Bug Summary

File:lib/Support/Host.cpp
Warning:line 1127, column 18
The left operand of '==' is a garbage value

Annotated Source Code

1//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the operating system Host concept.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Support/Host.h"
15#include "llvm/ADT/SmallSet.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/StringSwitch.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/Config/config.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/FileSystem.h"
23#include "llvm/Support/MemoryBuffer.h"
24#include "llvm/Support/raw_ostream.h"
25#include <assert.h>
26#include <string.h>
27
28// Include the platform-specific parts of this class.
29#ifdef LLVM_ON_UNIX1
30#include "Unix/Host.inc"
31#endif
32#ifdef LLVM_ON_WIN32
33#include "Windows/Host.inc"
34#endif
35#ifdef _MSC_VER
36#include <intrin.h>
37#endif
38#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
39#include <mach/host_info.h>
40#include <mach/mach.h>
41#include <mach/mach_host.h>
42#include <mach/machine.h>
43#endif
44
45#define DEBUG_TYPE"host-detection" "host-detection"
46
47//===----------------------------------------------------------------------===//
48//
49// Implementations of the CPU detection routines
50//
51//===----------------------------------------------------------------------===//
52
53using namespace llvm;
54
55static std::unique_ptr<llvm::MemoryBuffer>
56 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) getProcCpuinfoContent() {
57 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
58 llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
59 if (std::error_code EC = Text.getError()) {
60 llvm::errs() << "Can't read "
61 << "/proc/cpuinfo: " << EC.message() << "\n";
62 return nullptr;
63 }
64 return std::move(*Text);
65}
66
67StringRef sys::detail::getHostCPUNameForPowerPC(
68 const StringRef &ProcCpuinfoContent) {
69 // Access to the Processor Version Register (PVR) on PowerPC is privileged,
70 // and so we must use an operating-system interface to determine the current
71 // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
72 const char *generic = "generic";
73
74 // The cpu line is second (after the 'processor: 0' line), so if this
75 // buffer is too small then something has changed (or is wrong).
76 StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
77 StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
78
79 StringRef::const_iterator CIP = CPUInfoStart;
80
81 StringRef::const_iterator CPUStart = 0;
82 size_t CPULen = 0;
83
84 // We need to find the first line which starts with cpu, spaces, and a colon.
85 // After the colon, there may be some additional spaces and then the cpu type.
86 while (CIP < CPUInfoEnd && CPUStart == 0) {
87 if (CIP < CPUInfoEnd && *CIP == '\n')
88 ++CIP;
89
90 if (CIP < CPUInfoEnd && *CIP == 'c') {
91 ++CIP;
92 if (CIP < CPUInfoEnd && *CIP == 'p') {
93 ++CIP;
94 if (CIP < CPUInfoEnd && *CIP == 'u') {
95 ++CIP;
96 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
97 ++CIP;
98
99 if (CIP < CPUInfoEnd && *CIP == ':') {
100 ++CIP;
101 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
102 ++CIP;
103
104 if (CIP < CPUInfoEnd) {
105 CPUStart = CIP;
106 while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
107 *CIP != ',' && *CIP != '\n'))
108 ++CIP;
109 CPULen = CIP - CPUStart;
110 }
111 }
112 }
113 }
114 }
115
116 if (CPUStart == 0)
117 while (CIP < CPUInfoEnd && *CIP != '\n')
118 ++CIP;
119 }
120
121 if (CPUStart == 0)
122 return generic;
123
124 return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
125 .Case("604e", "604e")
126 .Case("604", "604")
127 .Case("7400", "7400")
128 .Case("7410", "7400")
129 .Case("7447", "7400")
130 .Case("7455", "7450")
131 .Case("G4", "g4")
132 .Case("POWER4", "970")
133 .Case("PPC970FX", "970")
134 .Case("PPC970MP", "970")
135 .Case("G5", "g5")
136 .Case("POWER5", "g5")
137 .Case("A2", "a2")
138 .Case("POWER6", "pwr6")
139 .Case("POWER7", "pwr7")
140 .Case("POWER8", "pwr8")
141 .Case("POWER8E", "pwr8")
142 .Case("POWER8NVL", "pwr8")
143 .Case("POWER9", "pwr9")
144 .Default(generic);
145}
146
147StringRef sys::detail::getHostCPUNameForARM(
148 const StringRef &ProcCpuinfoContent) {
149 // The cpuid register on arm is not accessible from user space. On Linux,
150 // it is exposed through the /proc/cpuinfo file.
151
152 // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
153 // in all cases.
154 SmallVector<StringRef, 32> Lines;
155 ProcCpuinfoContent.split(Lines, "\n");
156
157 // Look for the CPU implementer line.
158 StringRef Implementer;
159 StringRef Hardware;
160 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
161 if (Lines[I].startswith("CPU implementer"))
162 Implementer = Lines[I].substr(15).ltrim("\t :");
163 if (Lines[I].startswith("Hardware"))
164 Hardware = Lines[I].substr(8).ltrim("\t :");
165 }
166
167 if (Implementer == "0x41") { // ARM Ltd.
168 // MSM8992/8994 may give cpu part for the core that the kernel is running on,
169 // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
170 if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
171 return "cortex-a53";
172
173
174 // Look for the CPU part line.
175 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
176 if (Lines[I].startswith("CPU part"))
177 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
178 // values correspond to the "Part number" in the CP15/c0 register. The
179 // contents are specified in the various processor manuals.
180 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
181 .Case("0x926", "arm926ej-s")
182 .Case("0xb02", "mpcore")
183 .Case("0xb36", "arm1136j-s")
184 .Case("0xb56", "arm1156t2-s")
185 .Case("0xb76", "arm1176jz-s")
186 .Case("0xc08", "cortex-a8")
187 .Case("0xc09", "cortex-a9")
188 .Case("0xc0f", "cortex-a15")
189 .Case("0xc20", "cortex-m0")
190 .Case("0xc23", "cortex-m3")
191 .Case("0xc24", "cortex-m4")
192 .Case("0xd04", "cortex-a35")
193 .Case("0xd03", "cortex-a53")
194 .Case("0xd07", "cortex-a57")
195 .Case("0xd08", "cortex-a72")
196 .Case("0xd09", "cortex-a73")
197 .Default("generic");
198 }
199
200 if (Implementer == "0x51") // Qualcomm Technologies, Inc.
