Bug Summary

File:llvm/include/llvm/IR/Instructions.h
Warning:line 1728, column 19
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstCombineSelect.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Transforms/InstCombine -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp

1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitSelect function.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/Optional.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CmpInstAnalysis.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/IRBuilder.h"
27#include "llvm/IR/InstrTypes.h"
28#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/IR/PatternMatch.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/User.h"
36#include "llvm/IR/Value.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/KnownBits.h"
40#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41#include <cassert>
42#include <utility>
43
44using namespace llvm;
45using namespace PatternMatch;
46
47#define DEBUG_TYPE"instcombine" "instcombine"
48
49static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50 SelectPatternFlavor SPF, Value *A, Value *B) {
51 CmpInst::Predicate Pred = getMinMaxPred(SPF);
52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate")((CmpInst::isIntPredicate(Pred) && "Expected integer predicate"
) ? static_cast<void> (0) : __assert_fail ("CmpInst::isIntPredicate(Pred) && \"Expected integer predicate\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 52, __PRETTY_FUNCTION__))
;
53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54}
55
56/// Replace a select operand based on an equality comparison with the identity
57/// constant of a binop.
58static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59 const TargetLibraryInfo &TLI,
60 InstCombiner &IC) {
61 // The select condition must be an equality compare with a constant operand.
62 Value *X;
63 Constant *C;
64 CmpInst::Predicate Pred;
65 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
66 return nullptr;
67
68 bool IsEq;
69 if (ICmpInst::isEquality(Pred))
70 IsEq = Pred == ICmpInst::ICMP_EQ;
71 else if (Pred == FCmpInst::FCMP_OEQ)
72 IsEq = true;
73 else if (Pred == FCmpInst::FCMP_UNE)
74 IsEq = false;
75 else
76 return nullptr;
77
78 // A select operand must be a binop.
79 BinaryOperator *BO;
80 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
81 return nullptr;
82
83 // The compare constant must be the identity constant for that binop.
84 // If this a floating-point compare with 0.0, any zero constant will do.
85 Type *Ty = BO->getType();
86 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
87 if (IdC != C) {
88 if (!IdC || !CmpInst::isFPPredicate(Pred))
89 return nullptr;
90 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
91 return nullptr;
92 }
93
94 // Last, match the compare variable operand with a binop operand.
95 Value *Y;
96 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
97 return nullptr;
98 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
99 return nullptr;
100
101 // +0.0 compares equal to -0.0, and so it does not behave as required for this
102 // transform. Bail out if we can not exclude that possibility.
103 if (isa<FPMathOperator>(BO))
104 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
105 return nullptr;
106
107 // BO = binop Y, X
108 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
109 // =>
110 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
111 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
112}
113
114/// This folds:
115/// select (icmp eq (and X, C1)), TC, FC
116/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117/// To something like:
118/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119/// Or:
120/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121/// With some variations depending if FC is larger than TC, or the shift
122/// isn't needed, or the bit widths don't match.
123static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124 InstCombiner::BuilderTy &Builder) {
125 const APInt *SelTC, *SelFC;
126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127 !match(Sel.getFalseValue(), m_APInt(SelFC)))
128 return nullptr;
129
130 // If this is a vector select, we need a vector compare.
131 Type *SelType = Sel.getType();
132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133 return nullptr;
134
135 Value *V;
136 APInt AndMask;
137 bool CreateAnd = false;
138 ICmpInst::Predicate Pred = Cmp->getPredicate();
139 if (ICmpInst::isEquality(Pred)) {
140 if (!match(Cmp->getOperand(1), m_Zero()))
141 return nullptr;
142
143 V = Cmp->getOperand(0);
144 const APInt *AndRHS;
145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146 return nullptr;
147
148 AndMask = *AndRHS;
149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150 Pred, V, AndMask)) {
151 assert(ICmpInst::isEquality(Pred) && "Not equality test?")((ICmpInst::isEquality(Pred) && "Not equality test?")
? static_cast<void> (0) : __assert_fail ("ICmpInst::isEquality(Pred) && \"Not equality test?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 151, __PRETTY_FUNCTION__))
;
152 if (!AndMask.isPowerOf2())
153 return nullptr;
154
155 CreateAnd = true;
156 } else {
157 return nullptr;
158 }
159
160 // In general, when both constants are non-zero, we would need an offset to
161 // replace the select. This would require more instructions than we started
162 // with. But there's one special-case that we handle here because it can
163 // simplify/reduce the instructions.
164 APInt TC = *SelTC;
165 APInt FC = *SelFC;
166 if (!TC.isNullValue() && !FC.isNullValue()) {
167 // If the select constants differ by exactly one bit and that's the same
168 // bit that is masked and checked by the select condition, the select can
169 // be replaced by bitwise logic to set/clear one bit of the constant result.
170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171 return nullptr;
172 if (CreateAnd) {
173 // If we have to create an 'and', then we must kill the cmp to not
174 // increase the instruction count.
175 if (!Cmp->hasOneUse())
176 return nullptr;
177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178 }
179 bool ExtraBitInTC = TC.ugt(FC);
180 if (Pred == ICmpInst::ICMP_EQ) {
181 // If the masked bit in V is clear, clear or set the bit in the result:
182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184 Constant *C = ConstantInt::get(SelType, TC);
185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186 }
187 if (Pred == ICmpInst::ICMP_NE) {
188 // If the masked bit in V is set, set or clear the bit in the result:
189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191 Constant *C = ConstantInt::get(SelType, FC);
192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193 }
194 llvm_unreachable("Only expecting equality predicates")::llvm::llvm_unreachable_internal("Only expecting equality predicates"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 194)
;
195 }
196
197 // Make sure one of the select arms is a power-of-2.
198 if (!TC.isPowerOf2() && !FC.isPowerOf2())
199 return nullptr;
200
201 // Determine which shift is needed to transform result of the 'and' into the
202 // desired result.
203 const APInt &ValC = !TC.isNullValue() ? TC : FC;
204 unsigned ValZeros = ValC.logBase2();
205 unsigned AndZeros = AndMask.logBase2();
206
207 // Insert the 'and' instruction on the input to the truncate.
208 if (CreateAnd)
209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210
211 // If types don't match, we can still convert the select by introducing a zext
212 // or a trunc of the 'and'.
213 if (ValZeros > AndZeros) {
214 V = Builder.CreateZExtOrTrunc(V, SelType);
215 V = Builder.CreateShl(V, ValZeros - AndZeros);
216 } else if (ValZeros < AndZeros) {
217 V = Builder.CreateLShr(V, AndZeros - ValZeros);
218 V = Builder.CreateZExtOrTrunc(V, SelType);
219 } else {
220 V = Builder.CreateZExtOrTrunc(V, SelType);
221 }
222
223 // Okay, now we know that everything is set up, we just don't know whether we
224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225 bool ShouldNotVal = !TC.isNullValue();
226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227 if (ShouldNotVal)
228 V = Builder.CreateXor(V, ValC);
229
230 return V;
231}
232
233/// We want to turn code that looks like this:
234/// %C = or %A, %B
235/// %D = select %cond, %C, %A
236/// into:
237/// %C = select %cond, %B, 0
238/// %D = or %A, %C
239///
240/// Assuming that the specified instruction is an operand to the select, return
241/// a bitmask indicating which operands of this instruction are foldable if they
242/// equal the other incoming value of the select.
243static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244 switch (I->getOpcode()) {
245 case Instruction::Add:
246 case Instruction::Mul:
247 case Instruction::And:
248 case Instruction::Or:
249 case Instruction::Xor:
250 return 3; // Can fold through either operand.
251 case Instruction::Sub: // Can only fold on the amount subtracted.
252 case Instruction::Shl: // Can only fold on the shift amount.
253 case Instruction::LShr:
254 case Instruction::AShr:
255 return 1;
256 default:
257 return 0; // Cannot fold
258 }
259}
260
261/// For the same transformation as the previous function, return the identity
262/// constant that goes into the select.
263static APInt getSelectFoldableConstant(BinaryOperator *I) {
264 switch (I->getOpcode()) {
265 default: llvm_unreachable("This cannot happen!")::llvm::llvm_unreachable_internal("This cannot happen!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 265)
;
266 case Instruction::Add:
267 case Instruction::Sub:
268 case Instruction::Or:
269 case Instruction::Xor:
270 case Instruction::Shl:
271 case Instruction::LShr:
272 case Instruction::AShr:
273 return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274 case Instruction::And:
275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276 case Instruction::Mul:
277 return APInt(I->getType()->getScalarSizeInBits(), 1);
278 }
279}
280
281/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283 Instruction *FI) {
284 // Don't break up min/max patterns. The hasOneUse checks below prevent that
285 // for most cases, but vector min/max with bitcasts can be transformed. If the
286 // one-use restrictions are eased for other patterns, we still don't want to
287 // obfuscate min/max.
288 if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289 match(&SI, m_SMax(m_Value(), m_Value())) ||
290 match(&SI, m_UMin(m_Value(), m_Value())) ||
291 match(&SI, m_UMax(m_Value(), m_Value()))))
292 return nullptr;
293
294 // If this is a cast from the same type, merge.
295 Value *Cond = SI.getCondition();
296 Type *CondTy = Cond->getType();
297 if (TI->getNumOperands() == 1 && TI->isCast()) {
298 Type *FIOpndTy = FI->getOperand(0)->getType();
299 if (TI->getOperand(0)->getType() != FIOpndTy)
300 return nullptr;
301
302 // The select condition may be a vector. We may only change the operand
303 // type if the vector width remains the same (and matches the condition).
304 if (CondTy->isVectorTy()) {
305 if (!FIOpndTy->isVectorTy())
306 return nullptr;
307 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308 return nullptr;
309
310 // TODO: If the backend knew how to deal with casts better, we could
311 // remove this limitation. For now, there's too much potential to create
312 // worse codegen by promoting the select ahead of size-altering casts
313 // (PR28160).
314 //
315 // Note that ValueTracking's matchSelectPattern() looks through casts
316 // without checking 'hasOneUse' when it matches min/max patterns, so this
317 // transform may end up happening anyway.
318 if (TI->getOpcode() != Instruction::BitCast &&
319 (!TI->hasOneUse() || !FI->hasOneUse()))
320 return nullptr;
321 } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322 // TODO: The one-use restrictions for a scalar select could be eased if
323 // the fold of a select in visitLoadInst() was enhanced to match a pattern
324 // that includes a cast.
325 return nullptr;
326 }
327
328 // Fold this by inserting a select from the input values.
329 Value *NewSI =
330 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331 SI.getName() + ".v", &SI);
332 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333 TI->getType());
334 }
335
336 // Cond ? -X : -Y --> -(Cond ? X : Y)
337 Value *X, *Y;
338 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339 (TI->hasOneUse() || FI->hasOneUse())) {
340 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341 // TODO: Remove the hack for the binop form when the unary op is optimized
342 // properly with all IR passes.
343 if (TI->getOpcode() != Instruction::FNeg)
344 return UnaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345 return UnaryOperator::CreateFNeg(NewSel);
346 }
347
348 // Only handle binary operators (including two-operand getelementptr) with
349 // one-use here. As with the cast case above, it may be possible to relax the
350 // one-use constraint, but that needs be examined carefully since it may not
351 // reduce the total number of instructions.
352 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354 !TI->hasOneUse() || !FI->hasOneUse())
355 return nullptr;
356
357 // Figure out if the operations have any operands in common.
358 Value *MatchOp, *OtherOpT, *OtherOpF;
359 bool MatchIsOpZero;
360 if (TI->getOperand(0) == FI->getOperand(0)) {
361 MatchOp = TI->getOperand(0);
362 OtherOpT = TI->getOperand(1);
363 OtherOpF = FI->getOperand(1);
364 MatchIsOpZero = true;
365 } else if (TI->getOperand(1) == FI->getOperand(1)) {
366 MatchOp = TI->getOperand(1);
367 OtherOpT = TI->getOperand(0);
368 OtherOpF = FI->getOperand(0);
369 MatchIsOpZero = false;
370 } else if (!TI->isCommutative()) {
371 return nullptr;
372 } else if (TI->getOperand(0) == FI->getOperand(1)) {
373 MatchOp = TI->getOperand(0);
374 OtherOpT = TI->getOperand(1);
375 OtherOpF = FI->getOperand(0);
376 MatchIsOpZero = true;
377 } else if (TI->getOperand(1) == FI->getOperand(0)) {
378 MatchOp = TI->getOperand(1);
379 OtherOpT = TI->getOperand(0);
380 OtherOpF = FI->getOperand(1);
381 MatchIsOpZero = true;
382 } else {
383 return nullptr;
384 }
385
386 // If the select condition is a vector, the operands of the original select's
387 // operands also must be vectors. This may not be the case for getelementptr
388 // for example.
389 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390 !OtherOpF->getType()->isVectorTy()))
391 return nullptr;
392
393 // If we reach here, they do have operations in common.
394 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395 SI.getName() + ".v", &SI);
396 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398 if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400 NewBO->copyIRFlags(TI);
401 NewBO->andIRFlags(FI);
402 return NewBO;
403 }
404 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405 auto *FGEP = cast<GetElementPtrInst>(FI);
406 Type *ElementType = TGEP->getResultElementType();
407 return TGEP->isInBounds() && FGEP->isInBounds()
408 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409 : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410 }
411 llvm_unreachable("Expected BinaryOperator or GEP")::llvm::llvm_unreachable_internal("Expected BinaryOperator or GEP"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 411)
;
412 return nullptr;
413}
414
415static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417 return false;
418 return C1I.isOneValue() || C1I.isAllOnesValue() ||
419 C2I.isOneValue() || C2I.isAllOnesValue();
420}
421
422/// Try to fold the select into one of the operands to allow further
423/// optimization.
424Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425 Value *FalseVal) {
426 // See the comment above GetSelectFoldableOperands for a description of the
427 // transformation we are doing here.
428 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430 if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431 unsigned OpToFold = 0;
432 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433 OpToFold = 1;
434 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435 OpToFold = 2;
436 }
437
438 if (OpToFold) {
439 APInt CI = getSelectFoldableConstant(TVI);
440 Value *OOp = TVI->getOperand(2-OpToFold);
441 // Avoid creating select between 2 constants unless it's selecting
442 // between 0, 1 and -1.
443 const APInt *OOpC;
444 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446 Value *C = ConstantInt::get(OOp->getType(), CI);
447 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448 NewSel->takeName(TVI);
449 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450 FalseVal, NewSel);
451 BO->copyIRFlags(TVI);
452 return BO;
453 }
454 }
455 }
456 }
457 }
458
459 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461 if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462 unsigned OpToFold = 0;
463 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464 OpToFold = 1;
465 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466 OpToFold = 2;
467 }
468
469 if (OpToFold) {
470 APInt CI = getSelectFoldableConstant(FVI);
471 Value *OOp = FVI->getOperand(2-OpToFold);
472 // Avoid creating select between 2 constants unless it's selecting
473 // between 0, 1 and -1.
474 const APInt *OOpC;
475 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477 Value *C = ConstantInt::get(OOp->getType(), CI);
478 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479 NewSel->takeName(FVI);
480 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481 TrueVal, NewSel);
482 BO->copyIRFlags(FVI);
483 return BO;
484 }
485 }
486 }
487 }
488 }
489
490 return nullptr;
491}
492
493/// We want to turn:
494/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495/// into:
496/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497/// Note:
498/// Z may be 0 if lshr is missing.
499/// Worst-case scenario is that we will replace 5 instructions with 5 different
500/// instructions, but we got rid of select.
501static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502 Value *TVal, Value *FVal,
503 InstCombiner::BuilderTy &Builder) {
504 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505 Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507 return nullptr;
508
509 // The TrueVal has general form of: and %B, 1
510 Value *B;
511 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512 return nullptr;
513
514 // Where %B may be optionally shifted: lshr %X, %Z.
515 Value *X, *Z;
516 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517 if (!HasShift)
518 X = B;
519
520 Value *Y;
521 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522 return nullptr;
523
524 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526 Constant *One = ConstantInt::get(SelType, 1);
527 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528 Value *FullMask = Builder.CreateOr(Y, MaskB);
529 Value *MaskedX = Builder.CreateAnd(X, FullMask);
530 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531 return new ZExtInst(ICmpNeZero, SelType);
532}
533
534/// We want to turn:
535/// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536/// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537/// into:
538/// ashr (X, Y)
539static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540 Value *FalseVal,
541 InstCombiner::BuilderTy &Builder) {
542 ICmpInst::Predicate Pred = IC->getPredicate();
543 Value *CmpLHS = IC->getOperand(0);
544 Value *CmpRHS = IC->getOperand(1);
545 if (!CmpRHS->getType()->isIntOrIntVectorTy())
546 return nullptr;
547
548 Value *X, *Y;
549 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550 if ((Pred != ICmpInst::ICMP_SGT ||
551 !match(CmpRHS,
552 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553 (Pred != ICmpInst::ICMP_SLT ||
554 !match(CmpRHS,
555 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556 return nullptr;
557
558 // Canonicalize so that ashr is in FalseVal.
559 if (Pred == ICmpInst::ICMP_SLT)
560 std::swap(TrueVal, FalseVal);
561
562 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564 match(CmpLHS, m_Specific(X))) {
565 const auto *Ashr = cast<Instruction>(FalseVal);
566 // if lshr is not exact and ashr is, this new ashr must not be exact.
567 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568 return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569 }
570
571 return nullptr;
572}
573
574/// We want to turn:
575/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576/// into:
577/// (or (shl (and X, C1), C3), Y)
578/// iff:
579/// C1 and C2 are both powers of 2
580/// where:
581/// C3 = Log(C2) - Log(C1)
582///
583/// This transform handles cases where:
584/// 1. The icmp predicate is inverted
585/// 2. The select operands are reversed
586/// 3. The magnitude of C2 and C1 are flipped
587static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588 Value *FalseVal,
589 InstCombiner::BuilderTy &Builder) {
590 // Only handle integer compares. Also, if this is a vector select, we need a
591 // vector compare.
592 if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594 return nullptr;
595
596 Value *CmpLHS = IC->getOperand(0);
597 Value *CmpRHS = IC->getOperand(1);
598
599 Value *V;
600 unsigned C1Log;
601 bool IsEqualZero;
602 bool NeedAnd = false;
603 if (IC->isEquality()) {
604 if (!match(CmpRHS, m_Zero()))
605 return nullptr;
606
607 const APInt *C1;
608 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609 return nullptr;
610
611 V = CmpLHS;
612 C1Log = C1->logBase2();
613 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615 IC->getPredicate() == ICmpInst::ICMP_SGT) {
616 // We also need to recognize (icmp slt (trunc (X)), 0) and
617 // (icmp sgt (trunc (X)), -1).
618 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620 (!IsEqualZero && !match(CmpRHS, m_Zero())))
621 return nullptr;
622
623 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624 return nullptr;
625
626 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627 NeedAnd = true;
628 } else {
629 return nullptr;
630 }
631
632 const APInt *C2;
633 bool OrOnTrueVal = false;
634 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635 if (!OrOnFalseVal)
636 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637
638 if (!OrOnFalseVal && !OrOnTrueVal)
639 return nullptr;
640
641 Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642
643 unsigned C2Log = C2->logBase2();
644
645 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646 bool NeedShift = C1Log != C2Log;
647 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648 V->getType()->getScalarSizeInBits();
649
650 // Make sure we don't create more instructions than we save.
651 Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652 if ((NeedShift + NeedXor + NeedZExtTrunc) >
653 (IC->hasOneUse() + Or->hasOneUse()))
654 return nullptr;
655
656 if (NeedAnd) {
657 // Insert the AND instruction on the input to the truncate.
658 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660 }
661
662 if (C2Log > C1Log) {
663 V = Builder.CreateZExtOrTrunc(V, Y->getType());
664 V = Builder.CreateShl(V, C2Log - C1Log);
665 } else if (C1Log > C2Log) {
666 V = Builder.CreateLShr(V, C1Log - C2Log);
667 V = Builder.CreateZExtOrTrunc(V, Y->getType());
668 } else
669 V = Builder.CreateZExtOrTrunc(V, Y->getType());
670
671 if (NeedXor)
672 V = Builder.CreateXor(V, *C2);
673
674 return Builder.CreateOr(V, Y);
675}
676
677/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678/// There are 8 commuted/swapped variants of this pattern.
679/// TODO: Also support a - UMIN(a,b) patterns.
680static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681 const Value *TrueVal,
682 const Value *FalseVal,
683 InstCombiner::BuilderTy &Builder) {
684 ICmpInst::Predicate Pred = ICI->getPredicate();
685 if (!ICmpInst::isUnsigned(Pred))
686 return nullptr;
687
688 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689 if (match(TrueVal, m_Zero())) {
690 Pred = ICmpInst::getInversePredicate(Pred);
691 std::swap(TrueVal, FalseVal);
692 }
693 if (!match(FalseVal, m_Zero()))
694 return nullptr;
695
696 Value *A = ICI->getOperand(0);
697 Value *B = ICI->getOperand(1);
698 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700 std::swap(A, B);
701 Pred = ICmpInst::getSwappedPredicate(Pred);
702 }
703
704 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&(((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
"Unexpected isUnsigned predicate!") ? static_cast<void>
(0) : __assert_fail ("(Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && \"Unexpected isUnsigned predicate!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 705, __PRETTY_FUNCTION__))
705 "Unexpected isUnsigned predicate!")(((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
"Unexpected isUnsigned predicate!") ? static_cast<void>
(0) : __assert_fail ("(Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && \"Unexpected isUnsigned predicate!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 705, __PRETTY_FUNCTION__))
;
706
707 // Ensure the sub is of the form:
708 // (a > b) ? a - b : 0 -> usub.sat(a, b)
709 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
710 // Checking for both a-b and a+(-b) as a constant.
711 bool IsNegative = false;
712 const APInt *C;
713 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
714 (match(A, m_APInt(C)) &&
715 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
716 IsNegative = true;
717 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
718 !(match(B, m_APInt(C)) &&
719 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
720 return nullptr;
721
722 // If we are adding a negate and the sub and icmp are used anywhere else, we
723 // would end up with more instructions.
724 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
725 return nullptr;
726
727 // (a > b) ? a - b : 0 -> usub.sat(a, b)
728 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
729 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
730 if (IsNegative)
731 Result = Builder.CreateNeg(Result);
732 return Result;
733}
734
735static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
736 InstCombiner::BuilderTy &Builder) {
737 if (!Cmp->hasOneUse())
738 return nullptr;
739
740 // Match unsigned saturated add with constant.
741 Value *Cmp0 = Cmp->getOperand(0);
742 Value *Cmp1 = Cmp->getOperand(1);
743 ICmpInst::Predicate Pred = Cmp->getPredicate();
744 Value *X;
745 const APInt *C, *CmpC;
746 if (Pred == ICmpInst::ICMP_ULT &&
747 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
748 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
749 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
750 return Builder.CreateBinaryIntrinsic(
751 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
752 }
753
754 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
755 // There are 8 commuted variants.
756 // Canonicalize -1 (saturated result) to true value of the select. Just
757 // swapping the compare operands is legal, because the selected value is the
758 // same in case of equality, so we can interchange u< and u<=.
759 if (match(FVal, m_AllOnes())) {
760 std::swap(TVal, FVal);
761 std::swap(Cmp0, Cmp1);
762 }
763 if (!match(TVal, m_AllOnes()))
764 return nullptr;
765
766 // Canonicalize predicate to 'ULT'.
767 if (Pred == ICmpInst::ICMP_UGT) {
768 Pred = ICmpInst::ICMP_ULT;
769 std::swap(Cmp0, Cmp1);
770 }
771 if (Pred != ICmpInst::ICMP_ULT)
772 return nullptr;
773
774 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
775 Value *Y;
776 if (match(Cmp0, m_Not(m_Value(X))) &&
777 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
778 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
779 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
780 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
781 }
782 // The 'not' op may be included in the sum but not the compare.
783 X = Cmp0;
784 Y = Cmp1;
785 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
786 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
787 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
788 BinaryOperator *BO = cast<BinaryOperator>(FVal);
789 return Builder.CreateBinaryIntrinsic(
790 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
791 }
792 // The overflow may be detected via the add wrapping round.
793 if (match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
794 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
795 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
796 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
797 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
798 }
799
800 return nullptr;
801}
802
803/// Fold the following code sequence:
804/// \code
805/// int a = ctlz(x & -x);
806// x ? 31 - a : a;
807/// \code
808///
809/// into:
810/// cttz(x)
811static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
812 Value *FalseVal,
813 InstCombiner::BuilderTy &Builder) {
814 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
815 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
816 return nullptr;
817
818 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
819 std::swap(TrueVal, FalseVal);
820
821 if (!match(FalseVal,
822 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
823 return nullptr;
824
825 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
826 return nullptr;
827
828 Value *X = ICI->getOperand(0);
829 auto *II = cast<IntrinsicInst>(TrueVal);
830 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
831 return nullptr;
832
833 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
834 II->getType());
835 return CallInst::Create(F, {X, II->getArgOperand(1)});
836}
837
838/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
839/// call to cttz/ctlz with flag 'is_zero_undef' cleared.
840///
841/// For example, we can fold the following code sequence:
842/// \code
843/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
844/// %1 = icmp ne i32 %x, 0
845/// %2 = select i1 %1, i32 %0, i32 32
846/// \code
847///
848/// into:
849/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
850static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
851 InstCombiner::BuilderTy &Builder) {
852 ICmpInst::Predicate Pred = ICI->getPredicate();
853 Value *CmpLHS = ICI->getOperand(0);
854 Value *CmpRHS = ICI->getOperand(1);
855
856 // Check if the condition value compares a value for equality against zero.
857 if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
858 return nullptr;
859
860 Value *SelectArg = FalseVal;
861 Value *ValueOnZero = TrueVal;
862 if (Pred == ICmpInst::ICMP_NE)
863 std::swap(SelectArg, ValueOnZero);
864
865 // Skip zero extend/truncate.
866 Value *Count = nullptr;
867 if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
868 !match(SelectArg, m_Trunc(m_Value(Count))))
869 Count = SelectArg;
870
871 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
872 // input to the cttz/ctlz is used as LHS for the compare instruction.
873 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
874 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
875 return nullptr;
876
877 IntrinsicInst *II = cast<IntrinsicInst>(Count);
878
879 // Check if the value propagated on zero is a constant number equal to the
880 // sizeof in bits of 'Count'.
881 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
882 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
883 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
884 // true to false on this flag, so we can replace it for all users.
885 II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
886 return SelectArg;
887 }
888
889 // If the ValueOnZero is not the bitwidth, we can at least make use of the
890 // fact that the cttz/ctlz result will not be used if the input is zero, so
891 // it's okay to relax it to undef for that case.
892 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
893 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
894
895 return nullptr;
896}
897
898/// Return true if we find and adjust an icmp+select pattern where the compare
899/// is with a constant that can be incremented or decremented to match the
900/// minimum or maximum idiom.
901static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
902 ICmpInst::Predicate Pred = Cmp.getPredicate();
903 Value *CmpLHS = Cmp.getOperand(0);
904 Value *CmpRHS = Cmp.getOperand(1);
905 Value *TrueVal = Sel.getTrueValue();
906 Value *FalseVal = Sel.getFalseValue();
907
908 // We may move or edit the compare, so make sure the select is the only user.
909 const APInt *CmpC;
910 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
911 return false;
912
913 // These transforms only work for selects of integers or vector selects of
914 // integer vectors.
915 Type *SelTy = Sel.getType();
916 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
917 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
918 return false;
919
920 Constant *AdjustedRHS;
921 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
922 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
923 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
924 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
925 else
926 return false;
927
928 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
929 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
930 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
931 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
932 ; // Nothing to do here. Values match without any sign/zero extension.
933 }
934 // Types do not match. Instead of calculating this with mixed types, promote
935 // all to the larger type. This enables scalar evolution to analyze this
936 // expression.
937 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
938 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
939
940 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
941 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
942 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
943 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
944 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
945 CmpLHS = TrueVal;
946 AdjustedRHS = SextRHS;
947 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
948 SextRHS == TrueVal) {
949 CmpLHS = FalseVal;
950 AdjustedRHS = SextRHS;
951 } else if (Cmp.isUnsigned()) {
952 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
953 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
954 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
955 // zext + signed compare cannot be changed:
956 // 0xff <s 0x00, but 0x00ff >s 0x0000
957 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
958 CmpLHS = TrueVal;
959 AdjustedRHS = ZextRHS;
960 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
961 ZextRHS == TrueVal) {
962 CmpLHS = FalseVal;
963 AdjustedRHS = ZextRHS;
964 } else {
965 return false;
966 }
967 } else {
968 return false;
969 }
970 } else {
971 return false;
972 }
973
974 Pred = ICmpInst::getSwappedPredicate(Pred);
975 CmpRHS = AdjustedRHS;
976 std::swap(FalseVal, TrueVal);
977 Cmp.setPredicate(Pred);
978 Cmp.setOperand(0, CmpLHS);
979 Cmp.setOperand(1, CmpRHS);
980 Sel.setOperand(1, TrueVal);
981 Sel.setOperand(2, FalseVal);
982 Sel.swapProfMetadata();
983
984 // Move the compare instruction right before the select instruction. Otherwise
985 // the sext/zext value may be defined after the compare instruction uses it.
986 Cmp.moveBefore(&Sel);
987
988 return true;
989}
990
991/// If this is an integer min/max (icmp + select) with a constant operand,
992/// create the canonical icmp for the min/max operation and canonicalize the
993/// constant to the 'false' operand of the select:
994/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
995/// Note: if C1 != C2, this will change the icmp constant to the existing
996/// constant operand of the select.
997static Instruction *
998canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
999 InstCombiner &IC) {
1000 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1001 return nullptr;
1002
1003 // Canonicalize the compare predicate based on whether we have min or max.
1004 Value *LHS, *RHS;
1005 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1006 if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1007 return nullptr;
1008
1009 // Is this already canonical?
1010 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1011 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1012 Cmp.getPredicate() == CanonicalPred)
1013 return nullptr;
1014
1015 // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1016 // as this may cause an infinite combine loop. Let the sub be folded first.
1017 if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1018 match(RHS, m_Sub(m_Value(), m_Zero())))
1019 return nullptr;
1020
1021 // Create the canonical compare and plug it into the select.
1022 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1023
1024 // If the select operands did not change, we're done.
1025 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1026 return &Sel;
1027
1028 // If we are swapping the select operands, swap the metadata too.
1029 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&((Sel.getTrueValue() == RHS && Sel.getFalseValue() ==
LHS && "Unexpected results from matchSelectPattern")
? static_cast<void> (0) : __assert_fail ("Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && \"Unexpected results from matchSelectPattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1030, __PRETTY_FUNCTION__))
1030 "Unexpected results from matchSelectPattern")((Sel.getTrueValue() == RHS && Sel.getFalseValue() ==
LHS && "Unexpected results from matchSelectPattern")
? static_cast<void> (0) : __assert_fail ("Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && \"Unexpected results from matchSelectPattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1030, __PRETTY_FUNCTION__))
;
1031 Sel.swapValues();
1032 Sel.swapProfMetadata();
1033 return &Sel;
1034}
1035
1036/// There are many select variants for each of ABS/NABS.
1037/// In matchSelectPattern(), there are different compare constants, compare
1038/// predicates/operands and select operands.
1039/// In isKnownNegation(), there are different formats of negated operands.
1040/// Canonicalize all these variants to 1 pattern.
1041/// This makes CSE more likely.
1042static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1043 InstCombiner::BuilderTy &Builder) {
1044 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1045 return nullptr;
1046
1047 // Choose a sign-bit check for the compare (likely simpler for codegen).
1048 // ABS: (X <s 0) ? -X : X
1049 // NABS: (X <s 0) ? X : -X
1050 Value *LHS, *RHS;
1051 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1052 if (SPF != SelectPatternFlavor::SPF_ABS &&
1053 SPF != SelectPatternFlavor::SPF_NABS)
1054 return nullptr;
1055
1056 Value *TVal = Sel.getTrueValue();
1057 Value *FVal = Sel.getFalseValue();
1058 assert(isKnownNegation(TVal, FVal) &&((isKnownNegation(TVal, FVal) && "Unexpected result from matchSelectPattern"
) ? static_cast<void> (0) : __assert_fail ("isKnownNegation(TVal, FVal) && \"Unexpected result from matchSelectPattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1059, __PRETTY_FUNCTION__))
1059 "Unexpected result from matchSelectPattern")((isKnownNegation(TVal, FVal) && "Unexpected result from matchSelectPattern"
) ? static_cast<void> (0) : __assert_fail ("isKnownNegation(TVal, FVal) && \"Unexpected result from matchSelectPattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1059, __PRETTY_FUNCTION__))
;
1060
1061 // The compare may use the negated abs()/nabs() operand, or it may use
1062 // negation in non-canonical form such as: sub A, B.
1063 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1064 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1065
1066 bool CmpCanonicalized = !CmpUsesNegatedOp &&
1067 match(Cmp.getOperand(1), m_ZeroInt()) &&
1068 Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1069 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1070
1071 // Is this already canonical?
1072 if (CmpCanonicalized && RHSCanonicalized)
1073 return nullptr;
1074
1075 // If RHS is not canonical but is used by other instructions, don't
1076 // canonicalize it and potentially increase the instruction count.
1077 if (!RHSCanonicalized)
1078 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1079 return nullptr;
1080
1081 // Create the canonical compare: icmp slt LHS 0.
1082 if (!CmpCanonicalized) {
1083 Cmp.setPredicate(ICmpInst::ICMP_SLT);
1084 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1085 if (CmpUsesNegatedOp)
1086 Cmp.setOperand(0, LHS);
1087 }
1088
1089 // Create the canonical RHS: RHS = sub (0, LHS).
1090 if (!RHSCanonicalized) {
1091 assert(RHS->hasOneUse() && "RHS use number is not right")((RHS->hasOneUse() && "RHS use number is not right"
) ? static_cast<void> (0) : __assert_fail ("RHS->hasOneUse() && \"RHS use number is not right\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1091, __PRETTY_FUNCTION__))
;
1092 RHS = Builder.CreateNeg(LHS);
1093 if (TVal == LHS) {
1094 Sel.setFalseValue(RHS);
1095 FVal = RHS;
1096 } else {
1097 Sel.setTrueValue(RHS);
1098 TVal = RHS;
1099 }
1100 }
1101
1102 // If the select operands do not change, we're done.
1103 if (SPF == SelectPatternFlavor::SPF_NABS) {
1104 if (TVal == LHS)
1105 return &Sel;
1106 assert(FVal == LHS && "Unexpected results from matchSelectPattern")((FVal == LHS && "Unexpected results from matchSelectPattern"
) ? static_cast<void> (0) : __assert_fail ("FVal == LHS && \"Unexpected results from matchSelectPattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1106, __PRETTY_FUNCTION__))
;
1107 } else {
1108 if (FVal == LHS)
1109 return &Sel;
1110 assert(TVal == LHS && "Unexpected results from matchSelectPattern")((TVal == LHS && "Unexpected results from matchSelectPattern"
) ? static_cast<void> (0) : __assert_fail ("TVal == LHS && \"Unexpected results from matchSelectPattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 1110, __PRETTY_FUNCTION__))
;
1111 }
1112
1113 // We are swapping the select operands, so swap the metadata too.
1114 Sel.swapValues();
1115 Sel.swapProfMetadata();
1116 return &Sel;
1117}
1118
1119static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1120 const SimplifyQuery &Q) {
1121 // If this is a binary operator, try to simplify it with the replaced op
1122 // because we know Op and ReplaceOp are equivalant.
1123 // For example: V = X + 1, Op = X, ReplaceOp = 42
1124 // Simplifies as: add(42, 1) --> 43
1125 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1126 if (BO->getOperand(0) == Op)
1127 return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1128 if (BO->getOperand(1) == Op)
1129 return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1130 }
1131
1132 return nullptr;
1133}
1134
1135/// If we have a select with an equality comparison, then we know the value in
1136/// one of the arms of the select. See if substituting this value into an arm
1137/// and simplifying the result yields the same value as the other arm.
1138///
1139/// To make this transform safe, we must drop poison-generating flags
1140/// (nsw, etc) if we simplified to a binop because the select may be guarding
1141/// that poison from propagating. If the existing binop already had no
1142/// poison-generating flags, then this transform can be done by instsimplify.
1143///
1144/// Consider:
1145/// %cmp = icmp eq i32 %x, 2147483647
1146/// %add = add nsw i32 %x, 1
1147/// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1148///
1149/// We can't replace %sel with %add unless we strip away the flags.
1150/// TODO: Wrapping flags could be preserved in some cases with better analysis.
1151static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1152 const SimplifyQuery &Q) {
1153 if (!Cmp.isEquality())
1154 return nullptr;
1155
1156 // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1157 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1158 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1159 std::swap(TrueVal, FalseVal);
1160
1161 // Try each equivalence substitution possibility.
1162 // We have an 'EQ' comparison, so the select's false value will propagate.
1163 // Example:
1164 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1165 // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1166 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1167 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1168 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1169 simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1170 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1171 if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1172 FalseInst->dropPoisonGeneratingFlags();
1173 return FalseVal;
1174 }
1175 return nullptr;
1176}
1177
1178// See if this is a pattern like:
1179// %old_cmp1 = icmp slt i32 %x, C2
1180// %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1181// %old_x_offseted = add i32 %x, C1
1182// %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1183// %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1184// This can be rewritten as more canonical pattern:
1185// %new_cmp1 = icmp slt i32 %x, -C1
1186// %new_cmp2 = icmp sge i32 %x, C0-C1
1187// %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1188// %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1189// Iff -C1 s<= C2 s<= C0-C1
1190// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1191// SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1192static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1193 InstCombiner::BuilderTy &Builder) {
1194 Value *X = Sel0.getTrueValue();
1195 Value *Sel1 = Sel0.getFalseValue();
1196
1197 // First match the condition of the outermost select.
1198 // Said condition must be one-use.
1199 if (!Cmp0.hasOneUse())
1200 return nullptr;
1201 Value *Cmp00 = Cmp0.getOperand(0);
1202 Constant *C0;
1203 if (!match(Cmp0.getOperand(1),
1204 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1205 return nullptr;
1206 // Canonicalize Cmp0 into the form we expect.
1207 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1208 switch (Cmp0.getPredicate()) {
1209 case ICmpInst::Predicate::ICMP_ULT:
1210 break; // Great!
1211 case ICmpInst::Predicate::ICMP_ULE:
1212 // We'd have to increment C0 by one, and for that it must not have all-ones
1213 // element, but then it would have been canonicalized to 'ult' before
1214 // we get here. So we can't do anything useful with 'ule'.
1215 return nullptr;
1216 case ICmpInst::Predicate::ICMP_UGT:
1217 // We want to canonicalize it to 'ult', so we'll need to increment C0,
1218 // which again means it must not have any all-ones elements.
1219 if (!match(C0,
1220 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1221 APInt::getAllOnesValue(
1222 C0->getType()->getScalarSizeInBits()))))
1223 return nullptr; // Can't do, have all-ones element[s].
1224 C0 = AddOne(C0);
1225 std::swap(X, Sel1);
1226 break;
1227 case ICmpInst::Predicate::ICMP_UGE:
1228 // The only way we'd get this predicate if this `icmp` has extra uses,
1229 // but then we won't be able to do this fold.
1230 return nullptr;
1231 default:
1232 return nullptr; // Unknown predicate.
1233 }
1234
1235 // Now that we've canonicalized the ICmp, we know the X we expect;
1236 // the select in other hand should be one-use.
1237 if (!Sel1->hasOneUse())
1238 return nullptr;
1239
1240 // We now can finish matching the condition of the outermost select:
1241 // it should either be the X itself, or an addition of some constant to X.
1242 Constant *C1;
1243 if (Cmp00 == X)
1244 C1 = ConstantInt::getNullValue(Sel0.getType());
1245 else if (!match(Cmp00,
1246 m_Add(m_Specific(X),
1247 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1248 return nullptr;
1249
1250 Value *Cmp1;
1251 ICmpInst::Predicate Pred1;
1252 Constant *C2;
1253 Value *ReplacementLow, *ReplacementHigh;
1254 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1255 m_Value(ReplacementHigh))) ||
1256 !match(Cmp1,
1257 m_ICmp(Pred1, m_Specific(X),
1258 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1259 return nullptr;
1260
1261 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1262 return nullptr; // Not enough one-use instructions for the fold.
1263 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1264 // two comparisons we'll need to build.
1265
1266 // Canonicalize Cmp1 into the form we expect.
1267 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1268 switch (Pred1) {
1269 case ICmpInst::Predicate::ICMP_SLT:
1270 break;
1271 case ICmpInst::Predicate::ICMP_SLE:
1272 // We'd have to increment C2 by one, and for that it must not have signed
1273 // max element, but then it would have been canonicalized to 'slt' before
1274 // we get here. So we can't do anything useful with 'sle'.
1275 return nullptr;
1276 case ICmpInst::Predicate::ICMP_SGT:
1277 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1278 // which again means it must not have any signed max elements.
1279 if (!match(C2,
1280 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1281 APInt::getSignedMaxValue(
1282 C2->getType()->getScalarSizeInBits()))))
1283 return nullptr; // Can't do, have signed max element[s].
1284 C2 = AddOne(C2);
1285 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1286 case ICmpInst::Predicate::ICMP_SGE:
1287 // Also non-canonical, but here we don't need to change C2,
1288 // so we don't have any restrictions on C2, so we can just handle it.
1289 std::swap(ReplacementLow, ReplacementHigh);
1290 break;
1291 default:
1292 return nullptr; // Unknown predicate.
1293 }
1294
1295 // The thresholds of this clamp-like pattern.
1296 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1297 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1298
1299 // The fold has a precondition 1: C2 s>= ThresholdLow
1300 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1301 ThresholdLowIncl);
1302 if (!match(Precond1, m_One()))
1303 return nullptr;
1304 // The fold has a precondition 2: C2 s<= ThresholdHigh
1305 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1306 ThresholdHighExcl);
1307 if (!match(Precond2, m_One()))
1308 return nullptr;
1309
1310 // All good, finally emit the new pattern.
1311 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1312 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1313 Value *MaybeReplacedLow =
1314 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1315 Instruction *MaybeReplacedHigh =
1316 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1317
1318 return MaybeReplacedHigh;
1319}
1320
1321// If we have
1322// %cmp = icmp [canonical predicate] i32 %x, C0
1323// %r = select i1 %cmp, i32 %y, i32 C1
1324// Where C0 != C1 and %x may be different from %y, see if the constant that we
1325// will have if we flip the strictness of the predicate (i.e. without changing
1326// the result) is identical to the C1 in select. If it matches we can change
1327// original comparison to one with swapped predicate, reuse the constant,
1328// and swap the hands of select.
1329static Instruction *
1330tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1331 InstCombiner &IC) {
1332 ICmpInst::Predicate Pred;
1333 Value *X;
1334 Constant *C0;
1335 if (!match(&Cmp, m_OneUse(m_ICmp(
1336 Pred, m_Value(X),
1337 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1338 return nullptr;
1339
1340 // If comparison predicate is non-relational, we won't be able to do anything.
1341 if (ICmpInst::isEquality(Pred))
1342 return nullptr;
1343
1344 // If comparison predicate is non-canonical, then we certainly won't be able
1345 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1346 if (!isCanonicalPredicate(Pred))
1347 return nullptr;
1348
1349 // If the [input] type of comparison and select type are different, lets abort
1350 // for now. We could try to compare constants with trunc/[zs]ext though.
1351 if (C0->getType() != Sel.getType())
1352 return nullptr;
1353
1354 // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1355
1356 Value *SelVal0, *SelVal1; // We do not care which one is from where.
1357 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1358 // At least one of these values we are selecting between must be a constant
1359 // else we'll never succeed.
1360 if (!match(SelVal0, m_AnyIntegralConstant()) &&
1361 !match(SelVal1, m_AnyIntegralConstant()))
1362 return nullptr;
1363
1364 // Does this constant C match any of the `select` values?
1365 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1366 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1367 };
1368
1369 // If C0 *already* matches true/false value of select, we are done.
1370 if (MatchesSelectValue(C0))
1371 return nullptr;
1372
1373 // Check the constant we'd have with flipped-strictness predicate.
1374 auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0);
1375 if (!FlippedStrictness)
1376 return nullptr;
1377
1378 // If said constant doesn't match either, then there is no hope,
1379 if (!MatchesSelectValue(FlippedStrictness->second))
1380 return nullptr;
1381
1382 // It matched! Lets insert the new comparison just before select.
1383 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1384 IC.Builder.SetInsertPoint(&Sel);
1385
1386 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1387 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1388 Cmp.getName() + ".inv");
1389 IC.replaceOperand(Sel, 0, NewCmp);
1390 Sel.swapValues();
1391 Sel.swapProfMetadata();
1392
1393 return &Sel;
1394}
1395
1396/// Visit a SelectInst that has an ICmpInst as its first operand.
1397Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1398 ICmpInst *ICI) {
1399 if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1400 return replaceInstUsesWith(SI, V);
1401
1402 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1403 return NewSel;
1404
1405 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1406 return NewAbs;
1407
1408 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1409 return NewAbs;
1410
1411 if (Instruction *NewSel =
1412 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1413 return NewSel;
1414
1415 bool Changed = adjustMinMax(SI, *ICI);
1416
1417 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1418 return replaceInstUsesWith(SI, V);
1419
1420 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1421 Value *TrueVal = SI.getTrueValue();
1422 Value *FalseVal = SI.getFalseValue();
1423 ICmpInst::Predicate Pred = ICI->getPredicate();
1424 Value *CmpLHS = ICI->getOperand(0);
1425 Value *CmpRHS = ICI->getOperand(1);
1426 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1427 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1428 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1429 SI.setOperand(1, CmpRHS);
1430 Changed = true;
1431 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1432 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1433 SI.setOperand(2, CmpRHS);
1434 Changed = true;
1435 }
1436 }
1437
1438 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1439 // decomposeBitTestICmp() might help.
1440 {
1441 unsigned BitWidth =
1442 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1443 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1444 Value *X;
1445 const APInt *Y, *C;
1446 bool TrueWhenUnset;
1447 bool IsBitTest = false;
1448 if (ICmpInst::isEquality(Pred) &&
1449 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1450 match(CmpRHS, m_Zero())) {
1451 IsBitTest = true;
1452 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1453 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1454 X = CmpLHS;
1455 Y = &MinSignedValue;
1456 IsBitTest = true;
1457 TrueWhenUnset = false;
1458 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1459 X = CmpLHS;
1460 Y = &MinSignedValue;
1461 IsBitTest = true;
1462 TrueWhenUnset = true;
1463 }
1464 if (IsBitTest) {
1465 Value *V = nullptr;
1466 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1467 if (TrueWhenUnset && TrueVal == X &&
1468 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1469 V = Builder.CreateAnd(X, ~(*Y));
1470 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1471 else if (!TrueWhenUnset && FalseVal == X &&
1472 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1473 V = Builder.CreateAnd(X, ~(*Y));
1474 // (X & Y) == 0 ? X ^ Y : X --> X | Y
1475 else if (TrueWhenUnset && FalseVal == X &&
1476 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1477 V = Builder.CreateOr(X, *Y);
1478 // (X & Y) != 0 ? X : X ^ Y --> X | Y
1479 else if (!TrueWhenUnset && TrueVal == X &&
1480 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1481 V = Builder.CreateOr(X, *Y);
1482
1483 if (V)
1484 return replaceInstUsesWith(SI, V);
1485 }
1486 }
1487
1488 if (Instruction *V =
1489 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1490 return V;
1491
1492 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1493 return V;
1494
1495 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1496 return replaceInstUsesWith(SI, V);
1497
1498 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1499 return replaceInstUsesWith(SI, V);
1500
1501 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1502 return replaceInstUsesWith(SI, V);
1503
1504 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1505 return replaceInstUsesWith(SI, V);
1506
1507 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1508 return replaceInstUsesWith(SI, V);
1509
1510 return Changed ? &SI : nullptr;
1511}
1512
1513/// SI is a select whose condition is a PHI node (but the two may be in
1514/// different blocks). See if the true/false values (V) are live in all of the
1515/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1516///
1517/// X = phi [ C1, BB1], [C2, BB2]
1518/// Y = add
1519/// Z = select X, Y, 0
1520///
1521/// because Y is not live in BB1/BB2.
1522static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1523 const SelectInst &SI) {
1524 // If the value is a non-instruction value like a constant or argument, it
1525 // can always be mapped.
1526 const Instruction *I = dyn_cast<Instruction>(V);
1527 if (!I) return true;
1528
1529 // If V is a PHI node defined in the same block as the condition PHI, we can
1530 // map the arguments.
1531 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1532
1533 if (const PHINode *VP = dyn_cast<PHINode>(I))
1534 if (VP->getParent() == CondPHI->getParent())
1535 return true;
1536
1537 // Otherwise, if the PHI and select are defined in the same block and if V is
1538 // defined in a different block, then we can transform it.
1539 if (SI.getParent() == CondPHI->getParent() &&
1540 I->getParent() != CondPHI->getParent())
1541 return true;
1542
1543 // Otherwise we have a 'hard' case and we can't tell without doing more
1544 // detailed dominator based analysis, punt.
1545 return false;
1546}
1547
1548/// We have an SPF (e.g. a min or max) of an SPF of the form:
1549/// SPF2(SPF1(A, B), C)
1550Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1551 SelectPatternFlavor SPF1,
1552 Value *A, Value *B,
1553 Instruction &Outer,
1554 SelectPatternFlavor SPF2, Value *C) {
1555 if (Outer.getType() != Inner->getType())
1556 return nullptr;
1557
1558 if (C == A || C == B) {
1559 // MAX(MAX(A, B), B) -> MAX(A, B)
1560 // MIN(MIN(a, b), a) -> MIN(a, b)
1561 // TODO: This could be done in instsimplify.
1562 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1563 return replaceInstUsesWith(Outer, Inner);
1564
1565 // MAX(MIN(a, b), a) -> a
1566 // MIN(MAX(a, b), a) -> a
1567 // TODO: This could be done in instsimplify.
1568 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1569 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1570 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1571 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1572 return replaceInstUsesWith(Outer, C);
1573 }
1574
1575 if (SPF1 == SPF2) {
1576 const APInt *CB, *CC;
1577 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1578 // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1579 // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1580 // TODO: This could be done in instsimplify.
1581 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1582 (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1583 (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1584 (SPF1 == SPF_SMAX && CB->sge(*CC)))
1585 return replaceInstUsesWith(Outer, Inner);
1586
1587 // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1588 // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1589 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1590 (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1591 (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1592 (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1593 Outer.replaceUsesOfWith(Inner, A);
1594 return &Outer;
1595 }
1596 }
1597 }
1598
1599 // max(max(A, B), min(A, B)) --> max(A, B)
1600 // min(min(A, B), max(A, B)) --> min(A, B)
1601 // TODO: This could be done in instsimplify.
1602 if (SPF1 == SPF2 &&
1603 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1604 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1605 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1606 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1607 return replaceInstUsesWith(Outer, Inner);
1608
1609 // ABS(ABS(X)) -> ABS(X)
1610 // NABS(NABS(X)) -> NABS(X)
1611 // TODO: This could be done in instsimplify.
