Bug Summary

File:lib/Transforms/Utils/InlineFunction.cpp
Warning:line 1508, column 12
Value stored to 'newEntryCount' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InlineFunction.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/Transforms/Utils -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp -faddrsig
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements inlining of a function into a call site, resolving
10// parameters and the return value as appropriate.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/None.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/BlockFrequencyInfo.h"
26#include "llvm/Analysis/CallGraph.h"
27#include "llvm/Analysis/CaptureTracking.h"
28#include "llvm/Analysis/EHPersonalities.h"
29#include "llvm/Analysis/InstructionSimplify.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/Analysis/VectorUtils.h"
34#include "llvm/IR/Argument.h"
35#include "llvm/IR/BasicBlock.h"
36#include "llvm/IR/CFG.h"
37#include "llvm/IR/CallSite.h"
38#include "llvm/IR/Constant.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DIBuilder.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugInfoMetadata.h"
43#include "llvm/IR/DebugLoc.h"
44#include "llvm/IR/DerivedTypes.h"
45#include "llvm/IR/Dominators.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/IRBuilder.h"
48#include "llvm/IR/InstrTypes.h"
49#include "llvm/IR/Instruction.h"
50#include "llvm/IR/Instructions.h"
51#include "llvm/IR/IntrinsicInst.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/Type.h"
58#include "llvm/IR/User.h"
59#include "llvm/IR/Value.h"
60#include "llvm/Support/Casting.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Transforms/Utils/Cloning.h"
64#include "llvm/Transforms/Utils/ValueMapper.h"
65#include <algorithm>
66#include <cassert>
67#include <cstdint>
68#include <iterator>
69#include <limits>
70#include <string>
71#include <utility>
72#include <vector>
73
74using namespace llvm;
75using ProfileCount = Function::ProfileCount;
76
77static cl::opt<bool>
78EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
79 cl::Hidden,
80 cl::desc("Convert noalias attributes to metadata during inlining."));
81
82static cl::opt<bool>
83PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
84 cl::init(true), cl::Hidden,
85 cl::desc("Convert align attributes to assumptions during inlining."));
86
87llvm::InlineResult llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
88 AAResults *CalleeAAR,
89 bool InsertLifetime) {
90 return InlineFunction(CallSite(CI), IFI, CalleeAAR, InsertLifetime);
91}
92
93llvm::InlineResult llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
94 AAResults *CalleeAAR,
95 bool InsertLifetime) {
96 return InlineFunction(CallSite(II), IFI, CalleeAAR, InsertLifetime);
97}
98
99namespace {
100
101 /// A class for recording information about inlining a landing pad.
102 class LandingPadInliningInfo {
103 /// Destination of the invoke's unwind.
104 BasicBlock *OuterResumeDest;
105
106 /// Destination for the callee's resume.
107 BasicBlock *InnerResumeDest = nullptr;
108
109 /// LandingPadInst associated with the invoke.
110 LandingPadInst *CallerLPad = nullptr;
111
112 /// PHI for EH values from landingpad insts.
113 PHINode *InnerEHValuesPHI = nullptr;
114
115 SmallVector<Value*, 8> UnwindDestPHIValues;
116
117 public:
118 LandingPadInliningInfo(InvokeInst *II)
119 : OuterResumeDest(II->getUnwindDest()) {
120 // If there are PHI nodes in the unwind destination block, we need to keep
121 // track of which values came into them from the invoke before removing
122 // the edge from this block.
123 BasicBlock *InvokeBB = II->getParent();
124 BasicBlock::iterator I = OuterResumeDest->begin();
125 for (; isa<PHINode>(I); ++I) {
126 // Save the value to use for this edge.
127 PHINode *PHI = cast<PHINode>(I);
128 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
129 }
130
131 CallerLPad = cast<LandingPadInst>(I);
132 }
133
134 /// The outer unwind destination is the target of
135 /// unwind edges introduced for calls within the inlined function.
136 BasicBlock *getOuterResumeDest() const {
137 return OuterResumeDest;
138 }
139
140 BasicBlock *getInnerResumeDest();
141
142 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
143
144 /// Forward the 'resume' instruction to the caller's landing pad block.
145 /// When the landing pad block has only one predecessor, this is
146 /// a simple branch. When there is more than one predecessor, we need to
147 /// split the landing pad block after the landingpad instruction and jump
148 /// to there.
149 void forwardResume(ResumeInst *RI,
150 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
151
152 /// Add incoming-PHI values to the unwind destination block for the given
153 /// basic block, using the values for the original invoke's source block.
154 void addIncomingPHIValuesFor(BasicBlock *BB) const {
155 addIncomingPHIValuesForInto(BB, OuterResumeDest);
156 }
157
158 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
159 BasicBlock::iterator I = dest->begin();
160 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
161 PHINode *phi = cast<PHINode>(I);
162 phi->addIncoming(UnwindDestPHIValues[i], src);
163 }
164 }
165 };
166
167} // end anonymous namespace
168
169/// Get or create a target for the branch from ResumeInsts.
170BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
171 if (InnerResumeDest) return InnerResumeDest;
172
173 // Split the landing pad.
174 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
175 InnerResumeDest =
176 OuterResumeDest->splitBasicBlock(SplitPoint,
177 OuterResumeDest->getName() + ".body");
178
179 // The number of incoming edges we expect to the inner landing pad.
180 const unsigned PHICapacity = 2;
181
182 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
183 Instruction *InsertPoint = &InnerResumeDest->front();
184 BasicBlock::iterator I = OuterResumeDest->begin();
185 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
186 PHINode *OuterPHI = cast<PHINode>(I);
187 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
188 OuterPHI->getName() + ".lpad-body",
189 InsertPoint);
190 OuterPHI->replaceAllUsesWith(InnerPHI);
191 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
192 }
193
194 // Create a PHI for the exception values.
195 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
196 "eh.lpad-body", InsertPoint);
197 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
198 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
199
200 // All done.
201 return InnerResumeDest;
202}
203
204/// Forward the 'resume' instruction to the caller's landing pad block.
205/// When the landing pad block has only one predecessor, this is a simple
206/// branch. When there is more than one predecessor, we need to split the
207/// landing pad block after the landingpad instruction and jump to there.
208void LandingPadInliningInfo::forwardResume(
209 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
210 BasicBlock *Dest = getInnerResumeDest();
211 BasicBlock *Src = RI->getParent();
212
213 BranchInst::Create(Dest, Src);
214
215 // Update the PHIs in the destination. They were inserted in an order which
216 // makes this work.
217 addIncomingPHIValuesForInto(Src, Dest);
218
219 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
220 RI->eraseFromParent();
221}
222
223/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
224static Value *getParentPad(Value *EHPad) {
225 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
226 return FPI->getParentPad();
227 return cast<CatchSwitchInst>(EHPad)->getParentPad();
228}
229
230using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
231
232/// Helper for getUnwindDestToken that does the descendant-ward part of
233/// the search.
234static Value *getUnwindDestTokenHelper(Instruction *EHPad,
235 UnwindDestMemoTy &MemoMap) {
236 SmallVector<Instruction *, 8> Worklist(1, EHPad);
237
238 while (!Worklist.empty()) {
239 Instruction *CurrentPad = Worklist.pop_back_val();
240 // We only put pads on the worklist that aren't in the MemoMap. When
241 // we find an unwind dest for a pad we may update its ancestors, but
242 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
243 // so they should never get updated while queued on the worklist.
244 assert(!MemoMap.count(CurrentPad))((!MemoMap.count(CurrentPad)) ? static_cast<void> (0) :
__assert_fail ("!MemoMap.count(CurrentPad)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 244, __PRETTY_FUNCTION__))
;
245 Value *UnwindDestToken = nullptr;
246 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
247 if (CatchSwitch->hasUnwindDest()) {
248 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
249 } else {
250 // Catchswitch doesn't have a 'nounwind' variant, and one might be
251 // annotated as "unwinds to caller" when really it's nounwind (see
252 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
253 // parent's unwind dest from this. We can check its catchpads'
254 // descendants, since they might include a cleanuppad with an
255 // "unwinds to caller" cleanupret, which can be trusted.
256 for (auto HI = CatchSwitch->handler_begin(),
257 HE = CatchSwitch->handler_end();
258 HI != HE && !UnwindDestToken; ++HI) {
259 BasicBlock *HandlerBlock = *HI;
260 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
261 for (User *Child : CatchPad->users()) {
262 // Intentionally ignore invokes here -- since the catchswitch is
263 // marked "unwind to caller", it would be a verifier error if it
264 // contained an invoke which unwinds out of it, so any invoke we'd
265 // encounter must unwind to some child of the catch.
266 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
267 continue;
268
269 Instruction *ChildPad = cast<Instruction>(Child);
270 auto Memo = MemoMap.find(ChildPad);
271 if (Memo == MemoMap.end()) {
272 // Haven't figured out this child pad yet; queue it.
273 Worklist.push_back(ChildPad);
274 continue;
275 }
276 // We've already checked this child, but might have found that
277 // it offers no proof either way.
278 Value *ChildUnwindDestToken = Memo->second;
279 if (!ChildUnwindDestToken)
280 continue;
281 // We already know the child's unwind dest, which can either
282 // be ConstantTokenNone to indicate unwind to caller, or can
283 // be another child of the catchpad. Only the former indicates
284 // the unwind dest of the catchswitch.
285 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
286 UnwindDestToken = ChildUnwindDestToken;
287 break;
288 }
289 assert(getParentPad(ChildUnwindDestToken) == CatchPad)((getParentPad(ChildUnwindDestToken) == CatchPad) ? static_cast
<void> (0) : __assert_fail ("getParentPad(ChildUnwindDestToken) == CatchPad"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 289, __PRETTY_FUNCTION__))
;
290 }
291 }
292 }
293 } else {
294 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
295 for (User *U : CleanupPad->users()) {
296 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
297 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
298 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
299 else
300 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
301 break;
302 }
303 Value *ChildUnwindDestToken;
304 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
305 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
306 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
307 Instruction *ChildPad = cast<Instruction>(U);
308 auto Memo = MemoMap.find(ChildPad);
309 if (Memo == MemoMap.end()) {
310 // Haven't resolved this child yet; queue it and keep searching.
311 Worklist.push_back(ChildPad);
312 continue;
313 }
314 // We've checked this child, but still need to ignore it if it
315 // had no proof either way.
316 ChildUnwindDestToken = Memo->second;
317 if (!ChildUnwindDestToken)
318 continue;
319 } else {
320 // Not a relevant user of the cleanuppad
321 continue;
322 }
323 // In a well-formed program, the child/invoke must either unwind to
324 // an(other) child of the cleanup, or exit the cleanup. In the
325 // first case, continue searching.
326 if (isa<Instruction>(ChildUnwindDestToken) &&
327 getParentPad(ChildUnwindDestToken) == CleanupPad)
328 continue;
329 UnwindDestToken = ChildUnwindDestToken;
330 break;
331 }
332 }
333 // If we haven't found an unwind dest for CurrentPad, we may have queued its
334 // children, so move on to the next in the worklist.
335 if (!UnwindDestToken)
336 continue;
337
338 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
339 // any ancestors of CurrentPad up to but not including UnwindDestToken's
340 // parent pad. Record this in the memo map, and check to see if the
341 // original EHPad being queried is one of the ones exited.
342 Value *UnwindParent;
343 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
344 UnwindParent = getParentPad(UnwindPad);
345 else
346 UnwindParent = nullptr;
347 bool ExitedOriginalPad = false;
348 for (Instruction *ExitedPad = CurrentPad;
349 ExitedPad && ExitedPad != UnwindParent;
350 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
351 // Skip over catchpads since they just follow their catchswitches.