201 // Look for the CPU part line.
202 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
203 if (Lines[I].startswith("CPU part"))
204 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
205 // values correspond to the "Part number" in the CP15/c0 register. The
206 // contents are specified in the various processor manuals.
207 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
208 .Case("0x06f", "krait") // APQ8064
209 .Case("0x201", "kryo")
210 .Case("0x205", "kryo")
211 .Default("generic");
212
213 return "generic";
214}
215
216StringRef sys::detail::getHostCPUNameForS390x(
217 const StringRef &ProcCpuinfoContent) {
218 // STIDP is a privileged operation, so use /proc/cpuinfo instead.
219
220 // The "processor 0:" line comes after a fair amount of other information,
221 // including a cache breakdown, but this should be plenty.
222 SmallVector<StringRef, 32> Lines;
223 ProcCpuinfoContent.split(Lines, "\n");
224
225 // Look for the CPU features.
226 SmallVector<StringRef, 32> CPUFeatures;
227 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
228 if (Lines[I].startswith("features")) {
229 size_t Pos = Lines[I].find(":");
230 if (Pos != StringRef::npos) {
231 Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
232 break;
233 }
234 }
235
236 // We need to check for the presence of vector support independently of
237 // the machine type, since we may only use the vector register set when
238 // supported by the kernel (and hypervisor).
239 bool HaveVectorSupport = false;
240 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
241 if (CPUFeatures[I] == "vx")
242 HaveVectorSupport = true;
243 }
244
245 // Now check the processor machine type.
246 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
247 if (Lines[I].startswith("processor ")) {
248 size_t Pos = Lines[I].find("machine = ");
249 if (Pos != StringRef::npos) {
250 Pos += sizeof("machine = ") - 1;
251 unsigned int Id;
252 if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
253 if (Id >= 2964 && HaveVectorSupport)
254 return "z13";
255 if (Id >= 2827)
256 return "zEC12";
257 if (Id >= 2817)
258 return "z196";
259 }
260 }
261 break;
262 }
263 }
264
265 return "generic";
266}
267
268#if defined(__i386__) || defined(_M_IX86) || \
269 defined(__x86_64__1) || defined(_M_X64)
270
271enum VendorSignatures {
272 SIG_INTEL = 0x756e6547 /* Genu */,
273 SIG_AMD = 0x68747541 /* Auth */
274};
275
276enum ProcessorVendors {
277 VENDOR_INTEL = 1,
278 VENDOR_AMD,
279 VENDOR_OTHER,
280 VENDOR_MAX
281};
282
283enum ProcessorTypes {
284 INTEL_ATOM = 1,
285 INTEL_CORE2,
286 INTEL_COREI7,
287 AMDFAM10H,
288 AMDFAM15H,
289 INTEL_i386,
290 INTEL_i486,
291 INTEL_PENTIUM,
292 INTEL_PENTIUM_PRO,
293 INTEL_PENTIUM_II,
294 INTEL_PENTIUM_III,
295 INTEL_PENTIUM_IV,
296 INTEL_PENTIUM_M,
297 INTEL_CORE_DUO,
298 INTEL_XEONPHI,
299 INTEL_X86_64,
300 INTEL_NOCONA,
301 INTEL_PRESCOTT,
302 AMD_i486,
303 AMDPENTIUM,
304 AMDATHLON,
305 AMDFAM14H,
306 AMDFAM16H,
307 AMDFAM17H,
308 CPU_TYPE_MAX
309};
310
311enum ProcessorSubtypes {
312 INTEL_COREI7_NEHALEM = 1,
313 INTEL_COREI7_WESTMERE,
314 INTEL_COREI7_SANDYBRIDGE,
315 AMDFAM10H_BARCELONA,
316 AMDFAM10H_SHANGHAI,
317 AMDFAM10H_ISTANBUL,
318 AMDFAM15H_BDVER1,
319 AMDFAM15H_BDVER2,
320 INTEL_PENTIUM_MMX,
321 INTEL_CORE2_65,
322 INTEL_CORE2_45,
323 INTEL_COREI7_IVYBRIDGE,
324 INTEL_COREI7_HASWELL,
325 INTEL_COREI7_BROADWELL,
326 INTEL_COREI7_SKYLAKE,
327 INTEL_COREI7_SKYLAKE_AVX512,
328 INTEL_ATOM_BONNELL,
329 INTEL_ATOM_SILVERMONT,
330 INTEL_KNIGHTS_LANDING,
331 AMDPENTIUM_K6,
332 AMDPENTIUM_K62,
333 AMDPENTIUM_K63,
334 AMDPENTIUM_GEODE,
335 AMDATHLON_TBIRD,
336 AMDATHLON_MP,
337 AMDATHLON_XP,
338 AMDATHLON_K8SSE3,
339 AMDATHLON_OPTERON,
340 AMDATHLON_FX,
341 AMDATHLON_64,
342 AMD_BTVER1,
343 AMD_BTVER2,
344 AMDFAM15H_BDVER3,
345 AMDFAM15H_BDVER4,
346 AMDFAM17H_ZNVER1,
347 CPU_SUBTYPE_MAX
348};
349
350enum ProcessorFeatures {
351 FEATURE_CMOV = 0,
352 FEATURE_MMX,
353 FEATURE_POPCNT,
354 FEATURE_SSE,
355 FEATURE_SSE2,
356 FEATURE_SSE3,
357 FEATURE_SSSE3,
358 FEATURE_SSE4_1,
359 FEATURE_SSE4_2,
360 FEATURE_AVX,
361 FEATURE_AVX2,
362 FEATURE_AVX512,
363 FEATURE_AVX512SAVE,
364 FEATURE_MOVBE,
365 FEATURE_ADX,
366 FEATURE_EM64T
367};
368
369// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
370// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
371// support. Consequently, for i386, the presence of CPUID is checked first
372// via the corresponding eflags bit.
