're performing value-initialization, and should zero-initialize
6366 // the object, or
6367 // 2) We're performing default-initialization of an object with a trivial
6368 // constexpr default constructor, in which case we should start the
6369 // lifetimes of all the base subobjects (there can be no data member
6370 // subobjects in this case) per [basic.life]p1.
6371 // Either way, ZeroInitialization is appropriate.
6372 return ZeroInitialization(E, T);
6373 }
6374
6375 const FunctionDecl *Definition = nullptr;
6376 auto Body = FD->getBody(Definition);
6377
6378 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
6379 return false;
6380
6381 // Avoid materializing a temporary for an elidable copy/move constructor.
6382 if (E->isElidable() && !ZeroInit)
6383 if (const MaterializeTemporaryExpr *ME
6384 = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
6385 return Visit(ME->GetTemporaryExpr());
6386
6387 if (ZeroInit && !ZeroInitialization(E, T))
6388 return false;
6389
6390 auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
6391 return HandleConstructorCall(E, This, Args,
6392 cast<CXXConstructorDecl>(Definition), Info,
6393 Result);
6394}
6395
6396bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
6397 const CXXInheritedCtorInitExpr *E) {
6398 if (!Info.CurrentCall) {
6399 assert(Info.checkingPotentialConstantExpression())(static_cast <bool> (Info.checkingPotentialConstantExpression
()) ? void (0) : __assert_fail ("Info.checkingPotentialConstantExpression()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6399, __extension__ __PRETTY_FUNCTION__))
;
6400 return false;
6401 }
6402
6403 const CXXConstructorDecl *FD = E->getConstructor();
6404 if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
6405 return false;
6406
6407 const FunctionDecl *Definition = nullptr;
6408 auto Body = FD->getBody(Definition);
6409
6410 if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
6411 return false;
6412
6413 return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
6414 cast<CXXConstructorDecl>(Definition), Info,
6415 Result);
6416}
6417
6418bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
6419 const CXXStdInitializerListExpr *E) {
6420 const ConstantArrayType *ArrayType =
6421 Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
6422
6423 LValue Array;
6424 if (!EvaluateLValue(E->getSubExpr(), Array, Info))
6425 return false;
6426
6427 // Get a pointer to the first element of the array.
6428 Array.addArray(Info, E, ArrayType);
6429
6430 // FIXME: Perform the checks on the field types in SemaInit.
6431 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
6432 RecordDecl::field_iterator Field = Record->field_begin();
6433 if (Field == Record->field_end())
6434 return Error(E);
6435
6436 // Start pointer.
6437 if (!Field->getType()->isPointerType() ||
6438 !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
6439 ArrayType->getElementType()))
6440 return Error(E);
6441
6442 // FIXME: What if the initializer_list type has base classes, etc?
6443 Result = APValue(APValue::UninitStruct(), 0, 2);
6444 Array.moveInto(Result.getStructField(0));
6445
6446 if (++Field == Record->field_end())
6447 return Error(E);
6448
6449 if (Field->getType()->isPointerType() &&
6450 Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
6451 ArrayType->getElementType())) {
6452 // End pointer.
6453 if (!HandleLValueArrayAdjustment(Info, E, Array,
6454 ArrayType->getElementType(),
6455 ArrayType->getSize().getZExtValue()))
6456 return false;
6457 Array.moveInto(Result.getStructField(1));
6458 } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
6459 // Length.
6460 Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
6461 else
6462 return Error(E);
6463
6464 if (++Field != Record->field_end())
6465 return Error(E);
6466
6467 return true;
6468}
6469
6470bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
6471 const CXXRecordDecl *ClosureClass = E->getLambdaClass();
6472 if (ClosureClass->isInvalidDecl()) return false;
6473
6474 if (Info.checkingPotentialConstantExpression()) return true;
6475
6476 const size_t NumFields =
6477 std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
6478
6479 assert(NumFields == (size_t)std::distance(E->capture_init_begin(),(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6482, __extension__ __PRETTY_FUNCTION__))
6480 E->capture_init_end()) &&(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6482, __extension__ __PRETTY_FUNCTION__))
6481 "The number of lambda capture initializers should equal the number of "(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6482, __extension__ __PRETTY_FUNCTION__))
6482 "fields within the closure type")(static_cast <bool> (NumFields == (size_t)std::distance
(E->capture_init_begin(), E->capture_init_end()) &&
"The number of lambda capture initializers should equal the number of "
"fields within the closure type") ? void (0) : __assert_fail
("NumFields == (size_t)std::distance(E->capture_init_begin(), E->capture_init_end()) && \"The number of lambda capture initializers should equal the number of \" \"fields within the closure type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6482, __extension__ __PRETTY_FUNCTION__))
;
6483
6484 Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
6485 // Iterate through all the lambda's closure object's fields and initialize
6486 // them.
6487 auto *CaptureInitIt = E->capture_init_begin();
6488 const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
6489 bool Success = true;
6490 for (const auto *Field : ClosureClass->fields()) {
6491 assert(CaptureInitIt != E->capture_init_end())(static_cast <bool> (CaptureInitIt != E->capture_init_end
()) ? void (0) : __assert_fail ("CaptureInitIt != E->capture_init_end()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6491, __extension__ __PRETTY_FUNCTION__))
;
6492 // Get the initializer for this field
6493 Expr *const CurFieldInit = *CaptureInitIt++;
6494
6495 // If there is no initializer, either this is a VLA or an error has
6496 // occurred.
6497 if (!CurFieldInit)
6498 return Error(E);
6499
6500 APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
6501 if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
6502 if (!Info.keepEvaluatingAfterFailure())
6503 return false;
6504 Success = false;
6505 }
6506 ++CaptureIt;
6507 }
6508 return Success;
6509}
6510
6511static bool EvaluateRecord(const Expr *E, const LValue &This,
6512 APValue &Result, EvalInfo &Info) {
6513 assert(E->isRValue() && E->getType()->isRecordType() &&(static_cast <bool> (E->isRValue() && E->
getType()->isRecordType() && "can't evaluate expression as a record rvalue"
) ? void (0) : __assert_fail ("E->isRValue() && E->getType()->isRecordType() && \"can't evaluate expression as a record rvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6514, __extension__ __PRETTY_FUNCTION__))
6514 "can't evaluate expression as a record rvalue")(static_cast <bool> (E->isRValue() && E->
getType()->isRecordType() && "can't evaluate expression as a record rvalue"
) ? void (0) : __assert_fail ("E->isRValue() && E->getType()->isRecordType() && \"can't evaluate expression as a record rvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6514, __extension__ __PRETTY_FUNCTION__))
;
6515 return RecordExprEvaluator(Info, This, Result).Visit(E);
6516}
6517
6518//===----------------------------------------------------------------------===//
6519// Temporary Evaluation
6520//
6521// Temporaries are represented in the AST as rvalues, but generally behave like
6522// lvalues. The full-object of which the temporary is a subobject is implicitly
6523// materialized so that a reference can bind to it.
6524//===----------------------------------------------------------------------===//
6525namespace {
6526class TemporaryExprEvaluator
6527 : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
6528public:
6529 TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
6530 LValueExprEvaluatorBaseTy(Info, Result, false) {}
6531
6532 /// Visit an expression which constructs the value of this temporary.
6533 bool VisitConstructExpr(const Expr *E) {
6534 Result.set(E, Info.CurrentCall->Index);
6535 return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
6536 Info, Result, E);
6537 }
6538
6539 bool VisitCastExpr(const CastExpr *E) {
6540 switch (E->getCastKind()) {
6541 default:
6542 return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
6543
6544 case CK_ConstructorConversion:
6545 return VisitConstructExpr(E->getSubExpr());
6546 }
6547 }
6548 bool VisitInitListExpr(const InitListExpr *E) {
6549 return VisitConstructExpr(E);
6550 }
6551 bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
6552 return VisitConstructExpr(E);
6553 }
6554 bool VisitCallExpr(const CallExpr *E) {
6555 return VisitConstructExpr(E);
6556 }
6557 bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
6558 return VisitConstructExpr(E);
6559 }
6560 bool VisitLambdaExpr(const LambdaExpr *E) {
6561 return VisitConstructExpr(E);
6562 }
6563};
6564} // end anonymous namespace
6565
6566/// Evaluate an expression of record type as a temporary.
6567static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
6568 assert(E->isRValue() && E->getType()->isRecordType())(static_cast <bool> (E->isRValue() && E->
getType()->isRecordType()) ? void (0) : __assert_fail ("E->isRValue() && E->getType()->isRecordType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6568, __extension__ __PRETTY_FUNCTION__))
;
6569 return TemporaryExprEvaluator(Info, Result).Visit(E);
6570}
6571
6572//===----------------------------------------------------------------------===//
6573// Vector Evaluation
6574//===----------------------------------------------------------------------===//
6575
6576namespace {
6577 class VectorExprEvaluator
6578 : public ExprEvaluatorBase<VectorExprEvaluator> {
6579 APValue &Result;
6580 public:
6581
6582 VectorExprEvaluator(EvalInfo &info, APValue &Result)
6583 : ExprEvaluatorBaseTy(info), Result(Result) {}
6584
6585 bool Success(ArrayRef<APValue> V, const Expr *E) {
6586 assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements())(static_cast <bool> (V.size() == E->getType()->castAs
<VectorType>()->getNumElements()) ? void (0) : __assert_fail
("V.size() == E->getType()->castAs<VectorType>()->getNumElements()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6586, __extension__ __PRETTY_FUNCTION__))
;
6587 // FIXME: remove this APValue copy.
6588 Result = APValue(V.data(), V.size());
6589 return true;
6590 }
6591 bool Success(const APValue &V, const Expr *E) {
6592 assert(V.isVector())(static_cast <bool> (V.isVector()) ? void (0) : __assert_fail
("V.isVector()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6592, __extension__ __PRETTY_FUNCTION__))
;
6593 Result = V;
6594 return true;
6595 }
6596 bool ZeroInitialization(const Expr *E);
6597
6598 bool VisitUnaryReal(const UnaryOperator *E)
6599 { return Visit(E->getSubExpr()); }
6600 bool VisitCastExpr(const CastExpr* E);
6601 bool VisitInitListExpr(const InitListExpr *E);
6602 bool VisitUnaryImag(const UnaryOperator *E);
6603 // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
6604 // binary comparisons, binary and/or/xor,
6605 // shufflevector, ExtVectorElementExpr
6606 };
6607} // end anonymous namespace
6608
6609static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
6610 assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue")(static_cast <bool> (E->isRValue() && E->
getType()->isVectorType() &&"not a vector rvalue")
? void (0) : __assert_fail ("E->isRValue() && E->getType()->isVectorType() &&\"not a vector rvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6610, __extension__ __PRETTY_FUNCTION__))
;
6611 return VectorExprEvaluator(Info, Result).Visit(E);
6612}
6613
6614bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
6615 const VectorType *VTy = E->getType()->castAs<VectorType>();
6616 unsigned NElts = VTy->getNumElements();
6617
6618 const Expr *SE = E->getSubExpr();
6619 QualType SETy = SE->getType();
6620
6621 switch (E->getCastKind()) {
6622 case CK_VectorSplat: {
6623 APValue Val = APValue();
6624 if (SETy->isIntegerType()) {
6625 APSInt IntResult;
6626 if (!EvaluateInteger(SE, IntResult, Info))
6627 return false;
6628 Val = APValue(std::move(IntResult));
6629 } else if (SETy->isRealFloatingType()) {
6630 APFloat FloatResult(0.0);
6631 if (!EvaluateFloat(SE, FloatResult, Info))
6632 return false;
6633 Val = APValue(std::move(FloatResult));
6634 } else {
6635 return Error(E);
6636 }
6637
6638 // Splat and create vector APValue.
6639 SmallVector<APValue, 4> Elts(NElts, Val);
6640 return Success(Elts, E);
6641 }
6642 case CK_BitCast: {
6643 // Evaluate the operand into an APInt we can extract from.
6644 llvm::APInt SValInt;
6645 if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
6646 return false;
6647 // Extract the elements
6648 QualType EltTy = VTy->getElementType();
6649 unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
6650 bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
6651 SmallVector<APValue, 4> Elts;
6652 if (EltTy->isRealFloatingType()) {
6653 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
6654 unsigned FloatEltSize = EltSize;
6655 if (&Sem == &APFloat::x87DoubleExtended())
6656 FloatEltSize = 80;
6657 for (unsigned i = 0; i < NElts; i++) {
6658 llvm::APInt Elt;
6659 if (BigEndian)
6660 Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
6661 else
6662 Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
6663 Elts.push_back(APValue(APFloat(Sem, Elt)));
6664 }
6665 } else if (EltTy->isIntegerType()) {
6666 for (unsigned i = 0; i < NElts; i++) {
6667 llvm::APInt Elt;
6668 if (BigEndian)
6669 Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
6670 else
6671 Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
6672 Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
6673 }
6674 } else {
6675 return Error(E);
6676 }
6677 return Success(Elts, E);
6678 }
6679 default:
6680 return ExprEvaluatorBaseTy::VisitCastExpr(E);
6681 }
6682}
6683
6684bool
6685VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6686 const VectorType *VT = E->getType()->castAs<VectorType>();
6687 unsigned NumInits = E->getNumInits();
6688 unsigned NumElements = VT->getNumElements();
6689
6690 QualType EltTy = VT->getElementType();
6691 SmallVector<APValue, 4> Elements;
6692
6693 // The number of initializers can be less than the number of
6694 // vector elements. For OpenCL, this can be due to nested vector
6695 // initialization. For GCC compatibility, missing trailing elements
6696 // should be initialized with zeroes.
6697 unsigned CountInits = 0, CountElts = 0;
6698 while (CountElts < NumElements) {
6699 // Handle nested vector initialization.
6700 if (CountInits < NumInits
6701 && E->getInit(CountInits)->getType()->isVectorType()) {
6702 APValue v;
6703 if (!EvaluateVector(E->getInit(CountInits), v, Info))
6704 return Error(E);
6705 unsigned vlen = v.getVectorLength();
6706 for (unsigned j = 0; j < vlen; j++)
6707 Elements.push_back(v.getVectorElt(j));
6708 CountElts += vlen;
6709 } else if (EltTy->isIntegerType()) {
6710 llvm::APSInt sInt(32);
6711 if (CountInits < NumInits) {
6712 if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
6713 return false;
6714 } else // trailing integer zero.
6715 sInt = Info.Ctx.MakeIntValue(0, EltTy);
6716 Elements.push_back(APValue(sInt));
6717 CountElts++;
6718 } else {
6719 llvm::APFloat f(0.0);
6720 if (CountInits < NumInits) {
6721 if (!EvaluateFloat(E->getInit(CountInits), f, Info))
6722 return false;
6723 } else // trailing float zero.
6724 f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
6725 Elements.push_back(APValue(f));
6726 CountElts++;
6727 }
6728 CountInits++;
6729 }
6730 return Success(Elements, E);
6731}
6732
6733bool
6734VectorExprEvaluator::ZeroInitialization(const Expr *E) {
6735 const VectorType *VT = E->getType()->getAs<VectorType>();
6736 QualType EltTy = VT->getElementType();
6737 APValue ZeroElement;
6738 if (EltTy->isIntegerType())
6739 ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
6740 else
6741 ZeroElement =
6742 APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
6743
6744 SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
6745 return Success(Elements, E);
6746}
6747
6748bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
6749 VisitIgnoredValue(E->getSubExpr());
6750 return ZeroInitialization(E);
6751}
6752
6753//===----------------------------------------------------------------------===//
6754// Array Evaluation
6755//===----------------------------------------------------------------------===//
6756
6757namespace {
6758 class ArrayExprEvaluator
6759 : public ExprEvaluatorBase<ArrayExprEvaluator> {
6760 const LValue &This;
6761 APValue &Result;
6762 public:
6763
6764 ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
6765 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
6766
6767 bool Success(const APValue &V, const Expr *E) {
6768 assert((V.isArray() || V.isLValue()) &&(static_cast <bool> ((V.isArray() || V.isLValue()) &&
"expected array or string literal") ? void (0) : __assert_fail
("(V.isArray() || V.isLValue()) && \"expected array or string literal\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6769, __extension__ __PRETTY_FUNCTION__))
6769 "expected array or string literal")(static_cast <bool> ((V.isArray() || V.isLValue()) &&
"expected array or string literal") ? void (0) : __assert_fail
("(V.isArray() || V.isLValue()) && \"expected array or string literal\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6769, __extension__ __PRETTY_FUNCTION__))
;
6770 Result = V;
6771 return true;
6772 }
6773
6774 bool ZeroInitialization(const Expr *E) {
6775 const ConstantArrayType *CAT =
6776 Info.Ctx.getAsConstantArrayType(E->getType());
6777 if (!CAT)
6778 return Error(E);
6779
6780 Result = APValue(APValue::UninitArray(), 0,
6781 CAT->getSize().getZExtValue());
6782 if (!Result.hasArrayFiller()) return true;
6783
6784 // Zero-initialize all elements.
6785 LValue Subobject = This;
6786 Subobject.addArray(Info, E, CAT);
6787 ImplicitValueInitExpr VIE(CAT->getElementType());
6788 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
6789 }
6790
6791 bool VisitCallExpr(const CallExpr *E) {
6792 return handleCallExpr(E, Result, &This);
6793 }
6794 bool VisitInitListExpr(const InitListExpr *E);
6795 bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
6796 bool VisitCXXConstructExpr(const CXXConstructExpr *E);
6797 bool VisitCXXConstructExpr(const CXXConstructExpr *E,
6798 const LValue &Subobject,
6799 APValue *Value, QualType Type);
6800 };
6801} // end anonymous namespace
6802
6803static bool EvaluateArray(const Expr *E, const LValue &This,
6804 APValue &Result, EvalInfo &Info) {
6805 assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue")(static_cast <bool> (E->isRValue() && E->
getType()->isArrayType() && "not an array rvalue")
? void (0) : __assert_fail ("E->isRValue() && E->getType()->isArrayType() && \"not an array rvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6805, __extension__ __PRETTY_FUNCTION__))
;
6806 return ArrayExprEvaluator(Info, This, Result).Visit(E);
6807}
6808
6809// Return true iff the given array filler may depend on the element index.
6810static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
6811 // For now, just whitelist non-class value-initialization and initialization
6812 // lists comprised of them.
6813 if (isa<ImplicitValueInitExpr>(FillerExpr))
6814 return false;
6815 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
6816 for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
6817 if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
6818 return true;
6819 }
6820 return false;
6821 }
6822 return true;
6823}
6824
6825bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6826 const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
6827 if (!CAT)
6828 return Error(E);
6829
6830 // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
6831 // an appropriately-typed string literal enclosed in braces.
6832 if (E->isStringLiteralInit()) {
6833 LValue LV;
6834 if (!EvaluateLValue(E->getInit(0), LV, Info))
6835 return false;
6836 APValue Val;
6837 LV.moveInto(Val);
6838 return Success(Val, E);
6839 }
6840
6841 bool Success = true;
6842
6843 assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&(static_cast <bool> ((!Result.isArray() || Result.getArrayInitializedElts
() == 0) && "zero-initialized array shouldn't have any initialized elts"
) ? void (0) : __assert_fail ("(!Result.isArray() || Result.getArrayInitializedElts() == 0) && \"zero-initialized array shouldn't have any initialized elts\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6844, __extension__ __PRETTY_FUNCTION__))
6844 "zero-initialized array shouldn't have any initialized elts")(static_cast <bool> ((!Result.isArray() || Result.getArrayInitializedElts
() == 0) && "zero-initialized array shouldn't have any initialized elts"
) ? void (0) : __assert_fail ("(!Result.isArray() || Result.getArrayInitializedElts() == 0) && \"zero-initialized array shouldn't have any initialized elts\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6844, __extension__ __PRETTY_FUNCTION__))
;
6845 APValue Filler;
6846 if (Result.isArray() && Result.hasArrayFiller())
6847 Filler = Result.getArrayFiller();
6848
6849 unsigned NumEltsToInit = E->getNumInits();
6850 unsigned NumElts = CAT->getSize().getZExtValue();
6851 const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
6852
6853 // If the initializer might depend on the array index, run it for each
6854 // array element.
6855 if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
6856 NumEltsToInit = NumElts;
6857
6858 DEBUG(llvm::dbgs() << "The number of elements to initialize: " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("exprconstant")) { llvm::dbgs() << "The number of elements to initialize: "
<< NumEltsToInit << ".\n"; } } while (false)
6859 NumEltsToInit << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("exprconstant")) { llvm::dbgs() << "The number of elements to initialize: "
<< NumEltsToInit << ".\n"; } } while (false)
;
6860
6861 Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
6862
6863 // If the array was previously zero-initialized, preserve the
6864 // zero-initialized values.
6865 if (!Filler.isUninit()) {
6866 for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
6867 Result.getArrayInitializedElt(I) = Filler;
6868 if (Result.hasArrayFiller())
6869 Result.getArrayFiller() = Filler;
6870 }
6871
6872 LValue Subobject = This;
6873 Subobject.addArray(Info, E, CAT);
6874 for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
6875 const Expr *Init =
6876 Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
6877 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
6878 Info, Subobject, Init) ||
6879 !HandleLValueArrayAdjustment(Info, Init, Subobject,
6880 CAT->getElementType(), 1)) {
6881 if (!Info.noteFailure())
6882 return false;
6883 Success = false;
6884 }
6885 }
6886
6887 if (!Result.hasArrayFiller())
6888 return Success;
6889
6890 // If we get here, we have a trivial filler, which we can just evaluate
6891 // once and splat over the rest of the array elements.
