Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1198, column 20
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-08-29-030604-21646-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp

/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp

1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// This pass uses alias analysis for two purposes:
16//
17// 1. Moving loop invariant loads and calls out of loops. If we can determine
18// that a load or call inside of a loop never aliases anything stored to,
19// we can hoist it or sink it like any other instruction.
20// 2. Scalar Promotion of Memory - If there is a store instruction inside of
21// the loop, we try to move the store to happen AFTER the loop instead of
22// inside of the loop. This can only happen if a few conditions are true:
23// A. The pointer stored through is loop invariant
24// B. There are no stores or loads in the loop which _may_ alias the
25// pointer. There are no calls in the loop which mod/ref the pointer.
26// If these conditions are true, we can promote the loads and stores in the
27// loop of the pointer to use a temporary alloca'd variable. We then use
28// the SSAUpdater to construct the appropriate SSA form for the value.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/Transforms/Scalar/LICM.h"
33#include "llvm/ADT/SetOperations.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/BasicAliasAnalysis.h"
38#include "llvm/Analysis/CaptureTracking.h"
39#include "llvm/Analysis/ConstantFolding.h"
40#include "llvm/Analysis/GlobalsModRef.h"
41#include "llvm/Analysis/GuardUtils.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopIterator.h"
45#include "llvm/Analysis/LoopPass.h"
46#include "llvm/Analysis/MemoryBuiltins.h"
47#include "llvm/Analysis/MemorySSA.h"
48#include "llvm/Analysis/MemorySSAUpdater.h"
49#include "llvm/Analysis/MustExecute.h"
50#include "llvm/Analysis/OptimizationRemarkEmitter.h"
51#include "llvm/Analysis/ScalarEvolution.h"
52#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
53#include "llvm/Analysis/TargetLibraryInfo.h"
54#include "llvm/Analysis/ValueTracking.h"
55#include "llvm/IR/CFG.h"
56#include "llvm/IR/Constants.h"
57#include "llvm/IR/DataLayout.h"
58#include "llvm/IR/DebugInfoMetadata.h"
59#include "llvm/IR/DerivedTypes.h"
60#include "llvm/IR/Dominators.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/LLVMContext.h"
64#include "llvm/IR/Metadata.h"
65#include "llvm/IR/PatternMatch.h"
66#include "llvm/IR/PredIteratorCache.h"
67#include "llvm/InitializePasses.h"
68#include "llvm/Support/CommandLine.h"
69#include "llvm/Support/Debug.h"
70#include "llvm/Support/raw_ostream.h"
71#include "llvm/Transforms/Scalar.h"
72#include "llvm/Transforms/Scalar/LoopPassManager.h"
73#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
74#include "llvm/Transforms/Utils/BasicBlockUtils.h"
75#include "llvm/Transforms/Utils/Local.h"
76#include "llvm/Transforms/Utils/LoopUtils.h"
77#include "llvm/Transforms/Utils/SSAUpdater.h"
78#include <algorithm>
79#include <utility>
80using namespace llvm;
81
82#define DEBUG_TYPE"licm" "licm"
83
84STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
85STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
86STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
87STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
88STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
89STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
90STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
91
92/// Memory promotion is enabled by default.
93static cl::opt<bool>
94 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
95 cl::desc("Disable memory promotion in LICM pass"));
96
97static cl::opt<bool> ControlFlowHoisting(
98 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
99 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
100
101static cl::opt<uint32_t> MaxNumUsesTraversed(
102 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
103 cl::desc("Max num uses visited for identifying load "
104 "invariance in loop using invariant start (default = 8)"));
105
106// Default value of zero implies we use the regular alias set tracker mechanism
107// instead of the cross product using AA to identify aliasing of the memory
108// location we are interested in.
109static cl::opt<int>
110LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
111 cl::desc("How many instruction to cross product using AA"));
112
113// Experimental option to allow imprecision in LICM in pathological cases, in
114// exchange for faster compile. This is to be removed if MemorySSA starts to
115// address the same issue. This flag applies only when LICM uses MemorySSA
116// instead on AliasSetTracker. LICM calls MemorySSAWalker's
117// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
118// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
119// which may not be precise, since optimizeUses is capped. The result is
120// correct, but we may not get as "far up" as possible to get which access is
121// clobbering the one queried.
122cl::opt<unsigned> llvm::SetLicmMssaOptCap(
123 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
124 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
125 "for faster compile. Caps the MemorySSA clobbering calls."));
126
127// Experimentally, memory promotion carries less importance than sinking and
128// hoisting. Limit when we do promotion when using MemorySSA, in order to save
129// compile time.
130cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
131 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
132 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
133 "effect. When MSSA in LICM is enabled, then this is the maximum "
134 "number of accesses allowed to be present in a loop in order to "
135 "enable memory promotion."));
136
137static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
138static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
139 const LoopSafetyInfo *SafetyInfo,
140 TargetTransformInfo *TTI, bool &FreeInLoop);
141static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
142 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
143 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
144 OptimizationRemarkEmitter *ORE);
145static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
146 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
147 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
148static bool isSafeToExecuteUnconditionally(Instruction &Inst,
149 const DominatorTree *DT,
150 const Loop *CurLoop,
151 const LoopSafetyInfo *SafetyInfo,
152 OptimizationRemarkEmitter *ORE,
153 const Instruction *CtxI = nullptr);
154static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
155 AliasSetTracker *CurAST, Loop *CurLoop,
156 AAResults *AA);
157static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
158 Loop *CurLoop,
159 SinkAndHoistLICMFlags &Flags);
160static Instruction *cloneInstructionInExitBlock(
161 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
162 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
163
164static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
165 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
166
167static void moveInstructionBefore(Instruction &I, Instruction &Dest,
168 ICFLoopSafetyInfo &SafetyInfo,
169 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
170
171namespace {
172struct LoopInvariantCodeMotion {
173 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
174 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
175 ScalarEvolution *SE, MemorySSA *MSSA,
176 OptimizationRemarkEmitter *ORE);
177
178 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
179 unsigned LicmMssaNoAccForPromotionCap)
180 : LicmMssaOptCap(LicmMssaOptCap),
181 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
182
183private:
184 unsigned LicmMssaOptCap;
185 unsigned LicmMssaNoAccForPromotionCap;
186
187 std::unique_ptr<AliasSetTracker>
188 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
189 std::unique_ptr<AliasSetTracker>
190 collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
191 MemorySSAUpdater *MSSAU);
192};
193
194struct LegacyLICMPass : public LoopPass {
195 static char ID; // Pass identification, replacement for typeid
196 LegacyLICMPass(
197 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
198 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
199 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
200 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
201 }
202
203 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
204 if (skipLoop(L))
205 return false;
206
207 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
208 MemorySSA *MSSA = EnableMSSALoopDependency
209 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
210 : nullptr;
211 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
212 // pass. Function analyses need to be preserved across loop transformations
213 // but ORE cannot be preserved (see comment before the pass definition).
214 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
215 return LICM.runOnLoop(L,
216 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
217 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
218 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
219 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
220 *L->getHeader()->getParent()),
221 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
222 *L->getHeader()->getParent()),
223 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
224 }
225
226 /// This transformation requires natural loop information & requires that
227 /// loop preheaders be inserted into the CFG...
228 ///
229 void getAnalysisUsage(AnalysisUsage &AU) const override {
230 AU.addPreserved<DominatorTreeWrapperPass>();
231 AU.addPreserved<LoopInfoWrapperPass>();
232 AU.addRequired<TargetLibraryInfoWrapperPass>();
233 if (EnableMSSALoopDependency) {
234 AU.addRequired<MemorySSAWrapperPass>();
235 AU.addPreserved<MemorySSAWrapperPass>();
236 }
237 AU.addRequired<TargetTransformInfoWrapperPass>();
238 getLoopAnalysisUsage(AU);
239 }
240
241private:
242 LoopInvariantCodeMotion LICM;
243};
244} // namespace
245
246PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
247 LoopStandardAnalysisResults &AR, LPMUpdater &) {
248 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
249 // pass. Function analyses need to be preserved across loop transformations
250 // but ORE cannot be preserved (see comment before the pass definition).
251 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
252
253 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
254 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
255 AR.MSSA, &ORE))
256 return PreservedAnalyses::all();
257
258 auto PA = getLoopPassPreservedAnalyses();
259
260 PA.preserve<DominatorTreeAnalysis>();
261 PA.preserve<LoopAnalysis>();
262 if (AR.MSSA)
263 PA.preserve<MemorySSAAnalysis>();
264
265 return PA;
266}
267
268char LegacyLICMPass::ID = 0;
269INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
270 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
271INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
272INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
273INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
274INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
275INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
276 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
277
278Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
279Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
280 unsigned LicmMssaNoAccForPromotionCap) {
281 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
282}
283
284/// Hoist expressions out of the specified loop. Note, alias info for inner
285/// loop is not preserved so it is not a good idea to run LICM multiple
286/// times on one loop.
287bool LoopInvariantCodeMotion::runOnLoop(
288 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
289 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
290 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
291 bool Changed = false;
292
293 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 293, __PRETTY_FUNCTION__))
;
294
295 // If this loop has metadata indicating that LICM is not to be performed then
296 // just exit.
297 if (hasDisableLICMTransformsHint(L)) {
298 return false;
299 }
300
301 std::unique_ptr<AliasSetTracker> CurAST;
302 std::unique_ptr<MemorySSAUpdater> MSSAU;
303 bool NoOfMemAccTooLarge = false;
304 unsigned LicmMssaOptCounter = 0;
305
306 if (!MSSA) {
307 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using Alias Set Tracker.\n"
; } } while (false)
;
308 CurAST = collectAliasInfoForLoop(L, LI, AA);
309 } else {
310 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using MemorySSA.\n"; } } while
(false)
;
311 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
312
313 unsigned AccessCapCount = 0;
314 for (auto *BB : L->getBlocks()) {
315 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
316 for (const auto &MA : *Accesses) {
317 (void)MA;
318 AccessCapCount++;
319 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
320 NoOfMemAccTooLarge = true;
321 break;
322 }
323 }
324 }
325 if (NoOfMemAccTooLarge)
326 break;
327 }
328 }
329
330 // Get the preheader block to move instructions into...
331 BasicBlock *Preheader = L->getLoopPreheader();
332
333 // Compute loop safety information.
334 ICFLoopSafetyInfo SafetyInfo;
335 SafetyInfo.computeLoopSafetyInfo(L);
336
337 // We want to visit all of the instructions in this loop... that are not parts
338 // of our subloops (they have already had their invariants hoisted out of
339 // their loop, into this loop, so there is no need to process the BODIES of
340 // the subloops).
341 //
342 // Traverse the body of the loop in depth first order on the dominator tree so
343 // that we are guaranteed to see definitions before we see uses. This allows
344 // us to sink instructions in one pass, without iteration. After sinking
345 // instructions, we perform another pass to hoist them out of the loop.
346 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
347 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
348 /*IsSink=*/true};
349 if (L->hasDedicatedExits())
350 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
351 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
352 Flags.IsSink = false;
353 if (Preheader)
354 Changed |=
355 hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
356 CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);
357
358 // Now that all loop invariants have been removed from the loop, promote any
359 // memory references to scalars that we can.
360 // Don't sink stores from loops without dedicated block exits. Exits
361 // containing indirect branches are not transformed by loop simplify,
362 // make sure we catch that. An additional load may be generated in the
363 // preheader for SSA updater, so also avoid sinking when no preheader
364 // is available.
365 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
366 !NoOfMemAccTooLarge) {
367 // Figure out the loop exits and their insertion points
368 SmallVector<BasicBlock *, 8> ExitBlocks;
369 L->getUniqueExitBlocks(ExitBlocks);
370
371 // We can't insert into a catchswitch.
372 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
373 return isa<CatchSwitchInst>(Exit->getTerminator());
374 });
375
376 if (!HasCatchSwitch) {
377 SmallVector<Instruction *, 8> InsertPts;
378 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
379 InsertPts.reserve(ExitBlocks.size());
380 if (MSSAU)
381 MSSAInsertPts.reserve(ExitBlocks.size());
382 for (BasicBlock *ExitBlock : ExitBlocks) {
383 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
384 if (MSSAU)
385 MSSAInsertPts.push_back(nullptr);
386 }
387
388 PredIteratorCache PIC;
389
390 bool Promoted = false;
391
392 // Build an AST using MSSA.
393 if (!CurAST.get())
394 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
395
396 // Loop over all of the alias sets in the tracker object.
397 for (AliasSet &AS : *CurAST) {
398 // We can promote this alias set if it has a store, if it is a "Must"
399 // alias set, if the pointer is loop invariant, and if we are not
400 // eliminating any volatile loads or stores.
401 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
402 !L->isLoopInvariant(AS.begin()->getValue()))
403 continue;
404
405 assert(((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 407, __PRETTY_FUNCTION__))
406 !AS.empty() &&((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 407, __PRETTY_FUNCTION__))
407 "Must alias set should have at least one pointer element in it!")((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 407, __PRETTY_FUNCTION__))
;
408
409 SmallSetVector<Value *, 8> PointerMustAliases;
410 for (const auto &ASI : AS)
411 PointerMustAliases.insert(ASI.getValue());
412
413 Promoted |= promoteLoopAccessesToScalars(
414 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
415 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
416 }
417
418 // Once we have promoted values across the loop body we have to
419 // recursively reform LCSSA as any nested loop may now have values defined
420 // within the loop used in the outer loop.
421 // FIXME: This is really heavy handed. It would be a bit better to use an
422 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
423 // it as it went.
424 if (Promoted)
425 formLCSSARecursively(*L, *DT, LI, SE);
426
427 Changed |= Promoted;
428 }
429 }
430
431 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
432 // specifically moving instructions across the loop boundary and so it is
433 // especially in need of sanity checking here.
434 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 434, __PRETTY_FUNCTION__))
;
435 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&(((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 436, __PRETTY_FUNCTION__))
436 "Parent loop not left in LCSSA form after LICM!")(((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 436, __PRETTY_FUNCTION__))
;
437
438 if (MSSAU.get() && VerifyMemorySSA)
439 MSSAU->getMemorySSA()->verifyMemorySSA();
440
441 if (Changed && SE)
442 SE->forgetLoopDispositions(L);
443 return Changed;
444}
445
446/// Walk the specified region of the CFG (defined by all blocks dominated by
447/// the specified block, and that are in the current loop) in reverse depth
448/// first order w.r.t the DominatorTree. This allows us to visit uses before
449/// definitions, allowing us to sink a loop body in one pass without iteration.
450///
451bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
452 DominatorTree *DT, TargetLibraryInfo *TLI,
453 TargetTransformInfo *TTI, Loop *CurLoop,
454 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
455 ICFLoopSafetyInfo *SafetyInfo,
456 SinkAndHoistLICMFlags &Flags,
457 OptimizationRemarkEmitter *ORE) {
458
459 // Verify inputs.
460 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 462, __PRETTY_FUNCTION__))
461 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 462, __PRETTY_FUNCTION__))
462 "Unexpected input to sinkRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 462, __PRETTY_FUNCTION__))
;
463 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 464, __PRETTY_FUNCTION__))
464 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 464, __PRETTY_FUNCTION__))
;
465
466 // We want to visit children before parents. We will enque all the parents
467 // before their children in the worklist and process the worklist in reverse
468 // order.
469 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
470
471 bool Changed = false;
472 for (DomTreeNode *DTN : reverse(Worklist)) {
473 BasicBlock *BB = DTN->getBlock();
474 // Only need to process the contents of this block if it is not part of a
475 // subloop (which would already have been processed).