1612 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1613 return replaceInstUsesWith(Outer, Inner);
1614 }
1615
1616 // ABS(NABS(X)) -> ABS(X)
1617 // NABS(ABS(X)) -> NABS(X)
1618 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1619 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1620 SelectInst *SI = cast<SelectInst>(Inner);
1621 Value *NewSI =
1622 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1623 SI->getTrueValue(), SI->getName(), SI);
1624 return replaceInstUsesWith(Outer, NewSI);
1625 }
1626
1627 auto IsFreeOrProfitableToInvert =
1628 [&](Value *V, Value *&NotV, bool &ElidesXor) {
1629 if (match(V, m_Not(m_Value(NotV)))) {
1630 // If V has at most 2 uses then we can get rid of the xor operation
1631 // entirely.
1632 ElidesXor |= !V->hasNUsesOrMore(3);
1633 return true;
1634 }
1635
1636 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1637 NotV = nullptr;
1638 return true;
1639 }
1640
1641 return false;
1642 };
1643
1644 Value *NotA, *NotB, *NotC;
1645 bool ElidesXor = false;
1646
1647 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1648 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1649 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1650 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1651 //
1652 // This transform is performance neutral if we can elide at least one xor from
1653 // the set of three operands, since we'll be tacking on an xor at the very
1654 // end.
1655 if (SelectPatternResult::isMinOrMax(SPF1) &&
1656 SelectPatternResult::isMinOrMax(SPF2) &&
1657 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1658 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1659 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1660 if (!NotA)
1661 NotA = Builder.CreateNot(A);
1662 if (!NotB)
1663 NotB = Builder.CreateNot(B);
1664 if (!NotC)
1665 NotC = Builder.CreateNot(C);
1666
1667 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1668 NotB);
1669 Value *NewOuter = Builder.CreateNot(
1670 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1671 return replaceInstUsesWith(Outer, NewOuter);
1672 }
1673
1674 return nullptr;
1675}
1676
1677/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1678/// This is even legal for FP.
1679static Instruction *foldAddSubSelect(SelectInst &SI,
1680 InstCombiner::BuilderTy &Builder) {
1681 Value *CondVal = SI.getCondition();
1682 Value *TrueVal = SI.getTrueValue();
1683 Value *FalseVal = SI.getFalseValue();
1684 auto *TI = dyn_cast<Instruction>(TrueVal);
1685 auto *FI = dyn_cast<Instruction>(FalseVal);
1686 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1687 return nullptr;
1688
1689 Instruction *AddOp = nullptr, *SubOp = nullptr;
1690 if ((TI->getOpcode() == Instruction::Sub &&
1691 FI->getOpcode() == Instruction::Add) ||
1692 (TI->getOpcode() == Instruction::FSub &&
1693 FI->getOpcode() == Instruction::FAdd)) {
1694 AddOp = FI;
1695 SubOp = TI;
1696 } else if ((FI->getOpcode() == Instruction::Sub &&
1697 TI->getOpcode() == Instruction::Add) ||
1698 (FI->getOpcode() == Instruction::FSub &&
1699 TI->getOpcode() == Instruction::FAdd)) {
1700 AddOp = TI;
1701 SubOp = FI;
1702 }
1703
1704 if (AddOp) {
1705 Value *OtherAddOp = nullptr;
1706 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1707 OtherAddOp = AddOp->getOperand(1);
1708 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1709 OtherAddOp = AddOp->getOperand(0);
1710 }
1711
1712 if (OtherAddOp) {
1713 // So at this point we know we have (Y -> OtherAddOp):
1714 // select C, (add X, Y), (sub X, Z)
1715 Value *NegVal; // Compute -Z
1716 if (SI.getType()->isFPOrFPVectorTy()) {
1717 NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1718 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1719 FastMathFlags Flags = AddOp->getFastMathFlags();
1720 Flags &= SubOp->getFastMathFlags();
1721 NegInst->setFastMathFlags(Flags);
1722 }
1723 } else {
1724 NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1725 }
1726
1727 Value *NewTrueOp = OtherAddOp;
1728 Value *NewFalseOp = NegVal;
1729 if (AddOp != TI)
1730 std::swap(NewTrueOp, NewFalseOp);
1731 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1732 SI.getName() + ".p", &SI);
1733
1734 if (SI.getType()->isFPOrFPVectorTy()) {
1735 Instruction *RI =
1736 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1737
1738 FastMathFlags Flags = AddOp->getFastMathFlags();
1739 Flags &= SubOp->getFastMathFlags();
1740 RI->setFastMathFlags(Flags);
1741 return RI;
1742 } else
1743 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1744 }
1745 }
1746 return nullptr;
1747}
1748
1749/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1750/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1751/// Along with a number of patterns similar to:
1752/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1753/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1754static Instruction *
1755foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1756 Value *CondVal = SI.getCondition();
1757 Value *TrueVal = SI.getTrueValue();
1758 Value *FalseVal = SI.getFalseValue();
1759
1760 WithOverflowInst *II;
1761 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1762 !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1763 return nullptr;
1764
1765 Value *X = II->getLHS();
1766 Value *Y = II->getRHS();
1767
1768 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1769 Type *Ty = Limit->getType();
1770
1771 ICmpInst::Predicate Pred;
1772 Value *TrueVal, *FalseVal, *Op;
1773 const APInt *C;
1774 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1775 m_Value(TrueVal), m_Value(FalseVal))))
1776 return false;
1777
1778 auto IsZeroOrOne = [](const APInt &C) {
1779 return C.isNullValue() || C.isOneValue();
1780 };
1781 auto IsMinMax = [&](Value *Min, Value *Max) {
1782 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1783 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1784 return match(Min, m_SpecificInt(MinVal)) &&
1785 match(Max, m_SpecificInt(MaxVal));
1786 };
1787
1788 if (Op != X && Op != Y)
1789 return false;
1790
1791 if (IsAdd) {
1792 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1793 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1794 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1795 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1796 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1797 IsMinMax(TrueVal, FalseVal))
1798 return true;
1799 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1800 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1801 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1802 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1803 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1804 IsMinMax(FalseVal, TrueVal))
1805 return true;
1806 } else {
1807 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1808 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1809 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1810 IsMinMax(TrueVal, FalseVal))
1811 return true;
1812 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1813 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1814 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1815 IsMinMax(FalseVal, TrueVal))
1816 return true;
1817 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1818 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1819 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1820 IsMinMax(FalseVal, TrueVal))
1821 return true;
1822 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1823 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1824 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1825 IsMinMax(TrueVal, FalseVal))
1826 return true;
1827 }
1828
1829 return false;
1830 };
1831
1832 Intrinsic::ID NewIntrinsicID;
1833 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1834 match(TrueVal, m_AllOnes()))
1835 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1836 NewIntrinsicID = Intrinsic::uadd_sat;
1837 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1838 match(TrueVal, m_Zero()))
1839 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1840 NewIntrinsicID = Intrinsic::usub_sat;
1841 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1842 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1843 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1844 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1845 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1846 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1847 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1848 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1849 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1850 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1851 NewIntrinsicID = Intrinsic::sadd_sat;
1852 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1853 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1854 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1855 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1856 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1857 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1858 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1859 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1860 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1861 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1862 NewIntrinsicID = Intrinsic::ssub_sat;
1863 else
1864 return nullptr;
1865
1866 Function *F =
1867 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1868 return CallInst::Create(F, {X, Y});
1869}
1870
1871Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1872 Constant *C;
1873 if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1874 !match(Sel.getFalseValue(), m_Constant(C)))
1875 return nullptr;
1876
1877 Instruction *ExtInst;
1878 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1879 !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1880 return nullptr;
1881
1882 auto ExtOpcode = ExtInst->getOpcode();
1883 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1884 return nullptr;
1885
1886 // If we are extending from a boolean type or if we can create a select that
1887 // has the same size operands as its condition, try to narrow the select.
1888 Value *X = ExtInst->getOperand(0);
1889 Type *SmallType = X->getType();
1890 Value *Cond = Sel.getCondition();
1891 auto *Cmp = dyn_cast<CmpInst>(Cond);
1892 if (!SmallType->isIntOrIntVectorTy(1) &&
1893 (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1894 return nullptr;
1895
1896 // If the constant is the same after truncation to the smaller type and
1897 // extension to the original type, we can narrow the select.
1898 Type *SelType = Sel.getType();
1899 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1900 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1901 if (ExtC == C) {
1902 Value *TruncCVal = cast<Value>(TruncC);
1903 if (ExtInst == Sel.getFalseValue())
1904 std::swap(X, TruncCVal);
1905
1906 // select Cond, (ext X), C --> ext(select Cond, X, C')
1907 // select Cond, C, (ext X) --> ext(select Cond, C', X)
1908 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1909 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1910 }
1911
1912 // If one arm of the select is the extend of the condition, replace that arm
1913 // with the extension of the appropriate known bool value.
1914 if (Cond == X) {
1915 if (ExtInst == Sel.getTrueValue()) {
1916 // select X, (sext X), C --> select X, -1, C
1917 // select X, (zext X), C --> select X, 1, C
1918 Constant *One = ConstantInt::getTrue(SmallType);
1919 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1920 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1921 } else {
1922 // select X, C, (sext X) --> select X, C, 0
1923 // select X, C, (zext X) --> select X, C, 0
1924 Constant *Zero = ConstantInt::getNullValue(SelType);
1925 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1926 }
1927 }
1928
1929 return nullptr;
1930}
1931
1932/// Try to transform a vector select with a constant condition vector into a
1933/// shuffle for easier combining with other shuffles and insert/extract.
1934static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1935 Value *CondVal = SI.getCondition();
1936 Constant *CondC;
1937 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
8
Taking true branch
1938 return nullptr;
9
Returning null pointer, which participates in a condition later
1939
1940 unsigned NumElts = CondVal->getType()->getVectorNumElements();
1941 SmallVector<Constant *, 16> Mask;
1942 Mask.reserve(NumElts);
1943 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1944 for (unsigned i = 0; i != NumElts; ++i) {
1945 Constant *Elt = CondC->getAggregateElement(i);
1946 if (!Elt)
1947 return nullptr;
1948
1949 if (Elt->isOneValue()) {
1950 // If the select condition element is true, choose from the 1st vector.
1951 Mask.push_back(ConstantInt::get(Int32Ty, i));
1952 } else if (Elt->isNullValue()) {
1953 // If the select condition element is false, choose from the 2nd vector.
1954 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1955 } else if (isa<UndefValue>(Elt)) {
1956 // Undef in a select condition (choose one of the operands) does not mean
1957 // the same thing as undef in a shuffle mask (any value is acceptable), so
1958 // give up.
1959 return nullptr;
1960 } else {
1961 // Bail out on a constant expression.
1962 return nullptr;
1963 }
1964 }
1965
1966 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1967 ConstantVector::get(Mask));
1968}
1969
1970/// If we have a select of vectors with a scalar condition, try to convert that
1971/// to a vector select by splatting the condition. A splat may get folded with
1972/// other operations in IR and having all operands of a select be vector types
1973/// is likely better for vector codegen.
1974static Instruction *canonicalizeScalarSelectOfVecs(
1975 SelectInst &Sel, InstCombiner &IC) {
1976 Type *Ty = Sel.getType();
1977 if (!Ty->isVectorTy())
13
Calling 'Type::isVectorTy'
16
Returning from 'Type::isVectorTy'
17
Taking true branch
1978 return nullptr;
18
Returning null pointer, which participates in a condition later
1979
1980 // We can replace a single-use extract with constant index.
1981 Value *Cond = Sel.getCondition();
1982 if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt()))))
1983 return nullptr;
1984
1985 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1986 // Splatting the extracted condition reduces code (we could directly create a
1987 // splat shuffle of the source vector to eliminate the intermediate step).
1988 unsigned NumElts = Ty->getVectorNumElements();
1989 return IC.replaceOperand(Sel, 0, IC.Builder.CreateVectorSplat(NumElts, Cond));
1990}
1991
1992/// Reuse bitcasted operands between a compare and select:
1993/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1994/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1995static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1996 InstCombiner::BuilderTy &Builder) {
1997 Value *Cond = Sel.getCondition();
1998 Value *TVal = Sel.getTrueValue();
1999 Value *FVal = Sel.getFalseValue();
2000
2001 CmpInst::Predicate Pred;
2002 Value *A, *B;
2003 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2004 return nullptr;
2005
2006 // The select condition is a compare instruction. If the select's true/false
2007 // values are already the same as the compare operands, there's nothing to do.
2008 if (TVal == A || TVal == B || FVal == A || FVal == B)
2009 return nullptr;
2010
2011 Value *C, *D;
2012 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2013 return nullptr;
2014
2015 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2016 Value *TSrc, *FSrc;
2017 if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2018 !match(FVal, m_BitCast(m_Value(FSrc))))
2019 return nullptr;
2020
2021 // If the select true/false values are *different bitcasts* of the same source
2022 // operands, make the select operands the same as the compare operands and
2023 // cast the result. This is the canonical select form for min/max.
2024 Value *NewSel;
2025 if (TSrc == C && FSrc == D) {
2026 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2027 // bitcast (select (cmp A, B), A, B)
2028 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2029 } else if (TSrc == D && FSrc == C) {
2030 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2031 // bitcast (select (cmp A, B), B, A)
2032 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2033 } else {
2034 return nullptr;
2035 }
2036 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2037}
2038
2039/// Try to eliminate select instructions that test the returned flag of cmpxchg
2040/// instructions.
2041///
2042/// If a select instruction tests the returned flag of a cmpxchg instruction and
2043/// selects between the returned value of the cmpxchg instruction its compare
2044/// operand, the result of the select will always be equal to its false value.
2045/// For example:
2046///
2047/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2048/// %1 = extractvalue { i64, i1 } %0, 1
2049/// %2 = extractvalue { i64, i1 } %0, 0
2050/// %3 = select i1 %1, i64 %compare, i64 %2
2051/// ret i64 %3
2052///
2053/// The returned value of the cmpxchg instruction (%2) is the original value
2054/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2055/// must have been equal to %compare. Thus, the result of the select is always
2056/// equal to %2, and the code can be simplified to:
2057///
2058/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2059/// %1 = extractvalue { i64, i1 } %0, 0
2060/// ret i64 %1
2061///
2062static Instruction *foldSelectCmpXchg(SelectInst &SI) {
2063 // A helper that determines if V is an extractvalue instruction whose
2064 // aggregate operand is a cmpxchg instruction and whose single index is equal
2065 // to I. If such conditions are true, the helper returns the cmpxchg
2066 // instruction; otherwise, a nullptr is returned.
2067 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2068 auto *Extract = dyn_cast<ExtractValueInst>(V);
2069 if (!Extract)
2070 return nullptr;
2071 if (Extract->getIndices()[0] != I)
2072 return nullptr;
2073 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2074 };
2075
2076 // If the select has a single user, and this user is a select instruction that
2077 // we can simplify, skip the cmpxchg simplification for now.
2078 if (SI.hasOneUse())
2079 if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2080 if (Select->getCondition() == SI.getCondition())
2081 if (Select->getFalseValue() == SI.getTrueValue() ||
2082 Select->getTrueValue() == SI.getFalseValue())
2083 return nullptr;
2084
2085 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2086 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2087 if (!CmpXchg)
2088 return nullptr;
2089
2090 // Check the true value case: The true value of the select is the returned
2091 // value of the same cmpxchg used by the condition, and the false value is the
2092 // cmpxchg instruction's compare operand.
2093 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2094 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
2095 SI.setTrueValue(SI.getFalseValue());
2096 return &SI;
2097 }
2098
2099 // Check the false value case: The false value of the select is the returned
2100 // value of the same cmpxchg used by the condition, and the true value is the
2101 // cmpxchg instruction's compare operand.
2102 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2103 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
2104 SI.setTrueValue(SI.getFalseValue());
2105 return &SI;
2106 }
2107
2108 return nullptr;
2109}
2110
2111static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2112 Value *Y,
2113 InstCombiner::BuilderTy &Builder) {
2114 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern")((SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"
) ? static_cast<void> (0) : __assert_fail ("SelectPatternResult::isMinOrMax(SPF) && \"Expected min/max pattern\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 2114, __PRETTY_FUNCTION__))
;
2115 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2116 SPF == SelectPatternFlavor::SPF_UMAX;
2117 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2118 // the constant value check to an assert.
2119 Value *A;
2120 const APInt *C1, *C2;
2121 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2122 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2123 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2124 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2125 Value *NewMinMax = createMinMax(Builder, SPF, A,
2126 ConstantInt::get(X->getType(), *C2 - *C1));
2127 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2128 ConstantInt::get(X->getType(), *C1));
2129 }
2130
2131 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2132 match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2133 bool Overflow;
2134 APInt Diff = C2->ssub_ov(*C1, Overflow);
2135 if (!Overflow) {
2136 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2137 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2138 Value *NewMinMax = createMinMax(Builder, SPF, A,
2139 ConstantInt::get(X->getType(), Diff));
2140 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2141 ConstantInt::get(X->getType(), *C1));
2142 }
2143 }
2144
2145 return nullptr;
2146}
2147
2148/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2149Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) {
2150 Type *Ty = MinMax1.getType();
2151
2152 // We are looking for a tree of:
2153 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2154 // Where the min and max could be reversed
2155 Instruction *MinMax2;
2156 BinaryOperator *AddSub;
2157 const APInt *MinValue, *MaxValue;
2158 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2159 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2160 return nullptr;
2161 } else if (match(&MinMax1,
2162 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2163 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2164 return nullptr;
2165 } else
2166 return nullptr;
2167
2168 // Check that the constants clamp a saturate, and that the new type would be
2169 // sensible to convert to.
2170 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2171 return nullptr;
2172 // In what bitwidth can this be treated as saturating arithmetics?
2173 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2174 // FIXME: This isn't quite right for vectors, but using the scalar type is a
2175 // good first approximation for what should be done there.
2176 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2177 return nullptr;
2178
2179 // Also make sure that the number of uses is as expected. The "3"s are for the
2180 // the two items of min/max (the compare and the select).
2181 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2182 return nullptr;
2183
2184 // Create the new type (which can be a vector type)
2185 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2186 // Match the two extends from the add/sub
2187 Value *A, *B;
2188 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2189 return nullptr;
2190 // And check the incoming values are of a type smaller than or equal to the
2191 // size of the saturation. Otherwise the higher bits can cause different
2192 // results.
2193 if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2194 B->getType()->getScalarSizeInBits() > NewBitWidth)
2195 return nullptr;
2196
2197 Intrinsic::ID IntrinsicID;
2198 if (AddSub->getOpcode() == Instruction::Add)
2199 IntrinsicID = Intrinsic::sadd_sat;
2200 else if (AddSub->getOpcode() == Instruction::Sub)
2201 IntrinsicID = Intrinsic::ssub_sat;
2202 else
2203 return nullptr;
2204
2205 // Finally create and return the sat intrinsic, truncated to the new type
2206 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2207 Value *AT = Builder.CreateSExt(A, NewTy);
2208 Value *BT = Builder.CreateSExt(B, NewTy);
2209 Value *Sat = Builder.CreateCall(F, {AT, BT});
2210 return CastInst::Create(Instruction::SExt, Sat, Ty);
2211}
2212
2213/// Reduce a sequence of min/max with a common operand.
2214static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2215 Value *RHS,
2216 InstCombiner::BuilderTy &Builder) {
2217 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max")((SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"
) ? static_cast<void> (0) : __assert_fail ("SelectPatternResult::isMinOrMax(SPF) && \"Expected a min/max\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 2217, __PRETTY_FUNCTION__))
;
2218 // TODO: Allow FP min/max with nnan/nsz.
2219 if (!LHS->getType()->isIntOrIntVectorTy())
2220 return nullptr;
2221
2222 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2223 Value *A, *B, *C, *D;
2224 SelectPatternResult L = matchSelectPattern(LHS, A, B);
2225 SelectPatternResult R = matchSelectPattern(RHS, C, D);
2226 if (SPF != L.Flavor || L.Flavor != R.Flavor)
2227 return nullptr;
2228
2229 // Look for a common operand. The use checks are different than usual because
2230 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2231 // the select.
2232 Value *MinMaxOp = nullptr;
2233 Value *ThirdOp = nullptr;
2234 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2235 // If the LHS is only used in this chain and the RHS is used outside of it,
2236 // reuse the RHS min/max because that will eliminate the LHS.
2237 if (D == A || C == A) {
2238 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2239 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2240 MinMaxOp = RHS;
2241 ThirdOp = B;
2242 } else if (D == B || C == B) {
2243 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2244 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2245 MinMaxOp = RHS;
2246 ThirdOp = A;
2247 }
2248 } else if (!RHS->hasNUsesOrMore(3)) {
2249 // Reuse the LHS. This will eliminate the RHS.
2250 if (D == A || D == B) {
2251 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2252 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2253 MinMaxOp = LHS;
2254 ThirdOp = C;
2255 } else if (C == A || C == B) {
2256 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2257 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2258 MinMaxOp = LHS;
2259 ThirdOp = D;
2260 }
2261 }
2262 if (!MinMaxOp || !ThirdOp)
2263 return nullptr;
2264
2265 CmpInst::Predicate P = getMinMaxPred(SPF);
2266 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2267 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2268}
2269
2270/// Try to reduce a rotate pattern that includes a compare and select into a
2271/// funnel shift intrinsic. Example:
2272/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2273/// --> call llvm.fshl.i32(a, a, b)
2274static Instruction *foldSelectRotate(SelectInst &Sel) {
2275 // The false value of the select must be a rotate of the true value.
2276 Value *Or0, *Or1;
2277 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
2278 return nullptr;
2279
2280 Value *TVal = Sel.getTrueValue();
2281 Value *SA0, *SA1;
2282 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
2283 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
2284 return nullptr;
2285
2286 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
2287 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
2288 if (ShiftOpcode0 == ShiftOpcode1)
2289 return nullptr;
2290
2291 // We have one of these patterns so far:
2292 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
2293 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
2294 // This must be a power-of-2 rotate for a bitmasking transform to be valid.
2295 unsigned Width = Sel.getType()->getScalarSizeInBits();
2296 if (!isPowerOf2_32(Width))
2297 return nullptr;
2298
2299 // Check the shift amounts to see if they are an opposite pair.
2300 Value *ShAmt;
2301 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2302 ShAmt = SA0;
2303 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2304 ShAmt = SA1;
2305 else
2306 return nullptr;
2307
2308 // Finally, see if the select is filtering out a shift-by-zero.
2309 Value *Cond = Sel.getCondition();
2310 ICmpInst::Predicate Pred;
2311 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2312 Pred != ICmpInst::ICMP_EQ)
2313 return nullptr;
2314
2315 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2316 // Convert to funnel shift intrinsic.
2317 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
2318 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
2319 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2320 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2321 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
2322}
2323
2324static Instruction *foldSelectToCopysign(SelectInst &Sel,
2325 InstCombiner::BuilderTy &Builder) {
2326 Value *Cond = Sel.getCondition();
2327 Value *TVal = Sel.getTrueValue();
2328 Value *FVal = Sel.getFalseValue();
2329 Type *SelType = Sel.getType();
2330
2331 // Match select ?, TC, FC where the constants are equal but negated.
2332 // TODO: Generalize to handle a negated variable operand?
2333 const APFloat *TC, *FC;
2334 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2335 !abs(*TC).bitwiseIsEqual(abs(*FC)))
2336 return nullptr;
2337
2338 assert(TC != FC && "Expected equal select arms to simplify")((TC != FC && "Expected equal select arms to simplify"
) ? static_cast<void> (0) : __assert_fail ("TC != FC && \"Expected equal select arms to simplify\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp"
, 2338, __PRETTY_FUNCTION__))
;
2339
2340 Value *X;
2341 const APInt *C;
2342 bool IsTrueIfSignSet;
2343 ICmpInst::Predicate Pred;
2344 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2345 !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType)
2346 return nullptr;
2347
2348 // If needed, negate the value that will be the sign argument of the copysign:
2349 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
2350 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
2351 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
2352 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
2353 if (IsTrueIfSignSet ^ TC->isNegative())
2354 X = Builder.CreateFNegFMF(X, &Sel);
2355
2356 // Canonicalize the magnitude argument as the positive constant since we do
2357 // not care about its sign.
2358 Value *MagArg = TC->isNegative() ? FVal : TVal;
2359 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2360 Sel.getType());
2361 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
2362 CopySign->setFastMathFlags(Sel.getFastMathFlags());
2363 return CopySign;
2364}
2365
2366Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
2367 Value *CondVal = SI.getCondition();
2368 Value *TrueVal = SI.getTrueValue();
2369 Value *FalseVal = SI.getFalseValue();
1
'FalseVal' initialized here
2370 Type *SelType = SI.getType();
2371
2372 // FIXME: Remove this workaround when freeze related patches are done.
2373 // For select with undef operand which feeds into an equality comparison,
2374 // don't simplify it so loop unswitch can know the equality comparison
2375 // may have an undef operand. This is a workaround for PR31652 caused by
2376 // descrepancy about branch on undef between LoopUnswitch and GVN.
2377 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2
Assuming 'TrueVal' is not a 'UndefValue'
3
Assuming 'FalseVal' is not a 'UndefValue'
4
Taking false branch
2378 if (llvm::any_of(SI.users(), [&](User *U) {
2379 ICmpInst *CI = dyn_cast<ICmpInst>(U);
2380 if (CI && CI->isEquality())
2381 return true;
2382 return false;
2383 })) {
2384 return nullptr;
2385 }
2386 }
2387
2388 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
5
Assuming 'V' is null
6
Taking false branch
2389 SQ.getWithInstruction(&SI)))
2390 return replaceInstUsesWith(SI, V);
2391
2392 if (Instruction *I
10.1
'I' is null
10.1
'I' is null
10.1
'I' is null
10.1
'I' is null
10.1
'I' is null
= canonicalizeSelectToShuffle(SI))
7
Calling 'canonicalizeSelectToShuffle'
10
Returning from 'canonicalizeSelectToShuffle'
11
Taking false branch
2393 return I;
2394
2395 if (Instruction *I
19.1
'I' is null
19.1
'I' is null
19.1
'I' is null
19.1
'I' is null
19.1
'I' is null
= canonicalizeScalarSelectOfVecs(SI, *this))
12
Calling 'canonicalizeScalarSelectOfVecs'
19
Returning from 'canonicalizeScalarSelectOfVecs'
20
Taking false branch
2396 return I;
2397
2398 // Canonicalize a one-use integer compare with a non-canonical predicate by
2399 // inverting the predicate and swapping the select operands. This matches a
2400 // compare canonicalization for conditional branches.
2401 // TODO: Should we do the same for FP compares?
2402 CmpInst::Predicate Pred;
2403 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
21
Taking false branch
2404 !isCanonicalPredicate(Pred)) {
2405 // Swap true/false values and condition.
2406 CmpInst *Cond = cast<CmpInst>(CondVal);
2407 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2408 SI.swapValues();
2409 SI.swapProfMetadata();
2410 Worklist.push(Cond);
2411 return &SI;
2412 }
2413
2414 if (SelType->isIntOrIntVectorTy(1) &&
22
Assuming the condition is false
2415 TrueVal->getType() == CondVal->getType()) {
2416 if (match(TrueVal, m_One())) {
2417 // Change: A = select B, true, C --> A = or B, C
2418 return BinaryOperator::CreateOr(CondVal, FalseVal);
2419 }
2420 if (match(TrueVal, m_Zero())) {
2421 // Change: A = select B, false, C --> A = and !B, C
2422 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2423 return BinaryOperator::CreateAnd(NotCond, FalseVal);
2424 }
2425 if (match(FalseVal, m_Zero())) {
2426 // Change: A = select B, C, false --> A = and B, C
2427 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2428 }
2429 if (match(FalseVal, m_One())) {
2430 // Change: A = select B, C, true --> A = or !B, C
2431 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2432 return BinaryOperator::CreateOr(NotCond, TrueVal);
2433 }
2434
2435 // select a, a, b -> a | b
2436 // select a, b, a -> a & b
2437 if (CondVal == TrueVal)
2438 return BinaryOperator::CreateOr(CondVal, FalseVal);
2439 if (CondVal == FalseVal)
2440 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2441
2442 // select a, ~a, b -> (~a) & b
2443 // select a, b, ~a -> (~a) | b
2444 if (match(TrueVal, m_Not(m_Specific(CondVal))))
2445 return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2446 if (match(FalseVal, m_Not(m_Specific(CondVal))))
2447 return BinaryOperator::CreateOr(TrueVal, FalseVal);
2448 }
2449
2450 // Selecting between two integer or vector splat integer constants?
2451 //
2452 // Note that we don't handle a scalar select of vectors:
2453 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2454 // because that may need 3 instructions to splat the condition value:
2455 // extend, insertelement, shufflevector.
2456 if (SelType->isIntOrIntVectorTy() &&
23
Calling 'Type::isIntOrIntVectorTy'
29
Returning from 'Type::isIntOrIntVectorTy'
2457 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2458 // select C, 1, 0 -> zext C to int
2459 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2460 return new ZExtInst(CondVal, SelType);
2461
2462 // select C, -1, 0 -> sext C to int
2463 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2464 return new SExtInst(CondVal, SelType);
2465
2466 // select C, 0, 1 -> zext !C to int
2467 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2468 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2469 return new ZExtInst(NotCond, SelType);
2470 }
2471
2472 // select C, 0, -1 -> sext !C to int
2473 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2474 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2475 return new SExtInst(NotCond, SelType);
2476 }
2477 }
2478
2479 // See if we are selecting two values based on a comparison of the two values.
2480 if (FCmpInst *FCI
30.1
'FCI' is non-null
30.1
'FCI' is non-null
30.1
'FCI' is non-null
30.1
'FCI' is non-null
30.1
'FCI' is non-null
= dyn_cast<FCmpInst>(CondVal)) {
30
Assuming 'CondVal' is a 'FCmpInst'
31
Taking true branch
2481 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2482 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
32
Assuming 'Cmp0' is equal to 'TrueVal'
33
Assuming 'Cmp1' is equal to 'FalseVal'
2483 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2484 // Canonicalize to use ordered comparisons by swapping the select
2485 // operands.
2486 //
2487 // e.g.
2488 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2489 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
34
Calling 'Value::hasOneUse'
38
Returning from 'Value::hasOneUse'
39
Assuming the condition is true
40
Assuming the condition is true
41
Taking true branch
2490 FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2491 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2492 // FIXME: The FMF should propagate from the select, not the fcmp.
2493 Builder.setFastMathFlags(FCI->getFastMathFlags());
2494 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2495 FCI->getName() + ".inv");
2496 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
42
Passing null pointer value via 2nd parameter 'True'
43
Calling 'IRBuilderBase::CreateSelect'
2497 return replaceInstUsesWith(SI, NewSel);
2498 }
2499
2500 // NOTE: if we wanted to, this is where to detect MIN/MAX
2501 }
2502 }
2503
2504 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2505 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2506 // also require nnan because we do not want to unintentionally change the
2507 // sign of a NaN value.
2508 // FIXME: These folds should test/propagate FMF from the select, not the
2509 // fsub or fneg.
2510 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2511 Instruction *FSub;
2512 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2513 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2514 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2515 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2516 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2517 return replaceInstUsesWith(SI, Fabs);
2518 }
2519 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
2520 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2521 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2522 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2523 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2524 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2525 return replaceInstUsesWith(SI, Fabs);
2526 }
2527 // With nnan and nsz:
2528 // (X < +/-0.0) ? -X : X --> fabs(X)
2529 // (X <= +/-0.0) ? -X : X --> fabs(X)
2530 Instruction *FNeg;
2531 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2532 match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2533 match(TrueVal, m_Instruction(FNeg)) &&
2534 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2535 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2536 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2537 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2538 return replaceInstUsesWith(SI, Fabs);
2539 }
2540 // With nnan and nsz:
2541 // (X > +/-0.0) ? X : -X --> fabs(X)
2542 // (X >= +/-0.0) ? X : -X --> fabs(X)
2543 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2544 match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2545 match(FalseVal, m_Instruction(FNeg)) &&
2546 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2547 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2548 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2549 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2550 return replaceInstUsesWith(SI, Fabs);
2551 }
2552
2553 // See if we are selecting two values based on a comparison of the two values.
2554 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2555 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2556 return Result;
2557
2558 if (Instruction *Add = foldAddSubSelect(SI, Builder))
2559 return Add;
2560 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2561 return Add;
2562
2563 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2564 auto *TI = dyn_cast<Instruction>(TrueVal);
2565 auto *FI = dyn_cast<Instruction>(FalseVal);
2566 if (TI && FI && TI->getOpcode() == FI->getOpcode())
2567 if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2568 return IV;
2569
2570 if (Instruction *I = foldSelectExtConst(SI))
2571 return I;
2572
2573 // See if we can fold the select into one of our operands.
2574 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2575 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2576 return FoldI;
2577
2578 Value *LHS, *RHS;
2579 Instruction::CastOps CastOp;
2580 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2581 auto SPF = SPR.Flavor;
2582 if (SPF) {
2583 Value *LHS2, *RHS2;
2584 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2585 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2586 RHS2, SI, SPF, RHS))
2587 return R;
2588 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2589 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2590 RHS2, SI, SPF, LHS))
2591 return R;
2592 // TODO.
2593 // ABS(-X) -> ABS(X)
2594 }
2595
2596 if (SelectPatternResult::isMinOrMax(SPF)) {
2597 // Canonicalize so that
2598 // - type casts are outside select patterns.
2599 // - float clamp is transformed to min/max pattern
2600
2601 bool IsCastNeeded = LHS->getType() != SelType;
2602 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2603 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2604 if (IsCastNeeded ||
2605 (LHS->getType()->isFPOrFPVectorTy() &&
2606 ((CmpLHS != LHS && CmpLHS != RHS) ||
2607 (CmpRHS != LHS && CmpRHS != RHS)))) {
2608 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2609
2610 Value *Cmp;
2611 if (CmpInst::isIntPredicate(MinMaxPred)) {
2612 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2613 } else {
2614 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2615 auto FMF =
2616 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2617 Builder.setFastMathFlags(FMF);
2618 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2619 }
2620
2621 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2622 if (!IsCastNeeded)
2623 return replaceInstUsesWith(SI, NewSI);
2624
2625 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2626 return replaceInstUsesWith(SI, NewCast);
2627 }
2628
2629 // MAX(~a, ~b) -> ~MIN(a, b)
2630 // MAX(~a, C) -> ~MIN(a, ~C)
2631 // MIN(~a, ~b) -> ~MAX(a, b)
2632 // MIN(~a, C) -> ~MAX(a, ~C)
2633 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2634 Value *A;
2635 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2636 !isFreeToInvert(A, A->hasOneUse()) &&
2637 // Passing false to only consider m_Not and constants.
2638 isFreeToInvert(Y, false)) {
2639 Value *B = Builder.CreateNot(Y);
2640 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2641 A, B);
2642 // Copy the profile metadata.
2643 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2644 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2645 // Swap the metadata if the operands are swapped.
2646 if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2647 cast<SelectInst>(NewMinMax)->swapProfMetadata();
2648 }
2649
2650 return BinaryOperator::CreateNot(NewMinMax);
2651 }
2652
2653 return nullptr;
2654 };
2655
2656 if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2657 return I;
2658 if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2659 return I;
2660
2661 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2662 return I;
2663
2664 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2665 return I;
2666 if (Instruction *I = matchSAddSubSat(SI))
2667 return I;
2668 }
2669 }
2670
2671 // Canonicalize select of FP values where NaN and -0.0 are not valid as
2672 // minnum/maxnum intrinsics.
2673 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2674 Value *X, *Y;
2675 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2676 return replaceInstUsesWith(
2677 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2678
2679 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2680 return replaceInstUsesWith(
2681 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2682 }
2683
2684 // See if we can fold the select into a phi node if the condition is a select.
2685 if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2686 // The true/false values have to be live in the PHI predecessor's blocks.
2687 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2688 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2689 if (Instruction *NV = foldOpIntoPhi(SI, PN))
2690 return NV;
2691
2692 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2693 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2694 // select(C, select(C, a, b), c) -> select(C, a, c)
2695 if (TrueSI->getCondition() == CondVal) {
2696 if (SI.getTrueValue() == TrueSI->getTrueValue())
2697 return nullptr;
2698 return replaceOperand(SI, 1, TrueSI->getTrueValue());
2699 }
2700 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2701 // We choose this as normal form to enable folding on the And and shortening
2702 // paths for the values (this helps GetUnderlyingObjects() for example).
2703 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2704 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2705 SI.setOperand(0, And);
2706 SI.setOperand(1, TrueSI->getTrueValue());
2707 return &SI;
2708 }
2709 }
2710 }
2711 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2712 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2713 // select(C, a, select(C, b, c)) -> select(C, a, c)
2714 if (FalseSI->getCondition() == CondVal) {
2715 if (SI.getFalseValue() == FalseSI->getFalseValue())
2716 return nullptr;
2717 return replaceOperand(SI, 2, FalseSI->getFalseValue());
2718 }
2719 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2720 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2721 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2722 SI.setOperand(0, Or);
2723 SI.setOperand(2, FalseSI->getFalseValue());
2724 return &SI;
2725 }
2726 }
2727 }
2728
2729 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2730 // The select might be preventing a division by 0.
2731 switch (BO->getOpcode()) {
2732 default:
2733 return true;
2734 case Instruction::SRem:
2735 case Instruction::URem:
2736 case Instruction::SDiv:
2737 case Instruction::UDiv:
2738 return false;
2739 }
2740 };
2741
2742 // Try to simplify a binop sandwiched between 2 selects with the same
2743 // condition.
2744 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2745 BinaryOperator *TrueBO;
2746 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2747 canMergeSelectThroughBinop(TrueBO)) {
2748 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2749 if (TrueBOSI->getCondition() == CondVal) {
2750 TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2751 Worklist.push(TrueBO);
2752 return &SI;
2753 }
2754 }
2755 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2756 if (TrueBOSI->getCondition() == CondVal) {
2757 TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2758 Worklist.push(TrueBO);
2759 return &SI;
2760 }
2761 }
2762 }
2763
2764 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2765 BinaryOperator *FalseBO;
2766 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2767 canMergeSelectThroughBinop(FalseBO)) {
2768 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2769 if (FalseBOSI->getCondition() == CondVal) {
2770 FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2771 Worklist.push(FalseBO);
2772 return &SI;
2773 }
2774 }
2775 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2776 if (FalseBOSI->getCondition() == CondVal) {
2777 FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2778 Worklist.push(FalseBO);
2779 return &SI;
2780 }
2781 }
2782 }
2783
2784 Value *NotCond;
2785 if (match(CondVal, m_Not(m_Value(NotCond)))) {
2786 replaceOperand(SI, 0, NotCond);
2787 SI.swapValues();
2788 SI.swapProfMetadata();
2789 return &SI;
2790 }
2791
2792 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2793 unsigned VWidth = VecTy->getNumElements();
2794 APInt UndefElts(VWidth, 0);
2795 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2796 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2797 if (V != &SI)
2798 return replaceInstUsesWith(SI, V);
2799 return &SI;
2800 }
2801 }
2802
2803 // If we can compute the condition, there's no need for a select.
2804 // Like the above fold, we are attempting to reduce compile-time cost by
2805 // putting this fold here with limitations rather than in InstSimplify.
2806 // The motivation for this call into value tracking is to take advantage of
2807 // the assumption cache, so make sure that is populated.
2808 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2809 KnownBits Known(1);
2810 computeKnownBits(CondVal, Known, 0, &SI);
2811 if (Known.One.isOneValue())
2812 return replaceInstUsesWith(SI, TrueVal);
2813 if (Known.Zero.isOneValue())
2814 return replaceInstUsesWith(SI, FalseVal);
2815 }
2816
2817 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2818 return BitCastSel;
2819
2820 // Simplify selects that test the returned flag of cmpxchg instructions.
2821 if (Instruction *Select = foldSelectCmpXchg(SI))
2822 return Select;
2823
2824 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
2825 return Select;
2826
2827 if (Instruction *Rot = foldSelectRotate(SI))
2828 return Rot;
2829
2830 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
2831 return Copysign;
2832
2833 return nullptr;
2834}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h

1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/CBindingWrapping.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/TypeSize.h"
25#include <cassert>
26#include <cstdint>
27#include <iterator>
28
29namespace llvm {
30
31template<class GraphType> struct GraphTraits;
32class IntegerType;
33class LLVMContext;
34class PointerType;
35class raw_ostream;
36class StringRef;
37
38/// The instances of the Type class are immutable: once they are created,
39/// they are never changed. Also note that only one instance of a particular
40/// type is ever created. Thus seeing if two types are equal is a matter of
41/// doing a trivial pointer comparison. To enforce that no two equal instances
42/// are created, Type instances can only be created via static factory methods
43/// in class Type and in derived classes. Once allocated, Types are never
44/// free'd.
45///
46class Type {
47public:
48 //===--------------------------------------------------------------------===//
49 /// Definitions of all of the base types for the Type system. Based on this
50 /// value, you can cast to a class defined in DerivedTypes.h.
51 /// Note: If you add an element to this, you need to add an element to the
52 /// Type::getPrimitiveType function, or else things will break!
53 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54 ///
55 enum TypeID {
56 // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
57 VoidTyID = 0, ///< 0: type with no size
58 HalfTyID, ///< 1: 16-bit floating point type
59 FloatTyID, ///< 2: 32-bit floating point type
60 DoubleTyID, ///< 3: 64-bit floating point type
61 X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
62 FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
63 PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
64 LabelTyID, ///< 7: Labels
65 MetadataTyID, ///< 8: Metadata
66 X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
67 TokenTyID, ///< 10: Tokens
68
69 // Derived types... see DerivedTypes.h file.
70 // Make sure FirstDerivedTyID stays up to date!
71 IntegerTyID, ///< 11: Arbitrary bit width integers
72 FunctionTyID, ///< 12: Functions
73 StructTyID, ///< 13: Structures
74 ArrayTyID, ///< 14: Arrays
75 PointerTyID, ///< 15: Pointers
76 VectorTyID ///< 16: SIMD 'packed' format, or other vector type
77 };
78
79private:
80 /// This refers to the LLVMContext in which this type was uniqued.
81 LLVMContext &Context;
82
83 TypeID ID : 8; // The current base type of this type.
84 unsigned SubclassData : 24; // Space for subclasses to store data.
85 // Note that this should be synchronized with
86 // MAX_INT_BITS value in IntegerType class.
87
88protected:
89 friend class LLVMContextImpl;
90
91 explicit Type(LLVMContext &C, TypeID tid)
92 : Context(C), ID(tid), SubclassData(0) {}
93 ~Type() = default;
94
95 unsigned getSubclassData() const { return SubclassData; }
96
97 void setSubclassData(unsigned val) {
98 SubclassData = val;
99 // Ensure we don't have any accidental truncation.
100 assert(getSubclassData() == val && "Subclass data too large for field")((getSubclassData() == val && "Subclass data too large for field"
) ? static_cast<void> (0) : __assert_fail ("getSubclassData() == val && \"Subclass data too large for field\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 100, __PRETTY_FUNCTION__))
;
101 }
102
103 /// Keeps track of how many Type*'s there are in the ContainedTys list.
104 unsigned NumContainedTys = 0;
105
106 /// A pointer to the array of Types contained by this Type. For example, this
107 /// includes the arguments of a function type, the elements of a structure,
108 /// the pointee of a pointer, the element type of an array, etc. This pointer
109 /// may be 0 for types that don't contain other types (Integer, Double,
110 /// Float).
111 Type * const *ContainedTys = nullptr;
112
113 static bool isSequentialType(TypeID TyID) {
114 return TyID == ArrayTyID || TyID == VectorTyID;
115 }
116
117public:
118 /// Print the current type.
119 /// Omit the type details if \p NoDetails == true.
120 /// E.g., let %st = type { i32, i16 }
121 /// When \p NoDetails is true, we only print %st.
122 /// Put differently, \p NoDetails prints the type as if
123 /// inlined with the operands when printing an instruction.
124 void print(raw_ostream &O, bool IsForDebug = false,
125 bool NoDetails = false) const;
126
127 void dump() const;
128
129 /// Return the LLVMContext in which this type was uniqued.
130 LLVMContext &getContext() const { return Context; }
131
132 //===--------------------------------------------------------------------===//
133 // Accessors for working with types.
134 //
135
136 /// Return the type id for the type. This will return one of the TypeID enum
137 /// elements defined above.
138 TypeID getTypeID() const { return ID; }
139
140 /// Return true if this is 'void'.
141 bool isVoidTy() const { return getTypeID() == VoidTyID; }
142
143 /// Return true if this is 'half', a 16-bit IEEE fp type.
144 bool isHalfTy() const { return getTypeID() == HalfTyID; }
145
146 /// Return true if this is 'float', a 32-bit IEEE fp type.
147 bool isFloatTy() const { return getTypeID() == FloatTyID; }
148
149 /// Return true if this is 'double', a 64-bit IEEE fp type.
150 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151
152 /// Return true if this is x86 long double.
153 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154
155 /// Return true if this is 'fp128'.
156 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157
158 /// Return true if this is powerpc long double.
159 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160
161 /// Return true if this is one of the six floating-point types
162 bool isFloatingPointTy() const {
163 return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
164 getTypeID() == DoubleTyID ||
165 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
166 getTypeID() == PPC_FP128TyID;
167 }
168
169 const fltSemantics &getFltSemantics() const {
170 switch (getTypeID()) {
171 case HalfTyID: return APFloat::IEEEhalf();
172 case FloatTyID: return APFloat::IEEEsingle();
173 case DoubleTyID: return APFloat::IEEEdouble();
174 case X86_FP80TyID: return APFloat::x87DoubleExtended();
175 case FP128TyID: return APFloat::IEEEquad();
176 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
177 default: llvm_unreachable("Invalid floating type")::llvm::llvm_unreachable_internal("Invalid floating type", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 177)
;
178 }
179 }
180
181 /// Return true if this is X86 MMX.
182 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
183
184 /// Return true if this is a FP type or a vector of FP.
185 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
186
187 /// Return true if this is 'label'.
188 bool isLabelTy() const { return getTypeID() == LabelTyID; }
189
190 /// Return true if this is 'metadata'.
191 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
192
193 /// Return true if this is 'token'.
194 bool isTokenTy() const { return getTypeID() == TokenTyID; }
195
196 /// True if this is an instance of IntegerType.
197 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
25
Assuming the condition is false
26
Returning zero, which participates in a condition later
198
199 /// Return true if this is an IntegerType of the given width.
200 bool isIntegerTy(unsigned Bitwidth) const;
201
202 /// Return true if this is an integer type or a vector of integer types.
203 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
24
Calling 'Type::isIntegerTy'
27
Returning from 'Type::isIntegerTy'
28
Returning zero, which participates in a condition later
204
205 /// Return true if this is an integer type or a vector of integer types of
206 /// the given width.
207 bool isIntOrIntVectorTy(unsigned BitWidth) const {
208 return getScalarType()->isIntegerTy(BitWidth);
209 }
210
211 /// Return true if this is an integer type or a pointer type.
212 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
213
214 /// True if this is an instance of FunctionType.
215 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
216
217 /// True if this is an instance of StructType.
218 bool isStructTy() const { return getTypeID() == StructTyID; }
219
220 /// True if this is an instance of ArrayType.
221 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
222
223 /// True if this is an instance of PointerType.
224 bool isPointerTy() const { return getTypeID() == PointerTyID; }
225
226 /// Return true if this is a pointer type or a vector of pointer types.
227 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
228
229 /// True if this is an instance of VectorType.
230 bool isVectorTy() const { return getTypeID() == VectorTyID; }
14
Assuming the condition is false
15
Returning zero, which participates in a condition later
231
232 /// Return true if this type could be converted with a lossless BitCast to
233 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
234 /// same size only where no re-interpretation of the bits is done.
235 /// Determine if this type could be losslessly bitcast to Ty
236 bool canLosslesslyBitCastTo(Type *Ty) const;
237
238 /// Return true if this type is empty, that is, it has no elements or all of
239 /// its elements are empty.
240 bool isEmptyTy() const;
241
242 /// Return true if the type is "first class", meaning it is a valid type for a
243 /// Value.
244 bool isFirstClassType() const {
245 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
246 }
247
248 /// Return true if the type is a valid type for a register in codegen. This
249 /// includes all first-class types except struct and array types.
250 bool isSingleValueType() const {
251 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
252 isPointerTy() || isVectorTy();
253 }
254
255 /// Return true if the type is an aggregate type. This means it is valid as
256 /// the first operand of an insertvalue or extractvalue instruction. This
257 /// includes struct and array types, but does not include vector types.
258 bool isAggregateType() const {
259 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
260 }
261
262 /// Return true if it makes sense to take the size of this type. To get the
263 /// actual size for a particular target, it is reasonable to use the
264 /// DataLayout subsystem to do this.
265 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
266 // If it's a primitive, it is always sized.
267 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
268 getTypeID() == PointerTyID ||
269 getTypeID() == X86_MMXTyID)
270 return true;
271 // If it is not something that can have a size (e.g. a function or label),
272 // it doesn't have a size.
273 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
274 getTypeID() != VectorTyID)
275 return false;
276 // Otherwise we have to try harder to decide.
277 return isSizedDerivedType(Visited);
278 }
279
280 /// Return the basic size of this type if it is a primitive type. These are
281 /// fixed by LLVM and are not target-dependent.
282 /// This will return zero if the type does not have a size or is not a
283 /// primitive type.
284 ///
285 /// If this is a scalable vector type, the scalable property will be set and
286 /// the runtime size will be a positive integer multiple of the base size.
287 ///
288 /// Note that this may not reflect the size of memory allocated for an
289 /// instance of the type or the number of bytes that are written when an
290 /// instance of the type is stored to memory. The DataLayout class provides
291 /// additional query functions to provide this information.
292 ///
293 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__));
294
295 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
296 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
297 /// type.
298 unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__));
299
300 /// Return the width of the mantissa of this type. This is only valid on
301 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
302 /// ppc long double), this method returns -1.
303 int getFPMantissaWidth() const;
304
305 /// If this is a vector type, return the element type, otherwise return
306 /// 'this'.
307 Type *getScalarType() const {
308 if (isVectorTy())
309 return getVectorElementType();
310 return const_cast<Type*>(this);
311 }
312
313 //===--------------------------------------------------------------------===//
314 // Type Iteration support.
315 //
316 using subtype_iterator = Type * const *;
317
318 subtype_iterator subtype_begin() const { return ContainedTys; }
319 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
320 ArrayRef<Type*> subtypes() const {
321 return makeArrayRef(subtype_begin(), subtype_end());
322 }
323
324 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
325
326 subtype_reverse_iterator subtype_rbegin() const {
327 return subtype_reverse_iterator(subtype_end());
328 }
329 subtype_reverse_iterator subtype_rend() const {
330 return subtype_reverse_iterator(subtype_begin());
331 }
332
333 /// This method is used to implement the type iterator (defined at the end of
334 /// the file). For derived types, this returns the types 'contained' in the
335 /// derived type.
336 Type *getContainedType(unsigned i) const {
337 assert(i < NumContainedTys && "Index out of range!")((i < NumContainedTys && "Index out of range!") ? static_cast
<void> (0) : __assert_fail ("i < NumContainedTys && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 337, __PRETTY_FUNCTION__))
;
338 return ContainedTys[i];
339 }
340
341 /// Return the number of types in the derived type.