6892 assert(FillerExpr && "no array filler for incomplete init list")(static_cast <bool> (FillerExpr && "no array filler for incomplete init list"
) ? void (0) : __assert_fail ("FillerExpr && \"no array filler for incomplete init list\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6892, __extension__ __PRETTY_FUNCTION__))
;
6893 return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
6894 FillerExpr) && Success;
6895}
6896
6897bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
6898 if (E->getCommonExpr() &&
6899 !Evaluate(Info.CurrentCall->createTemporary(E->getCommonExpr(), false),
6900 Info, E->getCommonExpr()->getSourceExpr()))
6901 return false;
6902
6903 auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
6904
6905 uint64_t Elements = CAT->getSize().getZExtValue();
6906 Result = APValue(APValue::UninitArray(), Elements, Elements);
6907
6908 LValue Subobject = This;
6909 Subobject.addArray(Info, E, CAT);
6910
6911 bool Success = true;
6912 for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
6913 if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
6914 Info, Subobject, E->getSubExpr()) ||
6915 !HandleLValueArrayAdjustment(Info, E, Subobject,
6916 CAT->getElementType(), 1)) {
6917 if (!Info.noteFailure())
6918 return false;
6919 Success = false;
6920 }
6921 }
6922
6923 return Success;
6924}
6925
6926bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
6927 return VisitCXXConstructExpr(E, This, &Result, E->getType());
6928}
6929
6930bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
6931 const LValue &Subobject,
6932 APValue *Value,
6933 QualType Type) {
6934 bool HadZeroInit = !Value->isUninit();
6935
6936 if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
6937 unsigned N = CAT->getSize().getZExtValue();
6938
6939 // Preserve the array filler if we had prior zero-initialization.
6940 APValue Filler =
6941 HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
6942 : APValue();
6943
6944 *Value = APValue(APValue::UninitArray(), N, N);
6945
6946 if (HadZeroInit)
6947 for (unsigned I = 0; I != N; ++I)
6948 Value->getArrayInitializedElt(I) = Filler;
6949
6950 // Initialize the elements.
6951 LValue ArrayElt = Subobject;
6952 ArrayElt.addArray(Info, E, CAT);
6953 for (unsigned I = 0; I != N; ++I)
6954 if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
6955 CAT->getElementType()) ||
6956 !HandleLValueArrayAdjustment(Info, E, ArrayElt,
6957 CAT->getElementType(), 1))
6958 return false;
6959
6960 return true;
6961 }
6962
6963 if (!Type->isRecordType())
6964 return Error(E);
6965
6966 return RecordExprEvaluator(Info, Subobject, *Value)
6967 .VisitCXXConstructExpr(E, Type);
6968}
6969
6970//===----------------------------------------------------------------------===//
6971// Integer Evaluation
6972//
6973// As a GNU extension, we support casting pointers to sufficiently-wide integer
6974// types and back in constant folding. Integer values are thus represented
6975// either as an integer-valued APValue, or as an lvalue-valued APValue.
6976//===----------------------------------------------------------------------===//
6977
6978namespace {
6979class IntExprEvaluator
6980 : public ExprEvaluatorBase<IntExprEvaluator> {
6981 APValue &Result;
6982public:
6983 IntExprEvaluator(EvalInfo &info, APValue &result)
6984 : ExprEvaluatorBaseTy(info), Result(result) {}
6985
6986 bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
6987 assert(E->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6988, __extension__ __PRETTY_FUNCTION__))
6988 "Invalid evaluation result.")(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6988, __extension__ __PRETTY_FUNCTION__))
;
6989 assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&(static_cast <bool> (SI.isSigned() == E->getType()->
isSignedIntegerOrEnumerationType() && "Invalid evaluation result."
) ? void (0) : __assert_fail ("SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6990, __extension__ __PRETTY_FUNCTION__))
6990 "Invalid evaluation result.")(static_cast <bool> (SI.isSigned() == E->getType()->
isSignedIntegerOrEnumerationType() && "Invalid evaluation result."
) ? void (0) : __assert_fail ("SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6990, __extension__ __PRETTY_FUNCTION__))
;
6991 assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&(static_cast <bool> (SI.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6992, __extension__ __PRETTY_FUNCTION__))
6992 "Invalid evaluation result.")(static_cast <bool> (SI.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 6992, __extension__ __PRETTY_FUNCTION__))
;
6993 Result = APValue(SI);
6994 return true;
6995 }
6996 bool Success(const llvm::APSInt &SI, const Expr *E) {
6997 return Success(SI, E, Result);
6998 }
6999
7000 bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
7001 assert(E->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7002, __extension__ __PRETTY_FUNCTION__))
7002 "Invalid evaluation result.")(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7002, __extension__ __PRETTY_FUNCTION__))
;
7003 assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&(static_cast <bool> (I.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7004, __extension__ __PRETTY_FUNCTION__))
7004 "Invalid evaluation result.")(static_cast <bool> (I.getBitWidth() == Info.Ctx.getIntWidth
(E->getType()) && "Invalid evaluation result.") ? void
(0) : __assert_fail ("I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7004, __extension__ __PRETTY_FUNCTION__))
;
7005 Result = APValue(APSInt(I));
7006 Result.getInt().setIsUnsigned(
7007 E->getType()->isUnsignedIntegerOrEnumerationType());
7008 return true;
7009 }
7010 bool Success(const llvm::APInt &I, const Expr *E) {
7011 return Success(I, E, Result);
7012 }
7013
7014 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
7015 assert(E->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7016, __extension__ __PRETTY_FUNCTION__))
7016 "Invalid evaluation result.")(static_cast <bool> (E->getType()->isIntegralOrEnumerationType
() && "Invalid evaluation result.") ? void (0) : __assert_fail
("E->getType()->isIntegralOrEnumerationType() && \"Invalid evaluation result.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7016, __extension__ __PRETTY_FUNCTION__))
;
7017 Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
7018 return true;
7019 }
7020 bool Success(uint64_t Value, const Expr *E) {
7021 return Success(Value, E, Result);
7022 }
7023
7024 bool Success(CharUnits Size, const Expr *E) {
7025 return Success(Size.getQuantity(), E);
7026 }
7027
7028 bool Success(const APValue &V, const Expr *E) {
7029 if (V.isLValue() || V.isAddrLabelDiff()) {
7030 Result = V;
7031 return true;
7032 }
7033 return Success(V.getInt(), E);
7034 }
7035
7036 bool ZeroInitialization(const Expr *E) { return Success(0, E); }
7037
7038 //===--------------------------------------------------------------------===//
7039 // Visitor Methods
7040 //===--------------------------------------------------------------------===//
7041
7042 bool VisitIntegerLiteral(const IntegerLiteral *E) {
7043 return Success(E->getValue(), E);
7044 }
7045 bool VisitCharacterLiteral(const CharacterLiteral *E) {
7046 return Success(E->getValue(), E);
7047 }
7048
7049 bool CheckReferencedDecl(const Expr *E, const Decl *D);
7050 bool VisitDeclRefExpr(const DeclRefExpr *E) {
7051 if (CheckReferencedDecl(E, E->getDecl()))
7052 return true;
7053
7054 return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
7055 }
7056 bool VisitMemberExpr(const MemberExpr *E) {
7057 if (CheckReferencedDecl(E, E->getMemberDecl())) {
7058 VisitIgnoredBaseExpression(E->getBase());
7059 return true;
7060 }
7061
7062 return ExprEvaluatorBaseTy::VisitMemberExpr(E);
7063 }
7064
7065 bool VisitCallExpr(const CallExpr *E);
7066 bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
7067 bool VisitBinaryOperator(const BinaryOperator *E);
7068 bool VisitOffsetOfExpr(const OffsetOfExpr *E);
7069 bool VisitUnaryOperator(const UnaryOperator *E);
7070
7071 bool VisitCastExpr(const CastExpr* E);
7072 bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
7073
7074 bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
7075 return Success(E->getValue(), E);
7076 }
7077
7078 bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
7079 return Success(E->getValue(), E);
7080 }
7081
7082 bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
7083 if (Info.ArrayInitIndex == uint64_t(-1)) {
7084 // We were asked to evaluate this subexpression independent of the
7085 // enclosing ArrayInitLoopExpr. We can't do that.
7086 Info.FFDiag(E);
7087 return false;
7088 }
7089 return Success(Info.ArrayInitIndex, E);
7090 }
7091
7092 // Note, GNU defines __null as an integer, not a pointer.
7093 bool VisitGNUNullExpr(const GNUNullExpr *E) {
7094 return ZeroInitialization(E);
7095 }
7096
7097 bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
7098 return Success(E->getValue(), E);
7099 }
7100
7101 bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
7102 return Success(E->getValue(), E);
7103 }
7104
7105 bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
7106 return Success(E->getValue(), E);
7107 }
7108
7109 bool VisitUnaryReal(const UnaryOperator *E);
7110 bool VisitUnaryImag(const UnaryOperator *E);
7111
7112 bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
7113 bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
7114
7115 // FIXME: Missing: array subscript of vector, member of vector
7116};
7117} // end anonymous namespace
7118
7119/// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
7120/// produce either the integer value or a pointer.
7121///
7122/// GCC has a heinous extension which folds casts between pointer types and
7123/// pointer-sized integral types. We support this by allowing the evaluation of
7124/// an integer rvalue to produce a pointer (represented as an lvalue) instead.
7125/// Some simple arithmetic on such values is supported (they are treated much
7126/// like char*).
7127static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
7128 EvalInfo &Info) {
7129 assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType())(static_cast <bool> (E->isRValue() && E->
getType()->isIntegralOrEnumerationType()) ? void (0) : __assert_fail
("E->isRValue() && E->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7129, __extension__ __PRETTY_FUNCTION__))
;
7130 return IntExprEvaluator(Info, Result).Visit(E);
7131}
7132
7133static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
7134 APValue Val;
7135 if (!EvaluateIntegerOrLValue(E, Val, Info))
7136 return false;
7137 if (!Val.isInt()) {
7138 // FIXME: It would be better to produce the diagnostic for casting
7139 // a pointer to an integer.
7140 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
7141 return false;
7142 }
7143 Result = Val.getInt();
7144 return true;
7145}
7146
7147/// Check whether the given declaration can be directly converted to an integral
7148/// rvalue. If not, no diagnostic is produced; there are other things we can
7149/// try.
7150bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
7151 // Enums are integer constant exprs.
7152 if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
7153 // Check for signedness/width mismatches between E type and ECD value.
7154 bool SameSign = (ECD->getInitVal().isSigned()
7155 == E->getType()->isSignedIntegerOrEnumerationType());
7156 bool SameWidth = (ECD->getInitVal().getBitWidth()
7157 == Info.Ctx.getIntWidth(E->getType()));
7158 if (SameSign && SameWidth)
7159 return Success(ECD->getInitVal(), E);
7160 else {
7161 // Get rid of mismatch (otherwise Success assertions will fail)
7162 // by computing a new value matching the type of E.
7163 llvm::APSInt Val = ECD->getInitVal();
7164 if (!SameSign)
7165 Val.setIsSigned(!ECD->getInitVal().isSigned());
7166 if (!SameWidth)
7167 Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
7168 return Success(Val, E);
7169 }
7170 }
7171 return false;
7172}
7173
7174/// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
7175/// as GCC.
7176static int EvaluateBuiltinClassifyType(const CallExpr *E,
7177 const LangOptions &LangOpts) {
7178 // The following enum mimics the values returned by GCC.
7179 // FIXME: Does GCC differ between lvalue and rvalue references here?
7180 enum gcc_type_class {
7181 no_type_class = -1,
7182 void_type_class, integer_type_class, char_type_class,
7183 enumeral_type_class, boolean_type_class,
7184 pointer_type_class, reference_type_class, offset_type_class,
7185 real_type_class, complex_type_class,
7186 function_type_class, method_type_class,
7187 record_type_class, union_type_class,
7188 array_type_class, string_type_class,
7189 lang_type_class
7190 };
7191
7192 // If no argument was supplied, default to "no_type_class". This isn't
7193 // ideal, however it is what gcc does.
7194 if (E->getNumArgs() == 0)
7195 return no_type_class;
7196
7197 QualType CanTy = E->getArg(0)->getType().getCanonicalType();
7198 const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
7199
7200 switch (CanTy->getTypeClass()) {
7201#define TYPE(ID, BASE)
7202#define DEPENDENT_TYPE(ID, BASE) case Type::ID:
7203#define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
7204#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
7205#include "clang/AST/TypeNodes.def"
7206 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type")::llvm::llvm_unreachable_internal("CallExpr::isBuiltinClassifyType(): unimplemented type"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7206)
;
7207
7208 case Type::Builtin:
7209 switch (BT->getKind()) {
7210#define BUILTIN_TYPE(ID, SINGLETON_ID)
7211#define SIGNED_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return integer_type_class;
7212#define FLOATING_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return real_type_class;
7213#define PLACEHOLDER_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: break;
7214#include "clang/AST/BuiltinTypes.def"
7215 case BuiltinType::Void:
7216 return void_type_class;
7217
7218 case BuiltinType::Bool:
7219 return boolean_type_class;
7220
7221 case BuiltinType::Char_U: // gcc doesn't appear to use char_type_class
7222 case BuiltinType::UChar:
7223 case BuiltinType::UShort:
7224 case BuiltinType::UInt:
7225 case BuiltinType::ULong:
7226 case BuiltinType::ULongLong:
7227 case BuiltinType::UInt128:
7228 return integer_type_class;
7229
7230 case BuiltinType::NullPtr:
7231 return pointer_type_class;
7232
7233 case BuiltinType::WChar_U:
7234 case BuiltinType::Char16:
7235 case BuiltinType::Char32:
7236 case BuiltinType::ObjCId:
7237 case BuiltinType::ObjCClass:
7238 case BuiltinType::ObjCSel:
7239#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7240 case BuiltinType::Id:
7241#include "clang/Basic/OpenCLImageTypes.def"
7242 case BuiltinType::OCLSampler:
7243 case BuiltinType::OCLEvent:
7244 case BuiltinType::OCLClkEvent:
7245 case BuiltinType::OCLQueue:
7246 case BuiltinType::OCLReserveID:
7247 case BuiltinType::Dependent:
7248 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type")::llvm::llvm_unreachable_internal("CallExpr::isBuiltinClassifyType(): unimplemented type"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7248)
;
7249 };
7250 break;
7251
7252 case Type::Enum:
7253 return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
7254 break;
7255
7256 case Type::Pointer:
7257 return pointer_type_class;
7258 break;
7259
7260 case Type::MemberPointer:
7261 if (CanTy->isMemberDataPointerType())
7262 return offset_type_class;
7263 else {
7264 // We expect member pointers to be either data or function pointers,
7265 // nothing else.
7266 assert(CanTy->isMemberFunctionPointerType())(static_cast <bool> (CanTy->isMemberFunctionPointerType
()) ? void (0) : __assert_fail ("CanTy->isMemberFunctionPointerType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7266, __extension__ __PRETTY_FUNCTION__))
;
7267 return method_type_class;
7268 }
7269
7270 case Type::Complex:
7271 return complex_type_class;
7272
7273 case Type::FunctionNoProto:
7274 case Type::FunctionProto:
7275 return LangOpts.CPlusPlus ? function_type_class : pointer_type_class;
7276
7277 case Type::Record:
7278 if (const RecordType *RT = CanTy->getAs<RecordType>()) {
7279 switch (RT->getDecl()->getTagKind()) {
7280 case TagTypeKind::TTK_Struct:
7281 case TagTypeKind::TTK_Class:
7282 case TagTypeKind::TTK_Interface:
7283 return record_type_class;
7284
7285 case TagTypeKind::TTK_Enum:
7286 return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
7287
7288 case TagTypeKind::TTK_Union:
7289 return union_type_class;
7290 }
7291 }
7292 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type")::llvm::llvm_unreachable_internal("CallExpr::isBuiltinClassifyType(): unimplemented type"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7292)
;
7293
7294 case Type::ConstantArray:
7295 case Type::VariableArray:
7296 case Type::IncompleteArray:
7297 return LangOpts.CPlusPlus ? array_type_class : pointer_type_class;
7298
7299 case Type::BlockPointer:
7300 case Type::LValueReference:
7301 case Type::RValueReference:
7302 case Type::Vector:
7303 case Type::ExtVector:
7304 case Type::Auto:
7305 case Type::DeducedTemplateSpecialization:
7306 case Type::ObjCObject:
7307 case Type::ObjCInterface:
7308 case Type::ObjCObjectPointer:
7309 case Type::Pipe:
7310 case Type::Atomic:
7311 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type")::llvm::llvm_unreachable_internal("CallExpr::isBuiltinClassifyType(): unimplemented type"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7311)
;
7312 }
7313
7314 llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type")::llvm::llvm_unreachable_internal("CallExpr::isBuiltinClassifyType(): unimplemented type"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7314)
;
7315}
7316
7317/// EvaluateBuiltinConstantPForLValue - Determine the result of
7318/// __builtin_constant_p when applied to the given lvalue.
7319///
7320/// An lvalue is only "constant" if it is a pointer or reference to the first
7321/// character of a string literal.
7322template<typename LValue>
7323static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
7324 const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
7325 return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
7326}
7327
7328/// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
7329/// GCC as we can manage.
7330static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
7331 QualType ArgType = Arg->getType();
7332
7333 // __builtin_constant_p always has one operand. The rules which gcc follows
7334 // are not precisely documented, but are as follows:
7335 //
7336 // - If the operand is of integral, floating, complex or enumeration type,
7337 // and can be folded to a known value of that type, it returns 1.
7338 // - If the operand and can be folded to a pointer to the first character
7339 // of a string literal (or such a pointer cast to an integral type), it
7340 // returns 1.
7341 //
7342 // Otherwise, it returns 0.
7343 //
7344 // FIXME: GCC also intends to return 1 for literals of aggregate types, but
7345 // its support for this does not currently work.
7346 if (ArgType->isIntegralOrEnumerationType()) {
7347 Expr::EvalResult Result;
7348 if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
7349 return false;
7350
7351 APValue &V = Result.Val;
7352 if (V.getKind() == APValue::Int)
7353 return true;
7354 if (V.getKind() == APValue::LValue)
7355 return EvaluateBuiltinConstantPForLValue(V);
7356 } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
7357 return Arg->isEvaluatable(Ctx);
7358 } else if (ArgType->isPointerType() || Arg->isGLValue()) {
7359 LValue LV;
7360 Expr::EvalStatus Status;
7361 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
7362 if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
7363 : EvaluatePointer(Arg, LV, Info)) &&
7364 !Status.HasSideEffects)
7365 return EvaluateBuiltinConstantPForLValue(LV);
7366 }
7367
7368 // Anything else isn't considered to be sufficiently constant.
7369 return false;
7370}
7371
7372/// Retrieves the "underlying object type" of the given expression,
7373/// as used by __builtin_object_size.
7374static QualType getObjectType(APValue::LValueBase B) {
7375 if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
7376 if (const VarDecl *VD = dyn_cast<VarDecl>(D))
7377 return VD->getType();
7378 } else if (const Expr *E = B.get<const Expr*>()) {
7379 if (isa<CompoundLiteralExpr>(E))
7380 return E->getType();
7381 }
7382
7383 return QualType();
7384}
7385
7386/// A more selective version of E->IgnoreParenCasts for
7387/// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
7388/// to change the type of E.
7389/// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
7390///
7391/// Always returns an RValue with a pointer representation.
7392static const Expr *ignorePointerCastsAndParens(const Expr *E) {
7393 assert(E->isRValue() && E->getType()->hasPointerRepresentation())(static_cast <bool> (E->isRValue() && E->
getType()->hasPointerRepresentation()) ? void (0) : __assert_fail
("E->isRValue() && E->getType()->hasPointerRepresentation()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7393, __extension__ __PRETTY_FUNCTION__))
;
7394
7395 auto *NoParens = E->IgnoreParens();
7396 auto *Cast = dyn_cast<CastExpr>(NoParens);
7397 if (Cast == nullptr)
7398 return NoParens;
7399
7400 // We only conservatively allow a few kinds of casts, because this code is
7401 // inherently a simple solution that seeks to support the common case.
7402 auto CastKind = Cast->getCastKind();
7403 if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
7404 CastKind != CK_AddressSpaceConversion)
7405 return NoParens;
7406
7407 auto *SubExpr = Cast->getSubExpr();
7408 if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
7409 return NoParens;
7410 return ignorePointerCastsAndParens(SubExpr);
7411}
7412
7413/// Checks to see if the given LValue's Designator is at the end of the LValue's
7414/// record layout. e.g.
7415/// struct { struct { int a, b; } fst, snd; } obj;
7416/// obj.fst // no
7417/// obj.snd // yes
7418/// obj.fst.a // no
7419/// obj.fst.b // no
7420/// obj.snd.a // no
7421/// obj.snd.b // yes
7422///
7423/// Please note: this function is specialized for how __builtin_object_size
7424/// views "objects".
7425///
7426/// If this encounters an invalid RecordDecl or otherwise cannot determine the
7427/// correct result, it will always return true.