352 if (isa<CatchPadInst>(ExitedPad))
353 continue;
354 MemoMap[ExitedPad] = UnwindDestToken;
355 ExitedOriginalPad |= (ExitedPad == EHPad);
356 }
357
358 if (ExitedOriginalPad)
359 return UnwindDestToken;
360
361 // Continue the search.
362 }
363
364 // No definitive information is contained within this funclet.
365 return nullptr;
366}
367
368/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
369/// return that pad instruction. If it unwinds to caller, return
370/// ConstantTokenNone. If it does not have a definitive unwind destination,
371/// return nullptr.
372///
373/// This routine gets invoked for calls in funclets in inlinees when inlining
374/// an invoke. Since many funclets don't have calls inside them, it's queried
375/// on-demand rather than building a map of pads to unwind dests up front.
376/// Determining a funclet's unwind dest may require recursively searching its
377/// descendants, and also ancestors and cousins if the descendants don't provide
378/// an answer. Since most funclets will have their unwind dest immediately
379/// available as the unwind dest of a catchswitch or cleanupret, this routine
380/// searches top-down from the given pad and then up. To avoid worst-case
381/// quadratic run-time given that approach, it uses a memo map to avoid
382/// re-processing funclet trees. The callers that rewrite the IR as they go
383/// take advantage of this, for correctness, by checking/forcing rewritten
384/// pads' entries to match the original callee view.
385static Value *getUnwindDestToken(Instruction *EHPad,
386 UnwindDestMemoTy &MemoMap) {
387 // Catchpads unwind to the same place as their catchswitch;
388 // redirct any queries on catchpads so the code below can
389 // deal with just catchswitches and cleanuppads.
390 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
391 EHPad = CPI->getCatchSwitch();
392
393 // Check if we've already determined the unwind dest for this pad.
394 auto Memo = MemoMap.find(EHPad);
395 if (Memo != MemoMap.end())
396 return Memo->second;
397
398 // Search EHPad and, if necessary, its descendants.
399 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
400 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0))(((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)
) ? static_cast<void> (0) : __assert_fail ("(UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 400, __PRETTY_FUNCTION__))
;
401 if (UnwindDestToken)
402 return UnwindDestToken;
403
404 // No information is available for this EHPad from itself or any of its
405 // descendants. An unwind all the way out to a pad in the caller would
406 // need also to agree with the unwind dest of the parent funclet, so
407 // search up the chain to try to find a funclet with information. Put
408 // null entries in the memo map to avoid re-processing as we go up.
409 MemoMap[EHPad] = nullptr;
410#ifndef NDEBUG
411 SmallPtrSet<Instruction *, 4> TempMemos;
412 TempMemos.insert(EHPad);
413#endif
414 Instruction *LastUselessPad = EHPad;
415 Value *AncestorToken;
416 for (AncestorToken = getParentPad(EHPad);
417 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
418 AncestorToken = getParentPad(AncestorToken)) {
419 // Skip over catchpads since they just follow their catchswitches.
420 if (isa<CatchPadInst>(AncestorPad))
421 continue;
422 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
423 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
424 // call to getUnwindDestToken, that would mean that AncestorPad had no
425 // information in itself, its descendants, or its ancestors. If that
426 // were the case, then we should also have recorded the lack of information
427 // for the descendant that we're coming from. So assert that we don't
428 // find a null entry in the MemoMap for AncestorPad.
429 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad])((!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]) ? static_cast
<void> (0) : __assert_fail ("!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 429, __PRETTY_FUNCTION__))
;
430 auto AncestorMemo = MemoMap.find(AncestorPad);
431 if (AncestorMemo == MemoMap.end()) {
432 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
433 } else {
434 UnwindDestToken = AncestorMemo->second;
435 }
436 if (UnwindDestToken)
437 break;
438 LastUselessPad = AncestorPad;
439 MemoMap[LastUselessPad] = nullptr;
440#ifndef NDEBUG
441 TempMemos.insert(LastUselessPad);
442#endif
443 }
444
445 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
446 // returned nullptr (and likewise for EHPad and any of its ancestors up to
447 // LastUselessPad), so LastUselessPad has no information from below. Since
448 // getUnwindDestTokenHelper must investigate all downward paths through
449 // no-information nodes to prove that a node has no information like this,
450 // and since any time it finds information it records it in the MemoMap for
451 // not just the immediately-containing funclet but also any ancestors also
452 // exited, it must be the case that, walking downward from LastUselessPad,
453 // visiting just those nodes which have not been mapped to an unwind dest
454 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
455 // they are just used to keep getUnwindDestTokenHelper from repeating work),
456 // any node visited must have been exhaustively searched with no information
457 // for it found.
458 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
459 while (!Worklist.empty()) {
460 Instruction *UselessPad = Worklist.pop_back_val();
461 auto Memo = MemoMap.find(UselessPad);
462 if (Memo != MemoMap.end() && Memo->second) {
463 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
464 // that it is a funclet that does have information about unwinding to
465 // a particular destination; its parent was a useless pad.
466 // Since its parent has no information, the unwind edge must not escape
467 // the parent, and must target a sibling of this pad. This local unwind
468 // gives us no information about EHPad. Leave it and the subtree rooted
469 // at it alone.
470 assert(getParentPad(Memo->second) == getParentPad(UselessPad))((getParentPad(Memo->second) == getParentPad(UselessPad)) ?
static_cast<void> (0) : __assert_fail ("getParentPad(Memo->second) == getParentPad(UselessPad)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 470, __PRETTY_FUNCTION__))
;
471 continue;
472 }
473 // We know we don't have information for UselesPad. If it has an entry in
474 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
475 // added on this invocation of getUnwindDestToken; if a previous invocation
476 // recorded nullptr, it would have had to prove that the ancestors of
477 // UselessPad, which include LastUselessPad, had no information, and that
478 // in turn would have required proving that the descendants of
479 // LastUselesPad, which include EHPad, have no information about
480 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
481 // the MemoMap on that invocation, which isn't the case if we got here.
482 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad))((!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)) ?
static_cast<void> (0) : __assert_fail ("!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 482, __PRETTY_FUNCTION__))
;
483 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
484 // information that we'd be contradicting by making a map entry for it
485 // (which is something that getUnwindDestTokenHelper must have proved for
486 // us to get here). Just assert on is direct users here; the checks in
487 // this downward walk at its descendants will verify that they don't have
488 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
489 // unwind edges or unwind to a sibling).
490 MemoMap[UselessPad] = UnwindDestToken;
491 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
492 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad")((CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"
) ? static_cast<void> (0) : __assert_fail ("CatchSwitch->getUnwindDest() == nullptr && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 492, __PRETTY_FUNCTION__))
;
493 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
494 auto *CatchPad = HandlerBlock->getFirstNonPHI();
495 for (User *U : CatchPad->users()) {
496 assert((((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 501, __PRETTY_FUNCTION__))
497 (!isa<InvokeInst>(U) ||(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 501, __PRETTY_FUNCTION__))
498 (getParentPad((((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 501, __PRETTY_FUNCTION__))
499 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 501, __PRETTY_FUNCTION__))
500 CatchPad)) &&(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 501, __PRETTY_FUNCTION__))
501 "Expected useless pad")(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == CatchPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 501, __PRETTY_FUNCTION__))
;
502 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
503 Worklist.push_back(cast<Instruction>(U));
504 }
505 }
506 } else {
507 assert(isa<CleanupPadInst>(UselessPad))((isa<CleanupPadInst>(UselessPad)) ? static_cast<void
> (0) : __assert_fail ("isa<CleanupPadInst>(UselessPad)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 507, __PRETTY_FUNCTION__))
;
508 for (User *U : UselessPad->users()) {
509 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad")((!isa<CleanupReturnInst>(U) && "Expected useless pad"
) ? static_cast<void> (0) : __assert_fail ("!isa<CleanupReturnInst>(U) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 509, __PRETTY_FUNCTION__))
;
510 assert((!isa<InvokeInst>(U) ||(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 514, __PRETTY_FUNCTION__))
511 (getParentPad((((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 514, __PRETTY_FUNCTION__))
512 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 514, __PRETTY_FUNCTION__))
513 UselessPad)) &&(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 514, __PRETTY_FUNCTION__))
514 "Expected useless pad")(((!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst
>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad
)) && "Expected useless pad") ? static_cast<void>
(0) : __assert_fail ("(!isa<InvokeInst>(U) || (getParentPad( cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == UselessPad)) && \"Expected useless pad\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 514, __PRETTY_FUNCTION__))
;
515 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
516 Worklist.push_back(cast<Instruction>(U));
517 }
518 }
519 }
520
521 return UnwindDestToken;
522}
523
524/// When we inline a basic block into an invoke,
525/// we have to turn all of the calls that can throw into invokes.
526/// This function analyze BB to see if there are any calls, and if so,
527/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
528/// nodes in that block with the values specified in InvokeDestPHIValues.
529static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
530 BasicBlock *BB, BasicBlock *UnwindEdge,
531 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
532 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
533 Instruction *I = &*BBI++;
534
535 // We only need to check for function calls: inlined invoke
536 // instructions require no special handling.
537 CallInst *CI = dyn_cast<CallInst>(I);
538
539 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
540 continue;
541
542 // We do not need to (and in fact, cannot) convert possibly throwing calls
543 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
544 // invokes. The caller's "segment" of the deoptimization continuation
545 // attached to the newly inlined @llvm.experimental_deoptimize
546 // (resp. @llvm.experimental.guard) call should contain the exception
547 // handling logic, if any.
548 if (auto *F = CI->getCalledFunction())
549 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
550 F->getIntrinsicID() == Intrinsic::experimental_guard)
551 continue;
552
553 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
554 // This call is nested inside a funclet. If that funclet has an unwind
555 // destination within the inlinee, then unwinding out of this call would
556 // be UB. Rewriting this call to an invoke which targets the inlined
557 // invoke's unwind dest would give the call's parent funclet multiple
558 // unwind destinations, which is something that subsequent EH table
559 // generation can't handle and that the veirifer rejects. So when we
560 // see such a call, leave it as a call.
561 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
562 Value *UnwindDestToken =
563 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
564 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
565 continue;
566#ifndef NDEBUG
567 Instruction *MemoKey;
568 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
569 MemoKey = CatchPad->getCatchSwitch();
570 else
571 MemoKey = FuncletPad;
572 assert(FuncletUnwindMap->count(MemoKey) &&((FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap
)[MemoKey] == UnwindDestToken && "must get memoized to avoid confusing later searches"
) ? static_cast<void> (0) : __assert_fail ("FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && \"must get memoized to avoid confusing later searches\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 574, __PRETTY_FUNCTION__))
573 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&((FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap
)[MemoKey] == UnwindDestToken && "must get memoized to avoid confusing later searches"
) ? static_cast<void> (0) : __assert_fail ("FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && \"must get memoized to avoid confusing later searches\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 574, __PRETTY_FUNCTION__))
574 "must get memoized to avoid confusing later searches")((FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap
)[MemoKey] == UnwindDestToken && "must get memoized to avoid confusing later searches"
) ? static_cast<void> (0) : __assert_fail ("FuncletUnwindMap->count(MemoKey) && (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && \"must get memoized to avoid confusing later searches\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 574, __PRETTY_FUNCTION__))
;
575#endif // NDEBUG
576 }
577
578 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
579 return BB;
580 }
581 return nullptr;
582}
583
584/// If we inlined an invoke site, we need to convert calls
585/// in the body of the inlined function into invokes.
586///
587/// II is the invoke instruction being inlined. FirstNewBlock is the first
588/// block of the inlined code (the last block is the end of the function),
589/// and InlineCodeInfo is information about the code that got inlined.
590static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
591 ClonedCodeInfo &InlinedCodeInfo) {
592 BasicBlock *InvokeDest = II->getUnwindDest();
593
594 Function *Caller = FirstNewBlock->getParent();
595
596 // The inlined code is currently at the end of the function, scan from the
597 // start of the inlined code to its end, checking for stuff we need to
598 // rewrite.
