Bug Summary

File:lib/Transforms/IPO/GlobalOpt.cpp
Location:line 578, column 9
Description:Value stored to 'NewTy' is never read

Annotated Source Code

1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken. If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/TargetLibraryInfo.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/GetElementPtrTypeIterator.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/Operator.h"
36#include "llvm/IR/ValueHandle.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/CtorUtils.h"
43#include "llvm/Transforms/Utils/GlobalStatus.h"
44#include "llvm/Transforms/Utils/ModuleUtils.h"
45#include <algorithm>
46#include <deque>
47using namespace llvm;
48
49#define DEBUG_TYPE"globalopt" "globalopt"
50
51STATISTIC(NumMarked , "Number of globals marked constant")static llvm::Statistic NumMarked = { "globalopt", "Number of globals marked constant"
, 0, 0 }
;
52STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr")static llvm::Statistic NumUnnamed = { "globalopt", "Number of globals marked unnamed_addr"
, 0, 0 }
;
53STATISTIC(NumSRA , "Number of aggregate globals broken into scalars")static llvm::Statistic NumSRA = { "globalopt", "Number of aggregate globals broken into scalars"
, 0, 0 }
;
54STATISTIC(NumHeapSRA , "Number of heap objects SRA'd")static llvm::Statistic NumHeapSRA = { "globalopt", "Number of heap objects SRA'd"
, 0, 0 }
;
55STATISTIC(NumSubstitute,"Number of globals with initializers stored into them")static llvm::Statistic NumSubstitute = { "globalopt", "Number of globals with initializers stored into them"
, 0, 0 }
;
56STATISTIC(NumDeleted , "Number of globals deleted")static llvm::Statistic NumDeleted = { "globalopt", "Number of globals deleted"
, 0, 0 }
;
57STATISTIC(NumFnDeleted , "Number of functions deleted")static llvm::Statistic NumFnDeleted = { "globalopt", "Number of functions deleted"
, 0, 0 }
;
58STATISTIC(NumGlobUses , "Number of global uses devirtualized")static llvm::Statistic NumGlobUses = { "globalopt", "Number of global uses devirtualized"
, 0, 0 }
;
59STATISTIC(NumLocalized , "Number of globals localized")static llvm::Statistic NumLocalized = { "globalopt", "Number of globals localized"
, 0, 0 }
;
60STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans")static llvm::Statistic NumShrunkToBool = { "globalopt", "Number of global vars shrunk to booleans"
, 0, 0 }
;
61STATISTIC(NumFastCallFns , "Number of functions converted to fastcc")static llvm::Statistic NumFastCallFns = { "globalopt", "Number of functions converted to fastcc"
, 0, 0 }
;
62STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated")static llvm::Statistic NumCtorsEvaluated = { "globalopt", "Number of static ctors evaluated"
, 0, 0 }
;
63STATISTIC(NumNestRemoved , "Number of nest attributes removed")static llvm::Statistic NumNestRemoved = { "globalopt", "Number of nest attributes removed"
, 0, 0 }
;
64STATISTIC(NumAliasesResolved, "Number of global aliases resolved")static llvm::Statistic NumAliasesResolved = { "globalopt", "Number of global aliases resolved"
, 0, 0 }
;
65STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated")static llvm::Statistic NumAliasesRemoved = { "globalopt", "Number of global aliases eliminated"
, 0, 0 }
;
66STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed")static llvm::Statistic NumCXXDtorsRemoved = { "globalopt", "Number of global C++ destructors removed"
, 0, 0 }
;
67
68namespace {
69 struct GlobalOpt : public ModulePass {
70 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.addRequired<TargetLibraryInfoWrapperPass>();
72 }
73 static char ID; // Pass identification, replacement for typeid
74 GlobalOpt() : ModulePass(ID) {
75 initializeGlobalOptPass(*PassRegistry::getPassRegistry());
76 }
77
78 bool runOnModule(Module &M) override;
79
80 private:
81 bool OptimizeFunctions(Module &M);
82 bool OptimizeGlobalVars(Module &M);
83 bool OptimizeGlobalAliases(Module &M);
84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
86 const GlobalStatus &GS);
87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
88
89 TargetLibraryInfo *TLI;
90 SmallSet<const Comdat *, 8> NotDiscardableComdats;
91 };
92}
93
94char GlobalOpt::ID = 0;
95INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",static void* initializeGlobalOptPassOnce(PassRegistry &Registry
) {
96 "Global Variable Optimizer", false, false)static void* initializeGlobalOptPassOnce(PassRegistry &Registry
) {
97INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
98INITIALIZE_PASS_END(GlobalOpt, "globalopt",PassInfo *PI = new PassInfo("Global Variable Optimizer", "globalopt"
, & GlobalOpt ::ID, PassInfo::NormalCtor_t(callDefaultCtor
< GlobalOpt >), false, false); Registry.registerPass(*PI
, true); return PI; } void llvm::initializeGlobalOptPass(PassRegistry
&Registry) { static volatile sys::cas_flag initialized =
0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeGlobalOptPassOnce(Registry
); sys::MemoryFence(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99, &initialized); }
99 "Global Variable Optimizer", false, false)PassInfo *PI = new PassInfo("Global Variable Optimizer", "globalopt"
, & GlobalOpt ::ID, PassInfo::NormalCtor_t(callDefaultCtor
< GlobalOpt >), false, false); Registry.registerPass(*PI
, true); return PI; } void llvm::initializeGlobalOptPass(PassRegistry
&Registry) { static volatile sys::cas_flag initialized =
0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeGlobalOptPassOnce(Registry
); sys::MemoryFence(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 99, &initialized); }
100
101ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
102
103/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
104/// as a root? If so, we might not really want to eliminate the stores to it.
105static bool isLeakCheckerRoot(GlobalVariable *GV) {
106 // A global variable is a root if it is a pointer, or could plausibly contain
107 // a pointer. There are two challenges; one is that we could have a struct
108 // the has an inner member which is a pointer. We recurse through the type to
109 // detect these (up to a point). The other is that we may actually be a union
110 // of a pointer and another type, and so our LLVM type is an integer which
111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
112 // potentially contained here.
113
114 if (GV->hasPrivateLinkage())
115 return false;
116
117 SmallVector<Type *, 4> Types;
118 Types.push_back(cast<PointerType>(GV->getType())->getElementType());
119
120 unsigned Limit = 20;
121 do {
122 Type *Ty = Types.pop_back_val();
123 switch (Ty->getTypeID()) {
124 default: break;
125 case Type::PointerTyID: return true;
126 case Type::ArrayTyID:
127 case Type::VectorTyID: {
128 SequentialType *STy = cast<SequentialType>(Ty);
129 Types.push_back(STy->getElementType());
130 break;
131 }
132 case Type::StructTyID: {
133 StructType *STy = cast<StructType>(Ty);
134 if (STy->isOpaque()) return true;
135 for (StructType::element_iterator I = STy->element_begin(),
136 E = STy->element_end(); I != E; ++I) {
137 Type *InnerTy = *I;
138 if (isa<PointerType>(InnerTy)) return true;
139 if (isa<CompositeType>(InnerTy))
140 Types.push_back(InnerTy);
141 }
142 break;
143 }
144 }
145 if (--Limit == 0) return true;
146 } while (!Types.empty());
147 return false;
148}
149
150/// Given a value that is stored to a global but never read, determine whether
151/// it's safe to remove the store and the chain of computation that feeds the
152/// store.
153static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
154 do {
155 if (isa<Constant>(V))
156 return true;
157 if (!V->hasOneUse())
158 return false;
159 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
160 isa<GlobalValue>(V))
161 return false;
162 if (isAllocationFn(V, TLI))
163 return true;
164
165 Instruction *I = cast<Instruction>(V);
166 if (I->mayHaveSideEffects())
167 return false;
168 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
169 if (!GEP->hasAllConstantIndices())
170 return false;
171 } else if (I->getNumOperands() != 1) {
172 return false;
173 }
174
175 V = I->getOperand(0);
176 } while (1);
177}
178
179/// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users
180/// of the global and clean up any that obviously don't assign the global a
181/// value that isn't dynamically allocated.
182///
183static bool CleanupPointerRootUsers(GlobalVariable *GV,
184 const TargetLibraryInfo *TLI) {
185 // A brief explanation of leak checkers. The goal is to find bugs where
186 // pointers are forgotten, causing an accumulating growth in memory
187 // usage over time. The common strategy for leak checkers is to whitelist the
188 // memory pointed to by globals at exit. This is popular because it also
189 // solves another problem where the main thread of a C++ program may shut down
190 // before other threads that are still expecting to use those globals. To
191 // handle that case, we expect the program may create a singleton and never
192 // destroy it.
193
194 bool Changed = false;
195
196 // If Dead[n].first is the only use of a malloc result, we can delete its
197 // chain of computation and the store to the global in Dead[n].second.
198 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
199
200 // Constants can't be pointers to dynamically allocated memory.
201 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
202 UI != E;) {
203 User *U = *UI++;
204 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
205 Value *V = SI->getValueOperand();
206 if (isa<Constant>(V)) {
207 Changed = true;
208 SI->eraseFromParent();
209 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
210 if (I->hasOneUse())
211 Dead.push_back(std::make_pair(I, SI));
212 }
213 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
214 if (isa<Constant>(MSI->getValue())) {
215 Changed = true;
216 MSI->eraseFromParent();
217 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
218 if (I->hasOneUse())
219 Dead.push_back(std::make_pair(I, MSI));
220 }
221 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
222 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
223 if (MemSrc && MemSrc->isConstant()) {
224 Changed = true;
225 MTI->eraseFromParent();
226 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
227 if (I->hasOneUse())
228 Dead.push_back(std::make_pair(I, MTI));
229 }
230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
231 if (CE->use_empty()) {
232 CE->destroyConstant();
233 Changed = true;
234 }
235 } else if (Constant *C = dyn_cast<Constant>(U)) {
236 if (isSafeToDestroyConstant(C)) {
237 C->destroyConstant();
238 // This could have invalidated UI, start over from scratch.
239 Dead.clear();
240 CleanupPointerRootUsers(GV, TLI);
241 return true;
242 }
243 }
244 }
245
246 for (int i = 0, e = Dead.size(); i != e; ++i) {
247 if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
248 Dead[i].second->eraseFromParent();
249 Instruction *I = Dead[i].first;
250 do {
251 if (isAllocationFn(I, TLI))
252 break;
253 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
254 if (!J)
255 break;
256 I->eraseFromParent();
257 I = J;
258 } while (1);
259 I->eraseFromParent();
260 }
261 }
262
263 return Changed;
264}
265
266/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
267/// users of the global, cleaning up the obvious ones. This is largely just a
268/// quick scan over the use list to clean up the easy and obvious cruft. This
269/// returns true if it made a change.
270static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
271 const DataLayout &DL,
272 TargetLibraryInfo *TLI) {
273 bool Changed = false;
274 // Note that we need to use a weak value handle for the worklist items. When
275 // we delete a constant array, we may also be holding pointer to one of its
276 // elements (or an element of one of its elements if we're dealing with an
277 // array of arrays) in the worklist.
278 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
279 while (!WorkList.empty()) {
280 Value *UV = WorkList.pop_back_val();
281 if (!UV)
282 continue;
283
284 User *U = cast<User>(UV);
285
286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
287 if (Init) {
288 // Replace the load with the initializer.
289 LI->replaceAllUsesWith(Init);
290 LI->eraseFromParent();
291 Changed = true;
292 }
293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
294 // Store must be unreachable or storing Init into the global.
295 SI->eraseFromParent();
296 Changed = true;
297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
298 if (CE->getOpcode() == Instruction::GetElementPtr) {
299 Constant *SubInit = nullptr;
300 if (Init)
301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
302 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
303 } else if ((CE->getOpcode() == Instruction::BitCast &&
304 CE->getType()->isPointerTy()) ||
305 CE->getOpcode() == Instruction::AddrSpaceCast) {
306 // Pointer cast, delete any stores and memsets to the global.
307 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
308 }
309
310 if (CE->use_empty()) {
311 CE->destroyConstant();
312 Changed = true;
313 }
314 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
317 // and will invalidate our notion of what Init is.
318 Constant *SubInit = nullptr;
319 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
320 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
321 ConstantFoldInstruction(GEP, DL, TLI));
322 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
323 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
324
325 // If the initializer is an all-null value and we have an inbounds GEP,
326 // we already know what the result of any load from that GEP is.
327 // TODO: Handle splats.
328 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
329 SubInit = Constant::getNullValue(GEP->getType()->getElementType());
330 }
331 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
332
333 if (GEP->use_empty()) {
334 GEP->eraseFromParent();
335 Changed = true;
336 }
337 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
338 if (MI->getRawDest() == V) {
339 MI->eraseFromParent();
340 Changed = true;
341 }
342
343 } else if (Constant *C = dyn_cast<Constant>(U)) {
344 // If we have a chain of dead constantexprs or other things dangling from
345 // us, and if they are all dead, nuke them without remorse.
346 if (isSafeToDestroyConstant(C)) {
347 C->destroyConstant();
348 CleanupConstantGlobalUsers(V, Init, DL, TLI);
349 return true;
350 }
351 }
352 }
353 return Changed;
354}
355
356/// isSafeSROAElementUse - Return true if the specified instruction is a safe
357/// user of a derived expression from a global that we want to SROA.
358static bool isSafeSROAElementUse(Value *V) {
359 // We might have a dead and dangling constant hanging off of here.
360 if (Constant *C = dyn_cast<Constant>(V))
361 return isSafeToDestroyConstant(C);
362
363 Instruction *I = dyn_cast<Instruction>(V);
364 if (!I) return false;
365
366 // Loads are ok.
367 if (isa<LoadInst>(I)) return true;
368
369 // Stores *to* the pointer are ok.
370 if (StoreInst *SI = dyn_cast<StoreInst>(I))
371 return SI->getOperand(0) != V;
372
373 // Otherwise, it must be a GEP.
