Bug Summary

File:lib/Support/Host.cpp
Warning:line 118, column 34
Dereference of null pointer (loaded from variable 'CIP')

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Host.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/lib/Support -I /build/llvm-toolchain-snapshot-7~svn326551/lib/Support -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn326551/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/lib/Support -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-03-02-155150-1477-1 -x c++ /build/llvm-toolchain-snapshot-7~svn326551/lib/Support/Host.cpp
1//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the operating system Host concept.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Support/Host.h"
15#include "llvm/Support/TargetParser.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/StringSwitch.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/Config/config.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/FileSystem.h"
24#include "llvm/Support/MemoryBuffer.h"
25#include "llvm/Support/raw_ostream.h"
26#include <assert.h>
27#include <string.h>
28
29// Include the platform-specific parts of this class.
30#ifdef LLVM_ON_UNIX1
31#include "Unix/Host.inc"
32#endif
33#ifdef LLVM_ON_WIN32
34#include "Windows/Host.inc"
35#endif
36#ifdef _MSC_VER
37#include <intrin.h>
38#endif
39#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
40#include <mach/host_info.h>
41#include <mach/mach.h>
42#include <mach/mach_host.h>
43#include <mach/machine.h>
44#endif
45
46#define DEBUG_TYPE"host-detection" "host-detection"
47
48//===----------------------------------------------------------------------===//
49//
50// Implementations of the CPU detection routines
51//
52//===----------------------------------------------------------------------===//
53
54using namespace llvm;
55
56static std::unique_ptr<llvm::MemoryBuffer>
57 LLVM_ATTRIBUTE_UNUSED__attribute__((__unused__)) getProcCpuinfoContent() {
58 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
59 llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
60 if (std::error_code EC = Text.getError()) {
61 llvm::errs() << "Can't read "
62 << "/proc/cpuinfo: " << EC.message() << "\n";
63 return nullptr;
64 }
65 return std::move(*Text);
66}
67
68StringRef sys::detail::getHostCPUNameForPowerPC(
69 const StringRef &ProcCpuinfoContent) {
70 // Access to the Processor Version Register (PVR) on PowerPC is privileged,
71 // and so we must use an operating-system interface to determine the current
72 // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
73 const char *generic = "generic";
74
75 // The cpu line is second (after the 'processor: 0' line), so if this
76 // buffer is too small then something has changed (or is wrong).
77 StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
78 StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
79
80 StringRef::const_iterator CIP = CPUInfoStart;
81
82 StringRef::const_iterator CPUStart = 0;
83 size_t CPULen = 0;
84
85 // We need to find the first line which starts with cpu, spaces, and a colon.
86 // After the colon, there may be some additional spaces and then the cpu type.
87 while (CIP < CPUInfoEnd && CPUStart == 0) {
1
Assuming 'CIP' is < 'CPUInfoEnd'
2
Loop condition is true. Entering loop body
88 if (CIP < CPUInfoEnd && *CIP == '\n')
3
Assuming the condition is false
4
Taking false branch
89 ++CIP;
90
91 if (CIP < CPUInfoEnd && *CIP == 'c') {
5
Assuming the condition is true
6
Taking true branch
92 ++CIP;
93 if (CIP < CPUInfoEnd && *CIP == 'p') {
7
Assuming the condition is true
8
Taking true branch
94 ++CIP;
95 if (CIP < CPUInfoEnd && *CIP == 'u') {
9
Assuming the condition is true
10
Taking true branch
96 ++CIP;
97 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
98 ++CIP;
99
100 if (CIP < CPUInfoEnd && *CIP == ':') {
11
Assuming the condition is true
12
Taking true branch
101 ++CIP;
102 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
13
Assuming the condition is true
103 ++CIP;
14
Value assigned to 'CIP'
104
105 if (CIP < CPUInfoEnd) {
15
Taking true branch
106 CPUStart = CIP;
107 while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
108 *CIP != ',' && *CIP != '\n'))
109 ++CIP;
110 CPULen = CIP - CPUStart;
111 }
112 }
113 }
114 }
115 }
116
117 if (CPUStart == 0)
16
Assuming 'CPUStart' is equal to null
17
Taking true branch
118 while (CIP < CPUInfoEnd && *CIP != '\n')
18
Dereference of null pointer (loaded from variable 'CIP')
119 ++CIP;
120 }
121
122 if (CPUStart == 0)
123 return generic;
124
125 return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
126 .Case("604e", "604e")
127 .Case("604", "604")
128 .Case("7400", "7400")
129 .Case("7410", "7400")
130 .Case("7447", "7400")
131 .Case("7455", "7450")
132 .Case("G4", "g4")
133 .Case("POWER4", "970")
134 .Case("PPC970FX", "970")
135 .Case("PPC970MP", "970")
136 .Case("G5", "g5")
137 .Case("POWER5", "g5")
138 .Case("A2", "a2")
139 .Case("POWER6", "pwr6")
140 .Case("POWER7", "pwr7")
141 .Case("POWER8", "pwr8")
142 .Case("POWER8E", "pwr8")
143 .Case("POWER8NVL", "pwr8")
144 .Case("POWER9", "pwr9")
145 .Default(generic);
146}
147
148StringRef sys::detail::getHostCPUNameForARM(
149 const StringRef &ProcCpuinfoContent) {
150 // The cpuid register on arm is not accessible from user space. On Linux,
151 // it is exposed through the /proc/cpuinfo file.
152
153 // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
154 // in all cases.
155 SmallVector<StringRef, 32> Lines;
156 ProcCpuinfoContent.split(Lines, "\n");
157
158 // Look for the CPU implementer line.
159 StringRef Implementer;
160 StringRef Hardware;
161 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
162 if (Lines[I].startswith("CPU implementer"))
163 Implementer = Lines[I].substr(15).ltrim("\t :");
164 if (Lines[I].startswith("Hardware"))
165 Hardware = Lines[I].substr(8).ltrim("\t :");
166 }
167
168 if (Implementer == "0x41") { // ARM Ltd.