599 LandingPadInliningInfo Invoke(II);
600
601 // Get all of the inlined landing pad instructions.
602 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
603 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
604 I != E; ++I)
605 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
606 InlinedLPads.insert(II->getLandingPadInst());
607
608 // Append the clauses from the outer landing pad instruction into the inlined
609 // landing pad instructions.
610 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
611 for (LandingPadInst *InlinedLPad : InlinedLPads) {
612 unsigned OuterNum = OuterLPad->getNumClauses();
613 InlinedLPad->reserveClauses(OuterNum);
614 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
615 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
616 if (OuterLPad->isCleanup())
617 InlinedLPad->setCleanup(true);
618 }
619
620 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
621 BB != E; ++BB) {
622 if (InlinedCodeInfo.ContainsCalls)
623 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
624 &*BB, Invoke.getOuterResumeDest()))
625 // Update any PHI nodes in the exceptional block to indicate that there
626 // is now a new entry in them.
627 Invoke.addIncomingPHIValuesFor(NewBB);
628
629 // Forward any resumes that are remaining here.
630 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
631 Invoke.forwardResume(RI, InlinedLPads);
632 }
633
634 // Now that everything is happy, we have one final detail. The PHI nodes in
635 // the exception destination block still have entries due to the original
636 // invoke instruction. Eliminate these entries (which might even delete the
637 // PHI node) now.
638 InvokeDest->removePredecessor(II->getParent());
639}
640
641/// If we inlined an invoke site, we need to convert calls
642/// in the body of the inlined function into invokes.
643///
644/// II is the invoke instruction being inlined. FirstNewBlock is the first
645/// block of the inlined code (the last block is the end of the function),
646/// and InlineCodeInfo is information about the code that got inlined.
647static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
648 ClonedCodeInfo &InlinedCodeInfo) {
649 BasicBlock *UnwindDest = II->getUnwindDest();
650 Function *Caller = FirstNewBlock->getParent();
651
652 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!")((UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"
) ? static_cast<void> (0) : __assert_fail ("UnwindDest->getFirstNonPHI()->isEHPad() && \"unexpected BasicBlock!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 652, __PRETTY_FUNCTION__))
;
653
654 // If there are PHI nodes in the unwind destination block, we need to keep
655 // track of which values came into them from the invoke before removing the
656 // edge from this block.
657 SmallVector<Value *, 8> UnwindDestPHIValues;
658 BasicBlock *InvokeBB = II->getParent();
659 for (Instruction &I : *UnwindDest) {
660 // Save the value to use for this edge.
661 PHINode *PHI = dyn_cast<PHINode>(&I);
662 if (!PHI)
663 break;
664 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
665 }
666
667 // Add incoming-PHI values to the unwind destination block for the given basic
668 // block, using the values for the original invoke's source block.
669 auto UpdatePHINodes = [&](BasicBlock *Src) {
670 BasicBlock::iterator I = UnwindDest->begin();
671 for (Value *V : UnwindDestPHIValues) {
672 PHINode *PHI = cast<PHINode>(I);
673 PHI->addIncoming(V, Src);
674 ++I;
675 }
676 };
677
678 // This connects all the instructions which 'unwind to caller' to the invoke
679 // destination.
680 UnwindDestMemoTy FuncletUnwindMap;
681 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
682 BB != E; ++BB) {
683 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
684 if (CRI->unwindsToCaller()) {
685 auto *CleanupPad = CRI->getCleanupPad();
686 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
687 CRI->eraseFromParent();
688 UpdatePHINodes(&*BB);
689 // Finding a cleanupret with an unwind destination would confuse
690 // subsequent calls to getUnwindDestToken, so map the cleanuppad
691 // to short-circuit any such calls and recognize this as an "unwind
692 // to caller" cleanup.
693 assert(!FuncletUnwindMap.count(CleanupPad) ||((!FuncletUnwindMap.count(CleanupPad) || isa<ConstantTokenNone
>(FuncletUnwindMap[CleanupPad])) ? static_cast<void>
(0) : __assert_fail ("!FuncletUnwindMap.count(CleanupPad) || isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 694, __PRETTY_FUNCTION__))
694 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]))((!FuncletUnwindMap.count(CleanupPad) || isa<ConstantTokenNone
>(FuncletUnwindMap[CleanupPad])) ? static_cast<void>
(0) : __assert_fail ("!FuncletUnwindMap.count(CleanupPad) || isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 694, __PRETTY_FUNCTION__))
;
695 FuncletUnwindMap[CleanupPad] =
696 ConstantTokenNone::get(Caller->getContext());
697 }
698 }
699
700 Instruction *I = BB->getFirstNonPHI();
701 if (!I->isEHPad())
702 continue;
703
704 Instruction *Replacement = nullptr;
705 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
706 if (CatchSwitch->unwindsToCaller()) {
707 Value *UnwindDestToken;
708 if (auto *ParentPad =
709 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
710 // This catchswitch is nested inside another funclet. If that
711 // funclet has an unwind destination within the inlinee, then
712 // unwinding out of this catchswitch would be UB. Rewriting this
713 // catchswitch to unwind to the inlined invoke's unwind dest would
714 // give the parent funclet multiple unwind destinations, which is
715 // something that subsequent EH table generation can't handle and
716 // that the veirifer rejects. So when we see such a call, leave it
717 // as "unwind to caller".
718 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
719 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
720 continue;
721 } else {
722 // This catchswitch has no parent to inherit constraints from, and
723 // none of its descendants can have an unwind edge that exits it and
724 // targets another funclet in the inlinee. It may or may not have a
725 // descendant that definitively has an unwind to caller. In either
726 // case, we'll have to assume that any unwinds out of it may need to
727 // be routed to the caller, so treat it as though it has a definitive
728 // unwind to caller.
729 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
730 }
731 auto *NewCatchSwitch = CatchSwitchInst::Create(
732 CatchSwitch->getParentPad(), UnwindDest,
733 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
734 CatchSwitch);
735 for (BasicBlock *PadBB : CatchSwitch->handlers())
736 NewCatchSwitch->addHandler(PadBB);
737 // Propagate info for the old catchswitch over to the new one in
738 // the unwind map. This also serves to short-circuit any subsequent
739 // checks for the unwind dest of this catchswitch, which would get
740 // confused if they found the outer handler in the callee.
741 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
742 Replacement = NewCatchSwitch;
743 }
744 } else if (!isa<FuncletPadInst>(I)) {
745 llvm_unreachable("unexpected EHPad!")::llvm::llvm_unreachable_internal("unexpected EHPad!", "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 745)
;
746 }
747
748 if (Replacement) {
749 Replacement->takeName(I);
750 I->replaceAllUsesWith(Replacement);
751 I->eraseFromParent();
752 UpdatePHINodes(&*BB);
753 }
754 }
755
756 if (InlinedCodeInfo.ContainsCalls)
757 for (Function::iterator BB = FirstNewBlock->getIterator(),
758 E = Caller->end();
759 BB != E; ++BB)
760 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
761 &*BB, UnwindDest, &FuncletUnwindMap))
762 // Update any PHI nodes in the exceptional block to indicate that there
763 // is now a new entry in them.
764 UpdatePHINodes(NewBB);
765
766 // Now that everything is happy, we have one final detail. The PHI nodes in
767 // the exception destination block still have entries due to the original
768 // invoke instruction. Eliminate these entries (which might even delete the
769 // PHI node) now.
770 UnwindDest->removePredecessor(InvokeBB);
771}
772
773/// When inlining a call site that has !llvm.mem.parallel_loop_access or
774/// llvm.access.group metadata, that metadata should be propagated to all
775/// memory-accessing cloned instructions.
776static void PropagateParallelLoopAccessMetadata(CallSite CS,
777 ValueToValueMapTy &VMap) {
778 MDNode *M =
779 CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
780 MDNode *CallAccessGroup =
781 CS.getInstruction()->getMetadata(LLVMContext::MD_access_group);
782 if (!M && !CallAccessGroup)
783 return;
784
785 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
786 VMI != VMIE; ++VMI) {
787 if (!VMI->second)
788 continue;
789
790 Instruction *NI = dyn_cast<Instruction>(VMI->second);
791 if (!NI)
792 continue;
793
794 if (M) {
795 if (MDNode *PM =
796 NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) {
797 M = MDNode::concatenate(PM, M);
798 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
799 } else if (NI->mayReadOrWriteMemory()) {
800 NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M);
801 }
802 }
803
804 if (NI->mayReadOrWriteMemory()) {
805 MDNode *UnitedAccGroups = uniteAccessGroups(
806 NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup);
807 NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups);
808 }
809 }
810}
811
812/// When inlining a function that contains noalias scope metadata,
813/// this metadata needs to be cloned so that the inlined blocks
814/// have different "unique scopes" at every call site. Were this not done, then
815/// aliasing scopes from a function inlined into a caller multiple times could
816/// not be differentiated (and this would lead to miscompiles because the
817/// non-aliasing property communicated by the metadata could have
818/// call-site-specific control dependencies).
819static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
820 const Function *CalledFunc = CS.getCalledFunction();
821 SetVector<const MDNode *> MD;
822
823 // Note: We could only clone the metadata if it is already used in the
824 // caller. I'm omitting that check here because it might confuse
825 // inter-procedural alias analysis passes. We can revisit this if it becomes
826 // an efficiency or overhead problem.
827
828 for (const BasicBlock &I : *CalledFunc)
829 for (const Instruction &J : I) {
830 if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope))
831 MD.insert(M);
832 if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias))
833 MD.insert(M);
834 }
835
836 if (MD.empty())
837 return;
838
839 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
840 // the set.
841 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
842 while (!Queue.empty()) {
843 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
844 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
845 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
846 if (MD.insert(M1))
847 Queue.push_back(M1);
848 }
849
850 // Now we have a complete set of all metadata in the chains used to specify
851 // the noalias scopes and the lists of those scopes.
852 SmallVector<TempMDTuple, 16> DummyNodes;
853 DenseMap<const MDNode *, TrackingMDNodeRef> MDMap;
854 for (const MDNode *I : MD) {
855 DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None));
856 MDMap[I].reset(DummyNodes.back().get());
857 }
858
859 // Create new metadata nodes to replace the dummy nodes, replacing old
860 // metadata references with either a dummy node or an already-created new
861 // node.
862 for (const MDNode *I : MD) {
863 SmallVector<Metadata *, 4> NewOps;
864 for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) {
865 const Metadata *V = I->getOperand(i);
866 if (const MDNode *M = dyn_cast<MDNode>(V))
867 NewOps.push_back(MDMap[M]);
868 else
869 NewOps.push_back(const_cast<Metadata *>(V));
870 }
871
872 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps);
873 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
874 assert(TempM->isTemporary() && "Expected temporary node")((TempM->isTemporary() && "Expected temporary node"
) ? static_cast<void> (0) : __assert_fail ("TempM->isTemporary() && \"Expected temporary node\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 874, __PRETTY_FUNCTION__))
;
875
876 TempM->replaceAllUsesWith(NewM);
877 }
878
879 // Now replace the metadata in the new inlined instructions with the
880 // repacements from the map.
881 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
882 VMI != VMIE; ++VMI) {
883 if (!VMI->second)
884 continue;
885
886 Instruction *NI = dyn_cast<Instruction>(VMI->second);
887 if (!NI)
888 continue;
889
890 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) {
891 MDNode *NewMD = MDMap[M];
892 // If the call site also had alias scope metadata (a list of scopes to
893 // which instructions inside it might belong), propagate those scopes to
894 // the inlined instructions.