374 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
375 if (!GEPI) return false;
376
377 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
378 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
379 return false;
380
381 for (User *U : GEPI->users())
382 if (!isSafeSROAElementUse(U))
383 return false;
384 return true;
385}
386
387
388/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389/// Look at it and its uses and decide whether it is safe to SROA this global.
390///
391static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393 if (!isa<GetElementPtrInst>(U) &&
394 (!isa<ConstantExpr>(U) ||
395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
396 return false;
397
398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
399 // don't like < 3 operand CE's, and we don't like non-constant integer
400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
401 // value of C.
402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403 !cast<Constant>(U->getOperand(1))->isNullValue() ||
404 !isa<ConstantInt>(U->getOperand(2)))
405 return false;
406
407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408 ++GEPI; // Skip over the pointer index.
409
410 // If this is a use of an array allocation, do a bit more checking for sanity.
411 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412 uint64_t NumElements = AT->getNumElements();
413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
414
415 // Check to make sure that index falls within the array. If not,
416 // something funny is going on, so we won't do the optimization.
417 //
418 if (Idx->getZExtValue() >= NumElements)
419 return false;
420
421 // We cannot scalar repl this level of the array unless any array
422 // sub-indices are in-range constants. In particular, consider:
423 // A[0][i]. We cannot know that the user isn't doing invalid things like
424 // allowing i to index an out-of-range subscript that accesses A[1].
425 //
426 // Scalar replacing *just* the outer index of the array is probably not
427 // going to be a win anyway, so just give up.
428 for (++GEPI; // Skip array index.
429 GEPI != E;
430 ++GEPI) {
431 uint64_t NumElements;
432 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433 NumElements = SubArrayTy->getNumElements();
434 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
435 NumElements = SubVectorTy->getNumElements();
436 else {
437 assert((*GEPI)->isStructTy() &&(((*GEPI)->isStructTy() && "Indexed GEP type is not array, vector, or struct!"
) ? static_cast<void> (0) : __assert_fail ("(*GEPI)->isStructTy() && \"Indexed GEP type is not array, vector, or struct!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 438, __PRETTY_FUNCTION__))
438 "Indexed GEP type is not array, vector, or struct!")(((*GEPI)->isStructTy() && "Indexed GEP type is not array, vector, or struct!"
) ? static_cast<void> (0) : __assert_fail ("(*GEPI)->isStructTy() && \"Indexed GEP type is not array, vector, or struct!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 438, __PRETTY_FUNCTION__))
;
439 continue;
440 }
441
442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
444 return false;
445 }
446 }
447
448 for (User *UU : U->users())
449 if (!isSafeSROAElementUse(UU))
450 return false;
451
452 return true;
453}
454
455/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
456/// is safe for us to perform this transformation.
457///
458static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
459 for (User *U : GV->users())
460 if (!IsUserOfGlobalSafeForSRA(U, GV))
461 return false;
462
463 return true;
464}
465
466
467/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468/// variable. This opens the door for other optimizations by exposing the
469/// behavior of the program in a more fine-grained way. We have determined that
470/// this transformation is safe already. We return the first global variable we
471/// insert so that the caller can reprocess it.
472static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
473 // Make sure this global only has simple uses that we can SRA.
474 if (!GlobalUsersSafeToSRA(GV))
475 return nullptr;
476
477 assert(GV->hasLocalLinkage() && !GV->isConstant())((GV->hasLocalLinkage() && !GV->isConstant()) ?
static_cast<void> (0) : __assert_fail ("GV->hasLocalLinkage() && !GV->isConstant()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 477, __PRETTY_FUNCTION__))
;
478 Constant *Init = GV->getInitializer();
479 Type *Ty = Init->getType();
480
481 std::vector<GlobalVariable*> NewGlobals;
482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
483
484 // Get the alignment of the global, either explicit or target-specific.
485 unsigned StartAlignment = GV->getAlignment();
486 if (StartAlignment == 0)
487 StartAlignment = DL.getABITypeAlignment(GV->getType());
488
489 if (StructType *STy = dyn_cast<StructType>(Ty)) {
490 NewGlobals.reserve(STy->getNumElements());
491 const StructLayout &Layout = *DL.getStructLayout(STy);
492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
493 Constant *In = Init->getAggregateElement(i);
494 assert(In && "Couldn't get element of initializer?")((In && "Couldn't get element of initializer?") ? static_cast
<void> (0) : __assert_fail ("In && \"Couldn't get element of initializer?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 494, __PRETTY_FUNCTION__))
;
495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
496 GlobalVariable::InternalLinkage,
497 In, GV->getName()+"."+Twine(i),
498 GV->getThreadLocalMode(),
499 GV->getType()->getAddressSpace());
500 Globals.insert(GV, NGV);
501 NewGlobals.push_back(NGV);
502
503 // Calculate the known alignment of the field. If the original aggregate
504 // had 256 byte alignment for example, something might depend on that:
505 // propagate info to each field.
506 uint64_t FieldOffset = Layout.getElementOffset(i);
507 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
508 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
509 NGV->setAlignment(NewAlign);
510 }
511 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
512 unsigned NumElements = 0;
513 if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
514 NumElements = ATy->getNumElements();
515 else
516 NumElements = cast<VectorType>(STy)->getNumElements();
517
518 if (NumElements > 16 && GV->hasNUsesOrMore(16))
519 return nullptr; // It's not worth it.
520 NewGlobals.reserve(NumElements);
521
522 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
523 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
524 for (unsigned i = 0, e = NumElements; i != e; ++i) {
525 Constant *In = Init->getAggregateElement(i);
526 assert(In && "Couldn't get element of initializer?")((In && "Couldn't get element of initializer?") ? static_cast
<void> (0) : __assert_fail ("In && \"Couldn't get element of initializer?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 526, __PRETTY_FUNCTION__))
;
527
528 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
529 GlobalVariable::InternalLinkage,
530 In, GV->getName()+"."+Twine(i),
531 GV->getThreadLocalMode(),
532 GV->getType()->getAddressSpace());
533 Globals.insert(GV, NGV);
534 NewGlobals.push_back(NGV);
535
536 // Calculate the known alignment of the field. If the original aggregate
537 // had 256 byte alignment for example, something might depend on that:
538 // propagate info to each field.
539 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
540 if (NewAlign > EltAlign)
541 NGV->setAlignment(NewAlign);
542 }
543 }
544
545 if (NewGlobals.empty())
546 return nullptr;
547
548 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "PERFORMING GLOBAL SRA ON: "
<< *GV; } } while (0)
;
549
550 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
551
552 // Loop over all of the uses of the global, replacing the constantexpr geps,
553 // with smaller constantexpr geps or direct references.
554 while (!GV->use_empty()) {
555 User *GEP = GV->user_back();
556 assert(((isa<ConstantExpr>(GEP) &&((((isa<ConstantExpr>(GEP) && cast<ConstantExpr
>(GEP)->getOpcode()==Instruction::GetElementPtr)|| isa<
GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"
) ? static_cast<void> (0) : __assert_fail ("((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| isa<GetElementPtrInst>(GEP)) && \"NonGEP CE's are not SRAable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 558, __PRETTY_FUNCTION__))
557 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||((((isa<ConstantExpr>(GEP) && cast<ConstantExpr
>(GEP)->getOpcode()==Instruction::GetElementPtr)|| isa<
GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"
) ? static_cast<void> (0) : __assert_fail ("((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| isa<GetElementPtrInst>(GEP)) && \"NonGEP CE's are not SRAable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 558, __PRETTY_FUNCTION__))
558 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!")((((isa<ConstantExpr>(GEP) && cast<ConstantExpr
>(GEP)->getOpcode()==Instruction::GetElementPtr)|| isa<
GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"
) ? static_cast<void> (0) : __assert_fail ("((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| isa<GetElementPtrInst>(GEP)) && \"NonGEP CE's are not SRAable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 558, __PRETTY_FUNCTION__))
;
559
560 // Ignore the 1th operand, which has to be zero or else the program is quite
561 // broken (undefined). Get the 2nd operand, which is the structure or array
562 // index.
563 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
564 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
565
566 Value *NewPtr = NewGlobals[Val];
567 Type *NewTy = NewGlobals[Val]->getType();
568
569 // Form a shorter GEP if needed.
570 if (GEP->getNumOperands() > 3) {
571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
572 SmallVector<Constant*, 8> Idxs;
573 Idxs.push_back(NullInt);
574 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
575 Idxs.push_back(CE->getOperand(i));
576 NewPtr =
577 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
578 NewTy = GetElementPtrInst::getIndexedType(NewTy, Idxs);
Value stored to 'NewTy' is never read
579 } else {
580 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
581 SmallVector<Value*, 8> Idxs;
582 Idxs.push_back(NullInt);
583 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
584 Idxs.push_back(GEPI->getOperand(i));
585 NewPtr = GetElementPtrInst::Create(
586 NewPtr->getType()->getPointerElementType(), NewPtr, Idxs,
587 GEPI->getName() + "." + Twine(Val), GEPI);
588 }
589 }
590 GEP->replaceAllUsesWith(NewPtr);
591
592 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
593 GEPI->eraseFromParent();
594 else
595 cast<ConstantExpr>(GEP)->destroyConstant();
596 }
597
598 // Delete the old global, now that it is dead.
599 Globals.erase(GV);
600 ++NumSRA;
601
602 // Loop over the new globals array deleting any globals that are obviously
603 // dead. This can arise due to scalarization of a structure or an array that
604 // has elements that are dead.
605 unsigned FirstGlobal = 0;
606 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
607 if (NewGlobals[i]->use_empty()) {
608 Globals.erase(NewGlobals[i]);
609 if (FirstGlobal == i) ++FirstGlobal;
610 }
611
612 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
613}
614
615/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
616/// value will trap if the value is dynamically null. PHIs keeps track of any
617/// phi nodes we've seen to avoid reprocessing them.
618static bool AllUsesOfValueWillTrapIfNull(const Value *V,
619 SmallPtrSetImpl<const PHINode*> &PHIs) {
620 for (const User *U : V->users())
621 if (isa<LoadInst>(U)) {
622 // Will trap.
623 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
624 if (SI->getOperand(0) == V) {
625 //cerr << "NONTRAPPING USE: " << *U;
626 return false; // Storing the value.
627 }
628 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
629 if (CI->getCalledValue() != V) {
630 //cerr << "NONTRAPPING USE: " << *U;
631 return false; // Not calling the ptr
632 }
633 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
634 if (II->getCalledValue() != V) {
635 //cerr << "NONTRAPPING USE: " << *U;
636 return false; // Not calling the ptr
637 }
638 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
639 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
640 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
641 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
642 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
643 // If we've already seen this phi node, ignore it, it has already been
644 // checked.
645 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
646 return false;
647 } else if (isa<ICmpInst>(U) &&
648 isa<ConstantPointerNull>(U->getOperand(1))) {
649 // Ignore icmp X, null
650 } else {
651 //cerr << "NONTRAPPING USE: " << *U;
652 return false;
653 }
654
655 return true;
656}
657
658/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
659/// from GV will trap if the loaded value is null. Note that this also permits
660/// comparisons of the loaded value against null, as a special case.
661static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
662 for (const User *U : GV->users())
663 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
664 SmallPtrSet<const PHINode*, 8> PHIs;
665 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
666 return false;
667 } else if (isa<StoreInst>(U)) {
668 // Ignore stores to the global.
669 } else {
670 // We don't know or understand this user, bail out.
671 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
672 return false;
673 }
674 return true;
675}
676
677static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
678 bool Changed = false;
679 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
680 Instruction *I = cast<Instruction>(*UI++);
681 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
682 LI->setOperand(0, NewV);
683 Changed = true;
684 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
685 if (SI->getOperand(1) == V) {
686 SI->setOperand(1, NewV);
687 Changed = true;
688 }
689 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
690 CallSite CS(I);
691 if (CS.getCalledValue() == V) {
692 // Calling through the pointer! Turn into a direct call, but be careful
693 // that the pointer is not also being passed as an argument.
694 CS.setCalledFunction(NewV);
695 Changed = true;
696 bool PassedAsArg = false;
697 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
698 if (CS.getArgument(i) == V) {
699 PassedAsArg = true;
700 CS.setArgument(i, NewV);
701 }
702
703 if (PassedAsArg) {
704 // Being passed as an argument also. Be careful to not invalidate UI!
705 UI = V->user_begin();
706 }
707 }
708 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
709 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
710 ConstantExpr::getCast(CI->getOpcode(),
711 NewV, CI->getType()));
712 if (CI->use_empty()) {
713 Changed = true;
714 CI->eraseFromParent();
715 }
716 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
717 // Should handle GEP here.
718 SmallVector<Constant*, 8> Idxs;
719 Idxs.reserve(GEPI->getNumOperands()-1);
720 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
721 i != e; ++i)
722 if (Constant *C = dyn_cast<Constant>(*i))
723 Idxs.push_back(C);
724 else
725 break;
726 if (Idxs.size() == GEPI->getNumOperands()-1)
727 Changed |= OptimizeAwayTrappingUsesOfValue(
728 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
729 if (GEPI->use_empty()) {
730 Changed = true;
731 GEPI->eraseFromParent();
732 }
733 }
734 }
735
736 return Changed;
737}
738
739
740/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
741/// value stored into it. If there are uses of the loaded value that would trap
742/// if the loaded value is dynamically null, then we know that they cannot be
743/// reachable with a null optimize away the load.
744static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
745 const DataLayout &DL,
746 TargetLibraryInfo *TLI) {
747 bool Changed = false;
748
749 // Keep track of whether we are able to remove all the uses of the global
750 // other than the store that defines it.
751 bool AllNonStoreUsesGone = true;
752
753 // Replace all uses of loads with uses of uses of the stored value.
754 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
755 User *GlobalUser = *GUI++;
756 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
757 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
758 // If we were able to delete all uses of the loads
759 if (LI->use_empty()) {
760 LI->eraseFromParent();
761 Changed = true;
762 } else {
763 AllNonStoreUsesGone = false;
764 }
765 } else if (isa<StoreInst>(GlobalUser)) {
766 // Ignore the store that stores "LV" to the global.