7428static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
7429 assert(!LVal.Designator.Invalid)(static_cast <bool> (!LVal.Designator.Invalid) ? void (
0) : __assert_fail ("!LVal.Designator.Invalid", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7429, __extension__ __PRETTY_FUNCTION__))
;
7430
7431 auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
7432 const RecordDecl *Parent = FD->getParent();
7433 Invalid = Parent->isInvalidDecl();
7434 if (Invalid || Parent->isUnion())
7435 return true;
7436 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
7437 return FD->getFieldIndex() + 1 == Layout.getFieldCount();
7438 };
7439
7440 auto &Base = LVal.getLValueBase();
7441 if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
7442 if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
7443 bool Invalid;
7444 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
7445 return Invalid;
7446 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
7447 for (auto *FD : IFD->chain()) {
7448 bool Invalid;
7449 if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
7450 return Invalid;
7451 }
7452 }
7453 }
7454
7455 unsigned I = 0;
7456 QualType BaseType = getType(Base);
7457 if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
7458 // If we don't know the array bound, conservatively assume we're looking at
7459 // the final array element.
7460 ++I;
7461 if (BaseType->isIncompleteArrayType())
7462 BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
7463 else
7464 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
7465 }
7466
7467 for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
7468 const auto &Entry = LVal.Designator.Entries[I];
7469 if (BaseType->isArrayType()) {
7470 // Because __builtin_object_size treats arrays as objects, we can ignore
7471 // the index iff this is the last array in the Designator.
7472 if (I + 1 == E)
7473 return true;
7474 const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
7475 uint64_t Index = Entry.ArrayIndex;
7476 if (Index + 1 != CAT->getSize())
7477 return false;
7478 BaseType = CAT->getElementType();
7479 } else if (BaseType->isAnyComplexType()) {
7480 const auto *CT = BaseType->castAs<ComplexType>();
7481 uint64_t Index = Entry.ArrayIndex;
7482 if (Index != 1)
7483 return false;
7484 BaseType = CT->getElementType();
7485 } else if (auto *FD = getAsField(Entry)) {
7486 bool Invalid;
7487 if (!IsLastOrInvalidFieldDecl(FD, Invalid))
7488 return Invalid;
7489 BaseType = FD->getType();
7490 } else {
7491 assert(getAsBaseClass(Entry) && "Expecting cast to a base class")(static_cast <bool> (getAsBaseClass(Entry) && "Expecting cast to a base class"
) ? void (0) : __assert_fail ("getAsBaseClass(Entry) && \"Expecting cast to a base class\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7491, __extension__ __PRETTY_FUNCTION__))
;
7492 return false;
7493 }
7494 }
7495 return true;
7496}
7497
7498/// Tests to see if the LValue has a user-specified designator (that isn't
7499/// necessarily valid). Note that this always returns 'true' if the LValue has
7500/// an unsized array as its first designator entry, because there's currently no
7501/// way to tell if the user typed *foo or foo[0].
7502static bool refersToCompleteObject(const LValue &LVal) {
7503 if (LVal.Designator.Invalid)
7504 return false;
7505
7506 if (!LVal.Designator.Entries.empty())
7507 return LVal.Designator.isMostDerivedAnUnsizedArray();
7508
7509 if (!LVal.InvalidBase)
7510 return true;
7511
7512 // If `E` is a MemberExpr, then the first part of the designator is hiding in
7513 // the LValueBase.
7514 const auto *E = LVal.Base.dyn_cast<const Expr *>();
7515 return !E || !isa<MemberExpr>(E);
7516}
7517
7518/// Attempts to detect a user writing into a piece of memory that's impossible
7519/// to figure out the size of by just using types.
7520static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
7521 const SubobjectDesignator &Designator = LVal.Designator;
7522 // Notes:
7523 // - Users can only write off of the end when we have an invalid base. Invalid
7524 // bases imply we don't know where the memory came from.
7525 // - We used to be a bit more aggressive here; we'd only be conservative if
7526 // the array at the end was flexible, or if it had 0 or 1 elements. This
7527 // broke some common standard library extensions (PR30346), but was
7528 // otherwise seemingly fine. It may be useful to reintroduce this behavior
7529 // with some sort of whitelist. OTOH, it seems that GCC is always
7530 // conservative with the last element in structs (if it's an array), so our
7531 // current behavior is more compatible than a whitelisting approach would
7532 // be.
7533 return LVal.InvalidBase &&
7534 Designator.Entries.size() == Designator.MostDerivedPathLength &&
7535 Designator.MostDerivedIsArrayElement &&
7536 isDesignatorAtObjectEnd(Ctx, LVal);
7537}
7538
7539/// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
7540/// Fails if the conversion would cause loss of precision.
7541static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
7542 CharUnits &Result) {
7543 auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
7544 if (Int.ugt(CharUnitsMax))
7545 return false;
7546 Result = CharUnits::fromQuantity(Int.getZExtValue());
7547 return true;
7548}
7549
7550/// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
7551/// determine how many bytes exist from the beginning of the object to either
7552/// the end of the current subobject, or the end of the object itself, depending
7553/// on what the LValue looks like + the value of Type.
7554///
7555/// If this returns false, the value of Result is undefined.
7556static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
7557 unsigned Type, const LValue &LVal,
7558 CharUnits &EndOffset) {
7559 bool DetermineForCompleteObject = refersToCompleteObject(LVal);
7560
7561 auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
7562 if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
7563 return false;
7564 return HandleSizeof(Info, ExprLoc, Ty, Result);
7565 };
7566
7567 // We want to evaluate the size of the entire object. This is a valid fallback
7568 // for when Type=1 and the designator is invalid, because we're asked for an
7569 // upper-bound.
7570 if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
7571 // Type=3 wants a lower bound, so we can't fall back to this.
7572 if (Type == 3 && !DetermineForCompleteObject)
7573 return false;
7574
7575 llvm::APInt APEndOffset;
7576 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
7577 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
7578 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
7579
7580 if (LVal.InvalidBase)
7581 return false;
7582
7583 QualType BaseTy = getObjectType(LVal.getLValueBase());
7584 return CheckedHandleSizeof(BaseTy, EndOffset);
7585 }
7586
7587 // We want to evaluate the size of a subobject.
7588 const SubobjectDesignator &Designator = LVal.Designator;
7589
7590 // The following is a moderately common idiom in C:
7591 //
7592 // struct Foo { int a; char c[1]; };
7593 // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
7594 // strcpy(&F->c[0], Bar);
7595 //
7596 // In order to not break too much legacy code, we need to support it.
7597 if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
7598 // If we can resolve this to an alloc_size call, we can hand that back,
7599 // because we know for certain how many bytes there are to write to.
7600 llvm::APInt APEndOffset;
7601 if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
7602 getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
7603 return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
7604
7605 // If we cannot determine the size of the initial allocation, then we can't
7606 // given an accurate upper-bound. However, we are still able to give
7607 // conservative lower-bounds for Type=3.
7608 if (Type == 1)
7609 return false;
7610 }
7611
7612 CharUnits BytesPerElem;
7613 if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
7614 return false;
7615
7616 // According to the GCC documentation, we want the size of the subobject
7617 // denoted by the pointer. But that's not quite right -- what we actually
7618 // want is the size of the immediately-enclosing array, if there is one.
7619 int64_t ElemsRemaining;
7620 if (Designator.MostDerivedIsArrayElement &&
7621 Designator.Entries.size() == Designator.MostDerivedPathLength) {
7622 uint64_t ArraySize = Designator.getMostDerivedArraySize();
7623 uint64_t ArrayIndex = Designator.Entries.back().ArrayIndex;
7624 ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
7625 } else {
7626 ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
7627 }
7628
7629 EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
7630 return true;
7631}
7632
7633/// \brief Tries to evaluate the __builtin_object_size for @p E. If successful,
7634/// returns true and stores the result in @p Size.
7635///
7636/// If @p WasError is non-null, this will report whether the failure to evaluate
7637/// is to be treated as an Error in IntExprEvaluator.
7638static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
7639 EvalInfo &Info, uint64_t &Size) {
7640 // Determine the denoted object.
7641 LValue LVal;
7642 {
7643 // The operand of __builtin_object_size is never evaluated for side-effects.
7644 // If there are any, but we can determine the pointed-to object anyway, then
7645 // ignore the side-effects.
7646 SpeculativeEvaluationRAII SpeculativeEval(Info);
7647 FoldOffsetRAII Fold(Info);
7648
7649 if (E->isGLValue()) {
7650 // It's possible for us to be given GLValues if we're called via
7651 // Expr::tryEvaluateObjectSize.
7652 APValue RVal;
7653 if (!EvaluateAsRValue(Info, E, RVal))
7654 return false;
7655 LVal.setFrom(Info.Ctx, RVal);
7656 } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
7657 /*InvalidBaseOK=*/true))
7658 return false;
7659 }
7660
7661 // If we point to before the start of the object, there are no accessible
7662 // bytes.
7663 if (LVal.getLValueOffset().isNegative()) {
7664 Size = 0;
7665 return true;
7666 }
7667
7668 CharUnits EndOffset;
7669 if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
7670 return false;
7671
7672 // If we've fallen outside of the end offset, just pretend there's nothing to
7673 // write to/read from.
7674 if (EndOffset <= LVal.getLValueOffset())
7675 Size = 0;
7676 else
7677 Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
7678 return true;
7679}
7680
7681bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
7682 if (unsigned BuiltinOp = E->getBuiltinCallee())
7683 return VisitBuiltinCallExpr(E, BuiltinOp);
7684
7685 return ExprEvaluatorBaseTy::VisitCallExpr(E);
7686}
7687
7688bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
7689 unsigned BuiltinOp) {
7690 switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
7691 default:
7692 return ExprEvaluatorBaseTy::VisitCallExpr(E);
7693
7694 case Builtin::BI__builtin_object_size: {
7695 // The type was checked when we built the expression.
7696 unsigned Type =
7697 E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
7698 assert(Type <= 3 && "unexpected type")(static_cast <bool> (Type <= 3 && "unexpected type"
) ? void (0) : __assert_fail ("Type <= 3 && \"unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7698, __extension__ __PRETTY_FUNCTION__))
;
7699
7700 uint64_t Size;
7701 if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
7702 return Success(Size, E);
7703
7704 if (E->getArg(0)->HasSideEffects(Info.Ctx))
7705 return Success((Type & 2) ? 0 : -1, E);
7706
7707 // Expression had no side effects, but we couldn't statically determine the
7708 // size of the referenced object.
7709 switch (Info.EvalMode) {
7710 case EvalInfo::EM_ConstantExpression:
7711 case EvalInfo::EM_PotentialConstantExpression:
7712 case EvalInfo::EM_ConstantFold:
7713 case EvalInfo::EM_EvaluateForOverflow:
7714 case EvalInfo::EM_IgnoreSideEffects:
7715 case EvalInfo::EM_OffsetFold:
7716 // Leave it to IR generation.
7717 return Error(E);
7718 case EvalInfo::EM_ConstantExpressionUnevaluated:
7719 case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
7720 // Reduce it to a constant now.
7721 return Success((Type & 2) ? 0 : -1, E);
7722 }
7723
7724 llvm_unreachable("unexpected EvalMode")::llvm::llvm_unreachable_internal("unexpected EvalMode", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7724)
;
7725 }
7726
7727 case Builtin::BI__builtin_bswap16:
7728 case Builtin::BI__builtin_bswap32:
7729 case Builtin::BI__builtin_bswap64: {
7730 APSInt Val;
7731 if (!EvaluateInteger(E->getArg(0), Val, Info))
7732 return false;
7733
7734 return Success(Val.byteSwap(), E);
7735 }
7736
7737 case Builtin::BI__builtin_classify_type:
7738 return Success(EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
7739
7740 // FIXME: BI__builtin_clrsb
7741 // FIXME: BI__builtin_clrsbl
7742 // FIXME: BI__builtin_clrsbll
7743
7744 case Builtin::BI__builtin_clz:
7745 case Builtin::BI__builtin_clzl:
7746 case Builtin::BI__builtin_clzll:
7747 case Builtin::BI__builtin_clzs: {
7748 APSInt Val;
7749 if (!EvaluateInteger(E->getArg(0), Val, Info))
7750 return false;
7751 if (!Val)
7752 return Error(E);
7753
7754 return Success(Val.countLeadingZeros(), E);
7755 }
7756
7757 case Builtin::BI__builtin_constant_p:
7758 return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
7759
7760 case Builtin::BI__builtin_ctz:
7761 case Builtin::BI__builtin_ctzl:
7762 case Builtin::BI__builtin_ctzll:
7763 case Builtin::BI__builtin_ctzs: {
7764 APSInt Val;
7765 if (!EvaluateInteger(E->getArg(0), Val, Info))
7766 return false;
7767 if (!Val)
7768 return Error(E);
7769
7770 return Success(Val.countTrailingZeros(), E);
7771 }
7772
7773 case Builtin::BI__builtin_eh_return_data_regno: {
7774 int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
7775 Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
7776 return Success(Operand, E);
7777 }
7778
7779 case Builtin::BI__builtin_expect:
7780 return Visit(E->getArg(0));
7781
7782 case Builtin::BI__builtin_ffs:
7783 case Builtin::BI__builtin_ffsl:
7784 case Builtin::BI__builtin_ffsll: {
7785 APSInt Val;
7786 if (!EvaluateInteger(E->getArg(0), Val, Info))
7787 return false;
7788
7789 unsigned N = Val.countTrailingZeros();
7790 return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
7791 }
7792
7793 case Builtin::BI__builtin_fpclassify: {
7794 APFloat Val(0.0);
7795 if (!EvaluateFloat(E->getArg(5), Val, Info))
7796 return false;
7797 unsigned Arg;
7798 switch (Val.getCategory()) {
7799 case APFloat::fcNaN: Arg = 0; break;
7800 case APFloat::fcInfinity: Arg = 1; break;
7801 case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
7802 case APFloat::fcZero: Arg = 4; break;
7803 }
7804 return Visit(E->getArg(Arg));
7805 }
7806
7807 case Builtin::BI__builtin_isinf_sign: {
7808 APFloat Val(0.0);
7809 return EvaluateFloat(E->getArg(0), Val, Info) &&
7810 Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
7811 }
7812
7813 case Builtin::BI__builtin_isinf: {
7814 APFloat Val(0.0);
7815 return EvaluateFloat(E->getArg(0), Val, Info) &&
7816 Success(Val.isInfinity() ? 1 : 0, E);
7817 }
7818
7819 case Builtin::BI__builtin_isfinite: {
7820 APFloat Val(0.0);
7821 return EvaluateFloat(E->getArg(0), Val, Info) &&
7822 Success(Val.isFinite() ? 1 : 0, E);
7823 }
7824
7825 case Builtin::BI__builtin_isnan: {
7826 APFloat Val(0.0);
7827 return EvaluateFloat(E->getArg(0), Val, Info) &&
7828 Success(Val.isNaN() ? 1 : 0, E);
7829 }
7830
7831 case Builtin::BI__builtin_isnormal: {
7832 APFloat Val(0.0);
7833 return EvaluateFloat(E->getArg(0), Val, Info) &&
7834 Success(Val.isNormal() ? 1 : 0, E);
7835 }
7836
7837 case Builtin::BI__builtin_parity:
7838 case Builtin::BI__builtin_parityl:
7839 case Builtin::BI__builtin_parityll: {
7840 APSInt Val;
7841 if (!EvaluateInteger(E->getArg(0), Val, Info))
7842 return false;
7843
7844 return Success(Val.countPopulation() % 2, E);
7845 }
7846
7847 case Builtin::BI__builtin_popcount:
7848 case Builtin::BI__builtin_popcountl:
7849 case Builtin::BI__builtin_popcountll: {
7850 APSInt Val;
7851 if (!EvaluateInteger(E->getArg(0), Val, Info))
7852 return false;
7853
7854 return Success(Val.countPopulation(), E);
7855 }
7856
7857 case Builtin::BIstrlen:
7858 case Builtin::BIwcslen:
7859 // A call to strlen is not a constant expression.
7860 if (Info.getLangOpts().CPlusPlus11)
7861 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
7862 << /*isConstexpr*/0 << /*isConstructor*/0
7863 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
7864 else
7865 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
7866 LLVM_FALLTHROUGH[[clang::fallthrough]];
7867 case Builtin::BI__builtin_strlen:
7868 case Builtin::BI__builtin_wcslen: {
7869 // As an extension, we support __builtin_strlen() as a constant expression,
7870 // and support folding strlen() to a constant.
7871 LValue String;
7872 if (!EvaluatePointer(E->getArg(0), String, Info))
7873 return false;
7874
7875 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
7876
7877 // Fast path: if it's a string literal, search the string value.
7878 if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
7879 String.getLValueBase().dyn_cast<const Expr *>())) {
7880 // The string literal may have embedded null characters. Find the first
7881 // one and truncate there.
7882 StringRef Str = S->getBytes();
7883 int64_t Off = String.Offset.getQuantity();
7884 if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
7885 S->getCharByteWidth() == 1 &&
7886 // FIXME: Add fast-path for wchar_t too.
7887 Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
7888 Str = Str.substr(Off);
7889
7890 StringRef::size_type Pos = Str.find(0);
7891 if (Pos != StringRef::npos)
7892 Str = Str.substr(0, Pos);
7893
7894 return Success(Str.size(), E);
7895 }
7896
7897 // Fall through to slow path to issue appropriate diagnostic.
7898 }
7899
7900 // Slow path: scan the bytes of the string looking for the terminating 0.
7901 for (uint64_t Strlen = 0; /**/; ++Strlen) {
7902 APValue Char;
7903 if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
7904 !Char.isInt())
7905 return false;
7906 if (!Char.getInt())
7907 return Success(Strlen, E);
7908 if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
7909 return false;
7910 }
7911 }
7912
7913 case Builtin::BIstrcmp:
7914 case Builtin::BIwcscmp:
7915 case Builtin::BIstrncmp:
7916 case Builtin::BIwcsncmp:
7917 case Builtin::BImemcmp:
7918 case Builtin::BIwmemcmp:
7919 // A call to strlen is not a constant expression.
7920 if (Info.getLangOpts().CPlusPlus11)
7921 Info.CCEDiag(E, diag::note_constexpr_invalid_function)
7922 << /*isConstexpr*/0 << /*isConstructor*/0
7923 << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
7924 else
7925 Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
7926 LLVM_FALLTHROUGH[[clang::fallthrough]];
7927 case Builtin::BI__builtin_strcmp:
7928 case Builtin::BI__builtin_wcscmp:
7929 case Builtin::BI__builtin_strncmp:
7930 case Builtin::BI__builtin_wcsncmp:
7931 case Builtin::BI__builtin_memcmp:
7932 case Builtin::BI__builtin_wmemcmp: {
7933 LValue String1, String2;
7934 if (!EvaluatePointer(E->getArg(0), String1, Info) ||
7935 !EvaluatePointer(E->getArg(1), String2, Info))
7936 return false;
7937
7938 QualType CharTy = E->getArg(0)->getType()->getPointeeType();
7939
7940 uint64_t MaxLength = uint64_t(-1);
7941 if (BuiltinOp != Builtin::BIstrcmp &&
7942 BuiltinOp != Builtin::BIwcscmp &&
7943 BuiltinOp != Builtin::BI__builtin_strcmp &&
7944 BuiltinOp != Builtin::BI__builtin_wcscmp) {
7945 APSInt N;
7946 if (!EvaluateInteger(E->getArg(2), N, Info))
7947 return false;
7948 MaxLength = N.getExtValue();
7949 }
7950 bool StopAtNull = (BuiltinOp != Builtin::BImemcmp &&
7951 BuiltinOp != Builtin::BIwmemcmp &&
7952 BuiltinOp != Builtin::BI__builtin_memcmp &&
7953 BuiltinOp != Builtin::BI__builtin_wmemcmp);
7954 for (; MaxLength; --MaxLength) {
7955 APValue Char1, Char2;
7956 if (!handleLValueToRValueConversion(Info, E, CharTy, String1, Char1) ||
7957 !handleLValueToRValueConversion(Info, E, CharTy, String2, Char2) ||
7958 !Char1.isInt() || !Char2.isInt())
7959 return false;
7960 if (Char1.getInt() != Char2.getInt())
7961 return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
7962 if (StopAtNull && !Char1.getInt())
7963 return Success(0, E);
7964 assert(!(StopAtNull && !Char2.getInt()))(static_cast <bool> (!(StopAtNull && !Char2.getInt
())) ? void (0) : __assert_fail ("!(StopAtNull && !Char2.getInt())"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 7964, __extension__ __PRETTY_FUNCTION__))
;
7965 if (!HandleLValueArrayAdjustment(Info, E, String1, CharTy, 1) ||
7966 !HandleLValueArrayAdjustment(Info, E, String2, CharTy, 1))
7967 return false;
7968 }
7969 // We hit the strncmp / memcmp limit.
7970 return Success(0, E);
7971 }
7972
7973 case Builtin::BI__atomic_always_lock_free:
7974 case Builtin::BI__atomic_is_lock_free:
7975 case Builtin::BI__c11_atomic_is_lock_free: {
7976 APSInt SizeVal;
7977 if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
7978 return false;
7979
7980 // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
7981 // of two less than the maximum inline atomic width, we know it is
7982 // lock-free. If the size isn't a power of two, or greater than the
7983 // maximum alignment where we promote atomics, we know it is not lock-free
7984 // (at least not in the sense of atomic_is_lock_free). Otherwise,
7985 // the answer can only be determined at runtime; for example, 16-byte
7986 // atomics have lock-free implementations on some, but not all,
7987 // x86-64 processors.
7988
7989 // Check power-of-two.
7990 CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
7991 if (Size.isPowerOfTwo()) {
7992 // Check against inlining width.