895 if (MDNode *CSM =
896 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
897 NewMD = MDNode::concatenate(NewMD, CSM);
898 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
899 } else if (NI->mayReadOrWriteMemory()) {
900 if (MDNode *M =
901 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope))
902 NI->setMetadata(LLVMContext::MD_alias_scope, M);
903 }
904
905 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) {
906 MDNode *NewMD = MDMap[M];
907 // If the call site also had noalias metadata (a list of scopes with
908 // which instructions inside it don't alias), propagate those scopes to
909 // the inlined instructions.
910 if (MDNode *CSM =
911 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
912 NewMD = MDNode::concatenate(NewMD, CSM);
913 NI->setMetadata(LLVMContext::MD_noalias, NewMD);
914 } else if (NI->mayReadOrWriteMemory()) {
915 if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias))
916 NI->setMetadata(LLVMContext::MD_noalias, M);
917 }
918 }
919}
920
921/// If the inlined function has noalias arguments,
922/// then add new alias scopes for each noalias argument, tag the mapped noalias
923/// parameters with noalias metadata specifying the new scope, and tag all
924/// non-derived loads, stores and memory intrinsics with the new alias scopes.
925static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
926 const DataLayout &DL, AAResults *CalleeAAR) {
927 if (!EnableNoAliasConversion)
928 return;
929
930 const Function *CalledFunc = CS.getCalledFunction();
931 SmallVector<const Argument *, 4> NoAliasArgs;
932
933 for (const Argument &Arg : CalledFunc->args())
934 if (Arg.hasNoAliasAttr() && !Arg.use_empty())
935 NoAliasArgs.push_back(&Arg);
936
937 if (NoAliasArgs.empty())
938 return;
939
940 // To do a good job, if a noalias variable is captured, we need to know if
941 // the capture point dominates the particular use we're considering.
942 DominatorTree DT;
943 DT.recalculate(const_cast<Function&>(*CalledFunc));
944
945 // noalias indicates that pointer values based on the argument do not alias
946 // pointer values which are not based on it. So we add a new "scope" for each
947 // noalias function argument. Accesses using pointers based on that argument
948 // become part of that alias scope, accesses using pointers not based on that
949 // argument are tagged as noalias with that scope.
950
951 DenseMap<const Argument *, MDNode *> NewScopes;
952 MDBuilder MDB(CalledFunc->getContext());
953
954 // Create a new scope domain for this function.
955 MDNode *NewDomain =
956 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
957 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
958 const Argument *A = NoAliasArgs[i];
959
960 std::string Name = CalledFunc->getName();
961 if (A->hasName()) {
962 Name += ": %";
963 Name += A->getName();
964 } else {
965 Name += ": argument ";
966 Name += utostr(i);
967 }
968
969 // Note: We always create a new anonymous root here. This is true regardless
970 // of the linkage of the callee because the aliasing "scope" is not just a
971 // property of the callee, but also all control dependencies in the caller.
972 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
973 NewScopes.insert(std::make_pair(A, NewScope));
974 }
975
976 // Iterate over all new instructions in the map; for all memory-access
977 // instructions, add the alias scope metadata.
978 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
979 VMI != VMIE; ++VMI) {
980 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
981 if (!VMI->second)
982 continue;
983
984 Instruction *NI = dyn_cast<Instruction>(VMI->second);
985 if (!NI)
986 continue;
987
988 bool IsArgMemOnlyCall = false, IsFuncCall = false;
989 SmallVector<const Value *, 2> PtrArgs;
990
991 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
992 PtrArgs.push_back(LI->getPointerOperand());
993 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
994 PtrArgs.push_back(SI->getPointerOperand());
995 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
996 PtrArgs.push_back(VAAI->getPointerOperand());
997 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
998 PtrArgs.push_back(CXI->getPointerOperand());
999 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1000 PtrArgs.push_back(RMWI->getPointerOperand());
1001 else if (const auto *Call = dyn_cast<CallBase>(I)) {
1002 // If we know that the call does not access memory, then we'll still
1003 // know that about the inlined clone of this call site, and we don't
1004 // need to add metadata.
1005 if (Call->doesNotAccessMemory())
1006 continue;
1007
1008 IsFuncCall = true;
1009 if (CalleeAAR) {
1010 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1011 if (MRB == FMRB_OnlyAccessesArgumentPointees ||
1012 MRB == FMRB_OnlyReadsArgumentPointees)
1013 IsArgMemOnlyCall = true;
1014 }
1015
1016 for (Value *Arg : Call->args()) {
1017 // We need to check the underlying objects of all arguments, not just
1018 // the pointer arguments, because we might be passing pointers as
1019 // integers, etc.
1020 // However, if we know that the call only accesses pointer arguments,
1021 // then we only need to check the pointer arguments.
1022 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1023 continue;
1024
1025 PtrArgs.push_back(Arg);
1026 }
1027 }
1028
1029 // If we found no pointers, then this instruction is not suitable for
1030 // pairing with an instruction to receive aliasing metadata.
1031 // However, if this is a call, this we might just alias with none of the
1032 // noalias arguments.
1033 if (PtrArgs.empty() && !IsFuncCall)
1034 continue;
1035
1036 // It is possible that there is only one underlying object, but you
1037 // need to go through several PHIs to see it, and thus could be
1038 // repeated in the Objects list.
1039 SmallPtrSet<const Value *, 4> ObjSet;
1040 SmallVector<Metadata *, 4> Scopes, NoAliases;
1041
1042 SmallSetVector<const Argument *, 4> NAPtrArgs;
1043 for (const Value *V : PtrArgs) {
1044 SmallVector<const Value *, 4> Objects;
1045 GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr);
1046
1047 for (const Value *O : Objects)
1048 ObjSet.insert(O);
1049 }
1050
1051 // Figure out if we're derived from anything that is not a noalias
1052 // argument.
1053 bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1054 for (const Value *V : ObjSet) {
1055 // Is this value a constant that cannot be derived from any pointer
1056 // value (we need to exclude constant expressions, for example, that
1057 // are formed from arithmetic on global symbols).
1058 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1059 isa<ConstantPointerNull>(V) ||
1060 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1061 if (IsNonPtrConst)
1062 continue;
1063
1064 // If this is anything other than a noalias argument, then we cannot
1065 // completely describe the aliasing properties using alias.scope
1066 // metadata (and, thus, won't add any).
1067 if (const Argument *A = dyn_cast<Argument>(V)) {
1068 if (!A->hasNoAliasAttr())
1069 UsesAliasingPtr = true;
1070 } else {
1071 UsesAliasingPtr = true;
1072 }
1073
1074 // If this is not some identified function-local object (which cannot
1075 // directly alias a noalias argument), or some other argument (which,
1076 // by definition, also cannot alias a noalias argument), then we could
1077 // alias a noalias argument that has been captured).
1078 if (!isa<Argument>(V) &&
1079 !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1080 CanDeriveViaCapture = true;
1081 }
1082
1083 // A function call can always get captured noalias pointers (via other
1084 // parameters, globals, etc.).
1085 if (IsFuncCall && !IsArgMemOnlyCall)
1086 CanDeriveViaCapture = true;
1087
1088 // First, we want to figure out all of the sets with which we definitely
1089 // don't alias. Iterate over all noalias set, and add those for which:
1090 // 1. The noalias argument is not in the set of objects from which we
1091 // definitely derive.
1092 // 2. The noalias argument has not yet been captured.
1093 // An arbitrary function that might load pointers could see captured
1094 // noalias arguments via other noalias arguments or globals, and so we
1095 // must always check for prior capture.
1096 for (const Argument *A : NoAliasArgs) {
1097 if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1098 // It might be tempting to skip the
1099 // PointerMayBeCapturedBefore check if
1100 // A->hasNoCaptureAttr() is true, but this is
1101 // incorrect because nocapture only guarantees
1102 // that no copies outlive the function, not
1103 // that the value cannot be locally captured.
1104 !PointerMayBeCapturedBefore(A,
1105 /* ReturnCaptures */ false,
1106 /* StoreCaptures */ false, I, &DT)))
1107 NoAliases.push_back(NewScopes[A]);
1108 }
1109
1110 if (!NoAliases.empty())
1111 NI->setMetadata(LLVMContext::MD_noalias,
1112 MDNode::concatenate(
1113 NI->getMetadata(LLVMContext::MD_noalias),
1114 MDNode::get(CalledFunc->getContext(), NoAliases)));
1115
1116 // Next, we want to figure out all of the sets to which we might belong.
1117 // We might belong to a set if the noalias argument is in the set of
1118 // underlying objects. If there is some non-noalias argument in our list
1119 // of underlying objects, then we cannot add a scope because the fact
1120 // that some access does not alias with any set of our noalias arguments
1121 // cannot itself guarantee that it does not alias with this access
1122 // (because there is some pointer of unknown origin involved and the
1123 // other access might also depend on this pointer). We also cannot add
1124 // scopes to arbitrary functions unless we know they don't access any
1125 // non-parameter pointer-values.
1126 bool CanAddScopes = !UsesAliasingPtr;
1127 if (CanAddScopes && IsFuncCall)
1128 CanAddScopes = IsArgMemOnlyCall;
1129
1130 if (CanAddScopes)
1131 for (const Argument *A : NoAliasArgs) {
1132 if (ObjSet.count(A))
1133 Scopes.push_back(NewScopes[A]);
1134 }
1135
1136 if (!Scopes.empty())
1137 NI->setMetadata(
1138 LLVMContext::MD_alias_scope,
1139 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1140 MDNode::get(CalledFunc->getContext(), Scopes)));
1141 }
1142 }
1143}
1144
1145/// If the inlined function has non-byval align arguments, then
1146/// add @llvm.assume-based alignment assumptions to preserve this information.
1147static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
1148 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1149 return;
1150
1151 AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller());
1152 auto &DL = CS.getCaller()->getParent()->getDataLayout();
1153
1154 // To avoid inserting redundant assumptions, we should check for assumptions
1155 // already in the caller. To do this, we might need a DT of the caller.
1156 DominatorTree DT;
1157 bool DTCalculated = false;
1158
1159 Function *CalledFunc = CS.getCalledFunction();
1160 for (Argument &Arg : CalledFunc->args()) {
1161 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1162 if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) {
1163 if (!DTCalculated) {
1164 DT.recalculate(*CS.getCaller());
1165 DTCalculated = true;
1166 }
1167
1168 // If we can already prove the asserted alignment in the context of the
1169 // caller, then don't bother inserting the assumption.
1170 Value *ArgVal = CS.getArgument(Arg.getArgNo());
1171 if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align)
1172 continue;
1173
1174 CallInst *NewAsmp = IRBuilder<>(CS.getInstruction())
1175 .CreateAlignmentAssumption(DL, ArgVal, Align);
1176 AC->registerAssumption(NewAsmp);
1177 }
1178 }
1179}
1180
1181/// Once we have cloned code over from a callee into the caller,
1182/// update the specified callgraph to reflect the changes we made.
1183/// Note that it's possible that not all code was copied over, so only
1184/// some edges of the callgraph may remain.
1185static void UpdateCallGraphAfterInlining(CallSite CS,
1186 Function::iterator FirstNewBlock,
1187 ValueToValueMapTy &VMap,
1188 InlineFunctionInfo &IFI) {
1189 CallGraph &CG = *IFI.CG;
1190 const Function *Caller = CS.getCaller();
1191 const Function *Callee = CS.getCalledFunction();
1192 CallGraphNode *CalleeNode = CG[Callee];
1193 CallGraphNode *CallerNode = CG[Caller];
1194
1195 // Since we inlined some uninlined call sites in the callee into the caller,
1196 // add edges from the caller to all of the callees of the callee.
1197 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1198
1199 // Consider the case where CalleeNode == CallerNode.