767 assert(GlobalUser->getOperand(1) == GV &&((GlobalUser->getOperand(1) == GV && "Must be storing *to* the global"
) ? static_cast<void> (0) : __assert_fail ("GlobalUser->getOperand(1) == GV && \"Must be storing *to* the global\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 768, __PRETTY_FUNCTION__))
768 "Must be storing *to* the global")((GlobalUser->getOperand(1) == GV && "Must be storing *to* the global"
) ? static_cast<void> (0) : __assert_fail ("GlobalUser->getOperand(1) == GV && \"Must be storing *to* the global\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 768, __PRETTY_FUNCTION__))
;
769 } else {
770 AllNonStoreUsesGone = false;
771
772 // If we get here we could have other crazy uses that are transitively
773 // loaded.
774 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||(((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser
) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>
(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<
GetElementPtrInst>(GlobalUser)) && "Only expect load and stores!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<GetElementPtrInst>(GlobalUser)) && \"Only expect load and stores!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 778, __PRETTY_FUNCTION__))
775 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||(((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser
) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>
(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<
GetElementPtrInst>(GlobalUser)) && "Only expect load and stores!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<GetElementPtrInst>(GlobalUser)) && \"Only expect load and stores!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 778, __PRETTY_FUNCTION__))
776 isa<BitCastInst>(GlobalUser) ||(((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser
) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>
(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<
GetElementPtrInst>(GlobalUser)) && "Only expect load and stores!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<GetElementPtrInst>(GlobalUser)) && \"Only expect load and stores!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 778, __PRETTY_FUNCTION__))
777 isa<GetElementPtrInst>(GlobalUser)) &&(((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser
) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>
(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<
GetElementPtrInst>(GlobalUser)) && "Only expect load and stores!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<GetElementPtrInst>(GlobalUser)) && \"Only expect load and stores!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 778, __PRETTY_FUNCTION__))
778 "Only expect load and stores!")(((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser
) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>
(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<
GetElementPtrInst>(GlobalUser)) && "Only expect load and stores!"
) ? static_cast<void> (0) : __assert_fail ("(isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || isa<BitCastInst>(GlobalUser) || isa<GetElementPtrInst>(GlobalUser)) && \"Only expect load and stores!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 778, __PRETTY_FUNCTION__))
;
779 }
780 }
781
782 if (Changed) {
783 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: "
<< *GV; } } while (0)
;
784 ++NumGlobUses;
785 }
786
787 // If we nuked all of the loads, then none of the stores are needed either,
788 // nor is the global.
789 if (AllNonStoreUsesGone) {
790 if (isLeakCheckerRoot(GV)) {
791 Changed |= CleanupPointerRootUsers(GV, TLI);
792 } else {
793 Changed = true;
794 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
795 }
796 if (GV->use_empty()) {
797 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << " *** GLOBAL NOW DEAD!\n"; }
} while (0)
;
798 Changed = true;
799 GV->eraseFromParent();
800 ++NumDeleted;
801 }
802 }
803 return Changed;
804}
805
806/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
807/// instructions that are foldable.
808static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
809 TargetLibraryInfo *TLI) {
810 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
811 if (Instruction *I = dyn_cast<Instruction>(*UI++))
812 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
813 I->replaceAllUsesWith(NewC);
814
815 // Advance UI to the next non-I use to avoid invalidating it!
816 // Instructions could multiply use V.
817 while (UI != E && *UI == I)
818 ++UI;
819 I->eraseFromParent();
820 }
821}
822
823/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
824/// variable, and transforms the program as if it always contained the result of
825/// the specified malloc. Because it is always the result of the specified
826/// malloc, there is no reason to actually DO the malloc. Instead, turn the
827/// malloc into a global, and any loads of GV as uses of the new global.
828static GlobalVariable *
829OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
830 ConstantInt *NElements, const DataLayout &DL,
831 TargetLibraryInfo *TLI) {
832 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { errs() << "PROMOTING GLOBAL: " <<
*GV << " CALL = " << *CI << '\n'; } } while
(0)
;
833
834 Type *GlobalType;
835 if (NElements->getZExtValue() == 1)
836 GlobalType = AllocTy;
837 else
838 // If we have an array allocation, the global variable is of an array.
839 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
840
841 // Create the new global variable. The contents of the malloc'd memory is
842 // undefined, so initialize with an undef value.
843 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
844 GlobalType, false,
845 GlobalValue::InternalLinkage,
846 UndefValue::get(GlobalType),
847 GV->getName()+".body",
848 GV,
849 GV->getThreadLocalMode());
850
851 // If there are bitcast users of the malloc (which is typical, usually we have
852 // a malloc + bitcast) then replace them with uses of the new global. Update
853 // other users to use the global as well.
854 BitCastInst *TheBC = nullptr;
855 while (!CI->use_empty()) {
856 Instruction *User = cast<Instruction>(CI->user_back());
857 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
858 if (BCI->getType() == NewGV->getType()) {
859 BCI->replaceAllUsesWith(NewGV);
860 BCI->eraseFromParent();
861 } else {
862 BCI->setOperand(0, NewGV);
863 }
864 } else {
865 if (!TheBC)
866 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
867 User->replaceUsesOfWith(CI, TheBC);
868 }
869 }
870
871 Constant *RepValue = NewGV;
872 if (NewGV->getType() != GV->getType()->getElementType())
873 RepValue = ConstantExpr::getBitCast(RepValue,
874 GV->getType()->getElementType());
875
876 // If there is a comparison against null, we will insert a global bool to
877 // keep track of whether the global was initialized yet or not.
878 GlobalVariable *InitBool =
879 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
880 GlobalValue::InternalLinkage,
881 ConstantInt::getFalse(GV->getContext()),
882 GV->getName()+".init", GV->getThreadLocalMode());
883 bool InitBoolUsed = false;
884
885 // Loop over all uses of GV, processing them in turn.
886 while (!GV->use_empty()) {
887 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
888 // The global is initialized when the store to it occurs.
889 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
890 SI->getOrdering(), SI->getSynchScope(), SI);
891 SI->eraseFromParent();
892 continue;
893 }
894
895 LoadInst *LI = cast<LoadInst>(GV->user_back());
896 while (!LI->use_empty()) {
897 Use &LoadUse = *LI->use_begin();
898 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
899 if (!ICI) {
900 LoadUse = RepValue;
901 continue;
902 }
903
904 // Replace the cmp X, 0 with a use of the bool value.
905 // Sink the load to where the compare was, if atomic rules allow us to.
906 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
907 LI->getOrdering(), LI->getSynchScope(),
908 LI->isUnordered() ? (Instruction*)ICI : LI);
909 InitBoolUsed = true;
910 switch (ICI->getPredicate()) {
911 default: llvm_unreachable("Unknown ICmp Predicate!")::llvm::llvm_unreachable_internal("Unknown ICmp Predicate!", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 911)
;
912 case ICmpInst::ICMP_ULT:
913 case ICmpInst::ICMP_SLT: // X < null -> always false
914 LV = ConstantInt::getFalse(GV->getContext());
915 break;
916 case ICmpInst::ICMP_ULE:
917 case ICmpInst::ICMP_SLE:
918 case ICmpInst::ICMP_EQ:
919 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
920 break;
921 case ICmpInst::ICMP_NE:
922 case ICmpInst::ICMP_UGE:
923 case ICmpInst::ICMP_SGE:
924 case ICmpInst::ICMP_UGT:
925 case ICmpInst::ICMP_SGT:
926 break; // no change.
927 }
928 ICI->replaceAllUsesWith(LV);
929 ICI->eraseFromParent();
930 }
931 LI->eraseFromParent();
932 }
933
934 // If the initialization boolean was used, insert it, otherwise delete it.
935 if (!InitBoolUsed) {
936 while (!InitBool->use_empty()) // Delete initializations
937 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
938 delete InitBool;
939 } else
940 GV->getParent()->getGlobalList().insert(GV, InitBool);
941
942 // Now the GV is dead, nuke it and the malloc..
943 GV->eraseFromParent();
944 CI->eraseFromParent();
945
946 // To further other optimizations, loop over all users of NewGV and try to
947 // constant prop them. This will promote GEP instructions with constant
948 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
949 ConstantPropUsersOf(NewGV, DL, TLI);
950 if (RepValue != NewGV)
951 ConstantPropUsersOf(RepValue, DL, TLI);
952
953 return NewGV;
954}
955
956/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
957/// to make sure that there are no complex uses of V. We permit simple things
958/// like dereferencing the pointer, but not storing through the address, unless
959/// it is to the specified global.
960static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
961 const GlobalVariable *GV,
962 SmallPtrSetImpl<const PHINode*> &PHIs) {
963 for (const User *U : V->users()) {
964 const Instruction *Inst = cast<Instruction>(U);
965
966 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
967 continue; // Fine, ignore.
968 }
969
970 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
971 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
972 return false; // Storing the pointer itself... bad.
973 continue; // Otherwise, storing through it, or storing into GV... fine.
974 }
975
976 // Must index into the array and into the struct.
977 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
978 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
979 return false;
980 continue;
981 }
982
983 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
984 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
985 // cycles.
986 if (PHIs.insert(PN).second)
987 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
988 return false;
989 continue;
990 }
991
992 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
993 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
994 return false;
995 continue;
996 }
997
998 return false;
999 }
1000 return true;
1001}
1002
1003/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1004/// somewhere. Transform all uses of the allocation into loads from the
1005/// global and uses of the resultant pointer. Further, delete the store into
1006/// GV. This assumes that these value pass the
1007/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1008static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1009 GlobalVariable *GV) {
1010 while (!Alloc->use_empty()) {
1011 Instruction *U = cast<Instruction>(*Alloc->user_begin());
1012 Instruction *InsertPt = U;
1013 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1014 // If this is the store of the allocation into the global, remove it.
1015 if (SI->getOperand(1) == GV) {
1016 SI->eraseFromParent();
1017 continue;
1018 }
1019 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1020 // Insert the load in the corresponding predecessor, not right before the
1021 // PHI.
1022 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1023 } else if (isa<BitCastInst>(U)) {
1024 // Must be bitcast between the malloc and store to initialize the global.
1025 ReplaceUsesOfMallocWithGlobal(U, GV);
1026 U->eraseFromParent();
1027 continue;
1028 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1029 // If this is a "GEP bitcast" and the user is a store to the global, then
1030 // just process it as a bitcast.
1031 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1032 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1033 if (SI->getOperand(1) == GV) {
1034 // Must be bitcast GEP between the malloc and store to initialize
1035 // the global.
1036 ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1037 GEPI->eraseFromParent();
1038 continue;
1039 }
1040 }
1041
1042 // Insert a load from the global, and use it instead of the malloc.
1043 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1044 U->replaceUsesOfWith(Alloc, NL);
1045 }
1046}
1047
1048/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1049/// of a load) are simple enough to perform heap SRA on. This permits GEP's
1050/// that index through the array and struct field, icmps of null, and PHIs.
1051static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1052 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1053 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1054 // We permit two users of the load: setcc comparing against the null
1055 // pointer, and a getelementptr of a specific form.
1056 for (const User *U : V->users()) {
1057 const Instruction *UI = cast<Instruction>(U);
1058
1059 // Comparison against null is ok.
1060 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1061 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1062 return false;
1063 continue;
1064 }
1065
1066 // getelementptr is also ok, but only a simple form.
1067 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1068 // Must index into the array and into the struct.
1069 if (GEPI->getNumOperands() < 3)
1070 return false;
1071
1072 // Otherwise the GEP is ok.
1073 continue;
1074 }
1075
1076 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1077 if (!LoadUsingPHIsPerLoad.insert(PN).second)
1078 // This means some phi nodes are dependent on each other.
1079 // Avoid infinite looping!
1080 return false;
1081 if (!LoadUsingPHIs.insert(PN).second)
1082 // If we have already analyzed this PHI, then it is safe.
1083 continue;
1084
1085 // Make sure all uses of the PHI are simple enough to transform.
1086 if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1087 LoadUsingPHIs, LoadUsingPHIsPerLoad))
1088 return false;
1089
1090 continue;
1091 }
1092
1093 // Otherwise we don't know what this is, not ok.
1094 return false;
1095 }
1096
1097 return true;
1098}
1099
1100
1101/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1102/// GV are simple enough to perform HeapSRA, return true.
1103static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1104 Instruction *StoredVal) {
1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1106 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1107 for (const User *U : GV->users())
1108 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1109 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1110 LoadUsingPHIsPerLoad))
1111 return false;
1112 LoadUsingPHIsPerLoad.clear();
1113 }
1114
1115 // If we reach here, we know that all uses of the loads and transitive uses
1116 // (through PHI nodes) are simple enough to transform. However, we don't know
1117 // that all inputs the to the PHI nodes are in the same equivalence sets.
1118 // Check to verify that all operands of the PHIs are either PHIS that can be
1119 // transformed, loads from GV, or MI itself.
1120 for (const PHINode *PN : LoadUsingPHIs) {
1121 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1122 Value *InVal = PN->getIncomingValue(op);
1123
1124 // PHI of the stored value itself is ok.
1125 if (InVal == StoredVal) continue;
1126
1127 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1128 // One of the PHIs in our set is (optimistically) ok.
1129 if (LoadUsingPHIs.count(InPN))
1130 continue;
1131 return false;
1132 }
1133
1134 // Load from GV is ok.
1135 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1136 if (LI->getOperand(0) == GV)
1137 continue;
1138
1139 // UNDEF? NULL?
1140
1141 // Anything else is rejected.
1142 return false;
1143 }
1144 }
1145
1146 return true;
1147}
1148
1149static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1150 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1151 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1152 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1153
1154 if (FieldNo >= FieldVals.size())
1155 FieldVals.resize(FieldNo+1);
1156
1157 // If we already have this value, just reuse the previously scalarized
1158 // version.
1159 if (Value *FieldVal = FieldVals[FieldNo])
1160 return FieldVal;
1161
1162 // Depending on what instruction this is, we have several cases.
1163 Value *Result;
1164 if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1165 // This is a scalarized version of the load from the global. Just create
1166 // a new Load of the scalarized global.
