Bug Summary

File:llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
Warning:line 3490, column 7
Called C++ object pointer is uninitialized

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstCombineCompares.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fdenormal-fp-math=ieee,ieee -fdenormal-fp-math-f32=ieee,ieee -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/build-llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/build-llvm/lib/Transforms/InstCombine -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-02-25-235226-35566-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp

/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp

1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitICmp and visitFCmp functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APSInt.h"
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/TargetLibraryInfo.h"
20#include "llvm/IR/ConstantRange.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/PatternMatch.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/KnownBits.h"
27
28using namespace llvm;
29using namespace PatternMatch;
30
31#define DEBUG_TYPE"instcombine" "instcombine"
32
33// How many times is a select replaced by one of its operands?
34STATISTIC(NumSel, "Number of select opts")static llvm::Statistic NumSel = {"instcombine", "NumSel", "Number of select opts"
}
;
35
36
37/// Compute Result = In1+In2, returning true if the result overflowed for this
38/// type.
39static bool addWithOverflow(APInt &Result, const APInt &In1,
40 const APInt &In2, bool IsSigned = false) {
41 bool Overflow;
42 if (IsSigned)
43 Result = In1.sadd_ov(In2, Overflow);
44 else
45 Result = In1.uadd_ov(In2, Overflow);
46
47 return Overflow;
48}
49
50/// Compute Result = In1-In2, returning true if the result overflowed for this
51/// type.
52static bool subWithOverflow(APInt &Result, const APInt &In1,
53 const APInt &In2, bool IsSigned = false) {
54 bool Overflow;
55 if (IsSigned)
56 Result = In1.ssub_ov(In2, Overflow);
57 else
58 Result = In1.usub_ov(In2, Overflow);
59
60 return Overflow;
61}
62
63/// Given an icmp instruction, return true if any use of this comparison is a
64/// branch on sign bit comparison.
65static bool hasBranchUse(ICmpInst &I) {
66 for (auto *U : I.users())
67 if (isa<BranchInst>(U))
68 return true;
69 return false;
70}
71
72/// Returns true if the exploded icmp can be expressed as a signed comparison
73/// to zero and updates the predicate accordingly.
74/// The signedness of the comparison is preserved.
75/// TODO: Refactor with decomposeBitTestICmp()?
76static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77 if (!ICmpInst::isSigned(Pred))
78 return false;
79
80 if (C.isNullValue())
81 return ICmpInst::isRelational(Pred);
82
83 if (C.isOneValue()) {
84 if (Pred == ICmpInst::ICMP_SLT) {
85 Pred = ICmpInst::ICMP_SLE;
86 return true;
87 }
88 } else if (C.isAllOnesValue()) {
89 if (Pred == ICmpInst::ICMP_SGT) {
90 Pred = ICmpInst::ICMP_SGE;
91 return true;
92 }
93 }
94
95 return false;
96}
97
98/// Given a signed integer type and a set of known zero and one bits, compute
99/// the maximum and minimum values that could have the specified known zero and
100/// known one bits, returning them in Min/Max.
101/// TODO: Move to method on KnownBits struct?
102static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103 APInt &Min, APInt &Max) {
104 assert(Known.getBitWidth() == Min.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 106, __PRETTY_FUNCTION__))
105 Known.getBitWidth() == Max.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 106, __PRETTY_FUNCTION__))
106 "KnownZero, KnownOne and Min, Max must have equal bitwidth.")((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 106, __PRETTY_FUNCTION__))
;
107 APInt UnknownBits = ~(Known.Zero|Known.One);
108
109 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110 // bit if it is unknown.
111 Min = Known.One;
112 Max = Known.One|UnknownBits;
113
114 if (UnknownBits.isNegative()) { // Sign bit is unknown
115 Min.setSignBit();
116 Max.clearSignBit();
117 }
118}
119
120/// Given an unsigned integer type and a set of known zero and one bits, compute
121/// the maximum and minimum values that could have the specified known zero and
122/// known one bits, returning them in Min/Max.
123/// TODO: Move to method on KnownBits struct?
124static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125 APInt &Min, APInt &Max) {
126 assert(Known.getBitWidth() == Min.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 128, __PRETTY_FUNCTION__))
127 Known.getBitWidth() == Max.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 128, __PRETTY_FUNCTION__))
128 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.")((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 128, __PRETTY_FUNCTION__))
;
129 APInt UnknownBits = ~(Known.Zero|Known.One);
130
131 // The minimum value is when the unknown bits are all zeros.
132 Min = Known.One;
133 // The maximum value is when the unknown bits are all ones.
134 Max = Known.One|UnknownBits;
135}
136
137/// This is called when we see this pattern:
138/// cmp pred (load (gep GV, ...)), cmpcst
139/// where GV is a global variable with a constant initializer. Try to simplify
140/// this into some simple computation that does not need the load. For example
141/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142///
143/// If AndCst is non-null, then the loaded value is masked with that constant
144/// before doing the comparison. This handles cases like "A[i]&4 == 0".
145Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146 GlobalVariable *GV,
147 CmpInst &ICI,
148 ConstantInt *AndCst) {
149 Constant *Init = GV->getInitializer();
150 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151 return nullptr;
152
153 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154 // Don't blow up on huge arrays.
155 if (ArrayElementCount > MaxArraySizeForCombine)
156 return nullptr;
157
158 // There are many forms of this optimization we can handle, for now, just do
159 // the simple index into a single-dimensional array.
160 //
161 // Require: GEP GV, 0, i {{, constant indices}}
162 if (GEP->getNumOperands() < 3 ||
163 !isa<ConstantInt>(GEP->getOperand(1)) ||
164 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165 isa<Constant>(GEP->getOperand(2)))
166 return nullptr;
167
168 // Check that indices after the variable are constants and in-range for the
169 // type they index. Collect the indices. This is typically for arrays of
170 // structs.
171 SmallVector<unsigned, 4> LaterIndices;
172
173 Type *EltTy = Init->getType()->getArrayElementType();
174 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176 if (!Idx) return nullptr; // Variable index.
177
178 uint64_t IdxVal = Idx->getZExtValue();
179 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180
181 if (StructType *STy = dyn_cast<StructType>(EltTy))
182 EltTy = STy->getElementType(IdxVal);
183 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184 if (IdxVal >= ATy->getNumElements()) return nullptr;
185 EltTy = ATy->getElementType();
186 } else {
187 return nullptr; // Unknown type.
188 }
189
190 LaterIndices.push_back(IdxVal);
191 }
192
193 enum { Overdefined = -3, Undefined = -2 };
194
195 // Variables for our state machines.
196
197 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199 // and 87 is the second (and last) index. FirstTrueElement is -2 when
200 // undefined, otherwise set to the first true element. SecondTrueElement is
201 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203
204 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205 // form "i != 47 & i != 87". Same state transitions as for true elements.
206 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207
208 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209 /// define a state machine that triggers for ranges of values that the index
210 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
211 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212 /// index in the range (inclusive). We use -2 for undefined here because we
213 /// use relative comparisons and don't want 0-1 to match -1.
214 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215
216 // MagicBitvector - This is a magic bitvector where we set a bit if the
217 // comparison is true for element 'i'. If there are 64 elements or less in
218 // the array, this will fully represent all the comparison results.
219 uint64_t MagicBitvector = 0;
220
221 // Scan the array and see if one of our patterns matches.
222 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224 Constant *Elt = Init->getAggregateElement(i);
225 if (!Elt) return nullptr;
226
227 // If this is indexing an array of structures, get the structure element.
228 if (!LaterIndices.empty())
229 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230
231 // If the element is masked, handle it.
232 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233
234 // Find out if the comparison would be true or false for the i'th element.
235 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236 CompareRHS, DL, &TLI);
237 // If the result is undef for this element, ignore it.
238 if (isa<UndefValue>(C)) {
239 // Extend range state machines to cover this element in case there is an
240 // undef in the middle of the range.
241 if (TrueRangeEnd == (int)i-1)
242 TrueRangeEnd = i;
243 if (FalseRangeEnd == (int)i-1)
244 FalseRangeEnd = i;
245 continue;
246 }
247
248 // If we can't compute the result for any of the elements, we have to give
249 // up evaluating the entire conditional.
250 if (!isa<ConstantInt>(C)) return nullptr;
251
252 // Otherwise, we know if the comparison is true or false for this element,
253 // update our state machines.
254 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255
256 // State machine for single/double/range index comparison.
257 if (IsTrueForElt) {
258 // Update the TrueElement state machine.
259 if (FirstTrueElement == Undefined)
260 FirstTrueElement = TrueRangeEnd = i; // First true element.
261 else {
262 // Update double-compare state machine.
263 if (SecondTrueElement == Undefined)
264 SecondTrueElement = i;
265 else
266 SecondTrueElement = Overdefined;
267
268 // Update range state machine.
269 if (TrueRangeEnd == (int)i-1)
270 TrueRangeEnd = i;
271 else
272 TrueRangeEnd = Overdefined;
273 }
274 } else {
275 // Update the FalseElement state machine.
276 if (FirstFalseElement == Undefined)
277 FirstFalseElement = FalseRangeEnd = i; // First false element.
278 else {
279 // Update double-compare state machine.
280 if (SecondFalseElement == Undefined)
281 SecondFalseElement = i;
282 else
283 SecondFalseElement = Overdefined;
284
285 // Update range state machine.
286 if (FalseRangeEnd == (int)i-1)
287 FalseRangeEnd = i;
288 else
289 FalseRangeEnd = Overdefined;
290 }
291 }
292
293 // If this element is in range, update our magic bitvector.
294 if (i < 64 && IsTrueForElt)
295 MagicBitvector |= 1ULL << i;
296
297 // If all of our states become overdefined, bail out early. Since the
298 // predicate is expensive, only check it every 8 elements. This is only
299 // really useful for really huge arrays.
300 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302 FalseRangeEnd == Overdefined)
303 return nullptr;
304 }
305
306 // Now that we've scanned the entire array, emit our new comparison(s). We
307 // order the state machines in complexity of the generated code.
308 Value *Idx = GEP->getOperand(2);
309
310 // If the index is larger than the pointer size of the target, truncate the
311 // index down like the GEP would do implicitly. We don't have to do this for
312 // an inbounds GEP because the index can't be out of range.
313 if (!GEP->isInBounds()) {
314 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317 Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318 }
319
320 // If the comparison is only true for one or two elements, emit direct
321 // comparisons.
322 if (SecondTrueElement != Overdefined) {
323 // None true -> false.
324 if (FirstTrueElement == Undefined)
325 return replaceInstUsesWith(ICI, Builder.getFalse());
326
327 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328
329 // True for one element -> 'i == 47'.
330 if (SecondTrueElement == Undefined)
331 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332
333 // True for two elements -> 'i == 47 | i == 72'.
334 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337 return BinaryOperator::CreateOr(C1, C2);
338 }
339
340 // If the comparison is only false for one or two elements, emit direct
341 // comparisons.
342 if (SecondFalseElement != Overdefined) {
343 // None false -> true.
344 if (FirstFalseElement == Undefined)
345 return replaceInstUsesWith(ICI, Builder.getTrue());
346
347 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348
349 // False for one element -> 'i != 47'.
350 if (SecondFalseElement == Undefined)
351 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352
353 // False for two elements -> 'i != 47 & i != 72'.
354 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357 return BinaryOperator::CreateAnd(C1, C2);
358 }
359
360 // If the comparison can be replaced with a range comparison for the elements
361 // where it is true, emit the range check.
362 if (TrueRangeEnd != Overdefined) {
363 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare")((TrueRangeEnd != FirstTrueElement && "Should emit single compare"
) ? static_cast<void> (0) : __assert_fail ("TrueRangeEnd != FirstTrueElement && \"Should emit single compare\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 363, __PRETTY_FUNCTION__))
;
364
365 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366 if (FirstTrueElement) {
367 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368 Idx = Builder.CreateAdd(Idx, Offs);
369 }
370
371 Value *End = ConstantInt::get(Idx->getType(),
372 TrueRangeEnd-FirstTrueElement+1);
373 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374 }
375
376 // False range check.
377 if (FalseRangeEnd != Overdefined) {
378 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare")((FalseRangeEnd != FirstFalseElement && "Should emit single compare"
) ? static_cast<void> (0) : __assert_fail ("FalseRangeEnd != FirstFalseElement && \"Should emit single compare\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 378, __PRETTY_FUNCTION__))
;
379 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380 if (FirstFalseElement) {
381 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382 Idx = Builder.CreateAdd(Idx, Offs);
383 }
384
385 Value *End = ConstantInt::get(Idx->getType(),
386 FalseRangeEnd-FirstFalseElement);
387 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388 }
389
390 // If a magic bitvector captures the entire comparison state
391 // of this load, replace it with computation that does:
392 // ((magic_cst >> i) & 1) != 0
393 {
394 Type *Ty = nullptr;
395
396 // Look for an appropriate type:
397 // - The type of Idx if the magic fits
398 // - The smallest fitting legal type
399 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400 Ty = Idx->getType();
401 else
402 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403
404 if (Ty) {
405 Value *V = Builder.CreateIntCast(Idx, Ty, false);
406 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409 }
410 }
411
412 return nullptr;
413}
414
415/// Return a value that can be used to compare the *offset* implied by a GEP to
416/// zero. For example, if we have &A[i], we want to return 'i' for
417/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418/// are involved. The above expression would also be legal to codegen as
419/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420/// This latter form is less amenable to optimization though, and we are allowed
421/// to generate the first by knowing that pointer arithmetic doesn't overflow.
422///
423/// If we can't emit an optimized form for this expression, this returns null.
424///
425static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426 const DataLayout &DL) {
427 gep_type_iterator GTI = gep_type_begin(GEP);
428
429 // Check to see if this gep only has a single variable index. If so, and if
430 // any constant indices are a multiple of its scale, then we can compute this
431 // in terms of the scale of the variable index. For example, if the GEP
432 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433 // because the expression will cross zero at the same point.
434 unsigned i, e = GEP->getNumOperands();
435 int64_t Offset = 0;
436 for (i = 1; i != e; ++i, ++GTI) {
437 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438 // Compute the aggregate offset of constant indices.
439 if (CI->isZero()) continue;
440
441 // Handle a struct index, which adds its field offset to the pointer.
442 if (StructType *STy = GTI.getStructTypeOrNull()) {
443 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444 } else {
445 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446 Offset += Size*CI->getSExtValue();
447 }
448 } else {
449 // Found our variable index.
450 break;
451 }
452 }
453
454 // If there are no variable indices, we must have a constant offset, just
455 // evaluate it the general way.
456 if (i == e) return nullptr;
457
458 Value *VariableIdx = GEP->getOperand(i);
459 // Determine the scale factor of the variable element. For example, this is
460 // 4 if the variable index is into an array of i32.
461 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462
463 // Verify that there are no other variable indices. If so, emit the hard way.
464 for (++i, ++GTI; i != e; ++i, ++GTI) {
465 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466 if (!CI) return nullptr;
467
468 // Compute the aggregate offset of constant indices.
469 if (CI->isZero()) continue;
470
471 // Handle a struct index, which adds its field offset to the pointer.
472 if (StructType *STy = GTI.getStructTypeOrNull()) {
473 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474 } else {
475 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476 Offset += Size*CI->getSExtValue();
477 }
478 }
479
480 // Okay, we know we have a single variable index, which must be a
481 // pointer/array/vector index. If there is no offset, life is simple, return
482 // the index.
483 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485 if (Offset == 0) {
486 // Cast to intptrty in case a truncation occurs. If an extension is needed,
487 // we don't need to bother extending: the extension won't affect where the
488 // computation crosses zero.
489 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491 }
492 return VariableIdx;
493 }
494
495 // Otherwise, there is an index. The computation we will do will be modulo
496 // the pointer size.
497 Offset = SignExtend64(Offset, IntPtrWidth);
498 VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499
500 // To do this transformation, any constant index must be a multiple of the
501 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
502 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
503 // multiple of the variable scale.
504 int64_t NewOffs = Offset / (int64_t)VariableScale;
505 if (Offset != NewOffs*(int64_t)VariableScale)
506 return nullptr;
507
508 // Okay, we can do this evaluation. Start by converting the index to intptr.
509 if (VariableIdx->getType() != IntPtrTy)
510 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511 true /*Signed*/);
512 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514}
515
516/// Returns true if we can rewrite Start as a GEP with pointer Base
517/// and some integer offset. The nodes that need to be re-written
518/// for this transformation will be added to Explored.
519static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520 const DataLayout &DL,
521 SetVector<Value *> &Explored) {
522 SmallVector<Value *, 16> WorkList(1, Start);
523 Explored.insert(Base);
524
525 // The following traversal gives us an order which can be used
526 // when doing the final transformation. Since in the final
527 // transformation we create the PHI replacement instructions first,
528 // we don't have to get them in any particular order.
529 //
530 // However, for other instructions we will have to traverse the
531 // operands of an instruction first, which means that we have to
532 // do a post-order traversal.
533 while (!WorkList.empty()) {
534 SetVector<PHINode *> PHIs;
535
536 while (!WorkList.empty()) {
537 if (Explored.size() >= 100)
538 return false;
539
540 Value *V = WorkList.back();
541
542 if (Explored.count(V) != 0) {
543 WorkList.pop_back();
544 continue;
545 }
546
547 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549 // We've found some value that we can't explore which is different from
550 // the base. Therefore we can't do this transformation.
551 return false;
552
553 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554 auto *CI = dyn_cast<CastInst>(V);
555 if (!CI->isNoopCast(DL))
556 return false;
557
558 if (Explored.count(CI->getOperand(0)) == 0)
559 WorkList.push_back(CI->getOperand(0));
560 }
561
562 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563 // We're limiting the GEP to having one index. This will preserve
564 // the original pointer type. We could handle more cases in the
565 // future.
566 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567 GEP->getType() != Start->getType())
568 return false;
569
570 if (Explored.count(GEP->getOperand(0)) == 0)
571 WorkList.push_back(GEP->getOperand(0));
572 }
573
574 if (WorkList.back() == V) {
575 WorkList.pop_back();
576 // We've finished visiting this node, mark it as such.
577 Explored.insert(V);
578 }
579
580 if (auto *PN = dyn_cast<PHINode>(V)) {
581 // We cannot transform PHIs on unsplittable basic blocks.
582 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583 return false;
584 Explored.insert(PN);
585 PHIs.insert(PN);
586 }
587 }
588
589 // Explore the PHI nodes further.
590 for (auto *PN : PHIs)
591 for (Value *Op : PN->incoming_values())
592 if (Explored.count(Op) == 0)
593 WorkList.push_back(Op);
594 }
595
596 // Make sure that we can do this. Since we can't insert GEPs in a basic
597 // block before a PHI node, we can't easily do this transformation if
598 // we have PHI node users of transformed instructions.
599 for (Value *Val : Explored) {
600 for (Value *Use : Val->uses()) {
601
602 auto *PHI = dyn_cast<PHINode>(Use);
603 auto *Inst = dyn_cast<Instruction>(Val);
604
605 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606 Explored.count(PHI) == 0)
607 continue;
608
609 if (PHI->getParent() == Inst->getParent())
610 return false;
611 }
612 }
613 return true;
614}
615
616// Sets the appropriate insert point on Builder where we can add
617// a replacement Instruction for V (if that is possible).
618static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619 bool Before = true) {
620 if (auto *PHI = dyn_cast<PHINode>(V)) {
621 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622 return;
623 }
624 if (auto *I = dyn_cast<Instruction>(V)) {
625 if (!Before)
626 I = &*std::next(I->getIterator());
627 Builder.SetInsertPoint(I);
628 return;
629 }
630 if (auto *A = dyn_cast<Argument>(V)) {
631 // Set the insertion point in the entry block.
632 BasicBlock &Entry = A->getParent()->getEntryBlock();
633 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634 return;
635 }
636 // Otherwise, this is a constant and we don't need to set a new
637 // insertion point.
638 assert(isa<Constant>(V) && "Setting insertion point for unknown value!")((isa<Constant>(V) && "Setting insertion point for unknown value!"
) ? static_cast<void> (0) : __assert_fail ("isa<Constant>(V) && \"Setting insertion point for unknown value!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 638, __PRETTY_FUNCTION__))
;
639}
640
641/// Returns a re-written value of Start as an indexed GEP using Base as a
642/// pointer.
643static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644 const DataLayout &DL,
645 SetVector<Value *> &Explored) {
646 // Perform all the substitutions. This is a bit tricky because we can
647 // have cycles in our use-def chains.
648 // 1. Create the PHI nodes without any incoming values.
649 // 2. Create all the other values.
650 // 3. Add the edges for the PHI nodes.
651 // 4. Emit GEPs to get the original pointers.
652 // 5. Remove the original instructions.
653 Type *IndexType = IntegerType::get(
654 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655
656 DenseMap<Value *, Value *> NewInsts;
657 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658
659 // Create the new PHI nodes, without adding any incoming values.
660 for (Value *Val : Explored) {
661 if (Val == Base)
662 continue;
663 // Create empty phi nodes. This avoids cyclic dependencies when creating
664 // the remaining instructions.
665 if (auto *PHI = dyn_cast<PHINode>(Val))
666 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667 PHI->getName() + ".idx", PHI);
668 }
669 IRBuilder<> Builder(Base->getContext());
670
671 // Create all the other instructions.
672 for (Value *Val : Explored) {
673
674 if (NewInsts.find(Val) != NewInsts.end())
675 continue;
676
677 if (auto *CI = dyn_cast<CastInst>(Val)) {
678 // Don't get rid of the intermediate variable here; the store can grow
679 // the map which will invalidate the reference to the input value.
680 Value *V = NewInsts[CI->getOperand(0)];
681 NewInsts[CI] = V;
682 continue;
683 }
684 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686 : GEP->getOperand(1);
687 setInsertionPoint(Builder, GEP);
688 // Indices might need to be sign extended. GEPs will magically do
689 // this, but we need to do it ourselves here.
690 if (Index->getType()->getScalarSizeInBits() !=
691 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692 Index = Builder.CreateSExtOrTrunc(
693 Index, NewInsts[GEP->getOperand(0)]->getType(),
694 GEP->getOperand(0)->getName() + ".sext");
695 }
696
697 auto *Op = NewInsts[GEP->getOperand(0)];
698 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699 NewInsts[GEP] = Index;
700 else
701 NewInsts[GEP] = Builder.CreateNSWAdd(
702 Op, Index, GEP->getOperand(0)->getName() + ".add");
703 continue;
704 }
705 if (isa<PHINode>(Val))
706 continue;
707
708 llvm_unreachable("Unexpected instruction type")::llvm::llvm_unreachable_internal("Unexpected instruction type"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 708)
;
709 }
710
711 // Add the incoming values to the PHI nodes.
712 for (Value *Val : Explored) {
713 if (Val == Base)
714 continue;
715 // All the instructions have been created, we can now add edges to the
716 // phi nodes.
717 if (auto *PHI = dyn_cast<PHINode>(Val)) {
718 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720 Value *NewIncoming = PHI->getIncomingValue(I);
721
722 if (NewInsts.find(NewIncoming) != NewInsts.end())
723 NewIncoming = NewInsts[NewIncoming];
724
725 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726 }
727 }
728 }
729
730 for (Value *Val : Explored) {
731 if (Val == Base)
732 continue;
733
734 // Depending on the type, for external users we have to emit
735 // a GEP or a GEP + ptrtoint.
736 setInsertionPoint(Builder, Val, false);
737
738 // If required, create an inttoptr instruction for Base.
739 Value *NewBase = Base;
740 if (!Base->getType()->isPointerTy())
741 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742 Start->getName() + "to.ptr");
743
744 Value *GEP = Builder.CreateInBoundsGEP(
745 Start->getType()->getPointerElementType(), NewBase,
746 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747
748 if (!Val->getType()->isPointerTy()) {
749 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750 Val->getName() + ".conv");
751 GEP = Cast;
752 }
753 Val->replaceAllUsesWith(GEP);
754 }
755
756 return NewInsts[Start];
757}
758
759/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760/// the input Value as a constant indexed GEP. Returns a pair containing
761/// the GEPs Pointer and Index.
762static std::pair<Value *, Value *>
763getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764 Type *IndexType = IntegerType::get(V->getContext(),
765 DL.getIndexTypeSizeInBits(V->getType()));
766
767 Constant *Index = ConstantInt::getNullValue(IndexType);
768 while (true) {
769 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770 // We accept only inbouds GEPs here to exclude the possibility of
771 // overflow.
772 if (!GEP->isInBounds())
773 break;
774 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775 GEP->getType() == V->getType()) {
776 V = GEP->getOperand(0);
777 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778 Index = ConstantExpr::getAdd(
779 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780 continue;
781 }
782 break;
783 }
784 if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785 if (!CI->isNoopCast(DL))
786 break;
787 V = CI->getOperand(0);
788 continue;
789 }
790 if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791 if (!CI->isNoopCast(DL))
792 break;
793 V = CI->getOperand(0);
794 continue;
795 }
796 break;
797 }
798 return {V, Index};
799}
800
801/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802/// We can look through PHIs, GEPs and casts in order to determine a common base
803/// between GEPLHS and RHS.
804static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805 ICmpInst::Predicate Cond,
806 const DataLayout &DL) {
807 // FIXME: Support vector of pointers.
808 if (GEPLHS->getType()->isVectorTy())
809 return nullptr;
810
811 if (!GEPLHS->hasAllConstantIndices())
812 return nullptr;
813
814 // Make sure the pointers have the same type.
815 if (GEPLHS->getType() != RHS->getType())
816 return nullptr;
817
818 Value *PtrBase, *Index;
819 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820
821 // The set of nodes that will take part in this transformation.
822 SetVector<Value *> Nodes;
823
824 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825 return nullptr;
826
827 // We know we can re-write this as
828 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829 // Since we've only looked through inbouds GEPs we know that we
830 // can't have overflow on either side. We can therefore re-write
831 // this as:
832 // OFFSET1 cmp OFFSET2
833 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834
835 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837 // offset. Since Index is the offset of LHS to the base pointer, we will now
838 // compare the offsets instead of comparing the pointers.
839 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840}
841
842/// Fold comparisons between a GEP instruction and something else. At this point
843/// we know that the GEP is on the LHS of the comparison.
844Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845 ICmpInst::Predicate Cond,
846 Instruction &I) {
847 // Don't transform signed compares of GEPs into index compares. Even if the
848 // GEP is inbounds, the final add of the base pointer can have signed overflow
849 // and would change the result of the icmp.
850 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851 // the maximum signed value for the pointer type.
852 if (ICmpInst::isSigned(Cond))
853 return nullptr;
854
855 // Look through bitcasts and addrspacecasts. We do not however want to remove
856 // 0 GEPs.
857 if (!isa<GetElementPtrInst>(RHS))
858 RHS = RHS->stripPointerCasts();
859
860 Value *PtrBase = GEPLHS->getOperand(0);
861 // FIXME: Support vector pointer GEPs.
862 if (PtrBase == RHS && GEPLHS->isInBounds() &&
863 !GEPLHS->getType()->isVectorTy()) {
864 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
865 // This transformation (ignoring the base and scales) is valid because we
866 // know pointers can't overflow since the gep is inbounds. See if we can
867 // output an optimized form.
868 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869
870 // If not, synthesize the offset the hard way.
871 if (!Offset)
872 Offset = EmitGEPOffset(GEPLHS);
873 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874 Constant::getNullValue(Offset->getType()));
875 }
876
877 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879 !NullPointerIsDefined(I.getFunction(),
880 RHS->getType()->getPointerAddressSpace())) {
881 // For most address spaces, an allocation can't be placed at null, but null
882 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
883 // the only valid inbounds address derived from null, is null itself.
884 // Thus, we have four cases to consider:
885 // 1) Base == nullptr, Offset == 0 -> inbounds, null
886 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889 //
890 // (Note if we're indexing a type of size 0, that simply collapses into one
891 // of the buckets above.)
892 //
893 // In general, we're allowed to make values less poison (i.e. remove
894 // sources of full UB), so in this case, we just select between the two
895 // non-poison cases (1 and 4 above).
896 //
897 // For vectors, we apply the same reasoning on a per-lane basis.
898 auto *Base = GEPLHS->getPointerOperand();
899 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900 int NumElts = GEPLHS->getType()->getVectorNumElements();
901 Base = Builder.CreateVectorSplat(NumElts, Base);
902 }
903 return new ICmpInst(Cond, Base,
904 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905 cast<Constant>(RHS), Base->getType()));
906 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907 // If the base pointers are different, but the indices are the same, just
908 // compare the base pointer.
909 if (PtrBase != GEPRHS->getOperand(0)) {
910 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912 GEPRHS->getOperand(0)->getType();
913 if (IndicesTheSame)
914 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916 IndicesTheSame = false;
917 break;
918 }
919
920 // If all indices are the same, just compare the base pointers.
921 Type *BaseType = GEPLHS->getOperand(0)->getType();
922 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924
925 // If we're comparing GEPs with two base pointers that only differ in type
926 // and both GEPs have only constant indices or just one use, then fold
927 // the compare with the adjusted indices.
928 // FIXME: Support vector of pointers.
929 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932 PtrBase->stripPointerCasts() ==
933 GEPRHS->getOperand(0)->stripPointerCasts() &&
934 !GEPLHS->getType()->isVectorTy()) {
935 Value *LOffset = EmitGEPOffset(GEPLHS);
936 Value *ROffset = EmitGEPOffset(GEPRHS);
937
938 // If we looked through an addrspacecast between different sized address
939 // spaces, the LHS and RHS pointers are different sized
940 // integers. Truncate to the smaller one.
941 Type *LHSIndexTy = LOffset->getType();
942 Type *RHSIndexTy = ROffset->getType();
943 if (LHSIndexTy != RHSIndexTy) {
944 if (LHSIndexTy->getPrimitiveSizeInBits() <
945 RHSIndexTy->getPrimitiveSizeInBits()) {
946 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947 } else
948 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949 }
950
951 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952 LOffset, ROffset);
953 return replaceInstUsesWith(I, Cmp);
954 }
955
956 // Otherwise, the base pointers are different and the indices are
957 // different. Try convert this to an indexed compare by looking through
958 // PHIs/casts.
959 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960 }
961
962 // If one of the GEPs has all zero indices, recurse.
963 // FIXME: Handle vector of pointers.
964 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966 ICmpInst::getSwappedPredicate(Cond), I);
967
968 // If the other GEP has all zero indices, recurse.
969 // FIXME: Handle vector of pointers.
970 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972
973 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975 // If the GEPs only differ by one index, compare it.
976 unsigned NumDifferences = 0; // Keep track of # differences.
977 unsigned DiffOperand = 0; // The operand that differs.
978 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980 Type *LHSType = GEPLHS->getOperand(i)->getType();
981 Type *RHSType = GEPRHS->getOperand(i)->getType();
982 // FIXME: Better support for vector of pointers.
983 if (LHSType->getPrimitiveSizeInBits() !=
984 RHSType->getPrimitiveSizeInBits() ||
985 (GEPLHS->getType()->isVectorTy() &&
986 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987 // Irreconcilable differences.
988 NumDifferences = 2;
989 break;
990 }
991
992 if (NumDifferences++) break;
993 DiffOperand = i;
994 }
995
996 if (NumDifferences == 0) // SAME GEP?
997 return replaceInstUsesWith(I, // No comparison is needed here.
998 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999
1000 else if (NumDifferences == 1 && GEPsInBounds) {
1001 Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002 Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003 // Make sure we do a signed comparison here.
1004 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005 }
1006 }
1007
1008 // Only lower this if the icmp is the only user of the GEP or if we expect
1009 // the result to fold to a constant!
1010 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1013 Value *L = EmitGEPOffset(GEPLHS);
1014 Value *R = EmitGEPOffset(GEPRHS);
1015 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016 }
1017 }
1018
1019 // Try convert this to an indexed compare by looking through PHIs/casts as a
1020 // last resort.
1021 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022}
1023
1024Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025 const AllocaInst *Alloca,
1026 const Value *Other) {
1027 assert(ICI.isEquality() && "Cannot fold non-equality comparison.")((ICI.isEquality() && "Cannot fold non-equality comparison."
) ? static_cast<void> (0) : __assert_fail ("ICI.isEquality() && \"Cannot fold non-equality comparison.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1027, __PRETTY_FUNCTION__))
;
1028
1029 // It would be tempting to fold away comparisons between allocas and any
1030 // pointer not based on that alloca (e.g. an argument). However, even
1031 // though such pointers cannot alias, they can still compare equal.
1032 //
1033 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034 // doesn't escape we can argue that it's impossible to guess its value, and we
1035 // can therefore act as if any such guesses are wrong.
1036 //
1037 // The code below checks that the alloca doesn't escape, and that it's only
1038 // used in a comparison once (the current instruction). The
1039 // single-comparison-use condition ensures that we're trivially folding all
1040 // comparisons against the alloca consistently, and avoids the risk of
1041 // erroneously folding a comparison of the pointer with itself.