342 unsigned getNumContainedTypes() const { return NumContainedTys; }
343
344 //===--------------------------------------------------------------------===//
345 // Helper methods corresponding to subclass methods. This forces a cast to
346 // the specified subclass and calls its accessor. "getVectorNumElements" (for
347 // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
348 // only intended to cover the core methods that are frequently used, helper
349 // methods should not be added here.
350
351 inline unsigned getIntegerBitWidth() const;
352
353 inline Type *getFunctionParamType(unsigned i) const;
354 inline unsigned getFunctionNumParams() const;
355 inline bool isFunctionVarArg() const;
356
357 inline StringRef getStructName() const;
358 inline unsigned getStructNumElements() const;
359 inline Type *getStructElementType(unsigned N) const;
360
361 inline Type *getSequentialElementType() const {
362 assert(isSequentialType(getTypeID()) && "Not a sequential type!")((isSequentialType(getTypeID()) && "Not a sequential type!"
) ? static_cast<void> (0) : __assert_fail ("isSequentialType(getTypeID()) && \"Not a sequential type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 362, __PRETTY_FUNCTION__))
;
363 return ContainedTys[0];
364 }
365
366 inline uint64_t getArrayNumElements() const;
367
368 Type *getArrayElementType() const {
369 assert(getTypeID() == ArrayTyID)((getTypeID() == ArrayTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == ArrayTyID", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 369, __PRETTY_FUNCTION__))
;
370 return ContainedTys[0];
371 }
372
373 inline bool getVectorIsScalable() const;
374 inline unsigned getVectorNumElements() const;
375 inline ElementCount getVectorElementCount() const;
376 Type *getVectorElementType() const {
377 assert(getTypeID() == VectorTyID)((getTypeID() == VectorTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == VectorTyID", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 377, __PRETTY_FUNCTION__))
;
378 return ContainedTys[0];
379 }
380
381 Type *getPointerElementType() const {
382 assert(getTypeID() == PointerTyID)((getTypeID() == PointerTyID) ? static_cast<void> (0) :
__assert_fail ("getTypeID() == PointerTyID", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 382, __PRETTY_FUNCTION__))
;
383 return ContainedTys[0];
384 }
385
386 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
387 /// whilst keeping the old number of lanes.
388 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
389
390 /// Given scalar/vector integer type, returns a type with elements twice as
391 /// wide as in the original type. For vectors, preserves element count.
392 inline Type *getExtendedType() const;
393
394 /// Get the address space of this pointer or pointer vector type.
395 inline unsigned getPointerAddressSpace() const;
396
397 //===--------------------------------------------------------------------===//
398 // Static members exported by the Type class itself. Useful for getting
399 // instances of Type.
400 //
401
402 /// Return a type based on an identifier.
403 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
404
405 //===--------------------------------------------------------------------===//
406 // These are the builtin types that are always available.
407 //
408 static Type *getVoidTy(LLVMContext &C);
409 static Type *getLabelTy(LLVMContext &C);
410 static Type *getHalfTy(LLVMContext &C);
411 static Type *getFloatTy(LLVMContext &C);
412 static Type *getDoubleTy(LLVMContext &C);
413 static Type *getMetadataTy(LLVMContext &C);
414 static Type *getX86_FP80Ty(LLVMContext &C);
415 static Type *getFP128Ty(LLVMContext &C);
416 static Type *getPPC_FP128Ty(LLVMContext &C);
417 static Type *getX86_MMXTy(LLVMContext &C);
418 static Type *getTokenTy(LLVMContext &C);
419 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
420 static IntegerType *getInt1Ty(LLVMContext &C);
421 static IntegerType *getInt8Ty(LLVMContext &C);
422 static IntegerType *getInt16Ty(LLVMContext &C);
423 static IntegerType *getInt32Ty(LLVMContext &C);
424 static IntegerType *getInt64Ty(LLVMContext &C);
425 static IntegerType *getInt128Ty(LLVMContext &C);
426 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
427 int noOfBits = sizeof(ScalarTy) * CHAR_BIT8;
428 if (std::is_integral<ScalarTy>::value) {
429 return (Type*) Type::getIntNTy(C, noOfBits);
430 } else if (std::is_floating_point<ScalarTy>::value) {
431 switch (noOfBits) {
432 case 32:
433 return Type::getFloatTy(C);
434 case 64:
435 return Type::getDoubleTy(C);
436 }
437 }
438 llvm_unreachable("Unsupported type in Type::getScalarTy")::llvm::llvm_unreachable_internal("Unsupported type in Type::getScalarTy"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 438)
;
439 }
440
441 //===--------------------------------------------------------------------===//
442 // Convenience methods for getting pointer types with one of the above builtin
443 // types as pointee.
444 //
445 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
446 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
447 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
448 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
449 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
450 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
451 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
452 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
453 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
454 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
455 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
456 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
457 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
458
459 /// Return a pointer to the current type. This is equivalent to
460 /// PointerType::get(Foo, AddrSpace).
461 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
462
463private:
464 /// Derived types like structures and arrays are sized iff all of the members
465 /// of the type are sized as well. Since asking for their size is relatively
466 /// uncommon, move this operation out-of-line.
467 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
468};
469
470// Printing of types.
471inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
472 T.print(OS);
473 return OS;
474}
475
476// allow isa<PointerType>(x) to work without DerivedTypes.h included.
477template <> struct isa_impl<PointerType, Type> {
478 static inline bool doit(const Type &Ty) {
479 return Ty.getTypeID() == Type::PointerTyID;
480 }
481};
482
483// Create wrappers for C Binding types (see CBindingWrapping.h).
484DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast<
Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return
reinterpret_cast<LLVMTypeRef>(const_cast<Type*>(
P)); } template<typename T> inline T *unwrap(LLVMTypeRef
P) { return cast<T>(unwrap(P)); }
485
486/* Specialized opaque type conversions.
487 */
488inline Type **unwrap(LLVMTypeRef* Tys) {
489 return reinterpret_cast<Type**>(Tys);
490}
491
492inline LLVMTypeRef *wrap(Type **Tys) {
493 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
494}
495
496} // end namespace llvm
497
498#endif // LLVM_IR_TYPE_H

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h

1//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the Value class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_IR_VALUE_H
14#define LLVM_IR_VALUE_H
15
16#include "llvm-c/Types.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/IR/Use.h"
20#include "llvm/Support/Alignment.h"
21#include "llvm/Support/CBindingWrapping.h"
22#include "llvm/Support/Casting.h"
23#include <cassert>
24#include <iterator>
25#include <memory>
26
27namespace llvm {
28
29class APInt;
30class Argument;
31class BasicBlock;
32class Constant;
33class ConstantData;
34class ConstantAggregate;
35class DataLayout;
36class Function;
37class GlobalAlias;
38class GlobalIFunc;
39class GlobalIndirectSymbol;
40class GlobalObject;
41class GlobalValue;
42class GlobalVariable;
43class InlineAsm;
44class Instruction;
45class LLVMContext;
46class Module;
47class ModuleSlotTracker;
48class raw_ostream;
49template<typename ValueTy> class StringMapEntry;
50class StringRef;
51class Twine;
52class Type;
53class User;
54
55using ValueName = StringMapEntry<Value *>;
56
57//===----------------------------------------------------------------------===//
58// Value Class
59//===----------------------------------------------------------------------===//
60
61/// LLVM Value Representation
62///
63/// This is a very important LLVM class. It is the base class of all values
64/// computed by a program that may be used as operands to other values. Value is
65/// the super class of other important classes such as Instruction and Function.
66/// All Values have a Type. Type is not a subclass of Value. Some values can
67/// have a name and they belong to some Module. Setting the name on the Value
68/// automatically updates the module's symbol table.
69///
70/// Every value has a "use list" that keeps track of which other Values are
71/// using this Value. A Value can also have an arbitrary number of ValueHandle
72/// objects that watch it and listen to RAUW and Destroy events. See
73/// llvm/IR/ValueHandle.h for details.
74class Value {
75 // The least-significant bit of the first word of Value *must* be zero:
76 // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
77 Type *VTy;
78 Use *UseList;
79
80 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
81 friend class ValueHandleBase;
82
83 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
84 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
85
86protected:
87 /// Hold subclass data that can be dropped.
88 ///
89 /// This member is similar to SubclassData, however it is for holding
90 /// information which may be used to aid optimization, but which may be
91 /// cleared to zero without affecting conservative interpretation.
92 unsigned char SubclassOptionalData : 7;
93
94private:
95 /// Hold arbitrary subclass data.
96 ///
97 /// This member is defined by this class, but is not used for anything.
98 /// Subclasses can use it to hold whatever state they find useful. This
99 /// field is initialized to zero by the ctor.
100 unsigned short SubclassData;
101
102protected:
103 /// The number of operands in the subclass.
104 ///
105 /// This member is defined by this class, but not used for anything.
106 /// Subclasses can use it to store their number of operands, if they have
107 /// any.
108 ///
109 /// This is stored here to save space in User on 64-bit hosts. Since most
110 /// instances of Value have operands, 32-bit hosts aren't significantly
111 /// affected.
112 ///
113 /// Note, this should *NOT* be used directly by any class other than User.
114 /// User uses this value to find the Use list.
115 enum : unsigned { NumUserOperandsBits = 28 };
116 unsigned NumUserOperands : NumUserOperandsBits;
117
118 // Use the same type as the bitfield above so that MSVC will pack them.
119 unsigned IsUsedByMD : 1;
120 unsigned HasName : 1;
121 unsigned HasHungOffUses : 1;
122 unsigned HasDescriptor : 1;
123
124private:
125 template <typename UseT> // UseT == 'Use' or 'const Use'
126 class use_iterator_impl
127 : public std::iterator<std::forward_iterator_tag, UseT *> {
128 friend class Value;
129
130 UseT *U;
131
132 explicit use_iterator_impl(UseT *u) : U(u) {}
133
134 public:
135 use_iterator_impl() : U() {}
136
137 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
138 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
139
140 use_iterator_impl &operator++() { // Preincrement
141 assert(U && "Cannot increment end iterator!")((U && "Cannot increment end iterator!") ? static_cast
<void> (0) : __assert_fail ("U && \"Cannot increment end iterator!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 141, __PRETTY_FUNCTION__))
;
142 U = U->getNext();
143 return *this;
144 }
145
146 use_iterator_impl operator++(int) { // Postincrement
147 auto tmp = *this;
148 ++*this;
149 return tmp;
150 }
151
152 UseT &operator*() const {
153 assert(U && "Cannot dereference end iterator!")((U && "Cannot dereference end iterator!") ? static_cast
<void> (0) : __assert_fail ("U && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 153, __PRETTY_FUNCTION__))
;
154 return *U;
155 }
156
157 UseT *operator->() const { return &operator*(); }
158
159 operator use_iterator_impl<const UseT>() const {
160 return use_iterator_impl<const UseT>(U);
161 }
162 };
163
164 template <typename UserTy> // UserTy == 'User' or 'const User'
165 class user_iterator_impl
166 : public std::iterator<std::forward_iterator_tag, UserTy *> {
167 use_iterator_impl<Use> UI;
168 explicit user_iterator_impl(Use *U) : UI(U) {}
169 friend class Value;
170
171 public:
172 user_iterator_impl() = default;
173
174 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
175 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
176
177 /// Returns true if this iterator is equal to user_end() on the value.
178 bool atEnd() const { return *this == user_iterator_impl(); }
179
180 user_iterator_impl &operator++() { // Preincrement
181 ++UI;
182 return *this;
183 }
184
185 user_iterator_impl operator++(int) { // Postincrement
186 auto tmp = *this;
187 ++*this;
188 return tmp;
189 }
190
191 // Retrieve a pointer to the current User.
192 UserTy *operator*() const {
193 return UI->getUser();
194 }
195
196 UserTy *operator->() const { return operator*(); }
197
198 operator user_iterator_impl<const UserTy>() const {
199 return user_iterator_impl<const UserTy>(*UI);
200 }
201
202 Use &getUse() const { return *UI; }
203 };
204
205protected:
206 Value(Type *Ty, unsigned scid);
207
208 /// Value's destructor should be virtual by design, but that would require
209 /// that Value and all of its subclasses have a vtable that effectively
210 /// duplicates the information in the value ID. As a size optimization, the
211 /// destructor has been protected, and the caller should manually call
212 /// deleteValue.
213 ~Value(); // Use deleteValue() to delete a generic Value.
214
215public:
216 Value(const Value &) = delete;
217 Value &operator=(const Value &) = delete;
218
219 /// Delete a pointer to a generic Value.
220 void deleteValue();
221
222 /// Support for debugging, callable in GDB: V->dump()
223 void dump() const;
224
225 /// Implement operator<< on Value.
226 /// @{
227 void print(raw_ostream &O, bool IsForDebug = false) const;
228 void print(raw_ostream &O, ModuleSlotTracker &MST,
229 bool IsForDebug = false) const;
230 /// @}
231
232 /// Print the name of this Value out to the specified raw_ostream.
233 ///
234 /// This is useful when you just want to print 'int %reg126', not the
235 /// instruction that generated it. If you specify a Module for context, then
236 /// even constanst get pretty-printed; for example, the type of a null
237 /// pointer is printed symbolically.
238 /// @{
239 void printAsOperand(raw_ostream &O, bool PrintType = true,
240 const Module *M = nullptr) const;
241 void printAsOperand(raw_ostream &O, bool PrintType,
242 ModuleSlotTracker &MST) const;
243 /// @}
244
245 /// All values are typed, get the type of this value.
246 Type *getType() const { return VTy; }
247
248 /// All values hold a context through their type.
249 LLVMContext &getContext() const;
250
251 // All values can potentially be named.
252 bool hasName() const { return HasName; }
253 ValueName *getValueName() const;
254 void setValueName(ValueName *VN);
255
256private:
257 void destroyValueName();
258 enum class ReplaceMetadataUses { No, Yes };
259 void doRAUW(Value *New, ReplaceMetadataUses);
260 void setNameImpl(const Twine &Name);
261
262public:
263 /// Return a constant reference to the value's name.
264 ///
265 /// This guaranteed to return the same reference as long as the value is not
266 /// modified. If the value has a name, this does a hashtable lookup, so it's
267 /// not free.
268 StringRef getName() const;
269
270 /// Change the name of the value.
271 ///
272 /// Choose a new unique name if the provided name is taken.
273 ///
274 /// \param Name The new name; or "" if the value's name should be removed.
275 void setName(const Twine &Name);
276
277 /// Transfer the name from V to this value.
278 ///
279 /// After taking V's name, sets V's name to empty.
280 ///
281 /// \note It is an error to call V->takeName(V).
282 void takeName(Value *V);
283
284 /// Change all uses of this to point to a new Value.
285 ///
286 /// Go through the uses list for this definition and make each use point to
287 /// "V" instead of "this". After this completes, 'this's use list is
288 /// guaranteed to be empty.
289 void replaceAllUsesWith(Value *V);
290
291 /// Change non-metadata uses of this to point to a new Value.
292 ///
293 /// Go through the uses list for this definition and make each use point to
294 /// "V" instead of "this". This function skips metadata entries in the list.
295 void replaceNonMetadataUsesWith(Value *V);
296
297 /// Go through the uses list for this definition and make each use point
298 /// to "V" if the callback ShouldReplace returns true for the given Use.
299 /// Unlike replaceAllUsesWith() this function does not support basic block
300 /// values or constant users.
301 void replaceUsesWithIf(Value *New,
302 llvm::function_ref<bool(Use &U)> ShouldReplace) {
303 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!")((New && "Value::replaceUsesWithIf(<null>) is invalid!"
) ? static_cast<void> (0) : __assert_fail ("New && \"Value::replaceUsesWithIf(<null>) is invalid!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 303, __PRETTY_FUNCTION__))
;
304 assert(New->getType() == getType() &&((New->getType() == getType() && "replaceUses of value with new value of different type!"
) ? static_cast<void> (0) : __assert_fail ("New->getType() == getType() && \"replaceUses of value with new value of different type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 305, __PRETTY_FUNCTION__))
305 "replaceUses of value with new value of different type!")((New->getType() == getType() && "replaceUses of value with new value of different type!"
) ? static_cast<void> (0) : __assert_fail ("New->getType() == getType() && \"replaceUses of value with new value of different type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 305, __PRETTY_FUNCTION__))
;
306
307 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
308 Use &U = *UI;
309 ++UI;
310 if (!ShouldReplace(U))
311 continue;
312 U.set(New);
313 }
314 }
315
316 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
317 /// make each use point to "V" instead of "this" when the use is outside the
318 /// block. 'This's use list is expected to have at least one element.
319 /// Unlike replaceAllUsesWith() this function does not support basic block
320 /// values or constant users.
321 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
322
323 //----------------------------------------------------------------------
324 // Methods for handling the chain of uses of this Value.
325 //
326 // Materializing a function can introduce new uses, so these methods come in
327 // two variants:
328 // The methods that start with materialized_ check the uses that are
329 // currently known given which functions are materialized. Be very careful
330 // when using them since you might not get all uses.
331 // The methods that don't start with materialized_ assert that modules is
332 // fully materialized.
333 void assertModuleIsMaterializedImpl() const;
334 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
335 // around in release builds of Value.cpp to be linked with other code built
336 // in debug mode. But this avoids calling it in any of the release built code.
337 void assertModuleIsMaterialized() const {
338#ifndef NDEBUG
339 assertModuleIsMaterializedImpl();
340#endif
341 }
342
343 bool use_empty() const {
344 assertModuleIsMaterialized();
345 return UseList == nullptr;
346 }
347
348 bool materialized_use_empty() const {
349 return UseList == nullptr;
350 }
351
352 using use_iterator = use_iterator_impl<Use>;
353 using const_use_iterator = use_iterator_impl<const Use>;
354
355 use_iterator materialized_use_begin() { return use_iterator(UseList); }
356 const_use_iterator materialized_use_begin() const {
357 return const_use_iterator(UseList);
358 }
359 use_iterator use_begin() {
360 assertModuleIsMaterialized();
361 return materialized_use_begin();
362 }
363 const_use_iterator use_begin() const {
364 assertModuleIsMaterialized();
365 return materialized_use_begin();
366 }
367 use_iterator use_end() { return use_iterator(); }
368 const_use_iterator use_end() const { return const_use_iterator(); }
369 iterator_range<use_iterator> materialized_uses() {
370 return make_range(materialized_use_begin(), use_end());
371 }
372 iterator_range<const_use_iterator> materialized_uses() const {
373 return make_range(materialized_use_begin(), use_end());
374 }
375 iterator_range<use_iterator> uses() {
376 assertModuleIsMaterialized();
377 return materialized_uses();
378 }
379 iterator_range<const_use_iterator> uses() const {
380 assertModuleIsMaterialized();
381 return materialized_uses();
382 }
383
384 bool user_empty() const {
385 assertModuleIsMaterialized();
386 return UseList == nullptr;
387 }
388
389 using user_iterator = user_iterator_impl<User>;
390 using const_user_iterator = user_iterator_impl<const User>;
391
392 user_iterator materialized_user_begin() { return user_iterator(UseList); }
393 const_user_iterator materialized_user_begin() const {
394 return const_user_iterator(UseList);
395 }
396 user_iterator user_begin() {
397 assertModuleIsMaterialized();
398 return materialized_user_begin();
399 }
400 const_user_iterator user_begin() const {
401 assertModuleIsMaterialized();
402 return materialized_user_begin();
403 }
404 user_iterator user_end() { return user_iterator(); }
405 const_user_iterator user_end() const { return const_user_iterator(); }
406 User *user_back() {
407 assertModuleIsMaterialized();
408 return *materialized_user_begin();
409 }
410 const User *user_back() const {
411 assertModuleIsMaterialized();
412 return *materialized_user_begin();
413 }
414 iterator_range<user_iterator> materialized_users() {
415 return make_range(materialized_user_begin(), user_end());
416 }
417 iterator_range<const_user_iterator> materialized_users() const {
418 return make_range(materialized_user_begin(), user_end());
419 }
420 iterator_range<user_iterator> users() {
421 assertModuleIsMaterialized();
422 return materialized_users();
423 }
424 iterator_range<const_user_iterator> users() const {
425 assertModuleIsMaterialized();
426 return materialized_users();
427 }
428
429 /// Return true if there is exactly one user of this value.
430 ///
431 /// This is specialized because it is a common request and does not require
432 /// traversing the whole use list.
433 bool hasOneUse() const {
434 const_use_iterator I = use_begin(), E = use_end();
435 if (I == E) return false;
35
Assuming the condition is false
36
Taking false branch
436 return ++I == E;
37
Returning value, which participates in a condition later
437 }
438
439 /// Return true if this Value has exactly N users.
440 bool hasNUses(unsigned N) const;
441
442 /// Return true if this value has N users or more.
443 ///
444 /// This is logically equivalent to getNumUses() >= N.
445 bool hasNUsesOrMore(unsigned N) const;
446
447 /// Check if this value is used in the specified basic block.
448 bool isUsedInBasicBlock(const BasicBlock *BB) const;
449
450 /// This method computes the number of uses of this Value.
451 ///
452 /// This is a linear time operation. Use hasOneUse, hasNUses, or
453 /// hasNUsesOrMore to check for specific values.
454 unsigned getNumUses() const;
455
456 /// This method should only be used by the Use class.
457 void addUse(Use &U) { U.addToList(&UseList); }
458
459 /// Concrete subclass of this.
460 ///
461 /// An enumeration for keeping track of the concrete subclass of Value that
462 /// is actually instantiated. Values of this enumeration are kept in the
463 /// Value classes SubclassID field. They are used for concrete type
464 /// identification.
465 enum ValueTy {
466#define HANDLE_VALUE(Name) Name##Val,
467#include "llvm/IR/Value.def"
468
469 // Markers:
470#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
471#include "llvm/IR/Value.def"
472 };
473
474 /// Return an ID for the concrete type of this object.
475 ///
476 /// This is used to implement the classof checks. This should not be used
477 /// for any other purpose, as the values may change as LLVM evolves. Also,
478 /// note that for instructions, the Instruction's opcode is added to
479 /// InstructionVal. So this means three things:
480 /// # there is no value with code InstructionVal (no opcode==0).
481 /// # there are more possible values for the value type than in ValueTy enum.
482 /// # the InstructionVal enumerator must be the highest valued enumerator in
483 /// the ValueTy enum.
484 unsigned getValueID() const {
485 return SubclassID;
486 }
487
488 /// Return the raw optional flags value contained in this value.
489 ///
490 /// This should only be used when testing two Values for equivalence.
491 unsigned getRawSubclassOptionalData() const {
492 return SubclassOptionalData;
493 }
494
495 /// Clear the optional flags contained in this value.
496 void clearSubclassOptionalData() {
497 SubclassOptionalData = 0;
498 }
499
500 /// Check the optional flags for equality.
501 bool hasSameSubclassOptionalData(const Value *V) const {
502 return SubclassOptionalData == V->SubclassOptionalData;
503 }
504
505 /// Return true if there is a value handle associated with this value.
506 bool hasValueHandle() const { return HasValueHandle; }
507
508 /// Return true if there is metadata referencing this value.
509 bool isUsedByMetadata() const { return IsUsedByMD; }
510
511 /// Return true if this value is a swifterror value.
512 ///
513 /// swifterror values can be either a function argument or an alloca with a
514 /// swifterror attribute.
515 bool isSwiftError() const;
516
517 /// Strip off pointer casts, all-zero GEPs and address space casts.
518 ///
519 /// Returns the original uncasted value. If this is called on a non-pointer
520 /// value, it returns 'this'.
521 const Value *stripPointerCasts() const;
522 Value *stripPointerCasts() {
523 return const_cast<Value *>(
524 static_cast<const Value *>(this)->stripPointerCasts());
525 }
526
527 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
528 ///
529 /// Returns the original uncasted value. If this is called on a non-pointer
530 /// value, it returns 'this'.
531 const Value *stripPointerCastsAndAliases() const;
532 Value *stripPointerCastsAndAliases() {
533 return const_cast<Value *>(
534 static_cast<const Value *>(this)->stripPointerCastsAndAliases());
535 }
536
537 /// Strip off pointer casts, all-zero GEPs and address space casts
538 /// but ensures the representation of the result stays the same.
539 ///
540 /// Returns the original uncasted value with the same representation. If this
541 /// is called on a non-pointer value, it returns 'this'.
542 const Value *stripPointerCastsSameRepresentation() const;
543 Value *stripPointerCastsSameRepresentation() {
544 return const_cast<Value *>(static_cast<const Value *>(this)
545 ->stripPointerCastsSameRepresentation());
546 }
547
548 /// Strip off pointer casts, all-zero GEPs and invariant group info.
549 ///
550 /// Returns the original uncasted value. If this is called on a non-pointer
551 /// value, it returns 'this'. This function should be used only in
552 /// Alias analysis.
553 const Value *stripPointerCastsAndInvariantGroups() const;
554 Value *stripPointerCastsAndInvariantGroups() {
555 return const_cast<Value *>(static_cast<const Value *>(this)
556 ->stripPointerCastsAndInvariantGroups());
557 }
558
559 /// Strip off pointer casts and all-constant inbounds GEPs.
560 ///
561 /// Returns the original pointer value. If this is called on a non-pointer
562 /// value, it returns 'this'.
563 const Value *stripInBoundsConstantOffsets() const;
564 Value *stripInBoundsConstantOffsets() {
565 return const_cast<Value *>(
566 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
567 }
568
569 /// Accumulate the constant offset this value has compared to a base pointer.
570 /// Only 'getelementptr' instructions (GEPs) with constant indices are
571 /// accumulated but other instructions, e.g., casts, are stripped away as
572 /// well. The accumulated constant offset is added to \p Offset and the base
573 /// pointer is returned.
574 ///
575 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
576 /// the address space of 'this' pointer value, e.g., use
577 /// DataLayout::getIndexTypeSizeInBits(Ty).
578 ///
579 /// If \p AllowNonInbounds is true, constant offsets in GEPs are stripped and
580 /// accumulated even if the GEP is not "inbounds".
581 ///
582 /// If this is called on a non-pointer value, it returns 'this' and the
583 /// \p Offset is not modified.
584 ///
585 /// Note that this function will never return a nullptr. It will also never
586 /// manipulate the \p Offset in a way that would not match the difference
587 /// between the underlying value and the returned one. Thus, if no constant
588 /// offset was found, the returned value is the underlying one and \p Offset
589 /// is unchanged.
590 const Value *stripAndAccumulateConstantOffsets(const DataLayout &DL,
591 APInt &Offset,
592 bool AllowNonInbounds) const;
593 Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
594 bool AllowNonInbounds) {
595 return const_cast<Value *>(
596 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
597 DL, Offset, AllowNonInbounds));
598 }
599
600 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
601 /// in-bounds requirement set to false.
602 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
603 APInt &Offset) const {
604 return stripAndAccumulateConstantOffsets(DL, Offset,
605 /* AllowNonInbounds */ false);
606 }
607 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
608 APInt &Offset) {
609 return stripAndAccumulateConstantOffsets(DL, Offset,
610 /* AllowNonInbounds */ false);
611 }
612
613 /// Strip off pointer casts and inbounds GEPs.
614 ///
615 /// Returns the original pointer value. If this is called on a non-pointer
616 /// value, it returns 'this'.
617 const Value *stripInBoundsOffsets() const;
618 Value *stripInBoundsOffsets() {
619 return const_cast<Value *>(
620 static_cast<const Value *>(this)->stripInBoundsOffsets());
621 }
622
623 /// Returns the number of bytes known to be dereferenceable for the
624 /// pointer value.
625 ///
626 /// If CanBeNull is set by this function the pointer can either be null or be
627 /// dereferenceable up to the returned number of bytes.
628 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
629 bool &CanBeNull) const;
630
631 /// Returns an alignment of the pointer value.
632 ///
633 /// Returns an alignment which is either specified explicitly, e.g. via
634 /// align attribute of a function argument, or guaranteed by DataLayout.
635 MaybeAlign getPointerAlignment(const DataLayout &DL) const;
636
637 /// Translate PHI node to its predecessor from the given basic block.
638 ///
639 /// If this value is a PHI node with CurBB as its parent, return the value in
640 /// the PHI node corresponding to PredBB. If not, return ourself. This is
641 /// useful if you want to know the value something has in a predecessor
642 /// block.
643 const Value *DoPHITranslation(const BasicBlock *CurBB,
644 const BasicBlock *PredBB) const;
645 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
646 return const_cast<Value *>(
647 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
648 }
649
650 /// The maximum alignment for instructions.
651 ///
652 /// This is the greatest alignment value supported by load, store, and alloca
653 /// instructions, and global values.
654 static const unsigned MaxAlignmentExponent = 29;
655 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
656
657 /// Mutate the type of this Value to be of the specified type.
658 ///
659 /// Note that this is an extremely dangerous operation which can create
660 /// completely invalid IR very easily. It is strongly recommended that you
661 /// recreate IR objects with the right types instead of mutating them in
662 /// place.
663 void mutateType(Type *Ty) {
664 VTy = Ty;
665 }
666
667 /// Sort the use-list.
668 ///
669 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
670 /// expected to compare two \a Use references.
671 template <class Compare> void sortUseList(Compare Cmp);
672
673 /// Reverse the use-list.
674 void reverseUseList();
675
676private:
677 /// Merge two lists together.
678 ///
679 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
680 /// "equal" items from L before items from R.
681 ///
682 /// \return the first element in the list.
683 ///
684 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
685 template <class Compare>
686 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
687 Use *Merged;
688 Use **Next = &Merged;
689
690 while (true) {
691 if (!L) {
692 *Next = R;
693 break;
694 }
695 if (!R) {
696 *Next = L;
697 break;
698 }
699 if (Cmp(*R, *L)) {
700 *Next = R;
701 Next = &R->Next;
702 R = R->Next;
703 } else {
704 *Next = L;
705 Next = &L->Next;
706 L = L->Next;
707 }
708 }
709
710 return Merged;
711 }
712
713protected:
714 unsigned short getSubclassDataFromValue() const { return SubclassData; }
715 void setValueSubclassData(unsigned short D) { SubclassData = D; }
716};
717
718struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
719
720/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
721/// Those don't work because Value and Instruction's destructors are protected,
722/// aren't virtual, and won't destroy the complete object.
723using unique_value = std::unique_ptr<Value, ValueDeleter>;
724
725inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
726 V.print(OS);
727 return OS;
728}
729
730void Use::set(Value *V) {
731 if (Val) removeFromList();
732 Val = V;
733 if (V) V->addUse(*this);
734}
735
736Value *Use::operator=(Value *RHS) {
737 set(RHS);
738 return RHS;
739}
740
741const Use &Use::operator=(const Use &RHS) {
742 set(RHS.Val);
743 return *this;
744}
745
746template <class Compare> void Value::sortUseList(Compare Cmp) {
747 if (!UseList || !UseList->Next)
748 // No need to sort 0 or 1 uses.
749 return;
750
751 // Note: this function completely ignores Prev pointers until the end when
752 // they're fixed en masse.
753
754 // Create a binomial vector of sorted lists, visiting uses one at a time and
755 // merging lists as necessary.
756 const unsigned MaxSlots = 32;
757 Use *Slots[MaxSlots];
758
759 // Collect the first use, turning it into a single-item list.
760 Use *Next = UseList->Next;
761 UseList->Next = nullptr;
762 unsigned NumSlots = 1;
763 Slots[0] = UseList;
764
765 // Collect all but the last use.
766 while (Next->Next) {
767 Use *Current = Next;
768 Next = Current->Next;
769
770 // Turn Current into a single-item list.
771 Current->Next = nullptr;
772
773 // Save Current in the first available slot, merging on collisions.
774 unsigned I;
775 for (I = 0; I < NumSlots; ++I) {
776 if (!Slots[I])
777 break;
778
779 // Merge two lists, doubling the size of Current and emptying slot I.
780 //
781 // Since the uses in Slots[I] originally preceded those in Current, send
782 // Slots[I] in as the left parameter to maintain a stable sort.
783 Current = mergeUseLists(Slots[I], Current, Cmp);
784 Slots[I] = nullptr;
785 }
786 // Check if this is a new slot.
787 if (I == NumSlots) {
788 ++NumSlots;
789 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32")((NumSlots <= MaxSlots && "Use list bigger than 2^32"
) ? static_cast<void> (0) : __assert_fail ("NumSlots <= MaxSlots && \"Use list bigger than 2^32\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 789, __PRETTY_FUNCTION__))
;
790 }
791
792 // Found an open slot.
793 Slots[I] = Current;
794 }
795
796 // Merge all the lists together.
797 assert(Next && "Expected one more Use")((Next && "Expected one more Use") ? static_cast<void
> (0) : __assert_fail ("Next && \"Expected one more Use\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 797, __PRETTY_FUNCTION__))
;
798 assert(!Next->Next && "Expected only one Use")((!Next->Next && "Expected only one Use") ? static_cast
<void> (0) : __assert_fail ("!Next->Next && \"Expected only one Use\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Value.h"
, 798, __PRETTY_FUNCTION__))
;
799 UseList = Next;
800 for (unsigned I = 0; I < NumSlots; ++I)
801 if (Slots[I])
802 // Since the uses in Slots[I] originally preceded those in UseList, send
803 // Slots[I] in as the left parameter to maintain a stable sort.
804 UseList = mergeUseLists(Slots[I], UseList, Cmp);
805
806 // Fix the Prev pointers.
807 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
808 I->setPrev(Prev);
809 Prev = &I->Next;
810 }
811}
812
813// isa - Provide some specializations of isa so that we don't have to include
814// the subtype header files to test to see if the value is a subclass...
815//
816template <> struct isa_impl<Constant, Value> {
817 static inline bool doit(const Value &Val) {
818 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
819 return Val.getValueID() <= Value::ConstantLastVal;
820 }
821};
822
823template <> struct isa_impl<ConstantData, Value> {
824 static inline bool doit(const Value &Val) {
825 return Val.getValueID() >= Value::ConstantDataFirstVal &&
826 Val.getValueID() <= Value::ConstantDataLastVal;
827 }
828};
829
830template <> struct isa_impl<ConstantAggregate, Value> {
831 static inline bool doit(const Value &Val) {
832 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
833 Val.getValueID() <= Value::ConstantAggregateLastVal;
834 }
835};
836
837template <> struct isa_impl<Argument, Value> {
838 static inline bool doit (const Value &Val) {
839 return Val.getValueID() == Value::ArgumentVal;
840 }
841};
842
843template <> struct isa_impl<InlineAsm, Value> {
844 static inline bool doit(const Value &Val) {
845 return Val.getValueID() == Value::InlineAsmVal;
846 }
847};
848
849template <> struct isa_impl<Instruction, Value> {
850 static inline bool doit(const Value &Val) {
851 return Val.getValueID() >= Value::InstructionVal;
852 }
853};
854
855template <> struct isa_impl<BasicBlock, Value> {
856 static inline bool doit(const Value &Val) {
857 return Val.getValueID() == Value::BasicBlockVal;
858 }
859};
860
861template <> struct isa_impl<Function, Value> {
862 static inline bool doit(const Value &Val) {
863 return Val.getValueID() == Value::FunctionVal;
864 }
865};
866
867template <> struct isa_impl<GlobalVariable, Value> {
868 static inline bool doit(const Value &Val) {
869 return Val.getValueID() == Value::GlobalVariableVal;
870 }
871};
872
873template <> struct isa_impl<GlobalAlias, Value> {
874 static inline bool doit(const Value &Val) {
875 return Val.getValueID() == Value::GlobalAliasVal;
876 }
877};
878
879template <> struct isa_impl<GlobalIFunc, Value> {
880 static inline bool doit(const Value &Val) {
881 return Val.getValueID() == Value::GlobalIFuncVal;
882 }
883};
884
885template <> struct isa_impl<GlobalIndirectSymbol, Value> {
886 static inline bool doit(const Value &Val) {
887 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
888 }
889};
890
891template <> struct isa_impl<GlobalValue, Value> {
892 static inline bool doit(const Value &Val) {
893 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
894 }
895};
896
897template <> struct isa_impl<GlobalObject, Value> {
898 static inline bool doit(const Value &Val) {
899 return isa<GlobalVariable>(Val) || isa<Function>(Val);
900 }
901};
902
903// Create wrappers for C Binding types (see CBindingWrapping.h).
904DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)inline Value *unwrap(LLVMValueRef P) { return reinterpret_cast
<Value*>(P); } inline LLVMValueRef wrap(const Value *P)
{ return reinterpret_cast<LLVMValueRef>(const_cast<
Value*>(P)); } template<typename T> inline T *unwrap
(LLVMValueRef P) { return cast<T>(unwrap(P)); }
905
906// Specialized opaque value conversions.
907inline Value **unwrap(LLVMValueRef *Vals) {
908 return reinterpret_cast<Value**>(Vals);
909}
910
911template<typename T>
912inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
913#ifndef NDEBUG
914 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
915 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
916#endif
917 (void)Length;
918 return reinterpret_cast<T**>(Vals);
919}
920
921inline LLVMValueRef *wrap(const Value **Vals) {
922 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
923}
924
925} // end namespace llvm
926
927#endif // LLVM_IR_VALUE_H

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the IRBuilder class, which is used as a convenient way
10// to create LLVM instructions with a consistent and simplified interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_IRBUILDER_H
15#define LLVM_IR_IRBUILDER_H
16
17#include "llvm-c/Types.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/ConstantFolder.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/LLVMContext.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Value.h"
40#include "llvm/IR/ValueHandle.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/CBindingWrapping.h"
43#include "llvm/Support/Casting.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <functional>
48#include <utility>
49
50namespace llvm {
51
52class APInt;
53class MDNode;
54class Use;
55
56/// This provides the default implementation of the IRBuilder
57/// 'InsertHelper' method that is called whenever an instruction is created by
58/// IRBuilder and needs to be inserted.
59///
60/// By default, this inserts the instruction at the insertion point.
61class IRBuilderDefaultInserter {
62public:
63 virtual ~IRBuilderDefaultInserter();
64
65 virtual void InsertHelper(Instruction *I, const Twine &Name,
66 BasicBlock *BB,
67 BasicBlock::iterator InsertPt) const {
68 if (BB) BB->getInstList().insert(InsertPt, I);
69 I->setName(Name);
70 }
71};
72
73/// Provides an 'InsertHelper' that calls a user-provided callback after
74/// performing the default insertion.
75class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
76 std::function<void(Instruction *)> Callback;
77
78public:
79 virtual ~IRBuilderCallbackInserter();
80
81 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
82 : Callback(std::move(Callback)) {}
83
84 void InsertHelper(Instruction *I, const Twine &Name,
85 BasicBlock *BB,
86 BasicBlock::iterator InsertPt) const override {
87 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
88 Callback(I);
89 }
90};
91
92/// Common base class shared among various IRBuilders.
93class IRBuilderBase {
94 DebugLoc CurDbgLocation;
95
96protected:
97 BasicBlock *BB;
98 BasicBlock::iterator InsertPt;
99 LLVMContext &Context;
100 const IRBuilderFolder &Folder;
101 const IRBuilderDefaultInserter &Inserter;
102
103 MDNode *DefaultFPMathTag;
104 FastMathFlags FMF;
105
106 bool IsFPConstrained;
107 fp::ExceptionBehavior DefaultConstrainedExcept;
108 fp::RoundingMode DefaultConstrainedRounding;
109
110 ArrayRef<OperandBundleDef> DefaultOperandBundles;
111
112public:
113 IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
114 const IRBuilderDefaultInserter &Inserter,
115 MDNode *FPMathTag, ArrayRef<OperandBundleDef> OpBundles)
116 : Context(context), Folder(Folder), Inserter(Inserter),
117 DefaultFPMathTag(FPMathTag), IsFPConstrained(false),
118 DefaultConstrainedExcept(fp::ebStrict),
119 DefaultConstrainedRounding(fp::rmDynamic),
120 DefaultOperandBundles(OpBundles) {
121 ClearInsertionPoint();
122 }
123
124 /// Insert and return the specified instruction.
125 template<typename InstTy>
126 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
127 Inserter.InsertHelper(I, Name, BB, InsertPt);
128 SetInstDebugLocation(I);
129 return I;
130 }
131
132 /// No-op overload to handle constants.
133 Constant *Insert(Constant *C, const Twine& = "") const {
134 return C;
135 }
136
137 Value *Insert(Value *V, const Twine &Name = "") const {
138 if (Instruction *I = dyn_cast<Instruction>(V))
139 return Insert(I, Name);
140 assert(isa<Constant>(V))((isa<Constant>(V)) ? static_cast<void> (0) : __assert_fail
("isa<Constant>(V)", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 140, __PRETTY_FUNCTION__))
;
141 return V;
142 }
143
144 //===--------------------------------------------------------------------===//
145 // Builder configuration methods
146 //===--------------------------------------------------------------------===//
147
148 /// Clear the insertion point: created instructions will not be
149 /// inserted into a block.
150 void ClearInsertionPoint() {
151 BB = nullptr;
152 InsertPt = BasicBlock::iterator();
153 }
154
155 BasicBlock *GetInsertBlock() const { return BB; }
156 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
157 LLVMContext &getContext() const { return Context; }
158
159 /// This specifies that created instructions should be appended to the
160 /// end of the specified block.
161 void SetInsertPoint(BasicBlock *TheBB) {
162 BB = TheBB;
163 InsertPt = BB->end();
164 }
165
166 /// This specifies that created instructions should be inserted before
167 /// the specified instruction.
168 void SetInsertPoint(Instruction *I) {
169 BB = I->getParent();
170 InsertPt = I->getIterator();
171 assert(InsertPt != BB->end() && "Can't read debug loc from end()")((InsertPt != BB->end() && "Can't read debug loc from end()"
) ? static_cast<void> (0) : __assert_fail ("InsertPt != BB->end() && \"Can't read debug loc from end()\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 171, __PRETTY_FUNCTION__))
;
172 SetCurrentDebugLocation(I->getDebugLoc());
173 }
174
175 /// This specifies that created instructions should be inserted at the
176 /// specified point.
177 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
178 BB = TheBB;
179 InsertPt = IP;
180 if (IP != TheBB->end())
181 SetCurrentDebugLocation(IP->getDebugLoc());
182 }
183
184 /// Set location information used by debugging information.
185 void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); }
186
187 /// Get location information used by debugging information.
188 const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; }
189
190 /// If this builder has a current debug location, set it on the
191 /// specified instruction.
192 void SetInstDebugLocation(Instruction *I) const {
193 if (CurDbgLocation)
194 I->setDebugLoc(CurDbgLocation);
195 }
196
197 /// Get the return type of the current function that we're emitting
198 /// into.
199 Type *getCurrentFunctionReturnType() const;
200
201 /// InsertPoint - A saved insertion point.
202 class InsertPoint {
203 BasicBlock *Block = nullptr;
204 BasicBlock::iterator Point;
205
206 public:
207 /// Creates a new insertion point which doesn't point to anything.
208 InsertPoint() = default;
209
210 /// Creates a new insertion point at the given location.
211 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
212 : Block(InsertBlock), Point(InsertPoint) {}
213
214 /// Returns true if this insert point is set.
215 bool isSet() const { return (Block != nullptr); }
216
217 BasicBlock *getBlock() const { return Block; }
218 BasicBlock::iterator getPoint() const { return Point; }
219 };
220
221 /// Returns the current insert point.
222 InsertPoint saveIP() const {
223 return InsertPoint(GetInsertBlock(), GetInsertPoint());
224 }
225
226 /// Returns the current insert point, clearing it in the process.
227 InsertPoint saveAndClearIP() {
228 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
229 ClearInsertionPoint();
230 return IP;
231 }
232
233 /// Sets the current insert point to a previously-saved location.
234 void restoreIP(InsertPoint IP) {
235 if (IP.isSet())
236 SetInsertPoint(IP.getBlock(), IP.getPoint());
237 else
238 ClearInsertionPoint();
239 }
240
241 /// Get the floating point math metadata being used.
242 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
243
244 /// Get the flags to be applied to created floating point ops
245 FastMathFlags getFastMathFlags() const { return FMF; }
246
247 /// Clear the fast-math flags.
248 void clearFastMathFlags() { FMF.clear(); }
249
250 /// Set the floating point math metadata to be used.
251 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
252
253 /// Set the fast-math flags to be used with generated fp-math operators
254 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
255
256 /// Enable/Disable use of constrained floating point math. When
257 /// enabled the CreateF<op>() calls instead create constrained
258 /// floating point intrinsic calls. Fast math flags are unaffected
259 /// by this setting.
260 void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
261
262 /// Query for the use of constrained floating point math
263 bool getIsFPConstrained() { return IsFPConstrained; }
264
265 /// Set the exception handling to be used with constrained floating point
266 void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
267 DefaultConstrainedExcept = NewExcept;
268 }
269
270 /// Set the rounding mode handling to be used with constrained floating point
271 void setDefaultConstrainedRounding(fp::RoundingMode NewRounding) {
272 DefaultConstrainedRounding = NewRounding;
273 }
274
275 /// Get the exception handling used with constrained floating point
276 fp::ExceptionBehavior getDefaultConstrainedExcept() {
277 return DefaultConstrainedExcept;
278 }
279
280 /// Get the rounding mode handling used with constrained floating point
281 fp::RoundingMode getDefaultConstrainedRounding() {
282 return DefaultConstrainedRounding;
283 }
284
285 void setConstrainedFPFunctionAttr() {
286 assert(BB && "Must have a basic block to set any function attributes!")((BB && "Must have a basic block to set any function attributes!"
) ? static_cast<void> (0) : __assert_fail ("BB && \"Must have a basic block to set any function attributes!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 286, __PRETTY_FUNCTION__))
;
287
288 Function *F = BB->getParent();
289 if (!F->hasFnAttribute(Attribute::StrictFP)) {
290 F->addFnAttr(Attribute::StrictFP);
291 }
292 }
293
294 void setConstrainedFPCallAttr(CallInst *I) {
295 if (!I->hasFnAttr(Attribute::StrictFP))
296 I->addAttribute(AttributeList::FunctionIndex, Attribute::StrictFP);
297 }
298
299 void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
300 DefaultOperandBundles = OpBundles;
301 }
302
303 //===--------------------------------------------------------------------===//
304 // RAII helpers.
305 //===--------------------------------------------------------------------===//
306
307 // RAII object that stores the current insertion point and restores it
308 // when the object is destroyed. This includes the debug location.
309 class InsertPointGuard {
310 IRBuilderBase &Builder;
311 AssertingVH<BasicBlock> Block;
312 BasicBlock::iterator Point;
313 DebugLoc DbgLoc;
314
315 public:
316 InsertPointGuard(IRBuilderBase &B)
317 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
318 DbgLoc(B.getCurrentDebugLocation()) {}
319
320 InsertPointGuard(const InsertPointGuard &) = delete;
321 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
322
323 ~InsertPointGuard() {
324 Builder.restoreIP(InsertPoint(Block, Point));
325 Builder.SetCurrentDebugLocation(DbgLoc);
326 }
327 };
328
329 // RAII object that stores the current fast math settings and restores
330 // them when the object is destroyed.
331 class FastMathFlagGuard {
332 IRBuilderBase &Builder;
333 FastMathFlags FMF;
334 MDNode *FPMathTag;
335
336 public:
337 FastMathFlagGuard(IRBuilderBase &B)
338 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
339
340 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
341 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
342
343 ~FastMathFlagGuard() {
344 Builder.FMF = FMF;
345 Builder.DefaultFPMathTag = FPMathTag;
346 }
347 };
348
349 // RAII object that stores the current default operand bundles and restores
350 // them when the object is destroyed.
351 class OperandBundlesGuard {
352 IRBuilderBase &Builder;
353 ArrayRef<OperandBundleDef> DefaultOperandBundles;
354
355 public:
356 OperandBundlesGuard(IRBuilderBase &B)
357 : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
358
359 OperandBundlesGuard(const OperandBundlesGuard &) = delete;
360 OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
361
362 ~OperandBundlesGuard() {
363 Builder.DefaultOperandBundles = DefaultOperandBundles;
364 }
365 };
366
367
368 //===--------------------------------------------------------------------===//
369 // Miscellaneous creation methods.
370 //===--------------------------------------------------------------------===//
371
372 /// Make a new global variable with initializer type i8*
373 ///
374 /// Make a new global variable with an initializer that has array of i8 type
375 /// filled in with the null terminated string value specified. The new global
376 /// variable will be marked mergable with any others of the same contents. If
377 /// Name is specified, it is the name of the global variable created.
378 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
379 unsigned AddressSpace = 0);
380
381 /// Get a constant value representing either true or false.
382 ConstantInt *getInt1(bool V) {
383 return ConstantInt::get(getInt1Ty(), V);
384 }
385
386 /// Get the constant value for i1 true.
387 ConstantInt *getTrue() {
388 return ConstantInt::getTrue(Context);
389 }
390
391 /// Get the constant value for i1 false.
392 ConstantInt *getFalse() {
393 return ConstantInt::getFalse(Context);
394 }
395
396 /// Get a constant 8-bit value.
397 ConstantInt *getInt8(uint8_t C) {
398 return ConstantInt::get(getInt8Ty(), C);
399 }
400
401 /// Get a constant 16-bit value.
402 ConstantInt *getInt16(uint16_t C) {
403 return ConstantInt::get(getInt16Ty(), C);
404 }
405
406 /// Get a constant 32-bit value.
407 ConstantInt *getInt32(uint32_t C) {
408 return ConstantInt::get(getInt32Ty(), C);
409 }
410
411 /// Get a constant 64-bit value.
412 ConstantInt *getInt64(uint64_t C) {
413 return ConstantInt::get(getInt64Ty(), C);
414 }
415
416 /// Get a constant N-bit value, zero extended or truncated from
417 /// a 64-bit value.
418 ConstantInt *getIntN(unsigned N, uint64_t C) {
419 return ConstantInt::get(getIntNTy(N), C);
420 }
421
422 /// Get a constant integer value.
423 ConstantInt *getInt(const APInt &AI) {
424 return ConstantInt::get(Context, AI);
425 }
426
427 //===--------------------------------------------------------------------===//
428 // Type creation methods
429 //===--------------------------------------------------------------------===//
430
431 /// Fetch the type representing a single bit
432 IntegerType *getInt1Ty() {
433 return Type::getInt1Ty(Context);
434 }
435
436 /// Fetch the type representing an 8-bit integer.
437 IntegerType *getInt8Ty() {
438 return Type::getInt8Ty(Context);
439 }
440
441 /// Fetch the type representing a 16-bit integer.
442 IntegerType *getInt16Ty() {
443 return Type::getInt16Ty(Context);
444 }
445
446 /// Fetch the type representing a 32-bit integer.
447 IntegerType *getInt32Ty() {
448 return Type::getInt32Ty(Context);
449 }
450
451 /// Fetch the type representing a 64-bit integer.
452 IntegerType *getInt64Ty() {
453 return Type::getInt64Ty(Context);
454 }
455
456 /// Fetch the type representing a 128-bit integer.
457 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
458
459 /// Fetch the type representing an N-bit integer.
460 IntegerType *getIntNTy(unsigned N) {
461 return Type::getIntNTy(Context, N);
462 }
463
464 /// Fetch the type representing a 16-bit floating point value.
465 Type *getHalfTy() {
466 return Type::getHalfTy(Context);
467 }
468
469 /// Fetch the type representing a 32-bit floating point value.