373// Removal of cpuid.h header motivated by PR30384
374// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
375// or test-suite, but are used in external projects e.g. libstdcxx
376static bool isCpuIdSupported() {
377#if defined(__GNUC__4) || defined(__clang__1)
378#if defined(__i386__)
379 int __cpuid_supported;
380 __asm__(" pushfl\n"
381 " popl %%eax\n"
382 " movl %%eax,%%ecx\n"
383 " xorl $0x00200000,%%eax\n"
384 " pushl %%eax\n"
385 " popfl\n"
386 " pushfl\n"
387 " popl %%eax\n"
388 " movl $0,%0\n"
389 " cmpl %%eax,%%ecx\n"
390 " je 1f\n"
391 " movl $1,%0\n"
392 "1:"
393 : "=r"(__cpuid_supported)
394 :
395 : "eax", "ecx");
396 if (!__cpuid_supported)
397 return false;
398#endif
399 return true;
400#endif
401 return true;
402}
403
404/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
405/// the specified arguments. If we can't run cpuid on the host, return true.
406static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
407 unsigned *rECX, unsigned *rEDX) {
408#if defined(__GNUC__4) || defined(__clang__1) || defined(_MSC_VER)
409#if defined(__GNUC__4) || defined(__clang__1)
410#if defined(__x86_64__1)
411 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
412 // FIXME: should we save this for Clang?
413 __asm__("movq\t%%rbx, %%rsi\n\t"
414 "cpuid\n\t"
415 "xchgq\t%%rbx, %%rsi\n\t"
416 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
417 : "a"(value));
418#elif defined(__i386__)
419 __asm__("movl\t%%ebx, %%esi\n\t"
420 "cpuid\n\t"
421 "xchgl\t%%ebx, %%esi\n\t"
422 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
423 : "a"(value));
424#else
425 assert(0 && "This method is defined only for x86.")((0 && "This method is defined only for x86.") ? static_cast
<void> (0) : __assert_fail ("0 && \"This method is defined only for x86.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Support/Host.cpp"
, 425, __PRETTY_FUNCTION__))
;
426#endif
427#elif defined(_MSC_VER)
428 // The MSVC intrinsic is portable across x86 and x64.
429 int registers[4];
430 __cpuid(registers, value);
431 *rEAX = registers[0];
432 *rEBX = registers[1];
433 *rECX = registers[2];
434 *rEDX = registers[3];
435#endif
436 return false;
437#else
438 return true;
439#endif
440}
441
442/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
443/// the 4 values in the specified arguments. If we can't run cpuid on the host,
444/// return true.
445static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
446 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
447 unsigned *rEDX) {
448#if defined(__GNUC__4) || defined(__clang__1) || defined(_MSC_VER)
449#if defined(__x86_64__1) || defined(_M_X64)
450#if defined(__GNUC__4) || defined(__clang__1)
451 // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
452 // FIXME: should we save this for Clang?
453 __asm__("movq\t%%rbx, %%rsi\n\t"
454 "cpuid\n\t"
455 "xchgq\t%%rbx, %%rsi\n\t"
456 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
457 : "a"(value), "c"(subleaf));
458#elif defined(_MSC_VER)
459 int registers[4];
460 __cpuidex(registers, value, subleaf);
461 *rEAX = registers[0];
462 *rEBX = registers[1];
463 *rECX = registers[2];
464 *rEDX = registers[3];
465#endif
466#elif defined(__i386__) || defined(_M_IX86)
467#if defined(__GNUC__4) || defined(__clang__1)
468 __asm__("movl\t%%ebx, %%esi\n\t"
469 "cpuid\n\t"
470 "xchgl\t%%ebx, %%esi\n\t"
471 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
472 : "a"(value), "c"(subleaf));
473#elif defined(_MSC_VER)
474 __asm {
475 mov eax,value
476 mov ecx,subleaf
477 cpuid
478 mov esi,rEAX
479 mov dword ptr [esi],eax
480 mov esi,rEBX
481 mov dword ptr [esi],ebx
482 mov esi,rECX
483 mov dword ptr [esi],ecx
484 mov esi,rEDX
485 mov dword ptr [esi],edx
486 }
487#endif
488#else
489 assert(0 && "This method is defined only for x86.")((0 && "This method is defined only for x86.") ? static_cast
<void> (0) : __assert_fail ("0 && \"This method is defined only for x86.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Support/Host.cpp"
, 489, __PRETTY_FUNCTION__))
;
490#endif
491 return false;
492#else
493 return true;
494#endif
495}
496
497static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
498#if defined(__GNUC__4) || defined(__clang__1)
499 // Check xgetbv; this uses a .byte sequence instead of the instruction
500 // directly because older assemblers do not include support for xgetbv and
501 // there is no easy way to conditionally compile based on the assembler used.
502 __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
503 return false;
504#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
505 unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
506 *rEAX = Result;
507 *rEDX = Result >> 32;
508 return false;
509#else
510 return true;
511#endif
512}
513
514static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
515 unsigned *Model) {
516 *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
517 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
518 if (*Family == 6 || *Family == 0xf) {
519 if (*Family == 0xf)
520 // Examine extended family ID if family ID is F.
521 *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
522 // Examine extended model ID if family ID is 6 or F.
523 *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
524 }
525}
526
527static void
528getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
529 unsigned int Brand_id, unsigned int Features,
530 unsigned *Type, unsigned *Subtype) {
531 if (Brand_id != 0)
532 return;
533 switch (Family) {
534 case 3:
535 *Type = INTEL_i386;
536 break;
537 case 4:
538 switch (Model) {
539 case 0: // Intel486 DX processors
540 case 1: // Intel486 DX processors
541 case 2: // Intel486 SX processors
542 case 3: // Intel487 processors, IntelDX2 OverDrive processors,
543 // IntelDX2 processors
544 case 4: // Intel486 SL processor
545 case 5: // IntelSX2 processors
546 case 7: // Write-Back Enhanced IntelDX2 processors
547 case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
548 default:
549 *Type = INTEL_i486;
550 break;
551 }
552 break;
553 case 5:
554 switch (Model) {
555 case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
556 // Pentium processors (60, 66)
557 case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
558 // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
559 // 150, 166, 200)
560 case 3: // Pentium OverDrive processors for Intel486 processor-based
561 // systems
562 *Type = INTEL_PENTIUM;
563 break;
564 case 4: // Pentium OverDrive processor with MMX technology for Pentium
565 // processor (75, 90, 100, 120, 133), Pentium processor with
566 // MMX technology (166, 200)
567 *Type = INTEL_PENTIUM;
568 *Subtype = INTEL_PENTIUM_MMX;
569 break;
570 default:
571 *Type = INTEL_PENTIUM;
572 break;
573 }
574 break;
575 case 6:
576 switch (Model) {
577 case 0x01: // Pentium Pro processor
578 *Type = INTEL_PENTIUM_PRO;
579 break;
580 case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
581 // model 03
582 case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
583 // model 05, and Intel Celeron processor, model 05
584 case 0x06: // Celeron processor, model 06
585 *Type = INTEL_PENTIUM_II;
586 break;
587 case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
588 // processor, model 07
589 case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
590 // model 08, and Celeron processor, model 08
591 case 0x0a: // Pentium III Xeon processor, model 0Ah
592 case 0x0b: // Pentium III processor, model 0Bh
593 *Type = INTEL_PENTIUM_III;
594 break;
595 case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
596 case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
597 // 0Dh. All processors are manufactured using the 90 nm process.