1042
1043 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044
1045 SmallVector<const Use *, 32> Worklist;
1046 for (const Use &U : Alloca->uses()) {
1047 if (Worklist.size() >= MaxIter)
1048 return nullptr;
1049 Worklist.push_back(&U);
1050 }
1051
1052 unsigned NumCmps = 0;
1053 while (!Worklist.empty()) {
1054 assert(Worklist.size() <= MaxIter)((Worklist.size() <= MaxIter) ? static_cast<void> (0
) : __assert_fail ("Worklist.size() <= MaxIter", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1054, __PRETTY_FUNCTION__))
;
1055 const Use *U = Worklist.pop_back_val();
1056 const Value *V = U->getUser();
1057 --MaxIter;
1058
1059 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060 isa<SelectInst>(V)) {
1061 // Track the uses.
1062 } else if (isa<LoadInst>(V)) {
1063 // Loading from the pointer doesn't escape it.
1064 continue;
1065 } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067 if (SI->getValueOperand() == U->get())
1068 return nullptr;
1069 continue;
1070 } else if (isa<ICmpInst>(V)) {
1071 if (NumCmps++)
1072 return nullptr; // Found more than one cmp.
1073 continue;
1074 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075 switch (Intrin->getIntrinsicID()) {
1076 // These intrinsics don't escape or compare the pointer. Memset is safe
1077 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078 // we don't allow stores, so src cannot point to V.
1079 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081 continue;
1082 default:
1083 return nullptr;
1084 }
1085 } else {
1086 return nullptr;
1087 }
1088 for (const Use &U : V->uses()) {
1089 if (Worklist.size() >= MaxIter)
1090 return nullptr;
1091 Worklist.push_back(&U);
1092 }
1093 }
1094
1095 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096 return replaceInstUsesWith(
1097 ICI,
1098 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099}
1100
1101/// Fold "icmp pred (X+C), X".
1102Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103 ICmpInst::Predicate Pred) {
1104 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105 // so the values can never be equal. Similarly for all other "or equals"
1106 // operators.
1107 assert(!!C && "C should not be zero!")((!!C && "C should not be zero!") ? static_cast<void
> (0) : __assert_fail ("!!C && \"C should not be zero!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1107, __PRETTY_FUNCTION__))
;
1108
1109 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1110 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1111 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1112 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113 Constant *R = ConstantInt::get(X->getType(),
1114 APInt::getMaxValue(C.getBitWidth()) - C);
1115 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116 }
1117
1118 // (X+1) >u X --> X <u (0-1) --> X != 255
1119 // (X+2) >u X --> X <u (0-2) --> X <u 254
1120 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1121 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122 return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123 ConstantInt::get(X->getType(), -C));
1124
1125 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126
1127 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1128 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1129 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1130 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1131 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1132 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1133 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135 ConstantInt::get(X->getType(), SMax - C));
1136
1137 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1138 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1139 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1142 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1143
1144 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) ?
static_cast<void> (0) : __assert_fail ("Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1144, __PRETTY_FUNCTION__))
;
1145 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146 ConstantInt::get(X->getType(), SMax - (C - 1)));
1147}
1148
1149/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150/// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153 const APInt &AP1,
1154 const APInt &AP2) {
1155 assert(I.isEquality() && "Cannot fold icmp gt/lt")((I.isEquality() && "Cannot fold icmp gt/lt") ? static_cast
<void> (0) : __assert_fail ("I.isEquality() && \"Cannot fold icmp gt/lt\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1155, __PRETTY_FUNCTION__))
;
1156
1157 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158 if (I.getPredicate() == I.ICMP_NE)
1159 Pred = CmpInst::getInversePredicate(Pred);
1160 return new ICmpInst(Pred, LHS, RHS);
1161 };
1162
1163 // Don't bother doing any work for cases which InstSimplify handles.
1164 if (AP2.isNullValue())
1165 return nullptr;
1166
1167 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168 if (IsAShr) {
1169 if (AP2.isAllOnesValue())
1170 return nullptr;
1171 if (AP2.isNegative() != AP1.isNegative())
1172 return nullptr;
1173 if (AP2.sgt(AP1))
1174 return nullptr;
1175 }
1176
1177 if (!AP1)
1178 // 'A' must be large enough to shift out the highest set bit.
1179 return getICmp(I.ICMP_UGT, A,
1180 ConstantInt::get(A->getType(), AP2.logBase2()));
1181
1182 if (AP1 == AP2)
1183 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184
1185 int Shift;
1186 if (IsAShr && AP1.isNegative())
1187 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188 else
1189 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190
1191 if (Shift > 0) {
1192 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193 // There are multiple solutions if we are comparing against -1 and the LHS
1194 // of the ashr is not a power of two.
1195 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198 } else if (AP1 == AP2.lshr(Shift)) {
1199 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200 }
1201 }
1202
1203 // Shifting const2 will never be equal to const1.
1204 // FIXME: This should always be handled by InstSimplify?
1205 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206 return replaceInstUsesWith(I, TorF);
1207}
1208
1209/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212 const APInt &AP1,
1213 const APInt &AP2) {
1214 assert(I.isEquality() && "Cannot fold icmp gt/lt")((I.isEquality() && "Cannot fold icmp gt/lt") ? static_cast
<void> (0) : __assert_fail ("I.isEquality() && \"Cannot fold icmp gt/lt\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215
1216 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217 if (I.getPredicate() == I.ICMP_NE)
1218 Pred = CmpInst::getInversePredicate(Pred);
1219 return new ICmpInst(Pred, LHS, RHS);
1220 };
1221
1222 // Don't bother doing any work for cases which InstSimplify handles.
1223 if (AP2.isNullValue())
1224 return nullptr;
1225
1226 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227
1228 if (!AP1 && AP2TrailingZeros != 0)
1229 return getICmp(
1230 I.ICMP_UGE, A,
1231 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232
1233 if (AP1 == AP2)
1234 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235
1236 // Get the distance between the lowest bits that are set.
1237 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238
1239 if (Shift > 0 && AP2.shl(Shift) == AP1)
1240 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241
1242 // Shifting const2 will never be equal to const1.
1243 // FIXME: This should always be handled by InstSimplify?
1244 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245 return replaceInstUsesWith(I, TorF);
1246}
1247
1248/// The caller has matched a pattern of the form:
1249/// I = icmp ugt (add (add A, B), CI2), CI1
1250/// If this is of the form:
1251/// sum = a + b
1252/// if (sum+128 >u 255)
1253/// Then replace it with llvm.sadd.with.overflow.i8.
1254///
1255static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256 ConstantInt *CI2, ConstantInt *CI1,
1257 InstCombiner &IC) {
1258 // The transformation we're trying to do here is to transform this into an
1259 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1260 // with a narrower add, and discard the add-with-constant that is part of the
1261 // range check (if we can't eliminate it, this isn't profitable).
1262
1263 // In order to eliminate the add-with-constant, the compare can be its only
1264 // use.
1265 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266 if (!AddWithCst->hasOneUse())
1267 return nullptr;
1268
1269 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270 if (!CI2->getValue().isPowerOf2())
1271 return nullptr;
1272 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274 return nullptr;
1275
1276 // The width of the new add formed is 1 more than the bias.
1277 ++NewWidth;
1278
1279 // Check to see that CI1 is an all-ones value with NewWidth bits.
1280 if (CI1->getBitWidth() == NewWidth ||
1281 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282 return nullptr;
1283
1284 // This is only really a signed overflow check if the inputs have been
1285 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290 return nullptr;
1291
1292 // In order to replace the original add with a narrower
1293 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294 // and truncates that discard the high bits of the add. Verify that this is
1295 // the case.
1296 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297 for (User *U : OrigAdd->users()) {
1298 if (U == AddWithCst)
1299 continue;
1300
1301 // Only accept truncates for now. We would really like a nice recursive
1302 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303 // chain to see which bits of a value are actually demanded. If the
1304 // original add had another add which was then immediately truncated, we
1305 // could still do the transformation.
1306 TruncInst *TI = dyn_cast<TruncInst>(U);
1307 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308 return nullptr;
1309 }
1310
1311 // If the pattern matches, truncate the inputs to the narrower type and
1312 // use the sadd_with_overflow intrinsic to efficiently compute both the
1313 // result and the overflow bit.
1314 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315 Function *F = Intrinsic::getDeclaration(
1316 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317
1318 InstCombiner::BuilderTy &Builder = IC.Builder;
1319
1320 // Put the new code above the original add, in case there are any uses of the
1321 // add between the add and the compare.
1322 Builder.SetInsertPoint(OrigAdd);
1323
1324 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329
1330 // The inner add was the result of the narrow add, zero extended to the
1331 // wider type. Replace it with the result computed by the intrinsic.
1332 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333
1334 // The original icmp gets replaced with the overflow value.
1335 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1336}
1337
1338/// If we have:
1339/// icmp eq/ne (urem/srem %x, %y), 0
1340/// iff %y is a power-of-two, we can replace this with a bit test:
1341/// icmp eq/ne (and %x, (add %y, -1)), 0
1342Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1343 // This fold is only valid for equality predicates.
1344 if (!I.isEquality())
1345 return nullptr;
1346 ICmpInst::Predicate Pred;
1347 Value *X, *Y, *Zero;
1348 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1349 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1350 return nullptr;
1351 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1352 return nullptr;
1353 // This may increase instruction count, we don't enforce that Y is a constant.
1354 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1355 Value *Masked = Builder.CreateAnd(X, Mask);
1356 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1357}
1358
1359/// Fold equality-comparison between zero and any (maybe truncated) right-shift
1360/// by one-less-than-bitwidth into a sign test on the original value.
1361Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1362 Instruction *Val;
1363 ICmpInst::Predicate Pred;
1364 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1365 return nullptr;
1366
1367 Value *X;
1368 Type *XTy;
1369
1370 Constant *C;
1371 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1372 XTy = X->getType();
1373 unsigned XBitWidth = XTy->getScalarSizeInBits();
1374 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1375 APInt(XBitWidth, XBitWidth - 1))))
1376 return nullptr;
1377 } else if (isa<BinaryOperator>(Val) &&
1378 (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1379 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1380 /*AnalyzeForSignBitExtraction=*/true))) {
1381 XTy = X->getType();
1382 } else
1383 return nullptr;
1384
1385 return ICmpInst::Create(Instruction::ICmp,
1386 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1387 : ICmpInst::ICMP_SLT,
1388 X, ConstantInt::getNullValue(XTy));
1389}
1390
1391// Handle icmp pred X, 0
1392Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1393 CmpInst::Predicate Pred = Cmp.getPredicate();
1394 if (!match(Cmp.getOperand(1), m_Zero()))
1395 return nullptr;
1396
1397 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1398 if (Pred == ICmpInst::ICMP_SGT) {
1399 Value *A, *B;
1400 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1401 if (SPR.Flavor == SPF_SMIN) {
1402 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1403 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1404 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1405 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1406 }
1407 }
1408
1409 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1410 return New;
1411
1412 // Given:
1413 // icmp eq/ne (urem %x, %y), 0
1414 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1415 // icmp eq/ne %x, 0
1416 Value *X, *Y;
1417 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1418 ICmpInst::isEquality(Pred)) {
1419 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1420 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1421 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1422 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1423 }
1424
1425 return nullptr;
1426}
1427
1428/// Fold icmp Pred X, C.
1429/// TODO: This code structure does not make sense. The saturating add fold
1430/// should be moved to some other helper and extended as noted below (it is also
1431/// possible that code has been made unnecessary - do we canonicalize IR to
1432/// overflow/saturating intrinsics or not?).
1433Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1434 // Match the following pattern, which is a common idiom when writing
1435 // overflow-safe integer arithmetic functions. The source performs an addition
1436 // in wider type and explicitly checks for overflow using comparisons against
1437 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1438 //
1439 // TODO: This could probably be generalized to handle other overflow-safe
1440 // operations if we worked out the formulas to compute the appropriate magic
1441 // constants.
1442 //
1443 // sum = a + b
1444 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1445 CmpInst::Predicate Pred = Cmp.getPredicate();
1446 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1447 Value *A, *B;
1448 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1449 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1450 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1451 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1452 return Res;
1453
1454 return nullptr;
1455}
1456
1457/// Canonicalize icmp instructions based on dominating conditions.
1458Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1459 // This is a cheap/incomplete check for dominance - just match a single
1460 // predecessor with a conditional branch.
1461 BasicBlock *CmpBB = Cmp.getParent();
1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463 if (!DomBB)
1464 return nullptr;
1465
1466 Value *DomCond;
1467 BasicBlock *TrueBB, *FalseBB;
1468 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1469 return nullptr;
1470
1471 assert((TrueBB == CmpBB || FalseBB == CmpBB) &&(((TrueBB == CmpBB || FalseBB == CmpBB) && "Predecessor block does not point to successor?"
) ? static_cast<void> (0) : __assert_fail ("(TrueBB == CmpBB || FalseBB == CmpBB) && \"Predecessor block does not point to successor?\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1472, __PRETTY_FUNCTION__))
1472 "Predecessor block does not point to successor?")(((TrueBB == CmpBB || FalseBB == CmpBB) && "Predecessor block does not point to successor?"
) ? static_cast<void> (0) : __assert_fail ("(TrueBB == CmpBB || FalseBB == CmpBB) && \"Predecessor block does not point to successor?\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1472, __PRETTY_FUNCTION__))
;
1473
1474 // The branch should get simplified. Don't bother simplifying this condition.
1475 if (TrueBB == FalseBB)
1476 return nullptr;
1477
1478 // Try to simplify this compare to T/F based on the dominating condition.
1479 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1480 if (Imp)
1481 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1482
1483 CmpInst::Predicate Pred = Cmp.getPredicate();
1484 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1485 ICmpInst::Predicate DomPred;
1486 const APInt *C, *DomC;
1487 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1488 match(Y, m_APInt(C))) {
1489 // We have 2 compares of a variable with constants. Calculate the constant
1490 // ranges of those compares to see if we can transform the 2nd compare:
1491 // DomBB:
1492 // DomCond = icmp DomPred X, DomC
1493 // br DomCond, CmpBB, FalseBB
1494 // CmpBB:
1495 // Cmp = icmp Pred X, C
1496 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1497 ConstantRange DominatingCR =
1498 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1499 : ConstantRange::makeExactICmpRegion(
1500 CmpInst::getInversePredicate(DomPred), *DomC);
1501 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1502 ConstantRange Difference = DominatingCR.difference(CR);
1503 if (Intersection.isEmptySet())
1504 return replaceInstUsesWith(Cmp, Builder.getFalse());
1505 if (Difference.isEmptySet())
1506 return replaceInstUsesWith(Cmp, Builder.getTrue());
1507
1508 // Canonicalizing a sign bit comparison that gets used in a branch,
1509 // pessimizes codegen by generating branch on zero instruction instead
1510 // of a test and branch. So we avoid canonicalizing in such situations
1511 // because test and branch instruction has better branch displacement
1512 // than compare and branch instruction.
1513 bool UnusedBit;
1514 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1515 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1516 return nullptr;
1517
1518 if (const APInt *EqC = Intersection.getSingleElement())
1519 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1520 if (const APInt *NeC = Difference.getSingleElement())
1521 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1522 }
1523
1524 return nullptr;
1525}
1526
1527/// Fold icmp (trunc X, Y), C.
1528Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1529 TruncInst *Trunc,
1530 const APInt &C) {
1531 ICmpInst::Predicate Pred = Cmp.getPredicate();
1532 Value *X = Trunc->getOperand(0);
1533 if (C.isOneValue() && C.getBitWidth() > 1) {
1534 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1535 Value *V = nullptr;
1536 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1537 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1538 ConstantInt::get(V->getType(), 1));
1539 }
1540
1541 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1542 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1543 // of the high bits truncated out of x are known.
1544 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1545 SrcBits = X->getType()->getScalarSizeInBits();
1546 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1547
1548 // If all the high bits are known, we can do this xform.
1549 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1550 // Pull in the high bits from known-ones set.
1551 APInt NewRHS = C.zext(SrcBits);
1552 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1553 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1554 }
1555 }
1556
1557 return nullptr;
1558}
1559
1560/// Fold icmp (xor X, Y), C.
1561Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1562 BinaryOperator *Xor,
1563 const APInt &C) {
1564 Value *X = Xor->getOperand(0);
1565 Value *Y = Xor->getOperand(1);
1566 const APInt *XorC;
1567 if (!match(Y, m_APInt(XorC)))
1568 return nullptr;
1569
1570 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1571 // fold the xor.
1572 ICmpInst::Predicate Pred = Cmp.getPredicate();
1573 bool TrueIfSigned = false;
1574 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1575
1576 // If the sign bit of the XorCst is not set, there is no change to
1577 // the operation, just stop using the Xor.
1578 if (!XorC->isNegative())
1579 return replaceOperand(Cmp, 0, X);
1580
1581 // Emit the opposite comparison.
1582 if (TrueIfSigned)
1583 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1584 ConstantInt::getAllOnesValue(X->getType()));
1585 else
1586 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1587 ConstantInt::getNullValue(X->getType()));
1588 }
1589
1590 if (Xor->hasOneUse()) {
1591 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1592 if (!Cmp.isEquality() && XorC->isSignMask()) {
1593 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1594 : Cmp.getSignedPredicate();
1595 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1596 }
1597
1598 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1599 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1600 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1601 : Cmp.getSignedPredicate();
1602 Pred = Cmp.getSwappedPredicate(Pred);
1603 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1604 }
1605 }
1606
1607 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1608 if (Pred == ICmpInst::ICMP_UGT) {
1609 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1610 if (*XorC == ~C && (C + 1).isPowerOf2())
1611 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1612 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1613 if (*XorC == C && (C + 1).isPowerOf2())
1614 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1615 }
1616 if (Pred == ICmpInst::ICMP_ULT) {
1617 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1618 if (*XorC == -C && C.isPowerOf2())
1619 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1620 ConstantInt::get(X->getType(), ~C));
1621 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1622 if (*XorC == C && (-C).isPowerOf2())
1623 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1624 ConstantInt::get(X->getType(), ~C));
1625 }
1626 return nullptr;
1627}
1628
1629/// Fold icmp (and (sh X, Y), C2), C1.
1630Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1631 const APInt &C1, const APInt &C2) {
1632 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1633 if (!Shift || !Shift->isShift())
1634 return nullptr;
1635
1636 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1637 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1638 // code produced by the clang front-end, for bitfield access.
1639 // This seemingly simple opportunity to fold away a shift turns out to be
1640 // rather complicated. See PR17827 for details.
1641 unsigned ShiftOpcode = Shift->getOpcode();
1642 bool IsShl = ShiftOpcode == Instruction::Shl;
1643 const APInt *C3;
1644 if (match(Shift->getOperand(1), m_APInt(C3))) {
1645 APInt NewAndCst, NewCmpCst;
1646 bool AnyCmpCstBitsShiftedOut;
1647 if (ShiftOpcode == Instruction::Shl) {
1648 // For a left shift, we can fold if the comparison is not signed. We can
1649 // also fold a signed comparison if the mask value and comparison value
1650 // are not negative. These constraints may not be obvious, but we can
1651 // prove that they are correct using an SMT solver.
1652 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1653 return nullptr;
1654
1655 NewCmpCst = C1.lshr(*C3);
1656 NewAndCst = C2.lshr(*C3);
1657 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1658 } else if (ShiftOpcode == Instruction::LShr) {
1659 // For a logical right shift, we can fold if the comparison is not signed.
1660 // We can also fold a signed comparison if the shifted mask value and the
1661 // shifted comparison value are not negative. These constraints may not be
1662 // obvious, but we can prove that they are correct using an SMT solver.
1663 NewCmpCst = C1.shl(*C3);
1664 NewAndCst = C2.shl(*C3);
1665 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1666 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1667 return nullptr;
1668 } else {
1669 // For an arithmetic shift, check that both constants don't use (in a
1670 // signed sense) the top bits being shifted out.
1671 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode")((ShiftOpcode == Instruction::AShr && "Unknown shift opcode"
) ? static_cast<void> (0) : __assert_fail ("ShiftOpcode == Instruction::AShr && \"Unknown shift opcode\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672 NewCmpCst = C1.shl(*C3);
1673 NewAndCst = C2.shl(*C3);
1674 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1675 if (NewAndCst.ashr(*C3) != C2)
1676 return nullptr;
1677 }
1678
1679 if (AnyCmpCstBitsShiftedOut) {
1680 // If we shifted bits out, the fold is not going to work out. As a
1681 // special case, check to see if this means that the result is always
1682 // true or false now.
1683 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1684 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1685 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1686 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1687 } else {
1688 Value *NewAnd = Builder.CreateAnd(
1689 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1690 return new ICmpInst(Cmp.getPredicate(),
1691 NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1692 }
1693 }
1694
1695 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1696 // preferable because it allows the C2 << Y expression to be hoisted out of a
1697 // loop if Y is invariant and X is not.
1698 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1699 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1700 // Compute C2 << Y.
1701 Value *NewShift =
1702 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1703 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1704
1705 // Compute X & (C2 << Y).
1706 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1707 return replaceOperand(Cmp, 0, NewAnd);
1708 }
1709
1710 return nullptr;
1711}
1712
1713/// Fold icmp (and X, C2), C1.
1714Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1715 BinaryOperator *And,
1716 const APInt &C1) {
1717 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1718
1719 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1720 // TODO: We canonicalize to the longer form for scalars because we have
1721 // better analysis/folds for icmp, and codegen may be better with icmp.
1722 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1723 match(And->getOperand(1), m_One()))
1724 return new TruncInst(And->getOperand(0), Cmp.getType());
1725
1726 const APInt *C2;
1727 Value *X;
1728 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1729 return nullptr;
1730
1731 // Don't perform the following transforms if the AND has multiple uses
1732 if (!And->hasOneUse())
1733 return nullptr;
1734
1735 if (Cmp.isEquality() && C1.isNullValue()) {
1736 // Restrict this fold to single-use 'and' (PR10267).
1737 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1738 if (C2->isSignMask()) {
1739 Constant *Zero = Constant::getNullValue(X->getType());
1740 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1741 return new ICmpInst(NewPred, X, Zero);
1742 }
1743
1744 // Restrict this fold only for single-use 'and' (PR10267).
1745 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1746 if ((~(*C2) + 1).isPowerOf2()) {
1747 Constant *NegBOC =
1748 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1749 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1750 return new ICmpInst(NewPred, X, NegBOC);
1751 }
1752 }
1753
1754 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1755 // the input width without changing the value produced, eliminate the cast:
1756 //
1757 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1758 //
1759 // We can do this transformation if the constants do not have their sign bits
1760 // set or if it is an equality comparison. Extending a relational comparison
1761 // when we're checking the sign bit would not work.
1762 Value *W;
1763 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1764 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1765 // TODO: Is this a good transform for vectors? Wider types may reduce
1766 // throughput. Should this transform be limited (even for scalars) by using
1767 // shouldChangeType()?
1768 if (!Cmp.getType()->isVectorTy()) {
1769 Type *WideType = W->getType();
1770 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1771 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1772 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1773 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1774 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1775 }
1776 }
1777
1778 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1779 return I;
1780
1781 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1782 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1783 //
1784 // iff pred isn't signed
1785 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1786 match(And->getOperand(1), m_One())) {
1787 Constant *One = cast<Constant>(And->getOperand(1));
1788 Value *Or = And->getOperand(0);
1789 Value *A, *B, *LShr;
1790 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1791 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1792 unsigned UsesRemoved = 0;
1793 if (And->hasOneUse())
1794 ++UsesRemoved;
1795 if (Or->hasOneUse())
1796 ++UsesRemoved;
1797 if (LShr->hasOneUse())
1798 ++UsesRemoved;
1799
1800 // Compute A & ((1 << B) | 1)
1801 Value *NewOr = nullptr;
1802 if (auto *C = dyn_cast<Constant>(B)) {
1803 if (UsesRemoved >= 1)
1804 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1805 } else {
1806 if (UsesRemoved >= 3)
1807 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1808 /*HasNUW=*/true),
1809 One, Or->getName());
1810 }
1811 if (NewOr) {
1812 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1813 return replaceOperand(Cmp, 0, NewAnd);
1814 }
1815 }
1816 }
1817
1818 return nullptr;
1819}
1820
1821/// Fold icmp (and X, Y), C.
1822Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1823 BinaryOperator *And,
1824 const APInt &C) {
1825 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1826 return I;
1827
1828 // TODO: These all require that Y is constant too, so refactor with the above.
1829
1830 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1831 Value *X = And->getOperand(0);
1832 Value *Y = And->getOperand(1);
1833 if (auto *LI = dyn_cast<LoadInst>(X))
1834 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1835 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1836 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1837 !LI->isVolatile() && isa<ConstantInt>(Y)) {
1838 ConstantInt *C2 = cast<ConstantInt>(Y);
1839 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1840 return Res;
1841 }
1842
1843 if (!Cmp.isEquality())
1844 return nullptr;
1845
1846 // X & -C == -C -> X > u ~C
1847 // X & -C != -C -> X <= u ~C
1848 // iff C is a power of 2
1849 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1850 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1851 : CmpInst::ICMP_ULE;
1852 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1853 }
1854
1855 // (X & C2) == 0 -> (trunc X) >= 0
1856 // (X & C2) != 0 -> (trunc X) < 0
1857 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1858 const APInt *C2;
1859 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1860 int32_t ExactLogBase2 = C2->exactLogBase2();
1861 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1862 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1863 if (And->getType()->isVectorTy())
1864 NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
1865 Value *Trunc = Builder.CreateTrunc(X, NTy);
1866 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1867 : CmpInst::ICMP_SLT;
1868 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1869 }
1870 }
1871
1872 return nullptr;
1873}
1874
1875/// Fold icmp (or X, Y), C.
1876Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1877 const APInt &C) {
1878 ICmpInst::Predicate Pred = Cmp.getPredicate();
1879 if (C.isOneValue()) {
1880 // icmp slt signum(V) 1 --> icmp slt V, 1
1881 Value *V = nullptr;
1882 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1883 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1884 ConstantInt::get(V->getType(), 1));
1885 }
1886
1887 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1888 if (Cmp.isEquality() && Cmp.getOperand(1) == OrOp1) {
1889 // X | C == C --> X <=u C
1890 // X | C != C --> X >u C
1891 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1892 if ((C + 1).isPowerOf2()) {
1893 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1894 return new ICmpInst(Pred, OrOp0, OrOp1);
1895 }
1896 // More general: are all bits outside of a mask constant set or not set?
1897 // X | C == C --> (X & ~C) == 0
1898 // X | C != C --> (X & ~C) != 0
1899 if (Or->hasOneUse()) {
1900 Value *A = Builder.CreateAnd(OrOp0, ~C);
1901 return new ICmpInst(Pred, A, ConstantInt::getNullValue(OrOp0->getType()));
1902 }
1903 }
1904
1905 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1906 return nullptr;
1907
1908 Value *P, *Q;
1909 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1910 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1911 // -> and (icmp eq P, null), (icmp eq Q, null).
1912 Value *CmpP =
1913 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1914 Value *CmpQ =
1915 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1916 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1917 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1918 }
1919
1920 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1921 // a shorter form that has more potential to be folded even further.
1922 Value *X1, *X2, *X3, *X4;
1923 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1924 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1925 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1926 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1927 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1928 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1929 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1930 return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1931 }
1932
1933 return nullptr;
1934}
1935
1936/// Fold icmp (mul X, Y), C.
1937Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1938 BinaryOperator *Mul,
1939 const APInt &C) {
1940 const APInt *MulC;
1941 if (!match(Mul->getOperand(1), m_APInt(MulC)))
1942 return nullptr;
1943
1944 // If this is a test of the sign bit and the multiply is sign-preserving with
1945 // a constant operand, use the multiply LHS operand instead.
1946 ICmpInst::Predicate Pred = Cmp.getPredicate();
1947 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1948 if (MulC->isNegative())
1949 Pred = ICmpInst::getSwappedPredicate(Pred);
1950 return new ICmpInst(Pred, Mul->getOperand(0),
1951 Constant::getNullValue(Mul->getType()));
1952 }
1953
1954 return nullptr;
1955}
1956
1957/// Fold icmp (shl 1, Y), C.
1958static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1959 const APInt &C) {
1960 Value *Y;
1961 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1962 return nullptr;
1963
1964 Type *ShiftType = Shl->getType();
1965 unsigned TypeBits = C.getBitWidth();
1966 bool CIsPowerOf2 = C.isPowerOf2();
1967 ICmpInst::Predicate Pred = Cmp.getPredicate();
1968 if (Cmp.isUnsigned()) {
1969 // (1 << Y) pred C -> Y pred Log2(C)
1970 if (!CIsPowerOf2) {
1971 // (1 << Y) < 30 -> Y <= 4
1972 // (1 << Y) <= 30 -> Y <= 4
1973 // (1 << Y) >= 30 -> Y > 4
1974 // (1 << Y) > 30 -> Y > 4
1975 if (Pred == ICmpInst::ICMP_ULT)
1976 Pred = ICmpInst::ICMP_ULE;
1977 else if (Pred == ICmpInst::ICMP_UGE)
1978 Pred = ICmpInst::ICMP_UGT;
1979 }
1980
1981 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
1982 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
1983 unsigned CLog2 = C.logBase2();
1984 if (CLog2 == TypeBits - 1) {
1985 if (Pred == ICmpInst::ICMP_UGE)
1986 Pred = ICmpInst::ICMP_EQ;
1987 else if (Pred == ICmpInst::ICMP_ULT)
1988 Pred = ICmpInst::ICMP_NE;
1989 }
1990 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
1991 } else if (Cmp.isSigned()) {
1992 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
1993 if (C.isAllOnesValue()) {
1994 // (1 << Y) <= -1 -> Y == 31
1995 if (Pred == ICmpInst::ICMP_SLE)
1996 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
1997
1998 // (1 << Y) > -1 -> Y != 31
1999 if (Pred == ICmpInst::ICMP_SGT)
2000 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2001 } else if (!C) {
2002 // (1 << Y) < 0 -> Y == 31
2003 // (1 << Y) <= 0 -> Y == 31
2004 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2005 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2006
2007 // (1 << Y) >= 0 -> Y != 31
2008 // (1 << Y) > 0 -> Y != 31
2009 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2010 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2011 }
2012 } else if (Cmp.isEquality() && CIsPowerOf2) {
2013 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2014 }
2015
2016 return nullptr;
2017}
2018
2019/// Fold icmp (shl X, Y), C.
2020Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2021 BinaryOperator *Shl,
2022 const APInt &C) {
2023 const APInt *ShiftVal;
2024 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2025 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2026
2027 const APInt *ShiftAmt;
2028 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2029 return foldICmpShlOne(Cmp, Shl, C);
2030
2031 // Check that the shift amount is in range. If not, don't perform undefined
2032 // shifts. When the shift is visited, it will be simplified.
2033 unsigned TypeBits = C.getBitWidth();
2034 if (ShiftAmt->uge(TypeBits))
2035 return nullptr;
2036
2037 ICmpInst::Predicate Pred = Cmp.getPredicate();
2038 Value *X = Shl->getOperand(0);
2039 Type *ShType = Shl->getType();
2040
2041 // NSW guarantees that we are only shifting out sign bits from the high bits,
2042 // so we can ASHR the compare constant without needing a mask and eliminate
2043 // the shift.
2044 if (Shl->hasNoSignedWrap()) {
2045 if (Pred == ICmpInst::ICMP_SGT) {
2046 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2047 APInt ShiftedC = C.ashr(*ShiftAmt);
2048 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2049 }
2050 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2051 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2052 APInt ShiftedC = C.ashr(*ShiftAmt);
2053 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2054 }
2055 if (Pred == ICmpInst::ICMP_SLT) {
2056 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2057 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2058 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2059 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2060 assert(!C.isMinSignedValue() && "Unexpected icmp slt")((!C.isMinSignedValue() && "Unexpected icmp slt") ? static_cast
<void> (0) : __assert_fail ("!C.isMinSignedValue() && \"Unexpected icmp slt\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2060, __PRETTY_FUNCTION__))
;
2061 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2062 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2063 }
2064 // If this is a signed comparison to 0 and the shift is sign preserving,
2065 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2066 // do that if we're sure to not continue on in this function.
2067 if (isSignTest(Pred, C))
2068 return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2069 }
2070
2071 // NUW guarantees that we are only shifting out zero bits from the high bits,
2072 // so we can LSHR the compare constant without needing a mask and eliminate
2073 // the shift.
2074 if (Shl->hasNoUnsignedWrap()) {
2075 if (Pred == ICmpInst::ICMP_UGT) {
2076 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2077 APInt ShiftedC = C.lshr(*ShiftAmt);
2078 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2079 }
2080 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2081 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2082 APInt ShiftedC = C.lshr(*ShiftAmt);
2083 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2084 }
2085 if (Pred == ICmpInst::ICMP_ULT) {
2086 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2087 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2088 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2089 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2090 assert(C.ugt(0) && "ult 0 should have been eliminated")((C.ugt(0) && "ult 0 should have been eliminated") ? static_cast
<void> (0) : __assert_fail ("C.ugt(0) && \"ult 0 should have been eliminated\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2090, __PRETTY_FUNCTION__))
;
2091 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2092 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2093 }
2094 }
2095
2096 if (Cmp.isEquality() && Shl->hasOneUse()) {
2097 // Strength-reduce the shift into an 'and'.