476 if (inSubLoop(BB, CurLoop, LI))
477 continue;
478
479 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
480 Instruction &I = *--II;
481
482 // If the instruction is dead, we would try to sink it because it isn't
483 // used in the loop, instead, just delete it.
484 if (isInstructionTriviallyDead(&I, TLI)) {
485 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
486 salvageKnowledge(&I);
487 salvageDebugInfo(I);
488 ++II;
489 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
490 Changed = true;
491 continue;
492 }
493
494 // Check to see if we can sink this instruction to the exit blocks
495 // of the loop. We can do this if the all users of the instruction are
496 // outside of the loop. In this case, it doesn't even matter if the
497 // operands of the instruction are loop invariant.
498 //
499 bool FreeInLoop = false;
500 if (!I.mayHaveSideEffects() &&
501 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
502 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
503 ORE)) {
504 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
505 if (!FreeInLoop) {
506 ++II;
507 salvageDebugInfo(I);
508 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
509 }
510 Changed = true;
511 }
512 }
513 }
514 }
515 if (MSSAU && VerifyMemorySSA)
516 MSSAU->getMemorySSA()->verifyMemorySSA();
517 return Changed;
518}
519
520namespace {
521// This is a helper class for hoistRegion to make it able to hoist control flow
522// in order to be able to hoist phis. The way this works is that we initially
523// start hoisting to the loop preheader, and when we see a loop invariant branch
524// we make note of this. When we then come to hoist an instruction that's
525// conditional on such a branch we duplicate the branch and the relevant control
526// flow, then hoist the instruction into the block corresponding to its original
527// block in the duplicated control flow.
528class ControlFlowHoister {
529private:
530 // Information about the loop we are hoisting from
531 LoopInfo *LI;
532 DominatorTree *DT;
533 Loop *CurLoop;
534 MemorySSAUpdater *MSSAU;
535
536 // A map of blocks in the loop to the block their instructions will be hoisted
537 // to.
538 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
539
540 // The branches that we can hoist, mapped to the block that marks a
541 // convergence point of their control flow.
542 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
543
544public:
545 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
546 MemorySSAUpdater *MSSAU)
547 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
548
549 void registerPossiblyHoistableBranch(BranchInst *BI) {
550 // We can only hoist conditional branches with loop invariant operands.
551 if (!ControlFlowHoisting || !BI->isConditional() ||
552 !CurLoop->hasLoopInvariantOperands(BI))
553 return;
554
555 // The branch destinations need to be in the loop, and we don't gain
556 // anything by duplicating conditional branches with duplicate successors,
557 // as it's essentially the same as an unconditional branch.
558 BasicBlock *TrueDest = BI->getSuccessor(0);
559 BasicBlock *FalseDest = BI->getSuccessor(1);
560 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
561 TrueDest == FalseDest)
562 return;
563
564 // We can hoist BI if one branch destination is the successor of the other,
565 // or both have common successor which we check by seeing if the
566 // intersection of their successors is non-empty.
567 // TODO: This could be expanded to allowing branches where both ends
568 // eventually converge to a single block.
569 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
570 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
571 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
572 BasicBlock *CommonSucc = nullptr;
573 if (TrueDestSucc.count(FalseDest)) {
574 CommonSucc = FalseDest;
575 } else if (FalseDestSucc.count(TrueDest)) {
576 CommonSucc = TrueDest;
577 } else {
578 set_intersect(TrueDestSucc, FalseDestSucc);
579 // If there's one common successor use that.
580 if (TrueDestSucc.size() == 1)
581 CommonSucc = *TrueDestSucc.begin();
582 // If there's more than one pick whichever appears first in the block list
583 // (we can't use the value returned by TrueDestSucc.begin() as it's
584 // unpredicatable which element gets returned).
585 else if (!TrueDestSucc.empty()) {
586 Function *F = TrueDest->getParent();
587 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
588 auto It = std::find_if(F->begin(), F->end(), IsSucc);
589 assert(It != F->end() && "Could not find successor in function")((It != F->end() && "Could not find successor in function"
) ? static_cast<void> (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 589, __PRETTY_FUNCTION__))
;
590 CommonSucc = &*It;
591 }
592 }
593 // The common successor has to be dominated by the branch, as otherwise
594 // there will be some other path to the successor that will not be
595 // controlled by this branch so any phi we hoist would be controlled by the
596 // wrong condition. This also takes care of avoiding hoisting of loop back
597 // edges.
598 // TODO: In some cases this could be relaxed if the successor is dominated
599 // by another block that's been hoisted and we can guarantee that the
600 // control flow has been replicated exactly.
601 if (CommonSucc && DT->dominates(BI, CommonSucc))
602 HoistableBranches[BI] = CommonSucc;
603 }
604
605 bool canHoistPHI(PHINode *PN) {
606 // The phi must have loop invariant operands.
607 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
608 return false;
609 // We can hoist phis if the block they are in is the target of hoistable
610 // branches which cover all of the predecessors of the block.
611 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
612 BasicBlock *BB = PN->getParent();
613 for (BasicBlock *PredBB : predecessors(BB))
614 PredecessorBlocks.insert(PredBB);
615 // If we have less predecessor blocks than predecessors then the phi will
616 // have more than one incoming value for the same block which we can't
617 // handle.
618 // TODO: This could be handled be erasing some of the duplicate incoming
619 // values.
620 if (PredecessorBlocks.size() != pred_size(BB))
621 return false;
622 for (auto &Pair : HoistableBranches) {
623 if (Pair.second == BB) {
624 // Which blocks are predecessors via this branch depends on if the
625 // branch is triangle-like or diamond-like.
626 if (Pair.first->getSuccessor(0) == BB) {
627 PredecessorBlocks.erase(Pair.first->getParent());
628 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
629 } else if (Pair.first->getSuccessor(1) == BB) {
630 PredecessorBlocks.erase(Pair.first->getParent());
631 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
632 } else {
633 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
634 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
635 }
636 }
637 }
638 // PredecessorBlocks will now be empty if for every predecessor of BB we
639 // found a hoistable branch source.
640 return PredecessorBlocks.empty();
641 }
642
643 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
644 if (!ControlFlowHoisting)
645 return CurLoop->getLoopPreheader();
646 // If BB has already been hoisted, return that
647 if (HoistDestinationMap.count(BB))
648 return HoistDestinationMap[BB];
649
650 // Check if this block is conditional based on a pending branch
651 auto HasBBAsSuccessor =
652 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
653 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
654 Pair.first->getSuccessor(1) == BB);
655 };
656 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
657 HasBBAsSuccessor);
658
659 // If not involved in a pending branch, hoist to preheader
660 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
661 if (It == HoistableBranches.end()) {
662 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
663 << " as hoist destination for " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
664 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
;
665 HoistDestinationMap[BB] = InitialPreheader;
666 return InitialPreheader;
667 }
668 BranchInst *BI = It->first;
669 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 671, __PRETTY_FUNCTION__))
670 HoistableBranches.end() &&((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 671, __PRETTY_FUNCTION__))
671 "BB is expected to be the target of at most one branch")((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 671, __PRETTY_FUNCTION__))
;
672
673 LLVMContext &C = BB->getContext();
674 BasicBlock *TrueDest = BI->getSuccessor(0);
675 BasicBlock *FalseDest = BI->getSuccessor(1);
676 BasicBlock *CommonSucc = HoistableBranches[BI];
677 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
678
679 // Create hoisted versions of blocks that currently don't have them
680 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
681 if (HoistDestinationMap.count(Orig))
682 return HoistDestinationMap[Orig];
683 BasicBlock *New =
684 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
685 HoistDestinationMap[Orig] = New;
686 DT->addNewBlock(New, HoistTarget);
687 if (CurLoop->getParentLoop())
688 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
689 ++NumCreatedBlocks;
690 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
691 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
692 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
693 return New;
694 };
695 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
696 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
697 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
698
699 // Link up these blocks with branches.
700 if (!HoistCommonSucc->getTerminator()) {
701 // The new common successor we've generated will branch to whatever that
702 // hoist target branched to.
703 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
704 assert(TargetSucc && "Expected hoist target to have a single successor")((TargetSucc && "Expected hoist target to have a single successor"
) ? static_cast<void> (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 704, __PRETTY_FUNCTION__))
;
705 HoistCommonSucc->moveBefore(TargetSucc);
706 BranchInst::Create(TargetSucc, HoistCommonSucc);
707 }
708 if (!HoistTrueDest->getTerminator()) {
709 HoistTrueDest->moveBefore(HoistCommonSucc);
710 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
711 }
712 if (!HoistFalseDest->getTerminator()) {
713 HoistFalseDest->moveBefore(HoistCommonSucc);
714 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
715 }
716
717 // If BI is being cloned to what was originally the preheader then
718 // HoistCommonSucc will now be the new preheader.
719 if (HoistTarget == InitialPreheader) {
720 // Phis in the loop header now need to use the new preheader.
721 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
722 if (MSSAU)
723 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
724 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
725 // The new preheader dominates the loop header.
726 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
727 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
728 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
729 // The preheader hoist destination is now the new preheader, with the
730 // exception of the hoist destination of this branch.
731 for (auto &Pair : HoistDestinationMap)
732 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
733 Pair.second = HoistCommonSucc;
734 }
735
736 // Now finally clone BI.
737 ReplaceInstWithInst(
738 HoistTarget->getTerminator(),
739 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
740 ++NumClonedBranches;
741
742 assert(CurLoop->getLoopPreheader() &&((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 743, __PRETTY_FUNCTION__))
743 "Hoisting blocks should not have destroyed preheader")((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 743, __PRETTY_FUNCTION__))
;
744 return HoistDestinationMap[BB];
745 }
746};
747} // namespace
748
749/// Walk the specified region of the CFG (defined by all blocks dominated by
750/// the specified block, and that are in the current loop) in depth first
751/// order w.r.t the DominatorTree. This allows us to visit definitions before
752/// uses, allowing us to hoist a loop body in one pass without iteration.
753///
754bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
755 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
756 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
757 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
758 SinkAndHoistLICMFlags &Flags,
759 OptimizationRemarkEmitter *ORE) {
760 // Verify inputs.
761 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 763, __PRETTY_FUNCTION__))
762 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 763, __PRETTY_FUNCTION__))
763 "Unexpected input to hoistRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 763, __PRETTY_FUNCTION__))
;
764 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 765, __PRETTY_FUNCTION__))
765 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 765, __PRETTY_FUNCTION__))
;
766
767 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
768
769 // Keep track of instructions that have been hoisted, as they may need to be
770 // re-hoisted if they end up not dominating all of their uses.
771 SmallVector<Instruction *, 16> HoistedInstructions;
772
773 // For PHI hoisting to work we need to hoist blocks before their successors.
774 // We can do this by iterating through the blocks in the loop in reverse
775 // post-order.
776 LoopBlocksRPO Worklist(CurLoop);
777 Worklist.perform(LI);
778 bool Changed = false;
779 for (BasicBlock *BB : Worklist) {
780 // Only need to process the contents of this block if it is not part of a
781 // subloop (which would already have been processed).
782 if (inSubLoop(BB, CurLoop, LI))
783 continue;
784
785 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
786 Instruction &I = *II++;
787 // Try constant folding this instruction. If all the operands are
788 // constants, it is technically hoistable, but it would be better to
789 // just fold it.
790 if (Constant *C = ConstantFoldInstruction(
791 &I, I.getModule()->getDataLayout(), TLI)) {
792 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
793 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
794 if (CurAST)
795 CurAST->copyValue(&I, C);
796 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
797 I.replaceAllUsesWith(C);
798 if (isInstructionTriviallyDead(&I, TLI))
799 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
800 Changed = true;
801 continue;
802 }
803
804 // Try hoisting the instruction out to the preheader. We can only do
805 // this if all of the operands of the instruction are loop invariant and
806 // if it is safe to hoist the instruction.
807 // TODO: It may be safe to hoist if we are hoisting to a conditional block
808 // and we have accurately duplicated the control flow from the loop header
809 // to that block.
810 if (CurLoop->hasLoopInvariantOperands(&I) &&
811 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
812 ORE) &&
813 isSafeToExecuteUnconditionally(
814 I, DT, CurLoop, SafetyInfo, ORE,
815 CurLoop->getLoopPreheader()->getTerminator())) {
816 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
817 MSSAU, SE, ORE);
818 HoistedInstructions.push_back(&I);
819 Changed = true;
820 continue;
821 }
822
823 // Attempt to remove floating point division out of the loop by
824 // converting it to a reciprocal multiplication.
825 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
826 CurLoop->isLoopInvariant(I.getOperand(1))) {
827 auto Divisor = I.getOperand(1);
828 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
829 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
830 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
831 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
832 ReciprocalDivisor->insertBefore(&I);
833
834 auto Product =
835 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
836 Product->setFastMathFlags(I.getFastMathFlags());
837 SafetyInfo->insertInstructionTo(Product, I.getParent());
838 Product->insertAfter(&I);
839 I.replaceAllUsesWith(Product);
840 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
841
842 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
843 SafetyInfo, MSSAU, SE, ORE);
844 HoistedInstructions.push_back(ReciprocalDivisor);
845 Changed = true;
846 continue;
847 }
848
849 auto IsInvariantStart = [&](Instruction &I) {
850 using namespace PatternMatch;
851 return I.use_empty() &&
852 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
853 };
854 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
855 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
856 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
857 };
858 if ((IsInvariantStart(I) || isGuard(&I)) &&
859 CurLoop->hasLoopInvariantOperands(&I) &&
860 MustExecuteWithoutWritesBefore(I)) {
861 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
862 MSSAU, SE, ORE);
863 HoistedInstructions.push_back(&I);
864 Changed = true;
865 continue;
866 }
867
868 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
869 if (CFH.canHoistPHI(PN)) {
870 // Redirect incoming blocks first to ensure that we create hoisted
871 // versions of those blocks before we hoist the phi.
872 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
873 PN->setIncomingBlock(
874 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
875 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
876 MSSAU, SE, ORE);
877 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((DT->dominates(PN, BB) && "Conditional PHIs not expected"
) ? static_cast<void> (0) : __assert_fail ("DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 877, __PRETTY_FUNCTION__))
;
878 Changed = true;
879 continue;
880 }
881 }
882
883 // Remember possibly hoistable branches so we can actually hoist them
884 // later if needed.
885 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
886 CFH.registerPossiblyHoistableBranch(BI);
887 }
888 }
889
890 // If we hoisted instructions to a conditional block they may not dominate
891 // their uses that weren't hoisted (such as phis where some operands are not
892 // loop invariant). If so make them unconditional by moving them to their
893 // immediate dominator. We iterate through the instructions in reverse order
894 // which ensures that when we rehoist an instruction we rehoist its operands,
895 // and also keep track of where in the block we are rehoisting to to make sure
896 // that we rehoist instructions before the instructions that use them.
897 Instruction *HoistPoint = nullptr;
898 if (ControlFlowHoisting) {
899 for (Instruction *I : reverse(HoistedInstructions)) {
900 if (!llvm::all_of(I->uses(),
901 [&](Use &U) { return DT->dominates(I, U); })) {
902 BasicBlock *Dominator =
903 DT->getNode(I->getParent())->getIDom()->getBlock();
904 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
905 if (HoistPoint)
906 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 907, __PRETTY_FUNCTION__))
907 "New hoist point expected to dominate old hoist point")((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 907, __PRETTY_FUNCTION__))
;
908 HoistPoint = Dominator->getTerminator();
909 }
910 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
911 << HoistPoint->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
912 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
;
913 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
914 HoistPoint = I;
915 Changed = true;
916 }
917 }
918 }
919 if (MSSAU && VerifyMemorySSA)
920 MSSAU->getMemorySSA()->verifyMemorySSA();
921
922 // Now that we've finished hoisting make sure that LI and DT are still
923 // valid.