7993 unsigned InlineWidthBits =
7994 Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
7995 if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
7996 if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
7997 Size == CharUnits::One() ||
7998 E->getArg(1)->isNullPointerConstant(Info.Ctx,
7999 Expr::NPC_NeverValueDependent))
8000 // OK, we will inline appropriately-aligned operations of this size,
8001 // and _Atomic(T) is appropriately-aligned.
8002 return Success(1, E);
8003
8004 QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
8005 castAs<PointerType>()->getPointeeType();
8006 if (!PointeeType->isIncompleteType() &&
8007 Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
8008 // OK, we will inline operations on this object.
8009 return Success(1, E);
8010 }
8011 }
8012 }
8013
8014 return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
8015 Success(0, E) : Error(E);
8016 }
8017 case Builtin::BIomp_is_initial_device:
8018 // We can decide statically which value the runtime would return if called.
8019 return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
8020 }
8021}
8022
8023static bool HasSameBase(const LValue &A, const LValue &B) {
8024 if (!A.getLValueBase())
8025 return !B.getLValueBase();
8026 if (!B.getLValueBase())
8027 return false;
8028
8029 if (A.getLValueBase().getOpaqueValue() !=
8030 B.getLValueBase().getOpaqueValue()) {
8031 const Decl *ADecl = GetLValueBaseDecl(A);
8032 if (!ADecl)
8033 return false;
8034 const Decl *BDecl = GetLValueBaseDecl(B);
8035 if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
8036 return false;
8037 }
8038
8039 return IsGlobalLValue(A.getLValueBase()) ||
8040 A.getLValueCallIndex() == B.getLValueCallIndex();
8041}
8042
8043/// \brief Determine whether this is a pointer past the end of the complete
8044/// object referred to by the lvalue.
8045static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
8046 const LValue &LV) {
8047 // A null pointer can be viewed as being "past the end" but we don't
8048 // choose to look at it that way here.
8049 if (!LV.getLValueBase())
8050 return false;
8051
8052 // If the designator is valid and refers to a subobject, we're not pointing
8053 // past the end.
8054 if (!LV.getLValueDesignator().Invalid &&
8055 !LV.getLValueDesignator().isOnePastTheEnd())
8056 return false;
8057
8058 // A pointer to an incomplete type might be past-the-end if the type's size is
8059 // zero. We cannot tell because the type is incomplete.
8060 QualType Ty = getType(LV.getLValueBase());
8061 if (Ty->isIncompleteType())
8062 return true;
8063
8064 // We're a past-the-end pointer if we point to the byte after the object,
8065 // no matter what our type or path is.
8066 auto Size = Ctx.getTypeSizeInChars(Ty);
8067 return LV.getLValueOffset() == Size;
8068}
8069
8070namespace {
8071
8072/// \brief Data recursive integer evaluator of certain binary operators.
8073///
8074/// We use a data recursive algorithm for binary operators so that we are able
8075/// to handle extreme cases of chained binary operators without causing stack
8076/// overflow.
8077class DataRecursiveIntBinOpEvaluator {
8078 struct EvalResult {
8079 APValue Val;
8080 bool Failed;
8081
8082 EvalResult() : Failed(false) { }
8083
8084 void swap(EvalResult &RHS) {
8085 Val.swap(RHS.Val);
8086 Failed = RHS.Failed;
8087 RHS.Failed = false;
8088 }
8089 };
8090
8091 struct Job {
8092 const Expr *E;
8093 EvalResult LHSResult; // meaningful only for binary operator expression.
8094 enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
8095
8096 Job() = default;
8097 Job(Job &&) = default;
8098
8099 void startSpeculativeEval(EvalInfo &Info) {
8100 SpecEvalRAII = SpeculativeEvaluationRAII(Info);
8101 }
8102
8103 private:
8104 SpeculativeEvaluationRAII SpecEvalRAII;
8105 };
8106
8107 SmallVector<Job, 16> Queue;
8108
8109 IntExprEvaluator &IntEval;
8110 EvalInfo &Info;
8111 APValue &FinalResult;
8112
8113public:
8114 DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
8115 : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
8116
8117 /// \brief True if \param E is a binary operator that we are going to handle
8118 /// data recursively.
8119 /// We handle binary operators that are comma, logical, or that have operands
8120 /// with integral or enumeration type.
8121 static bool shouldEnqueue(const BinaryOperator *E) {
8122 return E->getOpcode() == BO_Comma ||
8123 E->isLogicalOp() ||
8124 (E->isRValue() &&
8125 E->getType()->isIntegralOrEnumerationType() &&
8126 E->getLHS()->getType()->isIntegralOrEnumerationType() &&
8127 E->getRHS()->getType()->isIntegralOrEnumerationType());
8128 }
8129
8130 bool Traverse(const BinaryOperator *E) {
8131 enqueue(E);
8132 EvalResult PrevResult;
8133 while (!Queue.empty())
8134 process(PrevResult);
8135
8136 if (PrevResult.Failed) return false;
8137
8138 FinalResult.swap(PrevResult.Val);
8139 return true;
8140 }
8141
8142private:
8143 bool Success(uint64_t Value, const Expr *E, APValue &Result) {
8144 return IntEval.Success(Value, E, Result);
8145 }
8146 bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
8147 return IntEval.Success(Value, E, Result);
8148 }
8149 bool Error(const Expr *E) {
8150 return IntEval.Error(E);
8151 }
8152 bool Error(const Expr *E, diag::kind D) {
8153 return IntEval.Error(E, D);
8154 }
8155
8156 OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
8157 return Info.CCEDiag(E, D);
8158 }
8159
8160 // \brief Returns true if visiting the RHS is necessary, false otherwise.
8161 bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
8162 bool &SuppressRHSDiags);
8163
8164 bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
8165 const BinaryOperator *E, APValue &Result);
8166
8167 void EvaluateExpr(const Expr *E, EvalResult &Result) {
8168 Result.Failed = !Evaluate(Result.Val, Info, E);
8169 if (Result.Failed)
8170 Result.Val = APValue();
8171 }
8172
8173 void process(EvalResult &Result);
8174
8175 void enqueue(const Expr *E) {
8176 E = E->IgnoreParens();
8177 Queue.resize(Queue.size()+1);
8178 Queue.back().E = E;
8179 Queue.back().Kind = Job::AnyExprKind;
8180 }
8181};
8182
8183}
8184
8185bool DataRecursiveIntBinOpEvaluator::
8186 VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
8187 bool &SuppressRHSDiags) {
8188 if (E->getOpcode() == BO_Comma) {
8189 // Ignore LHS but note if we could not evaluate it.
8190 if (LHSResult.Failed)
8191 return Info.noteSideEffect();
8192 return true;
8193 }
8194
8195 if (E->isLogicalOp()) {
8196 bool LHSAsBool;
8197 if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
8198 // We were able to evaluate the LHS, see if we can get away with not
8199 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
8200 if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
8201 Success(LHSAsBool, E, LHSResult.Val);
8202 return false; // Ignore RHS
8203 }
8204 } else {
8205 LHSResult.Failed = true;
8206
8207 // Since we weren't able to evaluate the left hand side, it
8208 // might have had side effects.
8209 if (!Info.noteSideEffect())
8210 return false;
8211
8212 // We can't evaluate the LHS; however, sometimes the result
8213 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
8214 // Don't ignore RHS and suppress diagnostics from this arm.
8215 SuppressRHSDiags = true;
8216 }
8217
8218 return true;
8219 }
8220
8221 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8222, __extension__ __PRETTY_FUNCTION__))
8222 E->getRHS()->getType()->isIntegralOrEnumerationType())(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8222, __extension__ __PRETTY_FUNCTION__))
;
8223
8224 if (LHSResult.Failed && !Info.noteFailure())
8225 return false; // Ignore RHS;
8226
8227 return true;
8228}
8229
8230static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
8231 bool IsSub) {
8232 // Compute the new offset in the appropriate width, wrapping at 64 bits.
8233 // FIXME: When compiling for a 32-bit target, we should use 32-bit
8234 // offsets.
8235 assert(!LVal.hasLValuePath() && "have designator for integer lvalue")(static_cast <bool> (!LVal.hasLValuePath() && "have designator for integer lvalue"
) ? void (0) : __assert_fail ("!LVal.hasLValuePath() && \"have designator for integer lvalue\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8235, __extension__ __PRETTY_FUNCTION__))
;
8236 CharUnits &Offset = LVal.getLValueOffset();
8237 uint64_t Offset64 = Offset.getQuantity();
8238 uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
8239 Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
8240 : Offset64 + Index64);
8241}
8242
8243bool DataRecursiveIntBinOpEvaluator::
8244 VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
8245 const BinaryOperator *E, APValue &Result) {
8246 if (E->getOpcode() == BO_Comma) {
8247 if (RHSResult.Failed)
8248 return false;
8249 Result = RHSResult.Val;
8250 return true;
8251 }
8252
8253 if (E->isLogicalOp()) {
8254 bool lhsResult, rhsResult;
8255 bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
8256 bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
8257
8258 if (LHSIsOK) {
8259 if (RHSIsOK) {
8260 if (E->getOpcode() == BO_LOr)
8261 return Success(lhsResult || rhsResult, E, Result);
8262 else
8263 return Success(lhsResult && rhsResult, E, Result);
8264 }
8265 } else {
8266 if (RHSIsOK) {
8267 // We can't evaluate the LHS; however, sometimes the result
8268 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
8269 if (rhsResult == (E->getOpcode() == BO_LOr))
8270 return Success(rhsResult, E, Result);
8271 }
8272 }
8273
8274 return false;
8275 }
8276
8277 assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8278, __extension__ __PRETTY_FUNCTION__))
8278 E->getRHS()->getType()->isIntegralOrEnumerationType())(static_cast <bool> (E->getLHS()->getType()->isIntegralOrEnumerationType
() && E->getRHS()->getType()->isIntegralOrEnumerationType
()) ? void (0) : __assert_fail ("E->getLHS()->getType()->isIntegralOrEnumerationType() && E->getRHS()->getType()->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8278, __extension__ __PRETTY_FUNCTION__))
;
8279
8280 if (LHSResult.Failed || RHSResult.Failed)
8281 return false;
8282
8283 const APValue &LHSVal = LHSResult.Val;
8284 const APValue &RHSVal = RHSResult.Val;
8285
8286 // Handle cases like (unsigned long)&a + 4.
8287 if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
8288 Result = LHSVal;
8289 addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
8290 return true;
8291 }
8292
8293 // Handle cases like 4 + (unsigned long)&a
8294 if (E->getOpcode() == BO_Add &&
8295 RHSVal.isLValue() && LHSVal.isInt()) {
8296 Result = RHSVal;
8297 addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
8298 return true;
8299 }
8300
8301 if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
8302 // Handle (intptr_t)&&A - (intptr_t)&&B.
8303 if (!LHSVal.getLValueOffset().isZero() ||
8304 !RHSVal.getLValueOffset().isZero())
8305 return false;
8306 const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
8307 const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
8308 if (!LHSExpr || !RHSExpr)
8309 return false;
8310 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
8311 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
8312 if (!LHSAddrExpr || !RHSAddrExpr)
8313 return false;
8314 // Make sure both labels come from the same function.
8315 if (LHSAddrExpr->getLabel()->getDeclContext() !=
8316 RHSAddrExpr->getLabel()->getDeclContext())
8317 return false;
8318 Result = APValue(LHSAddrExpr, RHSAddrExpr);
8319 return true;
8320 }
8321
8322 // All the remaining cases expect both operands to be an integer
8323 if (!LHSVal.isInt() || !RHSVal.isInt())
8324 return Error(E);
8325
8326 // Set up the width and signedness manually, in case it can't be deduced
8327 // from the operation we're performing.
8328 // FIXME: Don't do this in the cases where we can deduce it.
8329 APSInt Value(Info.Ctx.getIntWidth(E->getType()),
8330 E->getType()->isUnsignedIntegerOrEnumerationType());
8331 if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
8332 RHSVal.getInt(), Value))
8333 return false;
8334 return Success(Value, E, Result);
8335}
8336
8337void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
8338 Job &job = Queue.back();
8339
8340 switch (job.Kind) {
8341 case Job::AnyExprKind: {
8342 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
8343 if (shouldEnqueue(Bop)) {
8344 job.Kind = Job::BinOpKind;
8345 enqueue(Bop->getLHS());
8346 return;
8347 }
8348 }
8349
8350 EvaluateExpr(job.E, Result);
8351 Queue.pop_back();
8352 return;
8353 }
8354
8355 case Job::BinOpKind: {
8356 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
8357 bool SuppressRHSDiags = false;
8358 if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
8359 Queue.pop_back();
8360 return;
8361 }
8362 if (SuppressRHSDiags)
8363 job.startSpeculativeEval(Info);
8364 job.LHSResult.swap(Result);
8365 job.Kind = Job::BinOpVisitedLHSKind;
8366 enqueue(Bop->getRHS());
8367 return;
8368 }
8369
8370 case Job::BinOpVisitedLHSKind: {
8371 const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
8372 EvalResult RHS;
8373 RHS.swap(Result);
8374 Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
8375 Queue.pop_back();
8376 return;
8377 }
8378 }
8379
8380 llvm_unreachable("Invalid Job::Kind!")::llvm::llvm_unreachable_internal("Invalid Job::Kind!", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8380)
;
8381}
8382
8383namespace {
8384/// Used when we determine that we should fail, but can keep evaluating prior to
8385/// noting that we had a failure.
8386class DelayedNoteFailureRAII {
8387 EvalInfo &Info;
8388 bool NoteFailure;
8389
8390public:
8391 DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
8392 : Info(Info), NoteFailure(NoteFailure) {}
8393 ~DelayedNoteFailureRAII() {
8394 if (NoteFailure) {
8395 bool ContinueAfterFailure = Info.noteFailure();
8396 (void)ContinueAfterFailure;
8397 assert(ContinueAfterFailure &&(static_cast <bool> (ContinueAfterFailure && "Shouldn't have kept evaluating on failure."
) ? void (0) : __assert_fail ("ContinueAfterFailure && \"Shouldn't have kept evaluating on failure.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8398, __extension__ __PRETTY_FUNCTION__))
8398 "Shouldn't have kept evaluating on failure.")(static_cast <bool> (ContinueAfterFailure && "Shouldn't have kept evaluating on failure."
) ? void (0) : __assert_fail ("ContinueAfterFailure && \"Shouldn't have kept evaluating on failure.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8398, __extension__ __PRETTY_FUNCTION__))
;
8399 }
8400 }
8401};
8402}
8403
8404bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8405 // We don't call noteFailure immediately because the assignment happens after
8406 // we evaluate LHS and RHS.
8407 if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
8408 return Error(E);
8409
8410 DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
8411 if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
8412 return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
8413
8414 QualType LHSTy = E->getLHS()->getType();
8415 QualType RHSTy = E->getRHS()->getType();
8416
8417 if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
8418 ComplexValue LHS, RHS;
8419 bool LHSOK;
8420 if (E->isAssignmentOp()) {
8421 LValue LV;
8422 EvaluateLValue(E->getLHS(), LV, Info);
8423 LHSOK = false;
8424 } else if (LHSTy->isRealFloatingType()) {
8425 LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
8426 if (LHSOK) {
8427 LHS.makeComplexFloat();
8428 LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
8429 }
8430 } else {
8431 LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
8432 }
8433 if (!LHSOK && !Info.noteFailure())
8434 return false;
8435
8436 if (E->getRHS()->getType()->isRealFloatingType()) {
8437 if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
8438 return false;
8439 RHS.makeComplexFloat();
8440 RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
8441 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8442 return false;
8443
8444 if (LHS.isComplexFloat()) {
8445 APFloat::cmpResult CR_r =
8446 LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
8447 APFloat::cmpResult CR_i =
8448 LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
8449
8450 if (E->getOpcode() == BO_EQ)
8451 return Success((CR_r == APFloat::cmpEqual &&
8452 CR_i == APFloat::cmpEqual), E);
8453 else {
8454 assert(E->getOpcode() == BO_NE &&(static_cast <bool> (E->getOpcode() == BO_NE &&
"Invalid complex comparison.") ? void (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Invalid complex comparison.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8455, __extension__ __PRETTY_FUNCTION__))
8455 "Invalid complex comparison.")(static_cast <bool> (E->getOpcode() == BO_NE &&
"Invalid complex comparison.") ? void (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Invalid complex comparison.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8455, __extension__ __PRETTY_FUNCTION__))
;
8456 return Success(((CR_r == APFloat::cmpGreaterThan ||
8457 CR_r == APFloat::cmpLessThan ||
8458 CR_r == APFloat::cmpUnordered) ||
8459 (CR_i == APFloat::cmpGreaterThan ||
8460 CR_i == APFloat::cmpLessThan ||
8461 CR_i == APFloat::cmpUnordered)), E);
8462 }
8463 } else {
8464 if (E->getOpcode() == BO_EQ)
8465 return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
8466 LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
8467 else {
8468 assert(E->getOpcode() == BO_NE &&(static_cast <bool> (E->getOpcode() == BO_NE &&
"Invalid compex comparison.") ? void (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Invalid compex comparison.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8469, __extension__ __PRETTY_FUNCTION__))
8469 "Invalid compex comparison.")(static_cast <bool> (E->getOpcode() == BO_NE &&
"Invalid compex comparison.") ? void (0) : __assert_fail ("E->getOpcode() == BO_NE && \"Invalid compex comparison.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8469, __extension__ __PRETTY_FUNCTION__))
;
8470 return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
8471 LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
8472 }
8473 }
8474 }
8475
8476 if (LHSTy->isRealFloatingType() &&
8477 RHSTy->isRealFloatingType()) {
8478 APFloat RHS(0.0), LHS(0.0);
8479
8480 bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
8481 if (!LHSOK && !Info.noteFailure())
8482 return false;
8483
8484 if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
8485 return false;
8486
8487 APFloat::cmpResult CR = LHS.compare(RHS);
8488
8489 switch (E->getOpcode()) {
8490 default:
8491 llvm_unreachable("Invalid binary operator!")::llvm::llvm_unreachable_internal("Invalid binary operator!",
"/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8491)
;
8492 case BO_LT:
8493 return Success(CR == APFloat::cmpLessThan, E);
8494 case BO_GT:
8495 return Success(CR == APFloat::cmpGreaterThan, E);
8496 case BO_LE:
8497 return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
8498 case BO_GE:
8499 return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
8500 E);
8501 case BO_EQ:
8502 return Success(CR == APFloat::cmpEqual, E);
8503 case BO_NE:
8504 return Success(CR == APFloat::cmpGreaterThan
8505 || CR == APFloat::cmpLessThan
8506 || CR == APFloat::cmpUnordered, E);
8507 }
8508 }
8509
8510 if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
8511 if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
8512 LValue LHSValue, RHSValue;
8513
8514 bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
8515 if (!LHSOK && !Info.noteFailure())
8516 return false;
8517
8518 if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
8519 return false;
8520
8521 // Reject differing bases from the normal codepath; we special-case
8522 // comparisons to null.
8523 if (!HasSameBase(LHSValue, RHSValue)) {
8524 if (E->getOpcode() == BO_Sub) {
8525 // Handle &&A - &&B.
8526 if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
8527 return Error(E);
8528 const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
8529 const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
8530 if (!LHSExpr || !RHSExpr)
8531 return Error(E);
8532 const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
8533 const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
8534 if (!LHSAddrExpr || !RHSAddrExpr)
8535 return Error(E);
8536 // Make sure both labels come from the same function.
8537 if (LHSAddrExpr->getLabel()->getDeclContext() !=
8538 RHSAddrExpr->getLabel()->getDeclContext())
8539 return Error(E);
8540 return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
8541 }
8542 // Inequalities and subtractions between unrelated pointers have
8543 // unspecified or undefined behavior.
8544 if (!E->isEqualityOp())
8545 return Error(E);
8546 // A constant address may compare equal to the address of a symbol.
8547 // The one exception is that address of an object cannot compare equal
8548 // to a null pointer constant.
8549 if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
8550 (!RHSValue.Base && !RHSValue.Offset.isZero()))
8551 return Error(E);
8552 // It's implementation-defined whether distinct literals will have
8553 // distinct addresses. In clang, the result of such a comparison is
8554 // unspecified, so it is not a constant expression. However, we do know
8555 // that the address of a literal will be non-null.
8556 if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
8557 LHSValue.Base && RHSValue.Base)
8558 return Error(E);
8559 // We can't tell whether weak symbols will end up pointing to the same
8560 // object.
8561 if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
8562 return Error(E);
8563 // We can't compare the address of the start of one object with the
8564 // past-the-end address of another object, per C++ DR1652.
8565 if ((LHSValue.Base && LHSValue.Offset.isZero() &&
8566 isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
8567 (RHSValue.Base && RHSValue.Offset.isZero() &&
8568 isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
8569 return Error(E);
8570 // We can't tell whether an object is at the same address as another
8571 // zero sized object.
8572 if ((RHSValue.Base && isZeroSized(LHSValue)) ||
8573 (LHSValue.Base && isZeroSized(RHSValue)))
8574 return Error(E);
8575 // Pointers with different bases cannot represent the same object.
8576 // (Note that clang defaults to -fmerge-all-constants, which can
8577 // lead to inconsistent results for comparisons involving the address
8578 // of a constant; this generally doesn't matter in practice.)
8579 return Success(E->getOpcode() == BO_NE, E);
8580 }
8581
8582 const CharUnits &LHSOffset = LHSValue.getLValueOffset();
8583 const CharUnits &RHSOffset = RHSValue.getLValueOffset();
8584
8585 SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
8586 SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
8587
8588 if (E->getOpcode() == BO_Sub) {
8589 // C++11 [expr.add]p6:
8590 // Unless both pointers point to elements of the same array object, or
8591 // one past the last element of the array object, the behavior is
8592 // undefined.