1167 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1168 InsertedScalarizedValues,
1169 PHIsToRewrite),
1170 LI->getName()+".f"+Twine(FieldNo), LI);
1171 } else {
1172 PHINode *PN = cast<PHINode>(V);
1173 // PN's type is pointer to struct. Make a new PHI of pointer to struct
1174 // field.
1175
1176 PointerType *PTy = cast<PointerType>(PN->getType());
1177 StructType *ST = cast<StructType>(PTy->getElementType());
1178
1179 unsigned AS = PTy->getAddressSpace();
1180 PHINode *NewPN =
1181 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1182 PN->getNumIncomingValues(),
1183 PN->getName()+".f"+Twine(FieldNo), PN);
1184 Result = NewPN;
1185 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1186 }
1187
1188 return FieldVals[FieldNo] = Result;
1189}
1190
1191/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1192/// the load, rewrite the derived value to use the HeapSRoA'd load.
1193static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1194 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1195 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1196 // If this is a comparison against null, handle it.
1197 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1198 assert(isa<ConstantPointerNull>(SCI->getOperand(1)))((isa<ConstantPointerNull>(SCI->getOperand(1))) ? static_cast
<void> (0) : __assert_fail ("isa<ConstantPointerNull>(SCI->getOperand(1))"
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1198, __PRETTY_FUNCTION__))
;
1199 // If we have a setcc of the loaded pointer, we can use a setcc of any
1200 // field.
1201 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1202 InsertedScalarizedValues, PHIsToRewrite);
1203
1204 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1205 Constant::getNullValue(NPtr->getType()),
1206 SCI->getName());
1207 SCI->replaceAllUsesWith(New);
1208 SCI->eraseFromParent();
1209 return;
1210 }
1211
1212 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1213 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1214 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))((GEPI->getNumOperands() >= 3 && isa<ConstantInt
>(GEPI->getOperand(2)) && "Unexpected GEPI!") ?
static_cast<void> (0) : __assert_fail ("GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) && \"Unexpected GEPI!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1215, __PRETTY_FUNCTION__))
1215 && "Unexpected GEPI!")((GEPI->getNumOperands() >= 3 && isa<ConstantInt
>(GEPI->getOperand(2)) && "Unexpected GEPI!") ?
static_cast<void> (0) : __assert_fail ("GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) && \"Unexpected GEPI!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1215, __PRETTY_FUNCTION__))
;
1216
1217 // Load the pointer for this field.
1218 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1219 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1220 InsertedScalarizedValues, PHIsToRewrite);
1221
1222 // Create the new GEP idx vector.
1223 SmallVector<Value*, 8> GEPIdx;
1224 GEPIdx.push_back(GEPI->getOperand(1));
1225 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1226
1227 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1228 GEPI->getName(), GEPI);
1229 GEPI->replaceAllUsesWith(NGEPI);
1230 GEPI->eraseFromParent();
1231 return;
1232 }
1233
1234 // Recursively transform the users of PHI nodes. This will lazily create the
1235 // PHIs that are needed for individual elements. Keep track of what PHIs we
1236 // see in InsertedScalarizedValues so that we don't get infinite loops (very
1237 // antisocial). If the PHI is already in InsertedScalarizedValues, it has
1238 // already been seen first by another load, so its uses have already been
1239 // processed.
1240 PHINode *PN = cast<PHINode>(LoadUser);
1241 if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1242 std::vector<Value*>())).second)
1243 return;
1244
1245 // If this is the first time we've seen this PHI, recursively process all
1246 // users.
1247 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1248 Instruction *User = cast<Instruction>(*UI++);
1249 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1250 }
1251}
1252
1253/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1254/// is a value loaded from the global. Eliminate all uses of Ptr, making them
1255/// use FieldGlobals instead. All uses of loaded values satisfy
1256/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1257static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1258 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1259 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1260 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1261 Instruction *User = cast<Instruction>(*UI++);
1262 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1263 }
1264
1265 if (Load->use_empty()) {
1266 Load->eraseFromParent();
1267 InsertedScalarizedValues.erase(Load);
1268 }
1269}
1270
1271/// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break
1272/// it up into multiple allocations of arrays of the fields.
1273static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1274 Value *NElems, const DataLayout &DL,
1275 const TargetLibraryInfo *TLI) {
1276 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "SROA HEAP ALLOC: " <<
*GV << " MALLOC = " << *CI << '\n'; } } while
(0)
;
1277 Type *MAT = getMallocAllocatedType(CI, TLI);
1278 StructType *STy = cast<StructType>(MAT);
1279
1280 // There is guaranteed to be at least one use of the malloc (storing
1281 // it into GV). If there are other uses, change them to be uses of
1282 // the global to simplify later code. This also deletes the store
1283 // into GV.
1284 ReplaceUsesOfMallocWithGlobal(CI, GV);
1285
1286 // Okay, at this point, there are no users of the malloc. Insert N
1287 // new mallocs at the same place as CI, and N globals.
1288 std::vector<Value*> FieldGlobals;
1289 std::vector<Value*> FieldMallocs;
1290
1291 unsigned AS = GV->getType()->getPointerAddressSpace();
1292 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1293 Type *FieldTy = STy->getElementType(FieldNo);
1294 PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1295
1296 GlobalVariable *NGV =
1297 new GlobalVariable(*GV->getParent(),
1298 PFieldTy, false, GlobalValue::InternalLinkage,
1299 Constant::getNullValue(PFieldTy),
1300 GV->getName() + ".f" + Twine(FieldNo), GV,
1301 GV->getThreadLocalMode());
1302 FieldGlobals.push_back(NGV);
1303
1304 unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1305 if (StructType *ST = dyn_cast<StructType>(FieldTy))
1306 TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1307 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1308 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1309 ConstantInt::get(IntPtrTy, TypeSize),
1310 NElems, nullptr,
1311 CI->getName() + ".f" + Twine(FieldNo));
1312 FieldMallocs.push_back(NMI);
1313 new StoreInst(NMI, NGV, CI);
1314 }
1315
1316 // The tricky aspect of this transformation is handling the case when malloc
1317 // fails. In the original code, malloc failing would set the result pointer
1318 // of malloc to null. In this case, some mallocs could succeed and others
1319 // could fail. As such, we emit code that looks like this:
1320 // F0 = malloc(field0)
1321 // F1 = malloc(field1)
1322 // F2 = malloc(field2)
1323 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1324 // if (F0) { free(F0); F0 = 0; }
1325 // if (F1) { free(F1); F1 = 0; }
1326 // if (F2) { free(F2); F2 = 0; }
1327 // }
1328 // The malloc can also fail if its argument is too large.
1329 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1330 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1331 ConstantZero, "isneg");
1332 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1333 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1334 Constant::getNullValue(FieldMallocs[i]->getType()),
1335 "isnull");
1336 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1337 }
1338
1339 // Split the basic block at the old malloc.
1340 BasicBlock *OrigBB = CI->getParent();
1341 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1342
1343 // Create the block to check the first condition. Put all these blocks at the
1344 // end of the function as they are unlikely to be executed.
1345 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1346 "malloc_ret_null",
1347 OrigBB->getParent());
1348
1349 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1350 // branch on RunningOr.
1351 OrigBB->getTerminator()->eraseFromParent();
1352 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1353
1354 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1355 // pointer, because some may be null while others are not.
1356 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1357 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1358 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1359 Constant::getNullValue(GVVal->getType()));
1360 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1361 OrigBB->getParent());
1362 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1363 OrigBB->getParent());
1364 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1365 Cmp, NullPtrBlock);
1366
1367 // Fill in FreeBlock.
1368 CallInst::CreateFree(GVVal, BI);
1369 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1370 FreeBlock);
1371 BranchInst::Create(NextBlock, FreeBlock);
1372
1373 NullPtrBlock = NextBlock;
1374 }
1375
1376 BranchInst::Create(ContBB, NullPtrBlock);
1377
1378 // CI is no longer needed, remove it.
1379 CI->eraseFromParent();
1380
1381 /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1382 /// update all uses of the load, keep track of what scalarized loads are
1383 /// inserted for a given load.
1384 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1385 InsertedScalarizedValues[GV] = FieldGlobals;
1386
1387 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1388
1389 // Okay, the malloc site is completely handled. All of the uses of GV are now
1390 // loads, and all uses of those loads are simple. Rewrite them to use loads
1391 // of the per-field globals instead.
1392 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1393 Instruction *User = cast<Instruction>(*UI++);
1394
1395 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1396 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1397 continue;
1398 }
1399
1400 // Must be a store of null.
1401 StoreInst *SI = cast<StoreInst>(User);
1402 assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&((isa<ConstantPointerNull>(SI->getOperand(0)) &&
"Unexpected heap-sra user!") ? static_cast<void> (0) :
__assert_fail ("isa<ConstantPointerNull>(SI->getOperand(0)) && \"Unexpected heap-sra user!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1403, __PRETTY_FUNCTION__))
1403 "Unexpected heap-sra user!")((isa<ConstantPointerNull>(SI->getOperand(0)) &&
"Unexpected heap-sra user!") ? static_cast<void> (0) :
__assert_fail ("isa<ConstantPointerNull>(SI->getOperand(0)) && \"Unexpected heap-sra user!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1403, __PRETTY_FUNCTION__))
;
1404
1405 // Insert a store of null into each global.
1406 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1407 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1408 Constant *Null = Constant::getNullValue(PT->getElementType());
1409 new StoreInst(Null, FieldGlobals[i], SI);
1410 }
1411 // Erase the original store.
1412 SI->eraseFromParent();
1413 }
1414
1415 // While we have PHIs that are interesting to rewrite, do it.
1416 while (!PHIsToRewrite.empty()) {
1417 PHINode *PN = PHIsToRewrite.back().first;
1418 unsigned FieldNo = PHIsToRewrite.back().second;
1419 PHIsToRewrite.pop_back();
1420 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1421 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi")((FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"
) ? static_cast<void> (0) : __assert_fail ("FieldPN->getNumIncomingValues() == 0 &&\"Already processed this phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1421, __PRETTY_FUNCTION__))
;
1422
1423 // Add all the incoming values. This can materialize more phis.
1424 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1425 Value *InVal = PN->getIncomingValue(i);
1426 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1427 PHIsToRewrite);
1428 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1429 }
1430 }
1431
1432 // Drop all inter-phi links and any loads that made it this far.
1433 for (DenseMap<Value*, std::vector<Value*> >::iterator
1434 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1435 I != E; ++I) {
1436 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1437 PN->dropAllReferences();
1438 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1439 LI->dropAllReferences();
1440 }
1441
1442 // Delete all the phis and loads now that inter-references are dead.
1443 for (DenseMap<Value*, std::vector<Value*> >::iterator
1444 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1445 I != E; ++I) {
1446 if (PHINode *PN = dyn_cast<PHINode>(I->first))
1447 PN->eraseFromParent();
1448 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1449 LI->eraseFromParent();
1450 }
1451
1452 // The old global is now dead, remove it.
1453 GV->eraseFromParent();
1454
1455 ++NumHeapSRA;
1456 return cast<GlobalVariable>(FieldGlobals[0]);
1457}
1458
1459/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1460/// pointer global variable with a single value stored it that is a malloc or
1461/// cast of malloc.
1462static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1463 Type *AllocTy,
1464 AtomicOrdering Ordering,
1465 Module::global_iterator &GVI,
1466 const DataLayout &DL,
1467 TargetLibraryInfo *TLI) {
1468 // If this is a malloc of an abstract type, don't touch it.
1469 if (!AllocTy->isSized())
1470 return false;
1471
1472 // We can't optimize this global unless all uses of it are *known* to be
1473 // of the malloc value, not of the null initializer value (consider a use
1474 // that compares the global's value against zero to see if the malloc has
1475 // been reached). To do this, we check to see if all uses of the global
1476 // would trap if the global were null: this proves that they must all
1477 // happen after the malloc.
1478 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1479 return false;
1480
1481 // We can't optimize this if the malloc itself is used in a complex way,
1482 // for example, being stored into multiple globals. This allows the
1483 // malloc to be stored into the specified global, loaded icmp'd, and
1484 // GEP'd. These are all things we could transform to using the global
1485 // for.
1486 SmallPtrSet<const PHINode*, 8> PHIs;
1487 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1488 return false;
1489
1490 // If we have a global that is only initialized with a fixed size malloc,
1491 // transform the program to use global memory instead of malloc'd memory.
1492 // This eliminates dynamic allocation, avoids an indirection accessing the
1493 // data, and exposes the resultant global to further GlobalOpt.
1494 // We cannot optimize the malloc if we cannot determine malloc array size.
1495 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1496 if (!NElems)
1497 return false;
1498
1499 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1500 // Restrict this transformation to only working on small allocations
1501 // (2048 bytes currently), as we don't want to introduce a 16M global or
1502 // something.
1503 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1504 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1505 return true;
1506 }
1507
1508 // If the allocation is an array of structures, consider transforming this
1509 // into multiple malloc'd arrays, one for each field. This is basically
1510 // SRoA for malloc'd memory.
1511
1512 if (Ordering != NotAtomic)
1513 return false;
1514
1515 // If this is an allocation of a fixed size array of structs, analyze as a
1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100
1517 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1518 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1519 AllocTy = AT->getElementType();
1520
1521 StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1522 if (!AllocSTy)
1523 return false;
1524
1525 // This the structure has an unreasonable number of fields, leave it
1526 // alone.
1527 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1529
1530 // If this is a fixed size array, transform the Malloc to be an alloc of
1531 // structs. malloc [100 x struct],1 -> malloc struct, 100
1532 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1533 Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1534 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1535 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1536 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1537 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1538 AllocSize, NumElements,
1539 nullptr, CI->getName());
1540 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1541 CI->replaceAllUsesWith(Cast);
1542 CI->eraseFromParent();
1543 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1544 CI = cast<CallInst>(BCI->getOperand(0));
1545 else
1546 CI = cast<CallInst>(Malloc);
1547 }
1548
1549 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
1550 DL, TLI);
1551 return true;
1552 }
1553
1554 return false;
1555}
1556
1557// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1558// that only one value (besides its initializer) is ever stored to the global.