1200 CallGraphNode::CalledFunctionsVector CallCache;
1201 if (CalleeNode == CallerNode) {
1202 CallCache.assign(I, E);
1203 I = CallCache.begin();
1204 E = CallCache.end();
1205 }
1206
1207 for (; I != E; ++I) {
1208 const Value *OrigCall = I->first;
1209
1210 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1211 // Only copy the edge if the call was inlined!
1212 if (VMI == VMap.end() || VMI->second == nullptr)
1213 continue;
1214
1215 // If the call was inlined, but then constant folded, there is no edge to
1216 // add. Check for this case.
1217 auto *NewCall = dyn_cast<CallBase>(VMI->second);
1218 if (!NewCall)
1219 continue;
1220
1221 // We do not treat intrinsic calls like real function calls because we
1222 // expect them to become inline code; do not add an edge for an intrinsic.
1223 if (NewCall->getCalledFunction() &&
1224 NewCall->getCalledFunction()->isIntrinsic())
1225 continue;
1226
1227 // Remember that this call site got inlined for the client of
1228 // InlineFunction.
1229 IFI.InlinedCalls.push_back(NewCall);
1230
1231 // It's possible that inlining the callsite will cause it to go from an
1232 // indirect to a direct call by resolving a function pointer. If this
1233 // happens, set the callee of the new call site to a more precise
1234 // destination. This can also happen if the call graph node of the caller
1235 // was just unnecessarily imprecise.
1236 if (!I->second->getFunction())
1237 if (Function *F = NewCall->getCalledFunction()) {
1238 // Indirect call site resolved to direct call.
1239 CallerNode->addCalledFunction(NewCall, CG[F]);
1240
1241 continue;
1242 }
1243
1244 CallerNode->addCalledFunction(NewCall, I->second);
1245 }
1246
1247 // Update the call graph by deleting the edge from Callee to Caller. We must
1248 // do this after the loop above in case Caller and Callee are the same.
1249 CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
1250}
1251
1252static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1253 BasicBlock *InsertBlock,
1254 InlineFunctionInfo &IFI) {
1255 Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1256 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1257
1258 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1259
1260 // Always generate a memcpy of alignment 1 here because we don't know
1261 // the alignment of the src pointer. Other optimizations can infer
1262 // better alignment.
1263 Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size);
1264}
1265
1266/// When inlining a call site that has a byval argument,
1267/// we have to make the implicit memcpy explicit by adding it.
1268static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1269 const Function *CalledFunc,
1270 InlineFunctionInfo &IFI,
1271 unsigned ByValAlignment) {
1272 PointerType *ArgTy = cast<PointerType>(Arg->getType());
1273 Type *AggTy = ArgTy->getElementType();
1274
1275 Function *Caller = TheCall->getFunction();
1276 const DataLayout &DL = Caller->getParent()->getDataLayout();
1277
1278 // If the called function is readonly, then it could not mutate the caller's
1279 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1280 // temporary.
1281 if (CalledFunc->onlyReadsMemory()) {
1282 // If the byval argument has a specified alignment that is greater than the
1283 // passed in pointer, then we either have to round up the input pointer or
1284 // give up on this transformation.
1285 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
1286 return Arg;
1287
1288 AssumptionCache *AC =
1289 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
1290
1291 // If the pointer is already known to be sufficiently aligned, or if we can
1292 // round it up to a larger alignment, then we don't need a temporary.
1293 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >=
1294 ByValAlignment)
1295 return Arg;
1296
1297 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1298 // for code quality, but rarely happens and is required for correctness.
1299 }
1300
1301 // Create the alloca. If we have DataLayout, use nice alignment.
1302 unsigned Align = DL.getPrefTypeAlignment(AggTy);
1303
1304 // If the byval had an alignment specified, we *must* use at least that
1305 // alignment, as it is required by the byval argument (and uses of the
1306 // pointer inside the callee).
1307 Align = std::max(Align, ByValAlignment);
1308
1309 Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(),
1310 nullptr, Align, Arg->getName(),
1311 &*Caller->begin()->begin());
1312 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1313
1314 // Uses of the argument in the function should use our new alloca
1315 // instead.
1316 return NewAlloca;
1317}
1318
1319// Check whether this Value is used by a lifetime intrinsic.
1320static bool isUsedByLifetimeMarker(Value *V) {
1321 for (User *U : V->users())
1322 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1323 if (II->isLifetimeStartOrEnd())
1324 return true;
1325 return false;
1326}
1327
1328// Check whether the given alloca already has
1329// lifetime.start or lifetime.end intrinsics.
1330static bool hasLifetimeMarkers(AllocaInst *AI) {
1331 Type *Ty = AI->getType();
1332 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1333 Ty->getPointerAddressSpace());
1334 if (Ty == Int8PtrTy)
1335 return isUsedByLifetimeMarker(AI);
1336
1337 // Do a scan to find all the casts to i8*.
1338 for (User *U : AI->users()) {
1339 if (U->getType() != Int8PtrTy) continue;
1340 if (U->stripPointerCasts() != AI) continue;
1341 if (isUsedByLifetimeMarker(U))
1342 return true;
1343 }
1344 return false;
1345}
1346
1347/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1348/// block. Allocas used in inalloca calls and allocas of dynamic array size
1349/// cannot be static.
1350static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1351 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1352}
1353
1354/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1355/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
1356static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1357 LLVMContext &Ctx,
1358 DenseMap<const MDNode *, MDNode *> &IANodes) {
1359 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1360 return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(),
1361 IA);
1362}
1363
1364/// Returns the LoopID for a loop which has has been cloned from another
1365/// function for inlining with the new inlined-at start and end locs.
1366static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt,
1367 LLVMContext &Ctx,
1368 DenseMap<const MDNode *, MDNode *> &IANodes) {
1369 assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 &&((OrigLoopId && OrigLoopId->getNumOperands() > 0
&& "Loop ID needs at least one operand") ? static_cast
<void> (0) : __assert_fail ("OrigLoopId && OrigLoopId->getNumOperands() > 0 && \"Loop ID needs at least one operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 1370, __PRETTY_FUNCTION__))
1370 "Loop ID needs at least one operand")((OrigLoopId && OrigLoopId->getNumOperands() > 0
&& "Loop ID needs at least one operand") ? static_cast
<void> (0) : __assert_fail ("OrigLoopId && OrigLoopId->getNumOperands() > 0 && \"Loop ID needs at least one operand\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 1370, __PRETTY_FUNCTION__))
;
1371 assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId &&((OrigLoopId && OrigLoopId->getOperand(0).get() ==
OrigLoopId && "Loop ID should refer to itself") ? static_cast
<void> (0) : __assert_fail ("OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId && \"Loop ID should refer to itself\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 1372, __PRETTY_FUNCTION__))
1372 "Loop ID should refer to itself")((OrigLoopId && OrigLoopId->getOperand(0).get() ==
OrigLoopId && "Loop ID should refer to itself") ? static_cast
<void> (0) : __assert_fail ("OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId && \"Loop ID should refer to itself\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 1372, __PRETTY_FUNCTION__))
;
1373
1374 // Save space for the self-referential LoopID.
1375 SmallVector<Metadata *, 4> MDs = {nullptr};
1376
1377 for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) {
1378 Metadata *MD = OrigLoopId->getOperand(i);
1379 // Update the DILocations to encode the inlined-at metadata.
1380 if (DILocation *DL = dyn_cast<DILocation>(MD))
1381 MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes));
1382 else
1383 MDs.push_back(MD);
1384 }
1385
1386 MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs);
1387 // Insert the self-referential LoopID.
1388 NewLoopID->replaceOperandWith(0, NewLoopID);
1389 return NewLoopID;
1390}
1391
1392/// Update inlined instructions' line numbers to
1393/// to encode location where these instructions are inlined.
1394static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1395 Instruction *TheCall, bool CalleeHasDebugInfo) {
1396 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1397 if (!TheCallDL)
1398 return;
1399
1400 auto &Ctx = Fn->getContext();
1401 DILocation *InlinedAtNode = TheCallDL;
1402
1403 // Create a unique call site, not to be confused with any other call from the
1404 // same location.
1405 InlinedAtNode = DILocation::getDistinct(
1406 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1407 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1408
1409 // Cache the inlined-at nodes as they're built so they are reused, without
1410 // this every instruction's inlined-at chain would become distinct from each
1411 // other.
1412 DenseMap<const MDNode *, MDNode *> IANodes;
1413
1414 for (; FI != Fn->end(); ++FI) {
1415 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1416 BI != BE; ++BI) {
1417 // Loop metadata needs to be updated so that the start and end locs
1418 // reference inlined-at locations.
1419 if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) {
1420 MDNode *NewLoopID =
1421 inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes);
1422 BI->setMetadata(LLVMContext::MD_loop, NewLoopID);
1423 }
1424
1425 if (DebugLoc DL = BI->getDebugLoc()) {
1426 DebugLoc IDL =
1427 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1428 BI->setDebugLoc(IDL);
1429 continue;
1430 }
1431
1432 if (CalleeHasDebugInfo)
1433 continue;
1434
1435 // If the inlined instruction has no line number, make it look as if it
1436 // originates from the call location. This is important for
1437 // ((__always_inline__, __nodebug__)) functions which must use caller
1438 // location for all instructions in their function body.
1439
1440 // Don't update static allocas, as they may get moved later.
1441 if (auto *AI = dyn_cast<AllocaInst>(BI))
1442 if (allocaWouldBeStaticInEntry(AI))
1443 continue;
1444
1445 BI->setDebugLoc(TheCallDL);
1446 }
1447 }
1448}
1449
1450/// Update the block frequencies of the caller after a callee has been inlined.
1451///
1452/// Each block cloned into the caller has its block frequency scaled by the
1453/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1454/// callee's entry block gets the same frequency as the callsite block and the
1455/// relative frequencies of all cloned blocks remain the same after cloning.
1456static void updateCallerBFI(BasicBlock *CallSiteBlock,
1457 const ValueToValueMapTy &VMap,
1458 BlockFrequencyInfo *CallerBFI,
1459 BlockFrequencyInfo *CalleeBFI,
1460 const BasicBlock &CalleeEntryBlock) {
1461 SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1462 for (auto const &Entry : VMap) {
1463 if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1464 continue;
1465 auto *OrigBB = cast<BasicBlock>(Entry.first);
1466 auto *ClonedBB = cast<BasicBlock>(Entry.second);
1467 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1468 if (!ClonedBBs.insert(ClonedBB).second) {
1469 // Multiple blocks in the callee might get mapped to one cloned block in
1470 // the caller since we prune the callee as we clone it. When that happens,
1471 // we want to use the maximum among the original blocks' frequencies.
1472 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1473 if (NewFreq > Freq)
1474 Freq = NewFreq;
1475 }
1476 CallerBFI->setBlockFreq(ClonedBB, Freq);
1477 }
1478 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1479 CallerBFI->setBlockFreqAndScale(
1480 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1481 ClonedBBs);
1482}
1483
1484/// Update the branch metadata for cloned call instructions.
1485static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1486 const ProfileCount &CalleeEntryCount,
1487 const Instruction *TheCall,
1488 ProfileSummaryInfo *PSI,
1489 BlockFrequencyInfo *CallerBFI) {
1490 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1491 CalleeEntryCount.getCount() < 1)
1492 return;
1493 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1494 int64_t CallCount =
1495 std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0,
1496 CalleeEntryCount.getCount());
1497 updateProfileCallee(Callee, -CallCount, &VMap);
1498}
1499
1500void llvm::updateProfileCallee(
1501 Function *Callee, int64_t entryDelta,
1502 const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1503 auto CalleeCount = Callee->getEntryCount();
1504 if (!CalleeCount.hasValue())
1505 return;
1506
1507 uint64_t priorEntryCount = CalleeCount.getCount();
1508 uint64_t newEntryCount = priorEntryCount;
Value stored to 'newEntryCount' during its initialization is never read
1509
1510 // Since CallSiteCount is an estimate, it could exceed the original callee
1511 // count and has to be set to 0 so guard against underflow.