924#ifdef EXPENSIVE_CHECKS
925 if (Changed) {
926 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 927, __PRETTY_FUNCTION__))
927 "Dominator tree verification failed")((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 927, __PRETTY_FUNCTION__))
;
928 LI->verify(*DT);
929 }
930#endif
931
932 return Changed;
933}
934
935// Return true if LI is invariant within scope of the loop. LI is invariant if
936// CurLoop is dominated by an invariant.start representing the same memory
937// location and size as the memory location LI loads from, and also the
938// invariant.start has no uses.
939static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
940 Loop *CurLoop) {
941 Value *Addr = LI->getOperand(0);
942 const DataLayout &DL = LI->getModule()->getDataLayout();
943 const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
944
945 // if the type is i8 addrspace(x)*, we know this is the type of
946 // llvm.invariant.start operand
947 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
948 LI->getPointerAddressSpace());
949 unsigned BitcastsVisited = 0;
950 // Look through bitcasts until we reach the i8* type (this is invariant.start
951 // operand type).
952 while (Addr->getType() != PtrInt8Ty) {
953 auto *BC = dyn_cast<BitCastInst>(Addr);
954 // Avoid traversing high number of bitcast uses.
955 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
956 return false;
957 Addr = BC->getOperand(0);
958 }
959
960 unsigned UsesVisited = 0;
961 // Traverse all uses of the load operand value, to see if invariant.start is
962 // one of the uses, and whether it dominates the load instruction.
963 for (auto *U : Addr->users()) {
964 // Avoid traversing for Load operand with high number of users.
965 if (++UsesVisited > MaxNumUsesTraversed)
966 return false;
967 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
968 // If there are escaping uses of invariant.start instruction, the load maybe
969 // non-invariant.
970 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
971 !II->use_empty())
972 continue;
973 unsigned InvariantSizeInBits =
974 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
975 // Confirm the invariant.start location size contains the load operand size
976 // in bits. Also, the invariant.start should dominate the load, and we
977 // should not hoist the load out of a loop that contains this dominating
978 // invariant.start.
979 if (LocSizeInBits <= InvariantSizeInBits &&
980 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
981 return true;
982 }
983
984 return false;
985}
986
987namespace {
988/// Return true if-and-only-if we know how to (mechanically) both hoist and
989/// sink a given instruction out of a loop. Does not address legality
990/// concerns such as aliasing or speculation safety.
991bool isHoistableAndSinkableInst(Instruction &I) {
992 // Only these instructions are hoistable/sinkable.
993 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
2
Assuming 'I' is not a 'LoadInst'
3
Assuming 'I' is not a 'StoreInst'
4
Assuming 'I' is not a 'CallInst'
17
Returning the value 1, which participates in a condition later
994 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
5
Assuming 'I' is not a 'FenceInst'
6
Assuming 'I' is not a 'CastInst'
7
Assuming 'I' is not a 'UnaryOperator'
995 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
8
Assuming 'I' is not a 'BinaryOperator'
9
Assuming 'I' is not a 'SelectInst'
996 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
10
Assuming 'I' is not a 'GetElementPtrInst'
11
Assuming 'I' is not a 'CmpInst'
997 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
12
Assuming 'I' is not a 'InsertElementInst'
13
Assuming 'I' is not a 'ExtractElementInst'
998 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
14
Assuming 'I' is not a 'ShuffleVectorInst'
15
Assuming 'I' is not a 'ExtractValueInst'
999 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
16
Assuming 'I' is a 'InsertValueInst'
1000}
1001/// Return true if all of the alias sets within this AST are known not to
1002/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1003bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1004 const Loop *L) {
1005 if (CurAST) {
1006 for (AliasSet &AS : *CurAST) {
1007 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1008 return false;
1009 }
1010 }
1011 return true;
1012 } else { /*MSSAU*/
1013 for (auto *BB : L->getBlocks())
1014 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1015 return false;
1016 return true;
1017 }
1018}
1019
1020/// Return true if I is the only Instruction with a MemoryAccess in L.
1021bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1022 const MemorySSAUpdater *MSSAU) {
1023 for (auto *BB : L->getBlocks())
1024 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1025 int NotAPhi = 0;
1026 for (const auto &Acc : *Accs) {
1027 if (isa<MemoryPhi>(&Acc))
1028 continue;
1029 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1030 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1031 return false;
1032 }
1033 }
1034 return true;
1035}
1036}
1037
1038bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1039 Loop *CurLoop, AliasSetTracker *CurAST,
1040 MemorySSAUpdater *MSSAU,
1041 bool TargetExecutesOncePerLoop,
1042 SinkAndHoistLICMFlags *Flags,
1043 OptimizationRemarkEmitter *ORE) {
1044 // If we don't understand the instruction, bail early.
1045 if (!isHoistableAndSinkableInst(I))
1
Calling 'isHoistableAndSinkableInst'
18
Returning from 'isHoistableAndSinkableInst'
19
Taking false branch
1046 return false;
1047
1048 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
20
Assuming 'MSSAU' is non-null
21
'?' condition is true
22
'MSSA' initialized here
1049 if (MSSA)
23
Assuming 'MSSA' is null
24
Taking false branch
1050 assert(Flags != nullptr && "Flags cannot be null.")((Flags != nullptr && "Flags cannot be null.") ? static_cast
<void> (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1050, __PRETTY_FUNCTION__))
;
1051
1052 // Loads have extra constraints we have to verify before we can hoist them.
1053 if (LoadInst *LI
25.1
'LI' is null
25.1
'LI' is null
= dyn_cast<LoadInst>(&I)) {
25
Assuming the object is not a 'LoadInst'
26
Taking false branch
1054 if (!LI->isUnordered())
1055 return false; // Don't sink/hoist volatile or ordered atomic loads!
1056
1057 // Loads from constant memory are always safe to move, even if they end up
1058 // in the same alias set as something that ends up being modified.
1059 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1060 return true;
1061 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1062 return true;
1063
1064 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1065 return false; // Don't risk duplicating unordered loads
1066
1067 // This checks for an invariant.start dominating the load.
1068 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1069 return true;
1070
1071 bool Invalidated;
1072 if (CurAST)
1073 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1074 CurLoop, AA);
1075 else
1076 Invalidated = pointerInvalidatedByLoopWithMSSA(
1077 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1078 // Check loop-invariant address because this may also be a sinkable load
1079 // whose address is not necessarily loop-invariant.
1080 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1081 ORE->emit([&]() {
1082 return OptimizationRemarkMissed(
1083 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1084 << "failed to move load with loop-invariant address "
1085 "because the loop may invalidate its value";
1086 });
1087
1088 return !Invalidated;
1089 } else if (CallInst *CI
27.1
'CI' is null
27.1
'CI' is null
= dyn_cast<CallInst>(&I)) {
27
Assuming the object is not a 'CallInst'
28
Taking false branch
1090 // Don't sink or hoist dbg info; it's legal, but not useful.
1091 if (isa<DbgInfoIntrinsic>(I))
1092 return false;
1093
1094 // Don't sink calls which can throw.
1095 if (CI->mayThrow())
1096 return false;
1097
1098 using namespace PatternMatch;
1099 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1100 // Assumes don't actually alias anything or throw
1101 return true;
1102
1103 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1104 // Widenable conditions don't actually alias anything or throw
1105 return true;
1106
1107 // Handle simple cases by querying alias analysis.
1108 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1109 if (Behavior == FMRB_DoesNotAccessMemory)
1110 return true;
1111 if (AAResults::onlyReadsMemory(Behavior)) {
1112 // A readonly argmemonly function only reads from memory pointed to by
1113 // it's arguments with arbitrary offsets. If we can prove there are no
1114 // writes to this memory in the loop, we can hoist or sink.
1115 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1116 // TODO: expand to writeable arguments
1117 for (Value *Op : CI->arg_operands())
1118 if (Op->getType()->isPointerTy()) {
1119 bool Invalidated;
1120 if (CurAST)
1121 Invalidated = pointerInvalidatedByLoop(
1122 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1123 CurAST, CurLoop, AA);
1124 else
1125 Invalidated = pointerInvalidatedByLoopWithMSSA(
1126 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1127 *Flags);
1128 if (Invalidated)
1129 return false;
1130 }
1131 return true;
1132 }
1133
1134 // If this call only reads from memory and there are no writes to memory
1135 // in the loop, we can hoist or sink the call as appropriate.
1136 if (isReadOnly(CurAST, MSSAU, CurLoop))
1137 return true;
1138 }
1139
1140 // FIXME: This should use mod/ref information to see if we can hoist or
1141 // sink the call.
1142
1143 return false;
1144 } else if (auto *FI
29.1
'FI' is null
29.1
'FI' is null
= dyn_cast<FenceInst>(&I)) {
29
Assuming the object is not a 'FenceInst'
30
Taking false branch
1145 // Fences alias (most) everything to provide ordering. For the moment,
1146 // just give up if there are any other memory operations in the loop.
1147 if (CurAST) {
1148 auto Begin = CurAST->begin();
1149 assert(Begin != CurAST->end() && "must contain FI")((Begin != CurAST->end() && "must contain FI") ? static_cast
<void> (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1149, __PRETTY_FUNCTION__))
;
1150 if (std::next(Begin) != CurAST->end())
1151 // constant memory for instance, TODO: handle better
1152 return false;
1153 auto *UniqueI = Begin->getUniqueInstruction();
1154 if (!UniqueI)
1155 // other memory op, give up
1156 return false;
1157 (void)FI; // suppress unused variable warning
1158 assert(UniqueI == FI && "AS must contain FI")((UniqueI == FI && "AS must contain FI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1158, __PRETTY_FUNCTION__))
;
1159 return true;
1160 } else // MSSAU
1161 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1162 } else if (auto *SI
31.1
'SI' is non-null
31.1
'SI' is non-null
= dyn_cast<StoreInst>(&I)) {
31
Assuming the object is a 'StoreInst'
32
Taking true branch
1163 if (!SI->isUnordered())
33
Calling 'StoreInst::isUnordered'
37
Returning from 'StoreInst::isUnordered'
38
Taking false branch
1164 return false; // Don't sink/hoist volatile or ordered atomic store!
1165
1166 // We can only hoist a store that we can prove writes a value which is not
1167 // read or overwritten within the loop. For those cases, we fallback to
1168 // load store promotion instead. TODO: We can extend this to cases where
1169 // there is exactly one write to the location and that write dominates an
1170 // arbitrary number of reads in the loop.
1171 if (CurAST) {
39
Assuming 'CurAST' is null
40
Taking false branch
1172 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1173
1174 if (AS.isRef() || !AS.isMustAlias())
1175 // Quick exit test, handled by the full path below as well.
1176 return false;
1177 auto *UniqueI = AS.getUniqueInstruction();
1178 if (!UniqueI)
1179 // other memory op, give up
1180 return false;
1181 assert(UniqueI == SI && "AS must contain SI")((UniqueI == SI && "AS must contain SI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1181, __PRETTY_FUNCTION__))
;
1182 return true;
1183 } else { // MSSAU
1184 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
41
Assuming the condition is false
42
Taking false branch
1185 return true;
1186 // If there are more accesses than the Promotion cap, give up, we're not
1187 // walking a list that long.
1188 if (Flags->NoOfMemAccTooLarge)
43
Assuming field 'NoOfMemAccTooLarge' is false
44
Taking false branch
1189 return false;
1190 // Check store only if there's still "quota" to check clobber.
1191 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
45
Assuming field 'LicmMssaOptCounter' is < field 'LicmMssaOptCap'
46
Taking false branch
1192 return false;
1193 // If there are interfering Uses (i.e. their defining access is in the
1194 // loop), or ordered loads (stored as Defs!), don't move this store.
1195 // Could do better here, but this is conservatively correct.
1196 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1197 // moving accesses. Can also extend to dominating uses.
1198 auto *SIMD = MSSA->getMemoryAccess(SI);
47
Called C++ object pointer is null
1199 for (auto *BB : CurLoop->getBlocks())
1200 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1201 for (const auto &MA : *Accesses)
1202 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1203 auto *MD = MU->getDefiningAccess();
1204 if (!MSSA->isLiveOnEntryDef(MD) &&
1205 CurLoop->contains(MD->getBlock()))
1206 return false;
1207 // Disable hoisting past potentially interfering loads. Optimized
1208 // Uses may point to an access outside the loop, as getClobbering
1209 // checks the previous iteration when walking the backedge.
1210 // FIXME: More precise: no Uses that alias SI.
1211 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1212 return false;
1213 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1214 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1215 (void)LI; // Silence warning.
1216 assert(!LI->isUnordered() && "Expected unordered load")((!LI->isUnordered() && "Expected unordered load")
? static_cast<void> (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1216, __PRETTY_FUNCTION__))
;
1217 return false;
1218 }
1219 // Any call, while it may not be clobbering SI, it may be a use.
1220 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1221 // Check if the call may read from the memory locattion written
1222 // to by SI. Check CI's attributes and arguments; the number of
1223 // such checks performed is limited above by NoOfMemAccTooLarge.
1224 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1225 if (isModOrRefSet(MRI))
1226 return false;
1227 }
1228 }
1229 }
1230
1231 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1232 Flags->LicmMssaOptCounter++;
1233 // If there are no clobbering Defs in the loop, store is safe to hoist.
1234 return MSSA->isLiveOnEntryDef(Source) ||
1235 !CurLoop->contains(Source->getBlock());
1236 }
1237 }
1238
1239 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((!I.mayReadOrWriteMemory() && "unhandled aliasing") ?
static_cast<void> (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1239, __PRETTY_FUNCTION__))
;
1240
1241 // We've established mechanical ability and aliasing, it's up to the caller
1242 // to check fault safety
1243 return true;
1244}
1245
1246/// Returns true if a PHINode is a trivially replaceable with an
1247/// Instruction.
1248/// This is true when all incoming values are that instruction.
1249/// This pattern occurs most often with LCSSA PHI nodes.
1250///
1251static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1252 for (const Value *IncValue : PN.incoming_values())
1253 if (IncValue != &I)
1254 return false;
1255
1256 return true;
1257}
1258
1259/// Return true if the instruction is free in the loop.
1260static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1261 const TargetTransformInfo *TTI) {
1262
1263 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1264 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1265 TargetTransformInfo::TCC_Free)
1266 return false;
1267 // For a GEP, we cannot simply use getUserCost because currently it
1268 // optimistically assume that a GEP will fold into addressing mode
1269 // regardless of its users.
1270 const BasicBlock *BB = GEP->getParent();
1271 for (const User *U : GEP->users()) {
1272 const Instruction *UI = cast<Instruction>(U);
1273 if (CurLoop->contains(UI) &&
1274 (BB != UI->getParent() ||
1275 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1276 return false;
1277 }
1278 return true;
1279 } else
1280 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1281 TargetTransformInfo::TCC_Free;
1282}
1283
1284/// Return true if the only users of this instruction are outside of
1285/// the loop. If this is true, we can sink the instruction to the exit
1286/// blocks of the loop.
1287///
1288/// We also return true if the instruction could be folded away in lowering.
1289/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1290static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1291 const LoopSafetyInfo *SafetyInfo,
1292 TargetTransformInfo *TTI, bool &FreeInLoop) {
1293 const auto &BlockColors = SafetyInfo->getBlockColors();
1294 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1295 for (const User *U : I.users()) {
1296 const Instruction *UI = cast<Instruction>(U);
1297 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1298 const BasicBlock *BB = PN->getParent();
1299 // We cannot sink uses in catchswitches.