470 Type *getFloatTy() {
471 return Type::getFloatTy(Context);
472 }
473
474 /// Fetch the type representing a 64-bit floating point value.
475 Type *getDoubleTy() {
476 return Type::getDoubleTy(Context);
477 }
478
479 /// Fetch the type representing void.
480 Type *getVoidTy() {
481 return Type::getVoidTy(Context);
482 }
483
484 /// Fetch the type representing a pointer to an 8-bit integer value.
485 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
486 return Type::getInt8PtrTy(Context, AddrSpace);
487 }
488
489 /// Fetch the type representing a pointer to an integer value.
490 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
491 return DL.getIntPtrType(Context, AddrSpace);
492 }
493
494 //===--------------------------------------------------------------------===//
495 // Intrinsic creation methods
496 //===--------------------------------------------------------------------===//
497
498 /// Create and insert a memset to the specified pointer and the
499 /// specified value.
500 ///
501 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
502 /// specified, it will be added to the instruction. Likewise with alias.scope
503 /// and noalias tags.
504 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
505 MaybeAlign Align, bool isVolatile = false,
506 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
507 MDNode *NoAliasTag = nullptr) {
508 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
509 TBAATag, ScopeTag, NoAliasTag);
510 }
511
512 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
513 bool isVolatile = false, MDNode *TBAATag = nullptr,
514 MDNode *ScopeTag = nullptr,
515 MDNode *NoAliasTag = nullptr);
516
517 /// Create and insert an element unordered-atomic memset of the region of
518 /// memory starting at the given pointer to the given value.
519 ///
520 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
521 /// specified, it will be added to the instruction. Likewise with alias.scope
522 /// and noalias tags.
523 /// FIXME: Remove this function once transition to Align is over.
524 /// Use the version that takes Align instead of this one.
525 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, uint64_t Size, unsigned Alignment, uint32_t ElementSize
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
526 CallInst *CreateElementUnorderedAtomicMemSet(CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, uint64_t Size, unsigned Alignment, uint32_t ElementSize
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
527 Value *Ptr, Value *Val, uint64_t Size, unsigned Alignment,CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, uint64_t Size, unsigned Alignment, uint32_t ElementSize
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
528 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, uint64_t Size, unsigned Alignment, uint32_t ElementSize
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
529 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, uint64_t Size, unsigned Alignment, uint32_t ElementSize
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
530 "Use the version that takes Align instead of this one")CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, uint64_t Size, unsigned Alignment, uint32_t ElementSize
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
{
531 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
532 Align(Alignment), ElementSize,
533 TBAATag, ScopeTag, NoAliasTag);
534 }
535
536 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
537 uint64_t Size, Align Alignment,
538 uint32_t ElementSize,
539 MDNode *TBAATag = nullptr,
540 MDNode *ScopeTag = nullptr,
541 MDNode *NoAliasTag = nullptr) {
542 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
543 Align(Alignment), ElementSize,
544 TBAATag, ScopeTag, NoAliasTag);
545 }
546
547 /// FIXME: Remove this function once transition to Align is over.
548 /// Use the version that takes Align instead of this one.
549 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, Value *Size, unsigned Alignment, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
550 CallInst *CreateElementUnorderedAtomicMemSet(CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, Value *Size, unsigned Alignment, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
551 Value *Ptr, Value *Val, Value *Size, unsigned Alignment,CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, Value *Size, unsigned Alignment, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
552 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, Value *Size, unsigned Alignment, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
553 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, Value *Size, unsigned Alignment, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
554 "Use the version that takes Align instead of this one")CallInst *CreateElementUnorderedAtomicMemSet( Value *Ptr, Value
*Val, Value *Size, unsigned Alignment, uint32_t ElementSize,
MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes Align instead of this one"
)))
{
555 return CreateElementUnorderedAtomicMemSet(Ptr, Val, Size, Align(Alignment),
556 ElementSize, TBAATag, ScopeTag,
557 NoAliasTag);
558 }
559
560 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
561 Value *Size, Align Alignment,
562 uint32_t ElementSize,
563 MDNode *TBAATag = nullptr,
564 MDNode *ScopeTag = nullptr,
565 MDNode *NoAliasTag = nullptr);
566
567 /// Create and insert a memcpy between the specified pointers.
568 ///
569 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
570 /// specified, it will be added to the instruction. Likewise with alias.scope
571 /// and noalias tags.
572 /// FIXME: Remove this function once transition to Align is over.
573 /// Use the version that takes MaybeAlign instead of this one.
574 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
575 CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
576 unsigned SrcAlign, uint64_t Size,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
577 bool isVolatile = false, MDNode *TBAATag = nullptr,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
578 MDNode *TBAAStructTag = nullptr,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
579 MDNode *ScopeTag = nullptr,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
580 MDNode *NoAliasTag = nullptr),CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
581 "Use the version that takes MaybeAlign instead")CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
{
582 return CreateMemCpy(Dst, MaybeAlign(DstAlign), Src, MaybeAlign(SrcAlign),
583 getInt64(Size), isVolatile, TBAATag, TBAAStructTag,
584 ScopeTag, NoAliasTag);
585 }
586
587 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
588 MaybeAlign SrcAlign, uint64_t Size,
589 bool isVolatile = false, MDNode *TBAATag = nullptr,
590 MDNode *TBAAStructTag = nullptr,
591 MDNode *ScopeTag = nullptr,
592 MDNode *NoAliasTag = nullptr) {
593 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
594 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
595 NoAliasTag);
596 }
597
598 /// FIXME: Remove this function once transition to Align is over.
599 /// Use the version that takes MaybeAlign instead of this one.
600 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
601 CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
602 unsigned SrcAlign, Value *Size,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
603 bool isVolatile = false, MDNode *TBAATag = nullptr,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
604 MDNode *TBAAStructTag = nullptr,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
605 MDNode *ScopeTag = nullptr,CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
606 MDNode *NoAliasTag = nullptr),CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
607 "Use the version that takes MaybeAlign instead")CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *
Src, unsigned SrcAlign, Value *Size, bool isVolatile = false,
MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode
*ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) __attribute__
((deprecated("Use the version that takes MaybeAlign instead")
))
;
608 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
609 MaybeAlign SrcAlign, Value *Size,
610 bool isVolatile = false, MDNode *TBAATag = nullptr,
611 MDNode *TBAAStructTag = nullptr,
612 MDNode *ScopeTag = nullptr,
613 MDNode *NoAliasTag = nullptr);
614
615 CallInst *CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
616 MaybeAlign SrcAlign, Value *Size);
617
618 /// Create and insert an element unordered-atomic memcpy between the
619 /// specified pointers.
620 ///
621 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
622 ///
623 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
624 /// specified, it will be added to the instruction. Likewise with alias.scope
625 /// and noalias tags.
626 CallInst *CreateElementUnorderedAtomicMemCpy(
627 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
628 uint32_t ElementSize, MDNode *TBAATag = nullptr,
629 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
630 MDNode *NoAliasTag = nullptr);
631
632 /// FIXME: Remove this function once transition to Align is over.
633 /// Use the version that takes Align instead of this one.
634 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemCpy(CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
635 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
636 unsigned SrcAlign, uint64_t Size,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
637 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
638 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
639 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
640 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
641 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
642 return CreateElementUnorderedAtomicMemCpy(
643 Dst, Align(DstAlign), Src, Align(SrcAlign), getInt64(Size), ElementSize,
644 TBAATag, TBAAStructTag, ScopeTag, NoAliasTag);
645 }
646
647 /// FIXME: Remove this function once transition to Align is over.
648 /// Use the version that takes Align instead of this one.
649 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemCpy(CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
650 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
651 unsigned SrcAlign, Value *Size,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
652 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
653 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
654 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
655 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
656 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
657 return CreateElementUnorderedAtomicMemCpy(
658 Dst, Align(DstAlign), Src, Align(SrcAlign), Size, ElementSize, TBAATag,
659 TBAAStructTag, ScopeTag, NoAliasTag);
660 }
661
662 /// Create and insert a memmove between the specified
663 /// pointers.
664 ///
665 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
666 /// specified, it will be added to the instruction. Likewise with alias.scope
667 /// and noalias tags.
668 /// FIXME: Remove this function once transition to Align is over.
669 /// Use the version that takes MaybeAlign instead of this one.
670 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
671 CallInst *CreateMemMove(CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
672 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
673 uint64_t Size, bool isVolatile = false, MDNode *TBAATag = nullptr,CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
674 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr),CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
675 "Use the version that takes MaybeAlign")CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
{
676 return CreateMemMove(Dst, MaybeAlign(DstAlign), Src, MaybeAlign(SrcAlign),
677 getInt64(Size), isVolatile, TBAATag, ScopeTag,
678 NoAliasTag);
679 }
680 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
681 MaybeAlign SrcAlign, uint64_t Size,
682 bool isVolatile = false, MDNode *TBAATag = nullptr,
683 MDNode *ScopeTag = nullptr,
684 MDNode *NoAliasTag = nullptr) {
685 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
686 isVolatile, TBAATag, ScopeTag, NoAliasTag);
687 }
688 /// FIXME: Remove this function once transition to Align is over.
689 /// Use the version that takes MaybeAlign instead of this one.
690 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, Value *Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
691 CallInst *CreateMemMove(CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, Value *Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
692 Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign,CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, Value *Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
693 Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr,CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, Value *Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
694 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr),CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, Value *Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
695 "Use the version that takes MaybeAlign")CallInst *CreateMemMove( Value *Dst, unsigned DstAlign, Value
*Src, unsigned SrcAlign, Value *Size, bool isVolatile = false
, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode
*NoAliasTag = nullptr) __attribute__((deprecated("Use the version that takes MaybeAlign"
)))
{
696 return CreateMemMove(Dst, MaybeAlign(DstAlign), Src, MaybeAlign(SrcAlign),
697 Size, isVolatile, TBAATag, ScopeTag, NoAliasTag);
698 }
699 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
700 MaybeAlign SrcAlign, Value *Size,
701 bool isVolatile = false, MDNode *TBAATag = nullptr,
702 MDNode *ScopeTag = nullptr,
703 MDNode *NoAliasTag = nullptr);
704
705 /// \brief Create and insert an element unordered-atomic memmove between the
706 /// specified pointers.
707 ///
708 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
709 /// respectively.
710 ///
711 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
712 /// specified, it will be added to the instruction. Likewise with alias.scope
713 /// and noalias tags.
714 CallInst *CreateElementUnorderedAtomicMemMove(
715 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
716 uint32_t ElementSize, MDNode *TBAATag = nullptr,
717 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
718 MDNode *NoAliasTag = nullptr);
719
720 /// FIXME: Remove this function once transition to Align is over.
721 /// Use the version that takes Align instead of this one.
722 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemMove(CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
723 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
724 unsigned SrcAlign, uint64_t Size,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
725 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
726 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
727 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
728 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
729 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
730 return CreateElementUnorderedAtomicMemMove(
731 Dst, Align(DstAlign), Src, Align(SrcAlign), getInt64(Size), ElementSize,
732 TBAATag, TBAAStructTag, ScopeTag, NoAliasTag);
733 }
734
735 /// FIXME: Remove this function once transition to Align is over.
736 /// Use the version that takes Align instead of this one.
737 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateElementUnorderedAtomicMemMove(CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
738 Value *Dst, unsigned DstAlign, Value *Src,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
739 unsigned SrcAlign, Value *Size,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
740 uint32_t ElementSize, MDNode *TBAATag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
741 MDNode *TBAAStructTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
742 MDNode *ScopeTag = nullptr,CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
743 MDNode *NoAliasTag = nullptr),CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
744 "Use the version that takes Align instead")CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned
DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t
ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag
= nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
745 return CreateElementUnorderedAtomicMemMove(
746 Dst, Align(DstAlign), Src, Align(SrcAlign), Size, ElementSize, TBAATag,
747 TBAAStructTag, ScopeTag, NoAliasTag);
748 }
749
750 /// Create a vector fadd reduction intrinsic of the source vector.
751 /// The first parameter is a scalar accumulator value for ordered reductions.
752 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
753
754 /// Create a vector fmul reduction intrinsic of the source vector.
755 /// The first parameter is a scalar accumulator value for ordered reductions.
756 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
757
758 /// Create a vector int add reduction intrinsic of the source vector.
759 CallInst *CreateAddReduce(Value *Src);
760
761 /// Create a vector int mul reduction intrinsic of the source vector.
762 CallInst *CreateMulReduce(Value *Src);
763
764 /// Create a vector int AND reduction intrinsic of the source vector.
765 CallInst *CreateAndReduce(Value *Src);
766
767 /// Create a vector int OR reduction intrinsic of the source vector.
768 CallInst *CreateOrReduce(Value *Src);
769
770 /// Create a vector int XOR reduction intrinsic of the source vector.
771 CallInst *CreateXorReduce(Value *Src);
772
773 /// Create a vector integer max reduction intrinsic of the source
774 /// vector.
775 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
776
777 /// Create a vector integer min reduction intrinsic of the source
778 /// vector.
779 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
780
781 /// Create a vector float max reduction intrinsic of the source
782 /// vector.
783 CallInst *CreateFPMaxReduce(Value *Src, bool NoNaN = false);
784
785 /// Create a vector float min reduction intrinsic of the source
786 /// vector.
787 CallInst *CreateFPMinReduce(Value *Src, bool NoNaN = false);
788
789 /// Create a lifetime.start intrinsic.
790 ///
791 /// If the pointer isn't i8* it will be converted.
792 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
793
794 /// Create a lifetime.end intrinsic.
795 ///
796 /// If the pointer isn't i8* it will be converted.
797 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
798
799 /// Create a call to invariant.start intrinsic.
800 ///
801 /// If the pointer isn't i8* it will be converted.
802 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
803
804 /// Create a call to Masked Load intrinsic
805 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
806 CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value *Mask,CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
807 Value *PassThru = nullptr,CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
808 const Twine &Name = ""),CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
809 "Use the version that takes Align instead")CallInst *CreateMaskedLoad(Value *Ptr, unsigned Alignment, Value
*Mask, Value *PassThru = nullptr, const Twine &Name = ""
) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
810 return CreateMaskedLoad(Ptr, assumeAligned(Alignment), Mask, PassThru,
811 Name);
812 }
813 CallInst *CreateMaskedLoad(Value *Ptr, Align Alignment, Value *Mask,
814 Value *PassThru = nullptr, const Twine &Name = "");
815
816 /// Create a call to Masked Store intrinsic
817 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedStore(Value *Val, Value *Ptr,CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
818 unsigned Alignment,CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
819 Value *Mask),CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
820 "Use the version that takes Align instead")CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Alignment
, Value *Mask) __attribute__((deprecated("Use the version that takes Align instead"
)))
{
821 return CreateMaskedStore(Val, Ptr, assumeAligned(Alignment), Mask);
822 }
823
824 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
825 Value *Mask);
826
827 /// Create a call to Masked Gather intrinsic
828 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
829 CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
830 Value *Mask = nullptr,CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
831 Value *PassThru = nullptr,CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
832 const Twine &Name = ""),CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
833 "Use the version that takes Align instead")CallInst *CreateMaskedGather(Value *Ptrs, unsigned Alignment,
Value *Mask = nullptr, Value *PassThru = nullptr, const Twine
&Name = "") __attribute__((deprecated("Use the version that takes Align instead"
)))
{
834 return CreateMaskedGather(Ptrs, Align(Alignment), Mask, PassThru, Name);
835 }
836
837 /// Create a call to Masked Gather intrinsic
838 CallInst *CreateMaskedGather(Value *Ptrs, Align Alignment,
839 Value *Mask = nullptr, Value *PassThru = nullptr,
840 const Twine &Name = "");
841
842 /// Create a call to Masked Scatter intrinsic
843 LLVM_ATTRIBUTE_DEPRECATED(CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
844 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned Alignment,CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
845 Value *Mask = nullptr),CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
846 "Use the version that takes Align instead")CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned
Alignment, Value *Mask = nullptr) __attribute__((deprecated(
"Use the version that takes Align instead")))
{
847 return CreateMaskedScatter(Val, Ptrs, Align(Alignment), Mask);
848 }
849
850 /// Create a call to Masked Scatter intrinsic
851 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
852 Value *Mask = nullptr);
853
854 /// Create an assume intrinsic call that allows the optimizer to
855 /// assume that the provided condition will be true.
856 CallInst *CreateAssumption(Value *Cond);
857
858 /// Create a call to the experimental.gc.statepoint intrinsic to
859 /// start a new statepoint sequence.
860 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
861 Value *ActualCallee,
862 ArrayRef<Value *> CallArgs,
863 ArrayRef<Value *> DeoptArgs,
864 ArrayRef<Value *> GCArgs,
865 const Twine &Name = "");
866
867 /// Create a call to the experimental.gc.statepoint intrinsic to
868 /// start a new statepoint sequence.
869 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
870 Value *ActualCallee, uint32_t Flags,
871 ArrayRef<Use> CallArgs,
872 ArrayRef<Use> TransitionArgs,
873 ArrayRef<Use> DeoptArgs,
874 ArrayRef<Value *> GCArgs,
875 const Twine &Name = "");
876
877 /// Conveninence function for the common case when CallArgs are filled
878 /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
879 /// .get()'ed to get the Value pointer.
880 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
881 Value *ActualCallee, ArrayRef<Use> CallArgs,
882 ArrayRef<Value *> DeoptArgs,
883 ArrayRef<Value *> GCArgs,
884 const Twine &Name = "");
885
886 /// Create an invoke to the experimental.gc.statepoint intrinsic to
887 /// start a new statepoint sequence.
888 InvokeInst *
889 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
890 Value *ActualInvokee, BasicBlock *NormalDest,
891 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
892 ArrayRef<Value *> DeoptArgs,
893 ArrayRef<Value *> GCArgs, const Twine &Name = "");
894
895 /// Create an invoke to the experimental.gc.statepoint intrinsic to
896 /// start a new statepoint sequence.
897 InvokeInst *CreateGCStatepointInvoke(
898 uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
899 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
900 ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
901 ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs,
902 const Twine &Name = "");
903
904 // Convenience function for the common case when CallArgs are filled in using
905 // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
906 // get the Value *.
907 InvokeInst *
908 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
909 Value *ActualInvokee, BasicBlock *NormalDest,
910 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
911 ArrayRef<Value *> DeoptArgs,
912 ArrayRef<Value *> GCArgs, const Twine &Name = "");
913
914 /// Create a call to the experimental.gc.result intrinsic to extract
915 /// the result from a call wrapped in a statepoint.
916 CallInst *CreateGCResult(Instruction *Statepoint,
917 Type *ResultType,
918 const Twine &Name = "");
919
920 /// Create a call to the experimental.gc.relocate intrinsics to
921 /// project the relocated value of one pointer from the statepoint.
922 CallInst *CreateGCRelocate(Instruction *Statepoint,
923 int BaseOffset,
924 int DerivedOffset,
925 Type *ResultType,
926 const Twine &Name = "");
927
928 /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
929 /// type.
930 CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
931 Instruction *FMFSource = nullptr,
932 const Twine &Name = "");
933
934 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
935 /// first type.
936 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
937 Instruction *FMFSource = nullptr,
938 const Twine &Name = "");
939
940 /// Create a call to intrinsic \p ID with \p args, mangled using \p Types. If
941 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
942 /// the intrinsic.
943 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
944 ArrayRef<Value *> Args,
945 Instruction *FMFSource = nullptr,
946 const Twine &Name = "");
947
948 /// Create call to the minnum intrinsic.
949 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
950 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
951 }
952
953 /// Create call to the maxnum intrinsic.
954 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
955 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
956 }
957
958 /// Create call to the minimum intrinsic.
959 CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
960 return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
961 }
962
963 /// Create call to the maximum intrinsic.
964 CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
965 return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
966 }
967
968private:
969 /// Create a call to a masked intrinsic with given Id.
970 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
971 ArrayRef<Type *> OverloadedTypes,
972 const Twine &Name = "");
973
974 Value *getCastedInt8PtrValue(Value *Ptr);
975
976 //===--------------------------------------------------------------------===//
977 // Instruction creation methods: Terminators
978 //===--------------------------------------------------------------------===//
979
980private:
981 /// Helper to add branch weight and unpredictable metadata onto an
982 /// instruction.
983 /// \returns The annotated instruction.
984 template <typename InstTy>
985 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
986 if (Weights)
987 I->setMetadata(LLVMContext::MD_prof, Weights);
988 if (Unpredictable)
989 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
990 return I;
991 }
992
993public:
994 /// Create a 'ret void' instruction.
995 ReturnInst *CreateRetVoid() {
996 return Insert(ReturnInst::Create(Context));
997 }
998
999 /// Create a 'ret <val>' instruction.
1000 ReturnInst *CreateRet(Value *V) {
1001 return Insert(ReturnInst::Create(Context, V));
1002 }
1003
1004 /// Create a sequence of N insertvalue instructions,
1005 /// with one Value from the retVals array each, that build a aggregate
1006 /// return value one value at a time, and a ret instruction to return
1007 /// the resulting aggregate value.
1008 ///
1009 /// This is a convenience function for code that uses aggregate return values
1010 /// as a vehicle for having multiple return values.
1011 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
1012 Value *V = UndefValue::get(getCurrentFunctionReturnType());
1013 for (unsigned i = 0; i != N; ++i)
1014 V = CreateInsertValue(V, retVals[i], i, "mrv");
1015 return Insert(ReturnInst::Create(Context, V));
1016 }
1017
1018 /// Create an unconditional 'br label X' instruction.
1019 BranchInst *CreateBr(BasicBlock *Dest) {
1020 return Insert(BranchInst::Create(Dest));
1021 }
1022
1023 /// Create a conditional 'br Cond, TrueDest, FalseDest'
1024 /// instruction.
1025 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1026 MDNode *BranchWeights = nullptr,
1027 MDNode *Unpredictable = nullptr) {
1028 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
1029 BranchWeights, Unpredictable));
1030 }
1031
1032 /// Create a conditional 'br Cond, TrueDest, FalseDest'
1033 /// instruction. Copy branch meta data if available.
1034 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1035 Instruction *MDSrc) {
1036 BranchInst *Br = BranchInst::Create(True, False, Cond);
1037 if (MDSrc) {
1038 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
1039 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
1040 Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
1041 }
1042 return Insert(Br);
1043 }
1044
1045 /// Create a switch instruction with the specified value, default dest,
1046 /// and with a hint for the number of cases that will be added (for efficient
1047 /// allocation).
1048 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
1049 MDNode *BranchWeights = nullptr,
1050 MDNode *Unpredictable = nullptr) {
1051 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
1052 BranchWeights, Unpredictable));
1053 }
1054
1055 /// Create an indirect branch instruction with the specified address
1056 /// operand, with an optional hint for the number of destinations that will be
1057 /// added (for efficient allocation).
1058 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
1059 return Insert(IndirectBrInst::Create(Addr, NumDests));
1060 }
1061
1062 /// Create an invoke instruction.
1063 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1064 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1065 ArrayRef<Value *> Args,
1066 ArrayRef<OperandBundleDef> OpBundles,
1067 const Twine &Name = "") {
1068 return Insert(
1069 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles),
1070 Name);
1071 }
1072 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1073 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1074 ArrayRef<Value *> Args = None,
1075 const Twine &Name = "") {
1076 return Insert(InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args),
1077 Name);
1078 }
1079
1080 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1081 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1082 ArrayRef<OperandBundleDef> OpBundles,
1083 const Twine &Name = "") {
1084 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1085 NormalDest, UnwindDest, Args, OpBundles, Name);
1086 }
1087
1088 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1089 BasicBlock *UnwindDest,
1090 ArrayRef<Value *> Args = None,
1091 const Twine &Name = "") {
1092 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1093 NormalDest, UnwindDest, Args, Name);
1094 }
1095
1096 // Deprecated [opaque pointer types]
1097 InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
1098 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1099 ArrayRef<OperandBundleDef> OpBundles,
1100 const Twine &Name = "") {
1101 return CreateInvoke(
1102 cast<FunctionType>(
1103 cast<PointerType>(Callee->getType())->getElementType()),
1104 Callee, NormalDest, UnwindDest, Args, OpBundles, Name);
1105 }
1106
1107 // Deprecated [opaque pointer types]
1108 InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
1109 BasicBlock *UnwindDest,
1110 ArrayRef<Value *> Args = None,
1111 const Twine &Name = "") {
1112 return CreateInvoke(
1113 cast<FunctionType>(
1114 cast<PointerType>(Callee->getType())->getElementType()),
1115 Callee, NormalDest, UnwindDest, Args, Name);
1116 }
1117
1118 /// \brief Create a callbr instruction.
1119 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1120 BasicBlock *DefaultDest,
1121 ArrayRef<BasicBlock *> IndirectDests,
1122 ArrayRef<Value *> Args = None,
1123 const Twine &Name = "") {
1124 return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
1125 Args), Name);
1126 }
1127 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1128 BasicBlock *DefaultDest,
1129 ArrayRef<BasicBlock *> IndirectDests,
1130 ArrayRef<Value *> Args,
1131 ArrayRef<OperandBundleDef> OpBundles,
1132 const Twine &Name = "") {
1133 return Insert(
1134 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
1135 OpBundles), Name);
1136 }
1137
1138 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1139 ArrayRef<BasicBlock *> IndirectDests,
1140 ArrayRef<Value *> Args = None,
1141 const Twine &Name = "") {
1142 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1143 DefaultDest, IndirectDests, Args, Name);
1144 }
1145 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1146 ArrayRef<BasicBlock *> IndirectDests,
1147 ArrayRef<Value *> Args,
1148 ArrayRef<OperandBundleDef> OpBundles,
1149 const Twine &Name = "") {
1150 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1151 DefaultDest, IndirectDests, Args, Name);
1152 }
1153
1154 ResumeInst *CreateResume(Value *Exn) {
1155 return Insert(ResumeInst::Create(Exn));
1156 }
1157
1158 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
1159 BasicBlock *UnwindBB = nullptr) {
1160 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
1161 }
1162
1163 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
1164 unsigned NumHandlers,
1165 const Twine &Name = "") {
1166 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
1167 Name);
1168 }
1169
1170 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
1171 const Twine &Name = "") {
1172 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1173 }
1174
1175 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1176 ArrayRef<Value *> Args = None,
1177 const Twine &Name = "") {
1178 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1179 }
1180
1181 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1182 return Insert(CatchReturnInst::Create(CatchPad, BB));
1183 }
1184
1185 UnreachableInst *CreateUnreachable() {
1186 return Insert(new UnreachableInst(Context));
1187 }
1188
1189 //===--------------------------------------------------------------------===//
1190 // Instruction creation methods: Binary Operators
1191 //===--------------------------------------------------------------------===//
1192private:
1193 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1194 Value *LHS, Value *RHS,
1195 const Twine &Name,
1196 bool HasNUW, bool HasNSW) {
1197 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1198 if (HasNUW) BO->setHasNoUnsignedWrap();
1199 if (HasNSW) BO->setHasNoSignedWrap();
1200 return BO;
1201 }
1202
1203 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1204 FastMathFlags FMF) const {
1205 if (!FPMD)
1206 FPMD = DefaultFPMathTag;
1207 if (FPMD)
1208 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1209 I->setFastMathFlags(FMF);
1210 return I;
1211 }
1212
1213 Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
1214 Value *R, const Twine &Name) const {
1215 auto *LC = dyn_cast<Constant>(L);
1216 auto *RC = dyn_cast<Constant>(R);
1217 return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
1218 }
1219
1220 Value *getConstrainedFPRounding(Optional<fp::RoundingMode> Rounding) {
1221 fp::RoundingMode UseRounding = DefaultConstrainedRounding;
1222
1223 if (Rounding.hasValue())
1224 UseRounding = Rounding.getValue();
1225
1226 Optional<StringRef> RoundingStr = RoundingModeToStr(UseRounding);
1227 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")((RoundingStr.hasValue() && "Garbage strict rounding mode!"
) ? static_cast<void> (0) : __assert_fail ("RoundingStr.hasValue() && \"Garbage strict rounding mode!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1227, __PRETTY_FUNCTION__))
;
1228 auto *RoundingMDS = MDString::get(Context, RoundingStr.getValue());
1229
1230 return MetadataAsValue::get(Context, RoundingMDS);
1231 }
1232
1233 Value *getConstrainedFPExcept(Optional<fp::ExceptionBehavior> Except) {
1234 fp::ExceptionBehavior UseExcept = DefaultConstrainedExcept;
1235
1236 if (Except.hasValue())
1237 UseExcept = Except.getValue();
1238
1239 Optional<StringRef> ExceptStr = ExceptionBehaviorToStr(UseExcept);
1240 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")((ExceptStr.hasValue() && "Garbage strict exception behavior!"
) ? static_cast<void> (0) : __assert_fail ("ExceptStr.hasValue() && \"Garbage strict exception behavior!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1240, __PRETTY_FUNCTION__))
;
1241 auto *ExceptMDS = MDString::get(Context, ExceptStr.getValue());
1242
1243 return MetadataAsValue::get(Context, ExceptMDS);
1244 }
1245
1246 Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
1247 assert(CmpInst::isFPPredicate(Predicate) &&((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1250, __PRETTY_FUNCTION__))
1248 Predicate != CmpInst::FCMP_FALSE &&((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1250, __PRETTY_FUNCTION__))
1249 Predicate != CmpInst::FCMP_TRUE &&((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1250, __PRETTY_FUNCTION__))
1250 "Invalid constrained FP comparison predicate!")((CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst
::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE &&
"Invalid constrained FP comparison predicate!") ? static_cast
<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1250, __PRETTY_FUNCTION__))
;
1251
1252 StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
1253 auto *PredicateMDS = MDString::get(Context, PredicateStr);
1254
1255 return MetadataAsValue::get(Context, PredicateMDS);
1256 }
1257
1258public:
1259 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1260 bool HasNUW = false, bool HasNSW = false) {
1261 if (auto *LC = dyn_cast<Constant>(LHS))
1262 if (auto *RC = dyn_cast<Constant>(RHS))
1263 return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
1264 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
1265 HasNUW, HasNSW);
1266 }
1267
1268 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1269 return CreateAdd(LHS, RHS, Name, false, true);
1270 }
1271
1272 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1273 return CreateAdd(LHS, RHS, Name, true, false);
1274 }
1275
1276 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1277 bool HasNUW = false, bool HasNSW = false) {
1278 if (auto *LC = dyn_cast<Constant>(LHS))
1279 if (auto *RC = dyn_cast<Constant>(RHS))
1280 return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
1281 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
1282 HasNUW, HasNSW);
1283 }
1284
1285 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1286 return CreateSub(LHS, RHS, Name, false, true);
1287 }
1288
1289 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1290 return CreateSub(LHS, RHS, Name, true, false);
1291 }
1292
1293 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1294 bool HasNUW = false, bool HasNSW = false) {
1295 if (auto *LC = dyn_cast<Constant>(LHS))
1296 if (auto *RC = dyn_cast<Constant>(RHS))
1297 return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
1298 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
1299 HasNUW, HasNSW);
1300 }
1301
1302 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1303 return CreateMul(LHS, RHS, Name, false, true);
1304 }
1305
1306 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1307 return CreateMul(LHS, RHS, Name, true, false);
1308 }
1309
1310 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1311 bool isExact = false) {
1312 if (auto *LC = dyn_cast<Constant>(LHS))
1313 if (auto *RC = dyn_cast<Constant>(RHS))
1314 return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
1315 if (!isExact)
1316 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1317 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1318 }
1319
1320 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1321 return CreateUDiv(LHS, RHS, Name, true);
1322 }
1323
1324 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1325 bool isExact = false) {
1326 if (auto *LC = dyn_cast<Constant>(LHS))
1327 if (auto *RC = dyn_cast<Constant>(RHS))
1328 return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
1329 if (!isExact)
1330 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1331 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1332 }
1333
1334 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1335 return CreateSDiv(LHS, RHS, Name, true);
1336 }
1337
1338 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1339 if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
1340 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1341 }
1342
1343 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1344 if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V;
1345 return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1346 }
1347
1348 Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1349 bool HasNUW = false, bool HasNSW = false) {
1350 if (auto *LC = dyn_cast<Constant>(LHS))
1351 if (auto *RC = dyn_cast<Constant>(RHS))
1352 return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
1353 return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1354 HasNUW, HasNSW);
1355 }
1356
1357 Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1358 bool HasNUW = false, bool HasNSW = false) {
1359 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1360 HasNUW, HasNSW);
1361 }
1362
1363 Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1364 bool HasNUW = false, bool HasNSW = false) {
1365 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1366 HasNUW, HasNSW);
1367 }
1368
1369 Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1370 bool isExact = false) {
1371 if (auto *LC = dyn_cast<Constant>(LHS))
1372 if (auto *RC = dyn_cast<Constant>(RHS))
1373 return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
1374 if (!isExact)
1375 return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1376 return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1377 }
1378
1379 Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1380 bool isExact = false) {
1381 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1382 }
1383
1384 Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1385 bool isExact = false) {
1386 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1387 }
1388
1389 Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1390 bool isExact = false) {
1391 if (auto *LC = dyn_cast<Constant>(LHS))
1392 if (auto *RC = dyn_cast<Constant>(RHS))
1393 return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
1394 if (!isExact)
1395 return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1396 return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1397 }
1398
1399 Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1400 bool isExact = false) {
1401 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1402 }
1403
1404 Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1405 bool isExact = false) {
1406 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1407 }
1408
1409 Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1410 if (auto *RC = dyn_cast<Constant>(RHS)) {
1411 if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne())
1412 return LHS; // LHS & -1 -> LHS
1413 if (auto *LC = dyn_cast<Constant>(LHS))
1414 return Insert(Folder.CreateAnd(LC, RC), Name);
1415 }
1416 return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1417 }
1418
1419 Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1420 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1421 }
1422
1423 Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1424 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1425 }
1426
1427 Value *CreateAnd(ArrayRef<Value*> Ops) {
1428 assert(!Ops.empty())((!Ops.empty()) ? static_cast<void> (0) : __assert_fail
("!Ops.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1428, __PRETTY_FUNCTION__))
;
1429 Value *Accum = Ops[0];
1430 for (unsigned i = 1; i < Ops.size(); i++)
1431 Accum = CreateAnd(Accum, Ops[i]);
1432 return Accum;
1433 }
1434
1435 Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1436 if (auto *RC = dyn_cast<Constant>(RHS)) {
1437 if (RC->isNullValue())
1438 return LHS; // LHS | 0 -> LHS
1439 if (auto *LC = dyn_cast<Constant>(LHS))
1440 return Insert(Folder.CreateOr(LC, RC), Name);
1441 }
1442 return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1443 }
1444
1445 Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1446 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1447 }
1448
1449 Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1450 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1451 }
1452
1453 Value *CreateOr(ArrayRef<Value*> Ops) {
1454 assert(!Ops.empty())((!Ops.empty()) ? static_cast<void> (0) : __assert_fail
("!Ops.empty()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1454, __PRETTY_FUNCTION__))
;
1455 Value *Accum = Ops[0];
1456 for (unsigned i = 1; i < Ops.size(); i++)
1457 Accum = CreateOr(Accum, Ops[i]);
1458 return Accum;
1459 }
1460
1461 Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1462 if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V;
1463 return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1464 }
1465
1466 Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1467 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1468 }
1469
1470 Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1471 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1472 }
1473
1474 Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1475 MDNode *FPMD = nullptr) {
1476 if (IsFPConstrained)
1477 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1478 L, R, nullptr, Name, FPMD);
1479
1480 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1481 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1482 return Insert(I, Name);
1483 }
1484
1485 /// Copy fast-math-flags from an instruction rather than using the builder's
1486 /// default FMF.
1487 Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1488 const Twine &Name = "") {
1489 if (IsFPConstrained)
1490 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1491 L, R, FMFSource, Name);
1492
1493 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1494 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr,
1495 FMFSource->getFastMathFlags());
1496 return Insert(I, Name);
1497 }
1498
1499 Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1500 MDNode *FPMD = nullptr) {
1501 if (IsFPConstrained)
1502 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1503 L, R, nullptr, Name, FPMD);
1504
1505 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1506 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1507 return Insert(I, Name);
1508 }
1509
1510 /// Copy fast-math-flags from an instruction rather than using the builder's
1511 /// default FMF.
1512 Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1513 const Twine &Name = "") {
1514 if (IsFPConstrained)
1515 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1516 L, R, FMFSource, Name);
1517
1518 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1519 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr,
1520 FMFSource->getFastMathFlags());
1521 return Insert(I, Name);
1522 }
1523
1524 Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1525 MDNode *FPMD = nullptr) {
1526 if (IsFPConstrained)
1527 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1528 L, R, nullptr, Name, FPMD);
1529
1530 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1531 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1532 return Insert(I, Name);
1533 }
1534
1535 /// Copy fast-math-flags from an instruction rather than using the builder's
1536 /// default FMF.
1537 Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1538 const Twine &Name = "") {
1539 if (IsFPConstrained)
1540 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1541 L, R, FMFSource, Name);
1542
1543 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1544 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr,
1545 FMFSource->getFastMathFlags());
1546 return Insert(I, Name);
1547 }
1548
1549 Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1550 MDNode *FPMD = nullptr) {
1551 if (IsFPConstrained)
1552 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1553 L, R, nullptr, Name, FPMD);
1554
1555 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1556 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1557 return Insert(I, Name);
1558 }
1559
1560 /// Copy fast-math-flags from an instruction rather than using the builder's
1561 /// default FMF.
1562 Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1563 const Twine &Name = "") {
1564 if (IsFPConstrained)
1565 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1566 L, R, FMFSource, Name);
1567
1568 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1569 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr,
1570 FMFSource->getFastMathFlags());
1571 return Insert(I, Name);
1572 }
1573
1574 Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1575 MDNode *FPMD = nullptr) {
1576 if (IsFPConstrained)
1577 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1578 L, R, nullptr, Name, FPMD);
1579
1580 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1581 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1582 return Insert(I, Name);
1583 }
1584
1585 /// Copy fast-math-flags from an instruction rather than using the builder's
1586 /// default FMF.
1587 Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1588 const Twine &Name = "") {
1589 if (IsFPConstrained)
1590 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1591 L, R, FMFSource, Name);
1592
1593 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1594 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr,
1595 FMFSource->getFastMathFlags());
1596 return Insert(I, Name);
1597 }
1598
1599 Value *CreateBinOp(Instruction::BinaryOps Opc,
1600 Value *LHS, Value *RHS, const Twine &Name = "",
1601 MDNode *FPMathTag = nullptr) {
1602 if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V;
1603 Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1604 if (isa<FPMathOperator>(BinOp))
1605 setFPAttrs(BinOp, FPMathTag, FMF);
1606 return Insert(BinOp, Name);
1607 }
1608
1609 CallInst *CreateConstrainedFPBinOp(
1610 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
1611 const Twine &Name = "", MDNode *FPMathTag = nullptr,
1612 Optional<fp::RoundingMode> Rounding = None,
1613 Optional<fp::ExceptionBehavior> Except = None) {
1614 Value *RoundingV = getConstrainedFPRounding(Rounding);
1615 Value *ExceptV = getConstrainedFPExcept(Except);
1616
1617 FastMathFlags UseFMF = FMF;
1618 if (FMFSource)
1619 UseFMF = FMFSource->getFastMathFlags();
1620
1621 CallInst *C = CreateIntrinsic(ID, {L->getType()},
1622 {L, R, RoundingV, ExceptV}, nullptr, Name);
1623 setConstrainedFPCallAttr(C);
1624 setFPAttrs(C, FPMathTag, UseFMF);
1625 return C;
1626 }
1627
1628 Value *CreateNeg(Value *V, const Twine &Name = "",
1629 bool HasNUW = false, bool HasNSW = false) {
1630 if (auto *VC = dyn_cast<Constant>(V))
1631 return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
1632 BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
1633 if (HasNUW) BO->setHasNoUnsignedWrap();
1634 if (HasNSW) BO->setHasNoSignedWrap();
1635 return BO;
1636 }
1637
1638 Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1639 return CreateNeg(V, Name, false, true);
1640 }
1641
1642 Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1643 return CreateNeg(V, Name, true, false);
1644 }
1645
1646 Value *CreateFNeg(Value *V, const Twine &Name = "",
1647 MDNode *FPMathTag = nullptr) {
1648 if (auto *VC = dyn_cast<Constant>(V))
1649 return Insert(Folder.CreateFNeg(VC), Name);
1650 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
1651 Name);
1652 }
1653
1654 /// Copy fast-math-flags from an instruction rather than using the builder's
1655 /// default FMF.
1656 Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
1657 const Twine &Name = "") {
1658 if (auto *VC = dyn_cast<Constant>(V))
1659 return Insert(Folder.CreateFNeg(VC), Name);
1660 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr,
1661 FMFSource->getFastMathFlags()),
1662 Name);
1663 }
1664
1665 Value *CreateNot(Value *V, const Twine &Name = "") {
1666 if (auto *VC = dyn_cast<Constant>(V))
1667 return Insert(Folder.CreateNot(VC), Name);
1668 return Insert(BinaryOperator::CreateNot(V), Name);
1669 }
1670
1671 Value *CreateUnOp(Instruction::UnaryOps Opc,
1672 Value *V, const Twine &Name = "",
1673 MDNode *FPMathTag = nullptr) {
1674 if (auto *VC = dyn_cast<Constant>(V))
1675 return Insert(Folder.CreateUnOp(Opc, VC), Name);
1676 Instruction *UnOp = UnaryOperator::Create(Opc, V);
1677 if (isa<FPMathOperator>(UnOp))
1678 setFPAttrs(UnOp, FPMathTag, FMF);
1679 return Insert(UnOp, Name);
1680 }
1681
1682 /// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
1683 /// Correct number of operands must be passed accordingly.
1684 Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1685 const Twine &Name = "",
1686 MDNode *FPMathTag = nullptr) {
1687 if (Instruction::isBinaryOp(Opc)) {
1688 assert(Ops.size() == 2 && "Invalid number of operands!")((Ops.size() == 2 && "Invalid number of operands!") ?
static_cast<void> (0) : __assert_fail ("Ops.size() == 2 && \"Invalid number of operands!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1688, __PRETTY_FUNCTION__))
;
1689 return CreateBinOp(static_cast<Instruction::BinaryOps>(Opc),
1690 Ops[0], Ops[1], Name, FPMathTag);
1691 }
1692 if (Instruction::isUnaryOp(Opc)) {
1693 assert(Ops.size() == 1 && "Invalid number of operands!")((Ops.size() == 1 && "Invalid number of operands!") ?
static_cast<void> (0) : __assert_fail ("Ops.size() == 1 && \"Invalid number of operands!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1693, __PRETTY_FUNCTION__))
;
1694 return CreateUnOp(static_cast<Instruction::UnaryOps>(Opc),
1695 Ops[0], Name, FPMathTag);
1696 }
1697 llvm_unreachable("Unexpected opcode!")::llvm::llvm_unreachable_internal("Unexpected opcode!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 1697)
;
1698 }
1699
1700 //===--------------------------------------------------------------------===//
1701 // Instruction creation methods: Memory Instructions
1702 //===--------------------------------------------------------------------===//
1703
1704 AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1705 Value *ArraySize = nullptr, const Twine &Name = "") {
1706 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize), Name);
1707 }
1708
1709 AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1710 const Twine &Name = "") {
1711 const DataLayout &DL = BB->getParent()->getParent()->getDataLayout();
1712 return Insert(new AllocaInst(Ty, DL.getAllocaAddrSpace(), ArraySize), Name);
1713 }
1714
1715 /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
1716 /// converting the string to 'bool' for the isVolatile parameter.
1717 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
1718 return Insert(new LoadInst(Ty, Ptr), Name);
1719 }
1720
1721 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1722 return Insert(new LoadInst(Ty, Ptr), Name);
1723 }
1724
1725 LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
1726 const Twine &Name = "") {
1727 return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile), Name);
1728 }
1729
1730 // Deprecated [opaque pointer types]
1731 LoadInst *CreateLoad(Value *Ptr, const char *Name) {
1732 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name);
1733 }
1734
1735 // Deprecated [opaque pointer types]
1736 LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
1737 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, Name);
1738 }
1739
1740 // Deprecated [opaque pointer types]
1741 LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
1742 return CreateLoad(Ptr->getType()->getPointerElementType(), Ptr, isVolatile,
1743 Name);
1744 }
1745
1746 StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1747 return Insert(new StoreInst(Val, Ptr, isVolatile));
1748 }
1749
1750 /// Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
1751 /// correctly, instead of converting the string to 'bool' for the isVolatile
1752 /// parameter.
1753 /// FIXME: Remove this function once transition to Align is over.
1754 /// Use the version that takes MaybeAlign instead of this one.
1755 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
1756 unsigned Align,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
1757 const char *Name),LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
1758 "Use the version that takes NaybeAlign instead")LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const char *Name) __attribute__((deprecated("Use the version that takes NaybeAlign instead"
)))
{
1759 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(Align), Name);
1760 }
1761 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1762 const char *Name) {
1763 LoadInst *LI = CreateLoad(Ty, Ptr, Name);
1764 LI->setAlignment(Align);
1765 return LI;
1766 }
1767 /// FIXME: Remove this function once transition to Align is over.
1768 /// Use the version that takes MaybeAlign instead of this one.
1769 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1770 unsigned Align,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1771 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1772 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1773 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(Align), Name);
1774 }
1775 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1776 const Twine &Name = "") {
1777 LoadInst *LI = CreateLoad(Ty, Ptr, Name);
1778 LI->setAlignment(Align);
1779 return LI;
1780 }
1781 /// FIXME: Remove this function once transition to Align is over.
1782 /// Use the version that takes MaybeAlign instead of this one.
1783 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1784 unsigned Align,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1785 bool isVolatile,LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1786 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
1787 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, unsigned Align
, bool isVolatile, const Twine &Name = "") __attribute__(
(deprecated("Use the version that takes MaybeAlign instead"))
)
{
1788 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(Align), isVolatile, Name);
1789 }
1790 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1791 bool isVolatile, const Twine &Name = "") {
1792 LoadInst *LI = CreateLoad(Ty, Ptr, isVolatile, Name);
1793 LI->setAlignment(Align);
1794 return LI;
1795 }
1796
1797 // Deprecated [opaque pointer types]
1798 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1799 unsigned Align,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1800 const char *Name),LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1801 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
char *Name) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1802 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1803 MaybeAlign(Align), Name);
1804 }
1805 // Deprecated [opaque pointer types]
1806 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1807 unsigned Align,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1808 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1809 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const
Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1810 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1811 MaybeAlign(Align), Name);
1812 }
1813 // Deprecated [opaque pointer types]
1814 LLVM_ATTRIBUTE_DEPRECATED(LoadInst *CreateAlignedLoad(Value *Ptr,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1815 unsigned Align,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1816 bool isVolatile,LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1817 const Twine &Name = ""),LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1818 "Use the version that takes MaybeAlign instead")LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile
, const Twine &Name = "") __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1819 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1820 MaybeAlign(Align), isVolatile, Name);
1821 }
1822 // Deprecated [opaque pointer types]
1823 LoadInst *CreateAlignedLoad(Value *Ptr, MaybeAlign Align, const char *Name) {
1824 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1825 Align, Name);
1826 }
1827 // Deprecated [opaque pointer types]
1828 LoadInst *CreateAlignedLoad(Value *Ptr, MaybeAlign Align,
1829 const Twine &Name = "") {
1830 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1831 Align, Name);
1832 }
1833 // Deprecated [opaque pointer types]
1834 LoadInst *CreateAlignedLoad(Value *Ptr, MaybeAlign Align, bool isVolatile,
1835 const Twine &Name = "") {
1836 return CreateAlignedLoad(Ptr->getType()->getPointerElementType(), Ptr,
1837 Align, isVolatile, Name);
1838 }
1839
1840 /// FIXME: Remove this function once transition to Align is over.
1841 /// Use the version that takes MaybeAlign instead of this one.
1842 LLVM_ATTRIBUTE_DEPRECATED(StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1843 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1844 bool isVolatile = false),StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
1845 "Use the version that takes MaybeAlign instead")StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned
Align, bool isVolatile = false) __attribute__((deprecated("Use the version that takes MaybeAlign instead"
)))
{
1846 return CreateAlignedStore(Val, Ptr, MaybeAlign(Align), isVolatile);
1847 }
1848 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
1849 bool isVolatile = false) {
1850 StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
1851 SI->setAlignment(Align);
1852 return SI;
1853 }
1854 FenceInst *CreateFence(AtomicOrdering Ordering,
1855 SyncScope::ID SSID = SyncScope::System,
1856 const Twine &Name = "") {
1857 return Insert(new FenceInst(Context, Ordering, SSID), Name);
1858 }
1859
1860 AtomicCmpXchgInst *
1861 CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
1862 AtomicOrdering SuccessOrdering,
1863 AtomicOrdering FailureOrdering,
1864 SyncScope::ID SSID = SyncScope::System) {
1865 return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
1866 FailureOrdering, SSID));
1867 }
1868
1869 AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
1870 AtomicOrdering Ordering,
1871 SyncScope::ID SSID = SyncScope::System) {
1872 return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SSID));
1873 }
1874
1875 Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
1876 const Twine &Name = "") {
1877 return CreateGEP(nullptr, Ptr, IdxList, Name);
1878 }
1879
1880 Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1881 const Twine &Name = "") {
1882 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1883 // Every index must be constant.
1884 size_t i, e;
1885 for (i = 0, e = IdxList.size(); i != e; ++i)
1886 if (!isa<Constant>(IdxList[i]))
1887 break;
1888 if (i == e)
1889 return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name);
1890 }
1891 return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
1892 }
1893
1894 Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
1895 const Twine &Name = "") {
1896 return CreateInBoundsGEP(nullptr, Ptr, IdxList, Name);
1897 }
1898
1899 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1900 const Twine &Name = "") {
1901 if (auto *PC = dyn_cast<Constant>(Ptr)) {
1902 // Every index must be constant.