169 // MSM8992/8994 may give cpu part for the core that the kernel is running on,
170 // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
171 if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
172 return "cortex-a53";
173
174
175 // Look for the CPU part line.
176 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
177 if (Lines[I].startswith("CPU part"))
178 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
179 // values correspond to the "Part number" in the CP15/c0 register. The
180 // contents are specified in the various processor manuals.
181 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
182 .Case("0x926", "arm926ej-s")
183 .Case("0xb02", "mpcore")
184 .Case("0xb36", "arm1136j-s")
185 .Case("0xb56", "arm1156t2-s")
186 .Case("0xb76", "arm1176jz-s")
187 .Case("0xc08", "cortex-a8")
188 .Case("0xc09", "cortex-a9")
189 .Case("0xc0f", "cortex-a15")
190 .Case("0xc20", "cortex-m0")
191 .Case("0xc23", "cortex-m3")
192 .Case("0xc24", "cortex-m4")
193 .Case("0xd04", "cortex-a35")
194 .Case("0xd03", "cortex-a53")
195 .Case("0xd07", "cortex-a57")
196 .Case("0xd08", "cortex-a72")
197 .Case("0xd09", "cortex-a73")
198 .Default("generic");
199 }
200
201 if (Implementer == "0x51") // Qualcomm Technologies, Inc.
202 // Look for the CPU part line.
203 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
204 if (Lines[I].startswith("CPU part"))
205 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
206 // values correspond to the "Part number" in the CP15/c0 register. The
207 // contents are specified in the various processor manuals.
208 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
209 .Case("0x06f", "krait") // APQ8064
210 .Case("0x201", "kryo")
211 .Case("0x205", "kryo")
212 .Case("0x211", "kryo")
213 .Case("0x800", "cortex-a73")
214 .Case("0x801", "cortex-a73")
215 .Case("0xc00", "falkor")
216 .Case("0xc01", "saphira")
217 .Default("generic");
218
219 if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
220 // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
221 // any predictive pattern across variants and parts.
222 unsigned Variant = 0, Part = 0;
223
224 // Look for the CPU variant line, whose value is a 1 digit hexadecimal
225 // number, corresponding to the Variant bits in the CP15/C0 register.
226 for (auto I : Lines)
227 if (I.consume_front("CPU variant"))
228 I.ltrim("\t :").getAsInteger(0, Variant);
229
230 // Look for the CPU part line, whose value is a 3 digit hexadecimal
231 // number, corresponding to the PartNum bits in the CP15/C0 register.
232 for (auto I : Lines)
233 if (I.consume_front("CPU part"))
234 I.ltrim("\t :").getAsInteger(0, Part);
235
236 unsigned Exynos = (Variant << 12) | Part;
237 switch (Exynos) {
238 default:
239 // Default by falling through to Exynos M1.
240 LLVM_FALLTHROUGH[[clang::fallthrough]];
241
242 case 0x1001:
243 return "exynos-m1";
244
245 case 0x4001:
246 return "exynos-m2";
247 }
248 }
249
250 return "generic";
251}
252
253StringRef sys::detail::getHostCPUNameForS390x(
254 const StringRef &ProcCpuinfoContent) {
255 // STIDP is a privileged operation, so use /proc/cpuinfo instead.
256
257 // The "processor 0:" line comes after a fair amount of other information,
258 // including a cache breakdown, but this should be plenty.
259 SmallVector<StringRef, 32> Lines;
260 ProcCpuinfoContent.split(Lines, "\n");
261
262 // Look for the CPU features.
263 SmallVector<StringRef, 32> CPUFeatures;
264 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
265 if (Lines[I].startswith("features")) {
266 size_t Pos = Lines[I].find(":");
267 if (Pos != StringRef::npos) {
268 Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
269 break;
270 }
271 }
272
273 // We need to check for the presence of vector support independently of
274 // the machine type, since we may only use the vector register set when
275 // supported by the kernel (and hypervisor).
276 bool HaveVectorSupport = false;
277 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
278 if (CPUFeatures[I] == "vx")
279 HaveVectorSupport = true;
280 }
281
282 // Now check the processor machine type.
283 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
284 if (Lines[I].startswith("processor ")) {
285 size_t Pos = Lines[I].find("machine = ");
286 if (Pos != StringRef::npos) {
287 Pos += sizeof("machine = ") - 1;
288 unsigned int Id;
289 if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
290 if (Id >= 3906 && HaveVectorSupport)
291 return "z14";
292 if (Id >= 2964 && HaveVectorSupport)
293 return "z13";
294 if (Id >= 2827)
295 return "zEC12";
296 if (Id >= 2817)
297 return "z196";
298 }
299 }
300 break;
301 }
302 }
303
304 return "generic";
305}
306
307StringRef sys::detail::getHostCPUNameForBPF() {
308#if !defined(__linux__1) || !defined(__x86_64__1)
309 return "generic";
310#else
311 uint8_t insns[40] __attribute__ ((aligned (8))) =
312 /* BPF_MOV64_IMM(BPF_REG_0, 0) */
313 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
314 /* BPF_MOV64_IMM(BPF_REG_2, 1) */
315 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
316 /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
317 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
318 /* BPF_MOV64_IMM(BPF_REG_0, 1) */
319 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
320 /* BPF_EXIT_INSN() */
321 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
322
323 struct bpf_prog_load_attr {
324 uint32_t prog_type;
325 uint32_t insn_cnt;
326 uint64_t insns;
327 uint64_t license;
328 uint32_t log_level;
329 uint32_t log_size;
330 uint64_t log_buf;
331 uint32_t kern_version;
332 uint32_t prog_flags;
333 } attr = {};
334 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
335 attr.insn_cnt = 5;
336 attr.insns = (uint64_t)insns;
337 attr.license = (uint64_t)"DUMMY";
338
339 int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
340 if (fd >= 0) {
341 close(fd);
342 return "v2";
343 }
344 return "v1";
345#endif
346}
347
348#if defined(__i386__) || defined(_M_IX86) || \
349 defined(__x86_64__1) || defined(_M_X64)
350
351enum VendorSignatures {
352 SIG_INTEL = 0x756e6547 /* Genu */,
353 SIG_AMD = 0x68747541 /* Auth */
354};
355
356// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
357// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
358// support. Consequently, for i386, the presence of CPUID is checked first
359// via the corresponding eflags bit.