1559static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1560 AtomicOrdering Ordering,
1561 Module::global_iterator &GVI,
1562 const DataLayout &DL,
1563 TargetLibraryInfo *TLI) {
1564 // Ignore no-op GEPs and bitcasts.
1565 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1566
1567 // If we are dealing with a pointer global that is initialized to null and
1568 // only has one (non-null) value stored into it, then we can optimize any
1569 // users of the loaded value (often calls and loads) that would trap if the
1570 // value was null.
1571 if (GV->getInitializer()->getType()->isPointerTy() &&
1572 GV->getInitializer()->isNullValue()) {
1573 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1574 if (GV->getInitializer()->getType() != SOVC->getType())
1575 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1576
1577 // Optimize away any trapping uses of the loaded value.
1578 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1579 return true;
1580 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1581 Type *MallocType = getMallocAllocatedType(CI, TLI);
1582 if (MallocType &&
1583 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1584 DL, TLI))
1585 return true;
1586 }
1587 }
1588
1589 return false;
1590}
1591
1592/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1593/// two values ever stored into GV are its initializer and OtherVal. See if we
1594/// can shrink the global into a boolean and select between the two values
1595/// whenever it is used. This exposes the values to other scalar optimizations.
1596static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1597 Type *GVElType = GV->getType()->getElementType();
1598
1599 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1600 // an FP value, pointer or vector, don't do this optimization because a select
1601 // between them is very expensive and unlikely to lead to later
1602 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1603 // where v1 and v2 both require constant pool loads, a big loss.
1604 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1605 GVElType->isFloatingPointTy() ||
1606 GVElType->isPointerTy() || GVElType->isVectorTy())
1607 return false;
1608
1609 // Walk the use list of the global seeing if all the uses are load or store.
1610 // If there is anything else, bail out.
1611 for (User *U : GV->users())
1612 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1613 return false;
1614
1615 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << " *** SHRINKING TO BOOL: "
<< *GV; } } while (0)
;
1616
1617 // Create the new global, initializing it to false.
1618 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1619 false,
1620 GlobalValue::InternalLinkage,
1621 ConstantInt::getFalse(GV->getContext()),
1622 GV->getName()+".b",
1623 GV->getThreadLocalMode(),
1624 GV->getType()->getAddressSpace());
1625 GV->getParent()->getGlobalList().insert(GV, NewGV);
1626
1627 Constant *InitVal = GV->getInitializer();
1628 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&((InitVal->getType() != Type::getInt1Ty(GV->getContext(
)) && "No reason to shrink to bool!") ? static_cast<
void> (0) : __assert_fail ("InitVal->getType() != Type::getInt1Ty(GV->getContext()) && \"No reason to shrink to bool!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1629, __PRETTY_FUNCTION__))
1629 "No reason to shrink to bool!")((InitVal->getType() != Type::getInt1Ty(GV->getContext(
)) && "No reason to shrink to bool!") ? static_cast<
void> (0) : __assert_fail ("InitVal->getType() != Type::getInt1Ty(GV->getContext()) && \"No reason to shrink to bool!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1629, __PRETTY_FUNCTION__))
;
1630
1631 // If initialized to zero and storing one into the global, we can use a cast
1632 // instead of a select to synthesize the desired value.
1633 bool IsOneZero = false;
1634 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1635 IsOneZero = InitVal->isNullValue() && CI->isOne();
1636
1637 while (!GV->use_empty()) {
1638 Instruction *UI = cast<Instruction>(GV->user_back());
1639 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1640 // Change the store into a boolean store.
1641 bool StoringOther = SI->getOperand(0) == OtherVal;
1642 // Only do this if we weren't storing a loaded value.
1643 Value *StoreVal;
1644 if (StoringOther || SI->getOperand(0) == InitVal) {
1645 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1646 StoringOther);
1647 } else {
1648 // Otherwise, we are storing a previously loaded copy. To do this,
1649 // change the copy from copying the original value to just copying the
1650 // bool.
1651 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1652
1653 // If we've already replaced the input, StoredVal will be a cast or
1654 // select instruction. If not, it will be a load of the original
1655 // global.
1656 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1657 assert(LI->getOperand(0) == GV && "Not a copy!")((LI->getOperand(0) == GV && "Not a copy!") ? static_cast
<void> (0) : __assert_fail ("LI->getOperand(0) == GV && \"Not a copy!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1657, __PRETTY_FUNCTION__))
;
1658 // Insert a new load, to preserve the saved value.
1659 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1660 LI->getOrdering(), LI->getSynchScope(), LI);
1661 } else {
1662 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&(((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal
)) && "This is not a form that we understand!") ? static_cast
<void> (0) : __assert_fail ("(isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && \"This is not a form that we understand!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1663, __PRETTY_FUNCTION__))
1663 "This is not a form that we understand!")(((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal
)) && "This is not a form that we understand!") ? static_cast
<void> (0) : __assert_fail ("(isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && \"This is not a form that we understand!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1663, __PRETTY_FUNCTION__))
;
1664 StoreVal = StoredVal->getOperand(0);
1665 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!")((isa<LoadInst>(StoreVal) && "Not a load of NewGV!"
) ? static_cast<void> (0) : __assert_fail ("isa<LoadInst>(StoreVal) && \"Not a load of NewGV!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 1665, __PRETTY_FUNCTION__))
;
1666 }
1667 }
1668 new StoreInst(StoreVal, NewGV, false, 0,
1669 SI->getOrdering(), SI->getSynchScope(), SI);
1670 } else {
1671 // Change the load into a load of bool then a select.
1672 LoadInst *LI = cast<LoadInst>(UI);
1673 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1674 LI->getOrdering(), LI->getSynchScope(), LI);
1675 Value *NSI;
1676 if (IsOneZero)
1677 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1678 else
1679 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1680 NSI->takeName(LI);
1681 LI->replaceAllUsesWith(NSI);
1682 }
1683 UI->eraseFromParent();
1684 }
1685
1686 // Retain the name of the old global variable. People who are debugging their
1687 // programs may expect these variables to be named the same.
1688 NewGV->takeName(GV);
1689 GV->eraseFromParent();
1690 return true;
1691}
1692
1693
1694/// ProcessGlobal - Analyze the specified global variable and optimize it if
1695/// possible. If we make a change, return true.
1696bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1697 Module::global_iterator &GVI) {
1698 // Do more involved optimizations if the global is internal.
1699 GV->removeDeadConstantUsers();
1700
1701 if (GV->use_empty()) {
1702 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "GLOBAL DEAD: " << *GV
; } } while (0)
;
1703 GV->eraseFromParent();
1704 ++NumDeleted;
1705 return true;
1706 }
1707
1708 if (!GV->hasLocalLinkage())
1709 return false;
1710
1711 GlobalStatus GS;
1712
1713 if (GlobalStatus::analyzeGlobal(GV, GS))
1714 return false;
1715
1716 if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
1717 GV->setUnnamedAddr(true);
1718 NumUnnamed++;
1719 }
1720
1721 if (GV->isConstant() || !GV->hasInitializer())
1722 return false;
1723
1724 return ProcessInternalGlobal(GV, GVI, GS);
1725}
1726
1727/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1728/// it if possible. If we make a change, return true.
1729bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1730 Module::global_iterator &GVI,
1731 const GlobalStatus &GS) {
1732 auto &DL = GV->getParent()->getDataLayout();
1733 // If this is a first class global and has only one accessing function
1734 // and this function is main (which we know is not recursive), we replace
1735 // the global with a local alloca in this function.
1736 //
1737 // NOTE: It doesn't make sense to promote non-single-value types since we
1738 // are just replacing static memory to stack memory.
1739 //
1740 // If the global is in different address space, don't bring it to stack.
1741 if (!GS.HasMultipleAccessingFunctions &&
1742 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1743 GV->getType()->getElementType()->isSingleValueType() &&
1744 GS.AccessingFunction->getName() == "main" &&
1745 GS.AccessingFunction->hasExternalLinkage() &&
1746 GV->getType()->getAddressSpace() == 0) {
1747 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "LOCALIZING GLOBAL: " <<
*GV; } } while (0)
;
1748 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1749 ->getEntryBlock().begin());
1750 Type *ElemTy = GV->getType()->getElementType();
1751 // FIXME: Pass Global's alignment when globals have alignment
1752 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1753 GV->getName(), &FirstI);
1754 if (!isa<UndefValue>(GV->getInitializer()))
1755 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1756
1757 GV->replaceAllUsesWith(Alloca);
1758 GV->eraseFromParent();
1759 ++NumLocalized;
1760 return true;
1761 }
1762
1763 // If the global is never loaded (but may be stored to), it is dead.
1764 // Delete it now.
1765 if (!GS.IsLoaded) {
1766 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "GLOBAL NEVER LOADED: " <<
*GV; } } while (0)
;
1767
1768 bool Changed;
1769 if (isLeakCheckerRoot(GV)) {
1770 // Delete any constant stores to the global.
1771 Changed = CleanupPointerRootUsers(GV, TLI);
1772 } else {
1773 // Delete any stores we can find to the global. We may not be able to
1774 // make it completely dead though.
1775 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1776 }
1777
1778 // If the global is dead now, delete it.
1779 if (GV->use_empty()) {
1780 GV->eraseFromParent();
1781 ++NumDeleted;
1782 Changed = true;
1783 }
1784 return Changed;
1785
1786 } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1787 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "MARKING CONSTANT: " <<
*GV << "\n"; } } while (0)
;
1788 GV->setConstant(true);
1789
1790 // Clean up any obviously simplifiable users now.
1791 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1792
1793 // If the global is dead now, just nuke it.
1794 if (GV->use_empty()) {
1795 DEBUG(dbgs() << " *** Marking constant allowed us to simplify "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << " *** Marking constant allowed us to simplify "
<< "all users and delete global!\n"; } } while (0)
1796 << "all users and delete global!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << " *** Marking constant allowed us to simplify "
<< "all users and delete global!\n"; } } while (0)
;
1797 GV->eraseFromParent();
1798 ++NumDeleted;
1799 }
1800
1801 ++NumMarked;
1802 return true;
1803 } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1804 const DataLayout &DL = GV->getParent()->getDataLayout();
1805 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
1806 GVI = FirstNewGV; // Don't skip the newly produced globals!
1807 return true;
1808 }
1809 } else if (GS.StoredType == GlobalStatus::StoredOnce) {
1810 // If the initial value for the global was an undef value, and if only
1811 // one other value was stored into it, we can just change the
1812 // initializer to be the stored value, then delete all stores to the
1813 // global. This allows us to mark it constant.
1814 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1815 if (isa<UndefValue>(GV->getInitializer())) {
1816 // Change the initial value here.
1817 GV->setInitializer(SOVConstant);
1818
1819 // Clean up any obviously simplifiable users now.
1820 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1821
1822 if (GV->use_empty()) {
1823 DEBUG(dbgs() << " *** Substituting initializer allowed us to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << " *** Substituting initializer allowed us to "
<< "simplify all users and delete global!\n"; } } while
(0)
1824 << "simplify all users and delete global!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << " *** Substituting initializer allowed us to "
<< "simplify all users and delete global!\n"; } } while
(0)
;
1825 GV->eraseFromParent();
1826 ++NumDeleted;
1827 } else {
1828 GVI = GV;
1829 }
1830 ++NumSubstitute;
1831 return true;
1832 }
1833
1834 // Try to optimize globals based on the knowledge that only one value
1835 // (besides its initializer) is ever stored to the global.
1836 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
1837 DL, TLI))
1838 return true;
1839
1840 // Otherwise, if the global was not a boolean, we can shrink it to be a
1841 // boolean.
1842 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1843 if (GS.Ordering == NotAtomic) {
1844 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1845 ++NumShrunkToBool;
1846 return true;
1847 }
1848 }
1849 }
1850 }
1851
1852 return false;
1853}
1854
1855/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1856/// function, changing them to FastCC.
1857static void ChangeCalleesToFastCall(Function *F) {
1858 for (User *U : F->users()) {
1859 if (isa<BlockAddress>(U))
1860 continue;
1861 CallSite CS(cast<Instruction>(U));
1862 CS.setCallingConv(CallingConv::Fast);
1863 }
1864}
1865
1866static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
1867 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1868 unsigned Index = Attrs.getSlotIndex(i);
1869 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
1870 continue;
1871
1872 // There can be only one.
1873 return Attrs.removeAttribute(C, Index, Attribute::Nest);
1874 }
1875
1876 return Attrs;
1877}
1878
1879static void RemoveNestAttribute(Function *F) {
1880 F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
1881 for (User *U : F->users()) {
1882 if (isa<BlockAddress>(U))
1883 continue;
1884 CallSite CS(cast<Instruction>(U));
1885 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
1886 }
1887}
1888
1889/// Return true if this is a calling convention that we'd like to change. The
1890/// idea here is that we don't want to mess with the convention if the user
1891/// explicitly requested something with performance implications like coldcc,
1892/// GHC, or anyregcc.
1893static bool isProfitableToMakeFastCC(Function *F) {
1894 CallingConv::ID CC = F->getCallingConv();
1895 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1896 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
1897}
1898
1899bool GlobalOpt::OptimizeFunctions(Module &M) {
1900 bool Changed = false;
1901 // Optimize functions.
1902 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1903 Function *F = FI++;
1904 // Functions without names cannot be referenced outside this module.
1905 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
1906 F->setLinkage(GlobalValue::InternalLinkage);
1907
1908 const Comdat *C = F->getComdat();
1909 bool inComdat = C && NotDiscardableComdats.count(C);
1910 F->removeDeadConstantUsers();
1911 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
1912 F->eraseFromParent();
1913 Changed = true;
1914 ++NumFnDeleted;
1915 } else if (F->hasLocalLinkage()) {
1916 if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
1917 !F->hasAddressTaken()) {
1918 // If this function has a calling convention worth changing, is not a
1919 // varargs function, and is only called directly, promote it to use the
1920 // Fast calling convention.