2098 Constant *Mask = ConstantInt::get(
2099 ShType,
2100 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2101 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2102 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2103 return new ICmpInst(Pred, And, LShrC);
2104 }
2105
2106 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2107 bool TrueIfSigned = false;
2108 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2109 // (X << 31) <s 0 --> (X & 1) != 0
2110 Constant *Mask = ConstantInt::get(
2111 ShType,
2112 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2113 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2114 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2115 And, Constant::getNullValue(ShType));
2116 }
2117
2118 // Simplify 'shl' inequality test into 'and' equality test.
2119 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2120 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2121 if ((C + 1).isPowerOf2() &&
2122 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2123 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2124 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2125 : ICmpInst::ICMP_NE,
2126 And, Constant::getNullValue(ShType));
2127 }
2128 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2129 if (C.isPowerOf2() &&
2130 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2131 Value *And =
2132 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2133 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2134 : ICmpInst::ICMP_NE,
2135 And, Constant::getNullValue(ShType));
2136 }
2137 }
2138
2139 // Transform (icmp pred iM (shl iM %v, N), C)
2140 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2141 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2142 // This enables us to get rid of the shift in favor of a trunc that may be
2143 // free on the target. It has the additional benefit of comparing to a
2144 // smaller constant that may be more target-friendly.
2145 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2146 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2147 DL.isLegalInteger(TypeBits - Amt)) {
2148 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2149 if (ShType->isVectorTy())
2150 TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
2151 Constant *NewC =
2152 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2153 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2154 }
2155
2156 return nullptr;
2157}
2158
2159/// Fold icmp ({al}shr X, Y), C.
2160Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2161 BinaryOperator *Shr,
2162 const APInt &C) {
2163 // An exact shr only shifts out zero bits, so:
2164 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2165 Value *X = Shr->getOperand(0);
2166 CmpInst::Predicate Pred = Cmp.getPredicate();
2167 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2168 C.isNullValue())
2169 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2170
2171 const APInt *ShiftVal;
2172 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2173 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2174
2175 const APInt *ShiftAmt;
2176 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2177 return nullptr;
2178
2179 // Check that the shift amount is in range. If not, don't perform undefined
2180 // shifts. When the shift is visited it will be simplified.
2181 unsigned TypeBits = C.getBitWidth();
2182 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2183 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2184 return nullptr;
2185
2186 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2187 bool IsExact = Shr->isExact();
2188 Type *ShrTy = Shr->getType();
2189 // TODO: If we could guarantee that InstSimplify would handle all of the
2190 // constant-value-based preconditions in the folds below, then we could assert
2191 // those conditions rather than checking them. This is difficult because of
2192 // undef/poison (PR34838).
2193 if (IsAShr) {
2194 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2195 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2196 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2197 APInt ShiftedC = C.shl(ShAmtVal);
2198 if (ShiftedC.ashr(ShAmtVal) == C)
2199 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2200 }
2201 if (Pred == CmpInst::ICMP_SGT) {
2202 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2203 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2204 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2205 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2206 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2207 }
2208 } else {
2209 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2210 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2211 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2212 APInt ShiftedC = C.shl(ShAmtVal);
2213 if (ShiftedC.lshr(ShAmtVal) == C)
2214 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2215 }
2216 if (Pred == CmpInst::ICMP_UGT) {
2217 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2218 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2219 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2220 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2221 }
2222 }
2223
2224 if (!Cmp.isEquality())
2225 return nullptr;
2226
2227 // Handle equality comparisons of shift-by-constant.
2228
2229 // If the comparison constant changes with the shift, the comparison cannot
2230 // succeed (bits of the comparison constant cannot match the shifted value).
2231 // This should be known by InstSimplify and already be folded to true/false.
2232 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||((((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
"Expected icmp+shr simplify did not occur.") ? static_cast<
void> (0) : __assert_fail ("((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && \"Expected icmp+shr simplify did not occur.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2234, __PRETTY_FUNCTION__))
2233 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&((((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
"Expected icmp+shr simplify did not occur.") ? static_cast<
void> (0) : __assert_fail ("((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && \"Expected icmp+shr simplify did not occur.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2234, __PRETTY_FUNCTION__))
2234 "Expected icmp+shr simplify did not occur.")((((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
"Expected icmp+shr simplify did not occur.") ? static_cast<
void> (0) : __assert_fail ("((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && \"Expected icmp+shr simplify did not occur.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2234, __PRETTY_FUNCTION__))
;
2235
2236 // If the bits shifted out are known zero, compare the unshifted value:
2237 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2238 if (Shr->isExact())
2239 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2240
2241 if (Shr->hasOneUse()) {
2242 // Canonicalize the shift into an 'and':
2243 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2244 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2245 Constant *Mask = ConstantInt::get(ShrTy, Val);
2246 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2247 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2248 }
2249
2250 return nullptr;
2251}
2252
2253Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2254 BinaryOperator *SRem,
2255 const APInt &C) {
2256 // Match an 'is positive' or 'is negative' comparison of remainder by a
2257 // constant power-of-2 value:
2258 // (X % pow2C) sgt/slt 0
2259 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2260 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2261 return nullptr;
2262
2263 // TODO: The one-use check is standard because we do not typically want to
2264 // create longer instruction sequences, but this might be a special-case
2265 // because srem is not good for analysis or codegen.
2266 if (!SRem->hasOneUse())
2267 return nullptr;
2268
2269 const APInt *DivisorC;
2270 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2271 return nullptr;
2272
2273 // Mask off the sign bit and the modulo bits (low-bits).
2274 Type *Ty = SRem->getType();
2275 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2276 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2277 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2278
2279 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2280 // bit is set. Example:
2281 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2282 if (Pred == ICmpInst::ICMP_SGT)
2283 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2284
2285 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2286 // bit is set. Example:
2287 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2288 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2289}
2290
2291/// Fold icmp (udiv X, Y), C.
2292Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2293 BinaryOperator *UDiv,
2294 const APInt &C) {
2295 const APInt *C2;
2296 if (!match(UDiv->getOperand(0), m_APInt(C2)))
2297 return nullptr;
2298
2299 assert(*C2 != 0 && "udiv 0, X should have been simplified already.")((*C2 != 0 && "udiv 0, X should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("*C2 != 0 && \"udiv 0, X should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2299, __PRETTY_FUNCTION__))
;
2300
2301 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2302 Value *Y = UDiv->getOperand(1);
2303 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2304 assert(!C.isMaxValue() &&((!C.isMaxValue() && "icmp ugt X, UINT_MAX should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("!C.isMaxValue() && \"icmp ugt X, UINT_MAX should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2305, __PRETTY_FUNCTION__))
2305 "icmp ugt X, UINT_MAX should have been simplified already.")((!C.isMaxValue() && "icmp ugt X, UINT_MAX should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("!C.isMaxValue() && \"icmp ugt X, UINT_MAX should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2305, __PRETTY_FUNCTION__))
;
2306 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2307 ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2308 }
2309
2310 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2311 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2312 assert(C != 0 && "icmp ult X, 0 should have been simplified already.")((C != 0 && "icmp ult X, 0 should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("C != 0 && \"icmp ult X, 0 should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2312, __PRETTY_FUNCTION__))
;
2313 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2314 ConstantInt::get(Y->getType(), C2->udiv(C)));
2315 }
2316
2317 return nullptr;
2318}
2319
2320/// Fold icmp ({su}div X, Y), C.
2321Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2322 BinaryOperator *Div,
2323 const APInt &C) {
2324 // Fold: icmp pred ([us]div X, C2), C -> range test
2325 // Fold this div into the comparison, producing a range check.
2326 // Determine, based on the divide type, what the range is being
2327 // checked. If there is an overflow on the low or high side, remember
2328 // it, otherwise compute the range [low, hi) bounding the new value.
2329 // See: InsertRangeTest above for the kinds of replacements possible.
2330 const APInt *C2;
2331 if (!match(Div->getOperand(1), m_APInt(C2)))
2332 return nullptr;
2333
2334 // FIXME: If the operand types don't match the type of the divide
2335 // then don't attempt this transform. The code below doesn't have the
2336 // logic to deal with a signed divide and an unsigned compare (and
2337 // vice versa). This is because (x /s C2) <s C produces different
2338 // results than (x /s C2) <u C or (x /u C2) <s C or even
2339 // (x /u C2) <u C. Simply casting the operands and result won't
2340 // work. :( The if statement below tests that condition and bails
2341 // if it finds it.
2342 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2343 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2344 return nullptr;
2345
2346 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2347 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2348 // division-by-constant cases should be present, we can not assert that they
2349 // have happened before we reach this icmp instruction.
2350 if (C2->isNullValue() || C2->isOneValue() ||
2351 (DivIsSigned && C2->isAllOnesValue()))
2352 return nullptr;
2353
2354 // Compute Prod = C * C2. We are essentially solving an equation of
2355 // form X / C2 = C. We solve for X by multiplying C2 and C.
2356 // By solving for X, we can turn this into a range check instead of computing
2357 // a divide.
2358 APInt Prod = C * *C2;
2359
2360 // Determine if the product overflows by seeing if the product is not equal to
2361 // the divide. Make sure we do the same kind of divide as in the LHS
2362 // instruction that we're folding.
2363 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2364
2365 ICmpInst::Predicate Pred = Cmp.getPredicate();
2366
2367 // If the division is known to be exact, then there is no remainder from the
2368 // divide, so the covered range size is unit, otherwise it is the divisor.
2369 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2370
2371 // Figure out the interval that is being checked. For example, a comparison
2372 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2373 // Compute this interval based on the constants involved and the signedness of
2374 // the compare/divide. This computes a half-open interval, keeping track of
2375 // whether either value in the interval overflows. After analysis each
2376 // overflow variable is set to 0 if it's corresponding bound variable is valid
2377 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2378 int LoOverflow = 0, HiOverflow = 0;
2379 APInt LoBound, HiBound;
2380
2381 if (!DivIsSigned) { // udiv
2382 // e.g. X/5 op 3 --> [15, 20)
2383 LoBound = Prod;
2384 HiOverflow = LoOverflow = ProdOV;
2385 if (!HiOverflow) {
2386 // If this is not an exact divide, then many values in the range collapse
2387 // to the same result value.
2388 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2389 }
2390 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2391 if (C.isNullValue()) { // (X / pos) op 0
2392 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2393 LoBound = -(RangeSize - 1);
2394 HiBound = RangeSize;
2395 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2396 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2397 HiOverflow = LoOverflow = ProdOV;
2398 if (!HiOverflow)
2399 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2400 } else { // (X / pos) op neg
2401 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2402 HiBound = Prod + 1;
2403 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2404 if (!LoOverflow) {
2405 APInt DivNeg = -RangeSize;
2406 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2407 }
2408 }
2409 } else if (C2->isNegative()) { // Divisor is < 0.
2410 if (Div->isExact())
2411 RangeSize.negate();
2412 if (C.isNullValue()) { // (X / neg) op 0
2413 // e.g. X/-5 op 0 --> [-4, 5)
2414 LoBound = RangeSize + 1;
2415 HiBound = -RangeSize;
2416 if (HiBound == *C2) { // -INTMIN = INTMIN
2417 HiOverflow = 1; // [INTMIN+1, overflow)
2418 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2419 }
2420 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2421 // e.g. X/-5 op 3 --> [-19, -14)
2422 HiBound = Prod + 1;
2423 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2424 if (!LoOverflow)
2425 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2426 } else { // (X / neg) op neg
2427 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2428 LoOverflow = HiOverflow = ProdOV;
2429 if (!HiOverflow)
2430 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2431 }
2432
2433 // Dividing by a negative swaps the condition. LT <-> GT
2434 Pred = ICmpInst::getSwappedPredicate(Pred);
2435 }
2436
2437 Value *X = Div->getOperand(0);
2438 switch (Pred) {
2439 default: llvm_unreachable("Unhandled icmp opcode!")::llvm::llvm_unreachable_internal("Unhandled icmp opcode!", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2439)
;
2440 case ICmpInst::ICMP_EQ:
2441 if (LoOverflow && HiOverflow)
2442 return replaceInstUsesWith(Cmp, Builder.getFalse());
2443 if (HiOverflow)
2444 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2445 ICmpInst::ICMP_UGE, X,
2446 ConstantInt::get(Div->getType(), LoBound));
2447 if (LoOverflow)
2448 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2449 ICmpInst::ICMP_ULT, X,
2450 ConstantInt::get(Div->getType(), HiBound));
2451 return replaceInstUsesWith(
2452 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2453 case ICmpInst::ICMP_NE:
2454 if (LoOverflow && HiOverflow)
2455 return replaceInstUsesWith(Cmp, Builder.getTrue());
2456 if (HiOverflow)
2457 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2458 ICmpInst::ICMP_ULT, X,
2459 ConstantInt::get(Div->getType(), LoBound));
2460 if (LoOverflow)
2461 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2462 ICmpInst::ICMP_UGE, X,
2463 ConstantInt::get(Div->getType(), HiBound));
2464 return replaceInstUsesWith(Cmp,
2465 insertRangeTest(X, LoBound, HiBound,
2466 DivIsSigned, false));
2467 case ICmpInst::ICMP_ULT:
2468 case ICmpInst::ICMP_SLT:
2469 if (LoOverflow == +1) // Low bound is greater than input range.
2470 return replaceInstUsesWith(Cmp, Builder.getTrue());
2471 if (LoOverflow == -1) // Low bound is less than input range.
2472 return replaceInstUsesWith(Cmp, Builder.getFalse());
2473 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2474 case ICmpInst::ICMP_UGT:
2475 case ICmpInst::ICMP_SGT:
2476 if (HiOverflow == +1) // High bound greater than input range.
2477 return replaceInstUsesWith(Cmp, Builder.getFalse());
2478 if (HiOverflow == -1) // High bound less than input range.
2479 return replaceInstUsesWith(Cmp, Builder.getTrue());
2480 if (Pred == ICmpInst::ICMP_UGT)
2481 return new ICmpInst(ICmpInst::ICMP_UGE, X,
2482 ConstantInt::get(Div->getType(), HiBound));
2483 return new ICmpInst(ICmpInst::ICMP_SGE, X,
2484 ConstantInt::get(Div->getType(), HiBound));
2485 }
2486
2487 return nullptr;
2488}
2489
2490/// Fold icmp (sub X, Y), C.
2491Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2492 BinaryOperator *Sub,
2493 const APInt &C) {
2494 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2495 ICmpInst::Predicate Pred = Cmp.getPredicate();
2496 const APInt *C2;
2497 APInt SubResult;
2498
2499 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2500 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2501 return new ICmpInst(Cmp.getPredicate(), Y,
2502 ConstantInt::get(Y->getType(), 0));
2503
2504 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2505 if (match(X, m_APInt(C2)) &&
2506 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2507 (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2508 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2509 return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2510 ConstantInt::get(Y->getType(), SubResult));
2511
2512 // The following transforms are only worth it if the only user of the subtract
2513 // is the icmp.
2514 if (!Sub->hasOneUse())
2515 return nullptr;
2516
2517 if (Sub->hasNoSignedWrap()) {
2518 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2519 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2520 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2521
2522 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2523 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2524 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2525
2526 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2527 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2528 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2529
2530 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2531 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2532 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2533 }
2534
2535 if (!match(X, m_APInt(C2)))
2536 return nullptr;
2537
2538 // C2 - Y <u C -> (Y | (C - 1)) == C2
2539 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2540 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2541 (*C2 & (C - 1)) == (C - 1))
2542 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2543
2544 // C2 - Y >u C -> (Y | C) != C2
2545 // iff C2 & C == C and C + 1 is a power of 2
2546 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2547 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2548
2549 return nullptr;
2550}
2551
2552/// Fold icmp (add X, Y), C.
2553Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2554 BinaryOperator *Add,
2555 const APInt &C) {
2556 Value *Y = Add->getOperand(1);
2557 const APInt *C2;
2558 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2559 return nullptr;
2560
2561 // Fold icmp pred (add X, C2), C.
2562 Value *X = Add->getOperand(0);
2563 Type *Ty = Add->getType();
2564 CmpInst::Predicate Pred = Cmp.getPredicate();
2565
2566 // If the add does not wrap, we can always adjust the compare by subtracting
2567 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2568 // are canonicalized to SGT/SLT/UGT/ULT.
2569 if ((Add->hasNoSignedWrap() &&
2570 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2571 (Add->hasNoUnsignedWrap() &&
2572 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2573 bool Overflow;
2574 APInt NewC =
2575 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2576 // If there is overflow, the result must be true or false.
2577 // TODO: Can we assert there is no overflow because InstSimplify always
2578 // handles those cases?
2579 if (!Overflow)
2580 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2581 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2582 }
2583
2584 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2585 const APInt &Upper = CR.getUpper();
2586 const APInt &Lower = CR.getLower();
2587 if (Cmp.isSigned()) {
2588 if (Lower.isSignMask())
2589 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2590 if (Upper.isSignMask())
2591 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2592 } else {
2593 if (Lower.isMinValue())
2594 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2595 if (Upper.isMinValue())
2596 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2597 }
2598
2599 if (!Add->hasOneUse())
2600 return nullptr;
2601
2602 // X+C <u C2 -> (X & -C2) == C
2603 // iff C & (C2-1) == 0
2604 // C2 is a power of 2
2605 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2606 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2607 ConstantExpr::getNeg(cast<Constant>(Y)));
2608
2609 // X+C >u C2 -> (X & ~C2) != C
2610 // iff C & C2 == 0
2611 // C2+1 is a power of 2
2612 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2613 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2614 ConstantExpr::getNeg(cast<Constant>(Y)));
2615
2616 return nullptr;
2617}
2618
2619bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2620 Value *&RHS, ConstantInt *&Less,
2621 ConstantInt *&Equal,
2622 ConstantInt *&Greater) {
2623 // TODO: Generalize this to work with other comparison idioms or ensure
2624 // they get canonicalized into this form.
2625
2626 // select i1 (a == b),
2627 // i32 Equal,
2628 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2629 // where Equal, Less and Greater are placeholders for any three constants.
2630 ICmpInst::Predicate PredA;
2631 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2632 !ICmpInst::isEquality(PredA))
2633 return false;
2634 Value *EqualVal = SI->getTrueValue();
2635 Value *UnequalVal = SI->getFalseValue();
2636 // We still can get non-canonical predicate here, so canonicalize.
2637 if (PredA == ICmpInst::ICMP_NE)
2638 std::swap(EqualVal, UnequalVal);
2639 if (!match(EqualVal, m_ConstantInt(Equal)))
2640 return false;
2641 ICmpInst::Predicate PredB;
2642 Value *LHS2, *RHS2;
2643 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2644 m_ConstantInt(Less), m_ConstantInt(Greater))))
2645 return false;
2646 // We can get predicate mismatch here, so canonicalize if possible:
2647 // First, ensure that 'LHS' match.
2648 if (LHS2 != LHS) {
2649 // x sgt y <--> y slt x
2650 std::swap(LHS2, RHS2);
2651 PredB = ICmpInst::getSwappedPredicate(PredB);
2652 }
2653 if (LHS2 != LHS)
2654 return false;
2655 // We also need to canonicalize 'RHS'.
2656 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2657 // x sgt C-1 <--> x sge C <--> not(x slt C)
2658 auto FlippedStrictness =
2659 getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2660 if (!FlippedStrictness)
2661 return false;
2662 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check")((FlippedStrictness->first == ICmpInst::ICMP_SGE &&
"Sanity check") ? static_cast<void> (0) : __assert_fail
("FlippedStrictness->first == ICmpInst::ICMP_SGE && \"Sanity check\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2662, __PRETTY_FUNCTION__))
;
2663 RHS2 = FlippedStrictness->second;
2664 // And kind-of perform the result swap.
2665 std::swap(Less, Greater);
2666 PredB = ICmpInst::ICMP_SLT;
2667 }
2668 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2669}
2670
2671Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2672 SelectInst *Select,
2673 ConstantInt *C) {
2674
2675 assert(C && "Cmp RHS should be a constant int!")((C && "Cmp RHS should be a constant int!") ? static_cast
<void> (0) : __assert_fail ("C && \"Cmp RHS should be a constant int!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2675, __PRETTY_FUNCTION__))
;
2676 // If we're testing a constant value against the result of a three way
2677 // comparison, the result can be expressed directly in terms of the
2678 // original values being compared. Note: We could possibly be more
2679 // aggressive here and remove the hasOneUse test. The original select is
2680 // really likely to simplify or sink when we remove a test of the result.
2681 Value *OrigLHS, *OrigRHS;
2682 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2683 if (Cmp.hasOneUse() &&
2684 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2685 C3GreaterThan)) {
2686 assert(C1LessThan && C2Equal && C3GreaterThan)((C1LessThan && C2Equal && C3GreaterThan) ? static_cast
<void> (0) : __assert_fail ("C1LessThan && C2Equal && C3GreaterThan"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2686, __PRETTY_FUNCTION__))
;
2687
2688 bool TrueWhenLessThan =
2689 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2690 ->isAllOnesValue();
2691 bool TrueWhenEqual =
2692 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2693 ->isAllOnesValue();
2694 bool TrueWhenGreaterThan =
2695 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2696 ->isAllOnesValue();
2697
2698 // This generates the new instruction that will replace the original Cmp
2699 // Instruction. Instead of enumerating the various combinations when
2700 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2701 // false, we rely on chaining of ORs and future passes of InstCombine to
2702 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2703
2704 // When none of the three constants satisfy the predicate for the RHS (C),
2705 // the entire original Cmp can be simplified to a false.
2706 Value *Cond = Builder.getFalse();
2707 if (TrueWhenLessThan)
2708 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2709 OrigLHS, OrigRHS));
2710 if (TrueWhenEqual)
2711 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2712 OrigLHS, OrigRHS));
2713 if (TrueWhenGreaterThan)
2714 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2715 OrigLHS, OrigRHS));
2716
2717 return replaceInstUsesWith(Cmp, Cond);
2718 }
2719 return nullptr;
2720}
2721
2722static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2723 InstCombiner::BuilderTy &Builder) {
2724 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2725 if (!Bitcast)
2726 return nullptr;
2727
2728 ICmpInst::Predicate Pred = Cmp.getPredicate();
2729 Value *Op1 = Cmp.getOperand(1);
2730 Value *BCSrcOp = Bitcast->getOperand(0);
2731
2732 // Make sure the bitcast doesn't change the number of vector elements.
2733 if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2734 Bitcast->getDestTy()->getScalarSizeInBits()) {
2735 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2736 Value *X;
2737 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2738 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2739 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2740 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2741 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2742 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2743 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2744 match(Op1, m_Zero()))
2745 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2746
2747 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2748 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2749 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2750
2751 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2752 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2753 return new ICmpInst(Pred, X,
2754 ConstantInt::getAllOnesValue(X->getType()));
2755 }
2756
2757 // Zero-equality checks are preserved through unsigned floating-point casts:
2758 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2759 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2760 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2761 if (Cmp.isEquality() && match(Op1, m_Zero()))
2762 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2763 }
2764
2765 // Test to see if the operands of the icmp are casted versions of other
2766 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2767 if (Bitcast->getType()->isPointerTy() &&
2768 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2769 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2770 // so eliminate it as well.
2771 if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2772 Op1 = BC2->getOperand(0);
2773
2774 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2775 return new ICmpInst(Pred, BCSrcOp, Op1);
2776 }
2777
2778 // Folding: icmp <pred> iN X, C
2779 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2780 // and C is a splat of a K-bit pattern
2781 // and SC is a constant vector = <C', C', C', ..., C'>
2782 // Into:
2783 // %E = extractelement <M x iK> %vec, i32 C'
2784 // icmp <pred> iK %E, trunc(C)
2785 const APInt *C;
2786 if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2787 !Bitcast->getType()->isIntegerTy() ||
2788 !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2789 return nullptr;
2790
2791 Value *Vec;
2792 Constant *Mask;
2793 if (match(BCSrcOp,
2794 m_ShuffleVector(m_Value(Vec), m_Undef(), m_Constant(Mask)))) {
2795 // Check whether every element of Mask is the same constant
2796 if (auto *Elem = dyn_cast_or_null<ConstantInt>(Mask->getSplatValue())) {
2797 auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2798 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2799 if (C->isSplat(EltTy->getBitWidth())) {
2800 // Fold the icmp based on the value of C
2801 // If C is M copies of an iK sized bit pattern,
2802 // then:
2803 // => %E = extractelement <N x iK> %vec, i32 Elem
2804 // icmp <pred> iK %SplatVal, <pattern>
2805 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2806 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2807 return new ICmpInst(Pred, Extract, NewC);
2808 }
2809 }
2810 }
2811 return nullptr;
2812}
2813
2814/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2815/// where X is some kind of instruction.
2816Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2817 const APInt *C;
2818 if (!match(Cmp.getOperand(1), m_APInt(C)))
2819 return nullptr;
2820
2821 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2822 switch (BO->getOpcode()) {
2823 case Instruction::Xor:
2824 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2825 return I;
2826 break;
2827 case Instruction::And:
2828 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2829 return I;
2830 break;
2831 case Instruction::Or:
2832 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2833 return I;
2834 break;
2835 case Instruction::Mul:
2836 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2837 return I;
2838 break;
2839 case Instruction::Shl:
2840 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2841 return I;
2842 break;
2843 case Instruction::LShr:
2844 case Instruction::AShr:
2845 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2846 return I;
2847 break;
2848 case Instruction::SRem:
2849 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2850 return I;
2851 break;
2852 case Instruction::UDiv:
2853 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2854 return I;
2855 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2856 case Instruction::SDiv:
2857 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2858 return I;
2859 break;
2860 case Instruction::Sub:
2861 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2862 return I;
2863 break;
2864 case Instruction::Add:
2865 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2866 return I;
2867 break;
2868 default:
2869 break;
2870 }
2871 // TODO: These folds could be refactored to be part of the above calls.
2872 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2873 return I;
2874 }
2875
2876 // Match against CmpInst LHS being instructions other than binary operators.
2877
2878 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2879 // For now, we only support constant integers while folding the
2880 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2881 // similar to the cases handled by binary ops above.
2882 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2883 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2884 return I;
2885 }
2886
2887 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2888 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2889 return I;
2890 }
2891
2892 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2893 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2894 return I;
2895
2896 return nullptr;
2897}
2898
2899/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2900/// icmp eq/ne BO, C.
2901Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2902 BinaryOperator *BO,
2903 const APInt &C) {
2904 // TODO: Some of these folds could work with arbitrary constants, but this
2905 // function is limited to scalar and vector splat constants.
2906 if (!Cmp.isEquality())
2907 return nullptr;
2908
2909 ICmpInst::Predicate Pred = Cmp.getPredicate();
2910 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2911 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2912 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2913
2914 switch (BO->getOpcode()) {
2915 case Instruction::SRem:
2916 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2917 if (C.isNullValue() && BO->hasOneUse()) {
2918 const APInt *BOC;
2919 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2920 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2921 return new ICmpInst(Pred, NewRem,
2922 Constant::getNullValue(BO->getType()));
2923 }
2924 }
2925 break;
2926 case Instruction::Add: {
2927 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2928 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2929 if (BO->hasOneUse())
2930 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2931 } else if (C.isNullValue()) {
2932 // Replace ((add A, B) != 0) with (A != -B) if A or B is
2933 // efficiently invertible, or if the add has just this one use.
2934 if (Value *NegVal = dyn_castNegVal(BOp1))
2935 return new ICmpInst(Pred, BOp0, NegVal);
2936 if (Value *NegVal = dyn_castNegVal(BOp0))
2937 return new ICmpInst(Pred, NegVal, BOp1);
2938 if (BO->hasOneUse()) {
2939 Value *Neg = Builder.CreateNeg(BOp1);
2940 Neg->takeName(BO);
2941 return new ICmpInst(Pred, BOp0, Neg);
2942 }
2943 }
2944 break;
2945 }
2946 case Instruction::Xor:
2947 if (BO->hasOneUse()) {
2948 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2949 // For the xor case, we can xor two constants together, eliminating
2950 // the explicit xor.
2951 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
2952 } else if (C.isNullValue()) {
2953 // Replace ((xor A, B) != 0) with (A != B)
2954 return new ICmpInst(Pred, BOp0, BOp1);
2955 }
2956 }
2957 break;
2958 case Instruction::Sub:
2959 if (BO->hasOneUse()) {
2960 // Only check for constant LHS here, as constant RHS will be canonicalized
2961 // to add and use the fold above.
2962 if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
2963 // Replace ((sub BOC, B) != C) with (B != BOC-C).
2964 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
2965 } else if (C.isNullValue()) {
2966 // Replace ((sub A, B) != 0) with (A != B).
2967 return new ICmpInst(Pred, BOp0, BOp1);
2968 }
2969 }
2970 break;
2971 case Instruction::Or: {
2972 const APInt *BOC;
2973 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
2974 // Comparing if all bits outside of a constant mask are set?
2975 // Replace (X | C) == -1 with (X & ~C) == ~C.
2976 // This removes the -1 constant.
2977 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
2978 Value *And = Builder.CreateAnd(BOp0, NotBOC);
2979 return new ICmpInst(Pred, And, NotBOC);
2980 }
2981 break;
2982 }
2983 case Instruction::And: {
2984 const APInt *BOC;
2985 if (match(BOp1, m_APInt(BOC))) {
2986 // If we have ((X & C) == C), turn it into ((X & C) != 0).
2987 if (C == *BOC && C.isPowerOf2())
2988 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
2989 BO, Constant::getNullValue(RHS->getType()));
2990 }
2991 break;
2992 }
2993 case Instruction::Mul:
2994 if (C.isNullValue() && BO->hasNoSignedWrap()) {
2995 const APInt *BOC;
2996 if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
2997 // The trivial case (mul X, 0) is handled by InstSimplify.
2998 // General case : (mul X, C) != 0 iff X != 0
2999 // (mul X, C) == 0 iff X == 0
3000 return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3001 }
3002 }
3003 break;
3004 case Instruction::UDiv:
3005 if (C.isNullValue()) {
3006 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3007 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3008 return new ICmpInst(NewPred, BOp1, BOp0);
3009 }
3010 break;
3011 default:
3012 break;
3013 }
3014 return nullptr;
3015}
3016
3017/// Fold an equality icmp with LLVM intrinsic and constant operand.
3018Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3019 IntrinsicInst *II,
3020 const APInt &C) {
3021 Type *Ty = II->getType();
3022 unsigned BitWidth = C.getBitWidth();
3023 switch (II->getIntrinsicID()) {
3024 case Intrinsic::bswap:
3025 // bswap(A) == C -> A == bswap(C)
3026 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3027 ConstantInt::get(Ty, C.byteSwap()));
3028
3029 case Intrinsic::ctlz:
3030 case Intrinsic::cttz: {
3031 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3032 if (C == BitWidth)
3033 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3034 ConstantInt::getNullValue(Ty));
3035
3036 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3037 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3038 // Limit to one use to ensure we don't increase instruction count.
3039 unsigned Num = C.getLimitedValue(BitWidth);
3040 if (Num != BitWidth && II->hasOneUse()) {
3041 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3042 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3043 : APInt::getHighBitsSet(BitWidth, Num + 1);
3044 APInt Mask2 = IsTrailing
3045 ? APInt::getOneBitSet(BitWidth, Num)
3046 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3047 return new ICmpInst(Cmp.getPredicate(),
3048 Builder.CreateAnd(II->getArgOperand(0), Mask1),
3049 ConstantInt::get(Ty, Mask2));
3050 }
3051 break;
3052 }
3053
3054 case Intrinsic::ctpop: {
3055 // popcount(A) == 0 -> A == 0 and likewise for !=
3056 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3057 bool IsZero = C.isNullValue();
3058 if (IsZero || C == BitWidth)
3059 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3060 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3061
3062 break;
3063 }
3064
3065 case Intrinsic::uadd_sat: {
3066 // uadd.sat(a, b) == 0 -> (a | b) == 0
3067 if (C.isNullValue()) {
3068 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3069 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3070 }
3071 break;
3072 }
3073
3074 case Intrinsic::usub_sat: {
3075 // usub.sat(a, b) == 0 -> a <= b
3076 if (C.isNullValue()) {
3077 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3078 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3079 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3080 }
3081 break;
3082 }
3083 default:
3084 break;
3085 }
3086
3087 return nullptr;
3088}
3089
3090/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3091Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3092 IntrinsicInst *II,
3093 const APInt &C) {
3094 if (Cmp.isEquality())
3095 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3096
3097 Type *Ty = II->getType();
3098 unsigned BitWidth = C.getBitWidth();
3099 switch (II->getIntrinsicID()) {
3100 case Intrinsic::ctlz: {
3101 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3102 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3103 unsigned Num = C.getLimitedValue();
3104 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3105 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3106 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3107 }
3108
3109 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3110 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3111 C.uge(1) && C.ule(BitWidth)) {
3112 unsigned Num = C.getLimitedValue();
3113 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3114 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3115 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3116 }
3117 break;
3118 }
3119 case Intrinsic::cttz: {
3120 // Limit to one use to ensure we don't increase instruction count.