360// Removal of cpuid.h header motivated by PR30384
361// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
362// or test-suite, but are used in external projects e.g. libstdcxx
363static bool isCpuIdSupported() {
364#if defined(__GNUC__4) || defined(__clang__1)
365#if defined(__i386__)
366 int __cpuid_supported;
367 __asm__(" pushfl\n"
368 " popl %%eax\n"
369 " movl %%eax,%%ecx\n"
370 " xorl $0x00200000,%%eax\n"
371 " pushl %%eax\n"
372 " popfl\n"
373 " pushfl\n"
374 " popl %%eax\n"
375 " movl $0,%0\n"
376 " cmpl %%eax,%%ecx\n"
377 " je 1f\n"
378 " movl $1,%0\n"
379 "1:"
380 : "=r"(__cpuid_supported)
381 :
382 : "eax", "ecx");
383 if (!__cpuid_supported)
384 return false;
385#endif
386 return true;
387#endif
388 return true;
389}
390
391/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
392/// the specified arguments. If we can't run cpuid on the host, return true.
393static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
394 unsigned *rECX, unsigned *rEDX) {
395#if defined(__GNUC__4) || defined(__clang__1)
396#if defined(__x86_64__1)
397 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
398 // FIXME: should we save this for Clang?
399 __asm__("movq\t%%rbx, %%rsi\n\t"
400 "cpuid\n\t"
401 "xchgq\t%%rbx, %%rsi\n\t"
402 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
403 : "a"(value));
404 return false;
405#elif defined(__i386__)
406 __asm__("movl\t%%ebx, %%esi\n\t"
407 "cpuid\n\t"
408 "xchgl\t%%ebx, %%esi\n\t"
409 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
410 : "a"(value));
411 return false;
412#else
413 return true;
414#endif
415#elif defined(_MSC_VER)
416 // The MSVC intrinsic is portable across x86 and x64.
417 int registers[4];
418 __cpuid(registers, value);
419 *rEAX = registers[0];
420 *rEBX = registers[1];
421 *rECX = registers[2];
422 *rEDX = registers[3];
423 return false;
424#else
425 return true;
426#endif
427}
428
429/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
430/// the 4 values in the specified arguments. If we can't run cpuid on the host,
431/// return true.
432static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
433 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
434 unsigned *rEDX) {
435#if defined(__GNUC__4) || defined(__clang__1)
436#if defined(__x86_64__1)
437 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
438 // FIXME: should we save this for Clang?
439 __asm__("movq\t%%rbx, %%rsi\n\t"
440 "cpuid\n\t"
441 "xchgq\t%%rbx, %%rsi\n\t"
442 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
443 : "a"(value), "c"(subleaf));
444 return false;
445#elif defined(__i386__)
446 __asm__("movl\t%%ebx, %%esi\n\t"
447 "cpuid\n\t"
448 "xchgl\t%%ebx, %%esi\n\t"
449 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
450 : "a"(value), "c"(subleaf));
451 return false;
452#else
453 return true;
454#endif
455#elif defined(_MSC_VER)
456 int registers[4];
457 __cpuidex(registers, value, subleaf);
458 *rEAX = registers[0];
459 *rEBX = registers[1];
460 *rECX = registers[2];
461 *rEDX = registers[3];
462 return false;
463#else
464 return true;
465#endif
466}
467
468// Read control register 0 (XCR0). Used to detect features such as AVX.
469static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
470#if defined(__GNUC__4) || defined(__clang__1)
471 // Check xgetbv; this uses a .byte sequence instead of the instruction
472 // directly because older assemblers do not include support for xgetbv and
473 // there is no easy way to conditionally compile based on the assembler used.
474 __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
475 return false;
476#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
477 unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
478 *rEAX = Result;
479 *rEDX = Result >> 32;
480 return false;
481#else
482 return true;
483#endif
484}
485
486static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
487 unsigned *Model) {
488 *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
489 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
490 if (*Family == 6 || *Family == 0xf) {
491 if (*Family == 0xf)
492 // Examine extended family ID if family ID is F.
493 *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
494 // Examine extended model ID if family ID is 6 or F.
495 *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
496 }
497}
498
499static void
500getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
501 unsigned Brand_id, unsigned Features,
502 unsigned Features2, unsigned *Type,
503 unsigned *Subtype) {
504 if (Brand_id != 0)
505 return;
506 switch (Family) {
507 case 3:
508 *Type = X86::INTEL_i386;
509 break;
510 case 4:
511 *Type = X86::INTEL_i486;
512 break;
513 case 5:
514 if (Features & (1 << X86::FEATURE_MMX)) {
515 *Type = X86::INTEL_PENTIUM_MMX;
516 break;
517 }
518 *Type = X86::INTEL_PENTIUM;
519 break;
520 case 6:
521 switch (Model) {
522 case 0x01: // Pentium Pro processor
523 *Type = X86::INTEL_PENTIUM_PRO;
524 break;
525 case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
526 // model 03
527 case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
528 // model 05, and Intel Celeron processor, model 05
529 case 0x06: // Celeron processor, model 06
530 *Type = X86::INTEL_PENTIUM_II;
531 break;
532 case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
533 // processor, model 07
534 case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
535 // model 08, and Celeron processor, model 08
536 case 0x0a: // Pentium III Xeon processor, model 0Ah
537 case 0x0b: // Pentium III processor, model 0Bh
538 *Type = X86::INTEL_PENTIUM_III;
539 break;
540 case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
541 case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
542 // 0Dh. All processors are manufactured using the 90 nm process.