1921 F->setCallingConv(CallingConv::Fast);
1922 ChangeCalleesToFastCall(F);
1923 ++NumFastCallFns;
1924 Changed = true;
1925 }
1926
1927 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1928 !F->hasAddressTaken()) {
1929 // The function is not used by a trampoline intrinsic, so it is safe
1930 // to remove the 'nest' attribute.
1931 RemoveNestAttribute(F);
1932 ++NumNestRemoved;
1933 Changed = true;
1934 }
1935 }
1936 }
1937 return Changed;
1938}
1939
1940bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1941 bool Changed = false;
1942
1943 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1944 GVI != E; ) {
1945 GlobalVariable *GV = GVI++;
1946 // Global variables without names cannot be referenced outside this module.
1947 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
1948 GV->setLinkage(GlobalValue::InternalLinkage);
1949 // Simplify the initializer.
1950 if (GV->hasInitializer())
1951 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1952 auto &DL = M.getDataLayout();
1953 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
1954 if (New && New != CE)
1955 GV->setInitializer(New);
1956 }
1957
1958 if (GV->isDiscardableIfUnused()) {
1959 if (const Comdat *C = GV->getComdat())
1960 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
1961 continue;
1962 Changed |= ProcessGlobal(GV, GVI);
1963 }
1964 }
1965 return Changed;
1966}
1967
1968static inline bool
1969isSimpleEnoughValueToCommit(Constant *C,
1970 SmallPtrSetImpl<Constant *> &SimpleConstants,
1971 const DataLayout &DL);
1972
1973/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
1974/// handled by the code generator. We don't want to generate something like:
1975/// void *X = &X/42;
1976/// because the code generator doesn't have a relocation that can handle that.
1977///
1978/// This function should be called if C was not found (but just got inserted)
1979/// in SimpleConstants to avoid having to rescan the same constants all the
1980/// time.
1981static bool
1982isSimpleEnoughValueToCommitHelper(Constant *C,
1983 SmallPtrSetImpl<Constant *> &SimpleConstants,
1984 const DataLayout &DL) {
1985 // Simple global addresses are supported, do not allow dllimport or
1986 // thread-local globals.
1987 if (auto *GV = dyn_cast<GlobalValue>(C))
1988 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
1989
1990 // Simple integer, undef, constant aggregate zero, etc are all supported.
1991 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
1992 return true;
1993
1994 // Aggregate values are safe if all their elements are.
1995 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1996 isa<ConstantVector>(C)) {
1997 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
1998 Constant *Op = cast<Constant>(C->getOperand(i));
1999 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
2000 return false;
2001 }
2002 return true;
2003 }
2004
2005 // We don't know exactly what relocations are allowed in constant expressions,
2006 // so we allow &global+constantoffset, which is safe and uniformly supported
2007 // across targets.
2008 ConstantExpr *CE = cast<ConstantExpr>(C);
2009 switch (CE->getOpcode()) {
2010 case Instruction::BitCast:
2011 // Bitcast is fine if the casted value is fine.
2012 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2013
2014 case Instruction::IntToPtr:
2015 case Instruction::PtrToInt:
2016 // int <=> ptr is fine if the int type is the same size as the
2017 // pointer type.
2018 if (DL.getTypeSizeInBits(CE->getType()) !=
2019 DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
2020 return false;
2021 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2022
2023 // GEP is fine if it is simple + constant offset.
2024 case Instruction::GetElementPtr:
2025 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2026 if (!isa<ConstantInt>(CE->getOperand(i)))
2027 return false;
2028 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2029
2030 case Instruction::Add:
2031 // We allow simple+cst.
2032 if (!isa<ConstantInt>(CE->getOperand(1)))
2033 return false;
2034 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2035 }
2036 return false;
2037}
2038
2039static inline bool
2040isSimpleEnoughValueToCommit(Constant *C,
2041 SmallPtrSetImpl<Constant *> &SimpleConstants,
2042 const DataLayout &DL) {
2043 // If we already checked this constant, we win.
2044 if (!SimpleConstants.insert(C).second)
2045 return true;
2046 // Check the constant.
2047 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
2048}
2049
2050
2051/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2052/// enough for us to understand. In particular, if it is a cast to anything
2053/// other than from one pointer type to another pointer type, we punt.
2054/// We basically just support direct accesses to globals and GEP's of
2055/// globals. This should be kept up to date with CommitValueTo.
2056static bool isSimpleEnoughPointerToCommit(Constant *C) {
2057 // Conservatively, avoid aggregate types. This is because we don't
2058 // want to worry about them partially overlapping other stores.
2059 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2060 return false;
2061
2062 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2063 // Do not allow weak/*_odr/linkonce linkage or external globals.
2064 return GV->hasUniqueInitializer();
2065
2066 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2067 // Handle a constantexpr gep.
2068 if (CE->getOpcode() == Instruction::GetElementPtr &&
2069 isa<GlobalVariable>(CE->getOperand(0)) &&
2070 cast<GEPOperator>(CE)->isInBounds()) {
2071 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2072 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2073 // external globals.
2074 if (!GV->hasUniqueInitializer())
2075 return false;
2076
2077 // The first index must be zero.
2078 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
2079 if (!CI || !CI->isZero()) return false;
2080
2081 // The remaining indices must be compile-time known integers within the
2082 // notional bounds of the corresponding static array types.
2083 if (!CE->isGEPWithNoNotionalOverIndexing())
2084 return false;
2085
2086 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2087
2088 // A constantexpr bitcast from a pointer to another pointer is a no-op,
2089 // and we know how to evaluate it by moving the bitcast from the pointer
2090 // operand to the value operand.
2091 } else if (CE->getOpcode() == Instruction::BitCast &&
2092 isa<GlobalVariable>(CE->getOperand(0))) {
2093 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2094 // external globals.
2095 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2096 }
2097 }
2098
2099 return false;
2100}
2101
2102/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2103/// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
2104/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2105static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2106 ConstantExpr *Addr, unsigned OpNo) {
2107 // Base case of the recursion.
2108 if (OpNo == Addr->getNumOperands()) {
2109 assert(Val->getType() == Init->getType() && "Type mismatch!")((Val->getType() == Init->getType() && "Type mismatch!"
) ? static_cast<void> (0) : __assert_fail ("Val->getType() == Init->getType() && \"Type mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2109, __PRETTY_FUNCTION__))
;
2110 return Val;
2111 }
2112
2113 SmallVector<Constant*, 32> Elts;
2114 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2115 // Break up the constant into its elements.
2116 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2117 Elts.push_back(Init->getAggregateElement(i));
2118
2119 // Replace the element that we are supposed to.
2120 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2121 unsigned Idx = CU->getZExtValue();
2122 assert(Idx < STy->getNumElements() && "Struct index out of range!")((Idx < STy->getNumElements() && "Struct index out of range!"
) ? static_cast<void> (0) : __assert_fail ("Idx < STy->getNumElements() && \"Struct index out of range!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2122, __PRETTY_FUNCTION__))
;
2123 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2124
2125 // Return the modified struct.
2126 return ConstantStruct::get(STy, Elts);
2127 }
2128
2129 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2130 SequentialType *InitTy = cast<SequentialType>(Init->getType());
2131
2132 uint64_t NumElts;
2133 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2134 NumElts = ATy->getNumElements();
2135 else
2136 NumElts = InitTy->getVectorNumElements();
2137
2138 // Break up the array into elements.
2139 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2140 Elts.push_back(Init->getAggregateElement(i));
2141
2142 assert(CI->getZExtValue() < NumElts)((CI->getZExtValue() < NumElts) ? static_cast<void>
(0) : __assert_fail ("CI->getZExtValue() < NumElts", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2142, __PRETTY_FUNCTION__))
;
2143 Elts[CI->getZExtValue()] =
2144 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2145
2146 if (Init->getType()->isArrayTy())
2147 return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2148 return ConstantVector::get(Elts);
2149}
2150
2151/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2152/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2153static void CommitValueTo(Constant *Val, Constant *Addr) {
2154 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2155 assert(GV->hasInitializer())((GV->hasInitializer()) ? static_cast<void> (0) : __assert_fail
("GV->hasInitializer()", "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2155, __PRETTY_FUNCTION__))
;
2156 GV->setInitializer(Val);
2157 return;
2158 }
2159
2160 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2161 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2162 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2163}
2164
2165namespace {
2166
2167/// Evaluator - This class evaluates LLVM IR, producing the Constant
2168/// representing each SSA instruction. Changes to global variables are stored
2169/// in a mapping that can be iterated over after the evaluation is complete.
2170/// Once an evaluation call fails, the evaluation object should not be reused.
2171class Evaluator {
2172public:
2173 Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
2174 : DL(DL), TLI(TLI) {
2175 ValueStack.emplace_back();
2176 }
2177
2178 ~Evaluator() {
2179 for (auto &Tmp : AllocaTmps)
2180 // If there are still users of the alloca, the program is doing something
2181 // silly, e.g. storing the address of the alloca somewhere and using it
2182 // later. Since this is undefined, we'll just make it be null.
2183 if (!Tmp->use_empty())
2184 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2185 }
2186
2187 /// EvaluateFunction - Evaluate a call to function F, returning true if
2188 /// successful, false if we can't evaluate it. ActualArgs contains the formal
2189 /// arguments for the function.
2190 bool EvaluateFunction(Function *F, Constant *&RetVal,
2191 const SmallVectorImpl<Constant*> &ActualArgs);
2192
2193 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2194 /// successful, false if we can't evaluate it. NewBB returns the next BB that
2195 /// control flows into, or null upon return.
2196 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2197
2198 Constant *getVal(Value *V) {
2199 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2200 Constant *R = ValueStack.back().lookup(V);
2201 assert(R && "Reference to an uncomputed value!")((R && "Reference to an uncomputed value!") ? static_cast
<void> (0) : __assert_fail ("R && \"Reference to an uncomputed value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2201, __PRETTY_FUNCTION__))
;
2202 return R;
2203 }
2204
2205 void setVal(Value *V, Constant *C) {
2206 ValueStack.back()[V] = C;
2207 }
2208
2209 const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2210 return MutatedMemory;
2211 }
2212
2213 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
2214 return Invariants;
2215 }
2216
2217private:
2218 Constant *ComputeLoadResult(Constant *P);
2219
2220 /// ValueStack - As we compute SSA register values, we store their contents
2221 /// here. The back of the deque contains the current function and the stack
2222 /// contains the values in the calling frames.
2223 std::deque<DenseMap<Value*, Constant*>> ValueStack;
2224
2225 /// CallStack - This is used to detect recursion. In pathological situations
2226 /// we could hit exponential behavior, but at least there is nothing
2227 /// unbounded.
2228 SmallVector<Function*, 4> CallStack;
2229
2230 /// MutatedMemory - For each store we execute, we update this map. Loads
2231 /// check this to get the most up-to-date value. If evaluation is successful,
2232 /// this state is committed to the process.
2233 DenseMap<Constant*, Constant*> MutatedMemory;
2234
2235 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2236 /// to represent its body. This vector is needed so we can delete the
2237 /// temporary globals when we are done.
2238 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
2239
2240 /// Invariants - These global variables have been marked invariant by the
2241 /// static constructor.
2242 SmallPtrSet<GlobalVariable*, 8> Invariants;
2243
2244 /// SimpleConstants - These are constants we have checked and know to be
2245 /// simple enough to live in a static initializer of a global.
2246 SmallPtrSet<Constant*, 8> SimpleConstants;
2247
2248 const DataLayout &DL;
2249 const TargetLibraryInfo *TLI;
2250};
2251
2252} // anonymous namespace
2253
2254/// ComputeLoadResult - Return the value that would be computed by a load from
2255/// P after the stores reflected by 'memory' have been performed. If we can't
2256/// decide, return null.
2257Constant *Evaluator::ComputeLoadResult(Constant *P) {
2258 // If this memory location has been recently stored, use the stored value: it
2259 // is the most up-to-date.
2260 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2261 if (I != MutatedMemory.end()) return I->second;
2262
2263 // Access it.
2264 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2265 if (GV->hasDefinitiveInitializer())
2266 return GV->getInitializer();
2267 return nullptr;
2268 }
2269
2270 // Handle a constantexpr getelementptr.
2271 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2272 if (CE->getOpcode() == Instruction::GetElementPtr &&
2273 isa<GlobalVariable>(CE->getOperand(0))) {
2274 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2275 if (GV->hasDefinitiveInitializer())
2276 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2277 }
2278
2279 return nullptr; // don't know how to evaluate.
2280}
2281
2282/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2283/// successful, false if we can't evaluate it. NewBB returns the next BB that
2284/// control flows into, or null upon return.
2285bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2286 BasicBlock *&NextBB) {
2287 // This is the main evaluation loop.
2288 while (1) {
2289 Constant *InstResult = nullptr;
2290
2291 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Evaluating Instruction: " <<
*CurInst << "\n"; } } while (0)
;
2292
2293 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2294 if (!SI->isSimple()) {
2295 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Store is not simple! Can not evaluate.\n"
; } } while (0)
;
2296 return false; // no volatile/atomic accesses.
2297 }
2298 Constant *Ptr = getVal(SI->getOperand(1));
2299 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2300 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Folding constant ptr expression: "
<< *Ptr; } } while (0)
;
2301 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2302 DEBUG(dbgs() << "; To: " << *Ptr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "; To: " << *Ptr <<
"\n"; } } while (0)
;
2303 }
2304 if (!isSimpleEnoughPointerToCommit(Ptr)) {
2305 // If this is too complex for us to commit, reject it.
2306 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Pointer is too complex for us to evaluate store."
; } } while (0)
;
2307 return false;
2308 }
2309
2310 Constant *Val = getVal(SI->getOperand(0));
2311
2312 // If this might be too difficult for the backend to handle (e.g. the addr
2313 // of one global variable divided by another) then we can't commit it.