8593 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
8594 !AreElementsOfSameArray(getType(LHSValue.Base),
8595 LHSDesignator, RHSDesignator))
8596 CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
8597
8598 QualType Type = E->getLHS()->getType();
8599 QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
8600
8601 CharUnits ElementSize;
8602 if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
8603 return false;
8604
8605 // As an extension, a type may have zero size (empty struct or union in
8606 // C, array of zero length). Pointer subtraction in such cases has
8607 // undefined behavior, so is not constant.
8608 if (ElementSize.isZero()) {
8609 Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
8610 << ElementType;
8611 return false;
8612 }
8613
8614 // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
8615 // and produce incorrect results when it overflows. Such behavior
8616 // appears to be non-conforming, but is common, so perhaps we should
8617 // assume the standard intended for such cases to be undefined behavior
8618 // and check for them.
8619
8620 // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
8621 // overflow in the final conversion to ptrdiff_t.
8622 APSInt LHS(
8623 llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
8624 APSInt RHS(
8625 llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
8626 APSInt ElemSize(
8627 llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
8628 APSInt TrueResult = (LHS - RHS) / ElemSize;
8629 APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
8630
8631 if (Result.extend(65) != TrueResult &&
8632 !HandleOverflow(Info, E, TrueResult, E->getType()))
8633 return false;
8634 return Success(Result, E);
8635 }
8636
8637 // C++11 [expr.rel]p3:
8638 // Pointers to void (after pointer conversions) can be compared, with a
8639 // result defined as follows: If both pointers represent the same
8640 // address or are both the null pointer value, the result is true if the
8641 // operator is <= or >= and false otherwise; otherwise the result is
8642 // unspecified.
8643 // We interpret this as applying to pointers to *cv* void.
8644 if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
8645 E->isRelationalOp())
8646 CCEDiag(E, diag::note_constexpr_void_comparison);
8647
8648 // C++11 [expr.rel]p2:
8649 // - If two pointers point to non-static data members of the same object,
8650 // or to subobjects or array elements fo such members, recursively, the
8651 // pointer to the later declared member compares greater provided the
8652 // two members have the same access control and provided their class is
8653 // not a union.
8654 // [...]
8655 // - Otherwise pointer comparisons are unspecified.
8656 if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
8657 E->isRelationalOp()) {
8658 bool WasArrayIndex;
8659 unsigned Mismatch =
8660 FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
8661 RHSDesignator, WasArrayIndex);
8662 // At the point where the designators diverge, the comparison has a
8663 // specified value if:
8664 // - we are comparing array indices
8665 // - we are comparing fields of a union, or fields with the same access
8666 // Otherwise, the result is unspecified and thus the comparison is not a
8667 // constant expression.
8668 if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
8669 Mismatch < RHSDesignator.Entries.size()) {
8670 const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
8671 const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
8672 if (!LF && !RF)
8673 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
8674 else if (!LF)
8675 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
8676 << getAsBaseClass(LHSDesignator.Entries[Mismatch])
8677 << RF->getParent() << RF;
8678 else if (!RF)
8679 CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
8680 << getAsBaseClass(RHSDesignator.Entries[Mismatch])
8681 << LF->getParent() << LF;
8682 else if (!LF->getParent()->isUnion() &&
8683 LF->getAccess() != RF->getAccess())
8684 CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
8685 << LF << LF->getAccess() << RF << RF->getAccess()
8686 << LF->getParent();
8687 }
8688 }
8689
8690 // The comparison here must be unsigned, and performed with the same
8691 // width as the pointer.
8692 unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
8693 uint64_t CompareLHS = LHSOffset.getQuantity();
8694 uint64_t CompareRHS = RHSOffset.getQuantity();
8695 assert(PtrSize <= 64 && "Unexpected pointer width")(static_cast <bool> (PtrSize <= 64 && "Unexpected pointer width"
) ? void (0) : __assert_fail ("PtrSize <= 64 && \"Unexpected pointer width\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8695, __extension__ __PRETTY_FUNCTION__))
;
8696 uint64_t Mask = ~0ULL >> (64 - PtrSize);
8697 CompareLHS &= Mask;
8698 CompareRHS &= Mask;
8699
8700 // If there is a base and this is a relational operator, we can only
8701 // compare pointers within the object in question; otherwise, the result
8702 // depends on where the object is located in memory.
8703 if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
8704 QualType BaseTy = getType(LHSValue.Base);
8705 if (BaseTy->isIncompleteType())
8706 return Error(E);
8707 CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
8708 uint64_t OffsetLimit = Size.getQuantity();
8709 if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
8710 return Error(E);
8711 }
8712
8713 switch (E->getOpcode()) {
8714 default: llvm_unreachable("missing comparison operator")::llvm::llvm_unreachable_internal("missing comparison operator"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8714)
;
8715 case BO_LT: return Success(CompareLHS < CompareRHS, E);
8716 case BO_GT: return Success(CompareLHS > CompareRHS, E);
8717 case BO_LE: return Success(CompareLHS <= CompareRHS, E);
8718 case BO_GE: return Success(CompareLHS >= CompareRHS, E);
8719 case BO_EQ: return Success(CompareLHS == CompareRHS, E);
8720 case BO_NE: return Success(CompareLHS != CompareRHS, E);
8721 }
8722 }
8723 }
8724
8725 if (LHSTy->isMemberPointerType()) {
8726 assert(E->isEqualityOp() && "unexpected member pointer operation")(static_cast <bool> (E->isEqualityOp() && "unexpected member pointer operation"
) ? void (0) : __assert_fail ("E->isEqualityOp() && \"unexpected member pointer operation\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8726, __extension__ __PRETTY_FUNCTION__))
;
8727 assert(RHSTy->isMemberPointerType() && "invalid comparison")(static_cast <bool> (RHSTy->isMemberPointerType() &&
"invalid comparison") ? void (0) : __assert_fail ("RHSTy->isMemberPointerType() && \"invalid comparison\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8727, __extension__ __PRETTY_FUNCTION__))
;
8728
8729 MemberPtr LHSValue, RHSValue;
8730
8731 bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
8732 if (!LHSOK && !Info.noteFailure())
8733 return false;
8734
8735 if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
8736 return false;
8737
8738 // C++11 [expr.eq]p2:
8739 // If both operands are null, they compare equal. Otherwise if only one is
8740 // null, they compare unequal.
8741 if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
8742 bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
8743 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
8744 }
8745
8746 // Otherwise if either is a pointer to a virtual member function, the
8747 // result is unspecified.
8748 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
8749 if (MD->isVirtual())
8750 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
8751 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
8752 if (MD->isVirtual())
8753 CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
8754
8755 // Otherwise they compare equal if and only if they would refer to the
8756 // same member of the same most derived object or the same subobject if
8757 // they were dereferenced with a hypothetical object of the associated
8758 // class type.
8759 bool Equal = LHSValue == RHSValue;
8760 return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
8761 }
8762
8763 if (LHSTy->isNullPtrType()) {
8764 assert(E->isComparisonOp() && "unexpected nullptr operation")(static_cast <bool> (E->isComparisonOp() && "unexpected nullptr operation"
) ? void (0) : __assert_fail ("E->isComparisonOp() && \"unexpected nullptr operation\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8764, __extension__ __PRETTY_FUNCTION__))
;
8765 assert(RHSTy->isNullPtrType() && "missing pointer conversion")(static_cast <bool> (RHSTy->isNullPtrType() &&
"missing pointer conversion") ? void (0) : __assert_fail ("RHSTy->isNullPtrType() && \"missing pointer conversion\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8765, __extension__ __PRETTY_FUNCTION__))
;
8766 // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
8767 // are compared, the result is true of the operator is <=, >= or ==, and
8768 // false otherwise.
8769 BinaryOperator::Opcode Opcode = E->getOpcode();
8770 return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
8771 }
8772
8773 assert((!LHSTy->isIntegralOrEnumerationType() ||(static_cast <bool> ((!LHSTy->isIntegralOrEnumerationType
() || !RHSTy->isIntegralOrEnumerationType()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? void (0) : __assert_fail ("(!LHSTy->isIntegralOrEnumerationType() || !RHSTy->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8775, __extension__ __PRETTY_FUNCTION__))
8774 !RHSTy->isIntegralOrEnumerationType()) &&(static_cast <bool> ((!LHSTy->isIntegralOrEnumerationType
() || !RHSTy->isIntegralOrEnumerationType()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? void (0) : __assert_fail ("(!LHSTy->isIntegralOrEnumerationType() || !RHSTy->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8775, __extension__ __PRETTY_FUNCTION__))
8775 "DataRecursiveIntBinOpEvaluator should have handled integral types")(static_cast <bool> ((!LHSTy->isIntegralOrEnumerationType
() || !RHSTy->isIntegralOrEnumerationType()) && "DataRecursiveIntBinOpEvaluator should have handled integral types"
) ? void (0) : __assert_fail ("(!LHSTy->isIntegralOrEnumerationType() || !RHSTy->isIntegralOrEnumerationType()) && \"DataRecursiveIntBinOpEvaluator should have handled integral types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8775, __extension__ __PRETTY_FUNCTION__))
;
8776 // We can't continue from here for non-integral types.
8777 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8778}
8779
8780/// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
8781/// a result as the expression's type.
8782bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
8783 const UnaryExprOrTypeTraitExpr *E) {
8784 switch(E->getKind()) {
8785 case UETT_AlignOf: {
8786 if (E->isArgumentType())
8787 return Success(GetAlignOfType(Info, E->getArgumentType()), E);
8788 else
8789 return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
8790 }
8791
8792 case UETT_VecStep: {
8793 QualType Ty = E->getTypeOfArgument();
8794
8795 if (Ty->isVectorType()) {
8796 unsigned n = Ty->castAs<VectorType>()->getNumElements();
8797
8798 // The vec_step built-in functions that take a 3-component
8799 // vector return 4. (OpenCL 1.1 spec 6.11.12)
8800 if (n == 3)
8801 n = 4;
8802
8803 return Success(n, E);
8804 } else
8805 return Success(1, E);
8806 }
8807
8808 case UETT_SizeOf: {
8809 QualType SrcTy = E->getTypeOfArgument();
8810 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
8811 // the result is the size of the referenced type."
8812 if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
8813 SrcTy = Ref->getPointeeType();
8814
8815 CharUnits Sizeof;
8816 if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
8817 return false;
8818 return Success(Sizeof, E);
8819 }
8820 case UETT_OpenMPRequiredSimdAlign:
8821 assert(E->isArgumentType())(static_cast <bool> (E->isArgumentType()) ? void (0)
: __assert_fail ("E->isArgumentType()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8821, __extension__ __PRETTY_FUNCTION__))
;
8822 return Success(
8823 Info.Ctx.toCharUnitsFromBits(
8824 Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
8825 .getQuantity(),
8826 E);
8827 }
8828
8829 llvm_unreachable("unknown expr/type trait")::llvm::llvm_unreachable_internal("unknown expr/type trait", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8829)
;
8830}
8831
8832bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
8833 CharUnits Result;
8834 unsigned n = OOE->getNumComponents();
8835 if (n == 0)
8836 return Error(OOE);
8837 QualType CurrentType = OOE->getTypeSourceInfo()->getType();
8838 for (unsigned i = 0; i != n; ++i) {
8839 OffsetOfNode ON = OOE->getComponent(i);
8840 switch (ON.getKind()) {
8841 case OffsetOfNode::Array: {
8842 const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
8843 APSInt IdxResult;
8844 if (!EvaluateInteger(Idx, IdxResult, Info))
8845 return false;
8846 const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
8847 if (!AT)
8848 return Error(OOE);
8849 CurrentType = AT->getElementType();
8850 CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
8851 Result += IdxResult.getSExtValue() * ElementSize;
8852 break;
8853 }
8854
8855 case OffsetOfNode::Field: {
8856 FieldDecl *MemberDecl = ON.getField();
8857 const RecordType *RT = CurrentType->getAs<RecordType>();
8858 if (!RT)
8859 return Error(OOE);
8860 RecordDecl *RD = RT->getDecl();
8861 if (RD->isInvalidDecl()) return false;
8862 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
8863 unsigned i = MemberDecl->getFieldIndex();
8864 assert(i < RL.getFieldCount() && "offsetof field in wrong type")(static_cast <bool> (i < RL.getFieldCount() &&
"offsetof field in wrong type") ? void (0) : __assert_fail (
"i < RL.getFieldCount() && \"offsetof field in wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8864, __extension__ __PRETTY_FUNCTION__))
;
8865 Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
8866 CurrentType = MemberDecl->getType().getNonReferenceType();
8867 break;
8868 }
8869
8870 case OffsetOfNode::Identifier:
8871 llvm_unreachable("dependent __builtin_offsetof")::llvm::llvm_unreachable_internal("dependent __builtin_offsetof"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8871)
;
8872
8873 case OffsetOfNode::Base: {
8874 CXXBaseSpecifier *BaseSpec = ON.getBase();
8875 if (BaseSpec->isVirtual())
8876 return Error(OOE);
8877
8878 // Find the layout of the class whose base we are looking into.
8879 const RecordType *RT = CurrentType->getAs<RecordType>();
8880 if (!RT)
8881 return Error(OOE);
8882 RecordDecl *RD = RT->getDecl();
8883 if (RD->isInvalidDecl()) return false;
8884 const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
8885
8886 // Find the base class itself.
8887 CurrentType = BaseSpec->getType();
8888 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
8889 if (!BaseRT)
8890 return Error(OOE);
8891
8892 // Add the offset to the base.
8893 Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
8894 break;
8895 }
8896 }
8897 }
8898 return Success(Result, OOE);
8899}
8900
8901bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8902 switch (E->getOpcode()) {
8903 default:
8904 // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
8905 // See C99 6.6p3.
8906 return Error(E);
8907 case UO_Extension:
8908 // FIXME: Should extension allow i-c-e extension expressions in its scope?
8909 // If so, we could clear the diagnostic ID.
8910 return Visit(E->getSubExpr());
8911 case UO_Plus:
8912 // The result is just the value.
8913 return Visit(E->getSubExpr());
8914 case UO_Minus: {
8915 if (!Visit(E->getSubExpr()))
8916 return false;
8917 if (!Result.isInt()) return Error(E);
8918 const APSInt &Value = Result.getInt();
8919 if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
8920 !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
8921 E->getType()))
8922 return false;
8923 return Success(-Value, E);
8924 }
8925 case UO_Not: {
8926 if (!Visit(E->getSubExpr()))
8927 return false;
8928 if (!Result.isInt()) return Error(E);
8929 return Success(~Result.getInt(), E);
8930 }
8931 case UO_LNot: {
8932 bool bres;
8933 if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
8934 return false;
8935 return Success(!bres, E);
8936 }
8937 }
8938}
8939
8940/// HandleCast - This is used to evaluate implicit or explicit casts where the
8941/// result type is integer.
8942bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
8943 const Expr *SubExpr = E->getSubExpr();
8944 QualType DestType = E->getType();
8945 QualType SrcType = SubExpr->getType();
8946
8947 switch (E->getCastKind()) {
8948 case CK_BaseToDerived:
8949 case CK_DerivedToBase:
8950 case CK_UncheckedDerivedToBase:
8951 case CK_Dynamic:
8952 case CK_ToUnion:
8953 case CK_ArrayToPointerDecay:
8954 case CK_FunctionToPointerDecay:
8955 case CK_NullToPointer:
8956 case CK_NullToMemberPointer:
8957 case CK_BaseToDerivedMemberPointer:
8958 case CK_DerivedToBaseMemberPointer:
8959 case CK_ReinterpretMemberPointer:
8960 case CK_ConstructorConversion:
8961 case CK_IntegralToPointer:
8962 case CK_ToVoid:
8963 case CK_VectorSplat:
8964 case CK_IntegralToFloating:
8965 case CK_FloatingCast:
8966 case CK_CPointerToObjCPointerCast:
8967 case CK_BlockPointerToObjCPointerCast:
8968 case CK_AnyPointerToBlockPointerCast:
8969 case CK_ObjCObjectLValueCast:
8970 case CK_FloatingRealToComplex:
8971 case CK_FloatingComplexToReal:
8972 case CK_FloatingComplexCast:
8973 case CK_FloatingComplexToIntegralComplex:
8974 case CK_IntegralRealToComplex:
8975 case CK_IntegralComplexCast:
8976 case CK_IntegralComplexToFloatingComplex:
8977 case CK_BuiltinFnToFnPtr:
8978 case CK_ZeroToOCLEvent:
8979 case CK_ZeroToOCLQueue:
8980 case CK_NonAtomicToAtomic:
8981 case CK_AddressSpaceConversion:
8982 case CK_IntToOCLSampler:
8983 llvm_unreachable("invalid cast kind for integral value")::llvm::llvm_unreachable_internal("invalid cast kind for integral value"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 8983)
;
8984
8985 case CK_BitCast:
8986 case CK_Dependent:
8987 case CK_LValueBitCast:
8988 case CK_ARCProduceObject:
8989 case CK_ARCConsumeObject:
8990 case CK_ARCReclaimReturnedObject:
8991 case CK_ARCExtendBlockObject:
8992 case CK_CopyAndAutoreleaseBlockObject:
8993 return Error(E);
8994
8995 case CK_UserDefinedConversion:
8996 case CK_LValueToRValue:
8997 case CK_AtomicToNonAtomic:
8998 case CK_NoOp:
8999 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9000
9001 case CK_MemberPointerToBoolean:
9002 case CK_PointerToBoolean:
9003 case CK_IntegralToBoolean:
9004 case CK_FloatingToBoolean:
9005 case CK_BooleanToSignedIntegral:
9006 case CK_FloatingComplexToBoolean:
9007 case CK_IntegralComplexToBoolean: {
9008 bool BoolResult;
9009 if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
9010 return false;
9011 uint64_t IntResult = BoolResult;
9012 if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
9013 IntResult = (uint64_t)-1;
9014 return Success(IntResult, E);
9015 }
9016
9017 case CK_IntegralCast: {
9018 if (!Visit(SubExpr))
9019 return false;
9020
9021 if (!Result.isInt()) {
9022 // Allow casts of address-of-label differences if they are no-ops
9023 // or narrowing. (The narrowing case isn't actually guaranteed to
9024 // be constant-evaluatable except in some narrow cases which are hard
9025 // to detect here. We let it through on the assumption the user knows
9026 // what they are doing.)
9027 if (Result.isAddrLabelDiff())
9028 return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
9029 // Only allow casts of lvalues if they are lossless.
9030 return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
9031 }
9032
9033 return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
9034 Result.getInt()), E);
9035 }
9036
9037 case CK_PointerToIntegral: {
9038 CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
9039
9040 LValue LV;
9041 if (!EvaluatePointer(SubExpr, LV, Info))
9042 return false;
9043
9044 if (LV.getLValueBase()) {
9045 // Only allow based lvalue casts if they are lossless.
9046 // FIXME: Allow a larger integer size than the pointer size, and allow
9047 // narrowing back down to pointer width in subsequent integral casts.
9048 // FIXME: Check integer type's active bits, not its type size.
9049 if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
9050 return Error(E);
9051
9052 LV.Designator.setInvalid();
9053 LV.moveInto(Result);
9054 return true;
9055 }
9056
9057 uint64_t V;
9058 if (LV.isNullPointer())
9059 V = Info.Ctx.getTargetNullPointerValue(SrcType);
9060 else
9061 V = LV.getLValueOffset().getQuantity();
9062
9063 APSInt AsInt = Info.Ctx.MakeIntValue(V, SrcType);
9064 return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
9065 }
9066
9067 case CK_IntegralComplexToReal: {
9068 ComplexValue C;
9069 if (!EvaluateComplex(SubExpr, C, Info))
9070 return false;
9071 return Success(C.getComplexIntReal(), E);
9072 }
9073
9074 case CK_FloatingToIntegral: {
9075 APFloat F(0.0);
9076 if (!EvaluateFloat(SubExpr, F, Info))
9077 return false;
9078
9079 APSInt Value;
9080 if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
9081 return false;
9082 return Success(Value, E);
9083 }
9084 }
9085
9086 llvm_unreachable("unknown cast resulting in integral value")::llvm::llvm_unreachable_internal("unknown cast resulting in integral value"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9086)
;
9087}
9088
9089bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
9090 if (E->getSubExpr()->getType()->isAnyComplexType()) {
9091 ComplexValue LV;
9092 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
9093 return false;
9094 if (!LV.isComplexInt())
9095 return Error(E);
9096 return Success(LV.getComplexIntReal(), E);
9097 }
9098
9099 return Visit(E->getSubExpr());
9100}
9101
9102bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9103 if (E->getSubExpr()->getType()->isComplexIntegerType()) {
9104 ComplexValue LV;
9105 if (!EvaluateComplex(E->getSubExpr(), LV, Info))
9106 return false;
9107 if (!LV.isComplexInt())
9108 return Error(E);
9109 return Success(LV.getComplexIntImag(), E);
9110 }
9111
9112 VisitIgnoredValue(E->getSubExpr());
9113 return Success(0, E);
9114}
9115
9116bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
9117 return Success(E->getPackLength(), E);
9118}
9119
9120bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
9121 return Success(E->getValue(), E);
9122}
9123
9124//===----------------------------------------------------------------------===//
9125// Float Evaluation
9126//===----------------------------------------------------------------------===//
9127
9128namespace {
9129class FloatExprEvaluator
9130 : public ExprEvaluatorBase<FloatExprEvaluator> {
9131 APFloat &Result;
9132public:
9133 FloatExprEvaluator(EvalInfo &info, APFloat &result)
9134 : ExprEvaluatorBaseTy(info), Result(result) {}
9135
9136 bool Success(const APValue &V, const Expr *e) {
9137 Result = V.getFloat();
9138 return true;
9139 }
9140
9141 bool ZeroInitialization(const Expr *E) {
9142 Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
9143 return true;
9144 }
9145
9146 bool VisitCallExpr(const CallExpr *E);
9147
9148 bool VisitUnaryOperator(const UnaryOperator *E);
9149 bool VisitBinaryOperator(const BinaryOperator *E);
9150 bool VisitFloatingLiteral(const FloatingLiteral *E);
9151 bool VisitCastExpr(const CastExpr *E);
9152
9153 bool VisitUnaryReal(const UnaryOperator *E);
9154 bool VisitUnaryImag(const UnaryOperator *E);
9155
9156 // FIXME: Missing: array subscript of vector, member of vector
9157};
9158} // end anonymous namespace
9159
9160static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
9161 assert(E->isRValue() && E->getType()->isRealFloatingType())(static_cast <bool> (E->isRValue() && E->
getType()->isRealFloatingType()) ? void (0) : __assert_fail
("E->isRValue() && E->getType()->isRealFloatingType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9161, __extension__ __PRETTY_FUNCTION__))
;
9162 return FloatExprEvaluator(Info, Result).Visit(E);
9163}
9164
9165static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
9166 QualType ResultTy,
9167 const Expr *Arg,
9168 bool SNaN,
9169 llvm::APFloat &Result) {
9170 const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
9171 if (!S) return false;
9172
9173 const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
9174
9175 llvm::APInt fill;
9176
9177 // Treat empty strings as if they were zero.