1300 if (isa<CatchSwitchInst>(BB->getTerminator()))
1301 return false;
1302
1303 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1304 // phi use is too muddled.
1305 if (isa<CallInst>(I))
1306 if (!BlockColors.empty() &&
1307 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1308 return false;
1309 }
1310
1311 if (CurLoop->contains(UI)) {
1312 if (IsFree) {
1313 FreeInLoop = true;
1314 continue;
1315 }
1316 return false;
1317 }
1318 }
1319 return true;
1320}
1321
1322static Instruction *cloneInstructionInExitBlock(
1323 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1324 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1325 Instruction *New;
1326 if (auto *CI = dyn_cast<CallInst>(&I)) {
1327 const auto &BlockColors = SafetyInfo->getBlockColors();
1328
1329 // Sinking call-sites need to be handled differently from other
1330 // instructions. The cloned call-site needs a funclet bundle operand
1331 // appropriate for its location in the CFG.
1332 SmallVector<OperandBundleDef, 1> OpBundles;
1333 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1334 BundleIdx != BundleEnd; ++BundleIdx) {
1335 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1336 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1337 continue;
1338
1339 OpBundles.emplace_back(Bundle);
1340 }
1341
1342 if (!BlockColors.empty()) {
1343 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1344 assert(CV.size() == 1 && "non-unique color for exit block!")((CV.size() == 1 && "non-unique color for exit block!"
) ? static_cast<void> (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1344, __PRETTY_FUNCTION__))
;
1345 BasicBlock *BBColor = CV.front();
1346 Instruction *EHPad = BBColor->getFirstNonPHI();
1347 if (EHPad->isEHPad())
1348 OpBundles.emplace_back("funclet", EHPad);
1349 }
1350
1351 New = CallInst::Create(CI, OpBundles);
1352 } else {
1353 New = I.clone();
1354 }
1355
1356 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1357 if (!I.getName().empty())
1358 New->setName(I.getName() + ".le");
1359
1360 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1361 // Create a new MemoryAccess and let MemorySSA set its defining access.
1362 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1363 New, nullptr, New->getParent(), MemorySSA::Beginning);
1364 if (NewMemAcc) {
1365 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1366 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1367 else {
1368 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1369 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1370 }
1371 }
1372 }
1373
1374 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1375 // particularly cheap because we can rip off the PHI node that we're
1376 // replacing for the number and blocks of the predecessors.
1377 // OPT: If this shows up in a profile, we can instead finish sinking all
1378 // invariant instructions, and then walk their operands to re-establish
1379 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1380 // sinking bottom-up.
1381 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1382 ++OI)
1383 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1384 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1385 if (!OLoop->contains(&PN)) {
1386 PHINode *OpPN =
1387 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1388 OInst->getName() + ".lcssa", &ExitBlock.front());
1389 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1390 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1391 *OI = OpPN;
1392 }
1393 return New;
1394}
1395
1396static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1397 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1398 if (AST)
1399 AST->deleteValue(&I);
1400 if (MSSAU)
1401 MSSAU->removeMemoryAccess(&I);
1402 SafetyInfo.removeInstruction(&I);
1403 I.eraseFromParent();
1404}
1405
1406static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1407 ICFLoopSafetyInfo &SafetyInfo,
1408 MemorySSAUpdater *MSSAU,
1409 ScalarEvolution *SE) {
1410 SafetyInfo.removeInstruction(&I);
1411 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1412 I.moveBefore(&Dest);
1413 if (MSSAU)
1414 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1415 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1416 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1417 MemorySSA::BeforeTerminator);
1418 if (SE)
1419 SE->forgetValue(&I);
1420}
1421
1422static Instruction *sinkThroughTriviallyReplaceablePHI(
1423 PHINode *TPN, Instruction *I, LoopInfo *LI,
1424 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1425 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1426 MemorySSAUpdater *MSSAU) {
1427 assert(isTriviallyReplaceablePHI(*TPN, *I) &&((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1428, __PRETTY_FUNCTION__))
1428 "Expect only trivially replaceable PHI")((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1428, __PRETTY_FUNCTION__))
;
1429 BasicBlock *ExitBlock = TPN->getParent();
1430 Instruction *New;
1431 auto It = SunkCopies.find(ExitBlock);
1432 if (It != SunkCopies.end())
1433 New = It->second;
1434 else
1435 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1436 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1437 return New;
1438}
1439
1440static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1441 BasicBlock *BB = PN->getParent();
1442 if (!BB->canSplitPredecessors())
1443 return false;
1444 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1445 // it require updating BlockColors for all offspring blocks accordingly. By
1446 // skipping such corner case, we can make updating BlockColors after splitting
1447 // predecessor fairly simple.
1448 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1449 return false;
1450 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1451 BasicBlock *BBPred = *PI;
1452 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1453 isa<CallBrInst>(BBPred->getTerminator()))
1454 return false;
1455 }
1456 return true;
1457}
1458
1459static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1460 LoopInfo *LI, const Loop *CurLoop,
1461 LoopSafetyInfo *SafetyInfo,
1462 MemorySSAUpdater *MSSAU) {
1463#ifndef NDEBUG
1464 SmallVector<BasicBlock *, 32> ExitBlocks;
1465 CurLoop->getUniqueExitBlocks(ExitBlocks);
1466 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1467 ExitBlocks.end());
1468#endif
1469 BasicBlock *ExitBB = PN->getParent();
1470 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1470, __PRETTY_FUNCTION__))
;
1471
1472 // Split predecessors of the loop exit to make instructions in the loop are
1473 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1474 // loop in the canonical form where each predecessor of each exit block should
1475 // be contained within the loop. For example, this will convert the loop below
1476 // from
1477 //
1478 // LB1:
1479 // %v1 =
1480 // br %LE, %LB2
1481 // LB2:
1482 // %v2 =
1483 // br %LE, %LB1
1484 // LE:
1485 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1486 //
1487 // to
1488 //
1489 // LB1:
1490 // %v1 =
1491 // br %LE.split, %LB2
1492 // LB2:
1493 // %v2 =
1494 // br %LE.split2, %LB1
1495 // LE.split:
1496 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1497 // br %LE
1498 // LE.split2:
1499 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1500 // br %LE
1501 // LE:
1502 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1503 //
1504 const auto &BlockColors = SafetyInfo->getBlockColors();
1505 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1506 while (!PredBBs.empty()) {
1507 BasicBlock *PredBB = *PredBBs.begin();
1508 assert(CurLoop->contains(PredBB) &&((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1509, __PRETTY_FUNCTION__))
1509 "Expect all predecessors are in the loop")((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1509, __PRETTY_FUNCTION__))
;
1510 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1511 BasicBlock *NewPred = SplitBlockPredecessors(
1512 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1513 // Since we do not allow splitting EH-block with BlockColors in
1514 // canSplitPredecessors(), we can simply assign predecessor's color to
1515 // the new block.
1516 if (!BlockColors.empty())
1517 // Grab a reference to the ColorVector to be inserted before getting the
1518 // reference to the vector we are copying because inserting the new
1519 // element in BlockColors might cause the map to be reallocated.
1520 SafetyInfo->copyColors(NewPred, PredBB);
1521 }
1522 PredBBs.remove(PredBB);
1523 }
1524}
1525
1526/// When an instruction is found to only be used outside of the loop, this
1527/// function moves it to the exit blocks and patches up SSA form as needed.
1528/// This method is guaranteed to remove the original instruction from its
1529/// position, and may either delete it or move it to outside of the loop.
1530///
1531static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1532 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1533 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1534 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1535 ORE->emit([&]() {
1536 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1537 << "sinking " << ore::NV("Inst", &I);
1538 });
1539 bool Changed = false;
1540 if (isa<LoadInst>(I))
1541 ++NumMovedLoads;
1542 else if (isa<CallInst>(I))
1543 ++NumMovedCalls;
1544 ++NumSunk;
1545
1546 // Iterate over users to be ready for actual sinking. Replace users via
1547 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1548 SmallPtrSet<Instruction *, 8> VisitedUsers;
1549 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1550 auto *User = cast<Instruction>(*UI);
1551 Use &U = UI.getUse();
1552 ++UI;
1553
1554 if (VisitedUsers.count(User) || CurLoop->contains(User))
1555 continue;
1556
1557 if (!DT->isReachableFromEntry(User->getParent())) {
1558 U = UndefValue::get(I.getType());
1559 Changed = true;
1560 continue;
1561 }
1562
1563 // The user must be a PHI node.
1564 PHINode *PN = cast<PHINode>(User);
1565
1566 // Surprisingly, instructions can be used outside of loops without any
1567 // exits. This can only happen in PHI nodes if the incoming block is
1568 // unreachable.
1569 BasicBlock *BB = PN->getIncomingBlock(U);
1570 if (!DT->isReachableFromEntry(BB)) {
1571 U = UndefValue::get(I.getType());
1572 Changed = true;
1573 continue;
1574 }
1575
1576 VisitedUsers.insert(PN);
1577 if (isTriviallyReplaceablePHI(*PN, I))
1578 continue;
1579
1580 if (!canSplitPredecessors(PN, SafetyInfo))
1581 return Changed;
1582
1583 // Split predecessors of the PHI so that we can make users trivially
1584 // replaceable.
1585 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1586
1587 // Should rebuild the iterators, as they may be invalidated by
1588 // splitPredecessorsOfLoopExit().
1589 UI = I.user_begin();
1590 UE = I.user_end();
1591 }
1592
1593 if (VisitedUsers.empty())
1594 return Changed;
1595
1596#ifndef NDEBUG
1597 SmallVector<BasicBlock *, 32> ExitBlocks;
1598 CurLoop->getUniqueExitBlocks(ExitBlocks);
1599 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1600 ExitBlocks.end());
1601#endif
1602
1603 // Clones of this instruction. Don't create more than one per exit block!
1604 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1605
1606 // If this instruction is only used outside of the loop, then all users are
1607 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1608 // the instruction.
1609 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1610 for (auto *UI : Users) {
1611 auto *User = cast<Instruction>(UI);
1612
1613 if (CurLoop->contains(User))
1614 continue;
1615
1616 PHINode *PN = cast<PHINode>(User);
1617 assert(ExitBlockSet.count(PN->getParent()) &&((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1618, __PRETTY_FUNCTION__))
1618 "The LCSSA PHI is not in an exit block!")((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1618, __PRETTY_FUNCTION__))
;
1619 // The PHI must be trivially replaceable.
1620 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1621 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1622 PN->replaceAllUsesWith(New);
1623 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1624 Changed = true;
1625 }
1626 return Changed;
1627}
1628
1629/// When an instruction is found to only use loop invariant operands that
1630/// is safe to hoist, this instruction is called to do the dirty work.
1631///
1632static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1633 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1634 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1635 OptimizationRemarkEmitter *ORE) {
1636 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
1637 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
;
1638 ORE->emit([&]() {
1639 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1640 << ore::NV("Inst", &I);
1641 });
1642
1643 // Metadata can be dependent on conditions we are hoisting above.
1644 // Conservatively strip all metadata on the instruction unless we were
1645 // guaranteed to execute I if we entered the loop, in which case the metadata
1646 // is valid in the loop preheader.
1647 if (I.hasMetadataOtherThanDebugLoc() &&
1648 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1649 // time in isGuaranteedToExecute if we don't actually have anything to
1650 // drop. It is a compile time optimization, not required for correctness.
1651 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1652 I.dropUnknownNonDebugMetadata();
1653
1654 if (isa<PHINode>(I))
1655 // Move the new node to the end of the phi list in the destination block.
1656 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1657 else
1658 // Move the new node to the destination block, before its terminator.
1659 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1660
1661 // Apply line 0 debug locations when we are moving instructions to different
1662 // basic blocks because we want to avoid jumpy line tables.
1663 if (const DebugLoc &DL = I.getDebugLoc())
1664 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1665
1666 if (isa<LoadInst>(I))
1667 ++NumMovedLoads;
1668 else if (isa<CallInst>(I))
1669 ++NumMovedCalls;
1670 ++NumHoisted;
1671}
1672
1673/// Only sink or hoist an instruction if it is not a trapping instruction,
1674/// or if the instruction is known not to trap when moved to the preheader.
1675/// or if it is a trapping instruction and is guaranteed to execute.
1676static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1677 const DominatorTree *DT,
1678 const Loop *CurLoop,
1679 const LoopSafetyInfo *SafetyInfo,
1680 OptimizationRemarkEmitter *ORE,
1681 const Instruction *CtxI) {
1682 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1683 return true;
1684
1685 bool GuaranteedToExecute =
1686 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1687
1688 if (!GuaranteedToExecute) {
1689 auto *LI = dyn_cast<LoadInst>(&Inst);
1690 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1691 ORE->emit([&]() {
1692 return OptimizationRemarkMissed(
1693 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1694 << "failed to hoist load with loop-invariant address "
1695 "because load is conditionally executed";
1696 });
1697 }
1698
1699 return GuaranteedToExecute;
1700}
1701
1702namespace {
1703class LoopPromoter : public LoadAndStorePromoter {
1704 Value *SomePtr; // Designated pointer to store to.
1705 const SmallSetVector<Value *, 8> &PointerMustAliases;
1706 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1707 SmallVectorImpl<Instruction *> &LoopInsertPts;
1708 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1709 PredIteratorCache &PredCache;
1710 AliasSetTracker &AST;
1711 MemorySSAUpdater *MSSAU;
1712 LoopInfo &LI;
1713 DebugLoc DL;
1714 int Alignment;
1715 bool UnorderedAtomic;
1716 AAMDNodes AATags;
1717 ICFLoopSafetyInfo &SafetyInfo;
1718
1719 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1720 if (Instruction *I = dyn_cast<Instruction>(V))
1721 if (Loop *L = LI.getLoopFor(I->getParent()))
1722 if (!L->contains(BB)) {
1723 // We need to create an LCSSA PHI node for the incoming value and
1724 // store that.
1725 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1726 I->getName() + ".lcssa", &BB->front());
1727 for (BasicBlock *Pred : PredCache.get(BB))
1728 PN->addIncoming(I, Pred);
1729 return PN;
1730 }
1731 return V;
1732 }
1733
1734public:
1735 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1736 const SmallSetVector<Value *, 8> &PMA,
1737 SmallVectorImpl<BasicBlock *> &LEB,
1738 SmallVectorImpl<Instruction *> &LIP,
1739 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1740 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1741 DebugLoc dl, int alignment, bool UnorderedAtomic,
1742 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1743 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1744 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1745 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1746 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1747 SafetyInfo(SafetyInfo) {}
1748
1749 bool isInstInList(Instruction *I,
1750 const SmallVectorImpl<Instruction *> &) const override {
1751 Value *Ptr;
1752 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1753 Ptr = LI->getOperand(0);
1754 else
1755 Ptr = cast<StoreInst>(I)->getPointerOperand();
1756 return PointerMustAliases.count(Ptr);
1757 }
1758
1759 void doExtraRewritesBeforeFinalDeletion() override {
1760 // Insert stores after in the loop exit blocks. Each exit block gets a
1761 // store of the live-out values that feed them. Since we've already told
1762 // the SSA updater about the defs in the loop and the preheader
1763 // definition, it is all set and we can start using it.