543 case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
544 // Integrated Processor with Intel QuickAssist Technology
545 *Type = X86::INTEL_PENTIUM_M;
546 break;
547 case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
548 // 0Eh. All processors are manufactured using the 65 nm process.
549 *Type = X86::INTEL_CORE_DUO;
550 break; // yonah
551 case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
552 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
553 // mobile processor, Intel Core 2 Extreme processor, Intel
554 // Pentium Dual-Core processor, Intel Xeon processor, model
555 // 0Fh. All processors are manufactured using the 65 nm process.
556 case 0x16: // Intel Celeron processor model 16h. All processors are
557 // manufactured using the 65 nm process
558 *Type = X86::INTEL_CORE2; // "core2"
559 *Subtype = X86::INTEL_CORE2_65;
560 break;
561 case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
562 // 17h. All processors are manufactured using the 45 nm process.
563 //
564 // 45nm: Penryn , Wolfdale, Yorkfield (XE)
565 case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
566 // the 45 nm process.
567 *Type = X86::INTEL_CORE2; // "penryn"
568 *Subtype = X86::INTEL_CORE2_45;
569 break;
570 case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
571 // processors are manufactured using the 45 nm process.
572 case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
573 // As found in a Summer 2010 model iMac.
574 case 0x1f:
575 case 0x2e: // Nehalem EX
576 *Type = X86::INTEL_COREI7; // "nehalem"
577 *Subtype = X86::INTEL_COREI7_NEHALEM;
578 break;
579 case 0x25: // Intel Core i7, laptop version.
580 case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
581 // processors are manufactured using the 32 nm process.
582 case 0x2f: // Westmere EX
583 *Type = X86::INTEL_COREI7; // "westmere"
584 *Subtype = X86::INTEL_COREI7_WESTMERE;
585 break;
586 case 0x2a: // Intel Core i7 processor. All processors are manufactured
587 // using the 32 nm process.
588 case 0x2d:
589 *Type = X86::INTEL_COREI7; //"sandybridge"
590 *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
591 break;
592 case 0x3a:
593 case 0x3e: // Ivy Bridge EP
594 *Type = X86::INTEL_COREI7; // "ivybridge"
595 *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
596 break;
597
598 // Haswell:
599 case 0x3c:
600 case 0x3f:
601 case 0x45:
602 case 0x46:
603 *Type = X86::INTEL_COREI7; // "haswell"
604 *Subtype = X86::INTEL_COREI7_HASWELL;
605 break;
606
607 // Broadwell:
608 case 0x3d:
609 case 0x47:
610 case 0x4f:
611 case 0x56:
612 *Type = X86::INTEL_COREI7; // "broadwell"
613 *Subtype = X86::INTEL_COREI7_BROADWELL;
614 break;
615
616 // Skylake:
617 case 0x4e: // Skylake mobile
618 case 0x5e: // Skylake desktop
619 case 0x8e: // Kaby Lake mobile
620 case 0x9e: // Kaby Lake desktop
621 *Type = X86::INTEL_COREI7; // "skylake"
622 *Subtype = X86::INTEL_COREI7_SKYLAKE;
623 break;
624
625 // Skylake Xeon:
626 case 0x55:
627 *Type = X86::INTEL_COREI7;
628 *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
629 break;
630
631 // Cannonlake:
632 case 0x66:
633 *Type = X86::INTEL_COREI7;
634 *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
635 break;
636
637 case 0x1c: // Most 45 nm Intel Atom processors
638 case 0x26: // 45 nm Atom Lincroft
639 case 0x27: // 32 nm Atom Medfield
640 case 0x35: // 32 nm Atom Midview
641 case 0x36: // 32 nm Atom Midview
642 *Type = X86::INTEL_BONNELL;
643 break; // "bonnell"
644
645 // Atom Silvermont codes from the Intel software optimization guide.
646 case 0x37:
647 case 0x4a:
648 case 0x4d:
649 case 0x5a:
650 case 0x5d:
651 case 0x4c: // really airmont
652 *Type = X86::INTEL_SILVERMONT;
653 break; // "silvermont"
654 // Goldmont:
655 case 0x5c: // Apollo Lake
656 case 0x5f: // Denverton
657 case 0x7a: // Gemini Lake
658 *Type = X86::INTEL_GOLDMONT;
659 break; // "goldmont"
660 case 0x57:
661 *Type = X86::INTEL_KNL; // knl
662 break;
663 case 0x85:
664 *Type = X86::INTEL_KNM; // knm
665 break;
666
667 default: // Unknown family 6 CPU, try to guess.