9178 if (S->getString().empty())
9179 fill = llvm::APInt(32, 0);
9180 else if (S->getString().getAsInteger(0, fill))
9181 return false;
9182
9183 if (Context.getTargetInfo().isNan2008()) {
9184 if (SNaN)
9185 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
9186 else
9187 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
9188 } else {
9189 // Prior to IEEE 754-2008, architectures were allowed to choose whether
9190 // the first bit of their significand was set for qNaN or sNaN. MIPS chose
9191 // a different encoding to what became a standard in 2008, and for pre-
9192 // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
9193 // sNaN. This is now known as "legacy NaN" encoding.
9194 if (SNaN)
9195 Result = llvm::APFloat::getQNaN(Sem, false, &fill);
9196 else
9197 Result = llvm::APFloat::getSNaN(Sem, false, &fill);
9198 }
9199
9200 return true;
9201}
9202
9203bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
9204 switch (E->getBuiltinCallee()) {
9205 default:
9206 return ExprEvaluatorBaseTy::VisitCallExpr(E);
9207
9208 case Builtin::BI__builtin_huge_val:
9209 case Builtin::BI__builtin_huge_valf:
9210 case Builtin::BI__builtin_huge_vall:
9211 case Builtin::BI__builtin_huge_valf128:
9212 case Builtin::BI__builtin_inf:
9213 case Builtin::BI__builtin_inff:
9214 case Builtin::BI__builtin_infl:
9215 case Builtin::BI__builtin_inff128: {
9216 const llvm::fltSemantics &Sem =
9217 Info.Ctx.getFloatTypeSemantics(E->getType());
9218 Result = llvm::APFloat::getInf(Sem);
9219 return true;
9220 }
9221
9222 case Builtin::BI__builtin_nans:
9223 case Builtin::BI__builtin_nansf:
9224 case Builtin::BI__builtin_nansl:
9225 case Builtin::BI__builtin_nansf128:
9226 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
9227 true, Result))
9228 return Error(E);
9229 return true;
9230
9231 case Builtin::BI__builtin_nan:
9232 case Builtin::BI__builtin_nanf:
9233 case Builtin::BI__builtin_nanl:
9234 case Builtin::BI__builtin_nanf128:
9235 // If this is __builtin_nan() turn this into a nan, otherwise we
9236 // can't constant fold it.
9237 if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
9238 false, Result))
9239 return Error(E);
9240 return true;
9241
9242 case Builtin::BI__builtin_fabs:
9243 case Builtin::BI__builtin_fabsf:
9244 case Builtin::BI__builtin_fabsl:
9245 case Builtin::BI__builtin_fabsf128:
9246 if (!EvaluateFloat(E->getArg(0), Result, Info))
9247 return false;
9248
9249 if (Result.isNegative())
9250 Result.changeSign();
9251 return true;
9252
9253 // FIXME: Builtin::BI__builtin_powi
9254 // FIXME: Builtin::BI__builtin_powif
9255 // FIXME: Builtin::BI__builtin_powil
9256
9257 case Builtin::BI__builtin_copysign:
9258 case Builtin::BI__builtin_copysignf:
9259 case Builtin::BI__builtin_copysignl:
9260 case Builtin::BI__builtin_copysignf128: {
9261 APFloat RHS(0.);
9262 if (!EvaluateFloat(E->getArg(0), Result, Info) ||
9263 !EvaluateFloat(E->getArg(1), RHS, Info))
9264 return false;
9265 Result.copySign(RHS);
9266 return true;
9267 }
9268 }
9269}
9270
9271bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
9272 if (E->getSubExpr()->getType()->isAnyComplexType()) {
9273 ComplexValue CV;
9274 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
9275 return false;
9276 Result = CV.FloatReal;
9277 return true;
9278 }
9279
9280 return Visit(E->getSubExpr());
9281}
9282
9283bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9284 if (E->getSubExpr()->getType()->isAnyComplexType()) {
9285 ComplexValue CV;
9286 if (!EvaluateComplex(E->getSubExpr(), CV, Info))
9287 return false;
9288 Result = CV.FloatImag;
9289 return true;
9290 }
9291
9292 VisitIgnoredValue(E->getSubExpr());
9293 const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
9294 Result = llvm::APFloat::getZero(Sem);
9295 return true;
9296}
9297
9298bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
9299 switch (E->getOpcode()) {
9300 default: return Error(E);
9301 case UO_Plus:
9302 return EvaluateFloat(E->getSubExpr(), Result, Info);
9303 case UO_Minus:
9304 if (!EvaluateFloat(E->getSubExpr(), Result, Info))
9305 return false;
9306 Result.changeSign();
9307 return true;
9308 }
9309}
9310
9311bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9312 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
9313 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9314
9315 APFloat RHS(0.0);
9316 bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
9317 if (!LHSOK && !Info.noteFailure())
9318 return false;
9319 return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
9320 handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
9321}
9322
9323bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
9324 Result = E->getValue();
9325 return true;
9326}
9327
9328bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
9329 const Expr* SubExpr = E->getSubExpr();
9330
9331 switch (E->getCastKind()) {
9332 default:
9333 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9334
9335 case CK_IntegralToFloating: {
9336 APSInt IntResult;
9337 return EvaluateInteger(SubExpr, IntResult, Info) &&
9338 HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
9339 E->getType(), Result);
9340 }
9341
9342 case CK_FloatingCast: {
9343 if (!Visit(SubExpr))
9344 return false;
9345 return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
9346 Result);
9347 }
9348
9349 case CK_FloatingComplexToReal: {
9350 ComplexValue V;
9351 if (!EvaluateComplex(SubExpr, V, Info))
9352 return false;
9353 Result = V.getComplexFloatReal();
9354 return true;
9355 }
9356 }
9357}
9358
9359//===----------------------------------------------------------------------===//
9360// Complex Evaluation (for float and integer)
9361//===----------------------------------------------------------------------===//
9362
9363namespace {
9364class ComplexExprEvaluator
9365 : public ExprEvaluatorBase<ComplexExprEvaluator> {
9366 ComplexValue &Result;
9367
9368public:
9369 ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
9370 : ExprEvaluatorBaseTy(info), Result(Result) {}
9371
9372 bool Success(const APValue &V, const Expr *e) {
9373 Result.setFrom(V);
9374 return true;
9375 }
9376
9377 bool ZeroInitialization(const Expr *E);
9378
9379 //===--------------------------------------------------------------------===//
9380 // Visitor Methods
9381 //===--------------------------------------------------------------------===//
9382
9383 bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
9384 bool VisitCastExpr(const CastExpr *E);
9385 bool VisitBinaryOperator(const BinaryOperator *E);
9386 bool VisitUnaryOperator(const UnaryOperator *E);
9387 bool VisitInitListExpr(const InitListExpr *E);
9388};
9389} // end anonymous namespace
9390
9391static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
9392 EvalInfo &Info) {
9393 assert(E->isRValue() && E->getType()->isAnyComplexType())(static_cast <bool> (E->isRValue() && E->
getType()->isAnyComplexType()) ? void (0) : __assert_fail (
"E->isRValue() && E->getType()->isAnyComplexType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9393, __extension__ __PRETTY_FUNCTION__))
;
9394 return ComplexExprEvaluator(Info, Result).Visit(E);
9395}
9396
9397bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
9398 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
9399 if (ElemTy->isRealFloatingType()) {
9400 Result.makeComplexFloat();
9401 APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
9402 Result.FloatReal = Zero;
9403 Result.FloatImag = Zero;
9404 } else {
9405 Result.makeComplexInt();
9406 APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
9407 Result.IntReal = Zero;
9408 Result.IntImag = Zero;
9409 }
9410 return true;
9411}
9412
9413bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
9414 const Expr* SubExpr = E->getSubExpr();
9415
9416 if (SubExpr->getType()->isRealFloatingType()) {
9417 Result.makeComplexFloat();
9418 APFloat &Imag = Result.FloatImag;
9419 if (!EvaluateFloat(SubExpr, Imag, Info))
9420 return false;
9421
9422 Result.FloatReal = APFloat(Imag.getSemantics());
9423 return true;
9424 } else {
9425 assert(SubExpr->getType()->isIntegerType() &&(static_cast <bool> (SubExpr->getType()->isIntegerType
() && "Unexpected imaginary literal.") ? void (0) : __assert_fail
("SubExpr->getType()->isIntegerType() && \"Unexpected imaginary literal.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9426, __extension__ __PRETTY_FUNCTION__))
9426 "Unexpected imaginary literal.")(static_cast <bool> (SubExpr->getType()->isIntegerType
() && "Unexpected imaginary literal.") ? void (0) : __assert_fail
("SubExpr->getType()->isIntegerType() && \"Unexpected imaginary literal.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9426, __extension__ __PRETTY_FUNCTION__))
;
9427
9428 Result.makeComplexInt();
9429 APSInt &Imag = Result.IntImag;
9430 if (!EvaluateInteger(SubExpr, Imag, Info))
9431 return false;
9432
9433 Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
9434 return true;
9435 }
9436}
9437
9438bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
9439
9440 switch (E->getCastKind()) {
9441 case CK_BitCast:
9442 case CK_BaseToDerived:
9443 case CK_DerivedToBase:
9444 case CK_UncheckedDerivedToBase:
9445 case CK_Dynamic:
9446 case CK_ToUnion:
9447 case CK_ArrayToPointerDecay:
9448 case CK_FunctionToPointerDecay:
9449 case CK_NullToPointer:
9450 case CK_NullToMemberPointer:
9451 case CK_BaseToDerivedMemberPointer:
9452 case CK_DerivedToBaseMemberPointer:
9453 case CK_MemberPointerToBoolean:
9454 case CK_ReinterpretMemberPointer:
9455 case CK_ConstructorConversion:
9456 case CK_IntegralToPointer:
9457 case CK_PointerToIntegral:
9458 case CK_PointerToBoolean:
9459 case CK_ToVoid:
9460 case CK_VectorSplat:
9461 case CK_IntegralCast:
9462 case CK_BooleanToSignedIntegral:
9463 case CK_IntegralToBoolean:
9464 case CK_IntegralToFloating:
9465 case CK_FloatingToIntegral:
9466 case CK_FloatingToBoolean:
9467 case CK_FloatingCast:
9468 case CK_CPointerToObjCPointerCast:
9469 case CK_BlockPointerToObjCPointerCast:
9470 case CK_AnyPointerToBlockPointerCast:
9471 case CK_ObjCObjectLValueCast:
9472 case CK_FloatingComplexToReal:
9473 case CK_FloatingComplexToBoolean:
9474 case CK_IntegralComplexToReal:
9475 case CK_IntegralComplexToBoolean:
9476 case CK_ARCProduceObject:
9477 case CK_ARCConsumeObject:
9478 case CK_ARCReclaimReturnedObject:
9479 case CK_ARCExtendBlockObject:
9480 case CK_CopyAndAutoreleaseBlockObject:
9481 case CK_BuiltinFnToFnPtr:
9482 case CK_ZeroToOCLEvent:
9483 case CK_ZeroToOCLQueue:
9484 case CK_NonAtomicToAtomic:
9485 case CK_AddressSpaceConversion:
9486 case CK_IntToOCLSampler:
9487 llvm_unreachable("invalid cast kind for complex value")::llvm::llvm_unreachable_internal("invalid cast kind for complex value"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9487)
;
9488
9489 case CK_LValueToRValue:
9490 case CK_AtomicToNonAtomic:
9491 case CK_NoOp:
9492 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9493
9494 case CK_Dependent:
9495 case CK_LValueBitCast:
9496 case CK_UserDefinedConversion:
9497 return Error(E);
9498
9499 case CK_FloatingRealToComplex: {
9500 APFloat &Real = Result.FloatReal;
9501 if (!EvaluateFloat(E->getSubExpr(), Real, Info))
9502 return false;
9503
9504 Result.makeComplexFloat();
9505 Result.FloatImag = APFloat(Real.getSemantics());
9506 return true;
9507 }
9508
9509 case CK_FloatingComplexCast: {
9510 if (!Visit(E->getSubExpr()))
9511 return false;
9512
9513 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
9514 QualType From
9515 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
9516
9517 return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
9518 HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
9519 }
9520
9521 case CK_FloatingComplexToIntegralComplex: {
9522 if (!Visit(E->getSubExpr()))
9523 return false;
9524
9525 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
9526 QualType From
9527 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
9528 Result.makeComplexInt();
9529 return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
9530 To, Result.IntReal) &&
9531 HandleFloatToIntCast(Info, E, From, Result.FloatImag,
9532 To, Result.IntImag);
9533 }
9534
9535 case CK_IntegralRealToComplex: {
9536 APSInt &Real = Result.IntReal;
9537 if (!EvaluateInteger(E->getSubExpr(), Real, Info))
9538 return false;
9539
9540 Result.makeComplexInt();
9541 Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
9542 return true;
9543 }
9544
9545 case CK_IntegralComplexCast: {
9546 if (!Visit(E->getSubExpr()))
9547 return false;
9548
9549 QualType To = E->getType()->getAs<ComplexType>()->getElementType();
9550 QualType From
9551 = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
9552
9553 Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
9554 Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
9555 return true;
9556 }
9557
9558 case CK_IntegralComplexToFloatingComplex: {
9559 if (!Visit(E->getSubExpr()))
9560 return false;
9561
9562 QualType To = E->getType()->castAs<ComplexType>()->getElementType();
9563 QualType From
9564 = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
9565 Result.makeComplexFloat();
9566 return HandleIntToFloatCast(Info, E, From, Result.IntReal,
9567 To, Result.FloatReal) &&
9568 HandleIntToFloatCast(Info, E, From, Result.IntImag,
9569 To, Result.FloatImag);
9570 }
9571 }
9572
9573 llvm_unreachable("unknown cast resulting in complex value")::llvm::llvm_unreachable_internal("unknown cast resulting in complex value"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9573)
;
9574}
9575
9576bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9577 if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
9578 return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9579
9580 // Track whether the LHS or RHS is real at the type system level. When this is
9581 // the case we can simplify our evaluation strategy.
9582 bool LHSReal = false, RHSReal = false;
9583
9584 bool LHSOK;
9585 if (E->getLHS()->getType()->isRealFloatingType()) {
9586 LHSReal = true;
9587 APFloat &Real = Result.FloatReal;
9588 LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
9589 if (LHSOK) {
9590 Result.makeComplexFloat();
9591 Result.FloatImag = APFloat(Real.getSemantics());
9592 }
9593 } else {
9594 LHSOK = Visit(E->getLHS());
9595 }
9596 if (!LHSOK && !Info.noteFailure())
9597 return false;
9598
9599 ComplexValue RHS;
9600 if (E->getRHS()->getType()->isRealFloatingType()) {
9601 RHSReal = true;
9602 APFloat &Real = RHS.FloatReal;
9603 if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
9604 return false;
9605 RHS.makeComplexFloat();
9606 RHS.FloatImag = APFloat(Real.getSemantics());
9607 } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
9608 return false;
9609
9610 assert(!(LHSReal && RHSReal) &&(static_cast <bool> (!(LHSReal && RHSReal) &&
"Cannot have both operands of a complex operation be real.")
? void (0) : __assert_fail ("!(LHSReal && RHSReal) && \"Cannot have both operands of a complex operation be real.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9611, __extension__ __PRETTY_FUNCTION__))
9611 "Cannot have both operands of a complex operation be real.")(static_cast <bool> (!(LHSReal && RHSReal) &&
"Cannot have both operands of a complex operation be real.")
? void (0) : __assert_fail ("!(LHSReal && RHSReal) && \"Cannot have both operands of a complex operation be real.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9611, __extension__ __PRETTY_FUNCTION__))
;
9612 switch (E->getOpcode()) {
9613 default: return Error(E);
9614 case BO_Add:
9615 if (Result.isComplexFloat()) {
9616 Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
9617 APFloat::rmNearestTiesToEven);
9618 if (LHSReal)
9619 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
9620 else if (!RHSReal)
9621 Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
9622 APFloat::rmNearestTiesToEven);
9623 } else {
9624 Result.getComplexIntReal() += RHS.getComplexIntReal();
9625 Result.getComplexIntImag() += RHS.getComplexIntImag();
9626 }
9627 break;
9628 case BO_Sub:
9629 if (Result.isComplexFloat()) {
9630 Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
9631 APFloat::rmNearestTiesToEven);
9632 if (LHSReal) {
9633 Result.getComplexFloatImag() = RHS.getComplexFloatImag();
9634 Result.getComplexFloatImag().changeSign();
9635 } else if (!RHSReal) {
9636 Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
9637 APFloat::rmNearestTiesToEven);
9638 }
9639 } else {
9640 Result.getComplexIntReal() -= RHS.getComplexIntReal();
9641 Result.getComplexIntImag() -= RHS.getComplexIntImag();
9642 }
9643 break;
9644 case BO_Mul:
9645 if (Result.isComplexFloat()) {
9646 // This is an implementation of complex multiplication according to the
9647 // constraints laid out in C11 Annex G. The implemention uses the
9648 // following naming scheme:
9649 // (a + ib) * (c + id)
9650 ComplexValue LHS = Result;
9651 APFloat &A = LHS.getComplexFloatReal();
9652 APFloat &B = LHS.getComplexFloatImag();
9653 APFloat &C = RHS.getComplexFloatReal();
9654 APFloat &D = RHS.getComplexFloatImag();
9655 APFloat &ResR = Result.getComplexFloatReal();
9656 APFloat &ResI = Result.getComplexFloatImag();
9657 if (LHSReal) {
9658 assert(!RHSReal && "Cannot have two real operands for a complex op!")(static_cast <bool> (!RHSReal && "Cannot have two real operands for a complex op!"
) ? void (0) : __assert_fail ("!RHSReal && \"Cannot have two real operands for a complex op!\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9658, __extension__ __PRETTY_FUNCTION__))
;
9659 ResR = A * C;
9660 ResI = A * D;
9661 } else if (RHSReal) {
9662 ResR = C * A;
9663 ResI = C * B;
9664 } else {
9665 // In the fully general case, we need to handle NaNs and infinities
9666 // robustly.
9667 APFloat AC = A * C;
9668 APFloat BD = B * D;
9669 APFloat AD = A * D;
9670 APFloat BC = B * C;
9671 ResR = AC - BD;
9672 ResI = AD + BC;
9673 if (ResR.isNaN() && ResI.isNaN()) {
9674 bool Recalc = false;
9675 if (A.isInfinity() || B.isInfinity()) {
9676 A = APFloat::copySign(
9677 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
9678 B = APFloat::copySign(
9679 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
9680 if (C.isNaN())
9681 C = APFloat::copySign(APFloat(C.getSemantics()), C);
9682 if (D.isNaN())
9683 D = APFloat::copySign(APFloat(D.getSemantics()), D);
9684 Recalc = true;
9685 }
9686 if (C.isInfinity() || D.isInfinity()) {
9687 C = APFloat::copySign(
9688 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
9689 D = APFloat::copySign(
9690 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
9691 if (A.isNaN())
9692 A = APFloat::copySign(APFloat(A.getSemantics()), A);
9693 if (B.isNaN())
9694 B = APFloat::copySign(APFloat(B.getSemantics()), B);
9695 Recalc = true;
9696 }
9697 if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
9698 AD.isInfinity() || BC.isInfinity())) {
9699 if (A.isNaN())
9700 A = APFloat::copySign(APFloat(A.getSemantics()), A);
9701 if (B.isNaN())
9702 B = APFloat::copySign(APFloat(B.getSemantics()), B);
9703 if (C.isNaN())
9704 C = APFloat::copySign(APFloat(C.getSemantics()), C);
9705 if (D.isNaN())
9706 D = APFloat::copySign(APFloat(D.getSemantics()), D);
9707 Recalc = true;
9708 }
9709 if (Recalc) {
9710 ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
9711 ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
9712 }
9713 }
9714 }
9715 } else {
9716 ComplexValue LHS = Result;
9717 Result.getComplexIntReal() =
9718 (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
9719 LHS.getComplexIntImag() * RHS.getComplexIntImag());
9720 Result.getComplexIntImag() =
9721 (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
9722 LHS.getComplexIntImag() * RHS.getComplexIntReal());
9723 }
9724 break;
9725 case BO_Div:
9726 if (Result.isComplexFloat()) {
9727 // This is an implementation of complex division according to the
9728 // constraints laid out in C11 Annex G. The implemention uses the
9729 // following naming scheme:
9730 // (a + ib) / (c + id)
9731 ComplexValue LHS = Result;
9732 APFloat &A = LHS.getComplexFloatReal();
9733 APFloat &B = LHS.getComplexFloatImag();
9734 APFloat &C = RHS.getComplexFloatReal();
9735 APFloat &D = RHS.getComplexFloatImag();
9736 APFloat &ResR = Result.getComplexFloatReal();
9737 APFloat &ResI = Result.getComplexFloatImag();
9738 if (RHSReal) {
9739 ResR = A / C;
9740 ResI = B / C;
9741 } else {
9742 if (LHSReal) {
9743 // No real optimizations we can do here, stub out with zero.