3121 if (!II->hasOneUse())
3122 return nullptr;
3123
3124 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3125 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3126 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3127 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3128 Builder.CreateAnd(II->getArgOperand(0), Mask),
3129 ConstantInt::getNullValue(Ty));
3130 }
3131
3132 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3133 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3134 C.uge(1) && C.ule(BitWidth)) {
3135 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3136 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3137 Builder.CreateAnd(II->getArgOperand(0), Mask),
3138 ConstantInt::getNullValue(Ty));
3139 }
3140 break;
3141 }
3142 default:
3143 break;
3144 }
3145
3146 return nullptr;
3147}
3148
3149/// Handle icmp with constant (but not simple integer constant) RHS.
3150Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3151 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3152 Constant *RHSC = dyn_cast<Constant>(Op1);
3153 Instruction *LHSI = dyn_cast<Instruction>(Op0);
3154 if (!RHSC || !LHSI)
3155 return nullptr;
3156
3157 switch (LHSI->getOpcode()) {
3158 case Instruction::GetElementPtr:
3159 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3160 if (RHSC->isNullValue() &&
3161 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3162 return new ICmpInst(
3163 I.getPredicate(), LHSI->getOperand(0),
3164 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3165 break;
3166 case Instruction::PHI:
3167 // Only fold icmp into the PHI if the phi and icmp are in the same
3168 // block. If in the same block, we're encouraging jump threading. If
3169 // not, we are just pessimizing the code by making an i1 phi.
3170 if (LHSI->getParent() == I.getParent())
3171 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3172 return NV;
3173 break;
3174 case Instruction::Select: {
3175 // If either operand of the select is a constant, we can fold the
3176 // comparison into the select arms, which will cause one to be
3177 // constant folded and the select turned into a bitwise or.
3178 Value *Op1 = nullptr, *Op2 = nullptr;
3179 ConstantInt *CI = nullptr;
3180 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3181 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3182 CI = dyn_cast<ConstantInt>(Op1);
3183 }
3184 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3185 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3186 CI = dyn_cast<ConstantInt>(Op2);
3187 }
3188
3189 // We only want to perform this transformation if it will not lead to
3190 // additional code. This is true if either both sides of the select
3191 // fold to a constant (in which case the icmp is replaced with a select
3192 // which will usually simplify) or this is the only user of the
3193 // select (in which case we are trading a select+icmp for a simpler
3194 // select+icmp) or all uses of the select can be replaced based on
3195 // dominance information ("Global cases").
3196 bool Transform = false;
3197 if (Op1 && Op2)
3198 Transform = true;
3199 else if (Op1 || Op2) {
3200 // Local case
3201 if (LHSI->hasOneUse())
3202 Transform = true;
3203 // Global cases
3204 else if (CI && !CI->isZero())
3205 // When Op1 is constant try replacing select with second operand.
3206 // Otherwise Op2 is constant and try replacing select with first
3207 // operand.
3208 Transform =
3209 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3210 }
3211 if (Transform) {
3212 if (!Op1)
3213 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3214 I.getName());
3215 if (!Op2)
3216 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3217 I.getName());
3218 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3219 }
3220 break;
3221 }
3222 case Instruction::IntToPtr:
3223 // icmp pred inttoptr(X), null -> icmp pred X, 0
3224 if (RHSC->isNullValue() &&
3225 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3226 return new ICmpInst(
3227 I.getPredicate(), LHSI->getOperand(0),
3228 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3229 break;
3230
3231 case Instruction::Load:
3232 // Try to optimize things like "A[i] > 4" to index computations.
3233 if (GetElementPtrInst *GEP =
3234 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3235 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3236 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3237 !cast<LoadInst>(LHSI)->isVolatile())
3238 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3239 return Res;
3240 }
3241 break;
3242 }
3243
3244 return nullptr;
3245}
3246
3247/// Some comparisons can be simplified.
3248/// In this case, we are looking for comparisons that look like
3249/// a check for a lossy truncation.
3250/// Folds:
3251/// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3252/// Where Mask is some pattern that produces all-ones in low bits:
3253/// (-1 >> y)
3254/// ((-1 << y) >> y) <- non-canonical, has extra uses
3255/// ~(-1 << y)
3256/// ((1 << y) + (-1)) <- non-canonical, has extra uses
3257/// The Mask can be a constant, too.
3258/// For some predicates, the operands are commutative.
3259/// For others, x can only be on a specific side.
3260static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3261 InstCombiner::BuilderTy &Builder) {
3262 ICmpInst::Predicate SrcPred;
3263 Value *X, *M, *Y;
3264 auto m_VariableMask = m_CombineOr(
3265 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3266 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3267 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3268 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3269 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3270 if (!match(&I, m_c_ICmp(SrcPred,
3271 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3272 m_Deferred(X))))
3273 return nullptr;
3274
3275 ICmpInst::Predicate DstPred;
3276 switch (SrcPred) {
3277 case ICmpInst::Predicate::ICMP_EQ:
3278 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3279 DstPred = ICmpInst::Predicate::ICMP_ULE;
3280 break;
3281 case ICmpInst::Predicate::ICMP_NE:
3282 // x & (-1 >> y) != x -> x u> (-1 >> y)
3283 DstPred = ICmpInst::Predicate::ICMP_UGT;
3284 break;
3285 case ICmpInst::Predicate::ICMP_ULT:
3286 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3287 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3288 DstPred = ICmpInst::Predicate::ICMP_UGT;
3289 break;
3290 case ICmpInst::Predicate::ICMP_UGE:
3291 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3292 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3293 DstPred = ICmpInst::Predicate::ICMP_ULE;
3294 break;
3295 case ICmpInst::Predicate::ICMP_SLT:
3296 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3297 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3298 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3299 return nullptr;
3300 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3301 return nullptr;
3302 DstPred = ICmpInst::Predicate::ICMP_SGT;
3303 break;
3304 case ICmpInst::Predicate::ICMP_SGE:
3305 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3306 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3307 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3308 return nullptr;
3309 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3310 return nullptr;
3311 DstPred = ICmpInst::Predicate::ICMP_SLE;
3312 break;
3313 case ICmpInst::Predicate::ICMP_SGT:
3314 case ICmpInst::Predicate::ICMP_SLE:
3315 return nullptr;
3316 case ICmpInst::Predicate::ICMP_UGT:
3317 case ICmpInst::Predicate::ICMP_ULE:
3318 llvm_unreachable("Instsimplify took care of commut. variant")::llvm::llvm_unreachable_internal("Instsimplify took care of commut. variant"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3318)
;
3319 break;
3320 default:
3321 llvm_unreachable("All possible folds are handled.")::llvm::llvm_unreachable_internal("All possible folds are handled."
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3321)
;
3322 }
3323
3324 // The mask value may be a vector constant that has undefined elements. But it
3325 // may not be safe to propagate those undefs into the new compare, so replace
3326 // those elements by copying an existing, defined, and safe scalar constant.
3327 Type *OpTy = M->getType();
3328 auto *VecC = dyn_cast<Constant>(M);
3329 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3330 Constant *SafeReplacementConstant = nullptr;
3331 for (unsigned i = 0, e = OpTy->getVectorNumElements(); i != e; ++i) {
3332 if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3333 SafeReplacementConstant = VecC->getAggregateElement(i);
3334 break;
3335 }
3336 }
3337 assert(SafeReplacementConstant && "Failed to find undef replacement")((SafeReplacementConstant && "Failed to find undef replacement"
) ? static_cast<void> (0) : __assert_fail ("SafeReplacementConstant && \"Failed to find undef replacement\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3337, __PRETTY_FUNCTION__))
;
3338 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3339 }
3340
3341 return Builder.CreateICmp(DstPred, X, M);
3342}
3343
3344/// Some comparisons can be simplified.
3345/// In this case, we are looking for comparisons that look like
3346/// a check for a lossy signed truncation.
3347/// Folds: (MaskedBits is a constant.)
3348/// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3349/// Into:
3350/// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3351/// Where KeptBits = bitwidth(%x) - MaskedBits
3352static Value *
3353foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3354 InstCombiner::BuilderTy &Builder) {
3355 ICmpInst::Predicate SrcPred;
3356 Value *X;
3357 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3358 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3359 if (!match(&I, m_c_ICmp(SrcPred,
3360 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3361 m_APInt(C1))),
3362 m_Deferred(X))))
3363 return nullptr;
3364
3365 // Potential handling of non-splats: for each element:
3366 // * if both are undef, replace with constant 0.
3367 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3368 // * if both are not undef, and are different, bailout.
3369 // * else, only one is undef, then pick the non-undef one.
3370
3371 // The shift amount must be equal.
3372 if (*C0 != *C1)
3373 return nullptr;
3374 const APInt &MaskedBits = *C0;
3375 assert(MaskedBits != 0 && "shift by zero should be folded away already.")((MaskedBits != 0 && "shift by zero should be folded away already."
) ? static_cast<void> (0) : __assert_fail ("MaskedBits != 0 && \"shift by zero should be folded away already.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3375, __PRETTY_FUNCTION__))
;
3376
3377 ICmpInst::Predicate DstPred;
3378 switch (SrcPred) {
3379 case ICmpInst::Predicate::ICMP_EQ:
3380 // ((%x << MaskedBits) a>> MaskedBits) == %x
3381 // =>
3382 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3383 DstPred = ICmpInst::Predicate::ICMP_ULT;
3384 break;
3385 case ICmpInst::Predicate::ICMP_NE:
3386 // ((%x << MaskedBits) a>> MaskedBits) != %x
3387 // =>
3388 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3389 DstPred = ICmpInst::Predicate::ICMP_UGE;
3390 break;
3391 // FIXME: are more folds possible?
3392 default:
3393 return nullptr;
3394 }
3395
3396 auto *XType = X->getType();
3397 const unsigned XBitWidth = XType->getScalarSizeInBits();
3398 const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3399 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched")((BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"
) ? static_cast<void> (0) : __assert_fail ("BitWidth.ugt(MaskedBits) && \"shifts should leave some bits untouched\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3399, __PRETTY_FUNCTION__))
;
3400
3401 // KeptBits = bitwidth(%x) - MaskedBits
3402 const APInt KeptBits = BitWidth - MaskedBits;
3403 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable")((KeptBits.ugt(0) && KeptBits.ult(BitWidth) &&
"unreachable") ? static_cast<void> (0) : __assert_fail
("KeptBits.ugt(0) && KeptBits.ult(BitWidth) && \"unreachable\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3403, __PRETTY_FUNCTION__))
;
3404 // ICmpCst = (1 << KeptBits)
3405 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3406 assert(ICmpCst.isPowerOf2())((ICmpCst.isPowerOf2()) ? static_cast<void> (0) : __assert_fail
("ICmpCst.isPowerOf2()", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3406, __PRETTY_FUNCTION__))
;
3407 // AddCst = (1 << (KeptBits-1))
3408 const APInt AddCst = ICmpCst.lshr(1);
3409 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2())((AddCst.ult(ICmpCst) && AddCst.isPowerOf2()) ? static_cast
<void> (0) : __assert_fail ("AddCst.ult(ICmpCst) && AddCst.isPowerOf2()"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3409, __PRETTY_FUNCTION__))
;
3410
3411 // T0 = add %x, AddCst
3412 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3413 // T1 = T0 DstPred ICmpCst
3414 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3415
3416 return T1;
3417}
3418
3419// Given pattern:
3420// icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3421// we should move shifts to the same hand of 'and', i.e. rewrite as
3422// icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3423// We are only interested in opposite logical shifts here.
3424// One of the shifts can be truncated.
3425// If we can, we want to end up creating 'lshr' shift.
3426static Value *
3427foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3428 InstCombiner::BuilderTy &Builder) {
3429 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
30
Assuming the condition is false
32
Taking false branch
3430 !I.getOperand(0)->hasOneUse())
31
Assuming the condition is false
3431 return nullptr;
3432
3433 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3434
3435 // Look for an 'and' of two logical shifts, one of which may be truncated.
3436 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3437 Instruction *XShift, *MaybeTruncation, *YShift;
3438 if (!match(
33
Calling 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction> >, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction> >, 38>, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction> > >, llvm::PatternMatch::bind_ty<llvm::Instruction> >, 28, true>>'
41
Returning from 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction> >, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction> >, 38>, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::class_match<llvm::Value>, llvm::PatternMatch::is_logical_shift_op>, llvm::PatternMatch::bind_ty<llvm::Instruction> > >, llvm::PatternMatch::bind_ty<llvm::Instruction> >, 28, true>>'
42
Taking false branch
3439 I.getOperand(0),
3440 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3441 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3442 m_AnyLogicalShift, m_Instruction(YShift))),
3443 m_Instruction(MaybeTruncation)))))
3444 return nullptr;
3445
3446 // We potentially looked past 'trunc', but only when matching YShift,
3447 // therefore YShift must have the widest type.
3448 Instruction *WidestShift = YShift;
3449 // Therefore XShift must have the shallowest type.
3450 // Or they both have identical types if there was no truncation.
3451 Instruction *NarrowestShift = XShift;
3452
3453 Type *WidestTy = WidestShift->getType();
3454 assert(NarrowestShift->getType() == I.getOperand(0)->getType() &&((NarrowestShift->getType() == I.getOperand(0)->getType
() && "We did not look past any shifts while matching XShift though."
) ? static_cast<void> (0) : __assert_fail ("NarrowestShift->getType() == I.getOperand(0)->getType() && \"We did not look past any shifts while matching XShift though.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3455, __PRETTY_FUNCTION__))
43
Assuming the condition is true
44
'?' condition is true
3455 "We did not look past any shifts while matching XShift though.")((NarrowestShift->getType() == I.getOperand(0)->getType
() && "We did not look past any shifts while matching XShift though."
) ? static_cast<void> (0) : __assert_fail ("NarrowestShift->getType() == I.getOperand(0)->getType() && \"We did not look past any shifts while matching XShift though.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3455, __PRETTY_FUNCTION__))
;
3456 bool HadTrunc = WidestTy != I.getOperand(0)->getType();
45
Assuming the condition is false
3457
3458 // If YShift is a 'lshr', swap the shifts around.
3459 if (match(YShift, m_LShr(m_Value(), m_Value())))
46
Taking false branch
3460 std::swap(XShift, YShift);
3461
3462 // The shifts must be in opposite directions.
3463 auto XShiftOpcode = XShift->getOpcode();
3464 if (XShiftOpcode == YShift->getOpcode())
47
Assuming the condition is false
48
Taking false branch
3465 return nullptr; // Do not care about same-direction shifts here.
3466
3467 Value *X, *XShAmt, *Y, *YShAmt;
49
'XShAmt' declared without an initial value
3468 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
50
Calling 'm_Value'
54
Returning from 'm_Value'
55
Calling 'm_ZExtOrSelf<llvm::PatternMatch::bind_ty<llvm::Value>>'
63
Returning from 'm_ZExtOrSelf<llvm::PatternMatch::bind_ty<llvm::Value>>'
64
Calling 'm_BinOp<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value> >>'
66
Returning from 'm_BinOp<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value> >>'
3469 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3470
3471 // If one of the values being shifted is a constant, then we will end with
3472 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3473 // however, we will need to ensure that we won't increase instruction count.
3474 if (!isa<Constant>(X) && !isa<Constant>(Y)) {
67
Assuming 'X' is a 'Constant'
3475 // At least one of the hands of the 'and' should be one-use shift.
3476 if (!match(I.getOperand(0),
3477 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3478 return nullptr;
3479 if (HadTrunc) {
3480 // Due to the 'trunc', we will need to widen X. For that either the old
3481 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3482 if (!MaybeTruncation->hasOneUse() &&
3483 !NarrowestShift->getOperand(1)->hasOneUse())
3484 return nullptr;
3485 }
3486 }
3487
3488 // We have two shift amounts from two different shifts. The types of those
3489 // shift amounts may not match. If that's the case let's bailout now.
3490 if (XShAmt->getType() != YShAmt->getType())
68
Called C++ object pointer is uninitialized
3491 return nullptr;
3492
3493 // Can we fold (XShAmt+YShAmt) ?
3494 auto *NewShAmt = dyn_cast_or_null<Constant>(
3495 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3496 /*isNUW=*/false, SQ.getWithInstruction(&I)));
3497 if (!NewShAmt)
3498 return nullptr;
3499 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3500 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3501
3502 // Is the new shift amount smaller than the bit width?
3503 // FIXME: could also rely on ConstantRange.
3504 if (!match(NewShAmt,
3505 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3506 APInt(WidestBitWidth, WidestBitWidth))))
3507 return nullptr;
3508
3509 // An extra legality check is needed if we had trunc-of-lshr.
3510 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3511 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3512 WidestShift]() {
3513 // It isn't obvious whether it's worth it to analyze non-constants here.
3514 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3515 // If *any* of these preconditions matches we can perform the fold.
3516 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3517 ? NewShAmt->getSplatValue()
3518 : NewShAmt;
3519 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3520 if (NewShAmtSplat &&
3521 (NewShAmtSplat->isNullValue() ||
3522 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3523 return true;
3524 // We consider *min* leading zeros so a single outlier
3525 // blocks the transform as opposed to allowing it.
3526 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3527 KnownBits Known = computeKnownBits(C, SQ.DL);
3528 unsigned MinLeadZero = Known.countMinLeadingZeros();
3529 // If the value being shifted has at most lowest bit set we can fold.
3530 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3531 if (MaxActiveBits <= 1)
3532 return true;
3533 // Precondition: NewShAmt u<= countLeadingZeros(C)
3534 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3535 return true;
3536 }
3537 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3538 KnownBits Known = computeKnownBits(C, SQ.DL);
3539 unsigned MinLeadZero = Known.countMinLeadingZeros();
3540 // If the value being shifted has at most lowest bit set we can fold.
3541 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3542 if (MaxActiveBits <= 1)
3543 return true;
3544 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3545 if (NewShAmtSplat) {
3546 APInt AdjNewShAmt =
3547 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3548 if (AdjNewShAmt.ule(MinLeadZero))
3549 return true;
3550 }
3551 }
3552 return false; // Can't tell if it's ok.
3553 };
3554 if (!CanFold())
3555 return nullptr;
3556 }
3557
3558 // All good, we can do this fold.
3559 X = Builder.CreateZExt(X, WidestTy);
3560 Y = Builder.CreateZExt(Y, WidestTy);
3561 // The shift is the same that was for X.
3562 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3563 ? Builder.CreateLShr(X, NewShAmt)
3564 : Builder.CreateShl(X, NewShAmt);
3565 Value *T1 = Builder.CreateAnd(T0, Y);
3566 return Builder.CreateICmp(I.getPredicate(), T1,
3567 Constant::getNullValue(WidestTy));
3568}
3569
3570/// Fold
3571/// (-1 u/ x) u< y
3572/// ((x * y) u/ x) != y
3573/// to
3574/// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3575/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3576/// will mean that we are looking for the opposite answer.
3577Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3578 ICmpInst::Predicate Pred;
3579 Value *X, *Y;
3580 Instruction *Mul;
3581 bool NeedNegation;
3582 // Look for: (-1 u/ x) u</u>= y
3583 if (!I.isEquality() &&
3584 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3585 m_Value(Y)))) {
3586 Mul = nullptr;
3587
3588 // Are we checking that overflow does not happen, or does happen?
3589 switch (Pred) {
3590 case ICmpInst::Predicate::ICMP_ULT:
3591 NeedNegation = false;
3592 break; // OK
3593 case ICmpInst::Predicate::ICMP_UGE:
3594 NeedNegation = true;
3595 break; // OK
3596 default:
3597 return nullptr; // Wrong predicate.
3598 }
3599 } else // Look for: ((x * y) u/ x) !=/== y
3600 if (I.isEquality() &&
3601 match(&I, m_c_ICmp(Pred, m_Value(Y),
3602 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3603 m_Value(X)),
3604 m_Instruction(Mul)),
3605 m_Deferred(X)))))) {
3606 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3607 } else
3608 return nullptr;
3609
3610 BuilderTy::InsertPointGuard Guard(Builder);
3611 // If the pattern included (x * y), we'll want to insert new instructions
3612 // right before that original multiplication so that we can replace it.
3613 bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3614 if (MulHadOtherUses)
3615 Builder.SetInsertPoint(Mul);
3616
3617 Function *F = Intrinsic::getDeclaration(
3618 I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3619 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3620
3621 // If the multiplication was used elsewhere, to ensure that we don't leave
3622 // "duplicate" instructions, replace uses of that original multiplication
3623 // with the multiplication result from the with.overflow intrinsic.
3624 if (MulHadOtherUses)
3625 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3626
3627 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3628 if (NeedNegation) // This technically increases instruction count.
3629 Res = Builder.CreateNot(Res, "umul.not.ov");
3630
3631 return Res;
3632}
3633
3634/// Try to fold icmp (binop), X or icmp X, (binop).
3635/// TODO: A large part of this logic is duplicated in InstSimplify's
3636/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3637/// duplication.
3638Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3639 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3640 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3641
3642 // Special logic for binary operators.
3643 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
1
Assuming 'Op0' is a 'BinaryOperator'
3644 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2
Assuming 'Op1' is not a 'BinaryOperator'
3645 if (!BO0
2.1
'BO0' is non-null
2.1
'BO0' is non-null
&& !BO1)
3646 return nullptr;
3647
3648 const CmpInst::Predicate Pred = I.getPredicate();
3649 Value *X;
3650
3651 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3652 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3653 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3
Taking false branch
3654 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3655 return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3656 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3657 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
4
Taking false branch
3658 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3659 return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3660
3661 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3662 if (BO0
4.1
'BO0' is non-null
4.1
'BO0' is non-null
&& isa<OverflowingBinaryOperator>(BO0))
5
Assuming 'BO0' is not a 'OverflowingBinaryOperator'
6
Taking false branch
3663 NoOp0WrapProblem =
3664 ICmpInst::isEquality(Pred) ||
3665 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3666 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3667 if (BO1
6.1
'BO1' is null
6.1
'BO1' is null
&& isa<OverflowingBinaryOperator>(BO1))
3668 NoOp1WrapProblem =
3669 ICmpInst::isEquality(Pred) ||
3670 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3671 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3672
3673 // Analyze the case when either Op0 or Op1 is an add instruction.
3674 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3675 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3676 if (BO0
6.2
'BO0' is non-null
6.2
'BO0' is non-null
&& BO0->getOpcode() == Instruction::Add) {
7
Assuming the condition is false
8
Taking false branch
3677 A = BO0->getOperand(0);
3678 B = BO0->getOperand(1);
3679 }
3680 if (BO1
8.1
'BO1' is null
8.1
'BO1' is null
&& BO1->getOpcode() == Instruction::Add) {
3681 C = BO1->getOperand(0);
3682 D = BO1->getOperand(1);
3683 }
3684
3685 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3686 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3687 if ((A
8.2
'A' is not equal to 'Op1'
8.2
'A' is not equal to 'Op1'
== Op1 || B
8.3
'B' is not equal to 'Op1'
8.3
'B' is not equal to 'Op1'
== Op1) && NoOp0WrapProblem)
3688 return new ICmpInst(Pred, A == Op1 ? B : A,
3689 Constant::getNullValue(Op1->getType()));
3690
3691 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3692 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3693 if ((C
8.4
'C' is not equal to 'Op0'
8.4
'C' is not equal to 'Op0'
== Op0 || D
8.5
'D' is not equal to 'Op0'
8.5
'D' is not equal to 'Op0'
== Op0) && NoOp1WrapProblem)
3694 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3695 C == Op0 ? D : C);
3696
3697 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3698 if (A
8.6
'A' is null
8.6
'A' is null
&& C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3699 NoOp1WrapProblem) {
3700 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3701 Value *Y, *Z;
3702 if (A == C) {
3703 // C + B == C + D -> B == D
3704 Y = B;
3705 Z = D;
3706 } else if (A == D) {
3707 // D + B == C + D -> B == C
3708 Y = B;
3709 Z = C;
3710 } else if (B == C) {
3711 // A + C == C + D -> A == D
3712 Y = A;
3713 Z = D;
3714 } else {
3715 assert(B == D)((B == D) ? static_cast<void> (0) : __assert_fail ("B == D"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3715, __PRETTY_FUNCTION__))
;
3716 // A + D == C + D -> A == C
3717 Y = A;
3718 Z = C;
3719 }
3720 return new ICmpInst(Pred, Y, Z);
3721 }
3722
3723 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3724 if (A
8.7
'A' is null
8.7
'A' is null
&& NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
9
Taking false branch
3725 match(B, m_AllOnes()))
3726 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3727
3728 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3729 if (A
9.1
'A' is null
9.1
'A' is null
&& NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
10
Taking false branch
3730 match(B, m_AllOnes()))
3731 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3732
3733 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3734 if (A
10.1
'A' is null
10.1
'A' is null
&& NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
11
Taking false branch
3735 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3736
3737 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3738 if (A
11.1
'A' is null
11.1
'A' is null
&& NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
12
Taking false branch
3739 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3740
3741 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3742 if (C
12.1
'C' is null
12.1
'C' is null
&& NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
13
Taking false branch
3743 match(D, m_AllOnes()))
3744 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3745
3746 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3747 if (C
13.1
'C' is null
13.1
'C' is null
&& NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
14
Taking false branch
3748 match(D, m_AllOnes()))
3749 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3750
3751 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3752 if (C
14.1
'C' is null
14.1
'C' is null
&& NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
15
Taking false branch
3753 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3754
3755 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3756 if (C
15.1
'C' is null
15.1
'C' is null
&& NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
16
Taking false branch
3757 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3758
3759 // TODO: The subtraction-related identities shown below also hold, but
3760 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3761 // wouldn't happen even if they were implemented.
3762 //
3763 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3764 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3765 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3766 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3767
3768 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3769 if (A
16.1
'A' is null
16.1
'A' is null
&& NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
17
Taking false branch
3770 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3771
3772 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3773 if (A
17.1
'A' is null
17.1
'A' is null
&& NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
18
Taking false branch
3774 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3775
3776 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3777 if (C
18.1
'C' is null
18.1
'C' is null
&& NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
19
Taking false branch
3778 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3779
3780 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3781 if (C
19.1
'C' is null
19.1
'C' is null
&& NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
20
Taking false branch
3782 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3783
3784 // if C1 has greater magnitude than C2:
3785 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
3786 // s.t. C3 = C1 - C2
3787 //
3788 // if C2 has greater magnitude than C1:
3789 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3790 // s.t. C3 = C2 - C1
3791 if (A
20.1
'A' is null
20.1
'A' is null
&& C && NoOp0WrapProblem && NoOp1WrapProblem &&
3792 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3793 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3794 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3795 const APInt &AP1 = C1->getValue();
3796 const APInt &AP2 = C2->getValue();
3797 if (AP1.isNegative() == AP2.isNegative()) {
3798 APInt AP1Abs = C1->getValue().abs();
3799 APInt AP2Abs = C2->getValue().abs();
3800 if (AP1Abs.uge(AP2Abs)) {
3801 ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3802 Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3803 return new ICmpInst(Pred, NewAdd, C);
3804 } else {
3805 ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3806 Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3807 return new ICmpInst(Pred, A, NewAdd);
3808 }
3809 }
3810 }
3811
3812 // Analyze the case when either Op0 or Op1 is a sub instruction.
3813 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3814 A = nullptr;
3815 B = nullptr;
3816 C = nullptr;
3817 D = nullptr;
3818 if (BO0
20.2
'BO0' is non-null
20.2
'BO0' is non-null
&& BO0->getOpcode() == Instruction::Sub) {
21
Assuming the condition is false
22
Taking false branch
3819 A = BO0->getOperand(0);
3820 B = BO0->getOperand(1);
3821 }
3822 if (BO1
22.1
'BO1' is null
22.1
'BO1' is null
&& BO1->getOpcode() == Instruction::Sub) {
3823 C = BO1->getOperand(0);
3824 D = BO1->getOperand(1);
3825 }
3826
3827 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3828 if (A
22.2
'A' is not equal to 'Op1'
22.2
'A' is not equal to 'Op1'
== Op1 && NoOp0WrapProblem)
3829 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3830 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3831 if (C
22.3
'C' is not equal to 'Op0'
22.3
'C' is not equal to 'Op0'
== Op0 && NoOp1WrapProblem)
3832 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3833
3834 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3835 // (A - B) u>/u<= A --> B u>/u<= A
3836 if (A
22.4
'A' is not equal to 'Op1'
22.4
'A' is not equal to 'Op1'
== Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3837 return new ICmpInst(Pred, B, A);
3838 // C u</u>= (C - D) --> C u</u>= D
3839 if (C
22.5
'C' is not equal to 'Op0'
22.5
'C' is not equal to 'Op0'
== Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3840 return new ICmpInst(Pred, C, D);
3841 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
3842 if (A
22.6
'A' is not equal to 'Op1'
22.6
'A' is not equal to 'Op1'
== Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3843 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3844 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3845 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
3846 if (C
22.7
'C' is not equal to 'Op0'
22.7
'C' is not equal to 'Op0'
== Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3847 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3848 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3849
3850 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3851 if (B
22.8
'B' is null
22.8
'B' is null
&& D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3852 return new ICmpInst(Pred, A, C);
3853
3854 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3855 if (A
22.9
'A' is null
22.9
'A' is null
&& C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3856 return new ICmpInst(Pred, D, B);
3857
3858 // icmp (0-X) < cst --> x > -cst
3859 if (NoOp0WrapProblem
22.10
'NoOp0WrapProblem' is false
22.10
'NoOp0WrapProblem' is false
&& ICmpInst::isSigned(Pred)) {
3860 Value *X;
3861 if (match(BO0, m_Neg(m_Value(X))))
3862 if (Constant *RHSC = dyn_cast<Constant>(Op1))
3863 if (RHSC->isNotMinSignedValue())
3864 return new ICmpInst(I.getSwappedPredicate(), X,
3865 ConstantExpr::getNeg(RHSC));
3866 }
3867
3868 BinaryOperator *SRem = nullptr;
3869 // icmp (srem X, Y), Y
3870 if (BO0
22.11
'BO0' is non-null
22.11
'BO0' is non-null
&& BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
23
Assuming the condition is false
3871 SRem = BO0;
3872 // icmp Y, (srem X, Y)
3873 else if (BO1
23.1
'BO1' is null
23.1
'BO1' is null
&& BO1->getOpcode() == Instruction::SRem &&
3874 Op0 == BO1->getOperand(1))
3875 SRem = BO1;
3876 if (SRem
23.2
'SRem' is null
23.2
'SRem' is null
) {
24
Taking false branch
3877 // We don't check hasOneUse to avoid increasing register pressure because
3878 // the value we use is the same value this instruction was already using.
3879 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3880 default:
3881 break;
3882 case ICmpInst::ICMP_EQ:
3883 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3884 case ICmpInst::ICMP_NE:
3885 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3886 case ICmpInst::ICMP_SGT:
3887 case ICmpInst::ICMP_SGE:
3888 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3889 Constant::getAllOnesValue(SRem->getType()));
3890 case ICmpInst::ICMP_SLT:
3891 case ICmpInst::ICMP_SLE:
3892 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3893 Constant::getNullValue(SRem->getType()));
3894 }
3895 }
3896
3897 if (BO0
24.1
'BO0' is non-null
24.1
'BO0' is non-null
&& BO1
24.2
'BO1' is null
24.2
'BO1' is null
&& BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3898 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3899 switch (BO0->getOpcode()) {
3900 default:
3901 break;
3902 case Instruction::Add:
3903 case Instruction::Sub:
3904 case Instruction::Xor: {
3905 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3906 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3907
3908 const APInt *C;
3909 if (match(BO0->getOperand(1), m_APInt(C))) {
3910 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3911 if (C->isSignMask()) {
3912 ICmpInst::Predicate NewPred =
3913 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3914 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3915 }
3916
3917 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3918 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
3919 ICmpInst::Predicate NewPred =
3920 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3921 NewPred = I.getSwappedPredicate(NewPred);
3922 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3923 }
3924 }
3925 break;
3926 }
3927 case Instruction::Mul: {
3928 if (!I.isEquality())
3929 break;
3930
3931 const APInt *C;
3932 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
3933 !C->isOneValue()) {
3934 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
3935 // Mask = -1 >> count-trailing-zeros(C).