1512 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1513 newEntryCount = 0;
1514 else
1515 newEntryCount = priorEntryCount + entryDelta;
1516
1517 Callee->setEntryCount(newEntryCount);
1518
1519 // During inlining ?
1520 if (VMap) {
1521 uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1522 for (auto const &Entry : *VMap)
1523 if (isa<CallInst>(Entry.first))
1524 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1525 CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1526 }
1527 for (BasicBlock &BB : *Callee)
1528 // No need to update the callsite if it is pruned during inlining.
1529 if (!VMap || VMap->count(&BB))
1530 for (Instruction &I : BB)
1531 if (CallInst *CI = dyn_cast<CallInst>(&I))
1532 CI->updateProfWeight(newEntryCount, priorEntryCount);
1533}
1534
1535/// This function inlines the called function into the basic block of the
1536/// caller. This returns false if it is not possible to inline this call.
1537/// The program is still in a well defined state if this occurs though.
1538///
1539/// Note that this only does one level of inlining. For example, if the
1540/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1541/// exists in the instruction stream. Similarly this will inline a recursive
1542/// function by one level.
1543llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
1544 AAResults *CalleeAAR,
1545 bool InsertLifetime,
1546 Function *ForwardVarArgsTo) {
1547 Instruction *TheCall = CS.getInstruction();
1548 assert(TheCall->getParent() && TheCall->getFunction()((TheCall->getParent() && TheCall->getFunction(
) && "Instruction not in function!") ? static_cast<
void> (0) : __assert_fail ("TheCall->getParent() && TheCall->getFunction() && \"Instruction not in function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 1549, __PRETTY_FUNCTION__))
1549 && "Instruction not in function!")((TheCall->getParent() && TheCall->getFunction(
) && "Instruction not in function!") ? static_cast<
void> (0) : __assert_fail ("TheCall->getParent() && TheCall->getFunction() && \"Instruction not in function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 1549, __PRETTY_FUNCTION__))
;
1550
1551 // FIXME: we don't inline callbr yet.
1552 if (isa<CallBrInst>(TheCall))
1553 return false;
1554
1555 // If IFI has any state in it, zap it before we fill it in.
1556 IFI.reset();
1557
1558 Function *CalledFunc = CS.getCalledFunction();
1559 if (!CalledFunc || // Can't inline external function or indirect
1560 CalledFunc->isDeclaration()) // call!
1561 return "external or indirect";
1562
1563 // The inliner does not know how to inline through calls with operand bundles
1564 // in general ...
1565 if (CS.hasOperandBundles()) {
1566 for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1567 uint32_t Tag = CS.getOperandBundleAt(i).getTagID();
1568 // ... but it knows how to inline through "deopt" operand bundles ...
1569 if (Tag == LLVMContext::OB_deopt)
1570 continue;
1571 // ... and "funclet" operand bundles.
1572 if (Tag == LLVMContext::OB_funclet)
1573 continue;
1574
1575 return "unsupported operand bundle";
1576 }
1577 }
1578
1579 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1580 // calls that we inline.
1581 bool MarkNoUnwind = CS.doesNotThrow();
1582
1583 BasicBlock *OrigBB = TheCall->getParent();
1584 Function *Caller = OrigBB->getParent();
1585
1586 // GC poses two hazards to inlining, which only occur when the callee has GC:
1587 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1588 // caller.
1589 // 2. If the caller has a differing GC, it is invalid to inline.
1590 if (CalledFunc->hasGC()) {
1591 if (!Caller->hasGC())
1592 Caller->setGC(CalledFunc->getGC());
1593 else if (CalledFunc->getGC() != Caller->getGC())
1594 return "incompatible GC";
1595 }
1596
1597 // Get the personality function from the callee if it contains a landing pad.
1598 Constant *CalledPersonality =
1599 CalledFunc->hasPersonalityFn()
1600 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1601 : nullptr;
1602
1603 // Find the personality function used by the landing pads of the caller. If it
1604 // exists, then check to see that it matches the personality function used in
1605 // the callee.
1606 Constant *CallerPersonality =
1607 Caller->hasPersonalityFn()
1608 ? Caller->getPersonalityFn()->stripPointerCasts()
1609 : nullptr;
1610 if (CalledPersonality) {
1611 if (!CallerPersonality)
1612 Caller->setPersonalityFn(CalledPersonality);
1613 // If the personality functions match, then we can perform the
1614 // inlining. Otherwise, we can't inline.
1615 // TODO: This isn't 100% true. Some personality functions are proper
1616 // supersets of others and can be used in place of the other.
1617 else if (CalledPersonality != CallerPersonality)
1618 return "incompatible personality";
1619 }
1620
1621 // We need to figure out which funclet the callsite was in so that we may
1622 // properly nest the callee.
1623 Instruction *CallSiteEHPad = nullptr;
1624 if (CallerPersonality) {
1625 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1626 if (isScopedEHPersonality(Personality)) {
1627 Optional<OperandBundleUse> ParentFunclet =
1628 CS.getOperandBundle(LLVMContext::OB_funclet);
1629 if (ParentFunclet)
1630 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1631
1632 // OK, the inlining site is legal. What about the target function?
1633
1634 if (CallSiteEHPad) {
1635 if (Personality == EHPersonality::MSVC_CXX) {
1636 // The MSVC personality cannot tolerate catches getting inlined into
1637 // cleanup funclets.
1638 if (isa<CleanupPadInst>(CallSiteEHPad)) {
1639 // Ok, the call site is within a cleanuppad. Let's check the callee
1640 // for catchpads.
1641 for (const BasicBlock &CalledBB : *CalledFunc) {
1642 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1643 return "catch in cleanup funclet";
1644 }
1645 }
1646 } else if (isAsynchronousEHPersonality(Personality)) {
1647 // SEH is even less tolerant, there may not be any sort of exceptional
1648 // funclet in the callee.
1649 for (const BasicBlock &CalledBB : *CalledFunc) {
1650 if (CalledBB.isEHPad())
1651 return "SEH in cleanup funclet";
1652 }
1653 }
1654 }
1655 }
1656 }
1657
1658 // Determine if we are dealing with a call in an EHPad which does not unwind
1659 // to caller.
1660 bool EHPadForCallUnwindsLocally = false;
1661 if (CallSiteEHPad && CS.isCall()) {
1662 UnwindDestMemoTy FuncletUnwindMap;
1663 Value *CallSiteUnwindDestToken =
1664 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1665
1666 EHPadForCallUnwindsLocally =
1667 CallSiteUnwindDestToken &&
1668 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1669 }
1670
1671 // Get an iterator to the last basic block in the function, which will have
1672 // the new function inlined after it.
1673 Function::iterator LastBlock = --Caller->end();
1674
1675 // Make sure to capture all of the return instructions from the cloned
1676 // function.
1677 SmallVector<ReturnInst*, 8> Returns;
1678 ClonedCodeInfo InlinedFunctionInfo;
1679 Function::iterator FirstNewBlock;
1680
1681 { // Scope to destroy VMap after cloning.
1682 ValueToValueMapTy VMap;
1683 // Keep a list of pair (dst, src) to emit byval initializations.
1684 SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1685
1686 auto &DL = Caller->getParent()->getDataLayout();
1687
1688 // Calculate the vector of arguments to pass into the function cloner, which
1689 // matches up the formal to the actual argument values.
1690 CallSite::arg_iterator AI = CS.arg_begin();
1691 unsigned ArgNo = 0;
1692 for (Function::arg_iterator I = CalledFunc->arg_begin(),
1693 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1694 Value *ActualArg = *AI;
1695
1696 // When byval arguments actually inlined, we need to make the copy implied
1697 // by them explicit. However, we don't do this if the callee is readonly
1698 // or readnone, because the copy would be unneeded: the callee doesn't
1699 // modify the struct.
1700 if (CS.isByValArgument(ArgNo)) {
1701 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
1702 CalledFunc->getParamAlignment(ArgNo));
1703 if (ActualArg != *AI)
1704 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1705 }
1706
1707 VMap[&*I] = ActualArg;
1708 }
1709
1710 // Add alignment assumptions if necessary. We do this before the inlined
1711 // instructions are actually cloned into the caller so that we can easily
1712 // check what will be known at the start of the inlined code.
1713 AddAlignmentAssumptions(CS, IFI);
1714
1715 // We want the inliner to prune the code as it copies. We would LOVE to
1716 // have no dead or constant instructions leftover after inlining occurs
1717 // (which can happen, e.g., because an argument was constant), but we'll be
1718 // happy with whatever the cloner can do.
1719 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1720 /*ModuleLevelChanges=*/false, Returns, ".i",
1721 &InlinedFunctionInfo, TheCall);
1722 // Remember the first block that is newly cloned over.
1723 FirstNewBlock = LastBlock; ++FirstNewBlock;
1724
1725 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1726 // Update the BFI of blocks cloned into the caller.
1727 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1728 CalledFunc->front());
1729
1730 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall,
1731 IFI.PSI, IFI.CallerBFI);
1732
1733 // Inject byval arguments initialization.
1734 for (std::pair<Value*, Value*> &Init : ByValInit)
1735 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1736 &*FirstNewBlock, IFI);
1737
1738 Optional<OperandBundleUse> ParentDeopt =
1739 CS.getOperandBundle(LLVMContext::OB_deopt);
1740 if (ParentDeopt) {
1741 SmallVector<OperandBundleDef, 2> OpDefs;
1742
1743 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1744 Instruction *I = dyn_cast_or_null<Instruction>(VH);
1745 if (!I) continue; // instruction was DCE'd or RAUW'ed to undef
1746
1747 OpDefs.clear();
1748
1749 CallSite ICS(I);
1750 OpDefs.reserve(ICS.getNumOperandBundles());
1751
1752 for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) {
1753 auto ChildOB = ICS.getOperandBundleAt(i);
1754 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1755 // If the inlined call has other operand bundles, let them be
1756 OpDefs.emplace_back(ChildOB);
1757 continue;
1758 }
1759
1760 // It may be useful to separate this logic (of handling operand
1761 // bundles) out to a separate "policy" component if this gets crowded.
1762 // Prepend the parent's deoptimization continuation to the newly
1763 // inlined call's deoptimization continuation.
1764 std::vector<Value *> MergedDeoptArgs;
1765 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
1766 ChildOB.Inputs.size());
1767
1768 MergedDeoptArgs.insert(MergedDeoptArgs.end(),
1769 ParentDeopt->Inputs.begin(),
1770 ParentDeopt->Inputs.end());
1771 MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(),
1772 ChildOB.Inputs.end());
1773
1774 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
1775 }
1776
1777 Instruction *NewI = nullptr;
1778 if (isa<CallInst>(I))
1779 NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I);
1780 else if (isa<CallBrInst>(I))
1781 NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I);
1782 else
1783 NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I);
1784
1785 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
1786 // this even if the call returns void.
1787 I->replaceAllUsesWith(NewI);
1788
1789 VH = nullptr;
1790 I->eraseFromParent();
1791 }
1792 }
1793
1794 // Update the callgraph if requested.
1795 if (IFI.CG)
1796 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
1797
1798 // For 'nodebug' functions, the associated DISubprogram is always null.
1799 // Conservatively avoid propagating the callsite debug location to
1800 // instructions inlined from a function whose DISubprogram is not null.
1801 fixupLineNumbers(Caller, FirstNewBlock, TheCall,
1802 CalledFunc->getSubprogram() != nullptr);
1803
1804 // Clone existing noalias metadata if necessary.
1805 CloneAliasScopeMetadata(CS, VMap);
1806
1807 // Add noalias metadata if necessary.
1808 AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR);
1809
1810 // Propagate llvm.mem.parallel_loop_access if necessary.