1764 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1765 BasicBlock *ExitBlock = LoopExitBlocks[i];
1766 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1767 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1768 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1769 Instruction *InsertPos = LoopInsertPts[i];
1770 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1771 if (UnorderedAtomic)
1772 NewSI->setOrdering(AtomicOrdering::Unordered);
1773 NewSI->setAlignment(Align(Alignment));
1774 NewSI->setDebugLoc(DL);
1775 if (AATags)
1776 NewSI->setAAMetadata(AATags);
1777
1778 if (MSSAU) {
1779 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1780 MemoryAccess *NewMemAcc;
1781 if (!MSSAInsertPoint) {
1782 NewMemAcc = MSSAU->createMemoryAccessInBB(
1783 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1784 } else {
1785 NewMemAcc =
1786 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1787 }
1788 MSSAInsertPts[i] = NewMemAcc;
1789 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1790 // FIXME: true for safety, false may still be correct.
1791 }
1792 }
1793 }
1794
1795 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1796 // Update alias analysis.
1797 AST.copyValue(LI, V);
1798 }
1799 void instructionDeleted(Instruction *I) const override {
1800 SafetyInfo.removeInstruction(I);
1801 AST.deleteValue(I);
1802 if (MSSAU)
1803 MSSAU->removeMemoryAccess(I);
1804 }
1805};
1806
1807
1808/// Return true iff we can prove that a caller of this function can not inspect
1809/// the contents of the provided object in a well defined program.
1810bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1811 if (isa<AllocaInst>(Object))
1812 // Since the alloca goes out of scope, we know the caller can't retain a
1813 // reference to it and be well defined. Thus, we don't need to check for
1814 // capture.
1815 return true;
1816
1817 // For all other objects we need to know that the caller can't possibly
1818 // have gotten a reference to the object. There are two components of
1819 // that:
1820 // 1) Object can't be escaped by this function. This is what
1821 // PointerMayBeCaptured checks.
1822 // 2) Object can't have been captured at definition site. For this, we
1823 // need to know the return value is noalias. At the moment, we use a
1824 // weaker condition and handle only AllocLikeFunctions (which are
1825 // known to be noalias). TODO
1826 return isAllocLikeFn(Object, TLI) &&
1827 !PointerMayBeCaptured(Object, true, true);
1828}
1829
1830} // namespace
1831
1832/// Try to promote memory values to scalars by sinking stores out of the
1833/// loop and moving loads to before the loop. We do this by looping over
1834/// the stores in the loop, looking for stores to Must pointers which are
1835/// loop invariant.
1836///
1837bool llvm::promoteLoopAccessesToScalars(
1838 const SmallSetVector<Value *, 8> &PointerMustAliases,
1839 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1840 SmallVectorImpl<Instruction *> &InsertPts,
1841 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1842 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1843 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1844 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1845 // Verify inputs.
1846 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1848, __PRETTY_FUNCTION__))
1847 CurAST != nullptr && SafetyInfo != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1848, __PRETTY_FUNCTION__))
1848 "Unexpected Input to promoteLoopAccessesToScalars")((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1848, __PRETTY_FUNCTION__))
;
1849
1850 Value *SomePtr = *PointerMustAliases.begin();
1851 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1852
1853 // It is not safe to promote a load/store from the loop if the load/store is
1854 // conditional. For example, turning:
1855 //
1856 // for () { if (c) *P += 1; }
1857 //
1858 // into:
1859 //
1860 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1861 //
1862 // is not safe, because *P may only be valid to access if 'c' is true.
1863 //
1864 // The safety property divides into two parts:
1865 // p1) The memory may not be dereferenceable on entry to the loop. In this
1866 // case, we can't insert the required load in the preheader.
1867 // p2) The memory model does not allow us to insert a store along any dynamic
1868 // path which did not originally have one.
1869 //
1870 // If at least one store is guaranteed to execute, both properties are
1871 // satisfied, and promotion is legal.
1872 //
1873 // This, however, is not a necessary condition. Even if no store/load is
1874 // guaranteed to execute, we can still establish these properties.
1875 // We can establish (p1) by proving that hoisting the load into the preheader
1876 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1877 // can use any access within the alias set to prove dereferenceability,
1878 // since they're all must alias.
1879 //
1880 // There are two ways establish (p2):
1881 // a) Prove the location is thread-local. In this case the memory model
1882 // requirement does not apply, and stores are safe to insert.
1883 // b) Prove a store dominates every exit block. In this case, if an exit
1884 // blocks is reached, the original dynamic path would have taken us through
1885 // the store, so inserting a store into the exit block is safe. Note that this
1886 // is different from the store being guaranteed to execute. For instance,
1887 // if an exception is thrown on the first iteration of the loop, the original
1888 // store is never executed, but the exit blocks are not executed either.
1889
1890 bool DereferenceableInPH = false;
1891 bool SafeToInsertStore = false;
1892
1893 SmallVector<Instruction *, 64> LoopUses;
1894
1895 // We start with an alignment of one and try to find instructions that allow
1896 // us to prove better alignment.
1897 Align Alignment;
1898 // Keep track of which types of access we see
1899 bool SawUnorderedAtomic = false;
1900 bool SawNotAtomic = false;
1901 AAMDNodes AATags;
1902
1903 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1904
1905 bool IsKnownThreadLocalObject = false;
1906 if (SafetyInfo->anyBlockMayThrow()) {
1907 // If a loop can throw, we have to insert a store along each unwind edge.
1908 // That said, we can't actually make the unwind edge explicit. Therefore,
1909 // we have to prove that the store is dead along the unwind edge. We do
1910 // this by proving that the caller can't have a reference to the object
1911 // after return and thus can't possibly load from the object.
1912 Value *Object = getUnderlyingObject(SomePtr);
1913 if (!isKnownNonEscaping(Object, TLI))
1914 return false;
1915 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1916 // visible to other threads if captured and used during their lifetimes.
1917 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1918 }
1919
1920 // Check that all of the pointers in the alias set have the same type. We
1921 // cannot (yet) promote a memory location that is loaded and stored in
1922 // different sizes. While we are at it, collect alignment and AA info.
1923 for (Value *ASIV : PointerMustAliases) {
1924 // Check that all of the pointers in the alias set have the same type. We
1925 // cannot (yet) promote a memory location that is loaded and stored in
1926 // different sizes.
1927 if (SomePtr->getType() != ASIV->getType())
1928 return false;
1929
1930 for (User *U : ASIV->users()) {
1931 // Ignore instructions that are outside the loop.
1932 Instruction *UI = dyn_cast<Instruction>(U);
1933 if (!UI || !CurLoop->contains(UI))
1934 continue;
1935
1936 // If there is an non-load/store instruction in the loop, we can't promote
1937 // it.
1938 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1939 if (!Load->isUnordered())
1940 return false;
1941
1942 SawUnorderedAtomic |= Load->isAtomic();
1943 SawNotAtomic |= !Load->isAtomic();
1944
1945 Align InstAlignment = Load->getAlign();
1946
1947 // Note that proving a load safe to speculate requires proving
1948 // sufficient alignment at the target location. Proving it guaranteed
1949 // to execute does as well. Thus we can increase our guaranteed
1950 // alignment as well.
1951 if (!DereferenceableInPH || (InstAlignment > Alignment))
1952 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1953 ORE, Preheader->getTerminator())) {
1954 DereferenceableInPH = true;
1955 Alignment = std::max(Alignment, InstAlignment);
1956 }
1957 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
1958 // Stores *of* the pointer are not interesting, only stores *to* the
1959 // pointer.
1960 if (UI->getOperand(1) != ASIV)
1961 continue;
1962 if (!Store->isUnordered())
1963 return false;
1964
1965 SawUnorderedAtomic |= Store->isAtomic();
1966 SawNotAtomic |= !Store->isAtomic();
1967
1968 // If the store is guaranteed to execute, both properties are satisfied.
1969 // We may want to check if a store is guaranteed to execute even if we
1970 // already know that promotion is safe, since it may have higher
1971 // alignment than any other guaranteed stores, in which case we can
1972 // raise the alignment on the promoted store.
1973 Align InstAlignment = Store->getAlign();
1974
1975 if (!DereferenceableInPH || !SafeToInsertStore ||
1976 (InstAlignment > Alignment)) {
1977 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
1978 DereferenceableInPH = true;
1979 SafeToInsertStore = true;
1980 Alignment = std::max(Alignment, InstAlignment);
1981 }
1982 }
1983
1984 // If a store dominates all exit blocks, it is safe to sink.
1985 // As explained above, if an exit block was executed, a dominating
1986 // store must have been executed at least once, so we are not
1987 // introducing stores on paths that did not have them.
1988 // Note that this only looks at explicit exit blocks. If we ever
1989 // start sinking stores into unwind edges (see above), this will break.
1990 if (!SafeToInsertStore)
1991 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
1992 return DT->dominates(Store->getParent(), Exit);
1993 });
1994
1995 // If the store is not guaranteed to execute, we may still get
1996 // deref info through it.
1997 if (!DereferenceableInPH) {
1998 DereferenceableInPH = isDereferenceableAndAlignedPointer(
1999 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2000 Store->getAlign(), MDL, Preheader->getTerminator(), DT);
2001 }
2002 } else
2003 return false; // Not a load or store.
2004
2005 // Merge the AA tags.
2006 if (LoopUses.empty()) {
2007 // On the first load/store, just take its AA tags.
2008 UI->getAAMetadata(AATags);
2009 } else if (AATags) {
2010 UI->getAAMetadata(AATags, /* Merge = */ true);
2011 }
2012
2013 LoopUses.push_back(UI);
2014 }
2015 }
2016
2017 // If we found both an unordered atomic instruction and a non-atomic memory
2018 // access, bail. We can't blindly promote non-atomic to atomic since we
2019 // might not be able to lower the result. We can't downgrade since that
2020 // would violate memory model. Also, align 0 is an error for atomics.
2021 if (SawUnorderedAtomic && SawNotAtomic)
2022 return false;
2023
2024 // If we're inserting an atomic load in the preheader, we must be able to
2025 // lower it. We're only guaranteed to be able to lower naturally aligned
2026 // atomics.
2027 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2028 if (SawUnorderedAtomic &&
2029 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2030 return false;
2031
2032 // If we couldn't prove we can hoist the load, bail.
2033 if (!DereferenceableInPH)
2034 return false;
2035
2036 // We know we can hoist the load, but don't have a guaranteed store.
2037 // Check whether the location is thread-local. If it is, then we can insert
2038 // stores along paths which originally didn't have them without violating the
2039 // memory model.
2040 if (!SafeToInsertStore) {
2041 if (IsKnownThreadLocalObject)
2042 SafeToInsertStore = true;
2043 else {
2044 Value *Object = getUnderlyingObject(SomePtr);
2045 SafeToInsertStore =
2046 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2047 !PointerMayBeCaptured(Object, true, true);
2048 }
2049 }
2050
2051 // If we've still failed to prove we can sink the store, give up.
2052 if (!SafeToInsertStore)
2053 return false;
2054
2055 // Otherwise, this is safe to promote, lets do it!
2056 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2057 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2058 ORE->emit([&]() {
2059 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2060 LoopUses[0])
2061 << "Moving accesses to memory location out of the loop";
2062 });
2063 ++NumPromoted;
2064
2065 // Look at all the loop uses, and try to merge their locations.
2066 std::vector<const DILocation *> LoopUsesLocs;
2067 for (auto U : LoopUses)
2068 LoopUsesLocs.push_back(U->getDebugLoc().get());
2069 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2070
2071 // We use the SSAUpdater interface to insert phi nodes as required.
2072 SmallVector<PHINode *, 16> NewPHIs;
2073 SSAUpdater SSA(&NewPHIs);
2074 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2075 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2076 Alignment.value(), SawUnorderedAtomic, AATags,
2077 *SafetyInfo);
2078
2079 // Set up the preheader to have a definition of the value. It is the live-out
2080 // value from the preheader that uses in the loop will use.
2081 LoadInst *PreheaderLoad = new LoadInst(
2082 SomePtr->getType()->getPointerElementType(), SomePtr,
2083 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2084 if (SawUnorderedAtomic)
2085 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2086 PreheaderLoad->setAlignment(Alignment);
2087 PreheaderLoad->setDebugLoc(DebugLoc());
2088 if (AATags)
2089 PreheaderLoad->setAAMetadata(AATags);
2090 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2091
2092 if (MSSAU) {
2093 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2094 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2095 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2096 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2097 }
2098
2099 if (MSSAU && VerifyMemorySSA)
2100 MSSAU->getMemorySSA()->verifyMemorySSA();
2101 // Rewrite all the loads in the loop and remember all the definitions from
2102 // stores in the loop.
2103 Promoter.run(LoopUses);
2104
2105 if (MSSAU && VerifyMemorySSA)
2106 MSSAU->getMemorySSA()->verifyMemorySSA();
2107 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2108 if (PreheaderLoad->use_empty())
2109 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2110
2111 return true;
2112}
2113
2114/// Returns an owning pointer to an alias set which incorporates aliasing info
2115/// from L and all subloops of L.
2116std::unique_ptr<AliasSetTracker>
2117LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2118 AAResults *AA) {
2119 auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2120
2121 // Add everything from all the sub loops.
2122 for (Loop *InnerL : L->getSubLoops())
2123 for (BasicBlock *BB : InnerL->blocks())
2124 CurAST->add(*BB);
2125
2126 // And merge in this loop (without anything from inner loops).
2127 for (BasicBlock *BB : L->blocks())
2128 if (LI->getLoopFor(BB) == L)
2129 CurAST->add(*BB);
2130
2131 return CurAST;
2132}
2133
2134std::unique_ptr<AliasSetTracker>
2135LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2136 Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
2137 auto *MSSA = MSSAU->getMemorySSA();
2138 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2139 CurAST->addAllInstructionsInLoopUsingMSSA();
2140 return CurAST;
2141}
2142
2143static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2144 AliasSetTracker *CurAST, Loop *CurLoop,
2145 AAResults *AA) {
2146 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2147 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2148
2149 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2150 return isInvalidatedAccordingToAST;
2151
2152 // Check with a diagnostic analysis if we can refine the information above.
2153 // This is to identify the limitations of using the AST.
2154 // The alias set mechanism used by LICM has a major weakness in that it
2155 // combines all things which may alias into a single set *before* asking
2156 // modref questions. As a result, a single readonly call within a loop will
2157 // collapse all loads and stores into a single alias set and report
2158 // invalidation if the loop contains any store. For example, readonly calls
2159 // with deopt states have this form and create a general alias set with all
2160 // loads and stores. In order to get any LICM in loops containing possible
2161 // deopt states we need a more precise invalidation of checking the mod ref
2162 // info of each instruction within the loop and LI. This has a complexity of
2163 // O(N^2), so currently, it is used only as a diagnostic tool since the
2164 // default value of LICMN2Threshold is zero.
2165
2166 // Don't look at nested loops.
2167 if (CurLoop->begin() != CurLoop->end())
2168 return true;
2169
2170 int N = 0;
2171 for (BasicBlock *BB : CurLoop->getBlocks())
2172 for (Instruction &I : *BB) {
2173 if (N >= LICMN2Theshold) {
2174 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
2175 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
;
2176 return true;
2177 }
2178 N++;
2179 auto Res = AA->getModRefInfo(&I, MemLoc);
2180 if (isModSet(Res)) {
2181 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
2182 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
;
2183 return true;
2184 }
2185 }
2186 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr) << "\n"; } } while (false)
;
2187 return false;
2188}
2189
2190static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2191 Loop *CurLoop,
2192 SinkAndHoistLICMFlags &Flags) {
2193 // For hoisting, use the walker to determine safety
2194 if (!Flags.IsSink) {
2195 MemoryAccess *Source;
2196 // See declaration of SetLicmMssaOptCap for usage details.