2314 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
2315 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Valdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Store value is too complex to evaluate store. "
<< *Val << "\n"; } } while (0)
2316 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Store value is too complex to evaluate store. "
<< *Val << "\n"; } } while (0)
;
2317 return false;
2318 }
2319
2320 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2321 if (CE->getOpcode() == Instruction::BitCast) {
2322 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Attempting to resolve bitcast on constant ptr.\n"
; } } while (0)
;
2323 // If we're evaluating a store through a bitcast, then we need
2324 // to pull the bitcast off the pointer type and push it onto the
2325 // stored value.
2326 Ptr = CE->getOperand(0);
2327
2328 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2329
2330 // In order to push the bitcast onto the stored value, a bitcast
2331 // from NewTy to Val's type must be legal. If it's not, we can try
2332 // introspecting NewTy to find a legal conversion.
2333 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2334 // If NewTy is a struct, we can convert the pointer to the struct
2335 // into a pointer to its first member.
2336 // FIXME: This could be extended to support arrays as well.
2337 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2338 NewTy = STy->getTypeAtIndex(0U);
2339
2340 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2341 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2342 Constant * const IdxList[] = {IdxZero, IdxZero};
2343
2344 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
2345 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2346 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2347
2348 // If we can't improve the situation by introspecting NewTy,
2349 // we have to give up.
2350 } else {
2351 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to bitcast constant ptr, can not "
"evaluate.\n"; } } while (0)
2352 "evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to bitcast constant ptr, can not "
"evaluate.\n"; } } while (0)
;
2353 return false;
2354 }
2355 }
2356
2357 // If we found compatible types, go ahead and push the bitcast
2358 // onto the stored value.
2359 Val = ConstantExpr::getBitCast(Val, NewTy);
2360
2361 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Evaluated bitcast: " <<
*Val << "\n"; } } while (0)
;
2362 }
2363 }
2364
2365 MutatedMemory[Ptr] = Val;
2366 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2367 InstResult = ConstantExpr::get(BO->getOpcode(),
2368 getVal(BO->getOperand(0)),
2369 getVal(BO->getOperand(1)));
2370 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a BinaryOperator! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2371 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a BinaryOperator! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2372 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2373 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2374 getVal(CI->getOperand(0)),
2375 getVal(CI->getOperand(1)));
2376 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a CmpInst! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2377 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a CmpInst! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2378 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2379 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2380 getVal(CI->getOperand(0)),
2381 CI->getType());
2382 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a Cast! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2383 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a Cast! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2384 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2385 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2386 getVal(SI->getOperand(1)),
2387 getVal(SI->getOperand(2)));
2388 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a Select! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2389 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a Select! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2390 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
2391 InstResult = ConstantExpr::getExtractValue(
2392 getVal(EVI->getAggregateOperand()), EVI->getIndices());
2393 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an ExtractValueInst! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2394 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an ExtractValueInst! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2395 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
2396 InstResult = ConstantExpr::getInsertValue(
2397 getVal(IVI->getAggregateOperand()),
2398 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
2399 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an InsertValueInst! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2400 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an InsertValueInst! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2401 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2402 Constant *P = getVal(GEP->getOperand(0));
2403 SmallVector<Constant*, 8> GEPOps;
2404 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2405 i != e; ++i)
2406 GEPOps.push_back(getVal(*i));
2407 InstResult =
2408 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
2409 cast<GEPOperator>(GEP)->isInBounds());
2410 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResultdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a GEP! Simplifying: "
<< *InstResult << "\n"; } } while (0)
2411 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a GEP! Simplifying: "
<< *InstResult << "\n"; } } while (0)
;
2412 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2413
2414 if (!LI->isSimple()) {
2415 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"
; } } while (0)
;
2416 return false; // no volatile/atomic accesses.
2417 }
2418
2419 Constant *Ptr = getVal(LI->getOperand(0));
2420 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2421 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2422 DEBUG(dbgs() << "Found a constant pointer expression, constant "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a constant pointer expression, constant "
"folding: " << *Ptr << "\n"; } } while (0)
2423 "folding: " << *Ptr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a constant pointer expression, constant "
"folding: " << *Ptr << "\n"; } } while (0)
;
2424 }
2425 InstResult = ComputeLoadResult(Ptr);
2426 if (!InstResult) {
2427 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to compute load result. Can not evaluate load."
"\n"; } } while (0)
2428 "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to compute load result. Can not evaluate load."
"\n"; } } while (0)
;
2429 return false; // Could not evaluate load.
2430 }
2431
2432 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Evaluated load: " << *
InstResult << "\n"; } } while (0)
;
2433 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2434 if (AI->isArrayAllocation()) {
2435 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an array alloca. Can not evaluate.\n"
; } } while (0)
;
2436 return false; // Cannot handle array allocs.
2437 }
2438 Type *Ty = AI->getType()->getElementType();
2439 AllocaTmps.push_back(
2440 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
2441 UndefValue::get(Ty), AI->getName()));
2442 InstResult = AllocaTmps.back().get();
2443 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an alloca. Result: " <<
*InstResult << "\n"; } } while (0)
;
2444 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2445 CallSite CS(CurInst);
2446
2447 // Debug info can safely be ignored here.
2448 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2449 DEBUG(dbgs() << "Ignoring debug info.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Ignoring debug info.\n"; } }
while (0)
;
2450 ++CurInst;
2451 continue;
2452 }
2453
2454 // Cannot handle inline asm.
2455 if (isa<InlineAsm>(CS.getCalledValue())) {
2456 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found inline asm, can not evaluate.\n"
; } } while (0)
;
2457 return false;
2458 }
2459
2460 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2461 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2462 if (MSI->isVolatile()) {
2463 DEBUG(dbgs() << "Can not optimize a volatile memset " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Can not optimize a volatile memset "
<< "intrinsic.\n"; } } while (0)
2464 "intrinsic.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Can not optimize a volatile memset "
<< "intrinsic.\n"; } } while (0)
;
2465 return false;
2466 }
2467 Constant *Ptr = getVal(MSI->getDest());
2468 Constant *Val = getVal(MSI->getValue());
2469 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2470 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2471 // This memset is a no-op.
2472 DEBUG(dbgs() << "Ignoring no-op memset.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Ignoring no-op memset.\n"; }
} while (0)
;
2473 ++CurInst;
2474 continue;
2475 }
2476 }
2477
2478 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2479 II->getIntrinsicID() == Intrinsic::lifetime_end) {
2480 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Ignoring lifetime intrinsic.\n"
; } } while (0)
;
2481 ++CurInst;
2482 continue;
2483 }
2484
2485 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2486 // We don't insert an entry into Values, as it doesn't have a
2487 // meaningful return value.
2488 if (!II->use_empty()) {
2489 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found unused invariant_start. Can't evaluate.\n"
; } } while (0)
;
2490 return false;
2491 }
2492 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2493 Value *PtrArg = getVal(II->getArgOperand(1));
2494 Value *Ptr = PtrArg->stripPointerCasts();
2495 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2496 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2497 if (!Size->isAllOnesValue() &&
2498 Size->getValue().getLimitedValue() >=
2499 DL.getTypeStoreSize(ElemTy)) {
2500 Invariants.insert(GV);
2501 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GVdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a global var that is an invariant: "
<< *GV << "\n"; } } while (0)
2502 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a global var that is an invariant: "
<< *GV << "\n"; } } while (0)
;
2503 } else {
2504 DEBUG(dbgs() << "Found a global var, but can not treat it as an "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a global var, but can not treat it as an "
"invariant.\n"; } } while (0)
2505 "invariant.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a global var, but can not treat it as an "
"invariant.\n"; } } while (0)
;
2506 }
2507 }
2508 // Continue even if we do nothing.
2509 ++CurInst;
2510 continue;
2511 }
2512
2513 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Unknown intrinsic. Can not evaluate.\n"
; } } while (0)
;
2514 return false;
2515 }
2516
2517 // Resolve function pointers.
2518 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2519 if (!Callee || Callee->mayBeOverridden()) {
2520 DEBUG(dbgs() << "Can not resolve function pointer.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Can not resolve function pointer.\n"
; } } while (0)
;
2521 return false; // Cannot resolve.
2522 }
2523
2524 SmallVector<Constant*, 8> Formals;
2525 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2526 Formals.push_back(getVal(*i));
2527
2528 if (Callee->isDeclaration()) {
2529 // If this is a function we can constant fold, do it.
2530 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2531 InstResult = C;
2532 DEBUG(dbgs() << "Constant folded function call. Result: " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Constant folded function call. Result: "
<< *InstResult << "\n"; } } while (0)
2533 *InstResult << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Constant folded function call. Result: "
<< *InstResult << "\n"; } } while (0)
;
2534 } else {
2535 DEBUG(dbgs() << "Can not constant fold function call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Can not constant fold function call.\n"
; } } while (0)
;
2536 return false;
2537 }
2538 } else {
2539 if (Callee->getFunctionType()->isVarArg()) {
2540 DEBUG(dbgs() << "Can not constant fold vararg function call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Can not constant fold vararg function call.\n"
; } } while (0)
;
2541 return false;
2542 }
2543
2544 Constant *RetVal = nullptr;
2545 // Execute the call, if successful, use the return value.
2546 ValueStack.emplace_back();
2547 if (!EvaluateFunction(Callee, RetVal, Formals)) {
2548 DEBUG(dbgs() << "Failed to evaluate function.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to evaluate function.\n"
; } } while (0)
;
2549 return false;
2550 }
2551 ValueStack.pop_back();
2552 InstResult = RetVal;
2553
2554 if (InstResult) {
2555 DEBUG(dbgs() << "Successfully evaluated function. Result: " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Successfully evaluated function. Result: "
<< InstResult << "\n\n"; } } while (0)
2556 InstResult << "\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Successfully evaluated function. Result: "
<< InstResult << "\n\n"; } } while (0)
;
2557 } else {
2558 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Successfully evaluated function. Result: 0\n\n"
; } } while (0)
;
2559 }
2560 }
2561 } else if (isa<TerminatorInst>(CurInst)) {
2562 DEBUG(dbgs() << "Found a terminator instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found a terminator instruction.\n"
; } } while (0)
;
2563
2564 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2565 if (BI->isUnconditional()) {
2566 NextBB = BI->getSuccessor(0);
2567 } else {
2568 ConstantInt *Cond =
2569 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2570 if (!Cond) return false; // Cannot determine.
2571
2572 NextBB = BI->getSuccessor(!Cond->getZExtValue());
2573 }
2574 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2575 ConstantInt *Val =
2576 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2577 if (!Val) return false; // Cannot determine.
2578 NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2579 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2580 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2581 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2582 NextBB = BA->getBasicBlock();
2583 else
2584 return false; // Cannot determine.
2585 } else if (isa<ReturnInst>(CurInst)) {
2586 NextBB = nullptr;
2587 } else {
2588 // invoke, unwind, resume, unreachable.
2589 DEBUG(dbgs() << "Can not handle terminator.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Can not handle terminator."
; } } while (0)
;
2590 return false; // Cannot handle this terminator.
2591 }
2592
2593 // We succeeded at evaluating this block!
2594 DEBUG(dbgs() << "Successfully evaluated block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Successfully evaluated block.\n"
; } } while (0)
;
2595 return true;
2596 } else {
2597 // Did not know how to evaluate this!
2598 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to evaluate block due to unhandled instruction."
"\n"; } } while (0)
2599 "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Failed to evaluate block due to unhandled instruction."
"\n"; } } while (0)
;
2600 return false;
2601 }
2602
2603 if (!CurInst->use_empty()) {
2604 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2605 InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
2606
2607 setVal(CurInst, InstResult);
2608 }
2609
2610 // If we just processed an invoke, we finished evaluating the block.
2611 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2612 NextBB = II->getNormalDest();
2613 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Found an invoke instruction. Finished Block.\n\n"
; } } while (0)
;
2614 return true;
2615 }
2616
2617 // Advance program counter.
2618 ++CurInst;
2619 }
2620}
2621
2622/// EvaluateFunction - Evaluate a call to function F, returning true if
2623/// successful, false if we can't evaluate it. ActualArgs contains the formal
2624/// arguments for the function.
2625bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2626 const SmallVectorImpl<Constant*> &ActualArgs) {
2627 // Check to see if this function is already executing (recursion). If so,
2628 // bail out. TODO: we might want to accept limited recursion.
2629 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2630 return false;
2631
2632 CallStack.push_back(F);
2633
2634 // Initialize arguments to the incoming values specified.
2635 unsigned ArgNo = 0;
2636 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2637 ++AI, ++ArgNo)
2638 setVal(AI, ActualArgs[ArgNo]);
2639
2640 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
2641 // we can only evaluate any one basic block at most once. This set keeps
2642 // track of what we have executed so we can detect recursive cases etc.
2643 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2644
2645 // CurBB - The current basic block we're evaluating.
2646 BasicBlock *CurBB = F->begin();
2647
2648 BasicBlock::iterator CurInst = CurBB->begin();
2649
2650 while (1) {
2651 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
2652 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "Trying to evaluate BB: " <<
*CurBB << "\n"; } } while (0)
;
2653
2654 if (!EvaluateBlock(CurInst, NextBB))
2655 return false;
2656
2657 if (!NextBB) {
2658 // Successfully running until there's no next block means that we found
2659 // the return. Fill it the return value and pop the call stack.
2660 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2661 if (RI->getNumOperands())
2662 RetVal = getVal(RI->getOperand(0));
2663 CallStack.pop_back();
2664 return true;
2665 }
2666
2667 // Okay, we succeeded in evaluating this control flow. See if we have
2668 // executed the new block before. If so, we have a looping function,
2669 // which we cannot evaluate in reasonable time.
2670 if (!ExecutedBlocks.insert(NextBB).second)
2671 return false; // looped!
2672
2673 // Okay, we have never been in this block before. Check to see if there
2674 // are any PHI nodes. If so, evaluate them with information about where
2675 // we came from.
2676 PHINode *PN = nullptr;
2677 for (CurInst = NextBB->begin();
2678 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2679 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2680
2681 // Advance to the next block.
2682 CurBB = NextBB;
2683 }
2684}
2685
2686/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2687/// we can. Return true if we can, false otherwise.
2688static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2689 const TargetLibraryInfo *TLI) {
2690 // Call the function.