668 if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
669 *Type = X86::INTEL_COREI7;
670 *Subtype = X86::INTEL_COREI7_CANNONLAKE;
671 break;
672 }
673
674 if (Features & (1 << X86::FEATURE_AVX512VL)) {
675 *Type = X86::INTEL_COREI7;
676 *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
677 break;
678 }
679
680 if (Features & (1 << X86::FEATURE_AVX512ER)) {
681 *Type = X86::INTEL_KNL; // knl
682 break;
683 }
684
685 if (Features2 & (1 << (X86::FEATURE_CLFLUSHOPT - 32))) {
686 if (Features2 & (1 << (X86::FEATURE_SHA - 32))) {
687 *Type = X86::INTEL_GOLDMONT;
688 } else {
689 *Type = X86::INTEL_COREI7;
690 *Subtype = X86::INTEL_COREI7_SKYLAKE;
691 }
692 break;
693 }
694 if (Features2 & (1 << (X86::FEATURE_ADX - 32))) {
695 *Type = X86::INTEL_COREI7;
696 *Subtype = X86::INTEL_COREI7_BROADWELL;
697 break;
698 }
699 if (Features & (1 << X86::FEATURE_AVX2)) {
700 *Type = X86::INTEL_COREI7;
701 *Subtype = X86::INTEL_COREI7_HASWELL;
702 break;
703 }
704 if (Features & (1 << X86::FEATURE_AVX)) {
705 *Type = X86::INTEL_COREI7;
706 *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
707 break;
708 }
709 if (Features & (1 << X86::FEATURE_SSE4_2)) {
710 if (Features2 & (1 << (X86::FEATURE_MOVBE - 32))) {
711 *Type = X86::INTEL_SILVERMONT;
712 } else {
713 *Type = X86::INTEL_COREI7;
714 *Subtype = X86::INTEL_COREI7_NEHALEM;
715 }
716 break;
717 }
718 if (Features & (1 << X86::FEATURE_SSE4_1)) {
719 *Type = X86::INTEL_CORE2; // "penryn"
720 *Subtype = X86::INTEL_CORE2_45;
721 break;
722 }
723 if (Features & (1 << X86::FEATURE_SSSE3)) {
724 if (Features2 & (1 << (X86::FEATURE_MOVBE - 32))) {
725 *Type = X86::INTEL_BONNELL; // "bonnell"
726 } else {
727 *Type = X86::INTEL_CORE2; // "core2"
728 *Subtype = X86::INTEL_CORE2_65;
729 }
730 break;
731 }
732 if (Features2 & (1 << (X86::FEATURE_EM64T - 32))) {
733 *Type = X86::INTEL_CORE2; // "core2"
734 *Subtype = X86::INTEL_CORE2_65;
735 break;
736 }
737 if (Features & (1 << X86::FEATURE_SSE3)) {
738 *Type = X86::INTEL_CORE_DUO;
739 break;
740 }
741 if (Features & (1 << X86::FEATURE_SSE2)) {
742 *Type = X86::INTEL_PENTIUM_M;
743 break;
744 }
745 if (Features & (1 << X86::FEATURE_SSE)) {
746 *Type = X86::INTEL_PENTIUM_III;
747 break;
748 }
749 if (Features & (1 << X86::FEATURE_MMX)) {
750 *Type = X86::INTEL_PENTIUM_II;
751 break;
752 }
753 *Type = X86::INTEL_PENTIUM_PRO;
754 break;
755 }
756 break;
757 case 15: {
758 if (Features2 & (1 << (X86::FEATURE_EM64T - 32))) {
759 *Type = X86::INTEL_NOCONA;
760 break;
761 }
762 if (Features & (1 << X86::FEATURE_SSE3)) {
763 *Type = X86::INTEL_PRESCOTT;
764 break;
765 }
766 *Type = X86::INTEL_PENTIUM_IV;
767 break;
768 }
769 default:
770 break; /*"generic"*/
771 }
772}
773
774static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
775 unsigned Features, unsigned *Type,
776 unsigned *Subtype) {
777 // FIXME: this poorly matches the generated SubtargetFeatureKV table. There
778 // appears to be no way to generate the wide variety of AMD-specific targets
779 // from the information returned from CPUID.
780 switch (Family) {
781 case 4:
782 *Type = X86::AMD_i486;
783 break;
784 case 5:
785 *Type = X86::AMDPENTIUM;
786 switch (Model) {
787 case 6:
788 case 7:
789 *Subtype = X86::AMDPENTIUM_K6;
790 break; // "k6"
791 case 8:
792 *Subtype = X86::AMDPENTIUM_K62;
793 break; // "k6-2"
794 case 9:
795 case 13:
796 *Subtype = X86::AMDPENTIUM_K63;
797 break; // "k6-3"
798 case 10:
799 *Subtype = X86::AMDPENTIUM_GEODE;
800 break; // "geode"
801 }
802 break;
803 case 6:
804 if (Features & (1 << X86::FEATURE_SSE)) {
805 *Type = X86::AMD_ATHLON_XP;
806 break; // "athlon-xp"
807 }
808 *Type = X86::AMD_ATHLON;
809 break; // "athlon"
810 case 15:
811 if (Features & (1 << X86::FEATURE_SSE3)) {
812 *Type = X86::AMD_K8SSE3;
813 break; // "k8-sse3"
814 }
815 *Type = X86::AMD_K8;
816 break; // "k8"
817 case 16:
818 *Type = X86::AMDFAM10H; // "amdfam10"
819 switch (Model) {
820 case 2:
821 *Subtype = X86::AMDFAM10H_BARCELONA;
822 break;
823 case 4:
824 *Subtype = X86::AMDFAM10H_SHANGHAI;
825 break;
826 case 8:
827 *Subtype = X86::AMDFAM10H_ISTANBUL;
828 break;
829 }
830 break;
831 case 20:
832 *Type = X86::AMD_BTVER1;
833 break; // "btver1";
834 case 21:
835 *Type = X86::AMDFAM15H;
836 if (Model >= 0x60 && Model <= 0x7f) {
837 *Subtype = X86::AMDFAM15H_BDVER4;
838 break; // "bdver4"; 60h-7Fh: Excavator
839 }
840 if (Model >= 0x30 && Model <= 0x3f) {
841 *Subtype = X86::AMDFAM15H_BDVER3;
842 break; // "bdver3"; 30h-3Fh: Steamroller
843 }
844 if (Model >= 0x10 && Model <= 0x1f) {
845 *Subtype = X86::AMDFAM15H_BDVER2;
846 break; // "bdver2"; 10h-1Fh: Piledriver
847 }
848 if (Model <= 0x0f) {
849 *Subtype = X86::AMDFAM15H_BDVER1;
850 break; // "bdver1"; 00h-0Fh: Bulldozer
851 }
852 break;
853 case 22:
854 *Type = X86::AMD_BTVER2;
855 break; // "btver2"
856 case 23:
857 *Type = X86::AMDFAM17H;
858 *Subtype = X86::AMDFAM17H_ZNVER1;
859 break;
860 default:
861 break; // "generic"
862 }
863}
864
865static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
866 unsigned *FeaturesOut,
867 unsigned *Features2Out) {
868 unsigned Features = 0;
869 unsigned Features2 = 0;
870 unsigned EAX, EBX;
871
872 if ((EDX >> 15) & 1)
873 Features |= 1 << X86::FEATURE_CMOV;
874 if ((EDX >> 23) & 1)
875 Features |= 1 << X86::FEATURE_MMX;
876 if ((EDX >> 25) & 1)
877 Features |= 1 << X86::FEATURE_SSE;
878 if ((EDX >> 26) & 1)
879 Features |= 1 << X86::FEATURE_SSE2;
880
881 if ((ECX >> 0) & 1)
882 Features |= 1 << X86::FEATURE_SSE3;
883 if ((ECX >> 1) & 1)
884 Features |= 1 << X86::FEATURE_PCLMUL;
885 if ((ECX >> 9) & 1)
886 Features |= 1 << X86::FEATURE_SSSE3;
887 if ((ECX >> 12) & 1)
888 Features |= 1 << X86::FEATURE_FMA;
889 if ((ECX >> 19) & 1)
890 Features |= 1 << X86::FEATURE_SSE4_1;
891 if ((ECX >> 20) & 1)
892 Features |= 1 << X86::FEATURE_SSE4_2;
893 if ((ECX >> 23) & 1)
894 Features |= 1 << X86::FEATURE_POPCNT;
895 if ((ECX >> 25) & 1)
896 Features |= 1 << X86::FEATURE_AES;
897
898 if ((ECX >> 22) & 1)
899 Features2 |= 1 << (X86::FEATURE_MOVBE - 32);
900
901 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
902 // indicates that the AVX registers will be saved and restored on context
903 // switch, then we have full AVX support.