3936 if (unsigned TZs = C->countTrailingZeros()) {
3937 Constant *Mask = ConstantInt::get(
3938 BO0->getType(),
3939 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
3940 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
3941 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
3942 return new ICmpInst(Pred, And1, And2);
3943 }
3944 // If there are no trailing zeros in the multiplier, just eliminate
3945 // the multiplies (no masking is needed):
3946 // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
3947 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3948 }
3949 break;
3950 }
3951 case Instruction::UDiv:
3952 case Instruction::LShr:
3953 if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
3954 break;
3955 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3956
3957 case Instruction::SDiv:
3958 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
3959 break;
3960 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3961
3962 case Instruction::AShr:
3963 if (!BO0->isExact() || !BO1->isExact())
3964 break;
3965 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3966
3967 case Instruction::Shl: {
3968 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3969 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3970 if (!NUW && !NSW)
3971 break;
3972 if (!NSW && I.isSigned())
3973 break;
3974 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3975 }
3976 }
3977 }
3978
3979 if (BO0
24.3
'BO0' is non-null
24.3
'BO0' is non-null
) {
25
Taking true branch
3980 // Transform A & (L - 1) `ult` L --> L != 0
3981 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
3982 auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
3983
3984 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
3985 auto *Zero = Constant::getNullValue(BO0->getType());
3986 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
3987 }
3988 }
3989
3990 if (Value *V
25.1
'V' is null
25.1
'V' is null
= foldUnsignedMultiplicationOverflowCheck(I))
26
Taking false branch
3991 return replaceInstUsesWith(I, V);
3992
3993 if (Value *V
26.1
'V' is null
26.1
'V' is null
= foldICmpWithLowBitMaskedVal(I, Builder))
27
Taking false branch
3994 return replaceInstUsesWith(I, V);
3995
3996 if (Value *V
27.1
'V' is null
27.1
'V' is null
= foldICmpWithTruncSignExtendedVal(I, Builder))
28
Taking false branch
3997 return replaceInstUsesWith(I, V);
3998
3999 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
29
Calling 'foldShiftIntoShiftInAnotherHandOfAndInICmp'
4000 return replaceInstUsesWith(I, V);
4001
4002 return nullptr;
4003}
4004
4005/// Fold icmp Pred min|max(X, Y), X.
4006static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4007 ICmpInst::Predicate Pred = Cmp.getPredicate();
4008 Value *Op0 = Cmp.getOperand(0);
4009 Value *X = Cmp.getOperand(1);
4010
4011 // Canonicalize minimum or maximum operand to LHS of the icmp.
4012 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4013 match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4014 match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4015 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4016 std::swap(Op0, X);
4017 Pred = Cmp.getSwappedPredicate();
4018 }
4019
4020 Value *Y;
4021 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4022 // smin(X, Y) == X --> X s<= Y
4023 // smin(X, Y) s>= X --> X s<= Y
4024 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4025 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4026
4027 // smin(X, Y) != X --> X s> Y
4028 // smin(X, Y) s< X --> X s> Y
4029 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4030 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4031
4032 // These cases should be handled in InstSimplify:
4033 // smin(X, Y) s<= X --> true
4034 // smin(X, Y) s> X --> false
4035 return nullptr;
4036 }
4037
4038 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4039 // smax(X, Y) == X --> X s>= Y
4040 // smax(X, Y) s<= X --> X s>= Y
4041 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4042 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4043
4044 // smax(X, Y) != X --> X s< Y
4045 // smax(X, Y) s> X --> X s< Y
4046 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4047 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4048
4049 // These cases should be handled in InstSimplify:
4050 // smax(X, Y) s>= X --> true
4051 // smax(X, Y) s< X --> false
4052 return nullptr;
4053 }
4054
4055 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4056 // umin(X, Y) == X --> X u<= Y
4057 // umin(X, Y) u>= X --> X u<= Y
4058 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4059 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4060
4061 // umin(X, Y) != X --> X u> Y
4062 // umin(X, Y) u< X --> X u> Y
4063 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4064 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4065
4066 // These cases should be handled in InstSimplify:
4067 // umin(X, Y) u<= X --> true
4068 // umin(X, Y) u> X --> false
4069 return nullptr;
4070 }
4071
4072 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4073 // umax(X, Y) == X --> X u>= Y
4074 // umax(X, Y) u<= X --> X u>= Y
4075 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4076 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4077
4078 // umax(X, Y) != X --> X u< Y
4079 // umax(X, Y) u> X --> X u< Y
4080 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4081 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4082
4083 // These cases should be handled in InstSimplify:
4084 // umax(X, Y) u>= X --> true
4085 // umax(X, Y) u< X --> false
4086 return nullptr;
4087 }
4088
4089 return nullptr;
4090}
4091
4092Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4093 if (!I.isEquality())
4094 return nullptr;
4095
4096 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4097 const CmpInst::Predicate Pred = I.getPredicate();
4098 Value *A, *B, *C, *D;
4099 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4100 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
4101 Value *OtherVal = A == Op1 ? B : A;
4102 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4103 }
4104
4105 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4106 // A^c1 == C^c2 --> A == C^(c1^c2)
4107 ConstantInt *C1, *C2;
4108 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4109 Op1->hasOneUse()) {
4110 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4111 Value *Xor = Builder.CreateXor(C, NC);
4112 return new ICmpInst(Pred, A, Xor);
4113 }
4114
4115 // A^B == A^D -> B == D
4116 if (A == C)
4117 return new ICmpInst(Pred, B, D);
4118 if (A == D)
4119 return new ICmpInst(Pred, B, C);
4120 if (B == C)
4121 return new ICmpInst(Pred, A, D);
4122 if (B == D)
4123 return new ICmpInst(Pred, A, C);
4124 }
4125 }
4126
4127 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4128 // A == (A^B) -> B == 0
4129 Value *OtherVal = A == Op0 ? B : A;
4130 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4131 }
4132
4133 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4134 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4135 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4136 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4137
4138 if (A == C) {
4139 X = B;
4140 Y = D;
4141 Z = A;
4142 } else if (A == D) {
4143 X = B;
4144 Y = C;
4145 Z = A;
4146 } else if (B == C) {
4147 X = A;
4148 Y = D;
4149 Z = B;
4150 } else if (B == D) {
4151 X = A;
4152 Y = C;
4153 Z = B;
4154 }
4155
4156 if (X) { // Build (X^Y) & Z
4157 Op1 = Builder.CreateXor(X, Y);
4158 Op1 = Builder.CreateAnd(Op1, Z);
4159 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4160 }
4161 }
4162
4163 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4164 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4165 ConstantInt *Cst1;
4166 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4167 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4168 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4169 match(Op1, m_ZExt(m_Value(A))))) {
4170 APInt Pow2 = Cst1->getValue() + 1;
4171 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4172 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4173 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4174 }
4175
4176 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4177 // For lshr and ashr pairs.
4178 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4179 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4180 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4181 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4182 unsigned TypeBits = Cst1->getBitWidth();
4183 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4184 if (ShAmt < TypeBits && ShAmt != 0) {
4185 ICmpInst::Predicate NewPred =
4186 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4187 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4188 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4189 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4190 }
4191 }
4192
4193 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4194 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4195 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4196 unsigned TypeBits = Cst1->getBitWidth();
4197 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4198 if (ShAmt < TypeBits && ShAmt != 0) {
4199 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4200 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4201 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4202 I.getName() + ".mask");
4203 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4204 }
4205 }
4206
4207 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4208 // "icmp (and X, mask), cst"
4209 uint64_t ShAmt = 0;
4210 if (Op0->hasOneUse() &&
4211 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4212 match(Op1, m_ConstantInt(Cst1)) &&
4213 // Only do this when A has multiple uses. This is most important to do
4214 // when it exposes other optimizations.
4215 !A->hasOneUse()) {
4216 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4217
4218 if (ShAmt < ASize) {
4219 APInt MaskV =
4220 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4221 MaskV <<= ShAmt;
4222
4223 APInt CmpV = Cst1->getValue().zext(ASize);
4224 CmpV <<= ShAmt;
4225
4226 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4227 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4228 }
4229 }
4230
4231 // If both operands are byte-swapped or bit-reversed, just compare the
4232 // original values.
4233 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4234 // and handle more intrinsics.
4235 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4236 (match(Op0, m_BitReverse(m_Value(A))) &&
4237 match(Op1, m_BitReverse(m_Value(B)))))
4238 return new ICmpInst(Pred, A, B);
4239
4240 // Canonicalize checking for a power-of-2-or-zero value:
4241 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4242 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4243 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4244 m_Deferred(A)))) ||
4245 !match(Op1, m_ZeroInt()))
4246 A = nullptr;
4247
4248 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4249 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4250 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4251 A = Op1;
4252 else if (match(Op1,
4253 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4254 A = Op0;
4255
4256 if (A) {
4257 Type *Ty = A->getType();
4258 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4259 return Pred == ICmpInst::ICMP_EQ
4260 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4261 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4262 }
4263
4264 return nullptr;
4265}
4266
4267static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4268 InstCombiner::BuilderTy &Builder) {
4269 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0")((isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"
) ? static_cast<void> (0) : __assert_fail ("isa<CastInst>(ICmp.getOperand(0)) && \"Expected cast for operand 0\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4269, __PRETTY_FUNCTION__))
;
4270 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4271 Value *X;
4272 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4273 return nullptr;
4274
4275 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4276 bool IsSignedCmp = ICmp.isSigned();
4277 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4278 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4279 // and the other is a zext), then we can't handle this.
4280 // TODO: This is too strict. We can handle some predicates (equality?).
4281 if (CastOp0->getOpcode() != CastOp1->getOpcode())
4282 return nullptr;
4283
4284 // Not an extension from the same type?
4285 Value *Y = CastOp1->getOperand(0);
4286 Type *XTy = X->getType(), *YTy = Y->getType();
4287 if (XTy != YTy) {
4288 // One of the casts must have one use because we are creating a new cast.
4289 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4290 return nullptr;
4291 // Extend the narrower operand to the type of the wider operand.
4292 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4293 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4294 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4295 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4296 else
4297 return nullptr;
4298 }
4299
4300 // (zext X) == (zext Y) --> X == Y
4301 // (sext X) == (sext Y) --> X == Y
4302 if (ICmp.isEquality())
4303 return new ICmpInst(ICmp.getPredicate(), X, Y);
4304
4305 // A signed comparison of sign extended values simplifies into a
4306 // signed comparison.
4307 if (IsSignedCmp && IsSignedExt)
4308 return new ICmpInst(ICmp.getPredicate(), X, Y);
4309
4310 // The other three cases all fold into an unsigned comparison.
4311 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4312 }
4313
4314 // Below here, we are only folding a compare with constant.
4315 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4316 if (!C)
4317 return nullptr;
4318
4319 // Compute the constant that would happen if we truncated to SrcTy then
4320 // re-extended to DestTy.
4321 Type *SrcTy = CastOp0->getSrcTy();
4322 Type *DestTy = CastOp0->getDestTy();
4323 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4324 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4325
4326 // If the re-extended constant didn't change...
4327 if (Res2 == C) {
4328 if (ICmp.isEquality())
4329 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4330
4331 // A signed comparison of sign extended values simplifies into a
4332 // signed comparison.
4333 if (IsSignedExt && IsSignedCmp)
4334 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4335
4336 // The other three cases all fold into an unsigned comparison.
4337 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4338 }
4339
4340 // The re-extended constant changed, partly changed (in the case of a vector),
4341 // or could not be determined to be equal (in the case of a constant
4342 // expression), so the constant cannot be represented in the shorter type.
4343 // All the cases that fold to true or false will have already been handled
4344 // by SimplifyICmpInst, so only deal with the tricky case.
4345 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4346 return nullptr;
4347
4348 // Is source op positive?
4349 // icmp ult (sext X), C --> icmp sgt X, -1
4350 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4351 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4352
4353 // Is source op negative?
4354 // icmp ugt (sext X), C --> icmp slt X, 0
4355 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!")((ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"
) ? static_cast<void> (0) : __assert_fail ("ICmp.getPredicate() == ICmpInst::ICMP_UGT && \"ICmp should be folded!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4355, __PRETTY_FUNCTION__))
;
4356 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4357}
4358
4359/// Handle icmp (cast x), (cast or constant).
4360Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4361 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4362 if (!CastOp0)
4363 return nullptr;
4364 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4365 return nullptr;
4366
4367 Value *Op0Src = CastOp0->getOperand(0);
4368 Type *SrcTy = CastOp0->getSrcTy();
4369 Type *DestTy = CastOp0->getDestTy();
4370
4371 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4372 // integer type is the same size as the pointer type.
4373 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4374 if (isa<VectorType>(SrcTy)) {
4375 SrcTy = cast<VectorType>(SrcTy)->getElementType();
4376 DestTy = cast<VectorType>(DestTy)->getElementType();
4377 }
4378 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4379 };
4380 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4381 CompatibleSizes(SrcTy, DestTy)) {
4382 Value *NewOp1 = nullptr;
4383 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4384 Value *PtrSrc = PtrToIntOp1->getOperand(0);
4385 if (PtrSrc->getType()->getPointerAddressSpace() ==
4386 Op0Src->getType()->getPointerAddressSpace()) {
4387 NewOp1 = PtrToIntOp1->getOperand(0);
4388 // If the pointer types don't match, insert a bitcast.
4389 if (Op0Src->getType() != NewOp1->getType())
4390 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4391 }
4392 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4393 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4394 }
4395
4396 if (NewOp1)
4397 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4398 }
4399
4400 return foldICmpWithZextOrSext(ICmp, Builder);
4401}
4402
4403static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4404 switch (BinaryOp) {
4405 default:
4406 llvm_unreachable("Unsupported binary op")::llvm::llvm_unreachable_internal("Unsupported binary op", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4406)
;
4407 case Instruction::Add:
4408 case Instruction::Sub:
4409 return match(RHS, m_Zero());
4410 case Instruction::Mul:
4411 return match(RHS, m_One());
4412 }
4413}
4414
4415OverflowResult InstCombiner::computeOverflow(
4416 Instruction::BinaryOps BinaryOp, bool IsSigned,
4417 Value *LHS, Value *RHS, Instruction *CxtI) const {
4418 switch (BinaryOp) {
4419 default:
4420 llvm_unreachable("Unsupported binary op")::llvm::llvm_unreachable_internal("Unsupported binary op", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4420)
;
4421 case Instruction::Add:
4422 if (IsSigned)
4423 return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4424 else
4425 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4426 case Instruction::Sub:
4427 if (IsSigned)
4428 return computeOverflowForSignedSub(LHS, RHS, CxtI);
4429 else
4430 return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4431 case Instruction::Mul:
4432 if (IsSigned)
4433 return computeOverflowForSignedMul(LHS, RHS, CxtI);
4434 else
4435 return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4436 }
4437}
4438
4439bool InstCombiner::OptimizeOverflowCheck(
4440 Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4441 Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4442 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4443 std::swap(LHS, RHS);
4444
4445 // If the overflow check was an add followed by a compare, the insertion point
4446 // may be pointing to the compare. We want to insert the new instructions
4447 // before the add in case there are uses of the add between the add and the
4448 // compare.
4449 Builder.SetInsertPoint(&OrigI);
4450
4451 if (isNeutralValue(BinaryOp, RHS)) {
4452 Result = LHS;
4453 Overflow = Builder.getFalse();
4454 return true;
4455 }
4456
4457 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4458 case OverflowResult::MayOverflow:
4459 return false;
4460 case OverflowResult::AlwaysOverflowsLow:
4461 case OverflowResult::AlwaysOverflowsHigh:
4462 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4463 Result->takeName(&OrigI);
4464 Overflow = Builder.getTrue();
4465 return true;
4466 case OverflowResult::NeverOverflows:
4467 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4468 Result->takeName(&OrigI);
4469 Overflow = Builder.getFalse();
4470 if (auto *Inst = dyn_cast<Instruction>(Result)) {
4471 if (IsSigned)
4472 Inst->setHasNoSignedWrap();
4473 else
4474 Inst->setHasNoUnsignedWrap();
4475 }
4476 return true;
4477 }
4478
4479 llvm_unreachable("Unexpected overflow result")::llvm::llvm_unreachable_internal("Unexpected overflow result"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4479)
;
4480}
4481
4482/// Recognize and process idiom involving test for multiplication
4483/// overflow.
4484///
4485/// The caller has matched a pattern of the form:
4486/// I = cmp u (mul(zext A, zext B), V
4487/// The function checks if this is a test for overflow and if so replaces
4488/// multiplication with call to 'mul.with.overflow' intrinsic.
4489///
4490/// \param I Compare instruction.
4491/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4492/// the compare instruction. Must be of integer type.
4493/// \param OtherVal The other argument of compare instruction.
4494/// \returns Instruction which must replace the compare instruction, NULL if no
4495/// replacement required.
4496static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4497 Value *OtherVal, InstCombiner &IC) {
4498 // Don't bother doing this transformation for pointers, don't do it for
4499 // vectors.
4500 if (!isa<IntegerType>(MulVal->getType()))
4501 return nullptr;
4502
4503 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal)((I.getOperand(0) == MulVal || I.getOperand(1) == MulVal) ? static_cast
<void> (0) : __assert_fail ("I.getOperand(0) == MulVal || I.getOperand(1) == MulVal"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4503, __PRETTY_FUNCTION__))
;
4504 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal)((I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal)
? static_cast<void> (0) : __assert_fail ("I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4504, __PRETTY_FUNCTION__))
;
4505 auto *MulInstr = dyn_cast<Instruction>(MulVal);
4506 if (!MulInstr)
4507 return nullptr;
4508 assert(MulInstr->getOpcode() == Instruction::Mul)((MulInstr->getOpcode() == Instruction::Mul) ? static_cast
<void> (0) : __assert_fail ("MulInstr->getOpcode() == Instruction::Mul"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4508, __PRETTY_FUNCTION__))
;
4509
4510 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4511 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4512 assert(LHS->getOpcode() == Instruction::ZExt)((LHS->getOpcode() == Instruction::ZExt) ? static_cast<
void> (0) : __assert_fail ("LHS->getOpcode() == Instruction::ZExt"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4512, __PRETTY_FUNCTION__))
;
4513 assert(RHS->getOpcode() == Instruction::ZExt)((RHS->getOpcode() == Instruction::ZExt) ? static_cast<
void> (0) : __assert_fail ("RHS->getOpcode() == Instruction::ZExt"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4513, __PRETTY_FUNCTION__))
;
4514 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4515
4516 // Calculate type and width of the result produced by mul.with.overflow.
4517 Type *TyA = A->getType(), *TyB = B->getType();
4518 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4519 WidthB = TyB->getPrimitiveSizeInBits();
4520 unsigned MulWidth;
4521 Type *MulType;
4522 if (WidthB > WidthA) {
4523 MulWidth = WidthB;
4524 MulType = TyB;
4525 } else {
4526 MulWidth = WidthA;
4527 MulType = TyA;
4528 }
4529
4530 // In order to replace the original mul with a narrower mul.with.overflow,
4531 // all uses must ignore upper bits of the product. The number of used low
4532 // bits must be not greater than the width of mul.with.overflow.
4533 if (MulVal->hasNUsesOrMore(2))
4534 for (User *U : MulVal->users()) {
4535 if (U == &I)
4536 continue;
4537 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4538 // Check if truncation ignores bits above MulWidth.
4539 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4540 if (TruncWidth > MulWidth)
4541 return nullptr;
4542 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4543 // Check if AND ignores bits above MulWidth.
4544 if (BO->getOpcode() != Instruction::And)
4545 return nullptr;
4546 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4547 const APInt &CVal = CI->getValue();
4548 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4549 return nullptr;
4550 } else {
4551 // In this case we could have the operand of the binary operation
4552 // being defined in another block, and performing the replacement
4553 // could break the dominance relation.
4554 return nullptr;
4555 }
4556 } else {
4557 // Other uses prohibit this transformation.
4558 return nullptr;
4559 }
4560 }
4561
4562 // Recognize patterns
4563 switch (I.getPredicate()) {
4564 case ICmpInst::ICMP_EQ:
4565 case ICmpInst::ICMP_NE:
4566 // Recognize pattern:
4567 // mulval = mul(zext A, zext B)
4568 // cmp eq/neq mulval, zext trunc mulval
4569 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
4570 if (Zext->hasOneUse()) {
4571 Value *ZextArg = Zext->getOperand(0);
4572 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
4573 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
4574 break; //Recognized
4575 }
4576
4577 // Recognize pattern:
4578 // mulval = mul(zext A, zext B)
4579 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4580 ConstantInt *CI;
4581 Value *ValToMask;
4582 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4583 if (ValToMask != MulVal)
4584 return nullptr;
4585 const APInt &CVal = CI->getValue() + 1;
4586 if (CVal.isPowerOf2()) {
4587 unsigned MaskWidth = CVal.logBase2();
4588 if (MaskWidth == MulWidth)
4589 break; // Recognized
4590 }
4591 }
4592 return nullptr;
4593
4594 case ICmpInst::ICMP_UGT:
4595 // Recognize pattern:
4596 // mulval = mul(zext A, zext B)
4597 // cmp ugt mulval, max
4598 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4599 APInt MaxVal = APInt::getMaxValue(MulWidth);
4600 MaxVal = MaxVal.zext(CI->getBitWidth());
4601 if (MaxVal.eq(CI->getValue()))
4602 break; // Recognized
4603 }
4604 return nullptr;
4605
4606 case ICmpInst::ICMP_UGE:
4607 // Recognize pattern:
4608 // mulval = mul(zext A, zext B)
4609 // cmp uge mulval, max+1
4610 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4611 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4612 if (MaxVal.eq(CI->getValue()))
4613 break; // Recognized
4614 }
4615 return nullptr;
4616
4617 case ICmpInst::ICMP_ULE:
4618 // Recognize pattern:
4619 // mulval = mul(zext A, zext B)
4620 // cmp ule mulval, max
4621 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4622 APInt MaxVal = APInt::getMaxValue(MulWidth);
4623 MaxVal = MaxVal.zext(CI->getBitWidth());
4624 if (MaxVal.eq(CI->getValue()))
4625 break; // Recognized
4626 }
4627 return nullptr;
4628
4629 case ICmpInst::ICMP_ULT:
4630 // Recognize pattern:
4631 // mulval = mul(zext A, zext B)
4632 // cmp ule mulval, max + 1
4633 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4634 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4635 if (MaxVal.eq(CI->getValue()))
4636 break; // Recognized
4637 }
4638 return nullptr;
4639
4640 default:
4641 return nullptr;
4642 }
4643
4644 InstCombiner::BuilderTy &Builder = IC.Builder;
4645 Builder.SetInsertPoint(MulInstr);
4646
4647 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4648 Value *MulA = A, *MulB = B;
4649 if (WidthA < MulWidth)
4650 MulA = Builder.CreateZExt(A, MulType);
4651 if (WidthB < MulWidth)
4652 MulB = Builder.CreateZExt(B, MulType);
4653 Function *F = Intrinsic::getDeclaration(
4654 I.getModule(), Intrinsic::umul_with_overflow, MulType);
4655 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4656 IC.Worklist.push(MulInstr);
4657
4658 // If there are uses of mul result other than the comparison, we know that
4659 // they are truncation or binary AND. Change them to use result of
4660 // mul.with.overflow and adjust properly mask/size.
4661 if (MulVal->hasNUsesOrMore(2)) {
4662 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4663 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4664 User *U = *UI++;
4665 if (U == &I || U == OtherVal)
4666 continue;
4667 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4668 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4669 IC.replaceInstUsesWith(*TI, Mul);
4670 else
4671 TI->setOperand(0, Mul);
4672 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4673 assert(BO->getOpcode() == Instruction::And)((BO->getOpcode() == Instruction::And) ? static_cast<void
> (0) : __assert_fail ("BO->getOpcode() == Instruction::And"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4673, __PRETTY_FUNCTION__))
;
4674 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4675 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4676 APInt ShortMask = CI->getValue().trunc(MulWidth);
4677 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4678 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4679 IC.replaceInstUsesWith(*BO, Zext);
4680 } else {
4681 llvm_unreachable("Unexpected Binary operation")::llvm::llvm_unreachable_internal("Unexpected Binary operation"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4681)
;
4682 }
4683 IC.Worklist.push(cast<Instruction>(U));
4684 }
4685 }
4686 if (isa<Instruction>(OtherVal))
4687 IC.Worklist.push(cast<Instruction>(OtherVal));
4688
4689 // The original icmp gets replaced with the overflow value, maybe inverted
4690 // depending on predicate.
4691 bool Inverse = false;
4692 switch (I.getPredicate()) {
4693 case ICmpInst::ICMP_NE:
4694 break;
4695 case ICmpInst::ICMP_EQ:
4696 Inverse = true;
4697 break;
4698 case ICmpInst::ICMP_UGT:
4699 case ICmpInst::ICMP_UGE:
4700 if (I.getOperand(0) == MulVal)
4701 break;
4702 Inverse = true;
4703 break;
4704 case ICmpInst::ICMP_ULT:
4705 case ICmpInst::ICMP_ULE:
4706 if (I.getOperand(1) == MulVal)
4707 break;
4708 Inverse = true;
4709 break;
4710 default:
4711 llvm_unreachable("Unexpected predicate")::llvm::llvm_unreachable_internal("Unexpected predicate", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4711)
;
4712 }
4713 if (Inverse) {
4714 Value *Res = Builder.CreateExtractValue(Call, 1);
4715 return BinaryOperator::CreateNot(Res);
4716 }
4717
4718 return ExtractValueInst::Create(Call, 1);
4719}
4720
4721/// When performing a comparison against a constant, it is possible that not all
4722/// the bits in the LHS are demanded. This helper method computes the mask that
4723/// IS demanded.
4724static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4725 const APInt *RHS;
4726 if (!match(I.getOperand(1), m_APInt(RHS)))
4727 return APInt::getAllOnesValue(BitWidth);
4728
4729 // If this is a normal comparison, it demands all bits. If it is a sign bit
4730 // comparison, it only demands the sign bit.
4731 bool UnusedBit;
4732 if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4733 return APInt::getSignMask(BitWidth);
4734
4735 switch (I.getPredicate()) {
4736 // For a UGT comparison, we don't care about any bits that
4737 // correspond to the trailing ones of the comparand. The value of these
4738 // bits doesn't impact the outcome of the comparison, because any value
4739 // greater than the RHS must differ in a bit higher than these due to carry.
4740 case ICmpInst::ICMP_UGT:
4741 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4742
4743 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4744 // Any value less than the RHS must differ in a higher bit because of carries.
4745 case ICmpInst::ICMP_ULT:
4746 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4747
4748 default:
4749 return APInt::getAllOnesValue(BitWidth);
4750 }
4751}
4752
4753/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4754/// should be swapped.
4755/// The decision is based on how many times these two operands are reused
4756/// as subtract operands and their positions in those instructions.
4757/// The rationale is that several architectures use the same instruction for
4758/// both subtract and cmp. Thus, it is better if the order of those operands
4759/// match.
4760/// \return true if Op0 and Op1 should be swapped.
4761static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4762 // Filter out pointer values as those cannot appear directly in subtract.
4763 // FIXME: we may want to go through inttoptrs or bitcasts.
4764 if (Op0->getType()->isPointerTy())
4765 return false;
4766 // If a subtract already has the same operands as a compare, swapping would be
4767 // bad. If a subtract has the same operands as a compare but in reverse order,
4768 // then swapping is good.
4769 int GoodToSwap = 0;
4770 for (const User *U : Op0->users()) {
4771 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4772 GoodToSwap++;
4773 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4774 GoodToSwap--;
4775 }
4776 return GoodToSwap > 0;
4777}
4778
4779/// Check that one use is in the same block as the definition and all
4780/// other uses are in blocks dominated by a given block.
4781///
4782/// \param DI Definition
4783/// \param UI Use
4784/// \param DB Block that must dominate all uses of \p DI outside
4785/// the parent block
4786/// \return true when \p UI is the only use of \p DI in the parent block
4787/// and all other uses of \p DI are in blocks dominated by \p DB.
4788///
4789bool InstCombiner::dominatesAllUses(const Instruction *DI,
4790 const Instruction *UI,
4791 const BasicBlock *DB) const {
4792 assert(DI && UI && "Instruction not defined\n")((DI && UI && "Instruction not defined\n") ? static_cast
<void> (0) : __assert_fail ("DI && UI && \"Instruction not defined\\n\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4792, __PRETTY_FUNCTION__))
;
4793 // Ignore incomplete definitions.
4794 if (!DI->getParent())
4795 return false;
4796 // DI and UI must be in the same block.
4797 if (DI->getParent() != UI->getParent())
4798 return false;
4799 // Protect from self-referencing blocks.
4800 if (DI->getParent() == DB)
4801 return false;
4802 for (const User *U : DI->users()) {
4803 auto *Usr = cast<Instruction>(U);
4804 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4805 return false;
4806 }
4807 return true;
4808}
4809
4810/// Return true when the instruction sequence within a block is select-cmp-br.
4811static bool isChainSelectCmpBranch(const SelectInst *SI) {
4812 const BasicBlock *BB = SI->getParent();
4813 if (!BB)
4814 return false;
4815 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4816 if (!BI || BI->getNumSuccessors() != 2)
4817 return false;
4818 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4819 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4820 return false;
4821 return true;
4822}
4823
4824/// True when a select result is replaced by one of its operands
4825/// in select-icmp sequence. This will eventually result in the elimination
4826/// of the select.
4827///
4828/// \param SI Select instruction
4829/// \param Icmp Compare instruction
4830/// \param SIOpd Operand that replaces the select
4831///
4832/// Notes:
4833/// - The replacement is global and requires dominator information
4834/// - The caller is responsible for the actual replacement
4835///
4836/// Example:
4837///
4838/// entry:
4839/// %4 = select i1 %3, %C* %0, %C* null
4840/// %5 = icmp eq %C* %4, null
4841/// br i1 %5, label %9, label %7
4842/// ...
4843/// ; <label>:7 ; preds = %entry
4844/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4845/// ...
4846///
4847/// can be transformed to
4848///
4849/// %5 = icmp eq %C* %0, null
4850/// %6 = select i1 %3, i1 %5, i1 true
4851/// br i1 %6, label %9, label %7
4852/// ...
4853/// ; <label>:7 ; preds = %entry
4854/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4855///
4856/// Similar when the first operand of the select is a constant or/and
4857/// the compare is for not equal rather than equal.
4858///
4859/// NOTE: The function is only called when the select and compare constants
4860/// are equal, the optimization can work only for EQ predicates. This is not a
4861/// major restriction since a NE compare should be 'normalized' to an equal
4862/// compare, which usually happens in the combiner and test case
4863/// select-cmp-br.ll checks for it.
4864bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4865 const ICmpInst *Icmp,
4866 const unsigned SIOpd) {
4867 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!")(((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"
) ? static_cast<void> (0) : __assert_fail ("(SIOpd == 1 || SIOpd == 2) && \"Invalid select operand!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4867, __PRETTY_FUNCTION__))
;
4868 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4869 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4870 // The check for the single predecessor is not the best that can be
4871 // done. But it protects efficiently against cases like when SI's
4872 // home block has two successors, Succ and Succ1, and Succ1 predecessor
4873 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4874 // replaced can be reached on either path. So the uniqueness check
4875 // guarantees that the path all uses of SI (outside SI's parent) are on
4876 // is disjoint from all other paths out of SI. But that information
4877 // is more expensive to compute, and the trade-off here is in favor
4878 // of compile-time. It should also be noticed that we check for a single
4879 // predecessor and not only uniqueness. This to handle the situation when
4880 // Succ and Succ1 points to the same basic block.
4881 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4882 NumSel++;
4883 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4884 return true;
4885 }
4886 }
4887 return false;
4888}
4889
4890/// Try to fold the comparison based on range information we can get by checking
4891/// whether bits are known to be zero or one in the inputs.
4892Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4893 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4894 Type *Ty = Op0->getType();
4895 ICmpInst::Predicate Pred = I.getPredicate();
4896
4897 // Get scalar or pointer size.
4898 unsigned BitWidth = Ty->isIntOrIntVectorTy()
4899 ? Ty->getScalarSizeInBits()
4900 : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4901
4902 if (!BitWidth)
4903 return nullptr;
4904
4905 KnownBits Op0Known(BitWidth);
4906 KnownBits Op1Known(BitWidth);
4907
4908 if (SimplifyDemandedBits(&I, 0,
4909 getDemandedBitsLHSMask(I, BitWidth),
4910 Op0Known, 0))
4911 return &I;
4912
4913 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4914 Op1Known, 0))
4915 return &I;
4916
4917 // Given the known and unknown bits, compute a range that the LHS could be
4918 // in. Compute the Min, Max and RHS values based on the known bits. For the
4919 // EQ and NE we use unsigned values.
4920 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4921 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4922 if (I.isSigned()) {
4923 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4924 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4925 } else {
4926 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4927 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4928 }
4929
4930 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
4931 // out that the LHS or RHS is a constant. Constant fold this now, so that
4932 // code below can assume that Min != Max.
4933 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
4934 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
4935 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
4936 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
4937
4938 // Based on the range information we know about the LHS, see if we can
4939 // simplify this comparison. For example, (x&4) < 8 is always true.
4940 switch (Pred) {
4941 default:
4942 llvm_unreachable("Unknown icmp opcode!")::llvm::llvm_unreachable_internal("Unknown icmp opcode!", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4942)
;
4943 case ICmpInst::ICMP_EQ:
4944 case ICmpInst::ICMP_NE: {
4945 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
4946 return Pred == CmpInst::ICMP_EQ
4947 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
4948 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4949 }
4950
4951 // If all bits are known zero except for one, then we know at most one bit
4952 // is set. If the comparison is against zero, then this is a check to see if
4953 // *that* bit is set.