2197 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2198 Source = MU->getDefiningAccess();
2199 else {
2200 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2201 Flags.LicmMssaOptCounter++;
2202 }
2203 return !MSSA->isLiveOnEntryDef(Source) &&
2204 CurLoop->contains(Source->getBlock());
2205 }
2206
2207 // For sinking, we'd need to check all Defs below this use. The getClobbering
2208 // call will look on the backedge of the loop, but will check aliasing with
2209 // the instructions on the previous iteration.
2210 // For example:
2211 // for (i ... )
2212 // load a[i] ( Use (LoE)
2213 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2214 // i++;
2215 // The load sees no clobbering inside the loop, as the backedge alias check
2216 // does phi translation, and will check aliasing against store a[i-1].
2217 // However sinking the load outside the loop, below the store is incorrect.
2218
2219 // For now, only sink if there are no Defs in the loop, and the existing ones
2220 // precede the use and are in the same block.
2221 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2222 // needs PostDominatorTreeAnalysis.
2223 // FIXME: More precise: no Defs that alias this Use.
2224 if (Flags.NoOfMemAccTooLarge)
2225 return true;
2226 for (auto *BB : CurLoop->getBlocks())
2227 if (auto *Accesses = MSSA->getBlockDefs(BB))
2228 for (const auto &MA : *Accesses)
2229 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2230 if (MU->getBlock() != MD->getBlock() ||
2231 !MSSA->locallyDominates(MD, MU))
2232 return true;
2233 return false;
2234}
2235
2236/// Little predicate that returns true if the specified basic block is in
2237/// a subloop of the current one, not the current one itself.
2238///
2239static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2240 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((CurLoop->contains(BB) && "Only valid if BB is IN the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2240, __PRETTY_FUNCTION__))
;
2241 return LI->getLoopFor(BB) != CurLoop;
2242}

/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
34
Assuming the condition is true
36
Returning the value 1, which participates in a condition later
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
35
Assuming the condition is true
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 898, __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
941 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
957 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Exchange the two operands to this instruction in such a way that it does
1294 /// not modify the semantics of the instruction. The predicate value may be
1295 /// changed to retain the same result if the predicate is order dependent
1296 /// (e.g. ult).
1297 /// Swap operands and adjust predicate.
1298 void swapOperands() {
1299 setPredicate(getSwappedPredicate());
1300 Op<0>().swap(Op<1>());
1301 }
1302
1303 // Methods for support type inquiry through isa, cast, and dyn_cast:
1304 static bool classof(const Instruction *I) {
1305 return I->getOpcode() == Instruction::ICmp;
1306 }
1307 static bool classof(const Value *V) {
1308 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1309 }
1310};
1311
1312//===----------------------------------------------------------------------===//
1313// FCmpInst Class
1314//===----------------------------------------------------------------------===//
1315
1316/// This instruction compares its operands according to the predicate given
1317/// to the constructor. It only operates on floating point values or packed
1318/// vectors of floating point values. The operands must be identical types.
1319/// Represents a floating point comparison operator.
1320class FCmpInst: public CmpInst {
1321 void AssertOK() {
1322 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1322, __PRETTY_FUNCTION__))
;
1323 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1324, __PRETTY_FUNCTION__))
1324 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1324, __PRETTY_FUNCTION__))
;
1325 // Check that the operands are the right type
1326 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1327, __PRETTY_FUNCTION__))
1327 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1327, __PRETTY_FUNCTION__))
;
1328 }
1329
1330protected:
1331 // Note: Instruction needs to be a friend here to call cloneImpl.
1332 friend class Instruction;
1333
1334 /// Clone an identical FCmpInst
1335 FCmpInst *cloneImpl() const;
1336
1337public:
1338 /// Constructor with insert-before-instruction semantics.
1339 FCmpInst(
1340 Instruction *InsertBefore, ///< Where to insert
1341 Predicate pred, ///< The predicate to use for the comparison
1342 Value *LHS, ///< The left-hand-side of the expression
1343 Value *RHS, ///< The right-hand-side of the expression
1344 const Twine &NameStr = "" ///< Name of the instruction
1345 ) : CmpInst(makeCmpResultType(LHS->getType()),
1346 Instruction::FCmp, pred, LHS, RHS, NameStr,
1347 InsertBefore) {
1348 AssertOK();
1349 }
1350
1351 /// Constructor with insert-at-end semantics.
1352 FCmpInst(
1353 BasicBlock &InsertAtEnd, ///< Block to insert into.
1354 Predicate pred, ///< The predicate to use for the comparison
1355 Value *LHS, ///< The left-hand-side of the expression
1356 Value *RHS, ///< The right-hand-side of the expression
1357 const Twine &NameStr = "" ///< Name of the instruction
1358 ) : CmpInst(makeCmpResultType(LHS->getType()),
1359 Instruction::FCmp, pred, LHS, RHS, NameStr,
1360 &InsertAtEnd) {
1361 AssertOK();
1362 }
1363
1364 /// Constructor with no-insertion semantics
1365 FCmpInst(
1366 Predicate Pred, ///< The predicate to use for the comparison
1367 Value *LHS, ///< The left-hand-side of the expression
1368 Value *RHS, ///< The right-hand-side of the expression
1369 const Twine &NameStr = "", ///< Name of the instruction
1370 Instruction *FlagsSource = nullptr
1371 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1372 RHS, NameStr, nullptr, FlagsSource) {
1373 AssertOK();
1374 }
1375
1376 /// @returns true if the predicate of this instruction is EQ or NE.
1377 /// Determine if this is an equality predicate.
1378 static bool isEquality(Predicate Pred) {
1379 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1380 Pred == FCMP_UNE;
1381 }
1382
1383 /// @returns true if the predicate of this instruction is EQ or NE.
1384 /// Determine if this is an equality predicate.
1385 bool isEquality() const { return isEquality(getPredicate()); }
1386
1387 /// @returns true if the predicate of this instruction is commutative.
1388 /// Determine if this is a commutative predicate.
1389 bool isCommutative() const {
1390 return isEquality() ||
1391 getPredicate() == FCMP_FALSE ||
1392 getPredicate() == FCMP_TRUE ||
1393 getPredicate() == FCMP_ORD ||
1394 getPredicate() == FCMP_UNO;
1395 }
1396
1397 /// @returns true if the predicate is relational (not EQ or NE).
1398 /// Determine if this a relational predicate.
1399 bool isRelational() const { return !isEquality(); }
1400
1401 /// Exchange the two operands to this instruction in such a way that it does
1402 /// not modify the semantics of the instruction. The predicate value may be
1403 /// changed to retain the same result if the predicate is order dependent
1404 /// (e.g. ult).
1405 /// Swap operands and adjust predicate.
1406 void swapOperands() {
1407 setPredicate(getSwappedPredicate());
1408 Op<0>().swap(Op<1>());
1409 }
1410
1411 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1412 static bool classof(const Instruction *I) {
1413 return I->getOpcode() == Instruction::FCmp;
1414 }
1415 static bool classof(const Value *V) {
1416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1417 }
1418};
1419
1420//===----------------------------------------------------------------------===//
1421/// This class represents a function call, abstracting a target
1422/// machine's calling convention. This class uses low bit of the SubClassData
1423/// field to indicate whether or not this is a tail call. The rest of the bits
1424/// hold the calling convention of the call.
1425///
1426class CallInst : public CallBase {
1427 CallInst(const CallInst &CI);
1428
1429 /// Construct a CallInst given a range of arguments.
1430 /// Construct a CallInst from a range of arguments
1431 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1432 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1433 Instruction *InsertBefore);
1434
1435 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1436 const Twine &NameStr, Instruction *InsertBefore)
1437 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1438
1439 /// Construct a CallInst given a range of arguments.
1440 /// Construct a CallInst from a range of arguments
1441 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1442 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1443 BasicBlock *InsertAtEnd);
1444
1445 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1446 Instruction *InsertBefore);
1447
1448 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1449 BasicBlock *InsertAtEnd);
1450
1451 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1452 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1453 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1454
1455 /// Compute the number of operands to allocate.
1456 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1457 // We need one operand for the called function, plus the input operand
1458 // counts provided.
1459 return 1 + NumArgs + NumBundleInputs;
1460 }
1461
1462protected:
1463 // Note: Instruction needs to be a friend here to call cloneImpl.
1464 friend class Instruction;
1465
1466 CallInst *cloneImpl() const;
1467
1468public:
1469 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1470 Instruction *InsertBefore = nullptr) {
1471 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1472 }
1473
1474 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1475 const Twine &NameStr,
1476 Instruction *InsertBefore = nullptr) {
1477 return new (ComputeNumOperands(Args.size()))
1478 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1479 }
1480
1481 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1482 ArrayRef<OperandBundleDef> Bundles = None,
1483 const Twine &NameStr = "",
1484 Instruction *InsertBefore = nullptr) {
1485 const int NumOperands =
1486 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1487 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1488
1489 return new (NumOperands, DescriptorBytes)
1490 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1491 }
1492
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1494 BasicBlock *InsertAtEnd) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1500 return new (ComputeNumOperands(Args.size()))
1501 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1502 }
1503
1504 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1505 ArrayRef<OperandBundleDef> Bundles,
1506 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1507 const int NumOperands =
1508 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1509 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1510
1511 return new (NumOperands, DescriptorBytes)
1512 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1513 }
1514
1515 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1516 Instruction *InsertBefore = nullptr) {
1517 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1518 InsertBefore);
1519 }
1520
1521 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1522 ArrayRef<OperandBundleDef> Bundles = None,
1523 const Twine &NameStr = "",
1524 Instruction *InsertBefore = nullptr) {
1525 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1526 NameStr, InsertBefore);
1527 }
1528
1529 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1530 const Twine &NameStr,
1531 Instruction *InsertBefore = nullptr) {
1532 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1533 InsertBefore);
1534 }
1535
1536 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1537 BasicBlock *InsertAtEnd) {
1538 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1539 InsertAtEnd);
1540 }
1541
1542 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1543 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1544 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1545 InsertAtEnd);
1546 }
1547
1548 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1549 ArrayRef<OperandBundleDef> Bundles,
1550 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1551 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1552 NameStr, InsertAtEnd);
1553 }
1554
1555 /// Create a clone of \p CI with a different set of operand bundles and
1556 /// insert it before \p InsertPt.
1557 ///
1558 /// The returned call instruction is identical \p CI in every way except that
1559 /// the operand bundles for the new instruction are set to the operand bundles
1560 /// in \p Bundles.
1561 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1562 Instruction *InsertPt = nullptr);
1563
1564 /// Create a clone of \p CI with a different set of operand bundles and
1565 /// insert it before \p InsertPt.
1566 ///
1567 /// The returned call instruction is identical \p CI in every way except that
1568 /// the operand bundle for the new instruction is set to the operand bundle
1569 /// in \p Bundle.
1570 static CallInst *CreateWithReplacedBundle(CallInst *CI,
1571 OperandBundleDef Bundle,
1572 Instruction *InsertPt = nullptr);
1573
1574 /// Generate the IR for a call to malloc:
1575 /// 1. Compute the malloc call's argument as the specified type's size,
1576 /// possibly multiplied by the array size if the array size is not
1577 /// constant 1.
1578 /// 2. Call malloc with that argument.
1579 /// 3. Bitcast the result of the malloc call to the specified type.
1580 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1581 Type *AllocTy, Value *AllocSize,
1582 Value *ArraySize = nullptr,
1583 Function *MallocF = nullptr,
1584 const Twine &Name = "");
1585 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1586 Type *AllocTy, Value *AllocSize,
1587 Value *ArraySize = nullptr,
1588 Function *MallocF = nullptr,
1589 const Twine &Name = "");
1590 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1591 Type *AllocTy, Value *AllocSize,
1592 Value *ArraySize = nullptr,
1593 ArrayRef<OperandBundleDef> Bundles = None,
1594 Function *MallocF = nullptr,
1595 const Twine &Name = "");
1596 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1597 Type *AllocTy, Value *AllocSize,
1598 Value *ArraySize = nullptr,
1599 ArrayRef<OperandBundleDef> Bundles = None,
1600 Function *MallocF = nullptr,
1601 const Twine &Name = "");
1602 /// Generate the IR for a call to the builtin free function.
1603 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1604 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1605 static Instruction *CreateFree(Value *Source,
1606 ArrayRef<OperandBundleDef> Bundles,
1607 Instruction *InsertBefore);
1608 static Instruction *CreateFree(Value *Source,
1609 ArrayRef<OperandBundleDef> Bundles,
1610 BasicBlock *InsertAtEnd);
1611
1612 // Note that 'musttail' implies 'tail'.
1613 enum TailCallKind : unsigned {
1614 TCK_None = 0,
1615 TCK_Tail = 1,
1616 TCK_MustTail = 2,
1617 TCK_NoTail = 3,
1618 TCK_LAST = TCK_NoTail
1619 };
1620
1621 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1622 static_assert(
1623 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1624 "Bitfields must be contiguous");
1625
1626 TailCallKind getTailCallKind() const {
1627 return getSubclassData<TailCallKindField>();
1628 }
1629
1630 bool isTailCall() const {
1631 TailCallKind Kind = getTailCallKind();
1632 return Kind == TCK_Tail || Kind == TCK_MustTail;
1633 }
1634
1635 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1636
1637 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1638
1639 void setTailCallKind(TailCallKind TCK) {
1640 setSubclassData<TailCallKindField>(TCK);
1641 }
1642
1643 void setTailCall(bool IsTc = true) {
1644 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1645 }
1646
1647 /// Return true if the call can return twice
1648 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1649 void setCanReturnTwice() {
1650 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1651 }
1652
1653 // Methods for support type inquiry through isa, cast, and dyn_cast:
1654 static bool classof(const Instruction *I) {
1655 return I->getOpcode() == Instruction::Call;
1656 }
1657 static bool classof(const Value *V) {
1658 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1659 }
1660
1661 /// Updates profile metadata by scaling it by \p S / \p T.
1662 void updateProfWeight(uint64_t S, uint64_t T);
1663
1664private:
1665 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1666 // method so that subclasses cannot accidentally use it.
1667 template <typename Bitfield>
1668 void setSubclassData(typename Bitfield::Type Value) {
1669 Instruction::setSubclassData<Bitfield>(Value);
1670 }
1671};
1672
1673CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1674 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1675 BasicBlock *InsertAtEnd)
1676 : CallBase(Ty->getReturnType(), Instruction::Call,
1677 OperandTraits<CallBase>::op_end(this) -
1678 (Args.size() + CountBundleInputs(Bundles) + 1),
1679 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1680 InsertAtEnd) {
1681 init(Ty, Func, Args, Bundles, NameStr);
1682}
1683
1684CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1685 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1686 Instruction *InsertBefore)
1687 : CallBase(Ty->getReturnType(), Instruction::Call,
1688 OperandTraits<CallBase>::op_end(this) -
1689 (Args.size() + CountBundleInputs(Bundles) + 1),
1690 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1691 InsertBefore) {
1692 init(Ty, Func, Args, Bundles, NameStr);
1693}
1694
1695//===----------------------------------------------------------------------===//
1696// SelectInst Class
1697//===----------------------------------------------------------------------===//
1698
1699/// This class represents the LLVM 'select' instruction.