598 case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
599 // Integrated Processor with Intel QuickAssist Technology
600 *Type = INTEL_PENTIUM_M;
601 break;
602 case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
603 // 0Eh. All processors are manufactured using the 65 nm process.
604 *Type = INTEL_CORE_DUO;
605 break; // yonah
606 case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
607 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
608 // mobile processor, Intel Core 2 Extreme processor, Intel
609 // Pentium Dual-Core processor, Intel Xeon processor, model
610 // 0Fh. All processors are manufactured using the 65 nm process.
611 case 0x16: // Intel Celeron processor model 16h. All processors are
612 // manufactured using the 65 nm process
613 *Type = INTEL_CORE2; // "core2"
614 *Subtype = INTEL_CORE2_65;
615 break;
616 case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
617 // 17h. All processors are manufactured using the 45 nm process.
618 //
619 // 45nm: Penryn , Wolfdale, Yorkfield (XE)
620 case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
621 // the 45 nm process.
622 *Type = INTEL_CORE2; // "penryn"
623 *Subtype = INTEL_CORE2_45;
624 break;
625 case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
626 // processors are manufactured using the 45 nm process.
627 case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
628 // As found in a Summer 2010 model iMac.
629 case 0x1f:
630 case 0x2e: // Nehalem EX
631 *Type = INTEL_COREI7; // "nehalem"
632 *Subtype = INTEL_COREI7_NEHALEM;
633 break;
634 case 0x25: // Intel Core i7, laptop version.
635 case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
636 // processors are manufactured using the 32 nm process.
637 case 0x2f: // Westmere EX
638 *Type = INTEL_COREI7; // "westmere"
639 *Subtype = INTEL_COREI7_WESTMERE;
640 break;
641 case 0x2a: // Intel Core i7 processor. All processors are manufactured
642 // using the 32 nm process.
643 case 0x2d:
644 *Type = INTEL_COREI7; //"sandybridge"
645 *Subtype = INTEL_COREI7_SANDYBRIDGE;
646 break;
647 case 0x3a:
648 case 0x3e: // Ivy Bridge EP
649 *Type = INTEL_COREI7; // "ivybridge"
650 *Subtype = INTEL_COREI7_IVYBRIDGE;
651 break;
652
653 // Haswell:
654 case 0x3c:
655 case 0x3f:
656 case 0x45:
657 case 0x46:
658 *Type = INTEL_COREI7; // "haswell"
659 *Subtype = INTEL_COREI7_HASWELL;
660 break;
661
662 // Broadwell:
663 case 0x3d:
664 case 0x47:
665 case 0x4f:
666 case 0x56:
667 *Type = INTEL_COREI7; // "broadwell"
668 *Subtype = INTEL_COREI7_BROADWELL;
669 break;
670
671 // Skylake:
672 case 0x4e: // Skylake mobile
673 case 0x5e: // Skylake desktop
674 case 0x8e: // Kaby Lake mobile
675 case 0x9e: // Kaby Lake desktop
676 *Type = INTEL_COREI7; // "skylake"
677 *Subtype = INTEL_COREI7_SKYLAKE;
678 break;
679
680 // Skylake Xeon:
681 case 0x55:
682 *Type = INTEL_COREI7;
683 // Check that we really have AVX512
684 if (Features & (1 << FEATURE_AVX512)) {
685 *Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
686 } else {
687 *Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
688 }
689 break;
690
691 case 0x1c: // Most 45 nm Intel Atom processors
692 case 0x26: // 45 nm Atom Lincroft
693 case 0x27: // 32 nm Atom Medfield
694 case 0x35: // 32 nm Atom Midview
695 case 0x36: // 32 nm Atom Midview
696 *Type = INTEL_ATOM;
697 *Subtype = INTEL_ATOM_BONNELL;
698 break; // "bonnell"
699
700 // Atom Silvermont codes from the Intel software optimization guide.
701 case 0x37:
702 case 0x4a:
703 case 0x4d:
704 case 0x5a:
705 case 0x5d:
706 case 0x4c: // really airmont
707 *Type = INTEL_ATOM;
708 *Subtype = INTEL_ATOM_SILVERMONT;
709 break; // "silvermont"
710
711 case 0x57:
712 *Type = INTEL_XEONPHI; // knl
713 *Subtype = INTEL_KNIGHTS_LANDING;
714 break;
715
716 default: // Unknown family 6 CPU, try to guess.