2691 Evaluator Eval(DL, TLI);
2692 Constant *RetValDummy;
2693 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2694 SmallVector<Constant*, 0>());
2695
2696 if (EvalSuccess) {
2697 ++NumCtorsEvaluated;
2698
2699 // We succeeded at evaluation: commit the result.
2700 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
<< F->getName() << "' to " << Eval.getMutatedMemory
().size() << " stores.\n"; } } while (0)
2701 << F->getName() << "' to " << Eval.getMutatedMemory().size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
<< F->getName() << "' to " << Eval.getMutatedMemory
().size() << " stores.\n"; } } while (0)
2702 << " stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("globalopt")) { dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
<< F->getName() << "' to " << Eval.getMutatedMemory
().size() << " stores.\n"; } } while (0)
;
2703 for (DenseMap<Constant*, Constant*>::const_iterator I =
2704 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2705 I != E; ++I)
2706 CommitValueTo(I->second, I->first);
2707 for (GlobalVariable *GV : Eval.getInvariants())
2708 GV->setConstant(true);
2709 }
2710
2711 return EvalSuccess;
2712}
2713
2714static int compareNames(Constant *const *A, Constant *const *B) {
2715 return (*A)->getName().compare((*B)->getName());
2716}
2717
2718static void setUsedInitializer(GlobalVariable &V,
2719 const SmallPtrSet<GlobalValue *, 8> &Init) {
2720 if (Init.empty()) {
2721 V.eraseFromParent();
2722 return;
2723 }
2724
2725 // Type of pointer to the array of pointers.
2726 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2727
2728 SmallVector<llvm::Constant *, 8> UsedArray;
2729 for (GlobalValue *GV : Init) {
2730 Constant *Cast
2731 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2732 UsedArray.push_back(Cast);
2733 }
2734 // Sort to get deterministic order.
2735 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2736 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2737
2738 Module *M = V.getParent();
2739 V.removeFromParent();
2740 GlobalVariable *NV =
2741 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2742 llvm::ConstantArray::get(ATy, UsedArray), "");
2743 NV->takeName(&V);
2744 NV->setSection("llvm.metadata");
2745 delete &V;
2746}
2747
2748namespace {
2749/// \brief An easy to access representation of llvm.used and llvm.compiler.used.
2750class LLVMUsed {
2751 SmallPtrSet<GlobalValue *, 8> Used;
2752 SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2753 GlobalVariable *UsedV;
2754 GlobalVariable *CompilerUsedV;
2755
2756public:
2757 LLVMUsed(Module &M) {
2758 UsedV = collectUsedGlobalVariables(M, Used, false);
2759 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2760 }
2761 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2762 typedef iterator_range<iterator> used_iterator_range;
2763 iterator usedBegin() { return Used.begin(); }
2764 iterator usedEnd() { return Used.end(); }
2765 used_iterator_range used() {
2766 return used_iterator_range(usedBegin(), usedEnd());
2767 }
2768 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2769 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2770 used_iterator_range compilerUsed() {
2771 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2772 }
2773 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2774 bool compilerUsedCount(GlobalValue *GV) const {
2775 return CompilerUsed.count(GV);
2776 }
2777 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2778 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2779 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2780 bool compilerUsedInsert(GlobalValue *GV) {
2781 return CompilerUsed.insert(GV).second;
2782 }
2783
2784 void syncVariablesAndSets() {
2785 if (UsedV)
2786 setUsedInitializer(*UsedV, Used);
2787 if (CompilerUsedV)
2788 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2789 }
2790};
2791}
2792
2793static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2794 if (GA.use_empty()) // No use at all.
2795 return false;
2796
2797 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&(((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
"We should have removed the duplicated " "element from llvm.compiler.used"
) ? static_cast<void> (0) : __assert_fail ("(!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && \"We should have removed the duplicated \" \"element from llvm.compiler.used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2799, __PRETTY_FUNCTION__))
2798 "We should have removed the duplicated "(((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
"We should have removed the duplicated " "element from llvm.compiler.used"
) ? static_cast<void> (0) : __assert_fail ("(!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && \"We should have removed the duplicated \" \"element from llvm.compiler.used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2799, __PRETTY_FUNCTION__))
2799 "element from llvm.compiler.used")(((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
"We should have removed the duplicated " "element from llvm.compiler.used"
) ? static_cast<void> (0) : __assert_fail ("(!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && \"We should have removed the duplicated \" \"element from llvm.compiler.used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2799, __PRETTY_FUNCTION__))
;
2800 if (!GA.hasOneUse())
2801 // Strictly more than one use. So at least one is not in llvm.used and
2802 // llvm.compiler.used.
2803 return true;
2804
2805 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2806 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2807}
2808
2809static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2810 const LLVMUsed &U) {
2811 unsigned N = 2;
2812 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&(((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
"We should have removed the duplicated " "element from llvm.compiler.used"
) ? static_cast<void> (0) : __assert_fail ("(!U.usedCount(&V) || !U.compilerUsedCount(&V)) && \"We should have removed the duplicated \" \"element from llvm.compiler.used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2814, __PRETTY_FUNCTION__))
2813 "We should have removed the duplicated "(((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
"We should have removed the duplicated " "element from llvm.compiler.used"
) ? static_cast<void> (0) : __assert_fail ("(!U.usedCount(&V) || !U.compilerUsedCount(&V)) && \"We should have removed the duplicated \" \"element from llvm.compiler.used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2814, __PRETTY_FUNCTION__))
2814 "element from llvm.compiler.used")(((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
"We should have removed the duplicated " "element from llvm.compiler.used"
) ? static_cast<void> (0) : __assert_fail ("(!U.usedCount(&V) || !U.compilerUsedCount(&V)) && \"We should have removed the duplicated \" \"element from llvm.compiler.used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.7~svn236708/lib/Transforms/IPO/GlobalOpt.cpp"
, 2814, __PRETTY_FUNCTION__))
;
2815 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2816 ++N;
2817 return V.hasNUsesOrMore(N);
2818}
2819
2820static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2821 if (!GA.hasLocalLinkage())
2822 return true;
2823
2824 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2825}
2826
2827static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2828 bool &RenameTarget) {
2829 RenameTarget = false;
2830 bool Ret = false;
2831 if (hasUseOtherThanLLVMUsed(GA, U))
2832 Ret = true;
2833
2834 // If the alias is externally visible, we may still be able to simplify it.
2835 if (!mayHaveOtherReferences(GA, U))
2836 return Ret;
2837
2838 // If the aliasee has internal linkage, give it the name and linkage
2839 // of the alias, and delete the alias. This turns:
2840 // define internal ... @f(...)
2841 // @a = alias ... @f
2842 // into:
2843 // define ... @a(...)
2844 Constant *Aliasee = GA.getAliasee();
2845 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2846 if (!Target->hasLocalLinkage())
2847 return Ret;
2848
2849 // Do not perform the transform if multiple aliases potentially target the
2850 // aliasee. This check also ensures that it is safe to replace the section
2851 // and other attributes of the aliasee with those of the alias.
2852 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2853 return Ret;
2854
2855 RenameTarget = true;
2856 return true;
2857}
2858
2859bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2860 bool Changed = false;
2861 LLVMUsed Used(M);
2862
2863 for (GlobalValue *GV : Used.used())
2864 Used.compilerUsedErase(GV);
2865
2866 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2867 I != E;) {
2868 Module::alias_iterator J = I++;
2869 // Aliases without names cannot be referenced outside this module.
2870 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2871 J->setLinkage(GlobalValue::InternalLinkage);
2872 // If the aliasee may change at link time, nothing can be done - bail out.
2873 if (J->mayBeOverridden())
2874 continue;
2875
2876 Constant *Aliasee = J->getAliasee();
2877 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2878 // We can't trivially replace the alias with the aliasee if the aliasee is
2879 // non-trivial in some way.
2880 // TODO: Try to handle non-zero GEPs of local aliasees.
2881 if (!Target)
2882 continue;
2883 Target->removeDeadConstantUsers();
2884
2885 // Make all users of the alias use the aliasee instead.
2886 bool RenameTarget;
2887 if (!hasUsesToReplace(*J, Used, RenameTarget))
2888 continue;
2889
2890 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2891 ++NumAliasesResolved;
2892 Changed = true;
2893
2894 if (RenameTarget) {
2895 // Give the aliasee the name, linkage and other attributes of the alias.
2896 Target->takeName(J);
2897 Target->setLinkage(J->getLinkage());
2898 Target->setVisibility(J->getVisibility());
2899 Target->setDLLStorageClass(J->getDLLStorageClass());
2900
2901 if (Used.usedErase(J))
2902 Used.usedInsert(Target);
2903
2904 if (Used.compilerUsedErase(J))
2905 Used.compilerUsedInsert(Target);
2906 } else if (mayHaveOtherReferences(*J, Used))
2907 continue;
2908
2909 // Delete the alias.
2910 M.getAliasList().erase(J);
2911 ++NumAliasesRemoved;
2912 Changed = true;
2913 }
2914
2915 Used.syncVariablesAndSets();
2916
2917 return Changed;
2918}
2919
2920static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2921 if (!TLI->has(LibFunc::cxa_atexit))
2922 return nullptr;
2923
2924 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2925
2926 if (!Fn)
2927 return nullptr;
2928
2929 FunctionType *FTy = Fn->getFunctionType();
2930
2931 // Checking that the function has the right return type, the right number of
2932 // parameters and that they all have pointer types should be enough.
2933 if (!FTy->getReturnType()->isIntegerTy() ||
2934 FTy->getNumParams() != 3 ||
2935 !FTy->getParamType(0)->isPointerTy() ||
2936 !FTy->getParamType(1)->isPointerTy() ||
2937 !FTy->getParamType(2)->isPointerTy())
2938 return nullptr;
2939
2940 return Fn;
2941}
2942
2943/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2944/// destructor and can therefore be eliminated.
2945/// Note that we assume that other optimization passes have already simplified
2946/// the code so we only look for a function with a single basic block, where
2947/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2948/// other side-effect free instructions.
2949static bool cxxDtorIsEmpty(const Function &Fn,
2950 SmallPtrSet<const Function *, 8> &CalledFunctions) {
2951 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2952 // nounwind, but that doesn't seem worth doing.
2953 if (Fn.isDeclaration())
2954 return false;
2955
2956 if (++Fn.begin() != Fn.end())
2957 return false;
2958
2959 const BasicBlock &EntryBlock = Fn.getEntryBlock();
2960 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2961 I != E; ++I) {
2962 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2963 // Ignore debug intrinsics.
2964 if (isa<DbgInfoIntrinsic>(CI))
2965 continue;
2966
2967 const Function *CalledFn = CI->getCalledFunction();
2968
2969 if (!CalledFn)
2970 return false;
2971
2972 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2973
2974 // Don't treat recursive functions as empty.
2975 if (!NewCalledFunctions.insert(CalledFn).second)
2976 return false;
2977
2978 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2979 return false;
2980 } else if (isa<ReturnInst>(*I))
2981 return true; // We're done.
2982 else if (I->mayHaveSideEffects())
2983 return false; // Destructor with side effects, bail.
2984 }
2985
2986 return false;
2987}
2988
2989bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2990 /// Itanium C++ ABI p3.3.5:
2991 ///
2992 /// After constructing a global (or local static) object, that will require
2993 /// destruction on exit, a termination function is registered as follows:
2994 ///
2995 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2996 ///
2997 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2998 /// call f(p) when DSO d is unloaded, before all such termination calls
2999 /// registered before this one. It returns zero if registration is
3000 /// successful, nonzero on failure.
3001
3002 // This pass will look for calls to __cxa_atexit where the function is trivial
3003 // and remove them.
3004 bool Changed = false;
3005
3006 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3007 I != E;) {
3008 // We're only interested in calls. Theoretically, we could handle invoke
3009 // instructions as well, but neither llvm-gcc nor clang generate invokes
3010 // to __cxa_atexit.
3011 CallInst *CI = dyn_cast<CallInst>(*I++);
3012 if (!CI)
3013 continue;
3014
3015 Function *DtorFn =
3016 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3017 if (!DtorFn)
3018 continue;
3019
3020 SmallPtrSet<const Function *, 8> CalledFunctions;
3021 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3022 continue;
3023
3024 // Just remove the call.
3025 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3026 CI->eraseFromParent();
3027
3028 ++NumCXXDtorsRemoved;
3029
3030 Changed |= true;
3031 }
3032
3033 return Changed;
3034}
3035
3036bool GlobalOpt::runOnModule(Module &M) {
3037 bool Changed = false;
3038
3039 auto &DL = M.getDataLayout();
3040 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3041
3042 bool LocalChange = true;
3043 while (LocalChange) {
3044 LocalChange = false;
3045
3046 NotDiscardableComdats.clear();
3047 for (const GlobalVariable &GV : M.globals())
3048 if (const Comdat *C = GV.getComdat())
3049 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3050 NotDiscardableComdats.insert(C);
3051 for (Function &F : M)
3052 if (const Comdat *C = F.getComdat())
3053 if (!F.isDefTriviallyDead())
3054 NotDiscardableComdats.insert(C);
3055 for (GlobalAlias &GA : M.aliases())
3056 if (const Comdat *C = GA.getComdat())
3057 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3058 NotDiscardableComdats.insert(C);
3059
3060 // Delete functions that are trivially dead, ccc -> fastcc
3061 LocalChange |= OptimizeFunctions(M);
3062
3063 // Optimize global_ctors list.
3064 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3065 return EvaluateStaticConstructor(F, DL, TLI);
3066 });
3067
3068 // Optimize non-address-taken globals.
3069 LocalChange |= OptimizeGlobalVars(M);
3070
3071 // Resolve aliases, when possible.
3072 LocalChange |= OptimizeGlobalAliases(M);
3073
3074 // Try to remove trivial global destructors if they are not removed
3075 // already.
3076 Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3077 if (CXAAtExitFn)
3078 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3079
3080 Changed |= LocalChange;
3081 }
3082
3083 // TODO: Move all global ctors functions to the end of the module for code
3084 // layout.
3085
3086 return Changed;
3087}