9744 B = APFloat::getZero(A.getSemantics());
9745 }
9746 int DenomLogB = 0;
9747 APFloat MaxCD = maxnum(abs(C), abs(D));
9748 if (MaxCD.isFinite()) {
9749 DenomLogB = ilogb(MaxCD);
9750 C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
9751 D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
9752 }
9753 APFloat Denom = C * C + D * D;
9754 ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
9755 APFloat::rmNearestTiesToEven);
9756 ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
9757 APFloat::rmNearestTiesToEven);
9758 if (ResR.isNaN() && ResI.isNaN()) {
9759 if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
9760 ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
9761 ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
9762 } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
9763 D.isFinite()) {
9764 A = APFloat::copySign(
9765 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
9766 B = APFloat::copySign(
9767 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
9768 ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
9769 ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
9770 } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
9771 C = APFloat::copySign(
9772 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
9773 D = APFloat::copySign(
9774 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
9775 ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
9776 ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
9777 }
9778 }
9779 }
9780 } else {
9781 if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
9782 return Error(E, diag::note_expr_divide_by_zero);
9783
9784 ComplexValue LHS = Result;
9785 APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
9786 RHS.getComplexIntImag() * RHS.getComplexIntImag();
9787 Result.getComplexIntReal() =
9788 (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
9789 LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
9790 Result.getComplexIntImag() =
9791 (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
9792 LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
9793 }
9794 break;
9795 }
9796
9797 return true;
9798}
9799
9800bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
9801 // Get the operand value into 'Result'.
9802 if (!Visit(E->getSubExpr()))
9803 return false;
9804
9805 switch (E->getOpcode()) {
9806 default:
9807 return Error(E);
9808 case UO_Extension:
9809 return true;
9810 case UO_Plus:
9811 // The result is always just the subexpr.
9812 return true;
9813 case UO_Minus:
9814 if (Result.isComplexFloat()) {
9815 Result.getComplexFloatReal().changeSign();
9816 Result.getComplexFloatImag().changeSign();
9817 }
9818 else {
9819 Result.getComplexIntReal() = -Result.getComplexIntReal();
9820 Result.getComplexIntImag() = -Result.getComplexIntImag();
9821 }
9822 return true;
9823 case UO_Not:
9824 if (Result.isComplexFloat())
9825 Result.getComplexFloatImag().changeSign();
9826 else
9827 Result.getComplexIntImag() = -Result.getComplexIntImag();
9828 return true;
9829 }
9830}
9831
9832bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9833 if (E->getNumInits() == 2) {
9834 if (E->getType()->isComplexType()) {
9835 Result.makeComplexFloat();
9836 if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
9837 return false;
9838 if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
9839 return false;
9840 } else {
9841 Result.makeComplexInt();
9842 if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
9843 return false;
9844 if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
9845 return false;
9846 }
9847 return true;
9848 }
9849 return ExprEvaluatorBaseTy::VisitInitListExpr(E);
9850}
9851
9852//===----------------------------------------------------------------------===//
9853// Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
9854// implicit conversion.
9855//===----------------------------------------------------------------------===//
9856
9857namespace {
9858class AtomicExprEvaluator :
9859 public ExprEvaluatorBase<AtomicExprEvaluator> {
9860 const LValue *This;
9861 APValue &Result;
9862public:
9863 AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
9864 : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
9865
9866 bool Success(const APValue &V, const Expr *E) {
9867 Result = V;
9868 return true;
9869 }
9870
9871 bool ZeroInitialization(const Expr *E) {
9872 ImplicitValueInitExpr VIE(
9873 E->getType()->castAs<AtomicType>()->getValueType());
9874 // For atomic-qualified class (and array) types in C++, initialize the
9875 // _Atomic-wrapped subobject directly, in-place.
9876 return This ? EvaluateInPlace(Result, Info, *This, &VIE)
9877 : Evaluate(Result, Info, &VIE);
9878 }
9879
9880 bool VisitCastExpr(const CastExpr *E) {
9881 switch (E->getCastKind()) {
9882 default:
9883 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9884 case CK_NonAtomicToAtomic:
9885 return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
9886 : Evaluate(Result, Info, E->getSubExpr());
9887 }
9888 }
9889};
9890} // end anonymous namespace
9891
9892static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
9893 EvalInfo &Info) {
9894 assert(E->isRValue() && E->getType()->isAtomicType())(static_cast <bool> (E->isRValue() && E->
getType()->isAtomicType()) ? void (0) : __assert_fail ("E->isRValue() && E->getType()->isAtomicType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9894, __extension__ __PRETTY_FUNCTION__))
;
9895 return AtomicExprEvaluator(Info, This, Result).Visit(E);
9896}
9897
9898//===----------------------------------------------------------------------===//
9899// Void expression evaluation, primarily for a cast to void on the LHS of a
9900// comma operator
9901//===----------------------------------------------------------------------===//
9902
9903namespace {
9904class VoidExprEvaluator
9905 : public ExprEvaluatorBase<VoidExprEvaluator> {
9906public:
9907 VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
9908
9909 bool Success(const APValue &V, const Expr *e) { return true; }
9910
9911 bool ZeroInitialization(const Expr *E) { return true; }
9912
9913 bool VisitCastExpr(const CastExpr *E) {
9914 switch (E->getCastKind()) {
9915 default:
9916 return ExprEvaluatorBaseTy::VisitCastExpr(E);
9917 case CK_ToVoid:
9918 VisitIgnoredValue(E->getSubExpr());
9919 return true;
9920 }
9921 }
9922
9923 bool VisitCallExpr(const CallExpr *E) {
9924 switch (E->getBuiltinCallee()) {
9925 default:
9926 return ExprEvaluatorBaseTy::VisitCallExpr(E);
9927 case Builtin::BI__assume:
9928 case Builtin::BI__builtin_assume:
9929 // The argument is not evaluated!
9930 return true;
9931 }
9932 }
9933};
9934} // end anonymous namespace
9935
9936static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
9937 assert(E->isRValue() && E->getType()->isVoidType())(static_cast <bool> (E->isRValue() && E->
getType()->isVoidType()) ? void (0) : __assert_fail ("E->isRValue() && E->getType()->isVoidType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 9937, __extension__ __PRETTY_FUNCTION__))
;
9938 return VoidExprEvaluator(Info).Visit(E);
9939}
9940
9941//===----------------------------------------------------------------------===//
9942// Top level Expr::EvaluateAsRValue method.
9943//===----------------------------------------------------------------------===//
9944
9945static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
9946 // In C, function designators are not lvalues, but we evaluate them as if they
9947 // are.
9948 QualType T = E->getType();
9949 if (E->isGLValue() || T->isFunctionType()) {
9950 LValue LV;
9951 if (!EvaluateLValue(E, LV, Info))
9952 return false;
9953 LV.moveInto(Result);
9954 } else if (T->isVectorType()) {
9955 if (!EvaluateVector(E, Result, Info))
9956 return false;
9957 } else if (T->isIntegralOrEnumerationType()) {
9958 if (!IntExprEvaluator(Info, Result).Visit(E))
9959 return false;
9960 } else if (T->hasPointerRepresentation()) {
9961 LValue LV;
9962 if (!EvaluatePointer(E, LV, Info))
9963 return false;
9964 LV.moveInto(Result);
9965 } else if (T->isRealFloatingType()) {
9966 llvm::APFloat F(0.0);
9967 if (!EvaluateFloat(E, F, Info))
9968 return false;
9969 Result = APValue(F);
9970 } else if (T->isAnyComplexType()) {
9971 ComplexValue C;
9972 if (!EvaluateComplex(E, C, Info))
9973 return false;
9974 C.moveInto(Result);
9975 } else if (T->isMemberPointerType()) {
9976 MemberPtr P;
9977 if (!EvaluateMemberPointer(E, P, Info))
9978 return false;
9979 P.moveInto(Result);
9980 return true;
9981 } else if (T->isArrayType()) {
9982 LValue LV;
9983 LV.set(E, Info.CurrentCall->Index);
9984 APValue &Value = Info.CurrentCall->createTemporary(E, false);
9985 if (!EvaluateArray(E, LV, Value, Info))
9986 return false;
9987 Result = Value;
9988 } else if (T->isRecordType()) {
9989 LValue LV;
9990 LV.set(E, Info.CurrentCall->Index);
9991 APValue &Value = Info.CurrentCall->createTemporary(E, false);
9992 if (!EvaluateRecord(E, LV, Value, Info))
9993 return false;
9994 Result = Value;
9995 } else if (T->isVoidType()) {
9996 if (!Info.getLangOpts().CPlusPlus11)
9997 Info.CCEDiag(E, diag::note_constexpr_nonliteral)
9998 << E->getType();
9999 if (!EvaluateVoid(E, Info))
10000 return false;
10001 } else if (T->isAtomicType()) {
10002 QualType Unqual = T.getAtomicUnqualifiedType();
10003 if (Unqual->isArrayType() || Unqual->isRecordType()) {
10004 LValue LV;
10005 LV.set(E, Info.CurrentCall->Index);
10006 APValue &Value = Info.CurrentCall->createTemporary(E, false);
10007 if (!EvaluateAtomic(E, &LV, Value, Info))
10008 return false;
10009 } else {
10010 if (!EvaluateAtomic(E, nullptr, Result, Info))
10011 return false;
10012 }
10013 } else if (Info.getLangOpts().CPlusPlus11) {
10014 Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
10015 return false;
10016 } else {
10017 Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10018 return false;
10019 }
10020
10021 return true;
10022}
10023
10024/// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
10025/// cases, the in-place evaluation is essential, since later initializers for
10026/// an object can indirectly refer to subobjects which were initialized earlier.
10027static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
10028 const Expr *E, bool AllowNonLiteralTypes) {
10029 assert(!E->isValueDependent())(static_cast <bool> (!E->isValueDependent()) ? void (
0) : __assert_fail ("!E->isValueDependent()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10029, __extension__ __PRETTY_FUNCTION__))
;
10030
10031 if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
10032 return false;
10033
10034 if (E->isRValue()) {
10035 // Evaluate arrays and record types in-place, so that later initializers can
10036 // refer to earlier-initialized members of the object.
10037 QualType T = E->getType();
10038 if (T->isArrayType())
10039 return EvaluateArray(E, This, Result, Info);
10040 else if (T->isRecordType())
10041 return EvaluateRecord(E, This, Result, Info);
10042 else if (T->isAtomicType()) {
10043 QualType Unqual = T.getAtomicUnqualifiedType();
10044 if (Unqual->isArrayType() || Unqual->isRecordType())
10045 return EvaluateAtomic(E, &This, Result, Info);
10046 }
10047 }
10048
10049 // For any other type, in-place evaluation is unimportant.
10050 return Evaluate(Result, Info, E);
10051}
10052
10053/// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
10054/// lvalue-to-rvalue cast if it is an lvalue.
10055static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
10056 if (E->getType().isNull())
10057 return false;
10058
10059 if (!CheckLiteralType(Info, E))
10060 return false;
10061
10062 if (!::Evaluate(Result, Info, E))
10063 return false;
10064
10065 if (E->isGLValue()) {
10066 LValue LV;
10067 LV.setFrom(Info.Ctx, Result);
10068 if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
10069 return false;
10070 }
10071
10072 // Check this core constant expression is a constant expression.
10073 return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
10074}
10075
10076static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
10077 const ASTContext &Ctx, bool &IsConst) {
10078 // Fast-path evaluations of integer literals, since we sometimes see files
10079 // containing vast quantities of these.
10080 if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
10081 Result.Val = APValue(APSInt(L->getValue(),
10082 L->getType()->isUnsignedIntegerType()));
10083 IsConst = true;
10084 return true;
10085 }
10086
10087 // This case should be rare, but we need to check it before we check on
10088 // the type below.
10089 if (Exp->getType().isNull()) {
10090 IsConst = false;
10091 return true;
10092 }
10093
10094 // FIXME: Evaluating values of large array and record types can cause
10095 // performance problems. Only do so in C++11 for now.
10096 if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
10097 Exp->getType()->isRecordType()) &&
10098 !Ctx.getLangOpts().CPlusPlus11) {
10099 IsConst = false;
10100 return true;
10101 }
10102 return false;
10103}
10104
10105
10106/// EvaluateAsRValue - Return true if this is a constant which we can fold using
10107/// any crazy technique (that has nothing to do with language standards) that
10108/// we want to. If this function returns true, it returns the folded constant
10109/// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
10110/// will be applied to the result.
10111bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
10112 bool IsConst;
10113 if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
10114 return IsConst;
10115
10116 EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
10117 return ::EvaluateAsRValue(Info, this, Result.Val);
10118}
10119
10120bool Expr::EvaluateAsBooleanCondition(bool &Result,
10121 const ASTContext &Ctx) const {
10122 EvalResult Scratch;
10123 return EvaluateAsRValue(Scratch, Ctx) &&
10124 HandleConversionToBool(Scratch.Val, Result);
10125}
10126
10127static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
10128 Expr::SideEffectsKind SEK) {
10129 return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
10130 (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
10131}
10132
10133bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
10134 SideEffectsKind AllowSideEffects) const {
10135 if (!getType()->isIntegralOrEnumerationType())
10136 return false;
10137
10138 EvalResult ExprResult;
10139 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
10140 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
10141 return false;
10142
10143 Result = ExprResult.Val.getInt();
10144 return true;
10145}
10146
10147bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
10148 SideEffectsKind AllowSideEffects) const {
10149 if (!getType()->isRealFloatingType())
10150 return false;
10151
10152 EvalResult ExprResult;
10153 if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() ||
10154 hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
10155 return false;
10156
10157 Result = ExprResult.Val.getFloat();
10158 return true;
10159}
10160
10161bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
10162 EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
10163
10164 LValue LV;
10165 if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
10166 !CheckLValueConstantExpression(Info, getExprLoc(),
10167 Ctx.getLValueReferenceType(getType()), LV))
10168 return false;
10169
10170 LV.moveInto(Result.Val);
10171 return true;
10172}
10173
10174bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
10175 const VarDecl *VD,
10176 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
10177 // FIXME: Evaluating initializers for large array and record types can cause
10178 // performance problems. Only do so in C++11 for now.
10179 if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
10180 !Ctx.getLangOpts().CPlusPlus11)
10181 return false;
10182
10183 Expr::EvalStatus EStatus;
10184 EStatus.Diag = &Notes;
10185
10186 EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
10187 ? EvalInfo::EM_ConstantExpression
10188 : EvalInfo::EM_ConstantFold);
10189 InitInfo.setEvaluatingDecl(VD, Value);
10190
10191 LValue LVal;
10192 LVal.set(VD);
10193
10194 // C++11 [basic.start.init]p2:
10195 // Variables with static storage duration or thread storage duration shall be
10196 // zero-initialized before any other initialization takes place.
10197 // This behavior is not present in C.
10198 if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
10199 !VD->getType()->isReferenceType()) {
10200 ImplicitValueInitExpr VIE(VD->getType());
10201 if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
10202 /*AllowNonLiteralTypes=*/true))
10203 return false;
10204 }
10205
10206 if (!EvaluateInPlace(Value, InitInfo, LVal, this,
10207 /*AllowNonLiteralTypes=*/true) ||
10208 EStatus.HasSideEffects)
10209 return false;
10210
10211 return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
10212 Value);
10213}
10214
10215/// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
10216/// constant folded, but discard the result.
10217bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
10218 EvalResult Result;
10219 return EvaluateAsRValue(Result, Ctx) &&
10220 !hasUnacceptableSideEffect(Result, SEK);
10221}
10222
10223APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
10224 SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
10225 EvalResult EvalResult;
10226 EvalResult.Diag = Diag;
10227 bool Result = EvaluateAsRValue(EvalResult, Ctx);
10228 (void)Result;
10229 assert(Result && "Could not evaluate expression")(static_cast <bool> (Result && "Could not evaluate expression"
) ? void (0) : __assert_fail ("Result && \"Could not evaluate expression\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10229, __extension__ __PRETTY_FUNCTION__))
;
10230 assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer")(static_cast <bool> (EvalResult.Val.isInt() && "Expression did not evaluate to integer"
) ? void (0) : __assert_fail ("EvalResult.Val.isInt() && \"Expression did not evaluate to integer\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10230, __extension__ __PRETTY_FUNCTION__))
;
10231
10232 return EvalResult.Val.getInt();
10233}
10234
10235void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
10236 bool IsConst;
10237 EvalResult EvalResult;
10238 if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
10239 EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
10240 (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
10241 }
10242}
10243
10244bool Expr::EvalResult::isGlobalLValue() const {
10245 assert(Val.isLValue())(static_cast <bool> (Val.isLValue()) ? void (0) : __assert_fail
("Val.isLValue()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10245, __extension__ __PRETTY_FUNCTION__))
;
10246 return IsGlobalLValue(Val.getLValueBase());
10247}
10248
10249
10250/// isIntegerConstantExpr - this recursive routine will test if an expression is
10251/// an integer constant expression.
10252
10253/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
10254/// comma, etc
10255
10256// CheckICE - This function does the fundamental ICE checking: the returned
10257// ICEDiag contains an ICEKind indicating whether the expression is an ICE,
10258// and a (possibly null) SourceLocation indicating the location of the problem.
10259//
10260// Note that to reduce code duplication, this helper does no evaluation
10261// itself; the caller checks whether the expression is evaluatable, and
10262// in the rare cases where CheckICE actually cares about the evaluated
10263// value, it calls into Evaluate.
10264
10265namespace {
10266
10267enum ICEKind {
10268 /// This expression is an ICE.
10269 IK_ICE,
10270 /// This expression is not an ICE, but if it isn't evaluated, it's
10271 /// a legal subexpression for an ICE. This return value is used to handle
10272 /// the comma operator in C99 mode, and non-constant subexpressions.
10273 IK_ICEIfUnevaluated,
10274 /// This expression is not an ICE, and is not a legal subexpression for one.