1903 size_t i, e;
1904 for (i = 0, e = IdxList.size(); i != e; ++i)
1905 if (!isa<Constant>(IdxList[i]))
1906 break;
1907 if (i == e)
1908 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList),
1909 Name);
1910 }
1911 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
1912 }
1913
1914 Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
1915 return CreateGEP(nullptr, Ptr, Idx, Name);
1916 }
1917
1918 Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
1919 if (auto *PC = dyn_cast<Constant>(Ptr))
1920 if (auto *IC = dyn_cast<Constant>(Idx))
1921 return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name);
1922 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1923 }
1924
1925 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
1926 const Twine &Name = "") {
1927 if (auto *PC = dyn_cast<Constant>(Ptr))
1928 if (auto *IC = dyn_cast<Constant>(Idx))
1929 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name);
1930 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1931 }
1932
1933 Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
1934 return CreateConstGEP1_32(nullptr, Ptr, Idx0, Name);
1935 }
1936
1937 Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1938 const Twine &Name = "") {
1939 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1940
1941 if (auto *PC = dyn_cast<Constant>(Ptr))
1942 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1943
1944 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1945 }
1946
1947 Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1948 const Twine &Name = "") {
1949 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1950
1951 if (auto *PC = dyn_cast<Constant>(Ptr))
1952 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
1953
1954 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1955 }
1956
1957 Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1958 const Twine &Name = "") {
1959 Value *Idxs[] = {
1960 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1961 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1962 };
1963
1964 if (auto *PC = dyn_cast<Constant>(Ptr))
1965 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
1966
1967 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1968 }
1969
1970 Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1971 unsigned Idx1, const Twine &Name = "") {
1972 Value *Idxs[] = {
1973 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1974 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1975 };
1976
1977 if (auto *PC = dyn_cast<Constant>(Ptr))
1978 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
1979
1980 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1981 }
1982
1983 Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1984 const Twine &Name = "") {
1985 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1986
1987 if (auto *PC = dyn_cast<Constant>(Ptr))
1988 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
1989
1990 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1991 }
1992
1993 Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
1994 return CreateConstGEP1_64(nullptr, Ptr, Idx0, Name);
1995 }
1996
1997 Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1998 const Twine &Name = "") {
1999 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
2000
2001 if (auto *PC = dyn_cast<Constant>(Ptr))
2002 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
2003
2004 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
2005 }
2006
2007 Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
2008 const Twine &Name = "") {
2009 return CreateConstInBoundsGEP1_64(nullptr, Ptr, Idx0, Name);
2010 }
2011
2012 Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
2013 const Twine &Name = "") {
2014 Value *Idxs[] = {
2015 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
2016 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
2017 };
2018
2019 if (auto *PC = dyn_cast<Constant>(Ptr))
2020 return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
2021
2022 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
2023 }
2024
2025 Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
2026 const Twine &Name = "") {
2027 return CreateConstGEP2_64(nullptr, Ptr, Idx0, Idx1, Name);
2028 }
2029
2030 Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
2031 uint64_t Idx1, const Twine &Name = "") {
2032 Value *Idxs[] = {
2033 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
2034 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
2035 };
2036
2037 if (auto *PC = dyn_cast<Constant>(Ptr))
2038 return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
2039
2040 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
2041 }
2042
2043 Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
2044 const Twine &Name = "") {
2045 return CreateConstInBoundsGEP2_64(nullptr, Ptr, Idx0, Idx1, Name);
2046 }
2047
2048 Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
2049 const Twine &Name = "") {
2050 return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
2051 }
2052
2053 Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
2054 return CreateConstInBoundsGEP2_32(nullptr, Ptr, 0, Idx, Name);
2055 }
2056
2057 /// Same as CreateGlobalString, but return a pointer with "i8*" type
2058 /// instead of a pointer to array of i8.
2059 Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
2060 unsigned AddressSpace = 0) {
2061 GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace);
2062 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
2063 Constant *Indices[] = {Zero, Zero};
2064 return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
2065 Indices);
2066 }
2067
2068 //===--------------------------------------------------------------------===//
2069 // Instruction creation methods: Cast/Conversion Operators
2070 //===--------------------------------------------------------------------===//
2071
2072 Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
2073 return CreateCast(Instruction::Trunc, V, DestTy, Name);
2074 }
2075
2076 Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
2077 return CreateCast(Instruction::ZExt, V, DestTy, Name);
2078 }
2079
2080 Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
2081 return CreateCast(Instruction::SExt, V, DestTy, Name);
2082 }
2083
2084 /// Create a ZExt or Trunc from the integer value V to DestTy. Return
2085 /// the value untouched if the type of V is already DestTy.
2086 Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
2087 const Twine &Name = "") {
2088 assert(V->getType()->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2090, __PRETTY_FUNCTION__))
2089 DestTy->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2090, __PRETTY_FUNCTION__))
2090 "Can only zero extend/truncate integers!")((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2090, __PRETTY_FUNCTION__))
;
2091 Type *VTy = V->getType();
2092 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
2093 return CreateZExt(V, DestTy, Name);
2094 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
2095 return CreateTrunc(V, DestTy, Name);
2096 return V;
2097 }
2098
2099 /// Create a SExt or Trunc from the integer value V to DestTy. Return
2100 /// the value untouched if the type of V is already DestTy.
2101 Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
2102 const Twine &Name = "") {
2103 assert(V->getType()->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2105, __PRETTY_FUNCTION__))
2104 DestTy->isIntOrIntVectorTy() &&((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2105, __PRETTY_FUNCTION__))
2105 "Can only sign extend/truncate integers!")((V->getType()->isIntOrIntVectorTy() && DestTy->
isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2105, __PRETTY_FUNCTION__))
;
2106 Type *VTy = V->getType();
2107 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
2108 return CreateSExt(V, DestTy, Name);
2109 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
2110 return CreateTrunc(V, DestTy, Name);
2111 return V;
2112 }
2113
2114 Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
2115 if (IsFPConstrained)
2116 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
2117 V, DestTy, nullptr, Name);
2118 return CreateCast(Instruction::FPToUI, V, DestTy, Name);
2119 }
2120
2121 Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
2122 if (IsFPConstrained)
2123 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
2124 V, DestTy, nullptr, Name);
2125 return CreateCast(Instruction::FPToSI, V, DestTy, Name);
2126 }
2127
2128 Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
2129 if (IsFPConstrained)
2130 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
2131 V, DestTy, nullptr, Name);
2132 return CreateCast(Instruction::UIToFP, V, DestTy, Name);
2133 }
2134
2135 Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
2136 if (IsFPConstrained)
2137 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
2138 V, DestTy, nullptr, Name);
2139 return CreateCast(Instruction::SIToFP, V, DestTy, Name);
2140 }
2141
2142 Value *CreateFPTrunc(Value *V, Type *DestTy,
2143 const Twine &Name = "") {
2144 if (IsFPConstrained)
2145 return CreateConstrainedFPCast(
2146 Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
2147 Name);
2148 return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
2149 }
2150
2151 Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
2152 if (IsFPConstrained)
2153 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
2154 V, DestTy, nullptr, Name);
2155 return CreateCast(Instruction::FPExt, V, DestTy, Name);
2156 }
2157
2158 Value *CreatePtrToInt(Value *V, Type *DestTy,
2159 const Twine &Name = "") {
2160 return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
2161 }
2162
2163 Value *CreateIntToPtr(Value *V, Type *DestTy,
2164 const Twine &Name = "") {
2165 return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
2166 }
2167
2168 Value *CreateBitCast(Value *V, Type *DestTy,
2169 const Twine &Name = "") {
2170 return CreateCast(Instruction::BitCast, V, DestTy, Name);
2171 }
2172
2173 Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
2174 const Twine &Name = "") {
2175 return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
2176 }
2177
2178 Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
2179 const Twine &Name = "") {
2180 if (V->getType() == DestTy)
2181 return V;
2182 if (auto *VC = dyn_cast<Constant>(V))
2183 return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
2184 return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
2185 }
2186
2187 Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
2188 const Twine &Name = "") {
2189 if (V->getType() == DestTy)
2190 return V;
2191 if (auto *VC = dyn_cast<Constant>(V))
2192 return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
2193 return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
2194 }
2195
2196 Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
2197 const Twine &Name = "") {
2198 if (V->getType() == DestTy)
2199 return V;
2200 if (auto *VC = dyn_cast<Constant>(V))
2201 return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
2202 return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
2203 }
2204
2205 Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
2206 const Twine &Name = "") {
2207 if (V->getType() == DestTy)
2208 return V;
2209 if (auto *VC = dyn_cast<Constant>(V))
2210 return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
2211 return Insert(CastInst::Create(Op, V, DestTy), Name);
2212 }
2213
2214 Value *CreatePointerCast(Value *V, Type *DestTy,
2215 const Twine &Name = "") {
2216 if (V->getType() == DestTy)
2217 return V;
2218 if (auto *VC = dyn_cast<Constant>(V))
2219 return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
2220 return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
2221 }
2222
2223 Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
2224 const Twine &Name = "") {
2225 if (V->getType() == DestTy)
2226 return V;
2227
2228 if (auto *VC = dyn_cast<Constant>(V)) {
2229 return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
2230 Name);
2231 }
2232
2233 return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
2234 Name);
2235 }
2236
2237 Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
2238 const Twine &Name = "") {
2239 if (V->getType() == DestTy)
2240 return V;
2241 if (auto *VC = dyn_cast<Constant>(V))
2242 return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
2243 return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
2244 }
2245
2246 Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
2247 const Twine &Name = "") {
2248 if (V->getType() == DestTy)
2249 return V;
2250 if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
2251 return CreatePtrToInt(V, DestTy, Name);
2252 if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
2253 return CreateIntToPtr(V, DestTy, Name);
2254
2255 return CreateBitCast(V, DestTy, Name);
2256 }
2257
2258 Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
2259 if (V->getType() == DestTy)
2260 return V;
2261 if (auto *VC = dyn_cast<Constant>(V))
2262 return Insert(Folder.CreateFPCast(VC, DestTy), Name);
2263 return Insert(CastInst::CreateFPCast(V, DestTy), Name);
2264 }
2265
2266 CallInst *CreateConstrainedFPCast(
2267 Intrinsic::ID ID, Value *V, Type *DestTy,
2268 Instruction *FMFSource = nullptr, const Twine &Name = "",
2269 MDNode *FPMathTag = nullptr,
2270 Optional<fp::RoundingMode> Rounding = None,
2271 Optional<fp::ExceptionBehavior> Except = None) {
2272 Value *ExceptV = getConstrainedFPExcept(Except);
2273
2274 FastMathFlags UseFMF = FMF;
2275 if (FMFSource)
2276 UseFMF = FMFSource->getFastMathFlags();
2277
2278 CallInst *C;
2279 bool HasRoundingMD = false;
2280 switch (ID) {
2281 default:
2282 break;
2283#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2284 case Intrinsic::INTRINSIC: \
2285 HasRoundingMD = ROUND_MODE; \
2286 break;
2287#include "llvm/IR/ConstrainedOps.def"
2288 }
2289 if (HasRoundingMD) {
2290 Value *RoundingV = getConstrainedFPRounding(Rounding);
2291 C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, RoundingV, ExceptV},
2292 nullptr, Name);
2293 } else
2294 C = CreateIntrinsic(ID, {DestTy, V->getType()}, {V, ExceptV}, nullptr,
2295 Name);
2296
2297 setConstrainedFPCallAttr(C);
2298
2299 if (isa<FPMathOperator>(C))
2300 setFPAttrs(C, FPMathTag, UseFMF);
2301 return C;
2302 }
2303
2304 // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
2305 // compile time error, instead of converting the string to bool for the
2306 // isSigned parameter.
2307 Value *CreateIntCast(Value *, Type *, const char *) = delete;
2308
2309 //===--------------------------------------------------------------------===//
2310 // Instruction creation methods: Compare Instructions
2311 //===--------------------------------------------------------------------===//
2312
2313 Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
2314 return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
2315 }
2316
2317 Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
2318 return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
2319 }
2320
2321 Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2322 return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
2323 }
2324
2325 Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2326 return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
2327 }
2328
2329 Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
2330 return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
2331 }
2332
2333 Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
2334 return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
2335 }
2336
2337 Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2338 return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
2339 }
2340
2341 Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2342 return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
2343 }
2344
2345 Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
2346 return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
2347 }
2348
2349 Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
2350 return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
2351 }
2352
2353 Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2354 MDNode *FPMathTag = nullptr) {
2355 return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
2356 }
2357
2358 Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
2359 MDNode *FPMathTag = nullptr) {
2360 return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
2361 }
2362
2363 Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
2364 MDNode *FPMathTag = nullptr) {
2365 return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
2366 }
2367
2368 Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
2369 MDNode *FPMathTag = nullptr) {
2370 return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
2371 }
2372
2373 Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
2374 MDNode *FPMathTag = nullptr) {
2375 return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
2376 }
2377
2378 Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
2379 MDNode *FPMathTag = nullptr) {
2380 return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
2381 }
2382
2383 Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
2384 MDNode *FPMathTag = nullptr) {
2385 return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
2386 }
2387
2388 Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
2389 MDNode *FPMathTag = nullptr) {
2390 return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
2391 }
2392
2393 Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2394 MDNode *FPMathTag = nullptr) {
2395 return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
2396 }
2397
2398 Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
2399 MDNode *FPMathTag = nullptr) {
2400 return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
2401 }
2402
2403 Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
2404 MDNode *FPMathTag = nullptr) {
2405 return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
2406 }
2407
2408 Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
2409 MDNode *FPMathTag = nullptr) {
2410 return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
2411 }
2412
2413 Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
2414 MDNode *FPMathTag = nullptr) {
2415 return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
2416 }
2417
2418 Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
2419 MDNode *FPMathTag = nullptr) {
2420 return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
2421 }
2422
2423 Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2424 const Twine &Name = "") {
2425 if (auto *LC = dyn_cast<Constant>(LHS))
2426 if (auto *RC = dyn_cast<Constant>(RHS))
2427 return Insert(Folder.CreateICmp(P, LC, RC), Name);
2428 return Insert(new ICmpInst(P, LHS, RHS), Name);
2429 }
2430
2431 // Create a quiet floating-point comparison (i.e. one that raises an FP
2432 // exception only in the case where an input is a signaling NaN).
2433 // Note that this differs from CreateFCmpS only if IsFPConstrained is true.
2434 Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2435 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2436 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
2437 }
2438
2439 // Create a signaling floating-point comparison (i.e. one that raises an FP
2440 // exception whenever an input is any NaN, signaling or quiet).
2441 // Note that this differs from CreateFCmp only if IsFPConstrained is true.
2442 Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
2443 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2444 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
2445 }
2446
2447private:
2448 // Helper routine to create either a signaling or a quiet FP comparison.
2449 Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
2450 const Twine &Name, MDNode *FPMathTag,
2451 bool IsSignaling) {
2452 if (IsFPConstrained) {
2453 auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
2454 : Intrinsic::experimental_constrained_fcmp;
2455 return CreateConstrainedFPCmp(ID, P, LHS, RHS, Name);
2456 }
2457
2458 if (auto *LC = dyn_cast<Constant>(LHS))
2459 if (auto *RC = dyn_cast<Constant>(RHS))
2460 return Insert(Folder.CreateFCmp(P, LC, RC), Name);
2461 return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name);
2462 }
2463
2464public:
2465 CallInst *CreateConstrainedFPCmp(
2466 Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
2467 const Twine &Name = "",
2468 Optional<fp::ExceptionBehavior> Except = None) {
2469 Value *PredicateV = getConstrainedFPPredicate(P);
2470 Value *ExceptV = getConstrainedFPExcept(Except);
2471
2472 CallInst *C = CreateIntrinsic(ID, {L->getType()},
2473 {L, R, PredicateV, ExceptV}, nullptr, Name);
2474 setConstrainedFPCallAttr(C);
2475 return C;
2476 }
2477
2478 //===--------------------------------------------------------------------===//
2479 // Instruction creation methods: Other Instructions
2480 //===--------------------------------------------------------------------===//
2481
2482 PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
2483 const Twine &Name = "") {
2484 PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
2485 if (isa<FPMathOperator>(Phi))
2486 setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
2487 return Insert(Phi, Name);
2488 }
2489
2490 CallInst *CreateCall(FunctionType *FTy, Value *Callee,
2491 ArrayRef<Value *> Args = None, const Twine &Name = "",
2492 MDNode *FPMathTag = nullptr) {
2493 CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
2494 if (IsFPConstrained)
2495 setConstrainedFPCallAttr(CI);
2496 if (isa<FPMathOperator>(CI))
2497 setFPAttrs(CI, FPMathTag, FMF);
2498 return Insert(CI, Name);
2499 }
2500
2501 CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
2502 ArrayRef<OperandBundleDef> OpBundles,
2503 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2504 CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
2505 if (IsFPConstrained)
2506 setConstrainedFPCallAttr(CI);
2507 if (isa<FPMathOperator>(CI))
2508 setFPAttrs(CI, FPMathTag, FMF);
2509 return Insert(CI, Name);
2510 }
2511
2512 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args = None,
2513 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2514 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
2515 FPMathTag);
2516 }
2517
2518 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
2519 ArrayRef<OperandBundleDef> OpBundles,
2520 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2521 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
2522 OpBundles, Name, FPMathTag);
2523 }
2524
2525 // Deprecated [opaque pointer types]
2526 CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args = None,
2527 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2528 return CreateCall(
2529 cast<FunctionType>(Callee->getType()->getPointerElementType()), Callee,
2530 Args, Name, FPMathTag);
2531 }
2532
2533 // Deprecated [opaque pointer types]
2534 CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args,
2535 ArrayRef<OperandBundleDef> OpBundles,
2536 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2537 return CreateCall(
2538 cast<FunctionType>(Callee->getType()->getPointerElementType()), Callee,
2539 Args, OpBundles, Name, FPMathTag);
2540 }
2541
2542 CallInst *CreateConstrainedFPCall(
2543 Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
2544 Optional<fp::RoundingMode> Rounding = None,
2545 Optional<fp::ExceptionBehavior> Except = None) {
2546 llvm::SmallVector<Value *, 6> UseArgs;
2547
2548 for (auto *OneArg : Args)
2549 UseArgs.push_back(OneArg);
2550 bool HasRoundingMD = false;
2551 switch (Callee->getIntrinsicID()) {
2552 default:
2553 break;
2554#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
2555 case Intrinsic::INTRINSIC: \
2556 HasRoundingMD = ROUND_MODE; \
2557 break;
2558#include "llvm/IR/ConstrainedOps.def"
2559 }
2560 if (HasRoundingMD)
2561 UseArgs.push_back(getConstrainedFPRounding(Rounding));
2562 UseArgs.push_back(getConstrainedFPExcept(Except));
2563
2564 CallInst *C = CreateCall(Callee, UseArgs, Name);
2565 setConstrainedFPCallAttr(C);
2566 return C;
2567 }
2568
2569 Value *CreateSelect(Value *C, Value *True, Value *False,
2570 const Twine &Name = "", Instruction *MDFrom = nullptr) {
2571 if (auto *CC
44.1
'CC' is null
44.1
'CC' is null
44.1
'CC' is null
44.1
'CC' is null
44.1
'CC' is null
= dyn_cast<Constant>(C))
44
Assuming 'C' is not a 'Constant'
45
Taking false branch
2572 if (auto *TC = dyn_cast<Constant>(True))
2573 if (auto *FC = dyn_cast<Constant>(False))
2574 return Insert(Folder.CreateSelect(CC, TC, FC), Name);
2575
2576 SelectInst *Sel = SelectInst::Create(C, True, False);
46
Passing null pointer value via 2nd parameter 'S1'
47
Calling 'SelectInst::Create'
2577 if (MDFrom) {
2578 MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof);
2579 MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable);
2580 Sel = addBranchMetadata(Sel, Prof, Unpred);
2581 }
2582 if (isa<FPMathOperator>(Sel))
2583 setFPAttrs(Sel, nullptr /* MDNode* */, FMF);
2584 return Insert(Sel, Name);
2585 }
2586
2587 VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
2588 return Insert(new VAArgInst(List, Ty), Name);
2589 }
2590
2591 Value *CreateExtractElement(Value *Vec, Value *Idx,
2592 const Twine &Name = "") {
2593 if (auto *VC = dyn_cast<Constant>(Vec))
2594 if (auto *IC = dyn_cast<Constant>(Idx))
2595 return Insert(Folder.CreateExtractElement(VC, IC), Name);
2596 return Insert(ExtractElementInst::Create(Vec, Idx), Name);
2597 }
2598
2599 Value *CreateExtractElement(Value *Vec, uint64_t Idx,
2600 const Twine &Name = "") {
2601 return CreateExtractElement(Vec, getInt64(Idx), Name);
2602 }
2603
2604 Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
2605 const Twine &Name = "") {
2606 if (auto *VC = dyn_cast<Constant>(Vec))
2607 if (auto *NC = dyn_cast<Constant>(NewElt))
2608 if (auto *IC = dyn_cast<Constant>(Idx))
2609 return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
2610 return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
2611 }
2612
2613 Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
2614 const Twine &Name = "") {
2615 return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
2616 }
2617
2618 Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
2619 const Twine &Name = "") {
2620 if (auto *V1C = dyn_cast<Constant>(V1))
2621 if (auto *V2C = dyn_cast<Constant>(V2))
2622 if (auto *MC = dyn_cast<Constant>(Mask))
2623 return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name);
2624 return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
2625 }
2626
2627 Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<uint32_t> IntMask,
2628 const Twine &Name = "") {
2629 Value *Mask = ConstantDataVector::get(Context, IntMask);
2630 return CreateShuffleVector(V1, V2, Mask, Name);
2631 }
2632
2633 Value *CreateExtractValue(Value *Agg,
2634 ArrayRef<unsigned> Idxs,
2635 const Twine &Name = "") {
2636 if (auto *AggC = dyn_cast<Constant>(Agg))
2637 return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
2638 return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
2639 }
2640
2641 Value *CreateInsertValue(Value *Agg, Value *Val,
2642 ArrayRef<unsigned> Idxs,
2643 const Twine &Name = "") {
2644 if (auto *AggC = dyn_cast<Constant>(Agg))
2645 if (auto *ValC = dyn_cast<Constant>(Val))
2646 return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
2647 return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
2648 }
2649
2650 LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
2651 const Twine &Name = "") {
2652 return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
2653 }
2654
2655 Value *CreateFreeze(Value *V, const Twine &Name = "") {
2656 return Insert(new FreezeInst(V), Name);
2657 }
2658
2659 //===--------------------------------------------------------------------===//
2660 // Utility creation methods
2661 //===--------------------------------------------------------------------===//
2662
2663 /// Return an i1 value testing if \p Arg is null.
2664 Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
2665 return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
2666 Name);
2667 }
2668
2669 /// Return an i1 value testing if \p Arg is not null.
2670 Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
2671 return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
2672 Name);
2673 }
2674
2675 /// Return the i64 difference between two pointer values, dividing out
2676 /// the size of the pointed-to objects.
2677 ///
2678 /// This is intended to implement C-style pointer subtraction. As such, the
2679 /// pointers must be appropriately aligned for their element types and
2680 /// pointing into the same object.
2681 Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") {
2682 assert(LHS->getType() == RHS->getType() &&((LHS->getType() == RHS->getType() && "Pointer subtraction operand types must match!"
) ? static_cast<void> (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"Pointer subtraction operand types must match!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2683, __PRETTY_FUNCTION__))
2683 "Pointer subtraction operand types must match!")((LHS->getType() == RHS->getType() && "Pointer subtraction operand types must match!"
) ? static_cast<void> (0) : __assert_fail ("LHS->getType() == RHS->getType() && \"Pointer subtraction operand types must match!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2683, __PRETTY_FUNCTION__))
;
2684 auto *ArgType = cast<PointerType>(LHS->getType());
2685 Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
2686 Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
2687 Value *Difference = CreateSub(LHS_int, RHS_int);
2688 return CreateExactSDiv(Difference,
2689 ConstantExpr::getSizeOf(ArgType->getElementType()),
2690 Name);
2691 }
2692
2693 /// Create a launder.invariant.group intrinsic call. If Ptr type is
2694 /// different from pointer to i8, it's casted to pointer to i8 in the same
2695 /// address space before call and casted back to Ptr type after call.
2696 Value *CreateLaunderInvariantGroup(Value *Ptr) {
2697 assert(isa<PointerType>(Ptr->getType()) &&((isa<PointerType>(Ptr->getType()) && "launder.invariant.group only applies to pointers."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Ptr->getType()) && \"launder.invariant.group only applies to pointers.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2698, __PRETTY_FUNCTION__))
2698 "launder.invariant.group only applies to pointers.")((isa<PointerType>(Ptr->getType()) && "launder.invariant.group only applies to pointers."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Ptr->getType()) && \"launder.invariant.group only applies to pointers.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2698, __PRETTY_FUNCTION__))
;
2699 // FIXME: we could potentially avoid casts to/from i8*.
2700 auto *PtrType = Ptr->getType();
2701 auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
2702 if (PtrType != Int8PtrTy)
2703 Ptr = CreateBitCast(Ptr, Int8PtrTy);
2704 Module *M = BB->getParent()->getParent();
2705 Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration(
2706 M, Intrinsic::launder_invariant_group, {Int8PtrTy});
2707
2708 assert(FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&((FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
FnLaunderInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "LaunderInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnLaunderInvariantGroup->getReturnType() == Int8PtrTy && FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"LaunderInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2711, __PRETTY_FUNCTION__))
2709 FnLaunderInvariantGroup->getFunctionType()->getParamType(0) ==((FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
FnLaunderInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "LaunderInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnLaunderInvariantGroup->getReturnType() == Int8PtrTy && FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"LaunderInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2711, __PRETTY_FUNCTION__))
2710 Int8PtrTy &&((FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
FnLaunderInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "LaunderInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnLaunderInvariantGroup->getReturnType() == Int8PtrTy && FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"LaunderInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2711, __PRETTY_FUNCTION__))
2711 "LaunderInvariantGroup should take and return the same type")((FnLaunderInvariantGroup->getReturnType() == Int8PtrTy &&
FnLaunderInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "LaunderInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnLaunderInvariantGroup->getReturnType() == Int8PtrTy && FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"LaunderInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2711, __PRETTY_FUNCTION__))
;
2712
2713 CallInst *Fn = CreateCall(FnLaunderInvariantGroup, {Ptr});
2714
2715 if (PtrType != Int8PtrTy)
2716 return CreateBitCast(Fn, PtrType);
2717 return Fn;
2718 }
2719
2720 /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
2721 /// different from pointer to i8, it's casted to pointer to i8 in the same
2722 /// address space before call and casted back to Ptr type after call.
2723 Value *CreateStripInvariantGroup(Value *Ptr) {
2724 assert(isa<PointerType>(Ptr->getType()) &&((isa<PointerType>(Ptr->getType()) && "strip.invariant.group only applies to pointers."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Ptr->getType()) && \"strip.invariant.group only applies to pointers.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2725, __PRETTY_FUNCTION__))
2725 "strip.invariant.group only applies to pointers.")((isa<PointerType>(Ptr->getType()) && "strip.invariant.group only applies to pointers."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Ptr->getType()) && \"strip.invariant.group only applies to pointers.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2725, __PRETTY_FUNCTION__))
;
2726
2727 // FIXME: we could potentially avoid casts to/from i8*.
2728 auto *PtrType = Ptr->getType();
2729 auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace());
2730 if (PtrType != Int8PtrTy)
2731 Ptr = CreateBitCast(Ptr, Int8PtrTy);
2732 Module *M = BB->getParent()->getParent();
2733 Function *FnStripInvariantGroup = Intrinsic::getDeclaration(
2734 M, Intrinsic::strip_invariant_group, {Int8PtrTy});
2735
2736 assert(FnStripInvariantGroup->getReturnType() == Int8PtrTy &&((FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
FnStripInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "StripInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnStripInvariantGroup->getReturnType() == Int8PtrTy && FnStripInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"StripInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2739, __PRETTY_FUNCTION__))
2737 FnStripInvariantGroup->getFunctionType()->getParamType(0) ==((FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
FnStripInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "StripInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnStripInvariantGroup->getReturnType() == Int8PtrTy && FnStripInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"StripInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2739, __PRETTY_FUNCTION__))
2738 Int8PtrTy &&((FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
FnStripInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "StripInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnStripInvariantGroup->getReturnType() == Int8PtrTy && FnStripInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"StripInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2739, __PRETTY_FUNCTION__))
2739 "StripInvariantGroup should take and return the same type")((FnStripInvariantGroup->getReturnType() == Int8PtrTy &&
FnStripInvariantGroup->getFunctionType()->getParamType
(0) == Int8PtrTy && "StripInvariantGroup should take and return the same type"
) ? static_cast<void> (0) : __assert_fail ("FnStripInvariantGroup->getReturnType() == Int8PtrTy && FnStripInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && \"StripInvariantGroup should take and return the same type\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2739, __PRETTY_FUNCTION__))
;
2740
2741 CallInst *Fn = CreateCall(FnStripInvariantGroup, {Ptr});
2742
2743 if (PtrType != Int8PtrTy)
2744 return CreateBitCast(Fn, PtrType);
2745 return Fn;
2746 }
2747
2748 /// Return a vector value that contains \arg V broadcasted to \p
2749 /// NumElts elements.
2750 Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") {
2751 assert(NumElts > 0 && "Cannot splat to an empty vector!")((NumElts > 0 && "Cannot splat to an empty vector!"
) ? static_cast<void> (0) : __assert_fail ("NumElts > 0 && \"Cannot splat to an empty vector!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2751, __PRETTY_FUNCTION__))
;
2752
2753 // First insert it into an undef vector so we can shuffle it.
2754 Type *I32Ty = getInt32Ty();
2755 Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts));
2756 V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
2757 Name + ".splatinsert");
2758
2759 // Shuffle the value across the desired number of elements.
2760 Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts));
2761 return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
2762 }
2763
2764 /// Return a value that has been extracted from a larger integer type.
2765 Value *CreateExtractInteger(const DataLayout &DL, Value *From,
2766 IntegerType *ExtractedTy, uint64_t Offset,
2767 const Twine &Name) {
2768 auto *IntTy = cast<IntegerType>(From->getType());
2769 assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=((DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize
(IntTy) && "Element extends past full value") ? static_cast
<void> (0) : __assert_fail ("DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize(IntTy) && \"Element extends past full value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2771, __PRETTY_FUNCTION__))
2770 DL.getTypeStoreSize(IntTy) &&((DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize
(IntTy) && "Element extends past full value") ? static_cast
<void> (0) : __assert_fail ("DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize(IntTy) && \"Element extends past full value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2771, __PRETTY_FUNCTION__))
2771 "Element extends past full value")((DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize
(IntTy) && "Element extends past full value") ? static_cast
<void> (0) : __assert_fail ("DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize(IntTy) && \"Element extends past full value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2771, __PRETTY_FUNCTION__))
;
2772 uint64_t ShAmt = 8 * Offset;
2773 Value *V = From;
2774 if (DL.isBigEndian())
2775 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
2776 DL.getTypeStoreSize(ExtractedTy) - Offset);
2777 if (ShAmt) {
2778 V = CreateLShr(V, ShAmt, Name + ".shift");
2779 }
2780 assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&((ExtractedTy->getBitWidth() <= IntTy->getBitWidth()
&& "Cannot extract to a larger integer!") ? static_cast
<void> (0) : __assert_fail ("ExtractedTy->getBitWidth() <= IntTy->getBitWidth() && \"Cannot extract to a larger integer!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2781, __PRETTY_FUNCTION__))
2781 "Cannot extract to a larger integer!")((ExtractedTy->getBitWidth() <= IntTy->getBitWidth()
&& "Cannot extract to a larger integer!") ? static_cast
<void> (0) : __assert_fail ("ExtractedTy->getBitWidth() <= IntTy->getBitWidth() && \"Cannot extract to a larger integer!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2781, __PRETTY_FUNCTION__))
;
2782 if (ExtractedTy != IntTy) {
2783 V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
2784 }
2785 return V;
2786 }
2787
2788 Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
2789 unsigned Dimension, unsigned LastIndex,
2790 MDNode *DbgInfo) {
2791 assert(isa<PointerType>(Base->getType()) &&((isa<PointerType>(Base->getType()) && "Invalid Base ptr type for preserve.array.access.index."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Base->getType()) && \"Invalid Base ptr type for preserve.array.access.index.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2792, __PRETTY_FUNCTION__))
2792 "Invalid Base ptr type for preserve.array.access.index.")((isa<PointerType>(Base->getType()) && "Invalid Base ptr type for preserve.array.access.index."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Base->getType()) && \"Invalid Base ptr type for preserve.array.access.index.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2792, __PRETTY_FUNCTION__))
;
2793 auto *BaseType = Base->getType();
2794
2795 Value *LastIndexV = getInt32(LastIndex);
2796 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
2797 SmallVector<Value *, 4> IdxList;
2798 for (unsigned I = 0; I < Dimension; ++I)
2799 IdxList.push_back(Zero);
2800 IdxList.push_back(LastIndexV);
2801
2802 Type *ResultType =
2803 GetElementPtrInst::getGEPReturnType(ElTy, Base, IdxList);
2804
2805 Module *M = BB->getParent()->getParent();
2806 Function *FnPreserveArrayAccessIndex = Intrinsic::getDeclaration(
2807 M, Intrinsic::preserve_array_access_index, {ResultType, BaseType});
2808
2809 Value *DimV = getInt32(Dimension);
2810 CallInst *Fn =
2811 CreateCall(FnPreserveArrayAccessIndex, {Base, DimV, LastIndexV});
2812 if (DbgInfo)
2813 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
2814
2815 return Fn;
2816 }
2817
2818 Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
2819 MDNode *DbgInfo) {
2820 assert(isa<PointerType>(Base->getType()) &&((isa<PointerType>(Base->getType()) && "Invalid Base ptr type for preserve.union.access.index."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Base->getType()) && \"Invalid Base ptr type for preserve.union.access.index.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2821, __PRETTY_FUNCTION__))
2821 "Invalid Base ptr type for preserve.union.access.index.")((isa<PointerType>(Base->getType()) && "Invalid Base ptr type for preserve.union.access.index."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Base->getType()) && \"Invalid Base ptr type for preserve.union.access.index.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2821, __PRETTY_FUNCTION__))
;
2822 auto *BaseType = Base->getType();
2823
2824 Module *M = BB->getParent()->getParent();
2825 Function *FnPreserveUnionAccessIndex = Intrinsic::getDeclaration(
2826 M, Intrinsic::preserve_union_access_index, {BaseType, BaseType});
2827
2828 Value *DIIndex = getInt32(FieldIndex);
2829 CallInst *Fn =
2830 CreateCall(FnPreserveUnionAccessIndex, {Base, DIIndex});
2831 if (DbgInfo)
2832 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
2833
2834 return Fn;
2835 }
2836
2837 Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
2838 unsigned Index, unsigned FieldIndex,
2839 MDNode *DbgInfo) {
2840 assert(isa<PointerType>(Base->getType()) &&((isa<PointerType>(Base->getType()) && "Invalid Base ptr type for preserve.struct.access.index."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Base->getType()) && \"Invalid Base ptr type for preserve.struct.access.index.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2841, __PRETTY_FUNCTION__))
2841 "Invalid Base ptr type for preserve.struct.access.index.")((isa<PointerType>(Base->getType()) && "Invalid Base ptr type for preserve.struct.access.index."
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(Base->getType()) && \"Invalid Base ptr type for preserve.struct.access.index.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2841, __PRETTY_FUNCTION__))
;
2842 auto *BaseType = Base->getType();
2843
2844 Value *GEPIndex = getInt32(Index);
2845 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
2846 Type *ResultType =
2847 GetElementPtrInst::getGEPReturnType(ElTy, Base, {Zero, GEPIndex});
2848
2849 Module *M = BB->getParent()->getParent();
2850 Function *FnPreserveStructAccessIndex = Intrinsic::getDeclaration(
2851 M, Intrinsic::preserve_struct_access_index, {ResultType, BaseType});
2852
2853 Value *DIIndex = getInt32(FieldIndex);
2854 CallInst *Fn = CreateCall(FnPreserveStructAccessIndex,
2855 {Base, GEPIndex, DIIndex});
2856 if (DbgInfo)
2857 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
2858
2859 return Fn;
2860 }
2861
2862private:
2863 /// Helper function that creates an assume intrinsic call that
2864 /// represents an alignment assumption on the provided Ptr, Mask, Type
2865 /// and Offset. It may be sometimes useful to do some other logic
2866 /// based on this alignment check, thus it can be stored into 'TheCheck'.
2867 CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
2868 Value *PtrValue, Value *Mask,
2869 Type *IntPtrTy, Value *OffsetValue,
2870 Value **TheCheck) {
2871 Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2872
2873 if (OffsetValue) {
2874 bool IsOffsetZero = false;
2875 if (const auto *CI = dyn_cast<ConstantInt>(OffsetValue))
2876 IsOffsetZero = CI->isZero();
2877
2878 if (!IsOffsetZero) {
2879 if (OffsetValue->getType() != IntPtrTy)
2880 OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true,
2881 "offsetcast");
2882 PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2883 }
2884 }
2885
2886 Value *Zero = ConstantInt::get(IntPtrTy, 0);
2887 Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr");
2888 Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2889 if (TheCheck)
2890 *TheCheck = InvCond;
2891
2892 return CreateAssumption(InvCond);
2893 }
2894
2895public:
2896 /// Create an assume intrinsic call that represents an alignment
2897 /// assumption on the provided pointer.
2898 ///
2899 /// An optional offset can be provided, and if it is provided, the offset
2900 /// must be subtracted from the provided pointer to get the pointer with the
2901 /// specified alignment.
2902 ///
2903 /// It may be sometimes useful to do some other logic
2904 /// based on this alignment check, thus it can be stored into 'TheCheck'.
2905 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2906 unsigned Alignment,
2907 Value *OffsetValue = nullptr,
2908 Value **TheCheck = nullptr) {
2909 assert(isa<PointerType>(PtrValue->getType()) &&((isa<PointerType>(PtrValue->getType()) && "trying to create an alignment assumption on a non-pointer?"
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(PtrValue->getType()) && \"trying to create an alignment assumption on a non-pointer?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2910, __PRETTY_FUNCTION__))
2910 "trying to create an alignment assumption on a non-pointer?")((isa<PointerType>(PtrValue->getType()) && "trying to create an alignment assumption on a non-pointer?"
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(PtrValue->getType()) && \"trying to create an alignment assumption on a non-pointer?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2910, __PRETTY_FUNCTION__))
;
2911 assert(Alignment != 0 && "Invalid Alignment")((Alignment != 0 && "Invalid Alignment") ? static_cast
<void> (0) : __assert_fail ("Alignment != 0 && \"Invalid Alignment\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2911, __PRETTY_FUNCTION__))
;
2912 auto *PtrTy = cast<PointerType>(PtrValue->getType());
2913 Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
2914
2915 Value *Mask = ConstantInt::get(IntPtrTy, Alignment - 1);
2916 return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy,
2917 OffsetValue, TheCheck);
2918 }
2919
2920 /// Create an assume intrinsic call that represents an alignment
2921 /// assumption on the provided pointer.
2922 ///
2923 /// An optional offset can be provided, and if it is provided, the offset
2924 /// must be subtracted from the provided pointer to get the pointer with the
2925 /// specified alignment.
2926 ///
2927 /// It may be sometimes useful to do some other logic
2928 /// based on this alignment check, thus it can be stored into 'TheCheck'.
2929 ///
2930 /// This overload handles the condition where the Alignment is dependent
2931 /// on an existing value rather than a static value.
2932 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2933 Value *Alignment,
2934 Value *OffsetValue = nullptr,
2935 Value **TheCheck = nullptr) {
2936 assert(isa<PointerType>(PtrValue->getType()) &&((isa<PointerType>(PtrValue->getType()) && "trying to create an alignment assumption on a non-pointer?"
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(PtrValue->getType()) && \"trying to create an alignment assumption on a non-pointer?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2937, __PRETTY_FUNCTION__))
2937 "trying to create an alignment assumption on a non-pointer?")((isa<PointerType>(PtrValue->getType()) && "trying to create an alignment assumption on a non-pointer?"
) ? static_cast<void> (0) : __assert_fail ("isa<PointerType>(PtrValue->getType()) && \"trying to create an alignment assumption on a non-pointer?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/IRBuilder.h"
, 2937, __PRETTY_FUNCTION__))
;
2938 auto *PtrTy = cast<PointerType>(PtrValue->getType());
2939 Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
2940
2941 if (Alignment->getType() != IntPtrTy)
2942 Alignment = CreateIntCast(Alignment, IntPtrTy, /*isSigned*/ false,
2943 "alignmentcast");
2944
2945 Value *Mask = CreateSub(Alignment, ConstantInt::get(IntPtrTy, 1), "mask");
2946
2947 return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy,
2948 OffsetValue, TheCheck);
2949 }
2950};
2951
2952/// This provides a uniform API for creating instructions and inserting
2953/// them into a basic block: either at the end of a BasicBlock, or at a specific
2954/// iterator location in a block.
2955///
2956/// Note that the builder does not expose the full generality of LLVM
2957/// instructions. For access to extra instruction properties, use the mutators
2958/// (e.g. setVolatile) on the instructions after they have been
2959/// created. Convenience state exists to specify fast-math flags and fp-math
2960/// tags.
2961///
2962/// The first template argument specifies a class to use for creating constants.
2963/// This defaults to creating minimally folded constants. The second template
2964/// argument allows clients to specify custom insertion hooks that are called on
2965/// every newly created insertion.
2966template <typename FolderTy = ConstantFolder,
2967 typename InserterTy = IRBuilderDefaultInserter>
2968class IRBuilder : public IRBuilderBase {
2969private:
2970 FolderTy Folder;
2971 InserterTy Inserter;
2972
2973public:
2974 IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
2975 MDNode *FPMathTag = nullptr,
2976 ArrayRef<OperandBundleDef> OpBundles = None)
2977 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
2978 Folder(Folder), Inserter(Inserter) {}
2979
2980 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
2981 ArrayRef<OperandBundleDef> OpBundles = None)
2982 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
2983
2984 explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
2985 MDNode *FPMathTag = nullptr,
2986 ArrayRef<OperandBundleDef> OpBundles = None)
2987 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2988 FPMathTag, OpBundles), Folder(Folder) {
2989 SetInsertPoint(TheBB);
2990 }
2991
2992 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
2993 ArrayRef<OperandBundleDef> OpBundles = None)
2994 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2995 FPMathTag, OpBundles) {
2996 SetInsertPoint(TheBB);
2997 }
2998
2999 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
3000 ArrayRef<OperandBundleDef> OpBundles = None)
3001 : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter,
3002 FPMathTag, OpBundles) {
3003 SetInsertPoint(IP);
3004 }
3005
3006 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
3007 MDNode *FPMathTag = nullptr,
3008 ArrayRef<OperandBundleDef> OpBundles = None)
3009 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
3010 FPMathTag, OpBundles), Folder(Folder) {
3011 SetInsertPoint(TheBB, IP);
3012 }
3013
3014 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
3015 MDNode *FPMathTag = nullptr,
3016 ArrayRef<OperandBundleDef> OpBundles = None)
3017 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
3018 FPMathTag, OpBundles) {
3019 SetInsertPoint(TheBB, IP);
3020 }
3021
3022 /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
3023 /// or FastMathFlagGuard instead.
3024 IRBuilder(const IRBuilder &) = delete;
3025
3026 InserterTy &getInserter() { return Inserter; }
3027};
3028
3029// Create wrappers for C Binding types (see CBindingWrapping.h).
3030DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)inline IRBuilder<> *unwrap(LLVMBuilderRef P) { return reinterpret_cast
<IRBuilder<>*>(P); } inline LLVMBuilderRef wrap(const
IRBuilder<> *P) { return reinterpret_cast<LLVMBuilderRef
>(const_cast<IRBuilder<>*>(P)); }
3031
3032} // end namespace llvm
3033
3034#endif // LLVM_IR_IRBUILDER_H

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/OperandTraits.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/AtomicOrdering.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <cassert>
43#include <cstddef>
44#include <cstdint>
45#include <iterator>
46
47namespace llvm {
48
49class APInt;
50class ConstantInt;
51class DataLayout;
52class LLVMContext;
53
54//===----------------------------------------------------------------------===//
55// AllocaInst Class
56//===----------------------------------------------------------------------===//
57
58/// an instruction to allocate memory on the stack
59class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
61
62protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
65
66 AllocaInst *cloneImpl() const;
67
68public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
75
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
80
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
85
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
89
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
94
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
98 }
99
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
103
104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
109
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 MaybeAlign getAlign() const {
113 return decodeMaybeAlign(getSubclassDataFromInstruction() & 31);
114 }
115 // FIXME: Remove this one transition to Align is over.
116 unsigned getAlignment() const {
117 if (const auto MA = getAlign())
118 return MA->value();
119 return 0;
120 }
121 void setAlignment(MaybeAlign Align);
122
123 /// Return true if this alloca is in the entry block of the function and is a
124 /// constant size. If so, the code generator will fold it into the
125 /// prolog/epilog code, so it is basically free.
126 bool isStaticAlloca() const;
127
128 /// Return true if this alloca is used as an inalloca argument to a call. Such
129 /// allocas are never considered static even if they are in the entry block.
130 bool isUsedWithInAlloca() const {
131 return getSubclassDataFromInstruction() & 32;
132 }
133
134 /// Specify whether this alloca is used to represent the arguments to a call.
135 void setUsedWithInAlloca(bool V) {
136 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
137 (V ? 32 : 0));
138 }
139
140 /// Return true if this alloca is used as a swifterror argument to a call.
141 bool isSwiftError() const {
142 return getSubclassDataFromInstruction() & 64;
143 }
144
145 /// Specify whether this alloca is used to represent a swifterror.
146 void setSwiftError(bool V) {
147 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
148 (V ? 64 : 0));
149 }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 void setInstructionSubclassData(unsigned short D) {
163 Instruction::setInstructionSubclassData(D);
164 }
165};
166
167//===----------------------------------------------------------------------===//
168// LoadInst Class
169//===----------------------------------------------------------------------===//
170
171/// An instruction for reading from memory. This uses the SubclassData field in
172/// Value to store whether or not the load is volatile.
173class LoadInst : public UnaryInstruction {
174 void AssertOK();
175
176protected:
177 // Note: Instruction needs to be a friend here to call cloneImpl.
178 friend class Instruction;
179
180 LoadInst *cloneImpl() const;
181
182public:
183 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
184 Instruction *InsertBefore = nullptr);
185 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
187 Instruction *InsertBefore = nullptr);
188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 BasicBlock *InsertAtEnd);
190 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
191 MaybeAlign Align, Instruction *InsertBefore = nullptr);
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193 MaybeAlign Align, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 MaybeAlign Align, AtomicOrdering Order,
196 SyncScope::ID SSID = SyncScope::System,
197 Instruction *InsertBefore = nullptr);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
200 BasicBlock *InsertAtEnd);
201
202 // Deprecated [opaque pointer types]
203 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
204 Instruction *InsertBefore = nullptr)
205 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
206 InsertBefore) {}
207 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
208 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
209 InsertAtEnd) {}
210 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
211 Instruction *InsertBefore = nullptr)
212 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
213 isVolatile, InsertBefore) {}
214 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
215 BasicBlock *InsertAtEnd)
216 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
217 isVolatile, InsertAtEnd) {}
218 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
219 Instruction *InsertBefore = nullptr)
220 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
221 isVolatile, Align, InsertBefore) {}
222 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
223 BasicBlock *InsertAtEnd)
224 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
225 isVolatile, Align, InsertAtEnd) {}
226 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
227 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
228 Instruction *InsertBefore = nullptr)
229 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
230 isVolatile, Align, Order, SSID, InsertBefore) {}
231 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
232 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
233 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
234 isVolatile, Align, Order, SSID, InsertAtEnd) {}
235
236 /// Return true if this is a load from a volatile memory location.
237 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
238
239 /// Specify whether this is a volatile load or not.
240 void setVolatile(bool V) {
241 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
242 (V ? 1 : 0));
243 }
244
245 /// Return the alignment of the access that is being performed.
246 /// FIXME: Remove this function once transition to Align is over.
247 /// Use getAlign() instead.
248 unsigned getAlignment() const {
249 if (const auto MA = getAlign())
250 return MA->value();
251 return 0;
252 }
253
254 /// Return the alignment of the access that is being performed.
255 MaybeAlign getAlign() const {
256 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
257 }
258
259 void setAlignment(MaybeAlign Alignment);
260
261 /// Returns the ordering constraint of this load instruction.
262 AtomicOrdering getOrdering() const {
263 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
264 }
265
266 /// Sets the ordering constraint of this load instruction. May not be Release
267 /// or AcquireRelease.
268 void setOrdering(AtomicOrdering Ordering) {
269 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
270 ((unsigned)Ordering << 7));
271 }
272
273 /// Returns the synchronization scope ID of this load instruction.
274 SyncScope::ID getSyncScopeID() const {
275 return SSID;
276 }
277
278 /// Sets the synchronization scope ID of this load instruction.
279 void setSyncScopeID(SyncScope::ID SSID) {
280 this->SSID = SSID;
281 }
282
283 /// Sets the ordering constraint and the synchronization scope ID of this load
284 /// instruction.
285 void setAtomic(AtomicOrdering Ordering,
286 SyncScope::ID SSID = SyncScope::System) {
287 setOrdering(Ordering);
288 setSyncScopeID(SSID);
289 }
290
291 bool isSimple() const { return !isAtomic() && !isVolatile(); }
292
293 bool isUnordered() const {
294 return (getOrdering() == AtomicOrdering::NotAtomic ||
295 getOrdering() == AtomicOrdering::Unordered) &&
296 !isVolatile();
297 }
298
299 Value *getPointerOperand() { return getOperand(0); }
300 const Value *getPointerOperand() const { return getOperand(0); }
301 static unsigned getPointerOperandIndex() { return 0U; }
302 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
303
304 /// Returns the address space of the pointer operand.
305 unsigned getPointerAddressSpace() const {
306 return getPointerOperandType()->getPointerAddressSpace();
307 }
308
309 // Methods for support type inquiry through isa, cast, and dyn_cast:
310 static bool classof(const Instruction *I) {
311 return I->getOpcode() == Instruction::Load;
312 }
313 static bool classof(const Value *V) {
314 return isa<Instruction>(V) && classof(cast<Instruction>(V));
315 }
316
317private:
318 // Shadow Instruction::setInstructionSubclassData with a private forwarding
319 // method so that subclasses cannot accidentally use it.
320 void setInstructionSubclassData(unsigned short D) {
321 Instruction::setInstructionSubclassData(D);
322 }
323
324 /// The synchronization scope ID of this load instruction. Not quite enough
325 /// room in SubClassData for everything, so synchronization scope ID gets its
326 /// own field.
327 SyncScope::ID SSID;
328};
329
330//===----------------------------------------------------------------------===//
331// StoreInst Class
332//===----------------------------------------------------------------------===//
333
334/// An instruction for storing to memory.
335class StoreInst : public Instruction {
336 void AssertOK();
337
338protected:
339 // Note: Instruction needs to be a friend here to call cloneImpl.
340 friend class Instruction;
341
342 StoreInst *cloneImpl() const;
343
344public:
345 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
346 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
347 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
348 Instruction *InsertBefore = nullptr);
349 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
350 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
351 Instruction *InsertBefore = nullptr);
352 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
353 BasicBlock *InsertAtEnd);
354 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
355 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
356 Instruction *InsertBefore = nullptr);
357 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
358 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
359
360 // allocate space for exactly two operands
361 void *operator new(size_t s) {
362 return User::operator new(s, 2);
363 }
364
365 /// Return true if this is a store to a volatile memory location.
366 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
367
368 /// Specify whether this is a volatile store or not.
369 void setVolatile(bool V) {
370 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
371 (V ? 1 : 0));
372 }
373
374 /// Transparently provide more efficient getOperand methods.
375 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
376
377 /// Return the alignment of the access that is being performed
378 /// FIXME: Remove this function once transition to Align is over.
379 /// Use getAlign() instead.
380 unsigned getAlignment() const {
381 if (const auto MA = getAlign())
382 return MA->value();
383 return 0;
384 }
385
386 MaybeAlign getAlign() const {
387 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
388 }
389
390 void setAlignment(MaybeAlign Alignment);
391
392 /// Returns the ordering constraint of this store instruction.
393 AtomicOrdering getOrdering() const {
394 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
395 }
396
397 /// Sets the ordering constraint of this store instruction. May not be
398 /// Acquire or AcquireRelease.
399 void setOrdering(AtomicOrdering Ordering) {
400 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
401 ((unsigned)Ordering << 7));
402 }
403
404 /// Returns the synchronization scope ID of this store instruction.