1700///
1701class SelectInst : public Instruction {
1702 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1703 Instruction *InsertBefore)
1704 : Instruction(S1->getType(), Instruction::Select,
1705 &Op<0>(), 3, InsertBefore) {
1706 init(C, S1, S2);
1707 setName(NameStr);
1708 }
1709
1710 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1711 BasicBlock *InsertAtEnd)
1712 : Instruction(S1->getType(), Instruction::Select,
1713 &Op<0>(), 3, InsertAtEnd) {
1714 init(C, S1, S2);
1715 setName(NameStr);
1716 }
1717
1718 void init(Value *C, Value *S1, Value *S2) {
1719 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1719, __PRETTY_FUNCTION__))
;
1720 Op<0>() = C;
1721 Op<1>() = S1;
1722 Op<2>() = S2;
1723 }
1724
1725protected:
1726 // Note: Instruction needs to be a friend here to call cloneImpl.
1727 friend class Instruction;
1728
1729 SelectInst *cloneImpl() const;
1730
1731public:
1732 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1733 const Twine &NameStr = "",
1734 Instruction *InsertBefore = nullptr,
1735 Instruction *MDFrom = nullptr) {
1736 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1737 if (MDFrom)
1738 Sel->copyMetadata(*MDFrom);
1739 return Sel;
1740 }
1741
1742 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1743 const Twine &NameStr,
1744 BasicBlock *InsertAtEnd) {
1745 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1746 }
1747
1748 const Value *getCondition() const { return Op<0>(); }
1749 const Value *getTrueValue() const { return Op<1>(); }
1750 const Value *getFalseValue() const { return Op<2>(); }
1751 Value *getCondition() { return Op<0>(); }
1752 Value *getTrueValue() { return Op<1>(); }
1753 Value *getFalseValue() { return Op<2>(); }
1754
1755 void setCondition(Value *V) { Op<0>() = V; }
1756 void setTrueValue(Value *V) { Op<1>() = V; }
1757 void setFalseValue(Value *V) { Op<2>() = V; }
1758
1759 /// Swap the true and false values of the select instruction.
1760 /// This doesn't swap prof metadata.
1761 void swapValues() { Op<1>().swap(Op<2>()); }
1762
1763 /// Return a string if the specified operands are invalid
1764 /// for a select operation, otherwise return null.
1765 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1766
1767 /// Transparently provide more efficient getOperand methods.
1768 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1769
1770 OtherOps getOpcode() const {
1771 return static_cast<OtherOps>(Instruction::getOpcode());
1772 }
1773
1774 // Methods for support type inquiry through isa, cast, and dyn_cast:
1775 static bool classof(const Instruction *I) {
1776 return I->getOpcode() == Instruction::Select;
1777 }
1778 static bool classof(const Value *V) {
1779 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1780 }
1781};
1782
1783template <>
1784struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1785};
1786
1787DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1787, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1787, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1788
1789//===----------------------------------------------------------------------===//
1790// VAArgInst Class
1791//===----------------------------------------------------------------------===//
1792
1793/// This class represents the va_arg llvm instruction, which returns
1794/// an argument of the specified type given a va_list and increments that list
1795///
1796class VAArgInst : public UnaryInstruction {
1797protected:
1798 // Note: Instruction needs to be a friend here to call cloneImpl.
1799 friend class Instruction;
1800
1801 VAArgInst *cloneImpl() const;
1802
1803public:
1804 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1805 Instruction *InsertBefore = nullptr)
1806 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1807 setName(NameStr);
1808 }
1809
1810 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1811 BasicBlock *InsertAtEnd)
1812 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1813 setName(NameStr);
1814 }
1815
1816 Value *getPointerOperand() { return getOperand(0); }
1817 const Value *getPointerOperand() const { return getOperand(0); }
1818 static unsigned getPointerOperandIndex() { return 0U; }
1819
1820 // Methods for support type inquiry through isa, cast, and dyn_cast:
1821 static bool classof(const Instruction *I) {
1822 return I->getOpcode() == VAArg;
1823 }
1824 static bool classof(const Value *V) {
1825 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1826 }
1827};
1828
1829//===----------------------------------------------------------------------===//
1830// ExtractElementInst Class
1831//===----------------------------------------------------------------------===//
1832
1833/// This instruction extracts a single (scalar)
1834/// element from a VectorType value
1835///
1836class ExtractElementInst : public Instruction {
1837 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1838 Instruction *InsertBefore = nullptr);
1839 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1840 BasicBlock *InsertAtEnd);
1841
1842protected:
1843 // Note: Instruction needs to be a friend here to call cloneImpl.
1844 friend class Instruction;
1845
1846 ExtractElementInst *cloneImpl() const;
1847
1848public:
1849 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1850 const Twine &NameStr = "",
1851 Instruction *InsertBefore = nullptr) {
1852 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1853 }
1854
1855 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1856 const Twine &NameStr,
1857 BasicBlock *InsertAtEnd) {
1858 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1859 }
1860
1861 /// Return true if an extractelement instruction can be
1862 /// formed with the specified operands.
1863 static bool isValidOperands(const Value *Vec, const Value *Idx);
1864
1865 Value *getVectorOperand() { return Op<0>(); }
1866 Value *getIndexOperand() { return Op<1>(); }
1867 const Value *getVectorOperand() const { return Op<0>(); }
1868 const Value *getIndexOperand() const { return Op<1>(); }
1869
1870 VectorType *getVectorOperandType() const {
1871 return cast<VectorType>(getVectorOperand()->getType());
1872 }
1873
1874 /// Transparently provide more efficient getOperand methods.
1875 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1876
1877 // Methods for support type inquiry through isa, cast, and dyn_cast:
1878 static bool classof(const Instruction *I) {
1879 return I->getOpcode() == Instruction::ExtractElement;
1880 }
1881 static bool classof(const Value *V) {
1882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1883 }
1884};
1885
1886template <>
1887struct OperandTraits<ExtractElementInst> :
1888 public FixedNumOperandTraits<ExtractElementInst, 2> {
1889};
1890
1891DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1891, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1891, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1892
1893//===----------------------------------------------------------------------===//
1894// InsertElementInst Class
1895//===----------------------------------------------------------------------===//
1896
1897/// This instruction inserts a single (scalar)
1898/// element into a VectorType value
1899///
1900class InsertElementInst : public Instruction {
1901 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1902 const Twine &NameStr = "",
1903 Instruction *InsertBefore = nullptr);
1904 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1905 BasicBlock *InsertAtEnd);
1906
1907protected:
1908 // Note: Instruction needs to be a friend here to call cloneImpl.
1909 friend class Instruction;
1910
1911 InsertElementInst *cloneImpl() const;
1912
1913public:
1914 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1915 const Twine &NameStr = "",
1916 Instruction *InsertBefore = nullptr) {
1917 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1918 }
1919
1920 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1921 const Twine &NameStr,
1922 BasicBlock *InsertAtEnd) {
1923 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1924 }
1925
1926 /// Return true if an insertelement instruction can be
1927 /// formed with the specified operands.
1928 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1929 const Value *Idx);
1930
1931 /// Overload to return most specific vector type.
1932 ///
1933 VectorType *getType() const {
1934 return cast<VectorType>(Instruction::getType());
1935 }
1936
1937 /// Transparently provide more efficient getOperand methods.
1938 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1939
1940 // Methods for support type inquiry through isa, cast, and dyn_cast:
1941 static bool classof(const Instruction *I) {
1942 return I->getOpcode() == Instruction::InsertElement;
1943 }
1944 static bool classof(const Value *V) {
1945 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1946 }
1947};
1948
1949template <>
1950struct OperandTraits<InsertElementInst> :
1951 public FixedNumOperandTraits<InsertElementInst, 3> {
1952};
1953
1954DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1954, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 1954, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1955
1956//===----------------------------------------------------------------------===//
1957// ShuffleVectorInst Class
1958//===----------------------------------------------------------------------===//
1959
1960constexpr int UndefMaskElem = -1;
1961
1962/// This instruction constructs a fixed permutation of two
1963/// input vectors.
1964///
1965/// For each element of the result vector, the shuffle mask selects an element
1966/// from one of the input vectors to copy to the result. Non-negative elements
1967/// in the mask represent an index into the concatenated pair of input vectors.
1968/// UndefMaskElem (-1) specifies that the result element is undefined.
1969///
1970/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1971/// requirement may be relaxed in the future.
1972class ShuffleVectorInst : public Instruction {
1973 SmallVector<int, 4> ShuffleMask;
1974 Constant *ShuffleMaskForBitcode;
1975
1976protected:
1977 // Note: Instruction needs to be a friend here to call cloneImpl.
1978 friend class Instruction;
1979
1980 ShuffleVectorInst *cloneImpl() const;
1981
1982public:
1983 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1984 const Twine &NameStr = "",
1985 Instruction *InsertBefor = nullptr);
1986 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1987 const Twine &NameStr, BasicBlock *InsertAtEnd);
1988 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1989 const Twine &NameStr = "",
1990 Instruction *InsertBefor = nullptr);
1991 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1992 const Twine &NameStr, BasicBlock *InsertAtEnd);
1993
1994 void *operator new(size_t s) { return User::operator new(s, 2); }
1995
1996 /// Swap the operands and adjust the mask to preserve the semantics
1997 /// of the instruction.
1998 void commute();
1999
2000 /// Return true if a shufflevector instruction can be
2001 /// formed with the specified operands.
2002 static bool isValidOperands(const Value *V1, const Value *V2,
2003 const Value *Mask);
2004 static bool isValidOperands(const Value *V1, const Value *V2,
2005 ArrayRef<int> Mask);
2006
2007 /// Overload to return most specific vector type.
2008 ///
2009 VectorType *getType() const {
2010 return cast<VectorType>(Instruction::getType());
2011 }
2012
2013 /// Transparently provide more efficient getOperand methods.
2014 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2015
2016 /// Return the shuffle mask value of this instruction for the given element
2017 /// index. Return UndefMaskElem if the element is undef.
2018 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2019
2020 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2021 /// elements of the mask are returned as UndefMaskElem.
2022 static void getShuffleMask(const Constant *Mask,
2023 SmallVectorImpl<int> &Result);
2024
2025 /// Return the mask for this instruction as a vector of integers. Undefined
2026 /// elements of the mask are returned as UndefMaskElem.
2027 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2028 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2029 }
2030
2031 /// Return the mask for this instruction, for use in bitcode.
2032 ///
2033 /// TODO: This is temporary until we decide a new bitcode encoding for
2034 /// shufflevector.
2035 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2036
2037 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2038 Type *ResultTy);
2039
2040 void setShuffleMask(ArrayRef<int> Mask);
2041
2042 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2043
2044 /// Return true if this shuffle returns a vector with a different number of
2045 /// elements than its source vectors.
2046 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2047 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2048 bool changesLength() const {
2049 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2050 ->getElementCount()
2051 .getKnownMinValue();
2052 unsigned NumMaskElts = ShuffleMask.size();
2053 return NumSourceElts != NumMaskElts;
2054 }
2055
2056 /// Return true if this shuffle returns a vector with a greater number of
2057 /// elements than its source vectors.
2058 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2059 bool increasesLength() const {
2060 unsigned NumSourceElts =
2061 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2062 unsigned NumMaskElts = ShuffleMask.size();
2063 return NumSourceElts < NumMaskElts;
2064 }
2065
2066 /// Return true if this shuffle mask chooses elements from exactly one source
2067 /// vector.
2068 /// Example: <7,5,undef,7>
2069 /// This assumes that vector operands are the same length as the mask.
2070 static bool isSingleSourceMask(ArrayRef<int> Mask);
2071 static bool isSingleSourceMask(const Constant *Mask) {
2072 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2072, __PRETTY_FUNCTION__))
;
2073 SmallVector<int, 16> MaskAsInts;
2074 getShuffleMask(Mask, MaskAsInts);
2075 return isSingleSourceMask(MaskAsInts);
2076 }
2077
2078 /// Return true if this shuffle chooses elements from exactly one source
2079 /// vector without changing the length of that vector.
2080 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2081 /// TODO: Optionally allow length-changing shuffles.
2082 bool isSingleSource() const {
2083 return !changesLength() && isSingleSourceMask(ShuffleMask);
2084 }
2085
2086 /// Return true if this shuffle mask chooses elements from exactly one source
2087 /// vector without lane crossings. A shuffle using this mask is not
2088 /// necessarily a no-op because it may change the number of elements from its
2089 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2090 /// Example: <undef,undef,2,3>
2091 static bool isIdentityMask(ArrayRef<int> Mask);
2092 static bool isIdentityMask(const Constant *Mask) {
2093 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2093, __PRETTY_FUNCTION__))
;
2094 SmallVector<int, 16> MaskAsInts;
2095 getShuffleMask(Mask, MaskAsInts);
2096 return isIdentityMask(MaskAsInts);
2097 }
2098
2099 /// Return true if this shuffle chooses elements from exactly one source
2100 /// vector without lane crossings and does not change the number of elements
2101 /// from its input vectors.
2102 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2103 bool isIdentity() const {
2104 return !changesLength() && isIdentityMask(ShuffleMask);
2105 }
2106
2107 /// Return true if this shuffle lengthens exactly one source vector with
2108 /// undefs in the high elements.
2109 bool isIdentityWithPadding() const;
2110
2111 /// Return true if this shuffle extracts the first N elements of exactly one
2112 /// source vector.
2113 bool isIdentityWithExtract() const;
2114
2115 /// Return true if this shuffle concatenates its 2 source vectors. This
2116 /// returns false if either input is undefined. In that case, the shuffle is
2117 /// is better classified as an identity with padding operation.
2118 bool isConcat() const;
2119
2120 /// Return true if this shuffle mask chooses elements from its source vectors
2121 /// without lane crossings. A shuffle using this mask would be
2122 /// equivalent to a vector select with a constant condition operand.
2123 /// Example: <4,1,6,undef>
2124 /// This returns false if the mask does not choose from both input vectors.
2125 /// In that case, the shuffle is better classified as an identity shuffle.
2126 /// This assumes that vector operands are the same length as the mask
2127 /// (a length-changing shuffle can never be equivalent to a vector select).
2128 static bool isSelectMask(ArrayRef<int> Mask);
2129 static bool isSelectMask(const Constant *Mask) {
2130 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2130, __PRETTY_FUNCTION__))
;
2131 SmallVector<int, 16> MaskAsInts;
2132 getShuffleMask(Mask, MaskAsInts);
2133 return isSelectMask(MaskAsInts);
2134 }
2135
2136 /// Return true if this shuffle chooses elements from its source vectors
2137 /// without lane crossings and all operands have the same number of elements.
2138 /// In other words, this shuffle is equivalent to a vector select with a
2139 /// constant condition operand.
2140 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2141 /// This returns false if the mask does not choose from both input vectors.
2142 /// In that case, the shuffle is better classified as an identity shuffle.
2143 /// TODO: Optionally allow length-changing shuffles.
2144 bool isSelect() const {
2145 return !changesLength() && isSelectMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle mask swaps the order of elements from exactly
2149 /// one source vector.
2150 /// Example: <7,6,undef,4>
2151 /// This assumes that vector operands are the same length as the mask.
2152 static bool isReverseMask(ArrayRef<int> Mask);
2153 static bool isReverseMask(const Constant *Mask) {
2154 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2154, __PRETTY_FUNCTION__))
;
2155 SmallVector<int, 16> MaskAsInts;
2156 getShuffleMask(Mask, MaskAsInts);
2157 return isReverseMask(MaskAsInts);
2158 }
2159
2160 /// Return true if this shuffle swaps the order of elements from exactly
2161 /// one source vector.
2162 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2163 /// TODO: Optionally allow length-changing shuffles.
2164 bool isReverse() const {
2165 return !changesLength() && isReverseMask(ShuffleMask);
2166 }
2167
2168 /// Return true if this shuffle mask chooses all elements with the same value
2169 /// as the first element of exactly one source vector.