904 const unsigned AVXBits = (1 << 27) | (1 << 28);
905 bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
906 ((EAX & 0x6) == 0x6);
907 bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
908
909 if (HasAVX)
910 Features |= 1 << X86::FEATURE_AVX;
911
912 bool HasLeaf7 =
913 MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
914
915 if (HasLeaf7 && ((EBX >> 3) & 1))
916 Features |= 1 << X86::FEATURE_BMI;
917 if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
918 Features |= 1 << X86::FEATURE_AVX2;
919 if (HasLeaf7 && ((EBX >> 9) & 1))
920 Features |= 1 << X86::FEATURE_BMI2;
921 if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
922 Features |= 1 << X86::FEATURE_AVX512F;
923 if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
924 Features |= 1 << X86::FEATURE_AVX512DQ;
925 if (HasLeaf7 && ((EBX >> 19) & 1))
926 Features2 |= 1 << (X86::FEATURE_ADX - 32);
927 if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
928 Features |= 1 << X86::FEATURE_AVX512IFMA;
929 if (HasLeaf7 && ((EBX >> 23) & 1))
930 Features2 |= 1 << (X86::FEATURE_CLFLUSHOPT - 32);
931 if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
932 Features |= 1 << X86::FEATURE_AVX512PF;
933 if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
934 Features |= 1 << X86::FEATURE_AVX512ER;
935 if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
936 Features |= 1 << X86::FEATURE_AVX512CD;
937 if (HasLeaf7 && ((EBX >> 29) & 1))
938 Features2 |= 1 << (X86::FEATURE_SHA - 32);
939 if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
940 Features |= 1 << X86::FEATURE_AVX512BW;
941 if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
942 Features |= 1 << X86::FEATURE_AVX512VL;
943
944 if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
945 Features |= 1 << X86::FEATURE_AVX512VBMI;
946 if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
947 Features |= 1 << X86::FEATURE_AVX512VPOPCNTDQ;
948
949 if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
950 Features |= 1 << X86::FEATURE_AVX5124VNNIW;
951 if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
952 Features |= 1 << X86::FEATURE_AVX5124FMAPS;
953
954 unsigned MaxExtLevel;
955 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
956
957 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
958 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
959 if (HasExtLeaf1 && ((ECX >> 6) & 1))
960 Features |= 1 << X86::FEATURE_SSE4_A;
961 if (HasExtLeaf1 && ((ECX >> 11) & 1))
962 Features |= 1 << X86::FEATURE_XOP;
963 if (HasExtLeaf1 && ((ECX >> 16) & 1))
964 Features |= 1 << X86::FEATURE_FMA4;
965
966 if (HasExtLeaf1 && ((EDX >> 29) & 1))
967 Features2 |= 1 << (X86::FEATURE_EM64T - 32);
968
969 *FeaturesOut = Features;
970 *Features2Out = Features2;
971}
972
973StringRef sys::getHostCPUName() {
974 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
975 unsigned MaxLeaf, Vendor;
976
977#if defined(__GNUC__4) || defined(__clang__1)
978 //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
979 // and simplify it to not invoke __cpuid (like cpu_model.c in
980 // compiler-rt/lib/builtins/cpu_model.c?
981 // Opting for the second option.
982 if(!isCpuIdSupported())
983 return "generic";
984#endif
985 if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
986 return "generic";
987 getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
988
989 unsigned Brand_id = EBX & 0xff;
990 unsigned Family = 0, Model = 0;
991 unsigned Features = 0, Features2 = 0;
992 detectX86FamilyModel(EAX, &Family, &Model);
993 getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2);
994
995 unsigned Type = 0;
996 unsigned Subtype = 0;
997
998 if (Vendor == SIG_INTEL) {
999 getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
1000 Features2, &Type, &Subtype);
1001 } else if (Vendor == SIG_AMD) {
1002 getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
1003 }
1004
1005 // Check subtypes first since those are more specific.
1006#define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
1007 if (Subtype == X86::ENUM) \
1008 return ARCHNAME;
1009#include "llvm/Support/X86TargetParser.def"
1010
1011 // Now check types.