405 SyncScope::ID getSyncScopeID() const {
406 return SSID;
407 }
408
409 /// Sets the synchronization scope ID of this store instruction.
410 void setSyncScopeID(SyncScope::ID SSID) {
411 this->SSID = SSID;
412 }
413
414 /// Sets the ordering constraint and the synchronization scope ID of this
415 /// store instruction.
416 void setAtomic(AtomicOrdering Ordering,
417 SyncScope::ID SSID = SyncScope::System) {
418 setOrdering(Ordering);
419 setSyncScopeID(SSID);
420 }
421
422 bool isSimple() const { return !isAtomic() && !isVolatile(); }
423
424 bool isUnordered() const {
425 return (getOrdering() == AtomicOrdering::NotAtomic ||
426 getOrdering() == AtomicOrdering::Unordered) &&
427 !isVolatile();
428 }
429
430 Value *getValueOperand() { return getOperand(0); }
431 const Value *getValueOperand() const { return getOperand(0); }
432
433 Value *getPointerOperand() { return getOperand(1); }
434 const Value *getPointerOperand() const { return getOperand(1); }
435 static unsigned getPointerOperandIndex() { return 1U; }
436 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
437
438 /// Returns the address space of the pointer operand.
439 unsigned getPointerAddressSpace() const {
440 return getPointerOperandType()->getPointerAddressSpace();
441 }
442
443 // Methods for support type inquiry through isa, cast, and dyn_cast:
444 static bool classof(const Instruction *I) {
445 return I->getOpcode() == Instruction::Store;
446 }
447 static bool classof(const Value *V) {
448 return isa<Instruction>(V) && classof(cast<Instruction>(V));
449 }
450
451private:
452 // Shadow Instruction::setInstructionSubclassData with a private forwarding
453 // method so that subclasses cannot accidentally use it.
454 void setInstructionSubclassData(unsigned short D) {
455 Instruction::setInstructionSubclassData(D);
456 }
457
458 /// The synchronization scope ID of this store instruction. Not quite enough
459 /// room in SubClassData for everything, so synchronization scope ID gets its
460 /// own field.
461 SyncScope::ID SSID;
462};
463
464template <>
465struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
466};
467
468DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
469
470//===----------------------------------------------------------------------===//
471// FenceInst Class
472//===----------------------------------------------------------------------===//
473
474/// An instruction for ordering other memory operations.
475class FenceInst : public Instruction {
476 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
477
478protected:
479 // Note: Instruction needs to be a friend here to call cloneImpl.
480 friend class Instruction;
481
482 FenceInst *cloneImpl() const;
483
484public:
485 // Ordering may only be Acquire, Release, AcquireRelease, or
486 // SequentiallyConsistent.
487 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
488 SyncScope::ID SSID = SyncScope::System,
489 Instruction *InsertBefore = nullptr);
490 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
491 BasicBlock *InsertAtEnd);
492
493 // allocate space for exactly zero operands
494 void *operator new(size_t s) {
495 return User::operator new(s, 0);
496 }
497
498 /// Returns the ordering constraint of this fence instruction.
499 AtomicOrdering getOrdering() const {
500 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
501 }
502
503 /// Sets the ordering constraint of this fence instruction. May only be
504 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
505 void setOrdering(AtomicOrdering Ordering) {
506 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
507 ((unsigned)Ordering << 1));
508 }
509
510 /// Returns the synchronization scope ID of this fence instruction.
511 SyncScope::ID getSyncScopeID() const {
512 return SSID;
513 }
514
515 /// Sets the synchronization scope ID of this fence instruction.
516 void setSyncScopeID(SyncScope::ID SSID) {
517 this->SSID = SSID;
518 }
519
520 // Methods for support type inquiry through isa, cast, and dyn_cast:
521 static bool classof(const Instruction *I) {
522 return I->getOpcode() == Instruction::Fence;
523 }
524 static bool classof(const Value *V) {
525 return isa<Instruction>(V) && classof(cast<Instruction>(V));
526 }
527
528private:
529 // Shadow Instruction::setInstructionSubclassData with a private forwarding
530 // method so that subclasses cannot accidentally use it.
531 void setInstructionSubclassData(unsigned short D) {
532 Instruction::setInstructionSubclassData(D);
533 }
534
535 /// The synchronization scope ID of this fence instruction. Not quite enough
536 /// room in SubClassData for everything, so synchronization scope ID gets its
537 /// own field.
538 SyncScope::ID SSID;
539};
540
541//===----------------------------------------------------------------------===//
542// AtomicCmpXchgInst Class
543//===----------------------------------------------------------------------===//
544
545/// An instruction that atomically checks whether a
546/// specified value is in a memory location, and, if it is, stores a new value
547/// there. The value returned by this instruction is a pair containing the
548/// original value as first element, and an i1 indicating success (true) or
549/// failure (false) as second element.
550///
551class AtomicCmpXchgInst : public Instruction {
552 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
553 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
554 SyncScope::ID SSID);
555
556protected:
557 // Note: Instruction needs to be a friend here to call cloneImpl.
558 friend class Instruction;
559
560 AtomicCmpXchgInst *cloneImpl() const;
561
562public:
563 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
564 AtomicOrdering SuccessOrdering,
565 AtomicOrdering FailureOrdering,
566 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
567 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
568 AtomicOrdering SuccessOrdering,
569 AtomicOrdering FailureOrdering,
570 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
571
572 // allocate space for exactly three operands
573 void *operator new(size_t s) {
574 return User::operator new(s, 3);
575 }
576
577 /// Return true if this is a cmpxchg from a volatile memory
578 /// location.
579 ///
580 bool isVolatile() const {
581 return getSubclassDataFromInstruction() & 1;
582 }
583
584 /// Specify whether this is a volatile cmpxchg.
585 ///
586 void setVolatile(bool V) {
587 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
588 (unsigned)V);
589 }
590
591 /// Return true if this cmpxchg may spuriously fail.
592 bool isWeak() const {
593 return getSubclassDataFromInstruction() & 0x100;
594 }
595
596 void setWeak(bool IsWeak) {
597 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
598 (IsWeak << 8));
599 }
600
601 /// Transparently provide more efficient getOperand methods.
602 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
603
604 /// Returns the success ordering constraint of this cmpxchg instruction.
605 AtomicOrdering getSuccessOrdering() const {
606 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
607 }
608
609 /// Sets the success ordering constraint of this cmpxchg instruction.
610 void setSuccessOrdering(AtomicOrdering Ordering) {
611 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
612 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
;
613 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
614 ((unsigned)Ordering << 2));
615 }
616
617 /// Returns the failure ordering constraint of this cmpxchg instruction.
618 AtomicOrdering getFailureOrdering() const {
619 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
620 }
621
622 /// Sets the failure ordering constraint of this cmpxchg instruction.
623 void setFailureOrdering(AtomicOrdering Ordering) {
624 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
625 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
;
626 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
627 ((unsigned)Ordering << 5));
628 }
629
630 /// Returns the synchronization scope ID of this cmpxchg instruction.
631 SyncScope::ID getSyncScopeID() const {
632 return SSID;
633 }
634
635 /// Sets the synchronization scope ID of this cmpxchg instruction.
636 void setSyncScopeID(SyncScope::ID SSID) {
637 this->SSID = SSID;
638 }
639
640 Value *getPointerOperand() { return getOperand(0); }
641 const Value *getPointerOperand() const { return getOperand(0); }
642 static unsigned getPointerOperandIndex() { return 0U; }
643
644 Value *getCompareOperand() { return getOperand(1); }
645 const Value *getCompareOperand() const { return getOperand(1); }
646
647 Value *getNewValOperand() { return getOperand(2); }
648 const Value *getNewValOperand() const { return getOperand(2); }
649
650 /// Returns the address space of the pointer operand.
651 unsigned getPointerAddressSpace() const {
652 return getPointerOperand()->getType()->getPointerAddressSpace();
653 }
654
655 /// Returns the strongest permitted ordering on failure, given the
656 /// desired ordering on success.
657 ///
658 /// If the comparison in a cmpxchg operation fails, there is no atomic store
659 /// so release semantics cannot be provided. So this function drops explicit
660 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
661 /// operation would remain SequentiallyConsistent.
662 static AtomicOrdering
663 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
664 switch (SuccessOrdering) {
665 default:
666 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 666)
;
667 case AtomicOrdering::Release:
668 case AtomicOrdering::Monotonic:
669 return AtomicOrdering::Monotonic;
670 case AtomicOrdering::AcquireRelease:
671 case AtomicOrdering::Acquire:
672 return AtomicOrdering::Acquire;
673 case AtomicOrdering::SequentiallyConsistent:
674 return AtomicOrdering::SequentiallyConsistent;
675 }
676 }
677
678 // Methods for support type inquiry through isa, cast, and dyn_cast:
679 static bool classof(const Instruction *I) {
680 return I->getOpcode() == Instruction::AtomicCmpXchg;
681 }
682 static bool classof(const Value *V) {
683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
684 }
685
686private:
687 // Shadow Instruction::setInstructionSubclassData with a private forwarding
688 // method so that subclasses cannot accidentally use it.
689 void setInstructionSubclassData(unsigned short D) {
690 Instruction::setInstructionSubclassData(D);
691 }
692
693 /// The synchronization scope ID of this cmpxchg instruction. Not quite
694 /// enough room in SubClassData for everything, so synchronization scope ID
695 /// gets its own field.
696 SyncScope::ID SSID;
697};
698
699template <>
700struct OperandTraits<AtomicCmpXchgInst> :
701 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
702};
703
704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
705
706//===----------------------------------------------------------------------===//
707// AtomicRMWInst Class
708//===----------------------------------------------------------------------===//
709
710/// an instruction that atomically reads a memory location,
711/// combines it with another value, and then stores the result back. Returns
712/// the old value.
713///
714class AtomicRMWInst : public Instruction {
715protected:
716 // Note: Instruction needs to be a friend here to call cloneImpl.
717 friend class Instruction;
718
719 AtomicRMWInst *cloneImpl() const;
720
721public:
722 /// This enumeration lists the possible modifications atomicrmw can make. In
723 /// the descriptions, 'p' is the pointer to the instruction's memory location,
724 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
725 /// instruction. These instructions always return 'old'.
726 enum BinOp {
727 /// *p = v
728 Xchg,
729 /// *p = old + v
730 Add,
731 /// *p = old - v
732 Sub,
733 /// *p = old & v
734 And,
735 /// *p = ~(old & v)
736 Nand,
737 /// *p = old | v
738 Or,
739 /// *p = old ^ v
740 Xor,
741 /// *p = old >signed v ? old : v
742 Max,
743 /// *p = old <signed v ? old : v
744 Min,
745 /// *p = old >unsigned v ? old : v
746 UMax,
747 /// *p = old <unsigned v ? old : v
748 UMin,
749
750 /// *p = old + v
751 FAdd,
752
753 /// *p = old - v
754 FSub,
755
756 FIRST_BINOP = Xchg,
757 LAST_BINOP = FSub,
758 BAD_BINOP
759 };
760
761 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
762 AtomicOrdering Ordering, SyncScope::ID SSID,
763 Instruction *InsertBefore = nullptr);
764 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
765 AtomicOrdering Ordering, SyncScope::ID SSID,
766 BasicBlock *InsertAtEnd);
767
768 // allocate space for exactly two operands
769 void *operator new(size_t s) {
770 return User::operator new(s, 2);
771 }
772
773 BinOp getOperation() const {
774 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
775 }
776
777 static StringRef getOperationName(BinOp Op);
778
779 static bool isFPOperation(BinOp Op) {
780 switch (Op) {
781 case AtomicRMWInst::FAdd:
782 case AtomicRMWInst::FSub:
783 return true;
784 default:
785 return false;
786 }
787 }
788
789 void setOperation(BinOp Operation) {
790 unsigned short SubclassData = getSubclassDataFromInstruction();
791 setInstructionSubclassData((SubclassData & 31) |
792 (Operation << 5));
793 }
794
795 /// Return true if this is a RMW on a volatile memory location.
796 ///
797 bool isVolatile() const {
798 return getSubclassDataFromInstruction() & 1;
799 }
800
801 /// Specify whether this is a volatile RMW or not.
802 ///
803 void setVolatile(bool V) {
804 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
805 (unsigned)V);
806 }
807
808 /// Transparently provide more efficient getOperand methods.
809 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
810
811 /// Returns the ordering constraint of this rmw instruction.
812 AtomicOrdering getOrdering() const {
813 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
814 }
815
816 /// Sets the ordering constraint of this rmw instruction.
817 void setOrdering(AtomicOrdering Ordering) {
818 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
819 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
;
820 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
821 ((unsigned)Ordering << 2));
822 }
823
824 /// Returns the synchronization scope ID of this rmw instruction.
825 SyncScope::ID getSyncScopeID() const {
826 return SSID;
827 }
828
829 /// Sets the synchronization scope ID of this rmw instruction.
830 void setSyncScopeID(SyncScope::ID SSID) {
831 this->SSID = SSID;
832 }
833
834 Value *getPointerOperand() { return getOperand(0); }
835 const Value *getPointerOperand() const { return getOperand(0); }
836 static unsigned getPointerOperandIndex() { return 0U; }
837
838 Value *getValOperand() { return getOperand(1); }
839 const Value *getValOperand() const { return getOperand(1); }
840
841 /// Returns the address space of the pointer operand.
842 unsigned getPointerAddressSpace() const {
843 return getPointerOperand()->getType()->getPointerAddressSpace();
844 }
845
846 bool isFloatingPointOperation() const {
847 return isFPOperation(getOperation());
848 }
849
850 // Methods for support type inquiry through isa, cast, and dyn_cast:
851 static bool classof(const Instruction *I) {
852 return I->getOpcode() == Instruction::AtomicRMW;
853 }
854 static bool classof(const Value *V) {
855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
856 }
857
858private:
859 void Init(BinOp Operation, Value *Ptr, Value *Val,
860 AtomicOrdering Ordering, SyncScope::ID SSID);
861
862 // Shadow Instruction::setInstructionSubclassData with a private forwarding
863 // method so that subclasses cannot accidentally use it.
864 void setInstructionSubclassData(unsigned short D) {
865 Instruction::setInstructionSubclassData(D);
866 }
867
868 /// The synchronization scope ID of this rmw instruction. Not quite enough
869 /// room in SubClassData for everything, so synchronization scope ID gets its
870 /// own field.
871 SyncScope::ID SSID;
872};
873
874template <>
875struct OperandTraits<AtomicRMWInst>
876 : public FixedNumOperandTraits<AtomicRMWInst,2> {
877};
878
879DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
880
881//===----------------------------------------------------------------------===//
882// GetElementPtrInst Class
883//===----------------------------------------------------------------------===//
884
885// checkGEPType - Simple wrapper function to give a better assertion failure
886// message on bad indexes for a gep instruction.
887//
888inline Type *checkGEPType(Type *Ty) {
889 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 889, __PRETTY_FUNCTION__))
;
890 return Ty;
891}
892
893/// an instruction for type-safe pointer arithmetic to
894/// access elements of arrays and structs
895///
896class GetElementPtrInst : public Instruction {
897 Type *SourceElementType;
898 Type *ResultElementType;
899
900 GetElementPtrInst(const GetElementPtrInst &GEPI);
901
902 /// Constructors - Create a getelementptr instruction with a base pointer an
903 /// list of indices. The first ctor can optionally insert before an existing
904 /// instruction, the second appends the new instruction to the specified
905 /// BasicBlock.
906 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
907 ArrayRef<Value *> IdxList, unsigned Values,
908 const Twine &NameStr, Instruction *InsertBefore);
909 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
910 ArrayRef<Value *> IdxList, unsigned Values,
911 const Twine &NameStr, BasicBlock *InsertAtEnd);
912
913 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
914
915protected:
916 // Note: Instruction needs to be a friend here to call cloneImpl.
917 friend class Instruction;
918
919 GetElementPtrInst *cloneImpl() const;
920
921public:
922 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
923 ArrayRef<Value *> IdxList,
924 const Twine &NameStr = "",
925 Instruction *InsertBefore = nullptr) {
926 unsigned Values = 1 + unsigned(IdxList.size());
927 if (!PointeeType)
928 PointeeType =
929 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
930 else
931 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
932 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
933 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
;
934 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
935 NameStr, InsertBefore);
936 }
937
938 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList,
940 const Twine &NameStr,
941 BasicBlock *InsertAtEnd) {
942 unsigned Values = 1 + unsigned(IdxList.size());
943 if (!PointeeType)
944 PointeeType =
945 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
946 else
947 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
948 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
949 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
;
950 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
951 NameStr, InsertAtEnd);
952 }
953
954 /// Create an "inbounds" getelementptr. See the documentation for the
955 /// "inbounds" flag in LangRef.html for details.
956 static GetElementPtrInst *CreateInBounds(Value *Ptr,
957 ArrayRef<Value *> IdxList,
958 const Twine &NameStr = "",
959 Instruction *InsertBefore = nullptr){
960 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
961 }
962
963 static GetElementPtrInst *
964 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
965 const Twine &NameStr = "",
966 Instruction *InsertBefore = nullptr) {
967 GetElementPtrInst *GEP =
968 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
969 GEP->setIsInBounds(true);
970 return GEP;
971 }
972
973 static GetElementPtrInst *CreateInBounds(Value *Ptr,
974 ArrayRef<Value *> IdxList,
975 const Twine &NameStr,
976 BasicBlock *InsertAtEnd) {
977 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
978 }
979
980 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
981 ArrayRef<Value *> IdxList,
982 const Twine &NameStr,
983 BasicBlock *InsertAtEnd) {
984 GetElementPtrInst *GEP =
985 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
986 GEP->setIsInBounds(true);
987 return GEP;
988 }
989
990 /// Transparently provide more efficient getOperand methods.
991 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
992
993 Type *getSourceElementType() const { return SourceElementType; }
994
995 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
996 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
997
998 Type *getResultElementType() const {
999 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
1000 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
;
1001 return ResultElementType;
1002 }
1003
1004 /// Returns the address space of this instruction's pointer type.
1005 unsigned getAddressSpace() const {
1006 // Note that this is always the same as the pointer operand's address space
1007 // and that is cheaper to compute, so cheat here.
1008 return getPointerAddressSpace();
1009 }
1010
1011 /// Returns the type of the element that would be loaded with
1012 /// a load instruction with the specified parameters.
1013 ///
1014 /// Null is returned if the indices are invalid for the specified
1015 /// pointer type.
1016 ///
1017 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1018 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1019 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1020
1021 inline op_iterator idx_begin() { return op_begin()+1; }
1022 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1023 inline op_iterator idx_end() { return op_end(); }
1024 inline const_op_iterator idx_end() const { return op_end(); }
1025
1026 inline iterator_range<op_iterator> indices() {
1027 return make_range(idx_begin(), idx_end());
1028 }
1029
1030 inline iterator_range<const_op_iterator> indices() const {
1031 return make_range(idx_begin(), idx_end());
1032 }
1033
1034 Value *getPointerOperand() {
1035 return getOperand(0);
1036 }
1037 const Value *getPointerOperand() const {
1038 return getOperand(0);
1039 }
1040 static unsigned getPointerOperandIndex() {
1041 return 0U; // get index for modifying correct operand.
1042 }
1043
1044 /// Method to return the pointer operand as a
1045 /// PointerType.
1046 Type *getPointerOperandType() const {
1047 return getPointerOperand()->getType();
1048 }
1049
1050 /// Returns the address space of the pointer operand.
1051 unsigned getPointerAddressSpace() const {
1052 return getPointerOperandType()->getPointerAddressSpace();
1053 }
1054
1055 /// Returns the pointer type returned by the GEP
1056 /// instruction, which may be a vector of pointers.
1057 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1058 ArrayRef<Value *> IdxList) {
1059 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1060 Ptr->getType()->getPointerAddressSpace());
1061 // Vector GEP
1062 if (Ptr->getType()->isVectorTy()) {
1063 ElementCount EltCount = Ptr->getType()->getVectorElementCount();
1064 return VectorType::get(PtrTy, EltCount);
1065 }
1066 for (Value *Index : IdxList)
1067 if (Index->getType()->isVectorTy()) {
1068 ElementCount EltCount = Index->getType()->getVectorElementCount();
1069 return VectorType::get(PtrTy, EltCount);
1070 }
1071 // Scalar GEP
1072 return PtrTy;
1073 }
1074
1075 unsigned getNumIndices() const { // Note: always non-negative
1076 return getNumOperands() - 1;
1077 }
1078
1079 bool hasIndices() const {
1080 return getNumOperands() > 1;
1081 }
1082
1083 /// Return true if all of the indices of this GEP are
1084 /// zeros. If so, the result pointer and the first operand have the same
1085 /// value, just potentially different types.
1086 bool hasAllZeroIndices() const;
1087
1088 /// Return true if all of the indices of this GEP are
1089 /// constant integers. If so, the result pointer and the first operand have
1090 /// a constant offset between them.
1091 bool hasAllConstantIndices() const;
1092
1093 /// Set or clear the inbounds flag on this GEP instruction.
1094 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1095 void setIsInBounds(bool b = true);
1096
1097 /// Determine whether the GEP has the inbounds flag.
1098 bool isInBounds() const;
1099
1100 /// Accumulate the constant address offset of this GEP if possible.
1101 ///
1102 /// This routine accepts an APInt into which it will accumulate the constant
1103 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1104 /// all-constant, it returns false and the value of the offset APInt is
1105 /// undefined (it is *not* preserved!). The APInt passed into this routine
1106 /// must be at least as wide as the IntPtr type for the address space of
1107 /// the base GEP pointer.
1108 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1109
1110 // Methods for support type inquiry through isa, cast, and dyn_cast:
1111 static bool classof(const Instruction *I) {
1112 return (I->getOpcode() == Instruction::GetElementPtr);
1113 }
1114 static bool classof(const Value *V) {
1115 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1116 }
1117};
1118
1119template <>
1120struct OperandTraits<GetElementPtrInst> :
1121 public VariadicOperandTraits<GetElementPtrInst, 1> {
1122};
1123
1124GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1125 ArrayRef<Value *> IdxList, unsigned Values,
1126 const Twine &NameStr,
1127 Instruction *InsertBefore)
1128 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1129 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1130 Values, InsertBefore),
1131 SourceElementType(PointeeType),
1132 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1133 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
1134 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
;
1135 init(Ptr, IdxList, NameStr);
1136}
1137
1138GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1139 ArrayRef<Value *> IdxList, unsigned Values,
1140 const Twine &NameStr,
1141 BasicBlock *InsertAtEnd)
1142 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1143 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1144 Values, InsertAtEnd),
1145 SourceElementType(PointeeType),
1146 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1147 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
1148 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
;
1149 init(Ptr, IdxList, NameStr);
1150}
1151
1152DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1153
1154//===----------------------------------------------------------------------===//
1155// ICmpInst Class
1156//===----------------------------------------------------------------------===//
1157
1158/// This instruction compares its operands according to the predicate given
1159/// to the constructor. It only operates on integers or pointers. The operands
1160/// must be identical types.
1161/// Represent an integer comparison operator.
1162class ICmpInst: public CmpInst {
1163 void AssertOK() {
1164 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
1165 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
;
1166 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
1167 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
;
1168 // Check that the operands are the right type
1169 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1170 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1171 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
;
1172 }
1173
1174protected:
1175 // Note: Instruction needs to be a friend here to call cloneImpl.
1176 friend class Instruction;
1177
1178 /// Clone an identical ICmpInst
1179 ICmpInst *cloneImpl() const;
1180
1181public:
1182 /// Constructor with insert-before-instruction semantics.
1183 ICmpInst(
1184 Instruction *InsertBefore, ///< Where to insert
1185 Predicate pred, ///< The predicate to use for the comparison
1186 Value *LHS, ///< The left-hand-side of the expression
1187 Value *RHS, ///< The right-hand-side of the expression
1188 const Twine &NameStr = "" ///< Name of the instruction
1189 ) : CmpInst(makeCmpResultType(LHS->getType()),
1190 Instruction::ICmp, pred, LHS, RHS, NameStr,
1191 InsertBefore) {
1192#ifndef NDEBUG
1193 AssertOK();
1194#endif
1195 }
1196
1197 /// Constructor with insert-at-end semantics.
1198 ICmpInst(
1199 BasicBlock &InsertAtEnd, ///< Block to insert into.
1200 Predicate pred, ///< The predicate to use for the comparison
1201 Value *LHS, ///< The left-hand-side of the expression
1202 Value *RHS, ///< The right-hand-side of the expression
1203 const Twine &NameStr = "" ///< Name of the instruction
1204 ) : CmpInst(makeCmpResultType(LHS->getType()),
1205 Instruction::ICmp, pred, LHS, RHS, NameStr,
1206 &InsertAtEnd) {
1207#ifndef NDEBUG
1208 AssertOK();
1209#endif
1210 }
1211
1212 /// Constructor with no-insertion semantics
1213 ICmpInst(
1214 Predicate pred, ///< The predicate to use for the comparison
1215 Value *LHS, ///< The left-hand-side of the expression
1216 Value *RHS, ///< The right-hand-side of the expression
1217 const Twine &NameStr = "" ///< Name of the instruction
1218 ) : CmpInst(makeCmpResultType(LHS->getType()),
1219 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1220#ifndef NDEBUG
1221 AssertOK();
1222#endif
1223 }
1224
1225 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1226 /// @returns the predicate that would be the result if the operand were
1227 /// regarded as signed.
1228 /// Return the signed version of the predicate
1229 Predicate getSignedPredicate() const {
1230 return getSignedPredicate(getPredicate());
1231 }
1232
1233 /// This is a static version that you can use without an instruction.
1234 /// Return the signed version of the predicate.
1235 static Predicate getSignedPredicate(Predicate pred);
1236
1237 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1238 /// @returns the predicate that would be the result if the operand were
1239 /// regarded as unsigned.
1240 /// Return the unsigned version of the predicate
1241 Predicate getUnsignedPredicate() const {
1242 return getUnsignedPredicate(getPredicate());
1243 }
1244
1245 /// This is a static version that you can use without an instruction.
1246 /// Return the unsigned version of the predicate.
1247 static Predicate getUnsignedPredicate(Predicate pred);
1248
1249 /// Return true if this predicate is either EQ or NE. This also
1250 /// tests for commutativity.
1251 static bool isEquality(Predicate P) {
1252 return P == ICMP_EQ || P == ICMP_NE;
1253 }
1254
1255 /// Return true if this predicate is either EQ or NE. This also
1256 /// tests for commutativity.
1257 bool isEquality() const {
1258 return isEquality(getPredicate());
1259 }
1260
1261 /// @returns true if the predicate of this ICmpInst is commutative
1262 /// Determine if this relation is commutative.
1263 bool isCommutative() const { return isEquality(); }
1264
1265 /// Return true if the predicate is relational (not EQ or NE).
1266 ///
1267 bool isRelational() const {
1268 return !isEquality();
1269 }
1270
1271 /// Return true if the predicate is relational (not EQ or NE).
1272 ///
1273 static bool isRelational(Predicate P) {
1274 return !isEquality(P);
1275 }
1276
1277 /// Exchange the two operands to this instruction in such a way that it does
1278 /// not modify the semantics of the instruction. The predicate value may be
1279 /// changed to retain the same result if the predicate is order dependent
1280 /// (e.g. ult).
1281 /// Swap operands and adjust predicate.
1282 void swapOperands() {
1283 setPredicate(getSwappedPredicate());
1284 Op<0>().swap(Op<1>());
1285 }
1286
1287 // Methods for support type inquiry through isa, cast, and dyn_cast:
1288 static bool classof(const Instruction *I) {
1289 return I->getOpcode() == Instruction::ICmp;
1290 }
1291 static bool classof(const Value *V) {
1292 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1293 }
1294};
1295
1296//===----------------------------------------------------------------------===//
1297// FCmpInst Class
1298//===----------------------------------------------------------------------===//
1299
1300/// This instruction compares its operands according to the predicate given
1301/// to the constructor. It only operates on floating point values or packed
1302/// vectors of floating point values. The operands must be identical types.
1303/// Represents a floating point comparison operator.
1304class FCmpInst: public CmpInst {
1305 void AssertOK() {
1306 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1306, __PRETTY_FUNCTION__))
;
1307 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
1308 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
;
1309 // Check that the operands are the right type
1310 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
1311 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
;
1312 }
1313
1314protected:
1315 // Note: Instruction needs to be a friend here to call cloneImpl.
1316 friend class Instruction;
1317
1318 /// Clone an identical FCmpInst
1319 FCmpInst *cloneImpl() const;
1320
1321public:
1322 /// Constructor with insert-before-instruction semantics.
1323 FCmpInst(
1324 Instruction *InsertBefore, ///< Where to insert
1325 Predicate pred, ///< The predicate to use for the comparison
1326 Value *LHS, ///< The left-hand-side of the expression
1327 Value *RHS, ///< The right-hand-side of the expression
1328 const Twine &NameStr = "" ///< Name of the instruction
1329 ) : CmpInst(makeCmpResultType(LHS->getType()),
1330 Instruction::FCmp, pred, LHS, RHS, NameStr,
1331 InsertBefore) {
1332 AssertOK();
1333 }
1334
1335 /// Constructor with insert-at-end semantics.
1336 FCmpInst(
1337 BasicBlock &InsertAtEnd, ///< Block to insert into.
1338 Predicate pred, ///< The predicate to use for the comparison
1339 Value *LHS, ///< The left-hand-side of the expression
1340 Value *RHS, ///< The right-hand-side of the expression
1341 const Twine &NameStr = "" ///< Name of the instruction
1342 ) : CmpInst(makeCmpResultType(LHS->getType()),
1343 Instruction::FCmp, pred, LHS, RHS, NameStr,
1344 &InsertAtEnd) {
1345 AssertOK();
1346 }
1347
1348 /// Constructor with no-insertion semantics
1349 FCmpInst(
1350 Predicate Pred, ///< The predicate to use for the comparison
1351 Value *LHS, ///< The left-hand-side of the expression
1352 Value *RHS, ///< The right-hand-side of the expression
1353 const Twine &NameStr = "", ///< Name of the instruction
1354 Instruction *FlagsSource = nullptr
1355 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1356 RHS, NameStr, nullptr, FlagsSource) {
1357 AssertOK();
1358 }
1359
1360 /// @returns true if the predicate of this instruction is EQ or NE.
1361 /// Determine if this is an equality predicate.
1362 static bool isEquality(Predicate Pred) {
1363 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1364 Pred == FCMP_UNE;
1365 }
1366
1367 /// @returns true if the predicate of this instruction is EQ or NE.
1368 /// Determine if this is an equality predicate.
1369 bool isEquality() const { return isEquality(getPredicate()); }
1370
1371 /// @returns true if the predicate of this instruction is commutative.
1372 /// Determine if this is a commutative predicate.
1373 bool isCommutative() const {
1374 return isEquality() ||
1375 getPredicate() == FCMP_FALSE ||
1376 getPredicate() == FCMP_TRUE ||
1377 getPredicate() == FCMP_ORD ||
1378 getPredicate() == FCMP_UNO;
1379 }
1380
1381 /// @returns true if the predicate is relational (not EQ or NE).
1382 /// Determine if this a relational predicate.
1383 bool isRelational() const { return !isEquality(); }
1384
1385 /// Exchange the two operands to this instruction in such a way that it does
1386 /// not modify the semantics of the instruction. The predicate value may be
1387 /// changed to retain the same result if the predicate is order dependent
1388 /// (e.g. ult).
1389 /// Swap operands and adjust predicate.
1390 void swapOperands() {
1391 setPredicate(getSwappedPredicate());
1392 Op<0>().swap(Op<1>());
1393 }
1394
1395 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1396 static bool classof(const Instruction *I) {
1397 return I->getOpcode() == Instruction::FCmp;
1398 }
1399 static bool classof(const Value *V) {
1400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1401 }
1402};
1403
1404//===----------------------------------------------------------------------===//
1405/// This class represents a function call, abstracting a target
1406/// machine's calling convention. This class uses low bit of the SubClassData
1407/// field to indicate whether or not this is a tail call. The rest of the bits
1408/// hold the calling convention of the call.
1409///
1410class CallInst : public CallBase {
1411 CallInst(const CallInst &CI);
1412
1413 /// Construct a CallInst given a range of arguments.
1414 /// Construct a CallInst from a range of arguments
1415 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1416 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1417 Instruction *InsertBefore);
1418
1419 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1420 const Twine &NameStr, Instruction *InsertBefore)
1421 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1422
1423 /// Construct a CallInst given a range of arguments.
1424 /// Construct a CallInst from a range of arguments
1425 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1426 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1427 BasicBlock *InsertAtEnd);
1428
1429 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1430 Instruction *InsertBefore);
1431
1432 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1433 BasicBlock *InsertAtEnd);
1434
1435 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1436 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1437 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1438
1439 /// Compute the number of operands to allocate.
1440 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1441 // We need one operand for the called function, plus the input operand
1442 // counts provided.
1443 return 1 + NumArgs + NumBundleInputs;
1444 }
1445
1446protected:
1447 // Note: Instruction needs to be a friend here to call cloneImpl.
1448 friend class Instruction;
1449
1450 CallInst *cloneImpl() const;
1451
1452public:
1453 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1454 Instruction *InsertBefore = nullptr) {
1455 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1456 }
1457
1458 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1459 const Twine &NameStr,
1460 Instruction *InsertBefore = nullptr) {
1461 return new (ComputeNumOperands(Args.size()))
1462 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1463 }
1464
1465 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles = None,
1467 const Twine &NameStr = "",
1468 Instruction *InsertBefore = nullptr) {
1469 const int NumOperands =
1470 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1471 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1472
1473 return new (NumOperands, DescriptorBytes)
1474 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1475 }
1476
1477 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1478 BasicBlock *InsertAtEnd) {
1479 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1480 }
1481
1482 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1483 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1484 return new (ComputeNumOperands(Args.size()))
1485 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1486 }
1487
1488 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1489 ArrayRef<OperandBundleDef> Bundles,
1490 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1491 const int NumOperands =
1492 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1493 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1494
1495 return new (NumOperands, DescriptorBytes)
1496 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1497 }
1498
1499 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1500 Instruction *InsertBefore = nullptr) {
1501 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1502 InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1510 NameStr, InsertBefore);
1511 }
1512
1513 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1514 const Twine &NameStr,
1515 Instruction *InsertBefore = nullptr) {
1516 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1517 InsertBefore);
1518 }
1519
1520 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1521 BasicBlock *InsertAtEnd) {
1522 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1523 InsertAtEnd);
1524 }
1525
1526 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1527 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1528 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1529 InsertAtEnd);
1530 }
1531
1532 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1533 ArrayRef<OperandBundleDef> Bundles,
1534 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1535 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1536 NameStr, InsertAtEnd);
1537 }
1538
1539 // Deprecated [opaque pointer types]
1540 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1541 Instruction *InsertBefore = nullptr) {
1542 return Create(cast<FunctionType>(
1543 cast<PointerType>(Func->getType())->getElementType()),
1544 Func, NameStr, InsertBefore);
1545 }
1546
1547 // Deprecated [opaque pointer types]
1548 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1549 const Twine &NameStr,
1550 Instruction *InsertBefore = nullptr) {
1551 return Create(cast<FunctionType>(
1552 cast<PointerType>(Func->getType())->getElementType()),
1553 Func, Args, NameStr, InsertBefore);
1554 }
1555
1556 // Deprecated [opaque pointer types]
1557 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1558 ArrayRef<OperandBundleDef> Bundles = None,
1559 const Twine &NameStr = "",
1560 Instruction *InsertBefore = nullptr) {
1561 return Create(cast<FunctionType>(
1562 cast<PointerType>(Func->getType())->getElementType()),
1563 Func, Args, Bundles, NameStr, InsertBefore);
1564 }
1565
1566 // Deprecated [opaque pointer types]
1567 static CallInst *Create(Value *Func, const Twine &NameStr,
1568 BasicBlock *InsertAtEnd) {
1569 return Create(cast<FunctionType>(
1570 cast<PointerType>(Func->getType())->getElementType()),
1571 Func, NameStr, InsertAtEnd);
1572 }
1573
1574 // Deprecated [opaque pointer types]
1575 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1576 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1577 return Create(cast<FunctionType>(
1578 cast<PointerType>(Func->getType())->getElementType()),
1579 Func, Args, NameStr, InsertAtEnd);
1580 }
1581
1582 // Deprecated [opaque pointer types]
1583 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1584 ArrayRef<OperandBundleDef> Bundles,
1585 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1586 return Create(cast<FunctionType>(
1587 cast<PointerType>(Func->getType())->getElementType()),
1588 Func, Args, Bundles, NameStr, InsertAtEnd);
1589 }
1590
1591 /// Create a clone of \p CI with a different set of operand bundles and
1592 /// insert it before \p InsertPt.
1593 ///
1594 /// The returned call instruction is identical \p CI in every way except that
1595 /// the operand bundles for the new instruction are set to the operand bundles
1596 /// in \p Bundles.
1597 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1598 Instruction *InsertPt = nullptr);
1599
1600 /// Generate the IR for a call to malloc:
1601 /// 1. Compute the malloc call's argument as the specified type's size,
1602 /// possibly multiplied by the array size if the array size is not
1603 /// constant 1.
1604 /// 2. Call malloc with that argument.
1605 /// 3. Bitcast the result of the malloc call to the specified type.
1606 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1607 Type *AllocTy, Value *AllocSize,
1608 Value *ArraySize = nullptr,
1609 Function *MallocF = nullptr,
1610 const Twine &Name = "");
1611 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1612 Type *AllocTy, Value *AllocSize,
1613 Value *ArraySize = nullptr,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1617 Type *AllocTy, Value *AllocSize,
1618 Value *ArraySize = nullptr,
1619 ArrayRef<OperandBundleDef> Bundles = None,
1620 Function *MallocF = nullptr,
1621 const Twine &Name = "");
1622 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1623 Type *AllocTy, Value *AllocSize,
1624 Value *ArraySize = nullptr,
1625 ArrayRef<OperandBundleDef> Bundles = None,
1626 Function *MallocF = nullptr,
1627 const Twine &Name = "");
1628 /// Generate the IR for a call to the builtin free function.
1629 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1630 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1631 static Instruction *CreateFree(Value *Source,
1632 ArrayRef<OperandBundleDef> Bundles,
1633 Instruction *InsertBefore);
1634 static Instruction *CreateFree(Value *Source,
1635 ArrayRef<OperandBundleDef> Bundles,
1636 BasicBlock *InsertAtEnd);
1637
1638 // Note that 'musttail' implies 'tail'.
1639 enum TailCallKind {
1640 TCK_None = 0,
1641 TCK_Tail = 1,
1642 TCK_MustTail = 2,
1643 TCK_NoTail = 3
1644 };
1645 TailCallKind getTailCallKind() const {
1646 return TailCallKind(getSubclassDataFromInstruction() & 3);
1647 }
1648
1649 bool isTailCall() const {
1650 unsigned Kind = getSubclassDataFromInstruction() & 3;
1651 return Kind == TCK_Tail || Kind == TCK_MustTail;
1652 }
1653
1654 bool isMustTailCall() const {
1655 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1656 }
1657
1658 bool isNoTailCall() const {
1659 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1660 }
1661
1662 void setTailCall(bool isTC = true) {
1663 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1664 unsigned(isTC ? TCK_Tail : TCK_None));
1665 }
1666
1667 void setTailCallKind(TailCallKind TCK) {
1668 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1669 unsigned(TCK));
1670 }
1671
1672 /// Return true if the call can return twice
1673 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1674 void setCanReturnTwice() {
1675 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1676 }
1677
1678 // Methods for support type inquiry through isa, cast, and dyn_cast:
1679 static bool classof(const Instruction *I) {
1680 return I->getOpcode() == Instruction::Call;
1681 }
1682 static bool classof(const Value *V) {
1683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1684 }
1685
1686 /// Updates profile metadata by scaling it by \p S / \p T.
1687 void updateProfWeight(uint64_t S, uint64_t T);
1688
1689private:
1690 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1691 // method so that subclasses cannot accidentally use it.
1692 void setInstructionSubclassData(unsigned short D) {
1693 Instruction::setInstructionSubclassData(D);
1694 }
1695};
1696
1697CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699 BasicBlock *InsertAtEnd)
1700 : CallBase(Ty->getReturnType(), Instruction::Call,
1701 OperandTraits<CallBase>::op_end(this) -
1702 (Args.size() + CountBundleInputs(Bundles) + 1),
1703 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704 InsertAtEnd) {
1705 init(Ty, Func, Args, Bundles, NameStr);
1706}
1707
1708CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710 Instruction *InsertBefore)
1711 : CallBase(Ty->getReturnType(), Instruction::Call,
1712 OperandTraits<CallBase>::op_end(this) -
1713 (Args.size() + CountBundleInputs(Bundles) + 1),
1714 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715 InsertBefore) {
1716 init(Ty, Func, Args, Bundles, NameStr);
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SelectInst Class
1721//===----------------------------------------------------------------------===//
1722
1723/// This class represents the LLVM 'select' instruction.
1724///
1725class SelectInst : public Instruction {
1726 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727 Instruction *InsertBefore)
1728 : Instruction(S1->getType(), Instruction::Select,
50
Called C++ object pointer is null
1729 &Op<0>(), 3, InsertBefore) {
1730 init(C, S1, S2);
1731 setName(NameStr);
1732 }
1733
1734 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735 BasicBlock *InsertAtEnd)
1736 : Instruction(S1->getType(), Instruction::Select,
1737 &Op<0>(), 3, InsertAtEnd) {
1738 init(C, S1, S2);
1739 setName(NameStr);
1740 }
1741
1742 void init(Value *C, Value *S1, Value *S2) {
1743 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1743, __PRETTY_FUNCTION__))
;
1744 Op<0>() = C;
1745 Op<1>() = S1;
1746 Op<2>() = S2;
1747 }
1748
1749protected:
1750 // Note: Instruction needs to be a friend here to call cloneImpl.
1751 friend class Instruction;
1752
1753 SelectInst *cloneImpl() const;
1754
1755public:
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr = "",
1758 Instruction *InsertBefore = nullptr,
1759 Instruction *MDFrom = nullptr) {
1760 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
48
Passing null pointer value via 2nd parameter 'S1'
49
Calling constructor for 'SelectInst'
1761 if (MDFrom)
1762 Sel->copyMetadata(*MDFrom);
1763 return Sel;
1764 }
1765
1766 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767 const Twine &NameStr,
1768 BasicBlock *InsertAtEnd) {
1769 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770 }
1771
1772 const Value *getCondition() const { return Op<0>(); }
1773 const Value *getTrueValue() const { return Op<1>(); }
1774 const Value *getFalseValue() const { return Op<2>(); }
1775 Value *getCondition() { return Op<0>(); }
1776 Value *getTrueValue() { return Op<1>(); }
1777 Value *getFalseValue() { return Op<2>(); }
1778
1779 void setCondition(Value *V) { Op<0>() = V; }
1780 void setTrueValue(Value *V) { Op<1>() = V; }
1781 void setFalseValue(Value *V) { Op<2>() = V; }
1782
1783 /// Swap the true and false values of the select instruction.
1784 /// This doesn't swap prof metadata.
1785 void swapValues() { Op<1>().swap(Op<2>()); }
1786
1787 /// Return a string if the specified operands are invalid
1788 /// for a select operation, otherwise return null.
1789 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790
1791 /// Transparently provide more efficient getOperand methods.
1792 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1793
1794 OtherOps getOpcode() const {
1795 return static_cast<OtherOps>(Instruction::getOpcode());
1796 }
1797
1798 // Methods for support type inquiry through isa, cast, and dyn_cast:
1799 static bool classof(const Instruction *I) {
1800 return I->getOpcode() == Instruction::Select;
1801 }
1802 static bool classof(const Value *V) {
1803 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804 }
1805};
1806
1807template <>
1808struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809};
1810
1811DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1812
1813//===----------------------------------------------------------------------===//
1814// VAArgInst Class
1815//===----------------------------------------------------------------------===//
1816
1817/// This class represents the va_arg llvm instruction, which returns
1818/// an argument of the specified type given a va_list and increments that list
1819///
1820class VAArgInst : public UnaryInstruction {
1821protected:
1822 // Note: Instruction needs to be a friend here to call cloneImpl.
1823 friend class Instruction;
1824
1825 VAArgInst *cloneImpl() const;
1826
1827public:
1828 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829 Instruction *InsertBefore = nullptr)
1830 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831 setName(NameStr);
1832 }
1833
1834 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835 BasicBlock *InsertAtEnd)
1836 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837 setName(NameStr);
1838 }
1839
1840 Value *getPointerOperand() { return getOperand(0); }
1841 const Value *getPointerOperand() const { return getOperand(0); }
1842 static unsigned getPointerOperandIndex() { return 0U; }
1843
1844 // Methods for support type inquiry through isa, cast, and dyn_cast:
1845 static bool classof(const Instruction *I) {
1846 return I->getOpcode() == VAArg;
1847 }
1848 static bool classof(const Value *V) {
1849 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850 }
1851};
1852
1853//===----------------------------------------------------------------------===//
1854// ExtractElementInst Class
1855//===----------------------------------------------------------------------===//
1856
1857/// This instruction extracts a single (scalar)
1858/// element from a VectorType value
1859///
1860class ExtractElementInst : public Instruction {
1861 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862 Instruction *InsertBefore = nullptr);
1863 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864 BasicBlock *InsertAtEnd);
1865
1866protected:
1867 // Note: Instruction needs to be a friend here to call cloneImpl.
1868 friend class Instruction;
1869
1870 ExtractElementInst *cloneImpl() const;
1871
1872public:
1873 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874 const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr) {
1876 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877 }
1878
1879 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880 const Twine &NameStr,
1881 BasicBlock *InsertAtEnd) {
1882 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883 }
1884
1885 /// Return true if an extractelement instruction can be
1886 /// formed with the specified operands.
1887 static bool isValidOperands(const Value *Vec, const Value *Idx);
1888
1889 Value *getVectorOperand() { return Op<0>(); }
1890 Value *getIndexOperand() { return Op<1>(); }
1891 const Value *getVectorOperand() const { return Op<0>(); }
1892 const Value *getIndexOperand() const { return Op<1>(); }
1893
1894 VectorType *getVectorOperandType() const {
1895 return cast<VectorType>(getVectorOperand()->getType());
1896 }
1897
1898 /// Transparently provide more efficient getOperand methods.
1899 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1900
1901 // Methods for support type inquiry through isa, cast, and dyn_cast:
1902 static bool classof(const Instruction *I) {
1903 return I->getOpcode() == Instruction::ExtractElement;
1904 }
1905 static bool classof(const Value *V) {
1906 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907 }
1908};
1909
1910template <>
1911struct OperandTraits<ExtractElementInst> :
1912 public FixedNumOperandTraits<ExtractElementInst, 2> {
1913};
1914
1915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1916
1917//===----------------------------------------------------------------------===//
1918// InsertElementInst Class
1919//===----------------------------------------------------------------------===//
1920
1921/// This instruction inserts a single (scalar)
1922/// element into a VectorType value
1923///
1924class InsertElementInst : public Instruction {
1925 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926 const Twine &NameStr = "",
1927 Instruction *InsertBefore = nullptr);
1928 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929 BasicBlock *InsertAtEnd);
1930
1931protected:
1932 // Note: Instruction needs to be a friend here to call cloneImpl.
1933 friend class Instruction;
1934
1935 InsertElementInst *cloneImpl() const;
1936
1937public:
1938 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr) {
1941 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942 }
1943
1944 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945 const Twine &NameStr,
1946 BasicBlock *InsertAtEnd) {
1947 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948 }
1949
1950 /// Return true if an insertelement instruction can be
1951 /// formed with the specified operands.
1952 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953 const Value *Idx);
1954
1955 /// Overload to return most specific vector type.
1956 ///
1957 VectorType *getType() const {
1958 return cast<VectorType>(Instruction::getType());
1959 }
1960
1961 /// Transparently provide more efficient getOperand methods.
1962 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1963
1964 // Methods for support type inquiry through isa, cast, and dyn_cast:
1965 static bool classof(const Instruction *I) {
1966 return I->getOpcode() == Instruction::InsertElement;
1967 }
1968 static bool classof(const Value *V) {
1969 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970 }
1971};
1972
1973template <>
1974struct OperandTraits<InsertElementInst> :
1975 public FixedNumOperandTraits<InsertElementInst, 3> {
1976};
1977
1978DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1979
1980//===----------------------------------------------------------------------===//
1981// ShuffleVectorInst Class
1982//===----------------------------------------------------------------------===//
1983
1984/// This instruction constructs a fixed permutation of two
1985/// input vectors.
1986///
1987class ShuffleVectorInst : public Instruction {
1988protected:
1989 // Note: Instruction needs to be a friend here to call cloneImpl.
1990 friend class Instruction;
1991
1992 ShuffleVectorInst *cloneImpl() const;
1993
1994public:
1995 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1996 const Twine &NameStr = "",
1997 Instruction *InsertBefor = nullptr);
1998 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1999 const Twine &NameStr, BasicBlock *InsertAtEnd);
2000
2001 // allocate space for exactly three operands
2002 void *operator new(size_t s) {
2003 return User::operator new(s, 3);
2004 }
2005
2006 /// Swap the first 2 operands and adjust the mask to preserve the semantics
2007 /// of the instruction.
2008 void commute();
2009
2010 /// Return true if a shufflevector instruction can be
2011 /// formed with the specified operands.
2012 static bool isValidOperands(const Value *V1, const Value *V2,
2013 const Value *Mask);
2014
2015 /// Overload to return most specific vector type.
2016 ///
2017 VectorType *getType() const {
2018 return cast<VectorType>(Instruction::getType());
2019 }
2020
2021 /// Transparently provide more efficient getOperand methods.
2022 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2023
2024 Constant *getMask() const {
2025 return cast<Constant>(getOperand(2));
2026 }
2027
2028 /// Return the shuffle mask value for the specified element of the mask.
2029 /// Return -1 if the element is undef.
2030 static int getMaskValue(const Constant *Mask, unsigned Elt);
2031
2032 /// Return the shuffle mask value of this instruction for the given element
2033 /// index. Return -1 if the element is undef.
2034 int getMaskValue(unsigned Elt) const {
2035 return getMaskValue(getMask(), Elt);
2036 }
2037
2038 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2039 /// elements of the mask are returned as -1.
2040 static void getShuffleMask(const Constant *Mask,
2041 SmallVectorImpl<int> &Result);
2042
2043 /// Return the mask for this instruction as a vector of integers. Undefined
2044 /// elements of the mask are returned as -1.
2045 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2046 return getShuffleMask(getMask(), Result);
2047 }
2048
2049 SmallVector<int, 16> getShuffleMask() const {
2050 SmallVector<int, 16> Mask;
2051 getShuffleMask(Mask);
2052 return Mask;
2053 }
2054
2055 /// Return true if this shuffle returns a vector with a different number of
2056 /// elements than its source vectors.
2057 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2058 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2059 bool changesLength() const {
2060 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2061 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2062 return NumSourceElts != NumMaskElts;
2063 }
2064
2065 /// Return true if this shuffle returns a vector with a greater number of
2066 /// elements than its source vectors.
2067 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2068 bool increasesLength() const {
2069 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2070 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2071 return NumSourceElts < NumMaskElts;
2072 }
2073
2074 /// Return true if this shuffle mask chooses elements from exactly one source
2075 /// vector.