10275 IK_NotICE
10276};
10277
10278struct ICEDiag {
10279 ICEKind Kind;
10280 SourceLocation Loc;
10281
10282 ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
10283};
10284
10285}
10286
10287static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
10288
10289static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
10290
10291static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
10292 Expr::EvalResult EVResult;
10293 if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
10294 !EVResult.Val.isInt())
10295 return ICEDiag(IK_NotICE, E->getLocStart());
10296
10297 return NoDiag();
10298}
10299
10300static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
10301 assert(!E->isValueDependent() && "Should not see value dependent exprs!")(static_cast <bool> (!E->isValueDependent() &&
"Should not see value dependent exprs!") ? void (0) : __assert_fail
("!E->isValueDependent() && \"Should not see value dependent exprs!\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10301, __extension__ __PRETTY_FUNCTION__))
;
10302 if (!E->getType()->isIntegralOrEnumerationType())
10303 return ICEDiag(IK_NotICE, E->getLocStart());
10304
10305 switch (E->getStmtClass()) {
10306#define ABSTRACT_STMT(Node)
10307#define STMT(Node, Base) case Expr::Node##Class:
10308#define EXPR(Node, Base)
10309#include "clang/AST/StmtNodes.inc"
10310 case Expr::PredefinedExprClass:
10311 case Expr::FloatingLiteralClass:
10312 case Expr::ImaginaryLiteralClass:
10313 case Expr::StringLiteralClass:
10314 case Expr::ArraySubscriptExprClass:
10315 case Expr::OMPArraySectionExprClass:
10316 case Expr::MemberExprClass:
10317 case Expr::CompoundAssignOperatorClass:
10318 case Expr::CompoundLiteralExprClass:
10319 case Expr::ExtVectorElementExprClass:
10320 case Expr::DesignatedInitExprClass:
10321 case Expr::ArrayInitLoopExprClass:
10322 case Expr::ArrayInitIndexExprClass:
10323 case Expr::NoInitExprClass:
10324 case Expr::DesignatedInitUpdateExprClass:
10325 case Expr::ImplicitValueInitExprClass:
10326 case Expr::ParenListExprClass:
10327 case Expr::VAArgExprClass:
10328 case Expr::AddrLabelExprClass:
10329 case Expr::StmtExprClass:
10330 case Expr::CXXMemberCallExprClass:
10331 case Expr::CUDAKernelCallExprClass:
10332 case Expr::CXXDynamicCastExprClass:
10333 case Expr::CXXTypeidExprClass:
10334 case Expr::CXXUuidofExprClass:
10335 case Expr::MSPropertyRefExprClass:
10336 case Expr::MSPropertySubscriptExprClass:
10337 case Expr::CXXNullPtrLiteralExprClass:
10338 case Expr::UserDefinedLiteralClass:
10339 case Expr::CXXThisExprClass:
10340 case Expr::CXXThrowExprClass:
10341 case Expr::CXXNewExprClass:
10342 case Expr::CXXDeleteExprClass:
10343 case Expr::CXXPseudoDestructorExprClass:
10344 case Expr::UnresolvedLookupExprClass:
10345 case Expr::TypoExprClass:
10346 case Expr::DependentScopeDeclRefExprClass:
10347 case Expr::CXXConstructExprClass:
10348 case Expr::CXXInheritedCtorInitExprClass:
10349 case Expr::CXXStdInitializerListExprClass:
10350 case Expr::CXXBindTemporaryExprClass:
10351 case Expr::ExprWithCleanupsClass:
10352 case Expr::CXXTemporaryObjectExprClass:
10353 case Expr::CXXUnresolvedConstructExprClass:
10354 case Expr::CXXDependentScopeMemberExprClass:
10355 case Expr::UnresolvedMemberExprClass:
10356 case Expr::ObjCStringLiteralClass:
10357 case Expr::ObjCBoxedExprClass:
10358 case Expr::ObjCArrayLiteralClass:
10359 case Expr::ObjCDictionaryLiteralClass:
10360 case Expr::ObjCEncodeExprClass:
10361 case Expr::ObjCMessageExprClass:
10362 case Expr::ObjCSelectorExprClass:
10363 case Expr::ObjCProtocolExprClass:
10364 case Expr::ObjCIvarRefExprClass:
10365 case Expr::ObjCPropertyRefExprClass:
10366 case Expr::ObjCSubscriptRefExprClass:
10367 case Expr::ObjCIsaExprClass:
10368 case Expr::ObjCAvailabilityCheckExprClass:
10369 case Expr::ShuffleVectorExprClass:
10370 case Expr::ConvertVectorExprClass:
10371 case Expr::BlockExprClass:
10372 case Expr::NoStmtClass:
10373 case Expr::OpaqueValueExprClass:
10374 case Expr::PackExpansionExprClass:
10375 case Expr::SubstNonTypeTemplateParmPackExprClass:
10376 case Expr::FunctionParmPackExprClass:
10377 case Expr::AsTypeExprClass:
10378 case Expr::ObjCIndirectCopyRestoreExprClass:
10379 case Expr::MaterializeTemporaryExprClass:
10380 case Expr::PseudoObjectExprClass:
10381 case Expr::AtomicExprClass:
10382 case Expr::LambdaExprClass:
10383 case Expr::CXXFoldExprClass:
10384 case Expr::CoawaitExprClass:
10385 case Expr::DependentCoawaitExprClass:
10386 case Expr::CoyieldExprClass:
10387 return ICEDiag(IK_NotICE, E->getLocStart());
10388
10389 case Expr::InitListExprClass: {
10390 // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
10391 // form "T x = { a };" is equivalent to "T x = a;".
10392 // Unless we're initializing a reference, T is a scalar as it is known to be
10393 // of integral or enumeration type.
10394 if (E->isRValue())
10395 if (cast<InitListExpr>(E)->getNumInits() == 1)
10396 return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
10397 return ICEDiag(IK_NotICE, E->getLocStart());
10398 }
10399
10400 case Expr::SizeOfPackExprClass:
10401 case Expr::GNUNullExprClass:
10402 // GCC considers the GNU __null value to be an integral constant expression.
10403 return NoDiag();
10404
10405 case Expr::SubstNonTypeTemplateParmExprClass:
10406 return
10407 CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
10408
10409 case Expr::ParenExprClass:
10410 return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
10411 case Expr::GenericSelectionExprClass:
10412 return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
10413 case Expr::IntegerLiteralClass:
10414 case Expr::CharacterLiteralClass:
10415 case Expr::ObjCBoolLiteralExprClass:
10416 case Expr::CXXBoolLiteralExprClass:
10417 case Expr::CXXScalarValueInitExprClass:
10418 case Expr::TypeTraitExprClass:
10419 case Expr::ArrayTypeTraitExprClass:
10420 case Expr::ExpressionTraitExprClass:
10421 case Expr::CXXNoexceptExprClass:
10422 return NoDiag();
10423 case Expr::CallExprClass:
10424 case Expr::CXXOperatorCallExprClass: {
10425 // C99 6.6/3 allows function calls within unevaluated subexpressions of
10426 // constant expressions, but they can never be ICEs because an ICE cannot
10427 // contain an operand of (pointer to) function type.
10428 const CallExpr *CE = cast<CallExpr>(E);
10429 if (CE->getBuiltinCallee())
10430 return CheckEvalInICE(E, Ctx);
10431 return ICEDiag(IK_NotICE, E->getLocStart());
10432 }
10433 case Expr::DeclRefExprClass: {
10434 if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
10435 return NoDiag();
10436 const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
10437 if (Ctx.getLangOpts().CPlusPlus &&
10438 D && IsConstNonVolatile(D->getType())) {
10439 // Parameter variables are never constants. Without this check,
10440 // getAnyInitializer() can find a default argument, which leads
10441 // to chaos.
10442 if (isa<ParmVarDecl>(D))
10443 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
10444
10445 // C++ 7.1.5.1p2
10446 // A variable of non-volatile const-qualified integral or enumeration
10447 // type initialized by an ICE can be used in ICEs.
10448 if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
10449 if (!Dcl->getType()->isIntegralOrEnumerationType())
10450 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
10451
10452 const VarDecl *VD;
10453 // Look for a declaration of this variable that has an initializer, and
10454 // check whether it is an ICE.
10455 if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
10456 return NoDiag();
10457 else
10458 return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
10459 }
10460 }
10461 return ICEDiag(IK_NotICE, E->getLocStart());
10462 }
10463 case Expr::UnaryOperatorClass: {
10464 const UnaryOperator *Exp = cast<UnaryOperator>(E);
10465 switch (Exp->getOpcode()) {
10466 case UO_PostInc:
10467 case UO_PostDec:
10468 case UO_PreInc:
10469 case UO_PreDec:
10470 case UO_AddrOf:
10471 case UO_Deref:
10472 case UO_Coawait:
10473 // C99 6.6/3 allows increment and decrement within unevaluated
10474 // subexpressions of constant expressions, but they can never be ICEs
10475 // because an ICE cannot contain an lvalue operand.
10476 return ICEDiag(IK_NotICE, E->getLocStart());
10477 case UO_Extension:
10478 case UO_LNot:
10479 case UO_Plus:
10480 case UO_Minus:
10481 case UO_Not:
10482 case UO_Real:
10483 case UO_Imag:
10484 return CheckICE(Exp->getSubExpr(), Ctx);
10485 }
10486
10487 // OffsetOf falls through here.
10488 LLVM_FALLTHROUGH[[clang::fallthrough]];
10489 }
10490 case Expr::OffsetOfExprClass: {
10491 // Note that per C99, offsetof must be an ICE. And AFAIK, using
10492 // EvaluateAsRValue matches the proposed gcc behavior for cases like
10493 // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
10494 // compliance: we should warn earlier for offsetof expressions with
10495 // array subscripts that aren't ICEs, and if the array subscripts
10496 // are ICEs, the value of the offsetof must be an integer constant.
10497 return CheckEvalInICE(E, Ctx);
10498 }
10499 case Expr::UnaryExprOrTypeTraitExprClass: {
10500 const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
10501 if ((Exp->getKind() == UETT_SizeOf) &&
10502 Exp->getTypeOfArgument()->isVariableArrayType())
10503 return ICEDiag(IK_NotICE, E->getLocStart());
10504 return NoDiag();
10505 }
10506 case Expr::BinaryOperatorClass: {
10507 const BinaryOperator *Exp = cast<BinaryOperator>(E);
10508 switch (Exp->getOpcode()) {
10509 case BO_PtrMemD:
10510 case BO_PtrMemI:
10511 case BO_Assign:
10512 case BO_MulAssign:
10513 case BO_DivAssign:
10514 case BO_RemAssign:
10515 case BO_AddAssign:
10516 case BO_SubAssign:
10517 case BO_ShlAssign:
10518 case BO_ShrAssign:
10519 case BO_AndAssign:
10520 case BO_XorAssign:
10521 case BO_OrAssign:
10522 case BO_Cmp: // FIXME: Re-enable once we can evaluate this.
10523 // C99 6.6/3 allows assignments within unevaluated subexpressions of
10524 // constant expressions, but they can never be ICEs because an ICE cannot
10525 // contain an lvalue operand.
10526 return ICEDiag(IK_NotICE, E->getLocStart());
10527
10528 case BO_Mul:
10529 case BO_Div:
10530 case BO_Rem:
10531 case BO_Add:
10532 case BO_Sub:
10533 case BO_Shl:
10534 case BO_Shr:
10535 case BO_LT:
10536 case BO_GT:
10537 case BO_LE:
10538 case BO_GE:
10539 case BO_EQ:
10540 case BO_NE:
10541 case BO_And:
10542 case BO_Xor:
10543 case BO_Or:
10544 case BO_Comma: {
10545 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
10546 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
10547 if (Exp->getOpcode() == BO_Div ||
10548 Exp->getOpcode() == BO_Rem) {
10549 // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
10550 // we don't evaluate one.
10551 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
10552 llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
10553 if (REval == 0)
10554 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
10555 if (REval.isSigned() && REval.isAllOnesValue()) {
10556 llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
10557 if (LEval.isMinSignedValue())
10558 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
10559 }
10560 }
10561 }
10562 if (Exp->getOpcode() == BO_Comma) {
10563 if (Ctx.getLangOpts().C99) {
10564 // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
10565 // if it isn't evaluated.
10566 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
10567 return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
10568 } else {
10569 // In both C89 and C++, commas in ICEs are illegal.
10570 return ICEDiag(IK_NotICE, E->getLocStart());
10571 }
10572 }
10573 return Worst(LHSResult, RHSResult);
10574 }
10575 case BO_LAnd:
10576 case BO_LOr: {
10577 ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
10578 ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
10579 if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
10580 // Rare case where the RHS has a comma "side-effect"; we need
10581 // to actually check the condition to see whether the side
10582 // with the comma is evaluated.
10583 if ((Exp->getOpcode() == BO_LAnd) !=
10584 (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
10585 return RHSResult;
10586 return NoDiag();
10587 }
10588
10589 return Worst(LHSResult, RHSResult);
10590 }
10591 }
10592 LLVM_FALLTHROUGH[[clang::fallthrough]];
10593 }
10594 case Expr::ImplicitCastExprClass:
10595 case Expr::CStyleCastExprClass:
10596 case Expr::CXXFunctionalCastExprClass:
10597 case Expr::CXXStaticCastExprClass:
10598 case Expr::CXXReinterpretCastExprClass:
10599 case Expr::CXXConstCastExprClass:
10600 case Expr::ObjCBridgedCastExprClass: {
10601 const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
10602 if (isa<ExplicitCastExpr>(E)) {
10603 if (const FloatingLiteral *FL
10604 = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
10605 unsigned DestWidth = Ctx.getIntWidth(E->getType());
10606 bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
10607 APSInt IgnoredVal(DestWidth, !DestSigned);
10608 bool Ignored;
10609 // If the value does not fit in the destination type, the behavior is
10610 // undefined, so we are not required to treat it as a constant
10611 // expression.
10612 if (FL->getValue().convertToInteger(IgnoredVal,
10613 llvm::APFloat::rmTowardZero,
10614 &Ignored) & APFloat::opInvalidOp)
10615 return ICEDiag(IK_NotICE, E->getLocStart());
10616 return NoDiag();
10617 }
10618 }
10619 switch (cast<CastExpr>(E)->getCastKind()) {
10620 case CK_LValueToRValue:
10621 case CK_AtomicToNonAtomic:
10622 case CK_NonAtomicToAtomic:
10623 case CK_NoOp:
10624 case CK_IntegralToBoolean:
10625 case CK_IntegralCast:
10626 return CheckICE(SubExpr, Ctx);
10627 default:
10628 return ICEDiag(IK_NotICE, E->getLocStart());
10629 }
10630 }
10631 case Expr::BinaryConditionalOperatorClass: {
10632 const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
10633 ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
10634 if (CommonResult.Kind == IK_NotICE) return CommonResult;
10635 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
10636 if (FalseResult.Kind == IK_NotICE) return FalseResult;
10637 if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
10638 if (FalseResult.Kind == IK_ICEIfUnevaluated &&
10639 Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
10640 return FalseResult;
10641 }
10642 case Expr::ConditionalOperatorClass: {
10643 const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
10644 // If the condition (ignoring parens) is a __builtin_constant_p call,
10645 // then only the true side is actually considered in an integer constant
10646 // expression, and it is fully evaluated. This is an important GNU
10647 // extension. See GCC PR38377 for discussion.
10648 if (const CallExpr *CallCE
10649 = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
10650 if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
10651 return CheckEvalInICE(E, Ctx);
10652 ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
10653 if (CondResult.Kind == IK_NotICE)
10654 return CondResult;
10655
10656 ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
10657 ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
10658
10659 if (TrueResult.Kind == IK_NotICE)
10660 return TrueResult;
10661 if (FalseResult.Kind == IK_NotICE)
10662 return FalseResult;
10663 if (CondResult.Kind == IK_ICEIfUnevaluated)
10664 return CondResult;
10665 if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
10666 return NoDiag();
10667 // Rare case where the diagnostics depend on which side is evaluated
10668 // Note that if we get here, CondResult is 0, and at least one of
10669 // TrueResult and FalseResult is non-zero.
10670 if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
10671 return FalseResult;
10672 return TrueResult;
10673 }
10674 case Expr::CXXDefaultArgExprClass:
10675 return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
10676 case Expr::CXXDefaultInitExprClass:
10677 return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
10678 case Expr::ChooseExprClass: {
10679 return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
10680 }
10681 }
10682
10683 llvm_unreachable("Invalid StmtClass!")::llvm::llvm_unreachable_internal("Invalid StmtClass!", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10683)
;
10684}
10685
10686/// Evaluate an expression as a C++11 integral constant expression.
10687static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
10688 const Expr *E,
10689 llvm::APSInt *Value,
10690 SourceLocation *Loc) {
10691 if (!E->getType()->isIntegralOrEnumerationType()) {
10692 if (Loc) *Loc = E->getExprLoc();
10693 return false;
10694 }
10695
10696 APValue Result;
10697 if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
10698 return false;
10699
10700 if (!Result.isInt()) {
10701 if (Loc) *Loc = E->getExprLoc();
10702 return false;
10703 }
10704
10705 if (Value) *Value = Result.getInt();
10706 return true;
10707}
10708
10709bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
10710 SourceLocation *Loc) const {
10711 if (Ctx.getLangOpts().CPlusPlus11)
10712 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
10713
10714 ICEDiag D = CheckICE(this, Ctx);
10715 if (D.Kind != IK_ICE) {
10716 if (Loc) *Loc = D.Loc;
10717 return false;
10718 }
10719 return true;
10720}
10721
10722bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
10723 SourceLocation *Loc, bool isEvaluated) const {
10724 if (Ctx.getLangOpts().CPlusPlus11)
10725 return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
10726
10727 if (!isIntegerConstantExpr(Ctx, Loc))
10728 return false;
10729 // The only possible side-effects here are due to UB discovered in the
10730 // evaluation (for instance, INT_MAX + 1). In such a case, we are still
10731 // required to treat the expression as an ICE, so we produce the folded
10732 // value.
10733 if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
10734 llvm_unreachable("ICE cannot be evaluated!")::llvm::llvm_unreachable_internal("ICE cannot be evaluated!",
"/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10734)
;
10735 return true;
10736}
10737
10738bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
10739 return CheckICE(this, Ctx).Kind == IK_ICE;
10740}
10741
10742bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
10743 SourceLocation *Loc) const {
10744 // We support this checking in C++98 mode in order to diagnose compatibility
10745 // issues.
10746 assert(Ctx.getLangOpts().CPlusPlus)(static_cast <bool> (Ctx.getLangOpts().CPlusPlus) ? void
(0) : __assert_fail ("Ctx.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10746, __extension__ __PRETTY_FUNCTION__))
;
10747
10748 // Build evaluation settings.
10749 Expr::EvalStatus Status;
10750 SmallVector<PartialDiagnosticAt, 8> Diags;
10751 Status.Diag = &Diags;
10752 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
10753
10754 APValue Scratch;
10755 bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
10756
10757 if (!Diags.empty()) {
10758 IsConstExpr = false;
10759 if (Loc) *Loc = Diags[0].first;
10760 } else if (!IsConstExpr) {
10761 // FIXME: This shouldn't happen.
10762 if (Loc) *Loc = getExprLoc();
10763 }
10764
10765 return IsConstExpr;
10766}
10767
10768bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
10769 const FunctionDecl *Callee,
10770 ArrayRef<const Expr*> Args,
10771 const Expr *This) const {
10772 Expr::EvalStatus Status;
10773 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
10774
10775 LValue ThisVal;
10776 const LValue *ThisPtr = nullptr;
10777 if (This) {
10778#ifndef NDEBUG
10779 auto *MD = dyn_cast<CXXMethodDecl>(Callee);
10780 assert(MD && "Don't provide `this` for non-methods.")(static_cast <bool> (MD && "Don't provide `this` for non-methods."
) ? void (0) : __assert_fail ("MD && \"Don't provide `this` for non-methods.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10780, __extension__ __PRETTY_FUNCTION__))
;
10781 assert(!MD->isStatic() && "Don't provide `this` for static methods.")(static_cast <bool> (!MD->isStatic() && "Don't provide `this` for static methods."
) ? void (0) : __assert_fail ("!MD->isStatic() && \"Don't provide `this` for static methods.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10781, __extension__ __PRETTY_FUNCTION__))
;
10782#endif
10783 if (EvaluateObjectArgument(Info, This, ThisVal))
10784 ThisPtr = &ThisVal;
10785 if (Info.EvalStatus.HasSideEffects)
10786 return false;
10787 }
10788
10789 ArgVector ArgValues(Args.size());
10790 for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
10791 I != E; ++I) {
10792 if ((*I)->isValueDependent() ||
10793 !Evaluate(ArgValues[I - Args.begin()], Info, *I))
10794 // If evaluation fails, throw away the argument entirely.
10795 ArgValues[I - Args.begin()] = APValue();
10796 if (Info.EvalStatus.HasSideEffects)
10797 return false;
10798 }
10799
10800 // Build fake call to Callee.
10801 CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
10802 ArgValues.data());
10803 return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
10804}
10805
10806bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
10807 SmallVectorImpl<
10808 PartialDiagnosticAt> &Diags) {
10809 // FIXME: It would be useful to check constexpr function templates, but at the
10810 // moment the constant expression evaluator cannot cope with the non-rigorous
10811 // ASTs which we build for dependent expressions.
10812 if (FD->isDependentContext())
10813 return true;
10814
10815 Expr::EvalStatus Status;
10816 Status.Diag = &Diags;
10817
10818 EvalInfo Info(FD->getASTContext(), Status,
10819 EvalInfo::EM_PotentialConstantExpression);
10820
10821 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
10822 const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
10823
10824 // Fabricate an arbitrary expression on the stack and pretend that it
10825 // is a temporary being used as the 'this' pointer.
10826 LValue This;
10827 ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
10828 This.set(&VIE, Info.CurrentCall->Index);
10829
10830 ArrayRef<const Expr*> Args;
10831
10832 APValue Scratch;
10833 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
10834 // Evaluate the call as a constant initializer, to allow the construction
10835 // of objects of non-literal types.
10836 Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
10837 HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
10838 } else {
10839 SourceLocation Loc = FD->getLocation();
10840 HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
10841 Args, FD->getBody(), Info, Scratch, nullptr);
10842 }
10843
10844 return Diags.empty();
10845}
10846
10847bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
10848 const FunctionDecl *FD,
10849 SmallVectorImpl<
10850 PartialDiagnosticAt> &Diags) {
10851 Expr::EvalStatus Status;
10852 Status.Diag = &Diags;
10853
10854 EvalInfo Info(FD->getASTContext(), Status,
10855 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
10856
10857 // Fabricate a call stack frame to give the arguments a plausible cover story.
10858 ArrayRef<const Expr*> Args;
10859 ArgVector ArgValues(0);
10860 bool Success = EvaluateArgs(Args, ArgValues, Info);
10861 (void)Success;
10862 assert(Success &&(static_cast <bool> (Success && "Failed to set up arguments for potential constant evaluation"
) ? void (0) : __assert_fail ("Success && \"Failed to set up arguments for potential constant evaluation\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10863, __extension__ __PRETTY_FUNCTION__))
10863 "Failed to set up arguments for potential constant evaluation")(static_cast <bool> (Success && "Failed to set up arguments for potential constant evaluation"
) ? void (0) : __assert_fail ("Success && \"Failed to set up arguments for potential constant evaluation\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/AST/ExprConstant.cpp"
, 10863, __extension__ __PRETTY_FUNCTION__))
;
10864 CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
10865
10866 APValue ResultScratch;
10867 Evaluate(ResultScratch, Info, E);
10868 return Diags.empty();
10869}
10870
10871bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
10872 unsigned Type) const {
10873 if (!getType()->isPointerType())
10874 return false;
10875
10876 Expr::EvalStatus Status;
10877 EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
10878 return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
10879}