4954 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
4955 if (Op1Known.isZero()) {
4956 // If the LHS is an AND with the same constant, look through it.
4957 Value *LHS = nullptr;
4958 const APInt *LHSC;
4959 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
4960 *LHSC != Op0KnownZeroInverted)
4961 LHS = Op0;
4962
4963 Value *X;
4964 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
4965 APInt ValToCheck = Op0KnownZeroInverted;
4966 Type *XTy = X->getType();
4967 if (ValToCheck.isPowerOf2()) {
4968 // ((1 << X) & 8) == 0 -> X != 3
4969 // ((1 << X) & 8) != 0 -> X == 3
4970 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4971 auto NewPred = ICmpInst::getInversePredicate(Pred);
4972 return new ICmpInst(NewPred, X, CmpC);
4973 } else if ((++ValToCheck).isPowerOf2()) {
4974 // ((1 << X) & 7) == 0 -> X >= 3
4975 // ((1 << X) & 7) != 0 -> X < 3
4976 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
4977 auto NewPred =
4978 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
4979 return new ICmpInst(NewPred, X, CmpC);
4980 }
4981 }
4982
4983 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
4984 const APInt *CI;
4985 if (Op0KnownZeroInverted.isOneValue() &&
4986 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
4987 // ((8 >>u X) & 1) == 0 -> X != 3
4988 // ((8 >>u X) & 1) != 0 -> X == 3
4989 unsigned CmpVal = CI->countTrailingZeros();
4990 auto NewPred = ICmpInst::getInversePredicate(Pred);
4991 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
4992 }
4993 }
4994 break;
4995 }
4996 case ICmpInst::ICMP_ULT: {
4997 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
4998 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4999 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5000 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5001 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5002 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5003
5004 const APInt *CmpC;
5005 if (match(Op1, m_APInt(CmpC))) {
5006 // A <u C -> A == C-1 if min(A)+1 == C
5007 if (*CmpC == Op0Min + 1)
5008 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5009 ConstantInt::get(Op1->getType(), *CmpC - 1));
5010 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5011 // exceeds the log2 of C.
5012 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5013 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5014 Constant::getNullValue(Op1->getType()));
5015 }
5016 break;
5017 }
5018 case ICmpInst::ICMP_UGT: {
5019 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5020 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5021 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5022 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5023 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5024 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5025
5026 const APInt *CmpC;
5027 if (match(Op1, m_APInt(CmpC))) {
5028 // A >u C -> A == C+1 if max(a)-1 == C
5029 if (*CmpC == Op0Max - 1)
5030 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5031 ConstantInt::get(Op1->getType(), *CmpC + 1));
5032 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5033 // exceeds the log2 of C.
5034 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5035 return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5036 Constant::getNullValue(Op1->getType()));
5037 }
5038 break;
5039 }
5040 case ICmpInst::ICMP_SLT: {
5041 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5042 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5043 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5044 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5045 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5046 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5047 const APInt *CmpC;
5048 if (match(Op1, m_APInt(CmpC))) {
5049 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5050 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5051 ConstantInt::get(Op1->getType(), *CmpC - 1));
5052 }
5053 break;
5054 }
5055 case ICmpInst::ICMP_SGT: {
5056 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5057 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5058 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5059 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5060 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5061 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5062 const APInt *CmpC;
5063 if (match(Op1, m_APInt(CmpC))) {
5064 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5065 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5066 ConstantInt::get(Op1->getType(), *CmpC + 1));
5067 }
5068 break;
5069 }
5070 case ICmpInst::ICMP_SGE:
5071 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_SGE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5071, __PRETTY_FUNCTION__))
;
5072 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5073 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5074 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5075 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5076 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5077 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5078 break;
5079 case ICmpInst::ICMP_SLE:
5080 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_SLE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5080, __PRETTY_FUNCTION__))
;
5081 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5082 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5083 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5084 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5085 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5086 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5087 break;
5088 case ICmpInst::ICMP_UGE:
5089 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_UGE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5089, __PRETTY_FUNCTION__))
;
5090 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5091 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5092 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5093 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5094 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5095 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5096 break;
5097 case ICmpInst::ICMP_ULE:
5098 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_ULE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5098, __PRETTY_FUNCTION__))
;
5099 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5100 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5101 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5102 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5103 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5104 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5105 break;
5106 }
5107
5108 // Turn a signed comparison into an unsigned one if both operands are known to
5109 // have the same sign.
5110 if (I.isSigned() &&
5111 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5112 (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5113 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5114
5115 return nullptr;
5116}
5117
5118llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5119llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5120 Constant *C) {
5121 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&((ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate
(Pred) && "Only for relational integer predicates.") ?
static_cast<void> (0) : __assert_fail ("ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && \"Only for relational integer predicates.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5122, __PRETTY_FUNCTION__))
5122 "Only for relational integer predicates.")((ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate
(Pred) && "Only for relational integer predicates.") ?
static_cast<void> (0) : __assert_fail ("ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && \"Only for relational integer predicates.\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5122, __PRETTY_FUNCTION__))
;
5123
5124 Type *Type = C->getType();
5125 bool IsSigned = ICmpInst::isSigned(Pred);
5126
5127 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5128 bool WillIncrement =
5129 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5130
5131 // Check if the constant operand can be safely incremented/decremented
5132 // without overflowing/underflowing.
5133 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5134 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5135 };
5136
5137 Constant *SafeReplacementConstant = nullptr;
5138 if (auto *CI = dyn_cast<ConstantInt>(C)) {
5139 // Bail out if the constant can't be safely incremented/decremented.
5140 if (!ConstantIsOk(CI))
5141 return llvm::None;
5142 } else if (Type->isVectorTy()) {
5143 unsigned NumElts = Type->getVectorNumElements();
5144 for (unsigned i = 0; i != NumElts; ++i) {
5145 Constant *Elt = C->getAggregateElement(i);
5146 if (!Elt)
5147 return llvm::None;
5148
5149 if (isa<UndefValue>(Elt))
5150 continue;
5151
5152 // Bail out if we can't determine if this constant is min/max or if we
5153 // know that this constant is min/max.
5154 auto *CI = dyn_cast<ConstantInt>(Elt);
5155 if (!CI || !ConstantIsOk(CI))
5156 return llvm::None;
5157
5158 if (!SafeReplacementConstant)
5159 SafeReplacementConstant = CI;
5160 }
5161 } else {
5162 // ConstantExpr?
5163 return llvm::None;
5164 }
5165
5166 // It may not be safe to change a compare predicate in the presence of
5167 // undefined elements, so replace those elements with the first safe constant
5168 // that we found.
5169 if (C->containsUndefElement()) {
5170 assert(SafeReplacementConstant && "Replacement constant not set")((SafeReplacementConstant && "Replacement constant not set"
) ? static_cast<void> (0) : __assert_fail ("SafeReplacementConstant && \"Replacement constant not set\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5170, __PRETTY_FUNCTION__))
;
5171 C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5172 }
5173
5174 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5175
5176 // Increment or decrement the constant.
5177 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5178 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5179
5180 return std::make_pair(NewPred, NewC);
5181}
5182
5183/// If we have an icmp le or icmp ge instruction with a constant operand, turn
5184/// it into the appropriate icmp lt or icmp gt instruction. This transform
5185/// allows them to be folded in visitICmpInst.
5186static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5187 ICmpInst::Predicate Pred = I.getPredicate();
5188 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5189 isCanonicalPredicate(Pred))
5190 return nullptr;
5191
5192 Value *Op0 = I.getOperand(0);
5193 Value *Op1 = I.getOperand(1);
5194 auto *Op1C = dyn_cast<Constant>(Op1);
5195 if (!Op1C)
5196 return nullptr;
5197
5198 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5199 if (!FlippedStrictness)
5200 return nullptr;
5201
5202 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5203}
5204
5205/// Integer compare with boolean values can always be turned into bitwise ops.
5206static Instruction *canonicalizeICmpBool(ICmpInst &I,
5207 InstCombiner::BuilderTy &Builder) {
5208 Value *A = I.getOperand(0), *B = I.getOperand(1);
5209 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only")((A->getType()->isIntOrIntVectorTy(1) && "Bools only"
) ? static_cast<void> (0) : __assert_fail ("A->getType()->isIntOrIntVectorTy(1) && \"Bools only\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5209, __PRETTY_FUNCTION__))
;
5210
5211 // A boolean compared to true/false can be simplified to Op0/true/false in
5212 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5213 // Cases not handled by InstSimplify are always 'not' of Op0.
5214 if (match(B, m_Zero())) {
5215 switch (I.getPredicate()) {
5216 case CmpInst::ICMP_EQ: // A == 0 -> !A
5217 case CmpInst::ICMP_ULE: // A <=u 0 -> !A
5218 case CmpInst::ICMP_SGE: // A >=s 0 -> !A
5219 return BinaryOperator::CreateNot(A);
5220 default:
5221 llvm_unreachable("ICmp i1 X, C not simplified as expected.")::llvm::llvm_unreachable_internal("ICmp i1 X, C not simplified as expected."
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5221)
;
5222 }
5223 } else if (match(B, m_One())) {
5224 switch (I.getPredicate()) {
5225 case CmpInst::ICMP_NE: // A != 1 -> !A
5226 case CmpInst::ICMP_ULT: // A <u 1 -> !A
5227 case CmpInst::ICMP_SGT: // A >s -1 -> !A
5228 return BinaryOperator::CreateNot(A);
5229 default:
5230 llvm_unreachable("ICmp i1 X, C not simplified as expected.")::llvm::llvm_unreachable_internal("ICmp i1 X, C not simplified as expected."
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5230)
;
5231 }
5232 }
5233
5234 switch (I.getPredicate()) {
5235 default:
5236 llvm_unreachable("Invalid icmp instruction!")::llvm::llvm_unreachable_internal("Invalid icmp instruction!"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5236)
;
5237 case ICmpInst::ICMP_EQ:
5238 // icmp eq i1 A, B -> ~(A ^ B)
5239 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5240
5241 case ICmpInst::ICMP_NE:
5242 // icmp ne i1 A, B -> A ^ B
5243 return BinaryOperator::CreateXor(A, B);
5244
5245 case ICmpInst::ICMP_UGT:
5246 // icmp ugt -> icmp ult
5247 std::swap(A, B);
5248 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5249 case ICmpInst::ICMP_ULT:
5250 // icmp ult i1 A, B -> ~A & B
5251 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5252
5253 case ICmpInst::ICMP_SGT:
5254 // icmp sgt -> icmp slt
5255 std::swap(A, B);
5256 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5257 case ICmpInst::ICMP_SLT:
5258 // icmp slt i1 A, B -> A & ~B
5259 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5260
5261 case ICmpInst::ICMP_UGE:
5262 // icmp uge -> icmp ule
5263 std::swap(A, B);
5264 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5265 case ICmpInst::ICMP_ULE:
5266 // icmp ule i1 A, B -> ~A | B
5267 return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5268
5269 case ICmpInst::ICMP_SGE:
5270 // icmp sge -> icmp sle
5271 std::swap(A, B);
5272 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5273 case ICmpInst::ICMP_SLE:
5274 // icmp sle i1 A, B -> A | ~B
5275 return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5276 }
5277}
5278
5279// Transform pattern like:
5280// (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5281// (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5282// Into:
5283// (X l>> Y) != 0
5284// (X l>> Y) == 0
5285static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5286 InstCombiner::BuilderTy &Builder) {
5287 ICmpInst::Predicate Pred, NewPred;
5288 Value *X, *Y;
5289 if (match(&Cmp,
5290 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5291 switch (Pred) {
5292 case ICmpInst::ICMP_ULE:
5293 NewPred = ICmpInst::ICMP_NE;
5294 break;
5295 case ICmpInst::ICMP_UGT:
5296 NewPred = ICmpInst::ICMP_EQ;
5297 break;
5298 default:
5299 return nullptr;
5300 }
5301 } else if (match(&Cmp, m_c_ICmp(Pred,
5302 m_OneUse(m_CombineOr(
5303 m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5304 m_Add(m_Shl(m_One(), m_Value(Y)),
5305 m_AllOnes()))),
5306 m_Value(X)))) {
5307 // The variant with 'add' is not canonical, (the variant with 'not' is)
5308 // we only get it because it has extra uses, and can't be canonicalized,
5309
5310 switch (Pred) {
5311 case ICmpInst::ICMP_ULT:
5312 NewPred = ICmpInst::ICMP_NE;
5313 break;
5314 case ICmpInst::ICMP_UGE:
5315 NewPred = ICmpInst::ICMP_EQ;
5316 break;
5317 default:
5318 return nullptr;
5319 }
5320 } else
5321 return nullptr;
5322
5323 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5324 Constant *Zero = Constant::getNullValue(NewX->getType());
5325 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5326}
5327
5328static Instruction *foldVectorCmp(CmpInst &Cmp,
5329 InstCombiner::BuilderTy &Builder) {
5330 const CmpInst::Predicate Pred = Cmp.getPredicate();
5331 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5332 bool IsFP = isa<FCmpInst>(Cmp);
5333
5334 Value *V1, *V2;
5335 Constant *M;
5336 if (!match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(M))))
5337 return nullptr;
5338
5339 // If both arguments of the cmp are shuffles that use the same mask and
5340 // shuffle within a single vector, move the shuffle after the cmp:
5341 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5342 Type *V1Ty = V1->getType();
5343 if (match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(M))) &&
5344 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5345 Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, V2)
5346 : Builder.CreateICmp(Pred, V1, V2);
5347 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5348 }
5349
5350 // Try to canonicalize compare with splatted operand and splat constant.
5351 // TODO: We could generalize this for more than splats. See/use the code in
5352 // InstCombiner::foldVectorBinop().
5353 Constant *C;
5354 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5355 return nullptr;
5356
5357 // Length-changing splats are ok, so adjust the constants as needed:
5358 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5359 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5360 Constant *ScalarM = M->getSplatValue(/* AllowUndefs */ true);
5361 if (ScalarC && ScalarM) {
5362 // We allow undefs in matching, but this transform removes those for safety.
5363 // Demanded elements analysis should be able to recover some/all of that.
5364 C = ConstantVector::getSplat(V1Ty->getVectorNumElements(), ScalarC);
5365 M = ConstantVector::getSplat(M->getType()->getVectorNumElements(), ScalarM);
5366 Value *NewCmp = IsFP ? Builder.CreateFCmp(Pred, V1, C)
5367 : Builder.CreateICmp(Pred, V1, C);
5368 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5369 }
5370
5371 return nullptr;
5372}
5373
5374// extract(uadd.with.overflow(A, B), 0) ult A
5375// -> extract(uadd.with.overflow(A, B), 1)
5376static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5377 CmpInst::Predicate Pred = I.getPredicate();
5378 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5379
5380 Value *UAddOv;
5381 Value *A, *B;
5382 auto UAddOvResultPat = m_ExtractValue<0>(
5383 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5384 if (match(Op0, UAddOvResultPat) &&
5385 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5386 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5387 (match(A, m_One()) || match(B, m_One()))) ||
5388 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5389 (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5390 // extract(uadd.with.overflow(A, B), 0) < A
5391 // extract(uadd.with.overflow(A, 1), 0) == 0
5392 // extract(uadd.with.overflow(A, -1), 0) != -1
5393 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5394 else if (match(Op1, UAddOvResultPat) &&
5395 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5396 // A > extract(uadd.with.overflow(A, B), 0)
5397 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5398 else
5399 return nullptr;
5400
5401 return ExtractValueInst::Create(UAddOv, 1);
5402}
5403
5404Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5405 bool Changed = false;
5406 const SimplifyQuery Q = SQ.getWithInstruction(&I);
5407 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5408 unsigned Op0Cplxity = getComplexity(Op0);
5409 unsigned Op1Cplxity = getComplexity(Op1);
5410
5411 /// Orders the operands of the compare so that they are listed from most
5412 /// complex to least complex. This puts constants before unary operators,
5413 /// before binary operators.
5414 if (Op0Cplxity < Op1Cplxity ||
5415 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5416 I.swapOperands();
5417 std::swap(Op0, Op1);
5418 Changed = true;
5419 }
5420
5421 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5422 return replaceInstUsesWith(I, V);
5423
5424 // Comparing -val or val with non-zero is the same as just comparing val
5425 // ie, abs(val) != 0 -> val != 0
5426 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5427 Value *Cond, *SelectTrue, *SelectFalse;
5428 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5429 m_Value(SelectFalse)))) {
5430 if (Value *V = dyn_castNegVal(SelectTrue)) {
5431 if (V == SelectFalse)
5432 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5433 }
5434 else if (Value *V = dyn_castNegVal(SelectFalse)) {
5435 if (V == SelectTrue)
5436 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5437 }
5438 }
5439 }
5440
5441 if (Op0->getType()->isIntOrIntVectorTy(1))
5442 if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5443 return Res;
5444
5445 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
5446 return NewICmp;
5447
5448 if (Instruction *Res = foldICmpWithConstant(I))
5449 return Res;
5450
5451 if (Instruction *Res = foldICmpWithDominatingICmp(I))
5452 return Res;
5453
5454 if (Instruction *Res = foldICmpBinOp(I, Q))
5455 return Res;
5456
5457 if (Instruction *Res = foldICmpUsingKnownBits(I))
5458 return Res;
5459
5460 // Test if the ICmpInst instruction is used exclusively by a select as
5461 // part of a minimum or maximum operation. If so, refrain from doing
5462 // any other folding. This helps out other analyses which understand
5463 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5464 // and CodeGen. And in this case, at least one of the comparison
5465 // operands has at least one user besides the compare (the select),
5466 // which would often largely negate the benefit of folding anyway.
5467 //
5468 // Do the same for the other patterns recognized by matchSelectPattern.
5469 if (I.hasOneUse())
5470 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5471 Value *A, *B;
5472 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5473 if (SPR.Flavor != SPF_UNKNOWN)
5474 return nullptr;
5475 }
5476
5477 // Do this after checking for min/max to prevent infinite looping.
5478 if (Instruction *Res = foldICmpWithZero(I))
5479 return Res;
5480
5481 // FIXME: We only do this after checking for min/max to prevent infinite
5482 // looping caused by a reverse canonicalization of these patterns for min/max.
5483 // FIXME: The organization of folds is a mess. These would naturally go into
5484 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5485 // down here after the min/max restriction.
5486 ICmpInst::Predicate Pred = I.getPredicate();
5487 const APInt *C;
5488 if (match(Op1, m_APInt(C))) {
5489 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5490 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5491 Constant *Zero = Constant::getNullValue(Op0->getType());
5492 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5493 }
5494
5495 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5496 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5497 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5498 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5499 }
5500 }
5501
5502 if (Instruction *Res = foldICmpInstWithConstant(I))
5503 return Res;
5504
5505 // Try to match comparison as a sign bit test. Intentionally do this after
5506 // foldICmpInstWithConstant() to potentially let other folds to happen first.
5507 if (Instruction *New = foldSignBitTest(I))
5508 return New;
5509
5510 if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5511 return Res;
5512
5513 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5514 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5515 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5516 return NI;
5517 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5518 if (Instruction *NI = foldGEPICmp(GEP, Op0,
5519 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5520 return NI;
5521
5522 // Try to optimize equality comparisons against alloca-based pointers.
5523 if (Op0->getType()->isPointerTy() && I.isEquality()) {
5524 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?")((Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"
) ? static_cast<void> (0) : __assert_fail ("Op1->getType()->isPointerTy() && \"Comparing pointer with non-pointer?\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5524, __PRETTY_FUNCTION__))
;
5525 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5526 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5527 return New;
5528 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5529 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5530 return New;
5531 }
5532
5533 if (Instruction *Res = foldICmpBitCast(I, Builder))
5534 return Res;
5535
5536 if (Instruction *R = foldICmpWithCastOp(I))
5537 return R;
5538
5539 if (Instruction *Res = foldICmpWithMinMax(I))
5540 return Res;
5541
5542 {
5543 Value *A, *B;
5544 // Transform (A & ~B) == 0 --> (A & B) != 0
5545 // and (A & ~B) != 0 --> (A & B) == 0
5546 // if A is a power of 2.
5547 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5548 match(Op1, m_Zero()) &&
5549 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5550 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5551 Op1);
5552
5553 // ~X < ~Y --> Y < X
5554 // ~X < C --> X > ~C
5555 if (match(Op0, m_Not(m_Value(A)))) {
5556 if (match(Op1, m_Not(m_Value(B))))
5557 return new ICmpInst(I.getPredicate(), B, A);
5558
5559 const APInt *C;
5560 if (match(Op1, m_APInt(C)))
5561 return new ICmpInst(I.getSwappedPredicate(), A,
5562 ConstantInt::get(Op1->getType(), ~(*C)));
5563 }
5564
5565 Instruction *AddI = nullptr;
5566 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5567 m_Instruction(AddI))) &&
5568 isa<IntegerType>(A->getType())) {
5569 Value *Result;
5570 Constant *Overflow;
5571 // m_UAddWithOverflow can match patterns that do not include an explicit
5572 // "add" instruction, so check the opcode of the matched op.
5573 if (AddI->getOpcode() == Instruction::Add &&
5574 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5575 Result, Overflow)) {
5576 replaceInstUsesWith(*AddI, Result);
5577 return replaceInstUsesWith(I, Overflow);
5578 }
5579 }
5580
5581 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5582 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5583 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5584 return R;
5585 }
5586 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5587 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5588 return R;
5589 }
5590 }
5591
5592 if (Instruction *Res = foldICmpEquality(I))
5593 return Res;
5594
5595 if (Instruction *Res = foldICmpOfUAddOv(I))
5596 return Res;
5597
5598 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5599 // an i1 which indicates whether or not we successfully did the swap.
5600 //
5601 // Replace comparisons between the old value and the expected value with the
5602 // indicator that 'cmpxchg' returns.
5603 //
5604 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5605 // spuriously fail. In those cases, the old value may equal the expected
5606 // value but it is possible for the swap to not occur.
5607 if (I.getPredicate() == ICmpInst::ICMP_EQ)
5608 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5609 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5610 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5611 !ACXI->isWeak())
5612 return ExtractValueInst::Create(ACXI, 1);
5613
5614 {
5615 Value *X;
5616 const APInt *C;
5617 // icmp X+Cst, X
5618 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5619 return foldICmpAddOpConst(X, *C, I.getPredicate());
5620
5621 // icmp X, X+Cst
5622 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5623 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5624 }
5625
5626 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5627 return Res;
5628
5629 if (I.getType()->isVectorTy())
5630 if (Instruction *Res = foldVectorCmp(I, Builder))
5631 return Res;
5632
5633 return Changed ? &I : nullptr;
5634}
5635
5636/// Fold fcmp ([us]itofp x, cst) if possible.
5637Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5638 Constant *RHSC) {
5639 if (!isa<ConstantFP>(RHSC)) return nullptr;
5640 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5641
5642 // Get the width of the mantissa. We don't want to hack on conversions that
5643 // might lose information from the integer, e.g. "i64 -> float"
5644 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5645 if (MantissaWidth == -1) return nullptr; // Unknown.
5646
5647 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5648
5649 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5650
5651 if (I.isEquality()) {
5652 FCmpInst::Predicate P = I.getPredicate();
5653 bool IsExact = false;
5654 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5655 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5656
5657 // If the floating point constant isn't an integer value, we know if we will
5658 // ever compare equal / not equal to it.
5659 if (!IsExact) {
5660 // TODO: Can never be -0.0 and other non-representable values
5661 APFloat RHSRoundInt(RHS);
5662 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5663 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
5664 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5665 return replaceInstUsesWith(I, Builder.getFalse());
5666
5667 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE)((P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE) ? static_cast
<void> (0) : __assert_fail ("P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5667, __PRETTY_FUNCTION__))
;
5668 return replaceInstUsesWith(I, Builder.getTrue());
5669 }
5670 }
5671
5672 // TODO: If the constant is exactly representable, is it always OK to do
5673 // equality compares as integer?
5674 }
5675
5676 // Check to see that the input is converted from an integer type that is small
5677 // enough that preserves all bits. TODO: check here for "known" sign bits.
5678 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5679 unsigned InputSize = IntTy->getScalarSizeInBits();
5680
5681 // Following test does NOT adjust InputSize downwards for signed inputs,
5682 // because the most negative value still requires all the mantissa bits
5683 // to distinguish it from one less than that value.
5684 if ((int)InputSize > MantissaWidth) {
5685 // Conversion would lose accuracy. Check if loss can impact comparison.
5686 int Exp = ilogb(RHS);
5687 if (Exp == APFloat::IEK_Inf) {
5688 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5689 if (MaxExponent < (int)InputSize - !LHSUnsigned)
5690 // Conversion could create infinity.
5691 return nullptr;
5692 } else {
5693 // Note that if RHS is zero or NaN, then Exp is negative
5694 // and first condition is trivially false.
5695 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5696 // Conversion could affect comparison.
5697 return nullptr;
5698 }
5699 }
5700
5701 // Otherwise, we can potentially simplify the comparison. We know that it
5702 // will always come through as an integer value and we know the constant is
5703 // not a NAN (it would have been previously simplified).
5704 assert(!RHS.isNaN() && "NaN comparison not already folded!")((!RHS.isNaN() && "NaN comparison not already folded!"
) ? static_cast<void> (0) : __assert_fail ("!RHS.isNaN() && \"NaN comparison not already folded!\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5704, __PRETTY_FUNCTION__))
;
5705
5706 ICmpInst::Predicate Pred;
5707 switch (I.getPredicate()) {
5708 default: llvm_unreachable("Unexpected predicate!")::llvm::llvm_unreachable_internal("Unexpected predicate!", "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5708)
;
5709 case FCmpInst::FCMP_UEQ:
5710 case FCmpInst::FCMP_OEQ:
5711 Pred = ICmpInst::ICMP_EQ;
5712 break;
5713 case FCmpInst::FCMP_UGT:
5714 case FCmpInst::FCMP_OGT:
5715 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5716 break;
5717 case FCmpInst::FCMP_UGE:
5718 case FCmpInst::FCMP_OGE:
5719 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5720 break;
5721 case FCmpInst::FCMP_ULT:
5722 case FCmpInst::FCMP_OLT:
5723 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5724 break;
5725 case FCmpInst::FCMP_ULE:
5726 case FCmpInst::FCMP_OLE:
5727 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5728 break;
5729 case FCmpInst::FCMP_UNE:
5730 case FCmpInst::FCMP_ONE:
5731 Pred = ICmpInst::ICMP_NE;
5732 break;
5733 case FCmpInst::FCMP_ORD:
5734 return replaceInstUsesWith(I, Builder.getTrue());
5735 case FCmpInst::FCMP_UNO:
5736 return replaceInstUsesWith(I, Builder.getFalse());
5737 }
5738
5739 // Now we know that the APFloat is a normal number, zero or inf.
5740
5741 // See if the FP constant is too large for the integer. For example,
5742 // comparing an i8 to 300.0.
5743 unsigned IntWidth = IntTy->getScalarSizeInBits();
5744
5745 if (!LHSUnsigned) {
5746 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5747 // and large values.
5748 APFloat SMax(RHS.getSemantics());
5749 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5750 APFloat::rmNearestTiesToEven);
5751 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
5752 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5753 Pred == ICmpInst::ICMP_SLE)
5754 return replaceInstUsesWith(I, Builder.getTrue());
5755 return replaceInstUsesWith(I, Builder.getFalse());
5756 }
5757 } else {
5758 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5759 // +INF and large values.
5760 APFloat UMax(RHS.getSemantics());
5761 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5762 APFloat::rmNearestTiesToEven);
5763 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
5764 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5765 Pred == ICmpInst::ICMP_ULE)
5766 return replaceInstUsesWith(I, Builder.getTrue());
5767 return replaceInstUsesWith(I, Builder.getFalse());
5768 }
5769 }
5770
5771 if (!LHSUnsigned) {
5772 // See if the RHS value is < SignedMin.
5773 APFloat SMin(RHS.getSemantics());
5774 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5775 APFloat::rmNearestTiesToEven);
5776 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
5777 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5778 Pred == ICmpInst::ICMP_SGE)
5779 return replaceInstUsesWith(I, Builder.getTrue());
5780 return replaceInstUsesWith(I, Builder.getFalse());
5781 }
5782 } else {
5783 // See if the RHS value is < UnsignedMin.
5784 APFloat SMin(RHS.getSemantics());
5785 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
5786 APFloat::rmNearestTiesToEven);
5787 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
5788 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5789 Pred == ICmpInst::ICMP_UGE)
5790 return replaceInstUsesWith(I, Builder.getTrue());
5791 return replaceInstUsesWith(I, Builder.getFalse());
5792 }
5793 }
5794
5795 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5796 // [0, UMAX], but it may still be fractional. See if it is fractional by
5797 // casting the FP value to the integer value and back, checking for equality.
5798 // Don't do this for zero, because -0.0 is not fractional.
5799 Constant *RHSInt = LHSUnsigned
5800 ? ConstantExpr::getFPToUI(RHSC, IntTy)
5801 : ConstantExpr::getFPToSI(RHSC, IntTy);
5802 if (!RHS.isZero()) {
5803 bool Equal = LHSUnsigned
5804 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5805 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5806 if (!Equal) {
5807 // If we had a comparison against a fractional value, we have to adjust
5808 // the compare predicate and sometimes the value. RHSC is rounded towards
5809 // zero at this point.
5810 switch (Pred) {
5811 default: llvm_unreachable("Unexpected integer comparison!")::llvm::llvm_unreachable_internal("Unexpected integer comparison!"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5811)
;
5812 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5813 return replaceInstUsesWith(I, Builder.getTrue());
5814 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5815 return replaceInstUsesWith(I, Builder.getFalse());
5816 case ICmpInst::ICMP_ULE:
5817 // (float)int <= 4.4 --> int <= 4
5818 // (float)int <= -4.4 --> false
5819 if (RHS.isNegative())
5820 return replaceInstUsesWith(I, Builder.getFalse());
5821 break;
5822 case ICmpInst::ICMP_SLE:
5823 // (float)int <= 4.4 --> int <= 4
5824 // (float)int <= -4.4 --> int < -4
5825 if (RHS.isNegative())
5826 Pred = ICmpInst::ICMP_SLT;
5827 break;
5828 case ICmpInst::ICMP_ULT:
5829 // (float)int < -4.4 --> false
5830 // (float)int < 4.4 --> int <= 4
5831 if (RHS.isNegative())
5832 return replaceInstUsesWith(I, Builder.getFalse());
5833 Pred = ICmpInst::ICMP_ULE;
5834 break;
5835 case ICmpInst::ICMP_SLT:
5836 // (float)int < -4.4 --> int < -4
5837 // (float)int < 4.4 --> int <= 4
5838 if (!RHS.isNegative())
5839 Pred = ICmpInst::ICMP_SLE;
5840 break;
5841 case ICmpInst::ICMP_UGT:
5842 // (float)int > 4.4 --> int > 4
5843 // (float)int > -4.4 --> true
5844 if (RHS.isNegative())
5845 return replaceInstUsesWith(I, Builder.getTrue());
5846 break;
5847 case ICmpInst::ICMP_SGT:
5848 // (float)int > 4.4 --> int > 4
5849 // (float)int > -4.4 --> int >= -4
5850 if (RHS.isNegative())
5851 Pred = ICmpInst::ICMP_SGE;
5852 break;
5853 case ICmpInst::ICMP_UGE:
5854 // (float)int >= -4.4 --> true
5855 // (float)int >= 4.4 --> int > 4
5856 if (RHS.isNegative())
5857 return replaceInstUsesWith(I, Builder.getTrue());
5858 Pred = ICmpInst::ICMP_UGT;
5859 break;
5860 case ICmpInst::ICMP_SGE:
5861 // (float)int >= -4.4 --> int >= -4
5862 // (float)int >= 4.4 --> int > 4
5863 if (!RHS.isNegative())
5864 Pred = ICmpInst::ICMP_SGT;
5865 break;
5866 }
5867 }
5868 }
5869
5870 // Lower this FP comparison into an appropriate integer version of the
5871 // comparison.
5872 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5873}
5874
5875/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5876static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5877 Constant *RHSC) {
5878 // When C is not 0.0 and infinities are not allowed:
5879 // (C / X) < 0.0 is a sign-bit test of X
5880 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5881 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5882 //
5883 // Proof:
5884 // Multiply (C / X) < 0.0 by X * X / C.
5885 // - X is non zero, if it is the flag 'ninf' is violated.
5886 // - C defines the sign of X * X * C. Thus it also defines whether to swap
5887 // the predicate. C is also non zero by definition.
5888 //
5889 // Thus X * X / C is non zero and the transformation is valid. [qed]
5890
5891 FCmpInst::Predicate Pred = I.getPredicate();
5892
5893 // Check that predicates are valid.
5894 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
5895 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
5896 return nullptr;
5897
5898 // Check that RHS operand is zero.