1811 PropagateParallelLoopAccessMetadata(CS, VMap);
1812
1813 // Register any cloned assumptions.
1814 if (IFI.GetAssumptionCache)
1815 for (BasicBlock &NewBlock :
1816 make_range(FirstNewBlock->getIterator(), Caller->end()))
1817 for (Instruction &I : NewBlock) {
1818 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1819 if (II->getIntrinsicID() == Intrinsic::assume)
1820 (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II);
1821 }
1822 }
1823
1824 // If there are any alloca instructions in the block that used to be the entry
1825 // block for the callee, move them to the entry block of the caller. First
1826 // calculate which instruction they should be inserted before. We insert the
1827 // instructions at the end of the current alloca list.
1828 {
1829 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
1830 for (BasicBlock::iterator I = FirstNewBlock->begin(),
1831 E = FirstNewBlock->end(); I != E; ) {
1832 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
1833 if (!AI) continue;
1834
1835 // If the alloca is now dead, remove it. This often occurs due to code
1836 // specialization.
1837 if (AI->use_empty()) {
1838 AI->eraseFromParent();
1839 continue;
1840 }
1841
1842 if (!allocaWouldBeStaticInEntry(AI))
1843 continue;
1844
1845 // Keep track of the static allocas that we inline into the caller.
1846 IFI.StaticAllocas.push_back(AI);
1847
1848 // Scan for the block of allocas that we can move over, and move them
1849 // all at once.
1850 while (isa<AllocaInst>(I) &&
1851 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
1852 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
1853 ++I;
1854 }
1855
1856 // Transfer all of the allocas over in a block. Using splice means
1857 // that the instructions aren't removed from the symbol table, then
1858 // reinserted.
1859 Caller->getEntryBlock().getInstList().splice(
1860 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
1861 }
1862 // Move any dbg.declares describing the allocas into the entry basic block.
1863 DIBuilder DIB(*Caller->getParent());
1864 for (auto &AI : IFI.StaticAllocas)
1865 replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0);
1866 }
1867
1868 SmallVector<Value*,4> VarArgsToForward;
1869 SmallVector<AttributeSet, 4> VarArgsAttrs;
1870 for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
1871 i < CS.getNumArgOperands(); i++) {
1872 VarArgsToForward.push_back(CS.getArgOperand(i));
1873 VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i));
1874 }
1875
1876 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
1877 if (InlinedFunctionInfo.ContainsCalls) {
1878 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
1879 if (CallInst *CI = dyn_cast<CallInst>(TheCall))
1880 CallSiteTailKind = CI->getTailCallKind();
1881
1882 // For inlining purposes, the "notail" marker is the same as no marker.
1883 if (CallSiteTailKind == CallInst::TCK_NoTail)
1884 CallSiteTailKind = CallInst::TCK_None;
1885
1886 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
1887 ++BB) {
1888 for (auto II = BB->begin(); II != BB->end();) {
1889 Instruction &I = *II++;
1890 CallInst *CI = dyn_cast<CallInst>(&I);
1891 if (!CI)
1892 continue;
1893
1894 // Forward varargs from inlined call site to calls to the
1895 // ForwardVarArgsTo function, if requested, and to musttail calls.
1896 if (!VarArgsToForward.empty() &&
1897 ((ForwardVarArgsTo &&
1898 CI->getCalledFunction() == ForwardVarArgsTo) ||
1899 CI->isMustTailCall())) {
1900 // Collect attributes for non-vararg parameters.
1901 AttributeList Attrs = CI->getAttributes();
1902 SmallVector<AttributeSet, 8> ArgAttrs;
1903 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
1904 for (unsigned ArgNo = 0;
1905 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
1906 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
1907 }
1908
1909 // Add VarArg attributes.
1910 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
1911 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
1912 Attrs.getRetAttributes(), ArgAttrs);
1913 // Add VarArgs to existing parameters.
1914 SmallVector<Value *, 6> Params(CI->arg_operands());
1915 Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
1916 CallInst *NewCI = CallInst::Create(
1917 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
1918 NewCI->setDebugLoc(CI->getDebugLoc());
1919 NewCI->setAttributes(Attrs);
1920 NewCI->setCallingConv(CI->getCallingConv());
1921 CI->replaceAllUsesWith(NewCI);
1922 CI->eraseFromParent();
1923 CI = NewCI;
1924 }
1925
1926 if (Function *F = CI->getCalledFunction())
1927 InlinedDeoptimizeCalls |=
1928 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
1929
1930 // We need to reduce the strength of any inlined tail calls. For
1931 // musttail, we have to avoid introducing potential unbounded stack
1932 // growth. For example, if functions 'f' and 'g' are mutually recursive
1933 // with musttail, we can inline 'g' into 'f' so long as we preserve
1934 // musttail on the cloned call to 'f'. If either the inlined call site
1935 // or the cloned call site is *not* musttail, the program already has
1936 // one frame of stack growth, so it's safe to remove musttail. Here is
1937 // a table of example transformations:
1938 //
1939 // f -> musttail g -> musttail f ==> f -> musttail f
1940 // f -> musttail g -> tail f ==> f -> tail f
1941 // f -> g -> musttail f ==> f -> f
1942 // f -> g -> tail f ==> f -> f
1943 //
1944 // Inlined notail calls should remain notail calls.
1945 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
1946 if (ChildTCK != CallInst::TCK_NoTail)
1947 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
1948 CI->setTailCallKind(ChildTCK);
1949 InlinedMustTailCalls |= CI->isMustTailCall();
1950
1951 // Calls inlined through a 'nounwind' call site should be marked
1952 // 'nounwind'.
1953 if (MarkNoUnwind)
1954 CI->setDoesNotThrow();
1955 }
1956 }
1957 }
1958
1959 // Leave lifetime markers for the static alloca's, scoping them to the
1960 // function we just inlined.
1961 if (InsertLifetime && !IFI.StaticAllocas.empty()) {
1962 IRBuilder<> builder(&FirstNewBlock->front());
1963 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
1964 AllocaInst *AI = IFI.StaticAllocas[ai];
1965 // Don't mark swifterror allocas. They can't have bitcast uses.
1966 if (AI->isSwiftError())
1967 continue;
1968
1969 // If the alloca is already scoped to something smaller than the whole
1970 // function then there's no need to add redundant, less accurate markers.
1971 if (hasLifetimeMarkers(AI))
1972 continue;
1973
1974 // Try to determine the size of the allocation.
1975 ConstantInt *AllocaSize = nullptr;
1976 if (ConstantInt *AIArraySize =
1977 dyn_cast<ConstantInt>(AI->getArraySize())) {
1978 auto &DL = Caller->getParent()->getDataLayout();
1979 Type *AllocaType = AI->getAllocatedType();
1980 uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
1981 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
1982
1983 // Don't add markers for zero-sized allocas.
1984 if (AllocaArraySize == 0)
1985 continue;
1986
1987 // Check that array size doesn't saturate uint64_t and doesn't
1988 // overflow when it's multiplied by type size.
1989 if (AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
1990 std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
1991 AllocaTypeSize) {
1992 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
1993 AllocaArraySize * AllocaTypeSize);
1994 }
1995 }
1996
1997 builder.CreateLifetimeStart(AI, AllocaSize);
1998 for (ReturnInst *RI : Returns) {
1999 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2000 // call and a return. The return kills all local allocas.
2001 if (InlinedMustTailCalls &&
2002 RI->getParent()->getTerminatingMustTailCall())
2003 continue;
2004 if (InlinedDeoptimizeCalls &&
2005 RI->getParent()->getTerminatingDeoptimizeCall())
2006 continue;
2007 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2008 }
2009 }
2010 }
2011
2012 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2013 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2014 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2015 Module *M = Caller->getParent();
2016 // Get the two intrinsics we care about.
2017 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2018 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2019
2020 // Insert the llvm.stacksave.
2021 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2022 .CreateCall(StackSave, {}, "savedstack");
2023
2024 // Insert a call to llvm.stackrestore before any return instructions in the
2025 // inlined function.
2026 for (ReturnInst *RI : Returns) {
2027 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2028 // call and a return. The return will restore the stack pointer.
2029 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2030 continue;
2031 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2032 continue;
2033 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2034 }
2035 }
2036
2037 // If we are inlining for an invoke instruction, we must make sure to rewrite
2038 // any call instructions into invoke instructions. This is sensitive to which
2039 // funclet pads were top-level in the inlinee, so must be done before
2040 // rewriting the "parent pad" links.
2041 if (auto *II = dyn_cast<InvokeInst>(TheCall)) {
2042 BasicBlock *UnwindDest = II->getUnwindDest();
2043 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2044 if (isa<LandingPadInst>(FirstNonPHI)) {
2045 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2046 } else {
2047 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2048 }
2049 }
2050
2051 // Update the lexical scopes of the new funclets and callsites.
2052 // Anything that had 'none' as its parent is now nested inside the callsite's
2053 // EHPad.
2054
2055 if (CallSiteEHPad) {
2056 for (Function::iterator BB = FirstNewBlock->getIterator(),
2057 E = Caller->end();
2058 BB != E; ++BB) {
2059 // Add bundle operands to any top-level call sites.
2060 SmallVector<OperandBundleDef, 1> OpBundles;
2061 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2062 Instruction *I = &*BBI++;
2063 CallSite CS(I);
2064 if (!CS)
2065 continue;
2066
2067 // Skip call sites which are nounwind intrinsics.
2068 auto *CalledFn =
2069 dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
2070 if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
2071 continue;
2072
2073 // Skip call sites which already have a "funclet" bundle.
2074 if (CS.getOperandBundle(LLVMContext::OB_funclet))
2075 continue;
2076
2077 CS.getOperandBundlesAsDefs(OpBundles);
2078 OpBundles.emplace_back("funclet", CallSiteEHPad);
2079
2080 Instruction *NewInst;
2081 if (CS.isCall())
2082 NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I);
2083 else if (CS.isCallBr())
2084 NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I);
2085 else
2086 NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I);
2087 NewInst->takeName(I);
2088 I->replaceAllUsesWith(NewInst);
2089 I->eraseFromParent();
2090
2091 OpBundles.clear();
2092 }
2093
2094 // It is problematic if the inlinee has a cleanupret which unwinds to
2095 // caller and we inline it into a call site which doesn't unwind but into
2096 // an EH pad that does. Such an edge must be dynamically unreachable.
2097 // As such, we replace the cleanupret with unreachable.
2098 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2099 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2100 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2101
2102 Instruction *I = BB->getFirstNonPHI();
2103 if (!I->isEHPad())
2104 continue;
2105
2106 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2107 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2108 CatchSwitch->setParentPad(CallSiteEHPad);
2109 } else {
2110 auto *FPI = cast<FuncletPadInst>(I);
2111 if (isa<ConstantTokenNone>(FPI->getParentPad()))
2112 FPI->setParentPad(CallSiteEHPad);
2113 }
2114 }
2115 }
2116
2117 if (InlinedDeoptimizeCalls) {
2118 // We need to at least remove the deoptimizing returns from the Return set,
2119 // so that the control flow from those returns does not get merged into the
2120 // caller (but terminate it instead). If the caller's return type does not
2121 // match the callee's return type, we also need to change the return type of
2122 // the intrinsic.
2123 if (Caller->getReturnType() == TheCall->getType()) {
2124 auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) {
2125 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2126 });
2127 Returns.erase(NewEnd, Returns.end());
2128 } else {
2129 SmallVector<ReturnInst *, 8> NormalReturns;
2130 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2131 Caller->getParent(), Intrinsic::experimental_deoptimize,
2132 {Caller->getReturnType()});
2133
2134 for (ReturnInst *RI : Returns) {
2135 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2136 if (!DeoptCall) {
2137 NormalReturns.push_back(RI);
2138 continue;
2139 }
2140
2141 // The calling convention on the deoptimize call itself may be bogus,
2142 // since the code we're inlining may have undefined behavior (and may
2143 // never actually execute at runtime); but all
2144 // @llvm.experimental.deoptimize declarations have to have the same
2145 // calling convention in a well-formed module.