1012#define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
1013 if (Type == X86::ENUM) \
1014 return ARCHNAME;
1015#include "llvm/Support/X86TargetParser.def"
1016
1017 return "generic";
1018}
1019
1020#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1021StringRef sys::getHostCPUName() {
1022 host_basic_info_data_t hostInfo;
1023 mach_msg_type_number_t infoCount;
1024
1025 infoCount = HOST_BASIC_INFO_COUNT;
1026 host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
1027 &infoCount);
1028
1029 if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1030 return "generic";
1031
1032 switch (hostInfo.cpu_subtype) {
1033 case CPU_SUBTYPE_POWERPC_601:
1034 return "601";
1035 case CPU_SUBTYPE_POWERPC_602:
1036 return "602";
1037 case CPU_SUBTYPE_POWERPC_603:
1038 return "603";
1039 case CPU_SUBTYPE_POWERPC_603e:
1040 return "603e";
1041 case CPU_SUBTYPE_POWERPC_603ev:
1042 return "603ev";
1043 case CPU_SUBTYPE_POWERPC_604:
1044 return "604";
1045 case CPU_SUBTYPE_POWERPC_604e:
1046 return "604e";
1047 case CPU_SUBTYPE_POWERPC_620:
1048 return "620";
1049 case CPU_SUBTYPE_POWERPC_750:
1050 return "750";
1051 case CPU_SUBTYPE_POWERPC_7400:
1052 return "7400";
1053 case CPU_SUBTYPE_POWERPC_7450:
1054 return "7450";
1055 case CPU_SUBTYPE_POWERPC_970:
1056 return "970";
1057 default:;
1058 }
1059
1060 return "generic";
1061}
1062#elif defined(__linux__1) && (defined(__ppc__) || defined(__powerpc__))
1063StringRef sys::getHostCPUName() {
1064 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1065 const StringRef& Content = P ? P->getBuffer() : "";
1066 return detail::getHostCPUNameForPowerPC(Content);
1067}
1068#elif defined(__linux__1) && (defined(__arm__) || defined(__aarch64__))
1069StringRef sys::getHostCPUName() {
1070 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1071 const StringRef& Content = P ? P->getBuffer() : "";
1072 return detail::getHostCPUNameForARM(Content);
1073}
1074#elif defined(__linux__1) && defined(__s390x__)
1075StringRef sys::getHostCPUName() {
1076 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1077 const StringRef& Content = P ? P->getBuffer() : "";
1078 return detail::getHostCPUNameForS390x(Content);
1079}
1080#else
1081StringRef sys::getHostCPUName() { return "generic"; }
1082#endif
1083
1084#if defined(__linux__1) && defined(__x86_64__1)
1085// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1086// using the number of unique physical/core id pairs. The following
1087// implementation reads the /proc/cpuinfo format on an x86_64 system.
1088static int computeHostNumPhysicalCores() {
1089 // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1090 // mmapped because it appears to have 0 size.
1091 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1092 llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1093 if (std::error_code EC = Text.getError()) {
1094 llvm::errs() << "Can't read "
1095 << "/proc/cpuinfo: " << EC.message() << "\n";
1096 return -1;
1097 }
1098 SmallVector<StringRef, 8> strs;
1099 (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1100 /*KeepEmpty=*/false);
1101 int CurPhysicalId = -1;
1102 int CurCoreId = -1;
1103 SmallSet<std::pair<int, int>, 32> UniqueItems;
1104 for (auto &Line : strs) {
1105 Line = Line.trim();
1106 if (!Line.startswith("physical id") && !Line.startswith("core id"))
1107 continue;
1108 std::pair<StringRef, StringRef> Data = Line.split(':');
1109 auto Name = Data.first.trim();
1110 auto Val = Data.second.trim();
1111 if (Name == "physical id") {
1112 assert(CurPhysicalId == -1 &&(static_cast <bool> (CurPhysicalId == -1 && "Expected a core id before seeing another physical id"
) ? void (0) : __assert_fail ("CurPhysicalId == -1 && \"Expected a core id before seeing another physical id\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/Support/Host.cpp"
, 1113, __extension__ __PRETTY_FUNCTION__))
1113 "Expected a core id before seeing another physical id")(static_cast <bool> (CurPhysicalId == -1 && "Expected a core id before seeing another physical id"
) ? void (0) : __assert_fail ("CurPhysicalId == -1 && \"Expected a core id before seeing another physical id\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/Support/Host.cpp"
, 1113, __extension__ __PRETTY_FUNCTION__))
;
1114 Val.getAsInteger(10, CurPhysicalId);
1115 }
1116 if (Name == "core id") {
1117 assert(CurCoreId == -1 &&(static_cast <bool> (CurCoreId == -1 && "Expected a physical id before seeing another core id"
) ? void (0) : __assert_fail ("CurCoreId == -1 && \"Expected a physical id before seeing another core id\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/Support/Host.cpp"
, 1118, __extension__ __PRETTY_FUNCTION__))
1118 "Expected a physical id before seeing another core id")(static_cast <bool> (CurCoreId == -1 && "Expected a physical id before seeing another core id"
) ? void (0) : __assert_fail ("CurCoreId == -1 && \"Expected a physical id before seeing another core id\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/Support/Host.cpp"
, 1118, __extension__ __PRETTY_FUNCTION__))
;
1119 Val.getAsInteger(10, CurCoreId);
1120 }
1121 if (CurPhysicalId != -1 && CurCoreId != -1) {
1122 UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
1123 CurPhysicalId = -1;
1124 CurCoreId = -1;
1125 }
1126 }
1127 return UniqueItems.size();
1128}
1129#elif defined(__APPLE__) && defined(__x86_64__1)
1130#include <sys/param.h>
1131#include <sys/sysctl.h>
1132
1133// Gets the number of *physical cores* on the machine.
1134static int computeHostNumPhysicalCores() {
1135 uint32_t count;
1136 size_t len = sizeof(count);
1137 sysctlbyname("hw.physicalcpu", &count, &len, NULL__null, 0);
1138 if (count < 1) {
1139 int nm[2];
1140 nm[0] = CTL_HW;
1141 nm[1] = HW_AVAILCPU;
1142 sysctl(nm, 2, &count, &len, NULL__null, 0);
1143 if (count < 1)
1144 return -1;
1145 }
1146 return count;
1147}
1148#else
1149// On other systems, return -1 to indicate unknown.