5899 if (!match(RHSC, m_AnyZeroFP()))
5900 return nullptr;
5901
5902 // Check fastmath flags ('ninf').
5903 if (!LHSI->hasNoInfs() || !I.hasNoInfs())
5904 return nullptr;
5905
5906 // Check the properties of the dividend. It must not be zero to avoid a
5907 // division by zero (see Proof).
5908 const APFloat *C;
5909 if (!match(LHSI->getOperand(0), m_APFloat(C)))
5910 return nullptr;
5911
5912 if (C->isZero())
5913 return nullptr;
5914
5915 // Get swapped predicate if necessary.
5916 if (C->isNegative())
5917 Pred = I.getSwappedPredicate();
5918
5919 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
5920}
5921
5922/// Optimize fabs(X) compared with zero.
5923static Instruction *foldFabsWithFcmpZero(FCmpInst &I) {
5924 Value *X;
5925 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
5926 !match(I.getOperand(1), m_PosZeroFP()))
5927 return nullptr;
5928
5929 auto replacePredAndOp0 = [](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
5930 I->setPredicate(P);
5931 I->setOperand(0, X);
5932 return I;
5933 };
5934
5935 switch (I.getPredicate()) {
5936 case FCmpInst::FCMP_UGE:
5937 case FCmpInst::FCMP_OLT:
5938 // fabs(X) >= 0.0 --> true
5939 // fabs(X) < 0.0 --> false
5940 llvm_unreachable("fcmp should have simplified")::llvm::llvm_unreachable_internal("fcmp should have simplified"
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5940)
;
5941
5942 case FCmpInst::FCMP_OGT:
5943 // fabs(X) > 0.0 --> X != 0.0
5944 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
5945
5946 case FCmpInst::FCMP_UGT:
5947 // fabs(X) u> 0.0 --> X u!= 0.0
5948 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
5949
5950 case FCmpInst::FCMP_OLE:
5951 // fabs(X) <= 0.0 --> X == 0.0
5952 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
5953
5954 case FCmpInst::FCMP_ULE:
5955 // fabs(X) u<= 0.0 --> X u== 0.0
5956 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
5957
5958 case FCmpInst::FCMP_OGE:
5959 // fabs(X) >= 0.0 --> !isnan(X)
5960 assert(!I.hasNoNaNs() && "fcmp should have simplified")((!I.hasNoNaNs() && "fcmp should have simplified") ? static_cast
<void> (0) : __assert_fail ("!I.hasNoNaNs() && \"fcmp should have simplified\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5960, __PRETTY_FUNCTION__))
;
5961 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
5962
5963 case FCmpInst::FCMP_ULT:
5964 // fabs(X) u< 0.0 --> isnan(X)
5965 assert(!I.hasNoNaNs() && "fcmp should have simplified")((!I.hasNoNaNs() && "fcmp should have simplified") ? static_cast
<void> (0) : __assert_fail ("!I.hasNoNaNs() && \"fcmp should have simplified\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5965, __PRETTY_FUNCTION__))
;
5966 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
5967
5968 case FCmpInst::FCMP_OEQ:
5969 case FCmpInst::FCMP_UEQ:
5970 case FCmpInst::FCMP_ONE:
5971 case FCmpInst::FCMP_UNE:
5972 case FCmpInst::FCMP_ORD:
5973 case FCmpInst::FCMP_UNO:
5974 // Look through the fabs() because it doesn't change anything but the sign.
5975 // fabs(X) == 0.0 --> X == 0.0,
5976 // fabs(X) != 0.0 --> X != 0.0
5977 // isnan(fabs(X)) --> isnan(X)
5978 // !isnan(fabs(X) --> !isnan(X)
5979 return replacePredAndOp0(&I, I.getPredicate(), X);
5980
5981 default:
5982 return nullptr;
5983 }
5984}
5985
5986Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
5987 bool Changed = false;
5988
5989 /// Orders the operands of the compare so that they are listed from most
5990 /// complex to least complex. This puts constants before unary operators,
5991 /// before binary operators.
5992 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
5993 I.swapOperands();
5994 Changed = true;
5995 }
5996
5997 const CmpInst::Predicate Pred = I.getPredicate();
5998 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5999 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6000 SQ.getWithInstruction(&I)))
6001 return replaceInstUsesWith(I, V);
6002
6003 // Simplify 'fcmp pred X, X'
6004 Type *OpType = Op0->getType();
6005 assert(OpType == Op1->getType() && "fcmp with different-typed operands?")((OpType == Op1->getType() && "fcmp with different-typed operands?"
) ? static_cast<void> (0) : __assert_fail ("OpType == Op1->getType() && \"fcmp with different-typed operands?\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 6005, __PRETTY_FUNCTION__))
;
6006 if (Op0 == Op1) {
6007 switch (Pred) {
6008 default: break;
6009 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
6010 case FCmpInst::FCMP_ULT: // True if unordered or less than
6011 case FCmpInst::FCMP_UGT: // True if unordered or greater than
6012 case FCmpInst::FCMP_UNE: // True if unordered or not equal
6013 // Canonicalize these to be 'fcmp uno %X, 0.0'.
6014 I.setPredicate(FCmpInst::FCMP_UNO);
6015 I.setOperand(1, Constant::getNullValue(OpType));
6016 return &I;
6017
6018 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
6019 case FCmpInst::FCMP_OEQ: // True if ordered and equal
6020 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
6021 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
6022 // Canonicalize these to be 'fcmp ord %X, 0.0'.
6023 I.setPredicate(FCmpInst::FCMP_ORD);
6024 I.setOperand(1, Constant::getNullValue(OpType));
6025 return &I;
6026 }
6027 }
6028
6029 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6030 // then canonicalize the operand to 0.0.
6031 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6032 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6033 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6034
6035 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6036 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6037 }
6038
6039 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6040 Value *X, *Y;
6041 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6042 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6043
6044 // Test if the FCmpInst instruction is used exclusively by a select as
6045 // part of a minimum or maximum operation. If so, refrain from doing
6046 // any other folding. This helps out other analyses which understand
6047 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6048 // and CodeGen. And in this case, at least one of the comparison
6049 // operands has at least one user besides the compare (the select),
6050 // which would often largely negate the benefit of folding anyway.
6051 if (I.hasOneUse())
6052 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6053 Value *A, *B;
6054 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6055 if (SPR.Flavor != SPF_UNKNOWN)
6056 return nullptr;
6057 }
6058
6059 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6060 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6061 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6062 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6063
6064 // Handle fcmp with instruction LHS and constant RHS.
6065 Instruction *LHSI;
6066 Constant *RHSC;
6067 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6068 switch (LHSI->getOpcode()) {
6069 case Instruction::PHI:
6070 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6071 // block. If in the same block, we're encouraging jump threading. If
6072 // not, we are just pessimizing the code by making an i1 phi.
6073 if (LHSI->getParent() == I.getParent())
6074 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6075 return NV;
6076 break;
6077 case Instruction::SIToFP:
6078 case Instruction::UIToFP:
6079 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6080 return NV;
6081 break;
6082 case Instruction::FDiv:
6083 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6084 return NV;
6085 break;
6086 case Instruction::Load:
6087 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6088 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6089 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6090 !cast<LoadInst>(LHSI)->isVolatile())
6091 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6092 return Res;
6093 break;
6094 }
6095 }
6096
6097 if (Instruction *R = foldFabsWithFcmpZero(I))
6098 return R;
6099
6100 if (match(Op0, m_FNeg(m_Value(X)))) {
6101 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6102 Constant *C;
6103 if (match(Op1, m_Constant(C))) {
6104 Constant *NegC = ConstantExpr::getFNeg(C);
6105 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6106 }
6107 }
6108
6109 if (match(Op0, m_FPExt(m_Value(X)))) {
6110 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6111 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6112 return new FCmpInst(Pred, X, Y, "", &I);
6113
6114 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6115 const APFloat *C;
6116 if (match(Op1, m_APFloat(C))) {
6117 const fltSemantics &FPSem =
6118 X->getType()->getScalarType()->getFltSemantics();
6119 bool Lossy;
6120 APFloat TruncC = *C;
6121 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6122
6123 // Avoid lossy conversions and denormals.
6124 // Zero is a special case that's OK to convert.
6125 APFloat Fabs = TruncC;
6126 Fabs.clearSign();
6127 if (!Lossy &&
6128 ((Fabs.compare(APFloat::getSmallestNormalized(FPSem)) !=
6129 APFloat::cmpLessThan) || Fabs.isZero())) {
6130 Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6131 return new FCmpInst(Pred, X, NewC, "", &I);
6132 }
6133 }
6134 }
6135
6136 if (I.getType()->isVectorTy())
6137 if (Instruction *Res = foldVectorCmp(I, Builder))
6138 return Res;
6139
6140 return Changed ? &I : nullptr;
6141}

/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
34
Calling 'BinaryOp_match::match'
39
Returning from 'BinaryOp_match::match'
40
Returning the value 1, which participates in a condition later
51}
52
53template <typename SubPattern_t> struct OneUse_match {
54 SubPattern_t SubPattern;
55
56 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
57
58 template <typename OpTy> bool match(OpTy *V) {
59 return V->hasOneUse() && SubPattern.match(V);
60 }
61};
62
63template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
64 return SubPattern;
65}
66
67template <typename Class> struct class_match {
68 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
69};
70
71/// Match an arbitrary value and ignore it.
72inline class_match<Value> m_Value() { return class_match<Value>(); }
73
74/// Match an arbitrary binary operation and ignore it.
75inline class_match<BinaryOperator> m_BinOp() {
76 return class_match<BinaryOperator>();
77}
78
79/// Matches any compare instruction and ignore it.
80inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
81
82/// Match an arbitrary ConstantInt and ignore it.
83inline class_match<ConstantInt> m_ConstantInt() {
84 return class_match<ConstantInt>();
85}
86
87/// Match an arbitrary undef constant.
88inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
89
90/// Match an arbitrary Constant and ignore it.
91inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
92
93/// Match an arbitrary basic block value and ignore it.
94inline class_match<BasicBlock> m_BasicBlock() {
95 return class_match<BasicBlock>();
96}
97
98/// Inverting matcher
99template <typename Ty> struct match_unless {
100 Ty M;
101
102 match_unless(const Ty &Matcher) : M(Matcher) {}
103
104 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
105};
106
107/// Match if the inner matcher does *NOT* match.
108template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
109 return match_unless<Ty>(M);
110}
111
112/// Matching combinators
113template <typename LTy, typename RTy> struct match_combine_or {
114 LTy L;
115 RTy R;
116
117 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
118
119 template <typename ITy> bool match(ITy *V) {
120 if (L.match(V))
121 return true;
122 if (R.match(V))
123 return true;
124 return false;
125 }
126};
127
128template <typename LTy, typename RTy> struct match_combine_and {
129 LTy L;
130 RTy R;
131
132 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
133
134 template <typename ITy> bool match(ITy *V) {
135 if (L.match(V))
136 if (R.match(V))
137 return true;
138 return false;
139 }
140};
141
142/// Combine two pattern matchers matching L || R
143template <typename LTy, typename RTy>
144inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
145 return match_combine_or<LTy, RTy>(L, R);
60
Returning without writing to 'L.Op.VR'
146}
147
148/// Combine two pattern matchers matching L && R
149template <typename LTy, typename RTy>
150inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
151 return match_combine_and<LTy, RTy>(L, R);
152}
153
154struct apint_match {
155 const APInt *&Res;
156 bool AllowUndef;
157
158 apint_match(const APInt *&Res, bool AllowUndef)
159 : Res(Res), AllowUndef(AllowUndef) {}
160
161 template <typename ITy> bool match(ITy *V) {
162 if (auto *CI = dyn_cast<ConstantInt>(V)) {
163 Res = &CI->getValue();
164 return true;
165 }
166 if (V->getType()->isVectorTy())
167 if (const auto *C = dyn_cast<Constant>(V))
168 if (auto *CI = dyn_cast_or_null<ConstantInt>(
169 C->getSplatValue(AllowUndef))) {
170 Res = &CI->getValue();
171 return true;
172 }
173 return false;
174 }
175};
176// Either constexpr if or renaming ConstantFP::getValueAPF to
177// ConstantFP::getValue is needed to do it via single template
178// function for both apint/apfloat.
179struct apfloat_match {
180 const APFloat *&Res;
181 bool AllowUndef;
182
183 apfloat_match(const APFloat *&Res, bool AllowUndef)
184 : Res(Res), AllowUndef(AllowUndef) {}
185
186 template <typename ITy> bool match(ITy *V) {
187 if (auto *CI = dyn_cast<ConstantFP>(V)) {
188 Res = &CI->getValueAPF();
189 return true;
190 }
191 if (V->getType()->isVectorTy())
192 if (const auto *C = dyn_cast<Constant>(V))
193 if (auto *CI = dyn_cast_or_null<ConstantFP>(
194 C->getSplatValue(AllowUndef))) {
195 Res = &CI->getValueAPF();
196 return true;
197 }
198 return false;
199 }
200};
201
202/// Match a ConstantInt or splatted ConstantVector, binding the
203/// specified pointer to the contained APInt.
204inline apint_match m_APInt(const APInt *&Res) {
205 // Forbid undefs by default to maintain previous behavior.
206 return apint_match(Res, /* AllowUndef */ false);
207}
208
209/// Match APInt while allowing undefs in splat vector constants.
210inline apint_match m_APIntAllowUndef(const APInt *&Res) {
211 return apint_match(Res, /* AllowUndef */ true);
212}
213
214/// Match APInt while forbidding undefs in splat vector constants.
215inline apint_match m_APIntForbidUndef(const APInt *&Res) {
216 return apint_match(Res, /* AllowUndef */ false);
217}
218
219/// Match a ConstantFP or splatted ConstantVector, binding the
220/// specified pointer to the contained APFloat.
221inline apfloat_match m_APFloat(const APFloat *&Res) {
222 // Forbid undefs by default to maintain previous behavior.
223 return apfloat_match(Res, /* AllowUndef */ false);
224}
225
226/// Match APFloat while allowing undefs in splat vector constants.
227inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
228 return apfloat_match(Res, /* AllowUndef */ true);
229}
230
231/// Match APFloat while forbidding undefs in splat vector constants.
232inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
233 return apfloat_match(Res, /* AllowUndef */ false);
234}
235
236template <int64_t Val> struct constantint_match {
237 template <typename ITy> bool match(ITy *V) {
238 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
239 const APInt &CIV = CI->getValue();
240 if (Val >= 0)
241 return CIV == static_cast<uint64_t>(Val);
242 // If Val is negative, and CI is shorter than it, truncate to the right
243 // number of bits. If it is larger, then we have to sign extend. Just
244 // compare their negated values.
245 return -CIV == -Val;
246 }
247 return false;
248 }
249};
250
251/// Match a ConstantInt with a specific value.
252template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
253 return constantint_match<Val>();
254}
255
256/// This helper class is used to match scalar and vector integer constants that
257/// satisfy a specified predicate.
258/// For vector constants, undefined elements are ignored.
259template <typename Predicate> struct cst_pred_ty : public Predicate {
260 template <typename ITy> bool match(ITy *V) {
261 if (const auto *CI = dyn_cast<ConstantInt>(V))
262 return this->isValue(CI->getValue());
263 if (V->getType()->isVectorTy()) {
264 if (const auto *C = dyn_cast<Constant>(V)) {
265 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
266 return this->isValue(CI->getValue());
267
268 // Non-splat vector constant: check each element for a match.
269 unsigned NumElts = V->getType()->getVectorNumElements();
270 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/include/llvm/IR/PatternMatch.h"
, 270, __PRETTY_FUNCTION__))
;
271 bool HasNonUndefElements = false;
272 for (unsigned i = 0; i != NumElts; ++i) {
273 Constant *Elt = C->getAggregateElement(i);
274 if (!Elt)
275 return false;
276 if (isa<UndefValue>(Elt))
277 continue;
278 auto *CI = dyn_cast<ConstantInt>(Elt);
279 if (!CI || !this->isValue(CI->getValue()))
280 return false;
281 HasNonUndefElements = true;
282 }
283 return HasNonUndefElements;
284 }
285 }
286 return false;
287 }
288};
289
290/// This helper class is used to match scalar and vector constants that
291/// satisfy a specified predicate, and bind them to an APInt.
292template <typename Predicate> struct api_pred_ty : public Predicate {
293 const APInt *&Res;
294
295 api_pred_ty(const APInt *&R) : Res(R) {}
296
297 template <typename ITy> bool match(ITy *V) {
298 if (const auto *CI = dyn_cast<ConstantInt>(V))
299 if (this->isValue(CI->getValue())) {
300 Res = &CI->getValue();
301 return true;
302 }
303 if (V->getType()->isVectorTy())
304 if (const auto *C = dyn_cast<Constant>(V))
305 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
306 if (this->isValue(CI->getValue())) {
307 Res = &CI->getValue();
308 return true;
309 }
310
311 return false;
312 }
313};
314
315/// This helper class is used to match scalar and vector floating-point
316/// constants that satisfy a specified predicate.
317/// For vector constants, undefined elements are ignored.
318template <typename Predicate> struct cstfp_pred_ty : public Predicate {
319 template <typename ITy> bool match(ITy *V) {
320 if (const auto *CF = dyn_cast<ConstantFP>(V))
321 return this->isValue(CF->getValueAPF());
322 if (V->getType()->isVectorTy()) {
323 if (const auto *C = dyn_cast<Constant>(V)) {
324 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
325 return this->isValue(CF->getValueAPF());
326
327 // Non-splat vector constant: check each element for a match.
328 unsigned NumElts = V->getType()->getVectorNumElements();
329 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/include/llvm/IR/PatternMatch.h"
, 329, __PRETTY_FUNCTION__))
;
330 bool HasNonUndefElements = false;
331 for (unsigned i = 0; i != NumElts; ++i) {
332 Constant *Elt = C->getAggregateElement(i);
333 if (!Elt)
334 return false;
335 if (isa<UndefValue>(Elt))
336 continue;
337 auto *CF = dyn_cast<ConstantFP>(Elt);
338 if (!CF || !this->isValue(CF->getValueAPF()))
339 return false;
340 HasNonUndefElements = true;
341 }
342 return HasNonUndefElements;
343 }
344 }
345 return false;
346 }
347};
348
349///////////////////////////////////////////////////////////////////////////////
350//
351// Encapsulate constant value queries for use in templated predicate matchers.
352// This allows checking if constants match using compound predicates and works
353// with vector constants, possibly with relaxed constraints. For example, ignore
354// undef values.
355//
356///////////////////////////////////////////////////////////////////////////////
357
358struct is_any_apint {
359 bool isValue(const APInt &C) { return true; }
360};
361/// Match an integer or vector with any integral constant.
362/// For vectors, this includes constants with undefined elements.
363inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
364 return cst_pred_ty<is_any_apint>();
365}
366
367struct is_all_ones {
368 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
369};
370/// Match an integer or vector with all bits set.
371/// For vectors, this includes constants with undefined elements.
372inline cst_pred_ty<is_all_ones> m_AllOnes() {
373 return cst_pred_ty<is_all_ones>();
374}
375
376struct is_maxsignedvalue {
377 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
378};
379/// Match an integer or vector with values having all bits except for the high
380/// bit set (0x7f...).
381/// For vectors, this includes constants with undefined elements.
382inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
383 return cst_pred_ty<is_maxsignedvalue>();
384}
385inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
386 return V;
387}
388
389struct is_negative {
390 bool isValue(const APInt &C) { return C.isNegative(); }
391};
392/// Match an integer or vector of negative values.
393/// For vectors, this includes constants with undefined elements.
394inline cst_pred_ty<is_negative> m_Negative() {
395 return cst_pred_ty<is_negative>();
396}
397inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
398 return V;
399}
400
401struct is_nonnegative {
402 bool isValue(const APInt &C) { return C.isNonNegative(); }
403};
404/// Match an integer or vector of non-negative values.
405/// For vectors, this includes constants with undefined elements.
406inline cst_pred_ty<is_nonnegative> m_NonNegative() {
407 return cst_pred_ty<is_nonnegative>();
408}
409inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
410 return V;
411}
412
413struct is_strictlypositive {
414 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
415};
416/// Match an integer or vector of strictly positive values.
417/// For vectors, this includes constants with undefined elements.
418inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
419 return cst_pred_ty<is_strictlypositive>();
420}
421inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
422 return V;
423}
424
425struct is_nonpositive {
426 bool isValue(const APInt &C) { return C.isNonPositive(); }
427};
428/// Match an integer or vector of non-positive values.
429/// For vectors, this includes constants with undefined elements.
430inline cst_pred_ty<is_nonpositive> m_NonPositive() {
431 return cst_pred_ty<is_nonpositive>();
432}
433inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
434
435struct is_one {
436 bool isValue(const APInt &C) { return C.isOneValue(); }
437};
438/// Match an integer 1 or a vector with all elements equal to 1.
439/// For vectors, this includes constants with undefined elements.
440inline cst_pred_ty<is_one> m_One() {
441 return cst_pred_ty<is_one>();
442}
443
444struct is_zero_int {
445 bool isValue(const APInt &C) { return C.isNullValue(); }
446};
447/// Match an integer 0 or a vector with all elements equal to 0.
448/// For vectors, this includes constants with undefined elements.
449inline cst_pred_ty<is_zero_int> m_ZeroInt() {
450 return cst_pred_ty<is_zero_int>();
451}
452
453struct is_zero {
454 template <typename ITy> bool match(ITy *V) {
455 auto *C = dyn_cast<Constant>(V);
456 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
457 }
458};
459/// Match any null constant or a vector with all elements equal to 0.
460/// For vectors, this includes constants with undefined elements.
461inline is_zero m_Zero() {
462 return is_zero();
463}
464
465struct is_power2 {
466 bool isValue(const APInt &C) { return C.isPowerOf2(); }
467};
468/// Match an integer or vector power-of-2.
469/// For vectors, this includes constants with undefined elements.
470inline cst_pred_ty<is_power2> m_Power2() {
471 return cst_pred_ty<is_power2>();
472}
473inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
474 return V;
475}
476
477struct is_negated_power2 {
478 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
479};
480/// Match a integer or vector negated power-of-2.
481/// For vectors, this includes constants with undefined elements.
482inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
483 return cst_pred_ty<is_negated_power2>();
484}
485inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
486 return V;
487}
488
489struct is_power2_or_zero {
490 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
491};
492/// Match an integer or vector of 0 or power-of-2 values.
493/// For vectors, this includes constants with undefined elements.
494inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
495 return cst_pred_ty<is_power2_or_zero>();
496}
497inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
498 return V;
499}
500
501struct is_sign_mask {
502 bool isValue(const APInt &C) { return C.isSignMask(); }
503};
504/// Match an integer or vector with only the sign bit(s) set.
505/// For vectors, this includes constants with undefined elements.
506inline cst_pred_ty<is_sign_mask> m_SignMask() {
507 return cst_pred_ty<is_sign_mask>();
508}
509
510struct is_lowbit_mask {
511 bool isValue(const APInt &C) { return C.isMask(); }
512};
513/// Match an integer or vector with only the low bit(s) set.
514/// For vectors, this includes constants with undefined elements.
515inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
516 return cst_pred_ty<is_lowbit_mask>();
517}
518
519struct icmp_pred_with_threshold {
520 ICmpInst::Predicate Pred;
521 const APInt *Thr;
522 bool isValue(const APInt &C) {
523 switch (Pred) {
524 case ICmpInst::Predicate::ICMP_EQ:
525 return C.eq(*Thr);
526 case ICmpInst::Predicate::ICMP_NE:
527 return C.ne(*Thr);
528 case ICmpInst::Predicate::ICMP_UGT:
529 return C.ugt(*Thr);
530 case ICmpInst::Predicate::ICMP_UGE:
531 return C.uge(*Thr);
532 case ICmpInst::Predicate::ICMP_ULT:
533 return C.ult(*Thr);
534 case ICmpInst::Predicate::ICMP_ULE:
535 return C.ule(*Thr);
536 case ICmpInst::Predicate::ICMP_SGT:
537 return C.sgt(*Thr);
538 case ICmpInst::Predicate::ICMP_SGE:
539 return C.sge(*Thr);
540 case ICmpInst::Predicate::ICMP_SLT:
541 return C.slt(*Thr);
542 case ICmpInst::Predicate::ICMP_SLE:
543 return C.sle(*Thr);
544 default:
545 llvm_unreachable("Unhandled ICmp predicate")::llvm::llvm_unreachable_internal("Unhandled ICmp predicate",
"/build/llvm-toolchain-snapshot-11~++20200225111114+dcd89b3de6d/llvm/include/llvm/IR/PatternMatch.h"
, 545)
;
546 }
547 }
548};
549/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
550/// to Threshold. For vectors, this includes constants with undefined elements.
551inline cst_pred_ty<icmp_pred_with_threshold>
552m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
553 cst_pred_ty<icmp_pred_with_threshold> P;
554 P.Pred = Predicate;
555 P.Thr = &Threshold;
556 return P;
557}
558
559struct is_nan {
560 bool isValue(const APFloat &C) { return C.isNaN(); }
561};
562/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
563/// For vectors, this includes constants with undefined elements.
564inline cstfp_pred_ty<is_nan> m_NaN() {
565 return cstfp_pred_ty<is_nan>();
566}
567
568struct is_any_zero_fp {
569 bool isValue(const APFloat &C) { return C.isZero(); }
570};
571/// Match a floating-point negative zero or positive zero.
572/// For vectors, this includes constants with undefined elements.
573inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
574 return cstfp_pred_ty<is_any_zero_fp>();
575}
576
577struct is_pos_zero_fp {
578 bool isValue(const APFloat &C) { return C.isPosZero(); }
579};
580/// Match a floating-point positive zero.
581/// For vectors, this includes constants with undefined elements.
582inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
583 return cstfp_pred_ty<is_pos_zero_fp>();
584}
585
586struct is_neg_zero_fp {
587 bool isValue(const APFloat &C) { return C.isNegZero(); }
588};
589/// Match a floating-point negative zero.
590/// For vectors, this includes constants with undefined elements.
591inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
592 return cstfp_pred_ty<is_neg_zero_fp>();
593}
594
595///////////////////////////////////////////////////////////////////////////////
596
597template <typename Class> struct bind_ty {
598 Class *&VR;
599
600 bind_ty(Class *&V) : VR(V) {}
601
602 template <typename ITy> bool match(ITy *V) {
603 if (auto *CV = dyn_cast<Class>(V)) {
604 VR = CV;
605 return true;
606 }
607 return false;
608 }
609};
610
611/// Match a value, capturing it if we match.
612inline bind_ty<Value> m_Value(Value *&V) { return V; }
51
Calling constructor for 'bind_ty<llvm::Value>'
52
Returning from constructor for 'bind_ty<llvm::Value>'
53
Returning without writing to 'V'
613inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
614
615/// Match an instruction, capturing it if we match.
616inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
617/// Match a binary operator, capturing it if we match.
618inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
619/// Match a with overflow intrinsic, capturing it if we match.
620inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
621
622/// Match a ConstantInt, capturing the value if we match.
623inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
624
625/// Match a Constant, capturing the value if we match.
626inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
627
628/// Match a ConstantFP, capturing the value if we match.
629inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
630
631/// Match a basic block value, capturing it if we match.
632inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
633inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
634 return V;
635}
636
637/// Match a specified Value*.
638struct specificval_ty {
639 const Value *Val;
640
641 specificval_ty(const Value *V) : Val(V) {}
642
643 template <typename ITy> bool match(ITy *V) { return V == Val; }
644};
645
646/// Match if we have a specific specified value.
647inline specificval_ty m_Specific(const Value *V) { return V; }
648
649/// Stores a reference to the Value *, not the Value * itself,
650/// thus can be used in commutative matchers.
651template <typename Class> struct deferredval_ty {
652 Class *const &Val;
653
654 deferredval_ty(Class *const &V) : Val(V) {}
655
656 template <typename ITy> bool match(ITy *const V) { return V == Val; }
657};
658
659/// A commutative-friendly version of m_Specific().
660inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
661inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
662 return V;
663}
664
665/// Match a specified floating point value or vector of all elements of
666/// that value.
667struct specific_fpval {
668 double Val;
669
670 specific_fpval(double V) : Val(V) {}
671
672 template <typename ITy> bool match(ITy *V) {
673 if (const auto *CFP = dyn_cast<ConstantFP>(V))
674 return CFP->isExactlyValue(Val);
675 if (V->getType()->isVectorTy())
676 if (const auto *C = dyn_cast<Constant>(V))
677 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
678 return CFP->isExactlyValue(Val);
679 return false;
680 }
681};
682
683/// Match a specific floating point value or vector with all elements
684/// equal to the value.
685inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
686
687/// Match a float 1.0 or vector with all elements equal to 1.0.
688inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
689
690struct bind_const_intval_ty {
691 uint64_t &VR;
692
693 bind_const_intval_ty(uint64_t &V) : VR(V) {}
694
695 template <typename ITy> bool match(ITy *V) {
696 if (const auto *CV = dyn_cast<ConstantInt>(V))
697 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
698 VR = CV->getZExtValue();
699 return true;
700 }
701 return false;
702 }
703};
704
705/// Match a specified integer value or vector of all elements of that
706/// value.
707struct specific_intval {
708 APInt Val;
709
710 specific_intval(APInt V) : Val(std::move(V)) {}
711
712 template <typename ITy> bool match(ITy *V) {
713 const auto *CI = dyn_cast<ConstantInt>(V);
714 if (!CI && V->getType()->isVectorTy())
715 if (const auto *C = dyn_cast<Constant>(V))
716 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
717
718 return CI && APInt::isSameValue(CI->getValue(), Val);
719 }
720};
721
722/// Match a specific integer value or vector with all elements equal to
723/// the value.
724inline specific_intval m_SpecificInt(APInt V) {
725 return specific_intval(std::move(V));
726}
727
728inline specific_intval m_SpecificInt(uint64_t V) {
729 return m_SpecificInt(APInt(64, V));
730}
731
732/// Match a ConstantInt and bind to its value. This does not match
733/// ConstantInts wider than 64-bits.
734inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
735
736/// Match a specified basic block value.
737struct specific_bbval {
738 BasicBlock *Val;
739
740 specific_bbval(BasicBlock *Val) : Val(Val) {}
741
742 template <typename ITy> bool match(ITy *V) {
743 const auto *BB = dyn_cast<BasicBlock>(V);
744 return BB && BB == Val;
745 }
746};
747
748/// Match a specific basic block value.
749inline specific_bbval m_SpecificBB(BasicBlock *BB) {
750 return specific_bbval(BB);
751}
752
753/// A commutative-friendly version of m_Specific().
754inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
755 return BB;
756}
757inline deferredval_ty<const BasicBlock>
758m_Deferred(const BasicBlock *const &BB) {
759 return BB;
760}
761
762//===----------------------------------------------------------------------===//
763// Matcher for any binary operator.
764//
765template <typename LHS_t, typename RHS_t, bool Commutable = false>
766struct AnyBinaryOp_match {
767 LHS_t L;
768 RHS_t R;
769
770 // The evaluation order is always stable, regardless of Commutability.
771 // The LHS is always matched first.
772 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
773
774 template <typename OpTy> bool match(OpTy *V) {
775 if (auto *I = dyn_cast<BinaryOperator>(V))
776 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
777 (Commutable && L.match(I->getOperand(1)) &&
778 R.match(I->getOperand(0)));
779 return false;
780 }
781};
782
783template <typename LHS, typename RHS>
784inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
785 return AnyBinaryOp_match<LHS, RHS>(L, R);
65
Returning without writing to 'R.R.VR'
786}
787
788//===----------------------------------------------------------------------===//
789// Matchers for specific binary operators.
790//
791
792template <typename LHS_t, typename RHS_t, unsigned Opcode,
793 bool Commutable = false>
794struct BinaryOp_match {
795 LHS_t L;
796 RHS_t R;
797
798 // The evaluation order is always stable, regardless of Commutability.
799 // The LHS is always matched first.
800 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
801
802 template <typename OpTy> bool match(OpTy *V) {
803 if (V->getValueID() == Value::InstructionVal + Opcode) {
35
Assuming the condition is true
36
Taking true branch
804 auto *I = cast<BinaryOperator>(V);
37
'V' is a 'BinaryOperator'
805 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
38
Returning the value 1, which participates in a condition later
806 (Commutable && L.match(I->getOperand(1)) &&
807 R.match(I->getOperand(0)));
808 }
809 if (auto *CE = dyn_cast<ConstantExpr>(V))
810 return CE->getOpcode() == Opcode &&
811 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
812 (Commutable && L.match(CE->getOperand(1)) &&
813 R.match(CE->getOperand(0))));
814 return false;
815 }
816};
817
818template <typename LHS, typename RHS>
819inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
820 const RHS &R) {
821 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
822}
823
824template <typename LHS, typename RHS>
825inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
826 const RHS &R) {
827 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
828}
829
830template <typename LHS, typename RHS>
831inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
832 const RHS &R) {
833 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
834}
835
836template <typename LHS, typename RHS>
837inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
838 const RHS &R) {
839 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
840}
841
842template <typename Op_t> struct FNeg_match {
843 Op_t X;
844
845 FNeg_match(const Op_t &Op) : X(Op) {}
846 template <typename OpTy> bool match(OpTy *V) {
847 auto *FPMO = dyn_cast<FPMathOperator>(V);
848 if (!FPMO) return false;
849
850 if (FPMO->getOpcode() == Instruction::FNeg)
851 return X.match(FPMO->getOperand(0));
852
853 if (FPMO->getOpcode() == Instruction::FSub) {
854 if (FPMO->hasNoSignedZeros()) {
855 // With 'nsz', any zero goes.