717 if (Features & (1 << FEATURE_AVX512)) {
718 *Type = INTEL_XEONPHI; // knl
719 *Subtype = INTEL_KNIGHTS_LANDING;
720 break;
721 }
722 if (Features & (1 << FEATURE_ADX)) {
723 *Type = INTEL_COREI7;
724 *Subtype = INTEL_COREI7_BROADWELL;
725 break;
726 }
727 if (Features & (1 << FEATURE_AVX2)) {
728 *Type = INTEL_COREI7;
729 *Subtype = INTEL_COREI7_HASWELL;
730 break;
731 }
732 if (Features & (1 << FEATURE_AVX)) {
733 *Type = INTEL_COREI7;
734 *Subtype = INTEL_COREI7_SANDYBRIDGE;
735 break;
736 }
737 if (Features & (1 << FEATURE_SSE4_2)) {
738 if (Features & (1 << FEATURE_MOVBE)) {
739 *Type = INTEL_ATOM;
740 *Subtype = INTEL_ATOM_SILVERMONT;
741 } else {
742 *Type = INTEL_COREI7;
743 *Subtype = INTEL_COREI7_NEHALEM;
744 }
745 break;
746 }
747 if (Features & (1 << FEATURE_SSE4_1)) {
748 *Type = INTEL_CORE2; // "penryn"
749 *Subtype = INTEL_CORE2_45;
750 break;
751 }
752 if (Features & (1 << FEATURE_SSSE3)) {
753 if (Features & (1 << FEATURE_MOVBE)) {
754 *Type = INTEL_ATOM;
755 *Subtype = INTEL_ATOM_BONNELL; // "bonnell"
756 } else {
757 *Type = INTEL_CORE2; // "core2"
758 *Subtype = INTEL_CORE2_65;
759 }
760 break;
761 }
762 if (Features & (1 << FEATURE_EM64T)) {
763 *Type = INTEL_X86_64;
764 break; // x86-64
765 }
766 if (Features & (1 << FEATURE_SSE2)) {
767 *Type = INTEL_PENTIUM_M;
768 break;
769 }
770 if (Features & (1 << FEATURE_SSE)) {
771 *Type = INTEL_PENTIUM_III;
772 break;
773 }
774 if (Features & (1 << FEATURE_MMX)) {
775 *Type = INTEL_PENTIUM_II;
776 break;
777 }
778 *Type = INTEL_PENTIUM_PRO;
779 break;
780 }
781 break;
782 case 15: {
783 switch (Model) {
784 case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
785 // model 00h and manufactured using the 0.18 micron process.
786 case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
787 // processor MP, and Intel Celeron processor. All processors are
788 // model 01h and manufactured using the 0.18 micron process.
789 case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
790 // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
791 // processor, and Mobile Intel Celeron processor. All processors
792 // are model 02h and manufactured using the 0.13 micron process.
793 *Type =
794 ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
795 break;
796
797 case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
798 // processor. All processors are model 03h and manufactured using
799 // the 90 nm process.
800 case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
801 // Pentium D processor, Intel Xeon processor, Intel Xeon
802 // processor MP, Intel Celeron D processor. All processors are
803 // model 04h and manufactured using the 90 nm process.
804 case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
805 // Extreme Edition, Intel Xeon processor, Intel Xeon processor
806 // MP, Intel Celeron D processor. All processors are model 06h
807 // and manufactured using the 65 nm process.
808 *Type =
809 ((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
810 break;
811
812 default:
813 *Type =
814 ((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
815 break;
816 }
817 break;
818 }
819 default:
820 break; /*"generic"*/
821 }
822}
823
824static void getAMDProcessorTypeAndSubtype(unsigned int Family,
825 unsigned int Model,
826 unsigned int Features,
827 unsigned *Type,
828 unsigned *Subtype) {
829 // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
830 // appears to be no way to generate the wide variety of AMD-specific targets
831 // from the information returned from CPUID.
832 switch (Family) {
8
Control jumps to 'case 16:' at line 889
833 case 4:
834 *Type = AMD_i486;
835 break;
836 case 5:
837 *Type = AMDPENTIUM;
838 switch (Model) {
839 case 6:
840 case 7:
841 *Subtype = AMDPENTIUM_K6;
842 break; // "k6"
843 case 8:
844 *Subtype = AMDPENTIUM_K62;
845 break; // "k6-2"
846 case 9:
847 case 13:
848 *Subtype = AMDPENTIUM_K63;
849 break; // "k6-3"
850 case 10:
851 *Subtype = AMDPENTIUM_GEODE;
852 break; // "geode"
853 }
854 break;
855 case 6:
856 *Type = AMDATHLON;
857 switch (Model) {
858 case 4:
859 *Subtype = AMDATHLON_TBIRD;
860 break; // "athlon-tbird"
861 case 6:
862 case 7:
863 case 8:
864 *Subtype = AMDATHLON_MP;
865 break; // "athlon-mp"
866 case 10:
867 *Subtype = AMDATHLON_XP;
868 break; // "athlon-xp"
869 }
870 break;
871 case 15:
872 *Type = AMDATHLON;
873 if (Features & (1 << FEATURE_SSE3)) {
874 *Subtype = AMDATHLON_K8SSE3;
875 break; // "k8-sse3"
876 }
877 switch (Model) {
878 case 1:
879 *Subtype = AMDATHLON_OPTERON;
880 break; // "opteron"
881 case 5:
882 *Subtype = AMDATHLON_FX;
883 break; // "athlon-fx"; also opteron
884 default:
885 *Subtype = AMDATHLON_64;
886 break; // "athlon64"
887 }
888 break;
889 case 16:
890 *Type = AMDFAM10H; // "amdfam10"
891 switch (Model) {
9
'Default' branch taken. Execution continues on line 902
892 case 2:
893 *Subtype = AMDFAM10H_BARCELONA;
894 break;
895 case 4:
896 *Subtype = AMDFAM10H_SHANGHAI;
897 break;
898 case 8:
899 *Subtype = AMDFAM10H_ISTANBUL;
900 break;
901 }
902 break;
10
Execution continues on line 891
903 case 20:
904 *Type = AMDFAM14H;
905 *Subtype = AMD_BTVER1;
906 break; // "btver1";
907 case 21:
908 *Type = AMDFAM15H;
909 if (!(Features &
910 (1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
911 *Subtype = AMD_BTVER1;
912 break; // "btver1"
913 }
914 if (Model >= 0x50 && Model <= 0x6f) {
915 *Subtype = AMDFAM15H_BDVER4;
916 break; // "bdver4"; 50h-6Fh: Excavator
917 }
918 if (Model >= 0x30 && Model <= 0x3f) {
919 *Subtype = AMDFAM15H_BDVER3;
920 break; // "bdver3"; 30h-3Fh: Steamroller
921 }
922 if (Model >= 0x10 && Model <= 0x1f) {
923 *Subtype = AMDFAM15H_BDVER2;
924 break; // "bdver2"; 10h-1Fh: Piledriver
925 }
926 if (Model <= 0x0f) {
927 *Subtype = AMDFAM15H_BDVER1;
928 break; // "bdver1"; 00h-0Fh: Bulldozer
929 }
930 break;
931 case 22:
932 *Type = AMDFAM16H;
933 if (!(Features &
934 (1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
935 *Subtype = AMD_BTVER1;
936 break; // "btver1";
937 }
938 *Subtype = AMD_BTVER2;
939 break; // "btver2"
940 case 23:
941 *Type = AMDFAM17H;
942 if (Features & (1 << FEATURE_ADX)) {
943 *Subtype = AMDFAM17H_ZNVER1;
944 break; // "znver1"
945 }
946 *Subtype = AMD_BTVER1;
947 break;
948 default:
949 break; // "generic"
950 }
951}
952
953static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
954 unsigned MaxLeaf) {
955 unsigned Features = 0;
956 unsigned int EAX, EBX;
957 Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
958 Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
959 Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
960 Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
961 Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
962 Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
963 Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
964 Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
965
966 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
967 // indicates that the AVX registers will be saved and restored on context
968 // switch, then we have full AVX support.