2076 /// Example: <7,5,undef,7>
2077 /// This assumes that vector operands are the same length as the mask.
2078 static bool isSingleSourceMask(ArrayRef<int> Mask);
2079 static bool isSingleSourceMask(const Constant *Mask) {
2080 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2080, __PRETTY_FUNCTION__))
;
2081 SmallVector<int, 16> MaskAsInts;
2082 getShuffleMask(Mask, MaskAsInts);
2083 return isSingleSourceMask(MaskAsInts);
2084 }
2085
2086 /// Return true if this shuffle chooses elements from exactly one source
2087 /// vector without changing the length of that vector.
2088 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2089 /// TODO: Optionally allow length-changing shuffles.
2090 bool isSingleSource() const {
2091 return !changesLength() && isSingleSourceMask(getMask());
2092 }
2093
2094 /// Return true if this shuffle mask chooses elements from exactly one source
2095 /// vector without lane crossings. A shuffle using this mask is not
2096 /// necessarily a no-op because it may change the number of elements from its
2097 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2098 /// Example: <undef,undef,2,3>
2099 static bool isIdentityMask(ArrayRef<int> Mask);
2100 static bool isIdentityMask(const Constant *Mask) {
2101 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2101, __PRETTY_FUNCTION__))
;
2102 SmallVector<int, 16> MaskAsInts;
2103 getShuffleMask(Mask, MaskAsInts);
2104 return isIdentityMask(MaskAsInts);
2105 }
2106
2107 /// Return true if this shuffle chooses elements from exactly one source
2108 /// vector without lane crossings and does not change the number of elements
2109 /// from its input vectors.
2110 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2111 bool isIdentity() const {
2112 return !changesLength() && isIdentityMask(getShuffleMask());
2113 }
2114
2115 /// Return true if this shuffle lengthens exactly one source vector with
2116 /// undefs in the high elements.
2117 bool isIdentityWithPadding() const;
2118
2119 /// Return true if this shuffle extracts the first N elements of exactly one
2120 /// source vector.
2121 bool isIdentityWithExtract() const;
2122
2123 /// Return true if this shuffle concatenates its 2 source vectors. This
2124 /// returns false if either input is undefined. In that case, the shuffle is
2125 /// is better classified as an identity with padding operation.
2126 bool isConcat() const;
2127
2128 /// Return true if this shuffle mask chooses elements from its source vectors
2129 /// without lane crossings. A shuffle using this mask would be
2130 /// equivalent to a vector select with a constant condition operand.
2131 /// Example: <4,1,6,undef>
2132 /// This returns false if the mask does not choose from both input vectors.
2133 /// In that case, the shuffle is better classified as an identity shuffle.
2134 /// This assumes that vector operands are the same length as the mask
2135 /// (a length-changing shuffle can never be equivalent to a vector select).
2136 static bool isSelectMask(ArrayRef<int> Mask);
2137 static bool isSelectMask(const Constant *Mask) {
2138 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2138, __PRETTY_FUNCTION__))
;
2139 SmallVector<int, 16> MaskAsInts;
2140 getShuffleMask(Mask, MaskAsInts);
2141 return isSelectMask(MaskAsInts);
2142 }
2143
2144 /// Return true if this shuffle chooses elements from its source vectors
2145 /// without lane crossings and all operands have the same number of elements.
2146 /// In other words, this shuffle is equivalent to a vector select with a
2147 /// constant condition operand.
2148 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2149 /// This returns false if the mask does not choose from both input vectors.
2150 /// In that case, the shuffle is better classified as an identity shuffle.
2151 /// TODO: Optionally allow length-changing shuffles.
2152 bool isSelect() const {
2153 return !changesLength() && isSelectMask(getMask());
2154 }
2155
2156 /// Return true if this shuffle mask swaps the order of elements from exactly
2157 /// one source vector.
2158 /// Example: <7,6,undef,4>
2159 /// This assumes that vector operands are the same length as the mask.
2160 static bool isReverseMask(ArrayRef<int> Mask);
2161 static bool isReverseMask(const Constant *Mask) {
2162 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2162, __PRETTY_FUNCTION__))
;
2163 SmallVector<int, 16> MaskAsInts;
2164 getShuffleMask(Mask, MaskAsInts);
2165 return isReverseMask(MaskAsInts);
2166 }
2167
2168 /// Return true if this shuffle swaps the order of elements from exactly
2169 /// one source vector.
2170 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2171 /// TODO: Optionally allow length-changing shuffles.
2172 bool isReverse() const {
2173 return !changesLength() && isReverseMask(getMask());
2174 }
2175
2176 /// Return true if this shuffle mask chooses all elements with the same value
2177 /// as the first element of exactly one source vector.
2178 /// Example: <4,undef,undef,4>
2179 /// This assumes that vector operands are the same length as the mask.
2180 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2181 static bool isZeroEltSplatMask(const Constant *Mask) {
2182 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2182, __PRETTY_FUNCTION__))
;
2183 SmallVector<int, 16> MaskAsInts;
2184 getShuffleMask(Mask, MaskAsInts);
2185 return isZeroEltSplatMask(MaskAsInts);
2186 }
2187
2188 /// Return true if all elements of this shuffle are the same value as the
2189 /// first element of exactly one source vector without changing the length
2190 /// of that vector.
2191 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2192 /// TODO: Optionally allow length-changing shuffles.
2193 /// TODO: Optionally allow splats from other elements.
2194 bool isZeroEltSplat() const {
2195 return !changesLength() && isZeroEltSplatMask(getMask());
2196 }
2197
2198 /// Return true if this shuffle mask is a transpose mask.
2199 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2200 /// even- or odd-numbered vector elements from two n-dimensional source
2201 /// vectors and write each result into consecutive elements of an
2202 /// n-dimensional destination vector. Two shuffles are necessary to complete
2203 /// the transpose, one for the even elements and another for the odd elements.
2204 /// This description closely follows how the TRN1 and TRN2 AArch64
2205 /// instructions operate.
2206 ///
2207 /// For example, a simple 2x2 matrix can be transposed with:
2208 ///
2209 /// ; Original matrix
2210 /// m0 = < a, b >
2211 /// m1 = < c, d >
2212 ///
2213 /// ; Transposed matrix
2214 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2215 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2216 ///
2217 /// For matrices having greater than n columns, the resulting nx2 transposed
2218 /// matrix is stored in two result vectors such that one vector contains
2219 /// interleaved elements from all the even-numbered rows and the other vector
2220 /// contains interleaved elements from all the odd-numbered rows. For example,
2221 /// a 2x4 matrix can be transposed with:
2222 ///
2223 /// ; Original matrix
2224 /// m0 = < a, b, c, d >
2225 /// m1 = < e, f, g, h >
2226 ///
2227 /// ; Transposed matrix
2228 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2229 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2230 static bool isTransposeMask(ArrayRef<int> Mask);
2231 static bool isTransposeMask(const Constant *Mask) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2232, __PRETTY_FUNCTION__))
;
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isTransposeMask(MaskAsInts);
2236 }
2237
2238 /// Return true if this shuffle transposes the elements of its inputs without
2239 /// changing the length of the vectors. This operation may also be known as a
2240 /// merge or interleave. See the description for isTransposeMask() for the
2241 /// exact specification.
2242 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2243 bool isTranspose() const {
2244 return !changesLength() && isTransposeMask(getMask());
2245 }
2246
2247 /// Return true if this shuffle mask is an extract subvector mask.
2248 /// A valid extract subvector mask returns a smaller vector from a single
2249 /// source operand. The base extraction index is returned as well.
2250 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2251 int &Index);
2252 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2253 int &Index) {
2254 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2254, __PRETTY_FUNCTION__))
;
2255 SmallVector<int, 16> MaskAsInts;
2256 getShuffleMask(Mask, MaskAsInts);
2257 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2258 }
2259
2260 /// Return true if this shuffle mask is an extract subvector mask.
2261 bool isExtractSubvectorMask(int &Index) const {
2262 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2263 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2264 }
2265
2266 /// Change values in a shuffle permute mask assuming the two vector operands
2267 /// of length InVecNumElts have swapped position.
2268 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2269 unsigned InVecNumElts) {
2270 for (int &Idx : Mask) {
2271 if (Idx == -1)
2272 continue;
2273 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2274 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
2275 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
;
2276 }
2277 }
2278
2279 // Methods for support type inquiry through isa, cast, and dyn_cast:
2280 static bool classof(const Instruction *I) {
2281 return I->getOpcode() == Instruction::ShuffleVector;
2282 }
2283 static bool classof(const Value *V) {
2284 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2285 }
2286};
2287
2288template <>
2289struct OperandTraits<ShuffleVectorInst> :
2290 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2291};
2292
2293DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2294
2295//===----------------------------------------------------------------------===//
2296// ExtractValueInst Class
2297//===----------------------------------------------------------------------===//
2298
2299/// This instruction extracts a struct member or array
2300/// element value from an aggregate value.
2301///
2302class ExtractValueInst : public UnaryInstruction {
2303 SmallVector<unsigned, 4> Indices;
2304
2305 ExtractValueInst(const ExtractValueInst &EVI);
2306
2307 /// Constructors - Create a extractvalue instruction with a base aggregate
2308 /// value and a list of indices. The first ctor can optionally insert before
2309 /// an existing instruction, the second appends the new instruction to the
2310 /// specified BasicBlock.
2311 inline ExtractValueInst(Value *Agg,
2312 ArrayRef<unsigned> Idxs,
2313 const Twine &NameStr,
2314 Instruction *InsertBefore);
2315 inline ExtractValueInst(Value *Agg,
2316 ArrayRef<unsigned> Idxs,
2317 const Twine &NameStr, BasicBlock *InsertAtEnd);
2318
2319 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2320
2321protected:
2322 // Note: Instruction needs to be a friend here to call cloneImpl.
2323 friend class Instruction;
2324
2325 ExtractValueInst *cloneImpl() const;
2326
2327public:
2328 static ExtractValueInst *Create(Value *Agg,
2329 ArrayRef<unsigned> Idxs,
2330 const Twine &NameStr = "",
2331 Instruction *InsertBefore = nullptr) {
2332 return new
2333 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2334 }
2335
2336 static ExtractValueInst *Create(Value *Agg,
2337 ArrayRef<unsigned> Idxs,
2338 const Twine &NameStr,
2339 BasicBlock *InsertAtEnd) {
2340 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2341 }
2342
2343 /// Returns the type of the element that would be extracted
2344 /// with an extractvalue instruction with the specified parameters.
2345 ///
2346 /// Null is returned if the indices are invalid for the specified type.
2347 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2348
2349 using idx_iterator = const unsigned*;
2350
2351 inline idx_iterator idx_begin() const { return Indices.begin(); }
2352 inline idx_iterator idx_end() const { return Indices.end(); }
2353 inline iterator_range<idx_iterator> indices() const {
2354 return make_range(idx_begin(), idx_end());
2355 }
2356
2357 Value *getAggregateOperand() {
2358 return getOperand(0);
2359 }
2360 const Value *getAggregateOperand() const {
2361 return getOperand(0);
2362 }
2363 static unsigned getAggregateOperandIndex() {
2364 return 0U; // get index for modifying correct operand
2365 }
2366
2367 ArrayRef<unsigned> getIndices() const {
2368 return Indices;
2369 }
2370
2371 unsigned getNumIndices() const {
2372 return (unsigned)Indices.size();
2373 }
2374
2375 bool hasIndices() const {
2376 return true;
2377 }
2378
2379 // Methods for support type inquiry through isa, cast, and dyn_cast:
2380 static bool classof(const Instruction *I) {
2381 return I->getOpcode() == Instruction::ExtractValue;
2382 }
2383 static bool classof(const Value *V) {
2384 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2385 }
2386};
2387
2388ExtractValueInst::ExtractValueInst(Value *Agg,
2389 ArrayRef<unsigned> Idxs,
2390 const Twine &NameStr,
2391 Instruction *InsertBefore)
2392 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2393 ExtractValue, Agg, InsertBefore) {
2394 init(Idxs, NameStr);
2395}
2396
2397ExtractValueInst::ExtractValueInst(Value *Agg,
2398 ArrayRef<unsigned> Idxs,
2399 const Twine &NameStr,
2400 BasicBlock *InsertAtEnd)
2401 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2402 ExtractValue, Agg, InsertAtEnd) {
2403 init(Idxs, NameStr);
2404}
2405
2406//===----------------------------------------------------------------------===//
2407// InsertValueInst Class
2408//===----------------------------------------------------------------------===//
2409
2410/// This instruction inserts a struct field of array element
2411/// value into an aggregate value.
2412///
2413class InsertValueInst : public Instruction {
2414 SmallVector<unsigned, 4> Indices;
2415
2416 InsertValueInst(const InsertValueInst &IVI);
2417
2418 /// Constructors - Create a insertvalue instruction with a base aggregate
2419 /// value, a value to insert, and a list of indices. The first ctor can
2420 /// optionally insert before an existing instruction, the second appends
2421 /// the new instruction to the specified BasicBlock.
2422 inline InsertValueInst(Value *Agg, Value *Val,
2423 ArrayRef<unsigned> Idxs,
2424 const Twine &NameStr,
2425 Instruction *InsertBefore);
2426 inline InsertValueInst(Value *Agg, Value *Val,
2427 ArrayRef<unsigned> Idxs,
2428 const Twine &NameStr, BasicBlock *InsertAtEnd);
2429
2430 /// Constructors - These two constructors are convenience methods because one
2431 /// and two index insertvalue instructions are so common.
2432 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2433 const Twine &NameStr = "",
2434 Instruction *InsertBefore = nullptr);
2435 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2436 BasicBlock *InsertAtEnd);
2437
2438 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2439 const Twine &NameStr);
2440
2441protected:
2442 // Note: Instruction needs to be a friend here to call cloneImpl.
2443 friend class Instruction;
2444
2445 InsertValueInst *cloneImpl() const;
2446
2447public:
2448 // allocate space for exactly two operands
2449 void *operator new(size_t s) {
2450 return User::operator new(s, 2);
2451 }
2452
2453 static InsertValueInst *Create(Value *Agg, Value *Val,
2454 ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr = "",
2456 Instruction *InsertBefore = nullptr) {
2457 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2458 }
2459
2460 static InsertValueInst *Create(Value *Agg, Value *Val,
2461 ArrayRef<unsigned> Idxs,
2462 const Twine &NameStr,
2463 BasicBlock *InsertAtEnd) {
2464 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2465 }
2466
2467 /// Transparently provide more efficient getOperand methods.
2468 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2469
2470 using idx_iterator = const unsigned*;
2471
2472 inline idx_iterator idx_begin() const { return Indices.begin(); }
2473 inline idx_iterator idx_end() const { return Indices.end(); }
2474 inline iterator_range<idx_iterator> indices() const {
2475 return make_range(idx_begin(), idx_end());
2476 }
2477
2478 Value *getAggregateOperand() {
2479 return getOperand(0);
2480 }
2481 const Value *getAggregateOperand() const {
2482 return getOperand(0);
2483 }
2484 static unsigned getAggregateOperandIndex() {
2485 return 0U; // get index for modifying correct operand
2486 }
2487
2488 Value *getInsertedValueOperand() {
2489 return getOperand(1);
2490 }
2491 const Value *getInsertedValueOperand() const {
2492 return getOperand(1);
2493 }
2494 static unsigned getInsertedValueOperandIndex() {
2495 return 1U; // get index for modifying correct operand
2496 }
2497
2498 ArrayRef<unsigned> getIndices() const {
2499 return Indices;
2500 }
2501
2502 unsigned getNumIndices() const {
2503 return (unsigned)Indices.size();
2504 }
2505
2506 bool hasIndices() const {
2507 return true;
2508 }
2509
2510 // Methods for support type inquiry through isa, cast, and dyn_cast:
2511 static bool classof(const Instruction *I) {
2512 return I->getOpcode() == Instruction::InsertValue;
2513 }
2514 static bool classof(const Value *V) {
2515 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2516 }
2517};
2518
2519template <>
2520struct OperandTraits<InsertValueInst> :
2521 public FixedNumOperandTraits<InsertValueInst, 2> {
2522};
2523
2524InsertValueInst::InsertValueInst(Value *Agg,
2525 Value *Val,
2526 ArrayRef<unsigned> Idxs,
2527 const Twine &NameStr,
2528 Instruction *InsertBefore)
2529 : Instruction(Agg->getType(), InsertValue,
2530 OperandTraits<InsertValueInst>::op_begin(this),
2531 2, InsertBefore) {
2532 init(Agg, Val, Idxs, NameStr);
2533}
2534
2535InsertValueInst::InsertValueInst(Value *Agg,
2536 Value *Val,
2537 ArrayRef<unsigned> Idxs,
2538 const Twine &NameStr,
2539 BasicBlock *InsertAtEnd)
2540 : Instruction(Agg->getType(), InsertValue,
2541 OperandTraits<InsertValueInst>::op_begin(this),
2542 2, InsertAtEnd) {
2543 init(Agg, Val, Idxs, NameStr);
2544}
2545
2546DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2547
2548//===----------------------------------------------------------------------===//
2549// PHINode Class
2550//===----------------------------------------------------------------------===//
2551
2552// PHINode - The PHINode class is used to represent the magical mystical PHI
2553// node, that can not exist in nature, but can be synthesized in a computer
2554// scientist's overactive imagination.
2555//
2556class PHINode : public Instruction {
2557 /// The number of operands actually allocated. NumOperands is
2558 /// the number actually in use.
2559 unsigned ReservedSpace;
2560
2561 PHINode(const PHINode &PN);
2562
2563 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2564 const Twine &NameStr = "",
2565 Instruction *InsertBefore = nullptr)
2566 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2567 ReservedSpace(NumReservedValues) {
2568 setName(NameStr);
2569 allocHungoffUses(ReservedSpace);
2570 }
2571
2572 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2573 BasicBlock *InsertAtEnd)
2574 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2575 ReservedSpace(NumReservedValues) {
2576 setName(NameStr);
2577 allocHungoffUses(ReservedSpace);
2578 }
2579
2580protected:
2581 // Note: Instruction needs to be a friend here to call cloneImpl.
2582 friend class Instruction;
2583
2584 PHINode *cloneImpl() const;
2585
2586 // allocHungoffUses - this is more complicated than the generic
2587 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2588 // values and pointers to the incoming blocks, all in one allocation.
2589 void allocHungoffUses(unsigned N) {
2590 User::allocHungoffUses(N, /* IsPhi */ true);
2591 }
2592
2593public:
2594 /// Constructors - NumReservedValues is a hint for the number of incoming
2595 /// edges that this phi node will have (use 0 if you really have no idea).
2596 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2597 const Twine &NameStr = "",
2598 Instruction *InsertBefore = nullptr) {
2599 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2600 }
2601
2602 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2603 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2604 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2605 }
2606
2607 /// Provide fast operand accessors
2608 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2609
2610 // Block iterator interface. This provides access to the list of incoming
2611 // basic blocks, which parallels the list of incoming values.
2612
2613 using block_iterator = BasicBlock **;
2614 using const_block_iterator = BasicBlock * const *;
2615
2616 block_iterator block_begin() {
2617 Use::UserRef *ref =
2618 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2619 return reinterpret_cast<block_iterator>(ref + 1);
2620 }
2621
2622 const_block_iterator block_begin() const {
2623 const Use::UserRef *ref =
2624 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2625 return reinterpret_cast<const_block_iterator>(ref + 1);
2626 }
2627
2628 block_iterator block_end() {
2629 return block_begin() + getNumOperands();
2630 }
2631
2632 const_block_iterator block_end() const {
2633 return block_begin() + getNumOperands();
2634 }
2635
2636 iterator_range<block_iterator> blocks() {
2637 return make_range(block_begin(), block_end());
2638 }
2639
2640 iterator_range<const_block_iterator> blocks() const {
2641 return make_range(block_begin(), block_end());
2642 }
2643
2644 op_range incoming_values() { return operands(); }
2645
2646 const_op_range incoming_values() const { return operands(); }
2647
2648 /// Return the number of incoming edges
2649 ///
2650 unsigned getNumIncomingValues() const { return getNumOperands(); }
2651
2652 /// Return incoming value number x
2653 ///
2654 Value *getIncomingValue(unsigned i) const {
2655 return getOperand(i);
2656 }
2657 void setIncomingValue(unsigned i, Value *V) {
2658 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2658, __PRETTY_FUNCTION__))
;
2659 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
2660 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
;
2661 setOperand(i, V);
2662 }
2663
2664 static unsigned getOperandNumForIncomingValue(unsigned i) {
2665 return i;
2666 }
2667
2668 static unsigned getIncomingValueNumForOperand(unsigned i) {
2669 return i;
2670 }
2671
2672 /// Return incoming basic block number @p i.
2673 ///
2674 BasicBlock *getIncomingBlock(unsigned i) const {
2675 return block_begin()[i];
2676 }
2677
2678 /// Return incoming basic block corresponding
2679 /// to an operand of the PHI.
2680 ///
2681 BasicBlock *getIncomingBlock(const Use &U) const {
2682 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 return getIncomingBlock(unsigned(&U - op_begin()));
2684 }
2685
2686 /// Return incoming basic block corresponding
2687 /// to value use iterator.
2688 ///
2689 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2690 return getIncomingBlock(I.getUse());
2691 }
2692
2693 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2694 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 block_begin()[i] = BB;
2696 }
2697
2698 /// Replace every incoming basic block \p Old to basic block \p New.
2699 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2700 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2700, __PRETTY_FUNCTION__))
;
2701 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2702 if (getIncomingBlock(Op) == Old)
2703 setIncomingBlock(Op, New);
2704 }
2705
2706 /// Add an incoming value to the end of the PHI list
2707 ///
2708 void addIncoming(Value *V, BasicBlock *BB) {
2709 if (getNumOperands() == ReservedSpace)
2710 growOperands(); // Get more space!
2711 // Initialize some new operands.
2712 setNumHungOffUseOperands(getNumOperands() + 1);
2713 setIncomingValue(getNumOperands() - 1, V);
2714 setIncomingBlock(getNumOperands() - 1, BB);
2715 }
2716
2717 /// Remove an incoming value. This is useful if a
2718 /// predecessor basic block is deleted. The value removed is returned.
2719 ///
2720 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2721 /// is true), the PHI node is destroyed and any uses of it are replaced with
2722 /// dummy values. The only time there should be zero incoming values to a PHI
2723 /// node is when the block is dead, so this strategy is sound.
2724 ///
2725 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2726
2727 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2728 int Idx = getBasicBlockIndex(BB);
2729 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2729, __PRETTY_FUNCTION__))
;
2730 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2731 }
2732
2733 /// Return the first index of the specified basic
2734 /// block in the value list for this PHI. Returns -1 if no instance.
2735 ///
2736 int getBasicBlockIndex(const BasicBlock *BB) const {
2737 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2738 if (block_begin()[i] == BB)
2739 return i;
2740 return -1;
2741 }
2742
2743 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2744 int Idx = getBasicBlockIndex(BB);
2745 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2745, __PRETTY_FUNCTION__))
;
2746 return getIncomingValue(Idx);
2747 }
2748
2749 /// Set every incoming value(s) for block \p BB to \p V.
2750 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2751 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2751, __PRETTY_FUNCTION__))
;
2752 bool Found = false;
2753 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2754 if (getIncomingBlock(Op) == BB) {
2755 Found = true;
2756 setIncomingValue(Op, V);
2757 }
2758 (void)Found;
2759 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2759, __PRETTY_FUNCTION__))
;
2760 }
2761
2762 /// If the specified PHI node always merges together the
2763 /// same value, return the value, otherwise return null.
2764 Value *hasConstantValue() const;
2765
2766 /// Whether the specified PHI node always merges
2767 /// together the same value, assuming undefs are equal to a unique
2768 /// non-undef value.
2769 bool hasConstantOrUndefValue() const;
2770
2771 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2772 static bool classof(const Instruction *I) {
2773 return I->getOpcode() == Instruction::PHI;
2774 }
2775 static bool classof(const Value *V) {
2776 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2777 }
2778
2779private:
2780 void growOperands();
2781};
2782
2783template <>
2784struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2785};
2786
2787DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2788
2789//===----------------------------------------------------------------------===//
2790// LandingPadInst Class
2791//===----------------------------------------------------------------------===//
2792
2793//===---------------------------------------------------------------------------
2794/// The landingpad instruction holds all of the information
2795/// necessary to generate correct exception handling. The landingpad instruction
2796/// cannot be moved from the top of a landing pad block, which itself is
2797/// accessible only from the 'unwind' edge of an invoke. This uses the
2798/// SubclassData field in Value to store whether or not the landingpad is a
2799/// cleanup.
2800///
2801class LandingPadInst : public Instruction {
2802 /// The number of operands actually allocated. NumOperands is
2803 /// the number actually in use.
2804 unsigned ReservedSpace;
2805
2806 LandingPadInst(const LandingPadInst &LP);
2807
2808public:
2809 enum ClauseType { Catch, Filter };
2810
2811private:
2812 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2813 const Twine &NameStr, Instruction *InsertBefore);
2814 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2815 const Twine &NameStr, BasicBlock *InsertAtEnd);
2816
2817 // Allocate space for exactly zero operands.
2818 void *operator new(size_t s) {
2819 return User::operator new(s);
2820 }
2821
2822 void growOperands(unsigned Size);
2823 void init(unsigned NumReservedValues, const Twine &NameStr);
2824
2825protected:
2826 // Note: Instruction needs to be a friend here to call cloneImpl.
2827 friend class Instruction;
2828
2829 LandingPadInst *cloneImpl() const;
2830
2831public:
2832 /// Constructors - NumReservedClauses is a hint for the number of incoming
2833 /// clauses that this landingpad will have (use 0 if you really have no idea).
2834 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2835 const Twine &NameStr = "",
2836 Instruction *InsertBefore = nullptr);
2837 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 /// Provide fast operand accessors
2841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2842
2843 /// Return 'true' if this landingpad instruction is a
2844 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2845 /// doesn't catch the exception.
2846 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2847
2848 /// Indicate that this landingpad instruction is a cleanup.
2849 void setCleanup(bool V) {
2850 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2851 (V ? 1 : 0));
2852 }
2853
2854 /// Add a catch or filter clause to the landing pad.
2855 void addClause(Constant *ClauseVal);
2856
2857 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2858 /// determine what type of clause this is.
2859 Constant *getClause(unsigned Idx) const {
2860 return cast<Constant>(getOperandList()[Idx]);
2861 }
2862
2863 /// Return 'true' if the clause and index Idx is a catch clause.
2864 bool isCatch(unsigned Idx) const {
2865 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2866 }
2867
2868 /// Return 'true' if the clause and index Idx is a filter clause.
2869 bool isFilter(unsigned Idx) const {
2870 return isa<ArrayType>(getOperandList()[Idx]->getType());
2871 }
2872
2873 /// Get the number of clauses for this landing pad.
2874 unsigned getNumClauses() const { return getNumOperands(); }
2875
2876 /// Grow the size of the operand list to accommodate the new
2877 /// number of clauses.
2878 void reserveClauses(unsigned Size) { growOperands(Size); }
2879
2880 // Methods for support type inquiry through isa, cast, and dyn_cast:
2881 static bool classof(const Instruction *I) {
2882 return I->getOpcode() == Instruction::LandingPad;
2883 }
2884 static bool classof(const Value *V) {
2885 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2886 }
2887};
2888
2889template <>
2890struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2891};
2892
2893DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2894
2895//===----------------------------------------------------------------------===//
2896// ReturnInst Class
2897//===----------------------------------------------------------------------===//
2898
2899//===---------------------------------------------------------------------------
2900/// Return a value (possibly void), from a function. Execution
2901/// does not continue in this function any longer.
2902///
2903class ReturnInst : public Instruction {
2904 ReturnInst(const ReturnInst &RI);
2905
2906private:
2907 // ReturnInst constructors:
2908 // ReturnInst() - 'ret void' instruction
2909 // ReturnInst( null) - 'ret void' instruction
2910 // ReturnInst(Value* X) - 'ret X' instruction
2911 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2912 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2913 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2914 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2915 //
2916 // NOTE: If the Value* passed is of type void then the constructor behaves as
2917 // if it was passed NULL.
2918 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2919 Instruction *InsertBefore = nullptr);
2920 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2921 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2922
2923protected:
2924 // Note: Instruction needs to be a friend here to call cloneImpl.
2925 friend class Instruction;
2926
2927 ReturnInst *cloneImpl() const;
2928
2929public:
2930 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2931 Instruction *InsertBefore = nullptr) {
2932 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2933 }
2934
2935 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2936 BasicBlock *InsertAtEnd) {
2937 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2938 }
2939
2940 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2941 return new(0) ReturnInst(C, InsertAtEnd);
2942 }
2943
2944 /// Provide fast operand accessors
2945 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2946
2947 /// Convenience accessor. Returns null if there is no return value.
2948 Value *getReturnValue() const {
2949 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2950 }
2951
2952 unsigned getNumSuccessors() const { return 0; }
2953
2954 // Methods for support type inquiry through isa, cast, and dyn_cast:
2955 static bool classof(const Instruction *I) {
2956 return (I->getOpcode() == Instruction::Ret);
2957 }
2958 static bool classof(const Value *V) {
2959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2960 }
2961
2962private:
2963 BasicBlock *getSuccessor(unsigned idx) const {
2964 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2964)
;
2965 }
2966
2967 void setSuccessor(unsigned idx, BasicBlock *B) {
2968 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2968)
;
2969 }
2970};
2971
2972template <>
2973struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2974};
2975
2976DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2977
2978//===----------------------------------------------------------------------===//
2979// BranchInst Class
2980//===----------------------------------------------------------------------===//
2981
2982//===---------------------------------------------------------------------------
2983/// Conditional or Unconditional Branch instruction.
2984///
2985class BranchInst : public Instruction {
2986 /// Ops list - Branches are strange. The operands are ordered:
2987 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2988 /// they don't have to check for cond/uncond branchness. These are mostly
2989 /// accessed relative from op_end().
2990 BranchInst(const BranchInst &BI);
2991 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2992 // BranchInst(BB *B) - 'br B'
2993 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2994 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2995 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2996 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2997 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2998 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2999 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3000 Instruction *InsertBefore = nullptr);
3001 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3002 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3003 BasicBlock *InsertAtEnd);
3004
3005 void AssertOK();
3006
3007protected:
3008 // Note: Instruction needs to be a friend here to call cloneImpl.
3009 friend class Instruction;
3010
3011 BranchInst *cloneImpl() const;
3012
3013public:
3014 /// Iterator type that casts an operand to a basic block.
3015 ///
3016 /// This only makes sense because the successors are stored as adjacent
3017 /// operands for branch instructions.
3018 struct succ_op_iterator
3019 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3020 std::random_access_iterator_tag, BasicBlock *,
3021 ptrdiff_t, BasicBlock *, BasicBlock *> {
3022 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3023
3024 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3025 BasicBlock *operator->() const { return operator*(); }
3026 };
3027
3028 /// The const version of `succ_op_iterator`.
3029 struct const_succ_op_iterator
3030 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3031 std::random_access_iterator_tag,
3032 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3033 const BasicBlock *> {
3034 explicit const_succ_op_iterator(const_value_op_iterator I)
3035 : iterator_adaptor_base(I) {}
3036
3037 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3038 const BasicBlock *operator->() const { return operator*(); }
3039 };
3040
3041 static BranchInst *Create(BasicBlock *IfTrue,
3042 Instruction *InsertBefore = nullptr) {
3043 return new(1) BranchInst(IfTrue, InsertBefore);
3044 }
3045
3046 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3047 Value *Cond, Instruction *InsertBefore = nullptr) {
3048 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3049 }
3050
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3052 return new(1) BranchInst(IfTrue, InsertAtEnd);
3053 }
3054
3055 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3056 Value *Cond, BasicBlock *InsertAtEnd) {
3057 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3058 }
3059
3060 /// Transparently provide more efficient getOperand methods.
3061 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3062
3063 bool isUnconditional() const { return getNumOperands() == 1; }
3064 bool isConditional() const { return getNumOperands() == 3; }
3065
3066 Value *getCondition() const {
3067 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3067, __PRETTY_FUNCTION__))
;
3068 return Op<-3>();
3069 }
3070
3071 void setCondition(Value *V) {
3072 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3072, __PRETTY_FUNCTION__))
;
3073 Op<-3>() = V;
3074 }
3075
3076 unsigned getNumSuccessors() const { return 1+isConditional(); }
3077
3078 BasicBlock *getSuccessor(unsigned i) const {
3079 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3079, __PRETTY_FUNCTION__))
;
3080 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3081 }
3082
3083 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3084 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3084, __PRETTY_FUNCTION__))
;
3085 *(&Op<-1>() - idx) = NewSucc;
3086 }
3087
3088 /// Swap the successors of this branch instruction.
3089 ///
3090 /// Swaps the successors of the branch instruction. This also swaps any
3091 /// branch weight metadata associated with the instruction so that it
3092 /// continues to map correctly to each operand.
3093 void swapSuccessors();
3094
3095 iterator_range<succ_op_iterator> successors() {
3096 return make_range(
3097 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3098 succ_op_iterator(value_op_end()));
3099 }
3100
3101 iterator_range<const_succ_op_iterator> successors() const {
3102 return make_range(const_succ_op_iterator(
3103 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3104 const_succ_op_iterator(value_op_end()));
3105 }
3106
3107 // Methods for support type inquiry through isa, cast, and dyn_cast:
3108 static bool classof(const Instruction *I) {
3109 return (I->getOpcode() == Instruction::Br);
3110 }
3111 static bool classof(const Value *V) {
3112 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3113 }
3114};
3115
3116template <>
3117struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3118};
3119
3120DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3121
3122//===----------------------------------------------------------------------===//
3123// SwitchInst Class
3124//===----------------------------------------------------------------------===//
3125
3126//===---------------------------------------------------------------------------
3127/// Multiway switch
3128///
3129class SwitchInst : public Instruction {
3130 unsigned ReservedSpace;
3131
3132 // Operand[0] = Value to switch on
3133 // Operand[1] = Default basic block destination
3134 // Operand[2n ] = Value to match
3135 // Operand[2n+1] = BasicBlock to go to on match
3136 SwitchInst(const SwitchInst &SI);
3137
3138 /// Create a new switch instruction, specifying a value to switch on and a
3139 /// default destination. The number of additional cases can be specified here
3140 /// to make memory allocation more efficient. This constructor can also
3141 /// auto-insert before another instruction.
3142 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3143 Instruction *InsertBefore);
3144
3145 /// Create a new switch instruction, specifying a value to switch on and a
3146 /// default destination. The number of additional cases can be specified here
3147 /// to make memory allocation more efficient. This constructor also
3148 /// auto-inserts at the end of the specified BasicBlock.
3149 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3150 BasicBlock *InsertAtEnd);
3151
3152 // allocate space for exactly zero operands
3153 void *operator new(size_t s) {
3154 return User::operator new(s);
3155 }
3156
3157 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3158 void growOperands();
3159
3160protected:
3161 // Note: Instruction needs to be a friend here to call cloneImpl.
3162 friend class Instruction;
3163
3164 SwitchInst *cloneImpl() const;
3165
3166public:
3167 // -2
3168 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3169
3170 template <typename CaseHandleT> class CaseIteratorImpl;
3171
3172 /// A handle to a particular switch case. It exposes a convenient interface
3173 /// to both the case value and the successor block.
3174 ///
3175 /// We define this as a template and instantiate it to form both a const and
3176 /// non-const handle.
3177 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3178 class CaseHandleImpl {
3179 // Directly befriend both const and non-const iterators.
3180 friend class SwitchInst::CaseIteratorImpl<
3181 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3182
3183 protected:
3184 // Expose the switch type we're parameterized with to the iterator.
3185 using SwitchInstType = SwitchInstT;
3186
3187 SwitchInstT *SI;
3188 ptrdiff_t Index;
3189
3190 CaseHandleImpl() = default;
3191 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3192
3193 public:
3194 /// Resolves case value for current case.
3195 ConstantIntT *getCaseValue() const {
3196 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
3197 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
;
3198 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3199 }
3200
3201 /// Resolves successor for current case.
3202 BasicBlockT *getCaseSuccessor() const {
3203 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3204 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3205 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
;
3206 return SI->getSuccessor(getSuccessorIndex());
3207 }
3208
3209 /// Returns number of current case.
3210 unsigned getCaseIndex() const { return Index; }
3211
3212 /// Returns successor index for current case successor.
3213 unsigned getSuccessorIndex() const {
3214 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3215 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3216 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
;
3217 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3218 }
3219
3220 bool operator==(const CaseHandleImpl &RHS) const {
3221 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3221, __PRETTY_FUNCTION__))
;
3222 return Index == RHS.Index;
3223 }
3224 };
3225
3226 using ConstCaseHandle =
3227 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3228
3229 class CaseHandle
3230 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3231 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3232
3233 public:
3234 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3235
3236 /// Sets the new value for current case.
3237 void setValue(ConstantInt *V) {
3238 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
3239 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
;
3240 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3241 }
3242
3243 /// Sets the new successor for current case.
3244 void setSuccessor(BasicBlock *S) {
3245 SI->setSuccessor(getSuccessorIndex(), S);
3246 }
3247 };
3248
3249 template <typename CaseHandleT>
3250 class CaseIteratorImpl
3251 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3252 std::random_access_iterator_tag,
3253 CaseHandleT> {
3254 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3255
3256 CaseHandleT Case;
3257
3258 public:
3259 /// Default constructed iterator is in an invalid state until assigned to
3260 /// a case for a particular switch.
3261 CaseIteratorImpl() = default;
3262
3263 /// Initializes case iterator for given SwitchInst and for given
3264 /// case number.
3265 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3266
3267 /// Initializes case iterator for given SwitchInst and for given
3268 /// successor index.
3269 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3270 unsigned SuccessorIndex) {
3271 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
3272 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
;
3273 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3274 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3275 }
3276
3277 /// Support converting to the const variant. This will be a no-op for const
3278 /// variant.
3279 operator CaseIteratorImpl<ConstCaseHandle>() const {
3280 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3281 }
3282
3283 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3284 // Check index correctness after addition.
3285 // Note: Index == getNumCases() means end().
3286 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3287 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3288 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
;
3289 Case.Index += N;
3290 return *this;
3291 }
3292 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3293 // Check index correctness after subtraction.
3294 // Note: Case.Index == getNumCases() means end().
3295 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3296 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3297 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
;
3298 Case.Index -= N;
3299 return *this;
3300 }
3301 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3302 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3302, __PRETTY_FUNCTION__))
;
3303 return Case.Index - RHS.Case.Index;
3304 }
3305 bool operator==(const CaseIteratorImpl &RHS) const {
3306 return Case == RHS.Case;
3307 }
3308 bool operator<(const CaseIteratorImpl &RHS) const {
3309 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3309, __PRETTY_FUNCTION__))
;
3310 return Case.Index < RHS.Case.Index;
3311 }
3312 CaseHandleT &operator*() { return Case; }
3313 const CaseHandleT &operator*() const { return Case; }
3314 };
3315
3316 using CaseIt = CaseIteratorImpl<CaseHandle>;
3317 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3318
3319 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3320 unsigned NumCases,
3321 Instruction *InsertBefore = nullptr) {
3322 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3323 }
3324
3325 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3326 unsigned NumCases, BasicBlock *InsertAtEnd) {
3327 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3328 }
3329
3330 /// Provide fast operand accessors
3331 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3332
3333 // Accessor Methods for Switch stmt
3334 Value *getCondition() const { return getOperand(0); }
3335 void setCondition(Value *V) { setOperand(0, V); }
3336
3337 BasicBlock *getDefaultDest() const {
3338 return cast<BasicBlock>(getOperand(1));
3339 }
3340
3341 void setDefaultDest(BasicBlock *DefaultCase) {
3342 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3343 }
3344
3345 /// Return the number of 'cases' in this switch instruction, excluding the
3346 /// default case.
3347 unsigned getNumCases() const {
3348 return getNumOperands()/2 - 1;
3349 }
3350
3351 /// Returns a read/write iterator that points to the first case in the
3352 /// SwitchInst.
3353 CaseIt case_begin() {
3354 return CaseIt(this, 0);
3355 }
3356
3357 /// Returns a read-only iterator that points to the first case in the
3358 /// SwitchInst.
3359 ConstCaseIt case_begin() const {
3360 return ConstCaseIt(this, 0);
3361 }
3362
3363 /// Returns a read/write iterator that points one past the last in the
3364 /// SwitchInst.
3365 CaseIt case_end() {
3366 return CaseIt(this, getNumCases());
3367 }
3368
3369 /// Returns a read-only iterator that points one past the last in the
3370 /// SwitchInst.
3371 ConstCaseIt case_end() const {
3372 return ConstCaseIt(this, getNumCases());
3373 }
3374
3375 /// Iteration adapter for range-for loops.
3376 iterator_range<CaseIt> cases() {
3377 return make_range(case_begin(), case_end());
3378 }
3379
3380 /// Constant iteration adapter for range-for loops.
3381 iterator_range<ConstCaseIt> cases() const {
3382 return make_range(case_begin(), case_end());
3383 }
3384
3385 /// Returns an iterator that points to the default case.
3386 /// Note: this iterator allows to resolve successor only. Attempt
3387 /// to resolve case value causes an assertion.
3388 /// Also note, that increment and decrement also causes an assertion and
3389 /// makes iterator invalid.
3390 CaseIt case_default() {
3391 return CaseIt(this, DefaultPseudoIndex);
3392 }
3393 ConstCaseIt case_default() const {
3394 return ConstCaseIt(this, DefaultPseudoIndex);
3395 }
3396
3397 /// Search all of the case values for the specified constant. If it is
3398 /// explicitly handled, return the case iterator of it, otherwise return
3399 /// default case iterator to indicate that it is handled by the default
3400 /// handler.
3401 CaseIt findCaseValue(const ConstantInt *C) {
3402 CaseIt I = llvm::find_if(
3403 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3404 if (I != case_end())
3405 return I;
3406
3407 return case_default();
3408 }
3409 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3410 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3411 return Case.getCaseValue() == C;
3412 });
3413 if (I != case_end())
3414 return I;
3415
3416 return case_default();
3417 }
3418
3419 /// Finds the unique case value for a given successor. Returns null if the
3420 /// successor is not found, not unique, or is the default case.
3421 ConstantInt *findCaseDest(BasicBlock *BB) {
3422 if (BB == getDefaultDest())
3423 return nullptr;
3424
3425 ConstantInt *CI = nullptr;
3426 for (auto Case : cases()) {
3427 if (Case.getCaseSuccessor() != BB)
3428 continue;
3429
3430 if (CI)
3431 return nullptr; // Multiple cases lead to BB.
3432
3433 CI = Case.getCaseValue();
3434 }
3435
3436 return CI;
3437 }
3438
3439 /// Add an entry to the switch instruction.
3440 /// Note:
3441 /// This action invalidates case_end(). Old case_end() iterator will
3442 /// point to the added case.
3443 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3444
3445 /// This method removes the specified case and its successor from the switch
3446 /// instruction. Note that this operation may reorder the remaining cases at
3447 /// index idx and above.
3448 /// Note:
3449 /// This action invalidates iterators for all cases following the one removed,
3450 /// including the case_end() iterator. It returns an iterator for the next
3451 /// case.
3452 CaseIt removeCase(CaseIt I);
3453
3454 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3455 BasicBlock *getSuccessor(unsigned idx) const {
3456 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3456, __PRETTY_FUNCTION__))
;
3457 return cast<BasicBlock>(getOperand(idx*2+1));
3458 }
3459 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3460 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3460, __PRETTY_FUNCTION__))
;
3461 setOperand(idx * 2 + 1, NewSucc);
3462 }
3463
3464 // Methods for support type inquiry through isa, cast, and dyn_cast:
3465 static bool classof(const Instruction *I) {
3466 return I->getOpcode() == Instruction::Switch;
3467 }
3468 static bool classof(const Value *V) {
3469 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3470 }
3471};
3472
3473/// A wrapper class to simplify modification of SwitchInst cases along with
3474/// their prof branch_weights metadata.
3475class SwitchInstProfUpdateWrapper {
3476 SwitchInst &SI;
3477 Optional<SmallVector<uint32_t, 8> > Weights = None;
3478 bool Changed = false;
3479
3480protected:
3481 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3482
3483 MDNode *buildProfBranchWeightsMD();
3484
3485 void init();
3486
3487public:
3488 using CaseWeightOpt = Optional<uint32_t>;
3489 SwitchInst *operator->() { return &SI; }
3490 SwitchInst &operator*() { return SI; }
3491 operator SwitchInst *() { return &SI; }
3492
3493 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3494
3495 ~SwitchInstProfUpdateWrapper() {
3496 if (Changed)
3497 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3498 }
3499
3500 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3501 /// correspondent branch weight.
3502 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3503
3504 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3505 /// specified branch weight for the added case.
3506 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3507
3508 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3509 /// this object to not touch the underlying SwitchInst in destructor.
3510 SymbolTableList<Instruction>::iterator eraseFromParent();
3511
3512 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3513 CaseWeightOpt getSuccessorWeight(unsigned idx);
3514
3515 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3516};
3517
3518template <>
3519struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3520};
3521
3522DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3522, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3522, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3523
3524//===----------------------------------------------------------------------===//
3525// IndirectBrInst Class
3526//===----------------------------------------------------------------------===//
3527
3528//===---------------------------------------------------------------------------
3529/// Indirect Branch Instruction.
3530///
3531class IndirectBrInst : public Instruction {
3532 unsigned ReservedSpace;
3533
3534 // Operand[0] = Address to jump to
3535 // Operand[n+1] = n-th destination
3536 IndirectBrInst(const IndirectBrInst &IBI);
3537
3538 /// Create a new indirectbr instruction, specifying an
3539 /// Address to jump to. The number of expected destinations can be specified
3540 /// here to make memory allocation more efficient. This constructor can also
3541 /// autoinsert before another instruction.
3542 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3543
3544 /// Create a new indirectbr instruction, specifying an
3545 /// Address to jump to. The number of expected destinations can be specified
3546 /// here to make memory allocation more efficient. This constructor also
3547 /// autoinserts at the end of the specified BasicBlock.
3548 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3549
3550 // allocate space for exactly zero operands
3551 void *operator new(size_t s) {
3552 return User::operator new(s);
3553 }
3554
3555 void init(Value *Address, unsigned NumDests);
3556 void growOperands();
3557
3558protected:
3559 // Note: Instruction needs to be a friend here to call cloneImpl.
3560 friend class Instruction;
3561
3562 IndirectBrInst *cloneImpl() const;
3563
3564public:
3565 /// Iterator type that casts an operand to a basic block.
3566 ///
3567 /// This only makes sense because the successors are stored as adjacent
3568 /// operands for indirectbr instructions.
3569 struct succ_op_iterator
3570 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3571 std::random_access_iterator_tag, BasicBlock *,
3572 ptrdiff_t, BasicBlock *, BasicBlock *> {
3573 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3574
3575 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3576 BasicBlock *operator->() const { return operator*(); }
3577 };
3578
3579 /// The const version of `succ_op_iterator`.
3580 struct const_succ_op_iterator
3581 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3582 std::random_access_iterator_tag,
3583 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3584 const BasicBlock *> {
3585 explicit const_succ_op_iterator(const_value_op_iterator I)
3586 : iterator_adaptor_base(I) {}
3587
3588 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3589 const BasicBlock *operator->() const { return operator*(); }
3590 };
3591
3592 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3593 Instruction *InsertBefore = nullptr) {
3594 return new IndirectBrInst(Address, NumDests, InsertBefore);
3595 }
3596
3597 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3598 BasicBlock *InsertAtEnd) {
3599 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3600 }
3601
3602 /// Provide fast operand accessors.
3603 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3604
3605 // Accessor Methods for IndirectBrInst instruction.
3606 Value *getAddress() { return getOperand(0); }
3607 const Value *getAddress() const { return getOperand(0); }
3608 void setAddress(Value *V) { setOperand(0, V); }
3609
3610 /// return the number of possible destinations in this
3611 /// indirectbr instruction.
3612 unsigned getNumDestinations() const { return getNumOperands()-1; }
3613
3614 /// Return the specified destination.
3615 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3616 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3617
3618 /// Add a destination.
3619 ///
3620 void addDestination(BasicBlock *Dest);
3621
3622 /// This method removes the specified successor from the
3623 /// indirectbr instruction.
3624 void removeDestination(unsigned i);
3625
3626 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3627 BasicBlock *getSuccessor(unsigned i) const {
3628 return cast<BasicBlock>(getOperand(i+1));
3629 }
3630 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3631 setOperand(i + 1, NewSucc);
3632 }
3633
3634 iterator_range<succ_op_iterator> successors() {
3635 return make_range(succ_op_iterator(std::next(value_op_begin())),
3636 succ_op_iterator(value_op_end()));
3637 }
3638
3639 iterator_range<const_succ_op_iterator> successors() const {
3640 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3641 const_succ_op_iterator(value_op_end()));
3642 }
3643
3644 // Methods for support type inquiry through isa, cast, and dyn_cast:
3645 static bool classof(const Instruction *I) {
3646 return I->getOpcode() == Instruction::IndirectBr;
3647 }
3648 static bool classof(const Value *V) {
3649 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3650 }
3651};
3652
3653template <>
3654struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3655};
3656
3657DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3657, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3657, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3658
3659//===----------------------------------------------------------------------===//
3660// InvokeInst Class
3661//===----------------------------------------------------------------------===//
3662
3663/// Invoke instruction. The SubclassData field is used to hold the
3664/// calling convention of the call.
3665///
3666class InvokeInst : public CallBase {
3667 /// The number of operands for this call beyond the called function,
3668 /// arguments, and operand bundles.
3669 static constexpr int NumExtraOperands = 2;
3670
3671 /// The index from the end of the operand array to the normal destination.
3672 static constexpr int NormalDestOpEndIdx = -3;
3673
3674 /// The index from the end of the operand array to the unwind destination.
3675 static constexpr int UnwindDestOpEndIdx = -2;
3676
3677 InvokeInst(const InvokeInst &BI);
3678
3679 /// Construct an InvokeInst given a range of arguments.
3680 ///
3681 /// Construct an InvokeInst from a range of arguments
3682 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3683 BasicBlock *IfException, ArrayRef<Value *> Args,
3684 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3685 const Twine &NameStr, Instruction *InsertBefore);
3686
3687 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3688 BasicBlock *IfException, ArrayRef<Value *> Args,
3689 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3690 const Twine &NameStr, BasicBlock *InsertAtEnd);
3691
3692 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3693 BasicBlock *IfException, ArrayRef<Value *> Args,
3694 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3695
3696 /// Compute the number of operands to allocate.
3697 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3698 // We need one operand for the called function, plus our extra operands and
3699 // the input operand counts provided.
3700 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3701 }
3702
3703protected:
3704 // Note: Instruction needs to be a friend here to call cloneImpl.