856 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
857 return false;
858 } else {
859 // Without 'nsz', we need fsub -0.0, X exactly.
860 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
861 return false;
862 }
863
864 return X.match(FPMO->getOperand(1));
865 }
866
867 return false;
868 }
869};
870
871/// Match 'fneg X' as 'fsub -0.0, X'.
872template <typename OpTy>
873inline FNeg_match<OpTy>
874m_FNeg(const OpTy &X) {
875 return FNeg_match<OpTy>(X);
876}
877
878/// Match 'fneg X' as 'fsub +-0.0, X'.
879template <typename RHS>
880inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
881m_FNegNSZ(const RHS &X) {
882 return m_FSub(m_AnyZeroFP(), X);
883}
884
885template <typename LHS, typename RHS>
886inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
887 const RHS &R) {
888 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
889}
890
891template <typename LHS, typename RHS>
892inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
893 const RHS &R) {
894 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
895}
896
897template <typename LHS, typename RHS>
898inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
899 const RHS &R) {
900 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
901}
902
903template <typename LHS, typename RHS>
904inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
905 const RHS &R) {
906 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
907}
908
909template <typename LHS, typename RHS>
910inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
911 const RHS &R) {
912 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
913}
914
915template <typename LHS, typename RHS>
916inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
917 const RHS &R) {
918 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
919}
920
921template <typename LHS, typename RHS>
922inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
923 const RHS &R) {
924 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
925}
926
927template <typename LHS, typename RHS>
928inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
929 const RHS &R) {
930 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
931}
932
933template <typename LHS, typename RHS>
934inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
935 const RHS &R) {
936 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
937}
938
939template <typename LHS, typename RHS>
940inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
941 const RHS &R) {
942 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
943}
944
945template <typename LHS, typename RHS>
946inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
947 const RHS &R) {
948 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
949}
950
951template <typename LHS, typename RHS>
952inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
953 const RHS &R) {
954 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
955}
956
957template <typename LHS, typename RHS>
958inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
959 const RHS &R) {
960 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
961}
962
963template <typename LHS, typename RHS>
964inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
965 const RHS &R) {
966 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
967}
968
969template <typename LHS_t, typename RHS_t, unsigned Opcode,
970 unsigned WrapFlags = 0>
971struct OverflowingBinaryOp_match {
972 LHS_t L;
973 RHS_t R;
974
975 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
976 : L(LHS), R(RHS) {}
977
978 template <typename OpTy> bool match(OpTy *V) {
979 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
980 if (Op->getOpcode() != Opcode)
981 return false;
982 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
983 !Op->hasNoUnsignedWrap())
984 return false;
985 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
986 !Op->hasNoSignedWrap())
987 return false;
988 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
989 }
990 return false;
991 }
992};
993
994template <typename LHS, typename RHS>
995inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
996 OverflowingBinaryOperator::NoSignedWrap>
997m_NSWAdd(const LHS &L, const RHS &R) {
998 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
999 OverflowingBinaryOperator::NoSignedWrap>(
1000 L, R);
1001}
1002template <typename LHS, typename RHS>
1003inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1004 OverflowingBinaryOperator::NoSignedWrap>
1005m_NSWSub(const LHS &L, const RHS &R) {
1006 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1007 OverflowingBinaryOperator::NoSignedWrap>(
1008 L, R);
1009}
1010template <typename LHS, typename RHS>
1011inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1012 OverflowingBinaryOperator::NoSignedWrap>
1013m_NSWMul(const LHS &L, const RHS &R) {
1014 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1015 OverflowingBinaryOperator::NoSignedWrap>(
1016 L, R);
1017}
1018template <typename LHS, typename RHS>
1019inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1020 OverflowingBinaryOperator::NoSignedWrap>
1021m_NSWShl(const LHS &L, const RHS &R) {
1022 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1023 OverflowingBinaryOperator::NoSignedWrap>(
1024 L, R);
1025}
1026
1027template <typename LHS, typename RHS>
1028inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1029 OverflowingBinaryOperator::NoUnsignedWrap>
1030m_NUWAdd(const LHS &L, const RHS &R) {
1031 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1032 OverflowingBinaryOperator::NoUnsignedWrap>(
1033 L, R);
1034}
1035template <typename LHS, typename RHS>
1036inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1037 OverflowingBinaryOperator::NoUnsignedWrap>
1038m_NUWSub(const LHS &L, const RHS &R) {
1039 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1040 OverflowingBinaryOperator::NoUnsignedWrap>(
1041 L, R);
1042}
1043template <typename LHS, typename RHS>
1044inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1045 OverflowingBinaryOperator::NoUnsignedWrap>
1046m_NUWMul(const LHS &L, const RHS &R) {
1047 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1048 OverflowingBinaryOperator::NoUnsignedWrap>(
1049 L, R);
1050}
1051template <typename LHS, typename RHS>
1052inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1053 OverflowingBinaryOperator::NoUnsignedWrap>
1054m_NUWShl(const LHS &L, const RHS &R) {
1055 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1056 OverflowingBinaryOperator::NoUnsignedWrap>(
1057 L, R);
1058}
1059
1060//===----------------------------------------------------------------------===//
1061// Class that matches a group of binary opcodes.
1062//
1063template <typename LHS_t, typename RHS_t, typename Predicate>
1064struct BinOpPred_match : Predicate {
1065 LHS_t L;
1066 RHS_t R;
1067
1068 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1069
1070 template <typename OpTy> bool match(OpTy *V) {
1071 if (auto *I = dyn_cast<Instruction>(V))
1072 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1073 R.match(I->getOperand(1));
1074 if (auto *CE = dyn_cast<ConstantExpr>(V))
1075 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1076 R.match(CE->getOperand(1));
1077 return false;
1078 }
1079};
1080
1081struct is_shift_op {
1082 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1083};
1084
1085struct is_right_shift_op {
1086 bool isOpType(unsigned Opcode) {
1087 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1088 }
1089};
1090
1091struct is_logical_shift_op {
1092 bool isOpType(unsigned Opcode) {
1093 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1094 }
1095};
1096
1097struct is_bitwiselogic_op {
1098 bool isOpType(unsigned Opcode) {
1099 return Instruction::isBitwiseLogicOp(Opcode);
1100 }
1101};
1102
1103struct is_idiv_op {
1104 bool isOpType(unsigned Opcode) {
1105 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1106 }
1107};
1108
1109struct is_irem_op {
1110 bool isOpType(unsigned Opcode) {
1111 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1112 }
1113};
1114
1115/// Matches shift operations.
1116template <typename LHS, typename RHS>
1117inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1118 const RHS &R) {
1119 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1120}
1121
1122/// Matches logical shift operations.
1123template <typename LHS, typename RHS>
1124inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1125 const RHS &R) {
1126 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1127}
1128
1129/// Matches logical shift operations.
1130template <typename LHS, typename RHS>
1131inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1132m_LogicalShift(const LHS &L, const RHS &R) {
1133 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1134}
1135
1136/// Matches bitwise logic operations.
1137template <typename LHS, typename RHS>
1138inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1139m_BitwiseLogic(const LHS &L, const RHS &R) {
1140 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1141}
1142
1143/// Matches integer division operations.
1144template <typename LHS, typename RHS>
1145inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1146 const RHS &R) {
1147 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1148}
1149
1150/// Matches integer remainder operations.
1151template <typename LHS, typename RHS>
1152inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1153 const RHS &R) {
1154 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1155}
1156
1157//===----------------------------------------------------------------------===//
1158// Class that matches exact binary ops.
1159//
1160template <typename SubPattern_t> struct Exact_match {
1161 SubPattern_t SubPattern;
1162
1163 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1164
1165 template <typename OpTy> bool match(OpTy *V) {
1166 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1167 return PEO->isExact() && SubPattern.match(V);
1168 return false;
1169 }
1170};
1171
1172template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1173 return SubPattern;
1174}
1175
1176//===----------------------------------------------------------------------===//
1177// Matchers for CmpInst classes
1178//
1179
1180template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1181 bool Commutable = false>
1182struct CmpClass_match {
1183 PredicateTy &Predicate;
1184 LHS_t L;
1185 RHS_t R;
1186
1187 // The evaluation order is always stable, regardless of Commutability.
1188 // The LHS is always matched first.
1189 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1190 : Predicate(Pred), L(LHS), R(RHS) {}
1191
1192 template <typename OpTy> bool match(OpTy *V) {
1193 if (auto *I = dyn_cast<Class>(V)) {
1194 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1195 Predicate = I->getPredicate();
1196 return true;
1197 } else if (Commutable && L.match(I->getOperand(1)) &&
1198 R.match(I->getOperand(0))) {
1199 Predicate = I->getSwappedPredicate();
1200 return true;
1201 }
1202 }
1203 return false;
1204 }
1205};
1206
1207template <typename LHS, typename RHS>
1208inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1209m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1210 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1211}
1212
1213template <typename LHS, typename RHS>
1214inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1215m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1216 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1217}
1218
1219template <typename LHS, typename RHS>
1220inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1221m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1222 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1223}
1224
1225//===----------------------------------------------------------------------===//
1226// Matchers for instructions with a given opcode and number of operands.
1227//
1228
1229/// Matches instructions with Opcode and three operands.
1230template <typename T0, unsigned Opcode> struct OneOps_match {
1231 T0 Op1;
1232
1233 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1234
1235 template <typename OpTy> bool match(OpTy *V) {
1236 if (V->getValueID() == Value::InstructionVal + Opcode) {
1237 auto *I = cast<Instruction>(V);
1238 return Op1.match(I->getOperand(0));
1239 }
1240 return false;
1241 }
1242};
1243
1244/// Matches instructions with Opcode and three operands.
1245template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1246 T0 Op1;
1247 T1 Op2;
1248
1249 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1250
1251 template <typename OpTy> bool match(OpTy *V) {
1252 if (V->getValueID() == Value::InstructionVal + Opcode) {
1253 auto *I = cast<Instruction>(V);
1254 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1255 }
1256 return false;
1257 }
1258};
1259
1260/// Matches instructions with Opcode and three operands.
1261template <typename T0, typename T1, typename T2, unsigned Opcode>
1262struct ThreeOps_match {
1263 T0 Op1;
1264 T1 Op2;
1265 T2 Op3;
1266
1267 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1268 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1269
1270 template <typename OpTy> bool match(OpTy *V) {
1271 if (V->getValueID() == Value::InstructionVal + Opcode) {
1272 auto *I = cast<Instruction>(V);
1273 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1274 Op3.match(I->getOperand(2));
1275 }
1276 return false;
1277 }
1278};
1279
1280/// Matches SelectInst.
1281template <typename Cond, typename LHS, typename RHS>
1282inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1283m_Select(const Cond &C, const LHS &L, const RHS &R) {
1284 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1285}
1286
1287/// This matches a select of two constants, e.g.:
1288/// m_SelectCst<-1, 0>(m_Value(V))
1289template <int64_t L, int64_t R, typename Cond>
1290inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1291 Instruction::Select>
1292m_SelectCst(const Cond &C) {
1293 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1294}
1295
1296/// Matches FreezeInst.
1297template <typename OpTy>
1298inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1299 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1300}
1301
1302/// Matches InsertElementInst.
1303template <typename Val_t, typename Elt_t, typename Idx_t>
1304inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1305m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1306 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1307 Val, Elt, Idx);
1308}
1309
1310/// Matches ExtractElementInst.
1311template <typename Val_t, typename Idx_t>
1312inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1313m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1314 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1315}
1316
1317/// Matches ShuffleVectorInst.
1318template <typename V1_t, typename V2_t, typename Mask_t>
1319inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1320m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1321 return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1322 m);
1323}
1324
1325/// Matches LoadInst.
1326template <typename OpTy>
1327inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1328 return OneOps_match<OpTy, Instruction::Load>(Op);
1329}
1330
1331/// Matches StoreInst.
1332template <typename ValueOpTy, typename PointerOpTy>
1333inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1334m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1335 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1336 PointerOp);
1337}
1338
1339//===----------------------------------------------------------------------===//
1340// Matchers for CastInst classes
1341//
1342
1343template <typename Op_t, unsigned Opcode> struct CastClass_match {
1344 Op_t Op;
1345
1346 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1347
1348 template <typename OpTy> bool match(OpTy *V) {
1349 if (auto *O = dyn_cast<Operator>(V))
1350 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1351 return false;
1352 }
1353};
1354
1355/// Matches BitCast.
1356template <typename OpTy>
1357inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1358 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1359}
1360
1361/// Matches PtrToInt.
1362template <typename OpTy>
1363inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1364 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1365}
1366
1367/// Matches Trunc.
1368template <typename OpTy>
1369inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1370 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1371}
1372
1373template <typename OpTy>
1374inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1375m_TruncOrSelf(const OpTy &Op) {
1376 return m_CombineOr(m_Trunc(Op), Op);
1377}
1378
1379/// Matches SExt.
1380template <typename OpTy>
1381inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1382 return CastClass_match<OpTy, Instruction::SExt>(Op);
1383}
1384
1385/// Matches ZExt.
1386template <typename OpTy>
1387inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1388 return CastClass_match<OpTy, Instruction::ZExt>(Op);
57
Returning without writing to 'Op.VR'
1389}
1390
1391template <typename OpTy>
1392inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1393m_ZExtOrSelf(const OpTy &Op) {
1394 return m_CombineOr(m_ZExt(Op), Op);
56
Calling 'm_ZExt<llvm::PatternMatch::bind_ty<llvm::Value>>'
58
Returning from 'm_ZExt<llvm::PatternMatch::bind_ty<llvm::Value>>'
59
Calling 'm_CombineOr<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>'
61
Returning from 'm_CombineOr<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>'
62
Returning without writing to 'Op.VR'
1395}
1396
1397template <typename OpTy>
1398inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1399m_SExtOrSelf(const OpTy &Op) {
1400 return m_CombineOr(m_SExt(Op), Op);
1401}
1402
1403template <typename OpTy>
1404inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1405 CastClass_match<OpTy, Instruction::SExt>>
1406m_ZExtOrSExt(const OpTy &Op) {
1407 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1408}
1409
1410template <typename OpTy>
1411inline match_combine_or<
1412 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1413 CastClass_match<OpTy, Instruction::SExt>>,
1414 OpTy>
1415m_ZExtOrSExtOrSelf(const OpTy &Op) {
1416 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1417}
1418
1419/// Matches UIToFP.
1420template <typename OpTy>
1421inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1422 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1423}
1424
1425/// Matches SIToFP.
1426template <typename OpTy>
1427inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1428 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1429}
1430
1431/// Matches FPTrunc
1432template <typename OpTy>
1433inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1434 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1435}
1436
1437/// Matches FPExt
1438template <typename OpTy>
1439inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1440 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1441}
1442
1443//===----------------------------------------------------------------------===//
1444// Matchers for control flow.
1445//
1446
1447struct br_match {
1448 BasicBlock *&Succ;
1449
1450 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1451
1452 template <typename OpTy> bool match(OpTy *V) {
1453 if (auto *BI = dyn_cast<BranchInst>(V))
1454 if (BI->isUnconditional()) {
1455 Succ = BI->getSuccessor(0);
1456 return true;
1457 }
1458 return false;
1459 }
1460};
1461
1462inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1463
1464template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1465struct brc_match {
1466 Cond_t Cond;
1467 TrueBlock_t T;
1468 FalseBlock_t F;
1469
1470 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1471 : Cond(C), T(t), F(f) {}
1472
1473 template <typename OpTy> bool match(OpTy *V) {
1474 if (auto *BI = dyn_cast<BranchInst>(V))
1475 if (BI->isConditional() && Cond.match(BI->getCondition()))
1476 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1477 return false;
1478 }
1479};
1480
1481template <typename Cond_t>
1482inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1483m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1484 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1485 C, m_BasicBlock(T), m_BasicBlock(F));
1486}
1487
1488template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1489inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1490m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1491 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1492}
1493
1494//===----------------------------------------------------------------------===//
1495// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1496//
1497
1498template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1499 bool Commutable = false>
1500struct MaxMin_match {
1501 LHS_t L;
1502 RHS_t R;
1503
1504 // The evaluation order is always stable, regardless of Commutability.
1505 // The LHS is always matched first.
1506 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1507
1508 template <typename OpTy> bool match(OpTy *V) {
1509 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1510 auto *SI = dyn_cast<SelectInst>(V);
1511 if (!SI)
1512 return false;
1513 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1514 if (!Cmp)
1515 return false;
1516 // At this point we have a select conditioned on a comparison. Check that
1517 // it is the values returned by the select that are being compared.
1518 Value *TrueVal = SI->getTrueValue();
1519 Value *FalseVal = SI->getFalseValue();
1520 Value *LHS = Cmp->getOperand(0);
1521 Value *RHS = Cmp->getOperand(1);
1522 if ((TrueVal != LHS || FalseVal != RHS) &&
1523 (TrueVal != RHS || FalseVal != LHS))
1524 return false;
1525 typename CmpInst_t::Predicate Pred =
1526 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1527 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1528 if (!Pred_t::match(Pred))
1529 return false;
1530 // It does! Bind the operands.
1531 return (L.match(LHS) && R.match(RHS)) ||
1532 (Commutable && L.match(RHS) && R.match(LHS));
1533 }
1534};
1535
1536/// Helper class for identifying signed max predicates.
1537struct smax_pred_ty {
1538 static bool match(ICmpInst::Predicate Pred) {
1539 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1540 }
1541};
1542
1543/// Helper class for identifying signed min predicates.
1544struct smin_pred_ty {
1545 static bool match(ICmpInst::Predicate Pred) {
1546 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1547 }
1548};
1549
1550/// Helper class for identifying unsigned max predicates.
1551struct umax_pred_ty {
1552 static bool match(ICmpInst::Predicate Pred) {
1553 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1554 }
1555};
1556
1557/// Helper class for identifying unsigned min predicates.
1558struct umin_pred_ty {
1559 static bool match(ICmpInst::Predicate Pred) {
1560 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1561 }
1562};
1563
1564/// Helper class for identifying ordered max predicates.
1565struct ofmax_pred_ty {
1566 static bool match(FCmpInst::Predicate Pred) {
1567 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1568 }
1569};
1570
1571/// Helper class for identifying ordered min predicates.
1572struct ofmin_pred_ty {
1573 static bool match(FCmpInst::Predicate Pred) {
1574 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1575 }
1576};
1577
1578/// Helper class for identifying unordered max predicates.
1579struct ufmax_pred_ty {
1580 static bool match(FCmpInst::Predicate Pred) {
1581 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1582 }
1583};
1584
1585/// Helper class for identifying unordered min predicates.
1586struct ufmin_pred_ty {
1587 static bool match(FCmpInst::Predicate Pred) {
1588 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1589 }
1590};
1591
1592template <typename LHS, typename RHS>
1593inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1594 const RHS &R) {
1595 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1596}
1597
1598template <typename LHS, typename RHS>
1599inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1600 const RHS &R) {
1601 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1602}
1603
1604template <typename LHS, typename RHS>
1605inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1606 const RHS &R) {
1607 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1608}
1609
1610template <typename LHS, typename RHS>
1611inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1612 const RHS &R) {
1613 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1614}
1615
1616/// Match an 'ordered' floating point maximum function.
1617/// Floating point has one special value 'NaN'. Therefore, there is no total
1618/// order. However, if we can ignore the 'NaN' value (for example, because of a
1619/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1620/// semantics. In the presence of 'NaN' we have to preserve the original
1621/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1622///
1623/// max(L, R) iff L and R are not NaN
1624/// m_OrdFMax(L, R) = R iff L or R are NaN
1625template <typename LHS, typename RHS>
1626inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1627 const RHS &R) {
1628 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1629}
1630
1631/// Match an 'ordered' floating point minimum function.
1632/// Floating point has one special value 'NaN'. Therefore, there is no total
1633/// order. However, if we can ignore the 'NaN' value (for example, because of a
1634/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1635/// semantics. In the presence of 'NaN' we have to preserve the original
1636/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1637///
1638/// min(L, R) iff L and R are not NaN
1639/// m_OrdFMin(L, R) = R iff L or R are NaN
1640template <typename LHS, typename RHS>
1641inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1642 const RHS &R) {
1643 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1644}
1645
1646/// Match an 'unordered' floating point maximum function.
1647/// Floating point has one special value 'NaN'. Therefore, there is no total
1648/// order. However, if we can ignore the 'NaN' value (for example, because of a
1649/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1650/// semantics. In the presence of 'NaN' we have to preserve the original
1651/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1652///
1653/// max(L, R) iff L and R are not NaN
1654/// m_UnordFMax(L, R) = L iff L or R are NaN
1655template <typename LHS, typename RHS>
1656inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1657m_UnordFMax(const LHS &L, const RHS &R) {
1658 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1659}
1660
1661/// Match an 'unordered' floating point minimum function.
1662/// Floating point has one special value 'NaN'. Therefore, there is no total
1663/// order. However, if we can ignore the 'NaN' value (for example, because of a
1664/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1665/// semantics. In the presence of 'NaN' we have to preserve the original
1666/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1667///
1668/// min(L, R) iff L and R are not NaN
1669/// m_UnordFMin(L, R) = L iff L or R are NaN
1670template <typename LHS, typename RHS>
1671inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1672m_UnordFMin(const LHS &L, const RHS &R) {
1673 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1674}
1675
1676//===----------------------------------------------------------------------===//
1677// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1678// Note that S might be matched to other instructions than AddInst.
1679//
1680
1681template <typename LHS_t, typename RHS_t, typename Sum_t>
1682struct UAddWithOverflow_match {
1683 LHS_t L;
1684 RHS_t R;
1685 Sum_t S;
1686
1687 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1688 : L(L), R(R), S(S) {}
1689
1690 template <typename OpTy> bool match(OpTy *V) {
1691 Value *ICmpLHS, *ICmpRHS;
1692 ICmpInst::Predicate Pred;
1693 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1694 return false;
1695
1696 Value *AddLHS, *AddRHS;
1697 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1698
1699 // (a + b) u< a, (a + b) u< b
1700 if (Pred == ICmpInst::ICMP_ULT)
1701 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1702 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1703
1704 // a >u (a + b), b >u (a + b)
1705 if (Pred == ICmpInst::ICMP_UGT)
1706 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1707 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1708
1709 Value *Op1;
1710 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1711 // (a ^ -1) <u b
1712 if (Pred == ICmpInst::ICMP_ULT) {
1713 if (XorExpr.match(ICmpLHS))
1714 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1715 }
1716 // b > u (a ^ -1)
1717 if (Pred == ICmpInst::ICMP_UGT) {
1718 if (XorExpr.match(ICmpRHS))
1719 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1720 }
1721
1722 // Match special-case for increment-by-1.
1723 if (Pred == ICmpInst::ICMP_EQ) {
1724 // (a + 1) == 0
1725 // (1 + a) == 0
1726 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1727 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1728 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1729 // 0 == (a + 1)
1730 // 0 == (1 + a)
1731 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1732 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1733 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1734 }
1735
1736 return false;
1737 }
1738};
1739
1740/// Match an icmp instruction checking for unsigned overflow on addition.
1741///
1742/// S is matched to the addition whose result is being checked for overflow, and
1743/// L and R are matched to the LHS and RHS of S.
1744template <typename LHS_t, typename RHS_t, typename Sum_t>
1745UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1746m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1747 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1748}
1749
1750template <typename Opnd_t> struct Argument_match {
1751 unsigned OpI;
1752 Opnd_t Val;
1753
1754 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1755
1756 template <typename OpTy> bool match(OpTy *V) {
1757 // FIXME: Should likely be switched to use `CallBase`.
1758 if (const auto *CI = dyn_cast<CallInst>(V))
1759 return Val.match(CI->getArgOperand(OpI));
1760 return false;
1761 }
1762};
1763
1764/// Match an argument.
1765template <unsigned OpI, typename Opnd_t>
1766inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1767 return Argument_match<Opnd_t>(OpI, Op);
1768}
1769
1770/// Intrinsic matchers.
1771struct IntrinsicID_match {
1772 unsigned ID;
1773
1774 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1775
1776 template <typename OpTy> bool match(OpTy *V) {
1777 if (const auto *CI = dyn_cast<CallInst>(V))
1778 if (const auto *F = CI->getCalledFunction())
1779 return F->getIntrinsicID() == ID;
1780 return false;
1781 }
1782};
1783
1784/// Intrinsic matches are combinations of ID matchers, and argument
1785/// matchers. Higher arity matcher are defined recursively in terms of and-ing
1786/// them with lower arity matchers. Here's some convenient typedefs for up to
1787/// several arguments, and more can be added as needed
1788template <typename T0 = void, typename T1 = void, typename T2 = void,
1789 typename T3 = void, typename T4 = void, typename T5 = void,
1790 typename T6 = void, typename T7 = void, typename T8 = void,
1791 typename T9 = void, typename T10 = void>
1792struct m_Intrinsic_Ty;
1793template <typename T0> struct m_Intrinsic_Ty<T0> {
1794 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1795};
1796template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1797 using Ty =
1798 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1799};
1800template <typename T0, typename T1, typename T2>
1801struct m_Intrinsic_Ty<T0, T1, T2> {
1802 using Ty =
1803 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1804 Argument_match<T2>>;
1805};
1806template <typename T0, typename T1, typename T2, typename T3>
1807struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1808 using Ty =
1809 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1810 Argument_match<T3>>;
1811};
1812
1813template <typename T0, typename T1, typename T2, typename T3, typename T4>
1814struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
1815 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
1816 Argument_match<T4>>;
1817};
1818
1819/// Match intrinsic calls like this:
1820/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1821template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1822 return IntrinsicID_match(IntrID);
1823}
1824
1825template <Intrinsic::ID IntrID, typename T0>
1826inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1827 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1828}
1829
1830template <Intrinsic::ID IntrID, typename T0, typename T1>
1831inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1832 const T1 &Op1) {
1833 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1834}
1835
1836template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1837inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1838m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1839 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1840}
1841
1842template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1843 typename T3>
1844inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1845m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1846 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1847}
1848
1849template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1850 typename T3, typename T4>
1851inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
1852m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
1853 const T4 &Op4) {
1854 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
1855 m_Argument<4>(Op4));
1856}
1857
1858// Helper intrinsic matching specializations.
1859template <typename Opnd0>
1860inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1861 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1862}
1863
1864template <typename Opnd0>
1865inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1866 return m_Intrinsic<Intrinsic::bswap>(Op0);
1867}
1868
1869template <typename Opnd0>
1870inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1871 return m_Intrinsic<Intrinsic::fabs>(Op0);
1872}
1873
1874template <typename Opnd0>
1875inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1876 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1877}
1878
1879template <typename Opnd0, typename Opnd1>
1880inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1881 const Opnd1 &Op1) {
1882 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1883}
1884
1885template <typename Opnd0, typename Opnd1>
1886inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1887 const Opnd1 &Op1) {
1888 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1889}
1890
1891//===----------------------------------------------------------------------===//
1892// Matchers for two-operands operators with the operators in either order
1893//
1894
1895/// Matches a BinaryOperator with LHS and RHS in either order.
1896template <typename LHS, typename RHS>
1897inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1898 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1899}
1900
1901/// Matches an ICmp with a predicate over LHS and RHS in either order.
1902/// Swaps the predicate if operands are commuted.
1903template <typename LHS, typename RHS>
1904inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1905m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1906 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1907 R);
1908}
1909
1910/// Matches a Add with LHS and RHS in either order.
1911template <typename LHS, typename RHS>
1912inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1913 const RHS &R) {
1914 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1915}
1916
1917/// Matches a Mul with LHS and RHS in either order.
1918template <typename LHS, typename RHS>
1919inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1920 const RHS &R) {
1921 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1922}
1923
1924/// Matches an And with LHS and RHS in either order.
1925template <typename LHS, typename RHS>
1926inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1927 const RHS &R) {
1928 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1929}
1930
1931/// Matches an Or with LHS and RHS in either order.
1932template <typename LHS, typename RHS>
1933inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1934 const RHS &R) {
1935 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1936}
1937
1938/// Matches an Xor with LHS and RHS in either order.
1939template <typename LHS, typename RHS>
1940inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1941 const RHS &R) {
1942 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1943}
1944
1945/// Matches a 'Neg' as 'sub 0, V'.
1946template <typename ValTy>
1947inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1948m_Neg(const ValTy &V) {
1949 return m_Sub(m_ZeroInt(), V);
1950}
1951
1952/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1953template <typename ValTy>
1954inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1955m_Not(const ValTy &V) {
1956 return m_c_Xor(V, m_AllOnes());
1957}
1958
1959/// Matches an SMin with LHS and RHS in either order.
1960template <typename LHS, typename RHS>
1961inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1962m_c_SMin(const LHS &L, const RHS &R) {
1963 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1964}
1965/// Matches an SMax with LHS and RHS in either order.
1966template <typename LHS, typename RHS>
1967inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1968m_c_SMax(const LHS &L, const RHS &R) {
1969 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1970}
1971/// Matches a UMin with LHS and RHS in either order.
1972template <typename LHS, typename RHS>
1973inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1974m_c_UMin(const LHS &L, const RHS &R) {
1975 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1976}
1977/// Matches a UMax with LHS and RHS in either order.
1978template <typename LHS, typename RHS>
1979inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1980m_c_UMax(const LHS &L, const RHS &R) {
1981 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1982}
1983
1984/// Matches FAdd with LHS and RHS in either order.
1985template <typename LHS, typename RHS>
1986inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1987m_c_FAdd(const LHS &L, const RHS &R) {
1988 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1989}
1990
1991/// Matches FMul with LHS and RHS in either order.
1992template <typename LHS, typename RHS>
1993inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1994m_c_FMul(const LHS &L, const RHS &R) {
1995 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1996}
1997
1998template <typename Opnd_t> struct Signum_match {
1999 Opnd_t Val;
2000 Signum_match(const Opnd_t &V) : Val(V) {}
2001
2002 template <typename OpTy> bool match(OpTy *V) {
2003 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2004 if (TypeSize == 0)
2005 return false;
2006
2007 unsigned ShiftWidth = TypeSize - 1;
2008 Value *OpL = nullptr, *OpR = nullptr;
2009
2010 // This is the representation of signum we match:
2011 //
2012 // signum(x) == (x >> 63) | (-x >>u 63)
2013 //
2014 // An i1 value is its own signum, so it's correct to match
2015 //
2016 // signum(x) == (x >> 0) | (-x >>u 0)
2017 //
2018 // for i1 values.
2019
2020 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2021 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2022 auto Signum = m_Or(LHS, RHS);
2023
2024 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2025 }
2026};
2027
2028/// Matches a signum pattern.
2029///
2030/// signum(x) =
2031/// x > 0 -> 1
2032/// x == 0 -> 0
2033/// x < 0 -> -1
2034template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2035 return Signum_match<Val_t>(V);
2036}
2037
2038template <int Ind, typename Opnd_t> struct ExtractValue_match {
2039 Opnd_t Val;
2040 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2041
2042 template <typename OpTy> bool match(OpTy *V) {
2043 if (auto *I = dyn_cast<ExtractValueInst>(V))
2044 return I->getNumIndices() == 1 && I->getIndices()[0] == Ind &&
2045 Val.match(I->getAggregateOperand());
2046 return false;
2047 }
2048};
2049
2050/// Match a single index ExtractValue instruction.
2051/// For example m_ExtractValue<1>(...)
2052template <int Ind, typename Val_t>
2053inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2054 return ExtractValue_match<Ind, Val_t>(V);
2055}
2056
2057/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2058/// the constant expression
2059/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2060/// under the right conditions determined by DataLayout.
2061struct VScaleVal_match {
2062private:
2063 template <typename Base, typename Offset>
2064 inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2065 m_OffsetGep(const Base &B, const Offset &O) {
2066 return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2067 }
2068
2069public:
2070 const DataLayout &DL;
2071 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2072
2073 template <typename ITy> bool match(ITy *V) {
2074 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2075 return true;
2076
2077 if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2078 Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
2079 Type *DerefTy = PtrTy->getPointerElementType();
2080 if (DerefTy->isVectorTy() && DerefTy->getVectorIsScalable() &&
2081 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2082 return true;
2083 }
2084
2085 return false;
2086 }
2087};
2088
2089inline VScaleVal_match m_VScale(const DataLayout &DL) {
2090 return VScaleVal_match(DL);
2091}
2092
2093} // end namespace PatternMatch
2094} // end namespace llvm
2095
2096#endif // LLVM_IR_PATTERNMATCH_H