969 const unsigned AVXBits = (1 << 27) | (1 << 28);
970 bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
971 ((EAX & 0x6) == 0x6);
972 bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
973 bool HasLeaf7 =
974 MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
975 bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
976 bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
977 bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
978 Features |= (HasAVX << FEATURE_AVX);
979 Features |= (HasAVX2 << FEATURE_AVX2);
980 Features |= (HasAVX512 << FEATURE_AVX512);
981 Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
982 Features |= (HasADX << FEATURE_ADX);
983
984 getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
985 Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
986 return Features;
987}
988
989StringRef sys::getHostCPUName() {
990 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
991 unsigned MaxLeaf, Vendor;
992
993#if defined(__GNUC__4) || defined(__clang__1)
994 //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
995 // and simplify it to not invoke __cpuid (like cpu_model.c in
996 // compiler-rt/lib/builtins/cpu_model.c?
997 // Opting for the second option.
998 if(!isCpuIdSupported())
1
Taking false branch
999 return "generic";
1000#endif
1001 if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
2
Taking false branch
1002 return "generic";
1003 if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
3
Taking false branch
1004 return "generic";
1005
1006 unsigned Brand_id = EBX & 0xff;
1007 unsigned Family = 0, Model = 0;
1008 unsigned Features = 0;
1009 detectX86FamilyModel(EAX, &Family, &Model);
1010 Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
1011
1012 unsigned Type;
1013 unsigned Subtype;
4
'Subtype' declared without an initial value
1014
1015 if (Vendor == SIG_INTEL) {
5
Taking false branch
1016 getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
1017 &Subtype);
1018 switch (Type) {
1019 case INTEL_i386:
1020 return "i386";
1021 case INTEL_i486:
1022 return "i486";
1023 case INTEL_PENTIUM:
1024 if (Subtype == INTEL_PENTIUM_MMX)
1025 return "pentium-mmx";
1026 return "pentium";
1027 case INTEL_PENTIUM_PRO:
1028 return "pentiumpro";
1029 case INTEL_PENTIUM_II:
1030 return "pentium2";
1031 case INTEL_PENTIUM_III:
1032 return "pentium3";
1033 case INTEL_PENTIUM_IV:
1034 return "pentium4";
1035 case INTEL_PENTIUM_M:
1036 return "pentium-m";
1037 case INTEL_CORE_DUO:
1038 return "yonah";
1039 case INTEL_CORE2:
1040 switch (Subtype) {
1041 case INTEL_CORE2_65:
1042 return "core2";
1043 case INTEL_CORE2_45:
1044 return "penryn";
1045 default:
1046 return "core2";
1047 }
1048 case INTEL_COREI7:
1049 switch (Subtype) {
1050 case INTEL_COREI7_NEHALEM:
1051 return "nehalem";
1052 case INTEL_COREI7_WESTMERE:
1053 return "westmere";
1054 case INTEL_COREI7_SANDYBRIDGE:
1055 return "sandybridge";
1056 case INTEL_COREI7_IVYBRIDGE:
1057 return "ivybridge";
1058 case INTEL_COREI7_HASWELL:
1059 return "haswell";
1060 case INTEL_COREI7_BROADWELL:
1061 return "broadwell";
1062 case INTEL_COREI7_SKYLAKE:
1063 return "skylake";
1064 case INTEL_COREI7_SKYLAKE_AVX512:
1065 return "skylake-avx512";
1066 default:
1067 return "corei7";
1068 }
1069 case INTEL_ATOM:
1070 switch (Subtype) {
1071 case INTEL_ATOM_BONNELL:
1072 return "bonnell";
1073 case INTEL_ATOM_SILVERMONT:
1074 return "silvermont";
1075 default:
1076 return "atom";
1077 }
1078 case INTEL_XEONPHI:
1079 return "knl"; /*update for more variants added*/
1080 case INTEL_X86_64:
1081 return "x86-64";
1082 case INTEL_NOCONA:
1083 return "nocona";
1084 case INTEL_PRESCOTT:
1085 return "prescott";
1086 default:
1087 return "generic";
1088 }
1089 } else if (Vendor == SIG_AMD) {
6
Taking true branch
1090 getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
7
Calling 'getAMDProcessorTypeAndSubtype'
11
Returning from 'getAMDProcessorTypeAndSubtype'
1091 switch (Type) {
12
Control jumps to 'case AMDFAM10H:' at line 1126
1092 case AMD_i486:
1093 return "i486";
1094 case AMDPENTIUM:
1095 switch (Subtype) {
1096 case AMDPENTIUM_K6:
1097 return "k6";
1098 case AMDPENTIUM_K62:
1099 return "k6-2";
1100 case AMDPENTIUM_K63:
1101 return "k6-3";
1102 case AMDPENTIUM_GEODE:
1103 return "geode";
1104 default:
1105 return "pentium";
1106 }
1107 case AMDATHLON:
1108 switch (Subtype) {
1109 case AMDATHLON_TBIRD:
1110 return "athlon-tbird";
1111 case AMDATHLON_MP:
1112 return "athlon-mp";
1113 case AMDATHLON_XP:
1114 return "athlon-xp";
1115 case AMDATHLON_K8SSE3:
1116 return "k8-sse3";
1117 case AMDATHLON_OPTERON:
1118 return "opteron";
1119 case AMDATHLON_FX:
1120 return "athlon-fx";
1121 case AMDATHLON_64:
1122 return "athlon64";
1123 default:
1124 return "athlon";
1125 }
1126 case AMDFAM10H:
1127 if(Subtype == AMDFAM10H_BARCELONA)
13
The left operand of '==' is a garbage value
1128 return "barcelona";
1129 return "amdfam10";
1130 case AMDFAM14H:
1131 return "btver1";
1132 case AMDFAM15H:
1133 switch (Subtype) {
1134 case AMDFAM15H_BDVER1:
1135 return "bdver1";
1136 case AMDFAM15H_BDVER2:
1137 return "bdver2";
1138 case AMDFAM15H_BDVER3:
1139 return "bdver3";
1140 case AMDFAM15H_BDVER4:
1141 return "bdver4";
1142 case AMD_BTVER1:
1143 return "btver1";
1144 default:
1145 return "amdfam15";
1146 }
1147 case AMDFAM16H:
1148 switch (Subtype) {
1149 case AMD_BTVER1:
1150 return "btver1";
1151 case AMD_BTVER2:
1152 return "btver2";
1153 default:
1154 return "amdfam16";
1155 }