3705 friend class Instruction;
3706
3707 InvokeInst *cloneImpl() const;
3708
3709public:
3710 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3711 BasicBlock *IfException, ArrayRef<Value *> Args,
3712 const Twine &NameStr,
3713 Instruction *InsertBefore = nullptr) {
3714 int NumOperands = ComputeNumOperands(Args.size());
3715 return new (NumOperands)
3716 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3717 NameStr, InsertBefore);
3718 }
3719
3720 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3721 BasicBlock *IfException, ArrayRef<Value *> Args,
3722 ArrayRef<OperandBundleDef> Bundles = None,
3723 const Twine &NameStr = "",
3724 Instruction *InsertBefore = nullptr) {
3725 int NumOperands =
3726 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3727 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3728
3729 return new (NumOperands, DescriptorBytes)
3730 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3731 NameStr, InsertBefore);
3732 }
3733
3734 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3737 int NumOperands = ComputeNumOperands(Args.size());
3738 return new (NumOperands)
3739 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3740 NameStr, InsertAtEnd);
3741 }
3742
3743 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3744 BasicBlock *IfException, ArrayRef<Value *> Args,
3745 ArrayRef<OperandBundleDef> Bundles,
3746 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3747 int NumOperands =
3748 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3749 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3750
3751 return new (NumOperands, DescriptorBytes)
3752 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3753 NameStr, InsertAtEnd);
3754 }
3755
3756 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3757 BasicBlock *IfException, ArrayRef<Value *> Args,
3758 const Twine &NameStr,
3759 Instruction *InsertBefore = nullptr) {
3760 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3761 IfException, Args, None, NameStr, InsertBefore);
3762 }
3763
3764 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3765 BasicBlock *IfException, ArrayRef<Value *> Args,
3766 ArrayRef<OperandBundleDef> Bundles = None,
3767 const Twine &NameStr = "",
3768 Instruction *InsertBefore = nullptr) {
3769 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3770 IfException, Args, Bundles, NameStr, InsertBefore);
3771 }
3772
3773 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3774 BasicBlock *IfException, ArrayRef<Value *> Args,
3775 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3776 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3777 IfException, Args, NameStr, InsertAtEnd);
3778 }
3779
3780 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3781 BasicBlock *IfException, ArrayRef<Value *> Args,
3782 ArrayRef<OperandBundleDef> Bundles,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3785 IfException, Args, Bundles, NameStr, InsertAtEnd);
3786 }
3787
3788 // Deprecated [opaque pointer types]
3789 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3790 BasicBlock *IfException, ArrayRef<Value *> Args,
3791 const Twine &NameStr,
3792 Instruction *InsertBefore = nullptr) {
3793 return Create(cast<FunctionType>(
3794 cast<PointerType>(Func->getType())->getElementType()),
3795 Func, IfNormal, IfException, Args, None, NameStr,
3796 InsertBefore);
3797 }
3798
3799 // Deprecated [opaque pointer types]
3800 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3801 BasicBlock *IfException, ArrayRef<Value *> Args,
3802 ArrayRef<OperandBundleDef> Bundles = None,
3803 const Twine &NameStr = "",
3804 Instruction *InsertBefore = nullptr) {
3805 return Create(cast<FunctionType>(
3806 cast<PointerType>(Func->getType())->getElementType()),
3807 Func, IfNormal, IfException, Args, Bundles, NameStr,
3808 InsertBefore);
3809 }
3810
3811 // Deprecated [opaque pointer types]
3812 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3813 BasicBlock *IfException, ArrayRef<Value *> Args,
3814 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3815 return Create(cast<FunctionType>(
3816 cast<PointerType>(Func->getType())->getElementType()),
3817 Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
3818 }
3819
3820 // Deprecated [opaque pointer types]
3821 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3822 BasicBlock *IfException, ArrayRef<Value *> Args,
3823 ArrayRef<OperandBundleDef> Bundles,
3824 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3825 return Create(cast<FunctionType>(
3826 cast<PointerType>(Func->getType())->getElementType()),
3827 Func, IfNormal, IfException, Args, Bundles, NameStr,
3828 InsertAtEnd);
3829 }
3830
3831 /// Create a clone of \p II with a different set of operand bundles and
3832 /// insert it before \p InsertPt.
3833 ///
3834 /// The returned invoke instruction is identical to \p II in every way except
3835 /// that the operand bundles for the new instruction are set to the operand
3836 /// bundles in \p Bundles.
3837 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3838 Instruction *InsertPt = nullptr);
3839
3840 /// Determine if the call should not perform indirect branch tracking.
3841 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3842
3843 /// Determine if the call cannot unwind.
3844 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3845 void setDoesNotThrow() {
3846 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3847 }
3848
3849 // get*Dest - Return the destination basic blocks...
3850 BasicBlock *getNormalDest() const {
3851 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3852 }
3853 BasicBlock *getUnwindDest() const {
3854 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3855 }
3856 void setNormalDest(BasicBlock *B) {
3857 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3858 }
3859 void setUnwindDest(BasicBlock *B) {
3860 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3861 }
3862
3863 /// Get the landingpad instruction from the landing pad
3864 /// block (the unwind destination).
3865 LandingPadInst *getLandingPadInst() const;
3866
3867 BasicBlock *getSuccessor(unsigned i) const {
3868 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3868, __PRETTY_FUNCTION__))
;
3869 return i == 0 ? getNormalDest() : getUnwindDest();
3870 }
3871
3872 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3873 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3873, __PRETTY_FUNCTION__))
;
3874 if (i == 0)
3875 setNormalDest(NewSucc);
3876 else
3877 setUnwindDest(NewSucc);
3878 }
3879
3880 unsigned getNumSuccessors() const { return 2; }
3881
3882 // Methods for support type inquiry through isa, cast, and dyn_cast:
3883 static bool classof(const Instruction *I) {
3884 return (I->getOpcode() == Instruction::Invoke);
3885 }
3886 static bool classof(const Value *V) {
3887 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3888 }
3889
3890private:
3891
3892 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3893 // method so that subclasses cannot accidentally use it.
3894 void setInstructionSubclassData(unsigned short D) {
3895 Instruction::setInstructionSubclassData(D);
3896 }
3897};
3898
3899InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3900 BasicBlock *IfException, ArrayRef<Value *> Args,
3901 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3902 const Twine &NameStr, Instruction *InsertBefore)
3903 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3904 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3905 InsertBefore) {
3906 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3907}
3908
3909InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3910 BasicBlock *IfException, ArrayRef<Value *> Args,
3911 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3912 const Twine &NameStr, BasicBlock *InsertAtEnd)
3913 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3914 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3915 InsertAtEnd) {
3916 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3917}
3918
3919//===----------------------------------------------------------------------===//
3920// CallBrInst Class
3921//===----------------------------------------------------------------------===//
3922
3923/// CallBr instruction, tracking function calls that may not return control but
3924/// instead transfer it to a third location. The SubclassData field is used to
3925/// hold the calling convention of the call.
3926///
3927class CallBrInst : public CallBase {
3928
3929 unsigned NumIndirectDests;
3930
3931 CallBrInst(const CallBrInst &BI);
3932
3933 /// Construct a CallBrInst given a range of arguments.
3934 ///
3935 /// Construct a CallBrInst from a range of arguments
3936 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3937 ArrayRef<BasicBlock *> IndirectDests,
3938 ArrayRef<Value *> Args,
3939 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3940 const Twine &NameStr, Instruction *InsertBefore);
3941
3942 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3943 ArrayRef<BasicBlock *> IndirectDests,
3944 ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3946 const Twine &NameStr, BasicBlock *InsertAtEnd);
3947
3948 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3949 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3950 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3951
3952 /// Should the Indirect Destinations change, scan + update the Arg list.
3953 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3954
3955 /// Compute the number of operands to allocate.
3956 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3957 int NumBundleInputs = 0) {
3958 // We need one operand for the called function, plus our extra operands and
3959 // the input operand counts provided.
3960 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3961 }
3962
3963protected:
3964 // Note: Instruction needs to be a friend here to call cloneImpl.
3965 friend class Instruction;
3966
3967 CallBrInst *cloneImpl() const;
3968
3969public:
3970 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3971 BasicBlock *DefaultDest,
3972 ArrayRef<BasicBlock *> IndirectDests,
3973 ArrayRef<Value *> Args, const Twine &NameStr,
3974 Instruction *InsertBefore = nullptr) {
3975 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3976 return new (NumOperands)
3977 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3978 NumOperands, NameStr, InsertBefore);
3979 }
3980
3981 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3982 BasicBlock *DefaultDest,
3983 ArrayRef<BasicBlock *> IndirectDests,
3984 ArrayRef<Value *> Args,
3985 ArrayRef<OperandBundleDef> Bundles = None,
3986 const Twine &NameStr = "",
3987 Instruction *InsertBefore = nullptr) {
3988 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3989 CountBundleInputs(Bundles));
3990 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3991
3992 return new (NumOperands, DescriptorBytes)
3993 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3994 NumOperands, NameStr, InsertBefore);
3995 }
3996
3997 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3998 BasicBlock *DefaultDest,
3999 ArrayRef<BasicBlock *> IndirectDests,
4000 ArrayRef<Value *> Args, const Twine &NameStr,
4001 BasicBlock *InsertAtEnd) {
4002 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4003 return new (NumOperands)
4004 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4005 NumOperands, NameStr, InsertAtEnd);
4006 }
4007
4008 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4009 BasicBlock *DefaultDest,
4010 ArrayRef<BasicBlock *> IndirectDests,
4011 ArrayRef<Value *> Args,
4012 ArrayRef<OperandBundleDef> Bundles,
4013 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4014 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4015 CountBundleInputs(Bundles));
4016 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4017
4018 return new (NumOperands, DescriptorBytes)
4019 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4020 NumOperands, NameStr, InsertAtEnd);
4021 }
4022
4023 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4024 ArrayRef<BasicBlock *> IndirectDests,
4025 ArrayRef<Value *> Args, const Twine &NameStr,
4026 Instruction *InsertBefore = nullptr) {
4027 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4028 IndirectDests, Args, NameStr, InsertBefore);
4029 }
4030
4031 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4032 ArrayRef<BasicBlock *> IndirectDests,
4033 ArrayRef<Value *> Args,
4034 ArrayRef<OperandBundleDef> Bundles = None,
4035 const Twine &NameStr = "",
4036 Instruction *InsertBefore = nullptr) {
4037 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4038 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4039 }
4040
4041 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4042 ArrayRef<BasicBlock *> IndirectDests,
4043 ArrayRef<Value *> Args, const Twine &NameStr,
4044 BasicBlock *InsertAtEnd) {
4045 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4046 IndirectDests, Args, NameStr, InsertAtEnd);
4047 }
4048
4049 static CallBrInst *Create(FunctionCallee Func,
4050 BasicBlock *DefaultDest,
4051 ArrayRef<BasicBlock *> IndirectDests,
4052 ArrayRef<Value *> Args,
4053 ArrayRef<OperandBundleDef> Bundles,
4054 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4055 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4056 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4057 }
4058
4059 /// Create a clone of \p CBI with a different set of operand bundles and
4060 /// insert it before \p InsertPt.
4061 ///
4062 /// The returned callbr instruction is identical to \p CBI in every way
4063 /// except that the operand bundles for the new instruction are set to the
4064 /// operand bundles in \p Bundles.
4065 static CallBrInst *Create(CallBrInst *CBI,
4066 ArrayRef<OperandBundleDef> Bundles,
4067 Instruction *InsertPt = nullptr);
4068
4069 /// Return the number of callbr indirect dest labels.
4070 ///
4071 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4072
4073 /// getIndirectDestLabel - Return the i-th indirect dest label.
4074 ///
4075 Value *getIndirectDestLabel(unsigned i) const {
4076 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4076, __PRETTY_FUNCTION__))
;
4077 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4078 1);
4079 }
4080
4081 Value *getIndirectDestLabelUse(unsigned i) const {
4082 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4082, __PRETTY_FUNCTION__))
;
4083 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4084 1);
4085 }
4086
4087 // Return the destination basic blocks...
4088 BasicBlock *getDefaultDest() const {
4089 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4090 }
4091 BasicBlock *getIndirectDest(unsigned i) const {
4092 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4093 }
4094 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4095 SmallVector<BasicBlock *, 16> IndirectDests;
4096 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4097 IndirectDests.push_back(getIndirectDest(i));
4098 return IndirectDests;
4099 }
4100 void setDefaultDest(BasicBlock *B) {
4101 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4102 }
4103 void setIndirectDest(unsigned i, BasicBlock *B) {
4104 updateArgBlockAddresses(i, B);
4105 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4106 }
4107
4108 BasicBlock *getSuccessor(unsigned i) const {
4109 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4110, __PRETTY_FUNCTION__))
4110 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4110, __PRETTY_FUNCTION__))
;
4111 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4112 }
4113
4114 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4115 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4116, __PRETTY_FUNCTION__))
4116 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4116, __PRETTY_FUNCTION__))
;
4117 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4118 }
4119
4120 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4121
4122 // Methods for support type inquiry through isa, cast, and dyn_cast:
4123 static bool classof(const Instruction *I) {
4124 return (I->getOpcode() == Instruction::CallBr);
4125 }
4126 static bool classof(const Value *V) {
4127 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4128 }
4129
4130private:
4131
4132 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4133 // method so that subclasses cannot accidentally use it.
4134 void setInstructionSubclassData(unsigned short D) {
4135 Instruction::setInstructionSubclassData(D);
4136 }
4137};
4138
4139CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4140 ArrayRef<BasicBlock *> IndirectDests,
4141 ArrayRef<Value *> Args,
4142 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4143 const Twine &NameStr, Instruction *InsertBefore)
4144 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4145 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4146 InsertBefore) {
4147 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4148}
4149
4150CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4151 ArrayRef<BasicBlock *> IndirectDests,
4152 ArrayRef<Value *> Args,
4153 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4154 const Twine &NameStr, BasicBlock *InsertAtEnd)
4155 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4156 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4157 InsertAtEnd) {
4158 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4159}
4160
4161//===----------------------------------------------------------------------===//
4162// ResumeInst Class
4163//===----------------------------------------------------------------------===//
4164
4165//===---------------------------------------------------------------------------
4166/// Resume the propagation of an exception.
4167///
4168class ResumeInst : public Instruction {
4169 ResumeInst(const ResumeInst &RI);
4170
4171 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4172 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4173
4174protected:
4175 // Note: Instruction needs to be a friend here to call cloneImpl.
4176 friend class Instruction;
4177
4178 ResumeInst *cloneImpl() const;
4179
4180public:
4181 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4182 return new(1) ResumeInst(Exn, InsertBefore);
4183 }
4184
4185 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4186 return new(1) ResumeInst(Exn, InsertAtEnd);
4187 }
4188
4189 /// Provide fast operand accessors
4190 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4191
4192 /// Convenience accessor.
4193 Value *getValue() const { return Op<0>(); }
4194
4195 unsigned getNumSuccessors() const { return 0; }
4196
4197 // Methods for support type inquiry through isa, cast, and dyn_cast:
4198 static bool classof(const Instruction *I) {
4199 return I->getOpcode() == Instruction::Resume;
4200 }
4201 static bool classof(const Value *V) {
4202 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4203 }
4204
4205private:
4206 BasicBlock *getSuccessor(unsigned idx) const {
4207 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4207)
;
4208 }
4209
4210 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4211 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4211)
;
4212 }
4213};
4214
4215template <>
4216struct OperandTraits<ResumeInst> :
4217 public FixedNumOperandTraits<ResumeInst, 1> {
4218};
4219
4220DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4220, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4220, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4221
4222//===----------------------------------------------------------------------===//
4223// CatchSwitchInst Class
4224//===----------------------------------------------------------------------===//
4225class CatchSwitchInst : public Instruction {
4226 /// The number of operands actually allocated. NumOperands is
4227 /// the number actually in use.
4228 unsigned ReservedSpace;
4229
4230 // Operand[0] = Outer scope
4231 // Operand[1] = Unwind block destination
4232 // Operand[n] = BasicBlock to go to on match
4233 CatchSwitchInst(const CatchSwitchInst &CSI);
4234
4235 /// Create a new switch instruction, specifying a
4236 /// default destination. The number of additional handlers can be specified
4237 /// here to make memory allocation more efficient.
4238 /// This constructor can also autoinsert before another instruction.
4239 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4240 unsigned NumHandlers, const Twine &NameStr,
4241 Instruction *InsertBefore);
4242
4243 /// Create a new switch instruction, specifying a
4244 /// default destination. The number of additional handlers can be specified
4245 /// here to make memory allocation more efficient.
4246 /// This constructor also autoinserts at the end of the specified BasicBlock.
4247 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4248 unsigned NumHandlers, const Twine &NameStr,
4249 BasicBlock *InsertAtEnd);
4250
4251 // allocate space for exactly zero operands
4252 void *operator new(size_t s) { return User::operator new(s); }
4253
4254 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4255 void growOperands(unsigned Size);
4256
4257protected:
4258 // Note: Instruction needs to be a friend here to call cloneImpl.
4259 friend class Instruction;
4260
4261 CatchSwitchInst *cloneImpl() const;
4262
4263public:
4264 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4265 unsigned NumHandlers,
4266 const Twine &NameStr = "",
4267 Instruction *InsertBefore = nullptr) {
4268 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4269 InsertBefore);
4270 }
4271
4272 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4273 unsigned NumHandlers, const Twine &NameStr,
4274 BasicBlock *InsertAtEnd) {
4275 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4276 InsertAtEnd);
4277 }
4278
4279 /// Provide fast operand accessors
4280 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4281
4282 // Accessor Methods for CatchSwitch stmt
4283 Value *getParentPad() const { return getOperand(0); }
4284 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4285
4286 // Accessor Methods for CatchSwitch stmt
4287 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4288 bool unwindsToCaller() const { return !hasUnwindDest(); }
4289 BasicBlock *getUnwindDest() const {
4290 if (hasUnwindDest())
4291 return cast<BasicBlock>(getOperand(1));
4292 return nullptr;
4293 }
4294 void setUnwindDest(BasicBlock *UnwindDest) {
4295 assert(UnwindDest)((UnwindDest) ? static_cast<void> (0) : __assert_fail (
"UnwindDest", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4295, __PRETTY_FUNCTION__))
;
4296 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4296, __PRETTY_FUNCTION__))
;
4297 setOperand(1, UnwindDest);
4298 }
4299
4300 /// return the number of 'handlers' in this catchswitch
4301 /// instruction, except the default handler
4302 unsigned getNumHandlers() const {
4303 if (hasUnwindDest())
4304 return getNumOperands() - 2;
4305 return getNumOperands() - 1;
4306 }
4307
4308private:
4309 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4310 static const BasicBlock *handler_helper(const Value *V) {
4311 return cast<BasicBlock>(V);
4312 }
4313
4314public:
4315 using DerefFnTy = BasicBlock *(*)(Value *);
4316 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4317 using handler_range = iterator_range<handler_iterator>;
4318 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4319 using const_handler_iterator =
4320 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4321 using const_handler_range = iterator_range<const_handler_iterator>;
4322
4323 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4324 handler_iterator handler_begin() {
4325 op_iterator It = op_begin() + 1;
4326 if (hasUnwindDest())
4327 ++It;
4328 return handler_iterator(It, DerefFnTy(handler_helper));
4329 }
4330
4331 /// Returns an iterator that points to the first handler in the
4332 /// CatchSwitchInst.
4333 const_handler_iterator handler_begin() const {
4334 const_op_iterator It = op_begin() + 1;
4335 if (hasUnwindDest())
4336 ++It;
4337 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4338 }
4339
4340 /// Returns a read-only iterator that points one past the last
4341 /// handler in the CatchSwitchInst.
4342 handler_iterator handler_end() {
4343 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4344 }
4345
4346 /// Returns an iterator that points one past the last handler in the
4347 /// CatchSwitchInst.
4348 const_handler_iterator handler_end() const {
4349 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4350 }
4351
4352 /// iteration adapter for range-for loops.
4353 handler_range handlers() {
4354 return make_range(handler_begin(), handler_end());
4355 }
4356
4357 /// iteration adapter for range-for loops.
4358 const_handler_range handlers() const {
4359 return make_range(handler_begin(), handler_end());
4360 }
4361
4362 /// Add an entry to the switch instruction...
4363 /// Note:
4364 /// This action invalidates handler_end(). Old handler_end() iterator will
4365 /// point to the added handler.
4366 void addHandler(BasicBlock *Dest);
4367
4368 void removeHandler(handler_iterator HI);
4369
4370 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4371 BasicBlock *getSuccessor(unsigned Idx) const {
4372 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4373, __PRETTY_FUNCTION__))
4373 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4373, __PRETTY_FUNCTION__))
;
4374 return cast<BasicBlock>(getOperand(Idx + 1));
4375 }
4376 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4377 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4378, __PRETTY_FUNCTION__))
4378 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4378, __PRETTY_FUNCTION__))
;
4379 setOperand(Idx + 1, NewSucc);
4380 }
4381
4382 // Methods for support type inquiry through isa, cast, and dyn_cast:
4383 static bool classof(const Instruction *I) {
4384 return I->getOpcode() == Instruction::CatchSwitch;
4385 }
4386 static bool classof(const Value *V) {
4387 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4388 }
4389};
4390
4391template <>
4392struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4393
4394DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4394, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this))[i_nocapture].get()); } void CatchSwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchSwitchInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4394, __PRETTY_FUNCTION__)); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4395
4396//===----------------------------------------------------------------------===//
4397// CleanupPadInst Class
4398//===----------------------------------------------------------------------===//
4399class CleanupPadInst : public FuncletPadInst {
4400private:
4401 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4402 unsigned Values, const Twine &NameStr,
4403 Instruction *InsertBefore)
4404 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4405 NameStr, InsertBefore) {}
4406 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4407 unsigned Values, const Twine &NameStr,
4408 BasicBlock *InsertAtEnd)
4409 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4410 NameStr, InsertAtEnd) {}
4411
4412public:
4413 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4414 const Twine &NameStr = "",
4415 Instruction *InsertBefore = nullptr) {
4416 unsigned Values = 1 + Args.size();
4417 return new (Values)
4418 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4419 }
4420
4421 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4422 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4423 unsigned Values = 1 + Args.size();
4424 return new (Values)
4425 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4426 }
4427
4428 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4429 static bool classof(const Instruction *I) {
4430 return I->getOpcode() == Instruction::CleanupPad;
4431 }
4432 static bool classof(const Value *V) {
4433 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4434 }
4435};
4436
4437//===----------------------------------------------------------------------===//
4438// CatchPadInst Class
4439//===----------------------------------------------------------------------===//
4440class CatchPadInst : public FuncletPadInst {
4441private:
4442 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4443 unsigned Values, const Twine &NameStr,
4444 Instruction *InsertBefore)
4445 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4446 NameStr, InsertBefore) {}
4447 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4448 unsigned Values, const Twine &NameStr,
4449 BasicBlock *InsertAtEnd)
4450 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4451 NameStr, InsertAtEnd) {}
4452
4453public:
4454 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4455 const Twine &NameStr = "",
4456 Instruction *InsertBefore = nullptr) {
4457 unsigned Values = 1 + Args.size();
4458 return new (Values)
4459 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4460 }
4461
4462 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4463 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4464 unsigned Values = 1 + Args.size();
4465 return new (Values)
4466 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4467 }
4468
4469 /// Convenience accessors
4470 CatchSwitchInst *getCatchSwitch() const {
4471 return cast<CatchSwitchInst>(Op<-1>());
4472 }
4473 void setCatchSwitch(Value *CatchSwitch) {
4474 assert(CatchSwitch)((CatchSwitch) ? static_cast<void> (0) : __assert_fail (
"CatchSwitch", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4474, __PRETTY_FUNCTION__))
;
4475 Op<-1>() = CatchSwitch;
4476 }
4477
4478 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4479 static bool classof(const Instruction *I) {
4480 return I->getOpcode() == Instruction::CatchPad;
4481 }
4482 static bool classof(const Value *V) {
4483 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4484 }
4485};
4486
4487//===----------------------------------------------------------------------===//
4488// CatchReturnInst Class
4489//===----------------------------------------------------------------------===//
4490
4491class CatchReturnInst : public Instruction {
4492 CatchReturnInst(const CatchReturnInst &RI);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4494 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4495
4496 void init(Value *CatchPad, BasicBlock *BB);
4497
4498protected:
4499 // Note: Instruction needs to be a friend here to call cloneImpl.
4500 friend class Instruction;
4501
4502 CatchReturnInst *cloneImpl() const;
4503
4504public:
4505 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4506 Instruction *InsertBefore = nullptr) {
4507 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4507, __PRETTY_FUNCTION__))
;
4508 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4508, __PRETTY_FUNCTION__))
;
4509 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4510 }
4511
4512 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4513 BasicBlock *InsertAtEnd) {
4514 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4514, __PRETTY_FUNCTION__))
;
4515 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4515, __PRETTY_FUNCTION__))
;
4516 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4517 }
4518
4519 /// Provide fast operand accessors
4520 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4521
4522 /// Convenience accessors.
4523 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4524 void setCatchPad(CatchPadInst *CatchPad) {
4525 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4525, __PRETTY_FUNCTION__))
;
4526 Op<0>() = CatchPad;
4527 }
4528
4529 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4530 void setSuccessor(BasicBlock *NewSucc) {
4531 assert(NewSucc)((NewSucc) ? static_cast<void> (0) : __assert_fail ("NewSucc"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4531, __PRETTY_FUNCTION__))
;
4532 Op<1>() = NewSucc;
4533 }
4534 unsigned getNumSuccessors() const { return 1; }
4535
4536 /// Get the parentPad of this catchret's catchpad's catchswitch.
4537 /// The successor block is implicitly a member of this funclet.
4538 Value *getCatchSwitchParentPad() const {
4539 return getCatchPad()->getCatchSwitch()->getParentPad();
4540 }
4541
4542 // Methods for support type inquiry through isa, cast, and dyn_cast:
4543 static bool classof(const Instruction *I) {
4544 return (I->getOpcode() == Instruction::CatchRet);
4545 }
4546 static bool classof(const Value *V) {
4547 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4548 }
4549
4550private:
4551 BasicBlock *getSuccessor(unsigned Idx) const {
4552 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4552, __PRETTY_FUNCTION__))
;
4553 return getSuccessor();
4554 }
4555
4556 void setSuccessor(unsigned Idx, BasicBlock *B) {
4557 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4557, __PRETTY_FUNCTION__))
;
4558 setSuccessor(B);
4559 }
4560};
4561
4562template <>
4563struct OperandTraits<CatchReturnInst>
4564 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4565
4566DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4566, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this))[i_nocapture].get()); } void CatchReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchReturnInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4566, __PRETTY_FUNCTION__)); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4567
4568//===----------------------------------------------------------------------===//
4569// CleanupReturnInst Class
4570//===----------------------------------------------------------------------===//
4571
4572class CleanupReturnInst : public Instruction {
4573private:
4574 CleanupReturnInst(const CleanupReturnInst &RI);
4575 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4576 Instruction *InsertBefore = nullptr);
4577 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4578 BasicBlock *InsertAtEnd);
4579
4580 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4581
4582protected:
4583 // Note: Instruction needs to be a friend here to call cloneImpl.
4584 friend class Instruction;
4585
4586 CleanupReturnInst *cloneImpl() const;
4587
4588public:
4589 static CleanupReturnInst *Create(Value *CleanupPad,
4590 BasicBlock *UnwindBB = nullptr,
4591 Instruction *InsertBefore = nullptr) {
4592 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4592, __PRETTY_FUNCTION__))
;
4593 unsigned Values = 1;
4594 if (UnwindBB)
4595 ++Values;
4596 return new (Values)
4597 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4598 }
4599
4600 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4601 BasicBlock *InsertAtEnd) {
4602 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4602, __PRETTY_FUNCTION__))
;
4603 unsigned Values = 1;
4604 if (UnwindBB)
4605 ++Values;
4606 return new (Values)
4607 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4608 }
4609
4610 /// Provide fast operand accessors
4611 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4612
4613 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4614 bool unwindsToCaller() const { return !hasUnwindDest(); }
4615
4616 /// Convenience accessor.
4617 CleanupPadInst *getCleanupPad() const {
4618 return cast<CleanupPadInst>(Op<0>());
4619 }
4620 void setCleanupPad(CleanupPadInst *CleanupPad) {
4621 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4621, __PRETTY_FUNCTION__))
;
4622 Op<0>() = CleanupPad;
4623 }
4624
4625 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4626
4627 BasicBlock *getUnwindDest() const {
4628 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4629 }
4630 void setUnwindDest(BasicBlock *NewDest) {
4631 assert(NewDest)((NewDest) ? static_cast<void> (0) : __assert_fail ("NewDest"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4631, __PRETTY_FUNCTION__))
;
4632 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4632, __PRETTY_FUNCTION__))
;
4633 Op<1>() = NewDest;
4634 }
4635
4636 // Methods for support type inquiry through isa, cast, and dyn_cast:
4637 static bool classof(const Instruction *I) {
4638 return (I->getOpcode() == Instruction::CleanupRet);
4639 }
4640 static bool classof(const Value *V) {
4641 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4642 }
4643
4644private:
4645 BasicBlock *getSuccessor(unsigned Idx) const {
4646 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4646, __PRETTY_FUNCTION__))
;
4647 return getUnwindDest();
4648 }
4649
4650 void setSuccessor(unsigned Idx, BasicBlock *B) {
4651 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4651, __PRETTY_FUNCTION__))
;
4652 setUnwindDest(B);
4653 }
4654
4655 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4656 // method so that subclasses cannot accidentally use it.
4657 void setInstructionSubclassData(unsigned short D) {
4658 Instruction::setInstructionSubclassData(D);
4659 }
4660};
4661
4662template <>
4663struct OperandTraits<CleanupReturnInst>
4664 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4665
4666DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CleanupReturnInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4666, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<CleanupReturnInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4666, __PRETTY_FUNCTION__)); OperandTraits<CleanupReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CleanupReturnInst::getNumOperands() const { return OperandTraits
<CleanupReturnInst>::operands(this); } template <int
Idx_nocapture> Use &CleanupReturnInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CleanupReturnInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
4667
4668//===----------------------------------------------------------------------===//
4669// UnreachableInst Class
4670//===----------------------------------------------------------------------===//
4671
4672//===---------------------------------------------------------------------------
4673/// This function has undefined behavior. In particular, the
4674/// presence of this instruction indicates some higher level knowledge that the
4675/// end of the block cannot be reached.
4676///
4677class UnreachableInst : public Instruction {
4678protected:
4679 // Note: Instruction needs to be a friend here to call cloneImpl.
4680 friend class Instruction;
4681
4682 UnreachableInst *cloneImpl() const;
4683
4684public:
4685 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4686 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4687
4688 // allocate space for exactly zero operands
4689 void *operator new(size_t s) {
4690 return User::operator new(s, 0);
4691 }
4692
4693 unsigned getNumSuccessors() const { return 0; }
4694
4695 // Methods for support type inquiry through isa, cast, and dyn_cast:
4696 static bool classof(const Instruction *I) {
4697 return I->getOpcode() == Instruction::Unreachable;
4698 }
4699 static bool classof(const Value *V) {
4700 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4701 }
4702
4703private:
4704 BasicBlock *getSuccessor(unsigned idx) const {
4705 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4705)
;
4706 }
4707
4708 void setSuccessor(unsigned idx, BasicBlock *B) {
4709 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4709)
;
4710 }
4711};
4712
4713//===----------------------------------------------------------------------===//
4714// TruncInst Class
4715//===----------------------------------------------------------------------===//
4716
4717/// This class represents a truncation of integer types.
4718class TruncInst : public CastInst {
4719protected:
4720 // Note: Instruction needs to be a friend here to call cloneImpl.
4721 friend class Instruction;
4722
4723 /// Clone an identical TruncInst
4724 TruncInst *cloneImpl() const;
4725
4726public:
4727 /// Constructor with insert-before-instruction semantics
4728 TruncInst(
4729 Value *S, ///< The value to be truncated
4730 Type *Ty, ///< The (smaller) type to truncate to
4731 const Twine &NameStr = "", ///< A name for the new instruction
4732 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4733 );
4734
4735 /// Constructor with insert-at-end-of-block semantics
4736 TruncInst(
4737 Value *S, ///< The value to be truncated
4738 Type *Ty, ///< The (smaller) type to truncate to
4739 const Twine &NameStr, ///< A name for the new instruction
4740 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4741 );
4742
4743 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4744 static bool classof(const Instruction *I) {
4745 return I->getOpcode() == Trunc;
4746 }
4747 static bool classof(const Value *V) {
4748 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4749 }
4750};
4751
4752//===----------------------------------------------------------------------===//
4753// ZExtInst Class
4754//===----------------------------------------------------------------------===//
4755
4756/// This class represents zero extension of integer types.
4757class ZExtInst : public CastInst {
4758protected:
4759 // Note: Instruction needs to be a friend here to call cloneImpl.
4760 friend class Instruction;
4761
4762 /// Clone an identical ZExtInst
4763 ZExtInst *cloneImpl() const;
4764
4765public:
4766 /// Constructor with insert-before-instruction semantics
4767 ZExtInst(
4768 Value *S, ///< The value to be zero extended
4769 Type *Ty, ///< The type to zero extend to
4770 const Twine &NameStr = "", ///< A name for the new instruction
4771 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4772 );
4773
4774 /// Constructor with insert-at-end semantics.
4775 ZExtInst(
4776 Value *S, ///< The value to be zero extended
4777 Type *Ty, ///< The type to zero extend to
4778 const Twine &NameStr, ///< A name for the new instruction
4779 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4780 );
4781
4782 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4783 static bool classof(const Instruction *I) {
4784 return I->getOpcode() == ZExt;
4785 }
4786 static bool classof(const Value *V) {
4787 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4788 }
4789};
4790
4791//===----------------------------------------------------------------------===//
4792// SExtInst Class
4793//===----------------------------------------------------------------------===//
4794
4795/// This class represents a sign extension of integer types.
4796class SExtInst : public CastInst {
4797protected:
4798 // Note: Instruction needs to be a friend here to call cloneImpl.
4799 friend class Instruction;
4800
4801 /// Clone an identical SExtInst
4802 SExtInst *cloneImpl() const;
4803
4804public:
4805 /// Constructor with insert-before-instruction semantics
4806 SExtInst(
4807 Value *S, ///< The value to be sign extended
4808 Type *Ty, ///< The type to sign extend to
4809 const Twine &NameStr = "", ///< A name for the new instruction
4810 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4811 );
4812
4813 /// Constructor with insert-at-end-of-block semantics
4814 SExtInst(
4815 Value *S, ///< The value to be sign extended
4816 Type *Ty, ///< The type to sign extend to
4817 const Twine &NameStr, ///< A name for the new instruction
4818 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4819 );
4820
4821 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4822 static bool classof(const Instruction *I) {
4823 return I->getOpcode() == SExt;
4824 }
4825 static bool classof(const Value *V) {
4826 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4827 }
4828};
4829
4830//===----------------------------------------------------------------------===//
4831// FPTruncInst Class
4832//===----------------------------------------------------------------------===//
4833
4834/// This class represents a truncation of floating point types.
4835class FPTruncInst : public CastInst {
4836protected:
4837 // Note: Instruction needs to be a friend here to call cloneImpl.
4838 friend class Instruction;
4839
4840 /// Clone an identical FPTruncInst
4841 FPTruncInst *cloneImpl() const;
4842
4843public:
4844 /// Constructor with insert-before-instruction semantics
4845 FPTruncInst(
4846 Value *S, ///< The value to be truncated
4847 Type *Ty, ///< The type to truncate to
4848 const Twine &NameStr = "", ///< A name for the new instruction
4849 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4850 );
4851
4852 /// Constructor with insert-before-instruction semantics
4853 FPTruncInst(
4854 Value *S, ///< The value to be truncated
4855 Type *Ty, ///< The type to truncate to
4856 const Twine &NameStr, ///< A name for the new instruction
4857 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4858 );
4859
4860 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4861 static bool classof(const Instruction *I) {
4862 return I->getOpcode() == FPTrunc;
4863 }
4864 static bool classof(const Value *V) {
4865 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4866 }
4867};
4868
4869//===----------------------------------------------------------------------===//
4870// FPExtInst Class
4871//===----------------------------------------------------------------------===//
4872
4873/// This class represents an extension of floating point types.
4874class FPExtInst : public CastInst {
4875protected:
4876 // Note: Instruction needs to be a friend here to call cloneImpl.
4877 friend class Instruction;
4878
4879 /// Clone an identical FPExtInst
4880 FPExtInst *cloneImpl() const;
4881
4882public:
4883 /// Constructor with insert-before-instruction semantics
4884 FPExtInst(
4885 Value *S, ///< The value to be extended
4886 Type *Ty, ///< The type to extend to
4887 const Twine &NameStr = "", ///< A name for the new instruction
4888 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4889 );
4890
4891 /// Constructor with insert-at-end-of-block semantics
4892 FPExtInst(
4893 Value *S, ///< The value to be extended
4894 Type *Ty, ///< The type to extend to
4895 const Twine &NameStr, ///< A name for the new instruction
4896 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4897 );
4898
4899 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4900 static bool classof(const Instruction *I) {
4901 return I->getOpcode() == FPExt;
4902 }
4903 static bool classof(const Value *V) {
4904 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4905 }
4906};
4907
4908//===----------------------------------------------------------------------===//
4909// UIToFPInst Class
4910//===----------------------------------------------------------------------===//
4911
4912/// This class represents a cast unsigned integer to floating point.
4913class UIToFPInst : public CastInst {
4914protected:
4915 // Note: Instruction needs to be a friend here to call cloneImpl.
4916 friend class Instruction;
4917
4918 /// Clone an identical UIToFPInst
4919 UIToFPInst *cloneImpl() const;
4920
4921public:
4922 /// Constructor with insert-before-instruction semantics
4923 UIToFPInst(
4924 Value *S, ///< The value to be converted
4925 Type *Ty, ///< The type to convert to
4926 const Twine &NameStr = "", ///< A name for the new instruction
4927 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4928 );
4929
4930 /// Constructor with insert-at-end-of-block semantics
4931 UIToFPInst(
4932 Value *S, ///< The value to be converted
4933 Type *Ty, ///< The type to convert to
4934 const Twine &NameStr, ///< A name for the new instruction
4935 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4936 );
4937
4938 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4939 static bool classof(const Instruction *I) {
4940 return I->getOpcode() == UIToFP;
4941 }
4942 static bool classof(const Value *V) {
4943 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4944 }
4945};
4946
4947//===----------------------------------------------------------------------===//
4948// SIToFPInst Class
4949//===----------------------------------------------------------------------===//
4950
4951/// This class represents a cast from signed integer to floating point.
4952class SIToFPInst : public CastInst {
4953protected:
4954 // Note: Instruction needs to be a friend here to call cloneImpl.
4955 friend class Instruction;
4956
4957 /// Clone an identical SIToFPInst
4958 SIToFPInst *cloneImpl() const;
4959
4960public:
4961 /// Constructor with insert-before-instruction semantics
4962 SIToFPInst(
4963 Value *S, ///< The value to be converted
4964 Type *Ty, ///< The type to convert to
4965 const Twine &NameStr = "", ///< A name for the new instruction
4966 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4967 );
4968
4969 /// Constructor with insert-at-end-of-block semantics
4970 SIToFPInst(
4971 Value *S, ///< The value to be converted
4972 Type *Ty, ///< The type to convert to
4973 const Twine &NameStr, ///< A name for the new instruction
4974 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4975 );
4976
4977 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4978 static bool classof(const Instruction *I) {
4979 return I->getOpcode() == SIToFP;
4980 }
4981 static bool classof(const Value *V) {
4982 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4983 }
4984};
4985
4986//===----------------------------------------------------------------------===//
4987// FPToUIInst Class
4988//===----------------------------------------------------------------------===//
4989
4990/// This class represents a cast from floating point to unsigned integer
4991class FPToUIInst : public CastInst {
4992protected:
4993 // Note: Instruction needs to be a friend here to call cloneImpl.
4994 friend class Instruction;
4995
4996 /// Clone an identical FPToUIInst
4997 FPToUIInst *cloneImpl() const;
4998
4999public:
5000 /// Constructor with insert-before-instruction semantics
5001 FPToUIInst(
5002 Value *S, ///< The value to be converted
5003 Type *Ty, ///< The type to convert to
5004 const Twine &NameStr = "", ///< A name for the new instruction
5005 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5006 );
5007
5008 /// Constructor with insert-at-end-of-block semantics
5009 FPToUIInst(
5010 Value *S, ///< The value to be converted
5011 Type *Ty, ///< The type to convert to
5012 const Twine &NameStr, ///< A name for the new instruction
5013 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5014 );
5015
5016 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5017 static bool classof(const Instruction *I) {
5018 return I->getOpcode() == FPToUI;
5019 }
5020 static bool classof(const Value *V) {
5021 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5022 }
5023};
5024
5025//===----------------------------------------------------------------------===//
5026// FPToSIInst Class
5027//===----------------------------------------------------------------------===//
5028
5029/// This class represents a cast from floating point to signed integer.
5030class FPToSIInst : public CastInst {
5031protected:
5032 // Note: Instruction needs to be a friend here to call cloneImpl.
5033 friend class Instruction;
5034
5035 /// Clone an identical FPToSIInst
5036 FPToSIInst *cloneImpl() const;
5037
5038public:
5039 /// Constructor with insert-before-instruction semantics
5040 FPToSIInst(
5041 Value *S, ///< The value to be converted
5042 Type *Ty, ///< The type to convert to
5043 const Twine &NameStr = "", ///< A name for the new instruction
5044 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5045 );
5046
5047 /// Constructor with insert-at-end-of-block semantics
5048 FPToSIInst(
5049 Value *S, ///< The value to be converted
5050 Type *Ty, ///< The type to convert to
5051 const Twine &NameStr, ///< A name for the new instruction
5052 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5053 );
5054
5055 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5056 static bool classof(const Instruction *I) {
5057 return I->getOpcode() == FPToSI;
5058 }
5059 static bool classof(const Value *V) {
5060 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5061 }
5062};
5063
5064//===----------------------------------------------------------------------===//
5065// IntToPtrInst Class
5066//===----------------------------------------------------------------------===//
5067
5068/// This class represents a cast from an integer to a pointer.
5069class IntToPtrInst : public CastInst {
5070public:
5071 // Note: Instruction needs to be a friend here to call cloneImpl.
5072 friend class Instruction;
5073
5074 /// Constructor with insert-before-instruction semantics
5075 IntToPtrInst(
5076 Value *S, ///< The value to be converted
5077 Type *Ty, ///< The type to convert to
5078 const Twine &NameStr = "", ///< A name for the new instruction
5079 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5080 );
5081
5082 /// Constructor with insert-at-end-of-block semantics
5083 IntToPtrInst(
5084 Value *S, ///< The value to be converted
5085 Type *Ty, ///< The type to convert to
5086 const Twine &NameStr, ///< A name for the new instruction
5087 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5088 );
5089
5090 /// Clone an identical IntToPtrInst.
5091 IntToPtrInst *cloneImpl() const;
5092
5093 /// Returns the address space of this instruction's pointer type.
5094 unsigned getAddressSpace() const {
5095 return getType()->getPointerAddressSpace();
5096 }
5097
5098 // Methods for support type inquiry through isa, cast, and dyn_cast:
5099 static bool classof(const Instruction *I) {
5100 return I->getOpcode() == IntToPtr;
5101 }
5102 static bool classof(const Value *V) {
5103 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5104 }
5105};
5106
5107//===----------------------------------------------------------------------===//
5108// PtrToIntInst Class
5109//===----------------------------------------------------------------------===//
5110
5111/// This class represents a cast from a pointer to an integer.
5112class PtrToIntInst : public CastInst {
5113protected:
5114 // Note: Instruction needs to be a friend here to call cloneImpl.
5115 friend class Instruction;
5116
5117 /// Clone an identical PtrToIntInst.
5118 PtrToIntInst *cloneImpl() const;
5119
5120public:
5121 /// Constructor with insert-before-instruction semantics
5122 PtrToIntInst(
5123 Value *S, ///< The value to be converted
5124 Type *Ty, ///< The type to convert to
5125 const Twine &NameStr = "", ///< A name for the new instruction
5126 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5127 );
5128
5129 /// Constructor with insert-at-end-of-block semantics
5130 PtrToIntInst(
5131 Value *S, ///< The value to be converted
5132 Type *Ty, ///< The type to convert to
5133 const Twine &NameStr, ///< A name for the new instruction
5134 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5135 );
5136
5137 /// Gets the pointer operand.
5138 Value *getPointerOperand() { return getOperand(0); }
5139 /// Gets the pointer operand.
5140 const Value *getPointerOperand() const { return getOperand(0); }
5141 /// Gets the operand index of the pointer operand.
5142 static unsigned getPointerOperandIndex() { return 0U; }
5143
5144 /// Returns the address space of the pointer operand.
5145 unsigned getPointerAddressSpace() const {
5146 return getPointerOperand()->getType()->getPointerAddressSpace();
5147 }
5148
5149 // Methods for support type inquiry through isa, cast, and dyn_cast:
5150 static bool classof(const Instruction *I) {
5151 return I->getOpcode() == PtrToInt;
5152 }
5153 static bool classof(const Value *V) {
5154 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5155 }
5156};
5157
5158//===----------------------------------------------------------------------===//
5159// BitCastInst Class
5160//===----------------------------------------------------------------------===//
5161
5162/// This class represents a no-op cast from one type to another.
5163class BitCastInst : public CastInst {
5164protected:
5165 // Note: Instruction needs to be a friend here to call cloneImpl.
5166 friend class Instruction;
5167
5168 /// Clone an identical BitCastInst.
5169 BitCastInst *cloneImpl() const;
5170
5171public:
5172 /// Constructor with insert-before-instruction semantics
5173 BitCastInst(
5174 Value *S, ///< The value to be casted
5175 Type *Ty, ///< The type to casted to
5176 const Twine &NameStr = "", ///< A name for the new instruction
5177 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5178 );
5179
5180 /// Constructor with insert-at-end-of-block semantics
5181 BitCastInst(
5182 Value *S, ///< The value to be casted
5183 Type *Ty, ///< The type to casted to
5184 const Twine &NameStr, ///< A name for the new instruction
5185 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5186 );
5187
5188 // Methods for support type inquiry through isa, cast, and dyn_cast:
5189 static bool classof(const Instruction *I) {
5190 return I->getOpcode() == BitCast;
5191 }
5192 static bool classof(const Value *V) {
5193 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5194 }
5195};
5196
5197//===----------------------------------------------------------------------===//
5198// AddrSpaceCastInst Class
5199//===----------------------------------------------------------------------===//
5200
5201/// This class represents a conversion between pointers from one address space
5202/// to another.
5203class AddrSpaceCastInst : public CastInst {
5204protected:
5205 // Note: Instruction needs to be a friend here to call cloneImpl.
5206 friend class Instruction;
5207
5208 /// Clone an identical AddrSpaceCastInst.
5209 AddrSpaceCastInst *cloneImpl() const;
5210
5211public:
5212 /// Constructor with insert-before-instruction semantics
5213 AddrSpaceCastInst(
5214 Value *S, ///< The value to be casted
5215 Type *Ty, ///< The type to casted to
5216 const Twine &NameStr = "", ///< A name for the new instruction
5217 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5218 );
5219
5220 /// Constructor with insert-at-end-of-block semantics
5221 AddrSpaceCastInst(
5222 Value *S, ///< The value to be casted
5223 Type *Ty, ///< The type to casted to
5224 const Twine &NameStr, ///< A name for the new instruction
5225 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5226 );
5227
5228 // Methods for support type inquiry through isa, cast, and dyn_cast:
5229 static bool classof(const Instruction *I) {
5230 return I->getOpcode() == AddrSpaceCast;
5231 }
5232 static bool classof(const Value *V) {
5233 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5234 }
5235
5236 /// Gets the pointer operand.
5237 Value *getPointerOperand() {
5238 return getOperand(0);
5239 }
5240
5241 /// Gets the pointer operand.
5242 const Value *getPointerOperand() const {
5243 return getOperand(0);
5244 }
5245
5246 /// Gets the operand index of the pointer operand.
5247 static unsigned getPointerOperandIndex() {
5248 return 0U;
5249 }
5250
5251 /// Returns the address space of the pointer operand.
5252 unsigned getSrcAddressSpace() const {
5253 return getPointerOperand()->getType()->getPointerAddressSpace();
5254 }
5255
5256 /// Returns the address space of the result.
5257 unsigned getDestAddressSpace() const {
5258 return getType()->getPointerAddressSpace();
5259 }
5260};
5261
5262/// A helper function that returns the pointer operand of a load or store
5263/// instruction. Returns nullptr if not load or store.
5264inline const Value *getLoadStorePointerOperand(const Value *V) {
5265 if (auto *Load = dyn_cast<LoadInst>(V))
5266 return Load->getPointerOperand();
5267 if (auto *Store = dyn_cast<StoreInst>(V))
5268 return Store->getPointerOperand();
5269 return nullptr;
5270}
5271inline Value *getLoadStorePointerOperand(Value *V) {
5272 return const_cast<Value *>(
5273 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5274}
5275
5276/// A helper function that returns the pointer operand of a load, store
5277/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5278inline const Value *getPointerOperand(const Value *V) {
5279 if (auto *Ptr = getLoadStorePointerOperand(V))
5280 return Ptr;
5281 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5282 return Gep->getPointerOperand();
5283 return nullptr;
5284}
5285inline Value *getPointerOperand(Value *V) {
5286 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5287}
5288
5289/// A helper function that returns the alignment of load or store instruction.
5290inline MaybeAlign getLoadStoreAlignment(Value *I) {
5291 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 5292, __PRETTY_FUNCTION__))
5292 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 5292, __PRETTY_FUNCTION__))
;
5293 if (auto *LI = dyn_cast<LoadInst>(I))
5294 return MaybeAlign(LI->getAlignment());
5295 return MaybeAlign(cast<StoreInst>(I)->getAlignment());
5296}
5297
5298/// A helper function that returns the address space of the pointer operand of
5299/// load or store instruction.
5300inline unsigned getLoadStoreAddressSpace(Value *I) {
5301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 5302, __PRETTY_FUNCTION__))
5302 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 5302, __PRETTY_FUNCTION__))
;
5303 if (auto *LI = dyn_cast<LoadInst>(I))
5304 return LI->getPointerAddressSpace();
5305 return cast<StoreInst>(I)->getPointerAddressSpace();
5306}
5307
5308//===----------------------------------------------------------------------===//
5309// FreezeInst Class
5310//===----------------------------------------------------------------------===//
5311
5312/// This class represents a freeze function that returns random concrete
5313/// value if an operand is either a poison value or an undef value
5314class FreezeInst : public UnaryInstruction {
5315protected:
5316 // Note: Instruction needs to be a friend here to call cloneImpl.
5317 friend class Instruction;
5318
5319 /// Clone an identical FreezeInst
5320 FreezeInst *cloneImpl() const;
5321
5322public:
5323 explicit FreezeInst(Value *S,
5324 const Twine &NameStr = "",
5325 Instruction *InsertBefore = nullptr);
5326 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5327
5328 // Methods for support type inquiry through isa, cast, and dyn_cast:
5329 static inline bool classof(const Instruction *I) {
5330 return I->getOpcode() == Freeze;
5331 }
5332 static inline bool classof(const Value *V) {
5333 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5334 }
5335};
5336
5337} // end namespace llvm
5338
5339#endif // LLVM_IR_INSTRUCTIONS_H