2146 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2147 NewDeoptIntrinsic->setCallingConv(CallingConv);
2148 auto *CurBB = RI->getParent();
2149 RI->eraseFromParent();
2150
2151 SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(),
2152 DeoptCall->arg_end());
2153
2154 SmallVector<OperandBundleDef, 1> OpBundles;
2155 DeoptCall->getOperandBundlesAsDefs(OpBundles);
2156 DeoptCall->eraseFromParent();
2157 assert(!OpBundles.empty() &&((!OpBundles.empty() && "Expected at least the deopt operand bundle"
) ? static_cast<void> (0) : __assert_fail ("!OpBundles.empty() && \"Expected at least the deopt operand bundle\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2158, __PRETTY_FUNCTION__))
2158 "Expected at least the deopt operand bundle")((!OpBundles.empty() && "Expected at least the deopt operand bundle"
) ? static_cast<void> (0) : __assert_fail ("!OpBundles.empty() && \"Expected at least the deopt operand bundle\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2158, __PRETTY_FUNCTION__))
;
2159
2160 IRBuilder<> Builder(CurBB);
2161 CallInst *NewDeoptCall =
2162 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2163 NewDeoptCall->setCallingConv(CallingConv);
2164 if (NewDeoptCall->getType()->isVoidTy())
2165 Builder.CreateRetVoid();
2166 else
2167 Builder.CreateRet(NewDeoptCall);
2168 }
2169
2170 // Leave behind the normal returns so we can merge control flow.
2171 std::swap(Returns, NormalReturns);
2172 }
2173 }
2174
2175 // Handle any inlined musttail call sites. In order for a new call site to be
2176 // musttail, the source of the clone and the inlined call site must have been
2177 // musttail. Therefore it's safe to return without merging control into the
2178 // phi below.
2179 if (InlinedMustTailCalls) {
2180 // Check if we need to bitcast the result of any musttail calls.
2181 Type *NewRetTy = Caller->getReturnType();
2182 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
2183
2184 // Handle the returns preceded by musttail calls separately.
2185 SmallVector<ReturnInst *, 8> NormalReturns;
2186 for (ReturnInst *RI : Returns) {
2187 CallInst *ReturnedMustTail =
2188 RI->getParent()->getTerminatingMustTailCall();
2189 if (!ReturnedMustTail) {
2190 NormalReturns.push_back(RI);
2191 continue;
2192 }
2193 if (!NeedBitCast)
2194 continue;
2195
2196 // Delete the old return and any preceding bitcast.
2197 BasicBlock *CurBB = RI->getParent();
2198 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2199 RI->eraseFromParent();
2200 if (OldCast)
2201 OldCast->eraseFromParent();
2202
2203 // Insert a new bitcast and return with the right type.
2204 IRBuilder<> Builder(CurBB);
2205 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2206 }
2207
2208 // Leave behind the normal returns so we can merge control flow.
2209 std::swap(Returns, NormalReturns);
2210 }
2211
2212 // Now that all of the transforms on the inlined code have taken place but
2213 // before we splice the inlined code into the CFG and lose track of which
2214 // blocks were actually inlined, collect the call sites. We only do this if
2215 // call graph updates weren't requested, as those provide value handle based
2216 // tracking of inlined call sites instead.
2217 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2218 // Otherwise just collect the raw call sites that were inlined.
2219 for (BasicBlock &NewBB :
2220 make_range(FirstNewBlock->getIterator(), Caller->end()))
2221 for (Instruction &I : NewBB)
2222 if (auto CS = CallSite(&I))
2223 IFI.InlinedCallSites.push_back(CS);
2224 }
2225
2226 // If we cloned in _exactly one_ basic block, and if that block ends in a
2227 // return instruction, we splice the body of the inlined callee directly into
2228 // the calling basic block.
2229 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2230 // Move all of the instructions right before the call.
2231 OrigBB->getInstList().splice(TheCall->getIterator(),
2232 FirstNewBlock->getInstList(),
2233 FirstNewBlock->begin(), FirstNewBlock->end());
2234 // Remove the cloned basic block.
2235 Caller->getBasicBlockList().pop_back();
2236
2237 // If the call site was an invoke instruction, add a branch to the normal
2238 // destination.
2239 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2240 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
2241 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2242 }
2243
2244 // If the return instruction returned a value, replace uses of the call with
2245 // uses of the returned value.
2246 if (!TheCall->use_empty()) {
2247 ReturnInst *R = Returns[0];
2248 if (TheCall == R->getReturnValue())
2249 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2250 else
2251 TheCall->replaceAllUsesWith(R->getReturnValue());
2252 }
2253 // Since we are now done with the Call/Invoke, we can delete it.
2254 TheCall->eraseFromParent();
2255
2256 // Since we are now done with the return instruction, delete it also.
2257 Returns[0]->eraseFromParent();
2258
2259 // We are now done with the inlining.
2260 return true;
2261 }
2262
2263 // Otherwise, we have the normal case, of more than one block to inline or
2264 // multiple return sites.
2265
2266 // We want to clone the entire callee function into the hole between the
2267 // "starter" and "ender" blocks. How we accomplish this depends on whether
2268 // this is an invoke instruction or a call instruction.
2269 BasicBlock *AfterCallBB;
2270 BranchInst *CreatedBranchToNormalDest = nullptr;
2271 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
2272
2273 // Add an unconditional branch to make this look like the CallInst case...
2274 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
2275
2276 // Split the basic block. This guarantees that no PHI nodes will have to be
2277 // updated due to new incoming edges, and make the invoke case more
2278 // symmetric to the call case.
2279 AfterCallBB =
2280 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2281 CalledFunc->getName() + ".exit");
2282
2283 } else { // It's a call
2284 // If this is a call instruction, we need to split the basic block that
2285 // the call lives in.
2286 //
2287 AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(),
2288 CalledFunc->getName() + ".exit");
2289 }
2290
2291 if (IFI.CallerBFI) {
2292 // Copy original BB's block frequency to AfterCallBB
2293 IFI.CallerBFI->setBlockFreq(
2294 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2295 }
2296
2297 // Change the branch that used to go to AfterCallBB to branch to the first
2298 // basic block of the inlined function.
2299 //
2300 Instruction *Br = OrigBB->getTerminator();
2301 assert(Br && Br->getOpcode() == Instruction::Br &&((Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!") ? static_cast<void> (0) : __assert_fail
("Br && Br->getOpcode() == Instruction::Br && \"splitBasicBlock broken!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2302, __PRETTY_FUNCTION__))
2302 "splitBasicBlock broken!")((Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!") ? static_cast<void> (0) : __assert_fail
("Br && Br->getOpcode() == Instruction::Br && \"splitBasicBlock broken!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2302, __PRETTY_FUNCTION__))
;
2303 Br->setOperand(0, &*FirstNewBlock);
2304
2305 // Now that the function is correct, make it a little bit nicer. In
2306 // particular, move the basic blocks inserted from the end of the function
2307 // into the space made by splitting the source basic block.
2308 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2309 Caller->getBasicBlockList(), FirstNewBlock,
2310 Caller->end());
2311
2312 // Handle all of the return instructions that we just cloned in, and eliminate
2313 // any users of the original call/invoke instruction.
2314 Type *RTy = CalledFunc->getReturnType();
2315
2316 PHINode *PHI = nullptr;
2317 if (Returns.size() > 1) {
2318 // The PHI node should go at the front of the new basic block to merge all
2319 // possible incoming values.
2320 if (!TheCall->use_empty()) {
2321 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
2322 &AfterCallBB->front());
2323 // Anything that used the result of the function call should now use the
2324 // PHI node as their operand.
2325 TheCall->replaceAllUsesWith(PHI);
2326 }
2327
2328 // Loop over all of the return instructions adding entries to the PHI node
2329 // as appropriate.
2330 if (PHI) {
2331 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2332 ReturnInst *RI = Returns[i];
2333 assert(RI->getReturnValue()->getType() == PHI->getType() &&((RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!") ? static_cast<void
> (0) : __assert_fail ("RI->getReturnValue()->getType() == PHI->getType() && \"Ret value not consistent in function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2334, __PRETTY_FUNCTION__))
2334 "Ret value not consistent in function!")((RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!") ? static_cast<void
> (0) : __assert_fail ("RI->getReturnValue()->getType() == PHI->getType() && \"Ret value not consistent in function!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2334, __PRETTY_FUNCTION__))
;
2335 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2336 }
2337 }
2338
2339 // Add a branch to the merge points and remove return instructions.
2340 DebugLoc Loc;
2341 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2342 ReturnInst *RI = Returns[i];
2343 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2344 Loc = RI->getDebugLoc();
2345 BI->setDebugLoc(Loc);
2346 RI->eraseFromParent();
2347 }
2348 // We need to set the debug location to *somewhere* inside the
2349 // inlined function. The line number may be nonsensical, but the
2350 // instruction will at least be associated with the right
2351 // function.
2352 if (CreatedBranchToNormalDest)
2353 CreatedBranchToNormalDest->setDebugLoc(Loc);
2354 } else if (!Returns.empty()) {
2355 // Otherwise, if there is exactly one return value, just replace anything
2356 // using the return value of the call with the computed value.
2357 if (!TheCall->use_empty()) {
2358 if (TheCall == Returns[0]->getReturnValue())
2359 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2360 else
2361 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
2362 }
2363
2364 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2365 BasicBlock *ReturnBB = Returns[0]->getParent();
2366 ReturnBB->replaceAllUsesWith(AfterCallBB);
2367
2368 // Splice the code from the return block into the block that it will return
2369 // to, which contains the code that was after the call.
2370 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2371 ReturnBB->getInstList());
2372
2373 if (CreatedBranchToNormalDest)
2374 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2375
2376 // Delete the return instruction now and empty ReturnBB now.
2377 Returns[0]->eraseFromParent();
2378 ReturnBB->eraseFromParent();
2379 } else if (!TheCall->use_empty()) {
2380 // No returns, but something is using the return value of the call. Just
2381 // nuke the result.
2382 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
2383 }
2384
2385 // Since we are now done with the Call/Invoke, we can delete it.
2386 TheCall->eraseFromParent();
2387
2388 // If we inlined any musttail calls and the original return is now
2389 // unreachable, delete it. It can only contain a bitcast and ret.
2390 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
2391 AfterCallBB->eraseFromParent();
2392
2393 // We should always be able to fold the entry block of the function into the
2394 // single predecessor of the block...
2395 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!")((cast<BranchInst>(Br)->isUnconditional() &&
"splitBasicBlock broken!") ? static_cast<void> (0) : __assert_fail
("cast<BranchInst>(Br)->isUnconditional() && \"splitBasicBlock broken!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/Transforms/Utils/InlineFunction.cpp"
, 2395, __PRETTY_FUNCTION__))
;
2396 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2397
2398 // Splice the code entry block into calling block, right before the
2399 // unconditional branch.
2400 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2401 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2402
2403 // Remove the unconditional branch.
2404 OrigBB->getInstList().erase(Br);
2405
2406 // Now we can remove the CalleeEntry block, which is now empty.
2407 Caller->getBasicBlockList().erase(CalleeEntry);
2408
2409 // If we inserted a phi node, check to see if it has a single value (e.g. all
2410 // the entries are the same or undef). If so, remove the PHI so it doesn't
2411 // block other optimizations.
2412 if (PHI) {
2413 AssumptionCache *AC =
2414 IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr;
2415 auto &DL = Caller->getParent()->getDataLayout();
2416 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2417 PHI->replaceAllUsesWith(V);
2418 PHI->eraseFromParent();
2419 }
2420 }
2421
2422 return true;
2423}