1156 case AMDFAM17H:
1157 switch (Subtype) {
1158 case AMD_BTVER1:
1159 return "btver1";
1160 case AMDFAM17H_ZNVER1:
1161 return "znver1";
1162 default:
1163 return "amdfam17";
1164 }
1165 default:
1166 return "generic";
1167 }
1168 }
1169 return "generic";
1170}
1171
1172#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1173StringRef sys::getHostCPUName() {
1174 host_basic_info_data_t hostInfo;
1175 mach_msg_type_number_t infoCount;
1176
1177 infoCount = HOST_BASIC_INFO_COUNT;
1178 host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
1179 &infoCount);
1180
1181 if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1182 return "generic";
1183
1184 switch (hostInfo.cpu_subtype) {
1185 case CPU_SUBTYPE_POWERPC_601:
1186 return "601";
1187 case CPU_SUBTYPE_POWERPC_602:
1188 return "602";
1189 case CPU_SUBTYPE_POWERPC_603:
1190 return "603";
1191 case CPU_SUBTYPE_POWERPC_603e:
1192 return "603e";
1193 case CPU_SUBTYPE_POWERPC_603ev:
1194 return "603ev";
1195 case CPU_SUBTYPE_POWERPC_604:
1196 return "604";
1197 case CPU_SUBTYPE_POWERPC_604e:
1198 return "604e";
1199 case CPU_SUBTYPE_POWERPC_620:
1200 return "620";
1201 case CPU_SUBTYPE_POWERPC_750:
1202 return "750";
1203 case CPU_SUBTYPE_POWERPC_7400:
1204 return "7400";
1205 case CPU_SUBTYPE_POWERPC_7450:
1206 return "7450";
1207 case CPU_SUBTYPE_POWERPC_970:
1208 return "970";
1209 default:;
1210 }
1211
1212 return "generic";
1213}
1214#elif defined(__linux__1) && (defined(__ppc__) || defined(__powerpc__))
1215StringRef sys::getHostCPUName() {
1216 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1217 const StringRef& Content = P ? P->getBuffer() : "";
1218 return detail::getHostCPUNameForPowerPC(Content);
1219}
1220#elif defined(__linux__1) && (defined(__arm__) || defined(__aarch64__))
1221StringRef sys::getHostCPUName() {
1222 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1223 const StringRef& Content = P ? P->getBuffer() : "";
1224 return detail::getHostCPUNameForARM(Content);
1225}
1226#elif defined(__linux__1) && defined(__s390x__)
1227StringRef sys::getHostCPUName() {
1228 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1229 const StringRef& Content = P ? P->getBuffer() : "";
1230 return detail::getHostCPUNameForS390x(Content);
1231}
1232#else
1233StringRef sys::getHostCPUName() { return "generic"; }
1234#endif
1235
1236#if defined(__linux__1) && defined(__x86_64__1)
1237// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1238// using the number of unique physical/core id pairs. The following
1239// implementation reads the /proc/cpuinfo format on an x86_64 system.
1240static int computeHostNumPhysicalCores() {
1241 // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1242 // mmapped because it appears to have 0 size.
1243 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1244 llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1245 if (std::error_code EC = Text.getError()) {
1246 llvm::errs() << "Can't read "
1247 << "/proc/cpuinfo: " << EC.message() << "\n";
1248 return -1;
1249 }
1250 SmallVector<StringRef, 8> strs;
1251 (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1252 /*KeepEmpty=*/false);
1253 int CurPhysicalId = -1;
1254 int CurCoreId = -1;
1255 SmallSet<std::pair<int, int>, 32> UniqueItems;
1256 for (auto &Line : strs) {
1257 Line = Line.trim();
1258 if (!Line.startswith("physical id") && !Line.startswith("core id"))
1259 continue;
1260 std::pair<StringRef, StringRef> Data = Line.split(':');
1261 auto Name = Data.first.trim();
1262 auto Val = Data.second.trim();
1263 if (Name == "physical id") {
1264 assert(CurPhysicalId == -1 &&((CurPhysicalId == -1 && "Expected a core id before seeing another physical id"
) ? static_cast<void> (0) : __assert_fail ("CurPhysicalId == -1 && \"Expected a core id before seeing another physical id\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Support/Host.cpp"
, 1265, __PRETTY_FUNCTION__))
1265 "Expected a core id before seeing another physical id")((CurPhysicalId == -1 && "Expected a core id before seeing another physical id"
) ? static_cast<void> (0) : __assert_fail ("CurPhysicalId == -1 && \"Expected a core id before seeing another physical id\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Support/Host.cpp"
, 1265, __PRETTY_FUNCTION__))
;
1266 Val.getAsInteger(10, CurPhysicalId);
1267 }
1268 if (Name == "core id") {
1269 assert(CurCoreId == -1 &&((CurCoreId == -1 && "Expected a physical id before seeing another core id"
) ? static_cast<void> (0) : __assert_fail ("CurCoreId == -1 && \"Expected a physical id before seeing another core id\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Support/Host.cpp"
, 1270, __PRETTY_FUNCTION__))
1270 "Expected a physical id before seeing another core id")((CurCoreId == -1 && "Expected a physical id before seeing another core id"
) ? static_cast<void> (0) : __assert_fail ("CurCoreId == -1 && \"Expected a physical id before seeing another core id\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Support/Host.cpp"
, 1270, __PRETTY_FUNCTION__))
;
1271 Val.getAsInteger(10, CurCoreId);
1272 }
1273 if (CurPhysicalId != -1 && CurCoreId != -1) {
1274 UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
1275 CurPhysicalId = -1;
1276 CurCoreId = -1;
1277 }
1278 }
1279 return UniqueItems.size();
1280}
1281#elif defined(__APPLE__) && defined(__x86_64__1)
1282#include <sys/param.h>
1283#include <sys/sysctl.h>
1284
1285// Gets the number of *physical cores* on the machine.