1150static int computeHostNumPhysicalCores() { return -1; }
1151#endif
1152
1153int sys::getHostNumPhysicalCores() {
1154 static int NumCores = computeHostNumPhysicalCores();
1155 return NumCores;
1156}
1157
1158#if defined(__i386__) || defined(_M_IX86) || \
1159 defined(__x86_64__1) || defined(_M_X64)
1160bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1161 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1162 unsigned MaxLevel;
1163 union {
1164 unsigned u[3];
1165 char c[12];
1166 } text;
1167
1168 if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1169 MaxLevel < 1)
1170 return false;
1171
1172 getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1173
1174 Features["cmov"] = (EDX >> 15) & 1;
1175 Features["mmx"] = (EDX >> 23) & 1;
1176 Features["sse"] = (EDX >> 25) & 1;
1177 Features["sse2"] = (EDX >> 26) & 1;
1178
1179 Features["sse3"] = (ECX >> 0) & 1;
1180 Features["pclmul"] = (ECX >> 1) & 1;
1181 Features["ssse3"] = (ECX >> 9) & 1;
1182 Features["cx16"] = (ECX >> 13) & 1;
1183 Features["sse4.1"] = (ECX >> 19) & 1;
1184 Features["sse4.2"] = (ECX >> 20) & 1;
1185 Features["movbe"] = (ECX >> 22) & 1;
1186 Features["popcnt"] = (ECX >> 23) & 1;
1187 Features["aes"] = (ECX >> 25) & 1;
1188 Features["rdrnd"] = (ECX >> 30) & 1;
1189
1190 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1191 // indicates that the AVX registers will be saved and restored on context
1192 // switch, then we have full AVX support.
1193 bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1194 !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1195 // AVX512 requires additional context to be saved by the OS.
1196 bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1197
1198 Features["avx"] = HasAVXSave;
1199 Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave;
1200 // Only enable XSAVE if OS has enabled support for saving YMM state.
1201 Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1202 Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave;
1203
1204 unsigned MaxExtLevel;
1205 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1206
1207 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1208 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1209 Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1);
1210 Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
1211 Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
1212 Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
1213 Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1214 Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
1215 Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1216 Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
1217 Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1218
1219 bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1220 !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1221 Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
1222
1223 bool HasLeaf7 =
1224 MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1225
1226 Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
1227 Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
1228 Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
1229 // AVX2 is only supported if we have the OS save support from AVX.
1230 Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave;
1231 Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
1232 Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
1233 // AVX512 is only supported if the OS supports the context save for it.
1234 Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1235 Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1236 Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
1237 Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
1238 Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1239 Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1240 Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
1241 Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1242 Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1243 Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1244 Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
1245 Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1246 Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1247
1248 Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1);
1249 Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
1250 Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
1251 Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save;
1252 Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1);
1253 Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1);
1254 Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave;
1255 Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1256 Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1257 Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1258 Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1259 Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1);
1260
1261 Features["ibt"] = HasLeaf7 && ((EDX >> 20) & 1);
1262
1263 bool HasLeafD = MaxLevel >= 0xd &&
1264 !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1265
1266 // Only enable XSAVE if OS has enabled support for saving YMM state.
1267 Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1268 Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1269 Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1270
1271 return true;
1272}
1273#elif defined(__linux__1) && (defined(__arm__) || defined(__aarch64__))
1274bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1275 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1276 if (!P)
1277 return false;
1278
1279 SmallVector<StringRef, 32> Lines;
1280 P->getBuffer().split(Lines, "\n");
1281
1282 SmallVector<StringRef, 32> CPUFeatures;
1283
1284 // Look for the CPU features.
1285 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1286 if (Lines[I].startswith("Features")) {
1287 Lines[I].split(CPUFeatures, ' ');
1288 break;
1289 }
1290
1291#if defined(__aarch64__)
1292 // Keep track of which crypto features we have seen
1293 enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1294 uint32_t crypto = 0;
1295#endif
1296
1297 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1298 StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1299#if defined(__aarch64__)
1300 .Case("asimd", "neon")
1301 .Case("fp", "fp-armv8")
1302 .Case("crc32", "crc")
1303#else
1304 .Case("half", "fp16")
1305 .Case("neon", "neon")
1306 .Case("vfpv3", "vfp3")
1307 .Case("vfpv3d16", "d16")
1308 .Case("vfpv4", "vfp4")
1309 .Case("idiva", "hwdiv-arm")
1310 .Case("idivt", "hwdiv")
1311#endif
1312 .Default("");
1313
1314#if defined(__aarch64__)
1315 // We need to check crypto separately since we need all of the crypto
1316 // extensions to enable the subtarget feature
1317 if (CPUFeatures[I] == "aes")
1318 crypto |= CAP_AES;
1319 else if (CPUFeatures[I] == "pmull")
1320 crypto |= CAP_PMULL;
1321 else if (CPUFeatures[I] == "sha1")
1322 crypto |= CAP_SHA1;
1323 else if (CPUFeatures[I] == "sha2")
1324 crypto |= CAP_SHA2;
1325#endif
1326
1327 if (LLVMFeatureStr != "")
1328 Features[LLVMFeatureStr] = true;
1329 }
1330
1331#if defined(__aarch64__)
1332 // If we have all crypto bits we can add the feature
1333 if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1334 Features["crypto"] = true;
1335#endif
1336
1337 return true;
1338}
1339#else
1340bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1341#endif
1342
1343std::string sys::getProcessTriple() {
1344 std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE"x86_64-pc-linux-gnu");
1345 Triple PT(Triple::normalize(TargetTripleString));
1346
1347 if (sizeof(void *) == 8 && PT.isArch32Bit())
1348 PT = PT.get64BitArchVariant();
1349 if (sizeof(void *) == 4 && PT.isArch64Bit())
1350 PT = PT.get32BitArchVariant();
1351
1352 return PT.str();
1353}