1286static int computeHostNumPhysicalCores() {
1287 uint32_t count;
1288 size_t len = sizeof(count);
1289 sysctlbyname("hw.physicalcpu", &count, &len, NULL__null, 0);
1290 if (count < 1) {
1291 int nm[2];
1292 nm[0] = CTL_HW;
1293 nm[1] = HW_AVAILCPU;
1294 sysctl(nm, 2, &count, &len, NULL__null, 0);
1295 if (count < 1)
1296 return -1;
1297 }
1298 return count;
1299}
1300#else
1301// On other systems, return -1 to indicate unknown.
1302static int computeHostNumPhysicalCores() { return -1; }
1303#endif
1304
1305int sys::getHostNumPhysicalCores() {
1306 static int NumCores = computeHostNumPhysicalCores();
1307 return NumCores;
1308}
1309
1310#if defined(__i386__) || defined(_M_IX86) || \
1311 defined(__x86_64__1) || defined(_M_X64)
1312bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1313 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1314 unsigned MaxLevel;
1315 union {
1316 unsigned u[3];
1317 char c[12];
1318 } text;
1319
1320 if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1321 MaxLevel < 1)
1322 return false;
1323
1324 getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1325
1326 Features["cmov"] = (EDX >> 15) & 1;
1327 Features["mmx"] = (EDX >> 23) & 1;
1328 Features["sse"] = (EDX >> 25) & 1;
1329 Features["sse2"] = (EDX >> 26) & 1;
1330 Features["sse3"] = (ECX >> 0) & 1;
1331 Features["ssse3"] = (ECX >> 9) & 1;
1332 Features["sse4.1"] = (ECX >> 19) & 1;
1333 Features["sse4.2"] = (ECX >> 20) & 1;
1334
1335 Features["pclmul"] = (ECX >> 1) & 1;
1336 Features["cx16"] = (ECX >> 13) & 1;
1337 Features["movbe"] = (ECX >> 22) & 1;
1338 Features["popcnt"] = (ECX >> 23) & 1;
1339 Features["aes"] = (ECX >> 25) & 1;
1340 Features["rdrnd"] = (ECX >> 30) & 1;
1341
1342 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1343 // indicates that the AVX registers will be saved and restored on context
1344 // switch, then we have full AVX support.
1345 bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1346 !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1347 Features["avx"] = HasAVXSave;
1348 Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
1349 Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
1350
1351 // Only enable XSAVE if OS has enabled support for saving YMM state.
1352 Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
1353
1354 // AVX512 requires additional context to be saved by the OS.
1355 bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1356
1357 unsigned MaxExtLevel;
1358 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1359
1360 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1361 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1362 Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
1363 Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
1364 Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
1365 Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1366 Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
1367 Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1368 Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
1369 Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1370
1371 bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1372 !getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
1373 Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
1374
1375 bool HasLeaf7 =
1376 MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1377
1378 // AVX2 is only supported if we have the OS save support from AVX.
1379 Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
1380
1381 Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
1382 Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
1383 Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
1384 Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
1385 Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
1386 Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
1387 Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
1388 Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1389 Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
1390 Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
1391
1392 // AVX512 is only supported if the OS supports the context save for it.
1393 Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1394 Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1395 Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1396 Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1397 Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1398 Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1399 Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1400 Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1401
1402 Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
1403 Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
1404 Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1405 // Enable protection keys
1406 Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
1407
1408 bool HasLeafD = MaxLevel >= 0xd &&
1409 !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1410
1411 // Only enable XSAVE if OS has enabled support for saving YMM state.
1412 Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
1413 Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
1414 Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
1415
1416 return true;
1417}
1418#elif defined(__linux__1) && (defined(__arm__) || defined(__aarch64__))
1419bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1420 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1421 if (!P)
1422 return false;
1423
1424 SmallVector<StringRef, 32> Lines;
1425 P->getBuffer().split(Lines, "\n");
1426
1427 SmallVector<StringRef, 32> CPUFeatures;
1428
1429 // Look for the CPU features.
1430 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1431 if (Lines[I].startswith("Features")) {
1432 Lines[I].split(CPUFeatures, ' ');
1433 break;
1434 }
1435
1436#if defined(__aarch64__)
1437 // Keep track of which crypto features we have seen
1438 enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1439 uint32_t crypto = 0;
1440#endif
1441
1442 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1443 StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1444#if defined(__aarch64__)
1445 .Case("asimd", "neon")
1446 .Case("fp", "fp-armv8")
1447 .Case("crc32", "crc")
1448#else
1449 .Case("half", "fp16")
1450 .Case("neon", "neon")
1451 .Case("vfpv3", "vfp3")
1452 .Case("vfpv3d16", "d16")
1453 .Case("vfpv4", "vfp4")
1454 .Case("idiva", "hwdiv-arm")
1455 .Case("idivt", "hwdiv")
1456#endif
1457 .Default("");
1458
1459#if defined(__aarch64__)
1460 // We need to check crypto separately since we need all of the crypto
1461 // extensions to enable the subtarget feature
1462 if (CPUFeatures[I] == "aes")
1463 crypto |= CAP_AES;
1464 else if (CPUFeatures[I] == "pmull")
1465 crypto |= CAP_PMULL;
1466 else if (CPUFeatures[I] == "sha1")
1467 crypto |= CAP_SHA1;
1468 else if (CPUFeatures[I] == "sha2")
1469 crypto |= CAP_SHA2;
1470#endif
1471
1472 if (LLVMFeatureStr != "")
1473 Features[LLVMFeatureStr] = true;
1474 }
1475
1476#if defined(__aarch64__)
1477 // If we have all crypto bits we can add the feature
1478 if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1479 Features["crypto"] = true;
1480#endif
1481
1482 return true;
1483}
1484#else
1485bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1486#endif
1487
1488std::string sys::getProcessTriple() {
1489 Triple PT(Triple::normalize(LLVM_HOST_TRIPLE"x86_64-pc-linux-gnu"));
1490
1491 if (sizeof(void *) == 8 && PT.isArch32Bit())
1492 PT = PT.get64BitArchVariant();
1493 if (sizeof(void *) == 4 && PT.isArch64Bit())
1494 PT = PT.get32BitArchVariant();
1495
1496 return PT.str();
1497}