2170 /// Example: <4,undef,undef,4>
2171 /// This assumes that vector operands are the same length as the mask.
2172 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2173 static bool isZeroEltSplatMask(const Constant *Mask) {
2174 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2174, __PRETTY_FUNCTION__))
;
2175 SmallVector<int, 16> MaskAsInts;
2176 getShuffleMask(Mask, MaskAsInts);
2177 return isZeroEltSplatMask(MaskAsInts);
2178 }
2179
2180 /// Return true if all elements of this shuffle are the same value as the
2181 /// first element of exactly one source vector without changing the length
2182 /// of that vector.
2183 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2184 /// TODO: Optionally allow length-changing shuffles.
2185 /// TODO: Optionally allow splats from other elements.
2186 bool isZeroEltSplat() const {
2187 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2188 }
2189
2190 /// Return true if this shuffle mask is a transpose mask.
2191 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2192 /// even- or odd-numbered vector elements from two n-dimensional source
2193 /// vectors and write each result into consecutive elements of an
2194 /// n-dimensional destination vector. Two shuffles are necessary to complete
2195 /// the transpose, one for the even elements and another for the odd elements.
2196 /// This description closely follows how the TRN1 and TRN2 AArch64
2197 /// instructions operate.
2198 ///
2199 /// For example, a simple 2x2 matrix can be transposed with:
2200 ///
2201 /// ; Original matrix
2202 /// m0 = < a, b >
2203 /// m1 = < c, d >
2204 ///
2205 /// ; Transposed matrix
2206 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2207 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2208 ///
2209 /// For matrices having greater than n columns, the resulting nx2 transposed
2210 /// matrix is stored in two result vectors such that one vector contains
2211 /// interleaved elements from all the even-numbered rows and the other vector
2212 /// contains interleaved elements from all the odd-numbered rows. For example,
2213 /// a 2x4 matrix can be transposed with:
2214 ///
2215 /// ; Original matrix
2216 /// m0 = < a, b, c, d >
2217 /// m1 = < e, f, g, h >
2218 ///
2219 /// ; Transposed matrix
2220 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2221 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2222 static bool isTransposeMask(ArrayRef<int> Mask);
2223 static bool isTransposeMask(const Constant *Mask) {
2224 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2224, __PRETTY_FUNCTION__))
;
2225 SmallVector<int, 16> MaskAsInts;
2226 getShuffleMask(Mask, MaskAsInts);
2227 return isTransposeMask(MaskAsInts);
2228 }
2229
2230 /// Return true if this shuffle transposes the elements of its inputs without
2231 /// changing the length of the vectors. This operation may also be known as a
2232 /// merge or interleave. See the description for isTransposeMask() for the
2233 /// exact specification.
2234 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2235 bool isTranspose() const {
2236 return !changesLength() && isTransposeMask(ShuffleMask);
2237 }
2238
2239 /// Return true if this shuffle mask is an extract subvector mask.
2240 /// A valid extract subvector mask returns a smaller vector from a single
2241 /// source operand. The base extraction index is returned as well.
2242 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2243 int &Index);
2244 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2245 int &Index) {
2246 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2246, __PRETTY_FUNCTION__))
;
2247 SmallVector<int, 16> MaskAsInts;
2248 getShuffleMask(Mask, MaskAsInts);
2249 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2250 }
2251
2252 /// Return true if this shuffle mask is an extract subvector mask.
2253 bool isExtractSubvectorMask(int &Index) const {
2254 int NumSrcElts =
2255 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2256 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2257 }
2258
2259 /// Change values in a shuffle permute mask assuming the two vector operands
2260 /// of length InVecNumElts have swapped position.
2261 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2262 unsigned InVecNumElts) {
2263 for (int &Idx : Mask) {
2264 if (Idx == -1)
2265 continue;
2266 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2267 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2268, __PRETTY_FUNCTION__))
2268 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2268, __PRETTY_FUNCTION__))
;
2269 }
2270 }
2271
2272 // Methods for support type inquiry through isa, cast, and dyn_cast:
2273 static bool classof(const Instruction *I) {
2274 return I->getOpcode() == Instruction::ShuffleVector;
2275 }
2276 static bool classof(const Value *V) {
2277 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2278 }
2279};
2280
2281template <>
2282struct OperandTraits<ShuffleVectorInst>
2283 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2284
2285DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2285, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2285, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2286
2287//===----------------------------------------------------------------------===//
2288// ExtractValueInst Class
2289//===----------------------------------------------------------------------===//
2290
2291/// This instruction extracts a struct member or array
2292/// element value from an aggregate value.
2293///
2294class ExtractValueInst : public UnaryInstruction {
2295 SmallVector<unsigned, 4> Indices;
2296
2297 ExtractValueInst(const ExtractValueInst &EVI);
2298
2299 /// Constructors - Create a extractvalue instruction with a base aggregate
2300 /// value and a list of indices. The first ctor can optionally insert before
2301 /// an existing instruction, the second appends the new instruction to the
2302 /// specified BasicBlock.
2303 inline ExtractValueInst(Value *Agg,
2304 ArrayRef<unsigned> Idxs,
2305 const Twine &NameStr,
2306 Instruction *InsertBefore);
2307 inline ExtractValueInst(Value *Agg,
2308 ArrayRef<unsigned> Idxs,
2309 const Twine &NameStr, BasicBlock *InsertAtEnd);
2310
2311 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2312
2313protected:
2314 // Note: Instruction needs to be a friend here to call cloneImpl.
2315 friend class Instruction;
2316
2317 ExtractValueInst *cloneImpl() const;
2318
2319public:
2320 static ExtractValueInst *Create(Value *Agg,
2321 ArrayRef<unsigned> Idxs,
2322 const Twine &NameStr = "",
2323 Instruction *InsertBefore = nullptr) {
2324 return new
2325 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2326 }
2327
2328 static ExtractValueInst *Create(Value *Agg,
2329 ArrayRef<unsigned> Idxs,
2330 const Twine &NameStr,
2331 BasicBlock *InsertAtEnd) {
2332 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2333 }
2334
2335 /// Returns the type of the element that would be extracted
2336 /// with an extractvalue instruction with the specified parameters.
2337 ///
2338 /// Null is returned if the indices are invalid for the specified type.
2339 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2340
2341 using idx_iterator = const unsigned*;
2342
2343 inline idx_iterator idx_begin() const { return Indices.begin(); }
2344 inline idx_iterator idx_end() const { return Indices.end(); }
2345 inline iterator_range<idx_iterator> indices() const {
2346 return make_range(idx_begin(), idx_end());
2347 }
2348
2349 Value *getAggregateOperand() {
2350 return getOperand(0);
2351 }
2352 const Value *getAggregateOperand() const {
2353 return getOperand(0);
2354 }
2355 static unsigned getAggregateOperandIndex() {
2356 return 0U; // get index for modifying correct operand
2357 }
2358
2359 ArrayRef<unsigned> getIndices() const {
2360 return Indices;
2361 }
2362
2363 unsigned getNumIndices() const {
2364 return (unsigned)Indices.size();
2365 }
2366
2367 bool hasIndices() const {
2368 return true;
2369 }
2370
2371 // Methods for support type inquiry through isa, cast, and dyn_cast:
2372 static bool classof(const Instruction *I) {
2373 return I->getOpcode() == Instruction::ExtractValue;
2374 }
2375 static bool classof(const Value *V) {
2376 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2377 }
2378};
2379
2380ExtractValueInst::ExtractValueInst(Value *Agg,
2381 ArrayRef<unsigned> Idxs,
2382 const Twine &NameStr,
2383 Instruction *InsertBefore)
2384 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2385 ExtractValue, Agg, InsertBefore) {
2386 init(Idxs, NameStr);
2387}
2388
2389ExtractValueInst::ExtractValueInst(Value *Agg,
2390 ArrayRef<unsigned> Idxs,
2391 const Twine &NameStr,
2392 BasicBlock *InsertAtEnd)
2393 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2394 ExtractValue, Agg, InsertAtEnd) {
2395 init(Idxs, NameStr);
2396}
2397
2398//===----------------------------------------------------------------------===//
2399// InsertValueInst Class
2400//===----------------------------------------------------------------------===//
2401
2402/// This instruction inserts a struct field of array element
2403/// value into an aggregate value.
2404///
2405class InsertValueInst : public Instruction {
2406 SmallVector<unsigned, 4> Indices;
2407
2408 InsertValueInst(const InsertValueInst &IVI);
2409
2410 /// Constructors - Create a insertvalue instruction with a base aggregate
2411 /// value, a value to insert, and a list of indices. The first ctor can
2412 /// optionally insert before an existing instruction, the second appends
2413 /// the new instruction to the specified BasicBlock.
2414 inline InsertValueInst(Value *Agg, Value *Val,
2415 ArrayRef<unsigned> Idxs,
2416 const Twine &NameStr,
2417 Instruction *InsertBefore);
2418 inline InsertValueInst(Value *Agg, Value *Val,
2419 ArrayRef<unsigned> Idxs,
2420 const Twine &NameStr, BasicBlock *InsertAtEnd);
2421
2422 /// Constructors - These two constructors are convenience methods because one
2423 /// and two index insertvalue instructions are so common.
2424 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2425 const Twine &NameStr = "",
2426 Instruction *InsertBefore = nullptr);
2427 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2428 BasicBlock *InsertAtEnd);
2429
2430 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2431 const Twine &NameStr);
2432
2433protected:
2434 // Note: Instruction needs to be a friend here to call cloneImpl.
2435 friend class Instruction;
2436
2437 InsertValueInst *cloneImpl() const;
2438
2439public:
2440 // allocate space for exactly two operands
2441 void *operator new(size_t s) {
2442 return User::operator new(s, 2);
2443 }
2444
2445 static InsertValueInst *Create(Value *Agg, Value *Val,
2446 ArrayRef<unsigned> Idxs,
2447 const Twine &NameStr = "",
2448 Instruction *InsertBefore = nullptr) {
2449 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2450 }
2451
2452 static InsertValueInst *Create(Value *Agg, Value *Val,
2453 ArrayRef<unsigned> Idxs,
2454 const Twine &NameStr,
2455 BasicBlock *InsertAtEnd) {
2456 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2457 }
2458
2459 /// Transparently provide more efficient getOperand methods.
2460 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2461
2462 using idx_iterator = const unsigned*;
2463
2464 inline idx_iterator idx_begin() const { return Indices.begin(); }
2465 inline idx_iterator idx_end() const { return Indices.end(); }
2466 inline iterator_range<idx_iterator> indices() const {
2467 return make_range(idx_begin(), idx_end());
2468 }
2469
2470 Value *getAggregateOperand() {
2471 return getOperand(0);
2472 }
2473 const Value *getAggregateOperand() const {
2474 return getOperand(0);
2475 }
2476 static unsigned getAggregateOperandIndex() {
2477 return 0U; // get index for modifying correct operand
2478 }
2479
2480 Value *getInsertedValueOperand() {
2481 return getOperand(1);
2482 }
2483 const Value *getInsertedValueOperand() const {
2484 return getOperand(1);
2485 }
2486 static unsigned getInsertedValueOperandIndex() {
2487 return 1U; // get index for modifying correct operand
2488 }
2489
2490 ArrayRef<unsigned> getIndices() const {
2491 return Indices;
2492 }
2493
2494 unsigned getNumIndices() const {
2495 return (unsigned)Indices.size();
2496 }
2497
2498 bool hasIndices() const {
2499 return true;
2500 }
2501
2502 // Methods for support type inquiry through isa, cast, and dyn_cast:
2503 static bool classof(const Instruction *I) {
2504 return I->getOpcode() == Instruction::InsertValue;
2505 }
2506 static bool classof(const Value *V) {
2507 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2508 }
2509};
2510
2511template <>
2512struct OperandTraits<InsertValueInst> :
2513 public FixedNumOperandTraits<InsertValueInst, 2> {
2514};
2515
2516InsertValueInst::InsertValueInst(Value *Agg,
2517 Value *Val,
2518 ArrayRef<unsigned> Idxs,
2519 const Twine &NameStr,
2520 Instruction *InsertBefore)
2521 : Instruction(Agg->getType(), InsertValue,
2522 OperandTraits<InsertValueInst>::op_begin(this),
2523 2, InsertBefore) {
2524 init(Agg, Val, Idxs, NameStr);
2525}
2526
2527InsertValueInst::InsertValueInst(Value *Agg,
2528 Value *Val,
2529 ArrayRef<unsigned> Idxs,
2530 const Twine &NameStr,
2531 BasicBlock *InsertAtEnd)
2532 : Instruction(Agg->getType(), InsertValue,
2533 OperandTraits<InsertValueInst>::op_begin(this),
2534 2, InsertAtEnd) {
2535 init(Agg, Val, Idxs, NameStr);
2536}
2537
2538DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2538, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2538, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2539
2540//===----------------------------------------------------------------------===//
2541// PHINode Class
2542//===----------------------------------------------------------------------===//
2543
2544// PHINode - The PHINode class is used to represent the magical mystical PHI
2545// node, that can not exist in nature, but can be synthesized in a computer
2546// scientist's overactive imagination.
2547//
2548class PHINode : public Instruction {
2549 /// The number of operands actually allocated. NumOperands is
2550 /// the number actually in use.
2551 unsigned ReservedSpace;
2552
2553 PHINode(const PHINode &PN);
2554
2555 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2556 const Twine &NameStr = "",
2557 Instruction *InsertBefore = nullptr)
2558 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2559 ReservedSpace(NumReservedValues) {
2560 setName(NameStr);
2561 allocHungoffUses(ReservedSpace);
2562 }
2563
2564 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2565 BasicBlock *InsertAtEnd)
2566 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2567 ReservedSpace(NumReservedValues) {
2568 setName(NameStr);
2569 allocHungoffUses(ReservedSpace);
2570 }
2571
2572protected:
2573 // Note: Instruction needs to be a friend here to call cloneImpl.
2574 friend class Instruction;
2575
2576 PHINode *cloneImpl() const;
2577
2578 // allocHungoffUses - this is more complicated than the generic
2579 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2580 // values and pointers to the incoming blocks, all in one allocation.
2581 void allocHungoffUses(unsigned N) {
2582 User::allocHungoffUses(N, /* IsPhi */ true);
2583 }
2584
2585public:
2586 /// Constructors - NumReservedValues is a hint for the number of incoming
2587 /// edges that this phi node will have (use 0 if you really have no idea).
2588 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2589 const Twine &NameStr = "",
2590 Instruction *InsertBefore = nullptr) {
2591 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2592 }
2593
2594 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2595 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2596 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2597 }
2598
2599 /// Provide fast operand accessors
2600 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2601
2602 // Block iterator interface. This provides access to the list of incoming
2603 // basic blocks, which parallels the list of incoming values.
2604
2605 using block_iterator = BasicBlock **;
2606 using const_block_iterator = BasicBlock * const *;
2607
2608 block_iterator block_begin() {
2609 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2610 }
2611
2612 const_block_iterator block_begin() const {
2613 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2614 }
2615
2616 block_iterator block_end() {
2617 return block_begin() + getNumOperands();
2618 }
2619
2620 const_block_iterator block_end() const {
2621 return block_begin() + getNumOperands();
2622 }
2623
2624 iterator_range<block_iterator> blocks() {
2625 return make_range(block_begin(), block_end());
2626 }
2627
2628 iterator_range<const_block_iterator> blocks() const {
2629 return make_range(block_begin(), block_end());
2630 }
2631
2632 op_range incoming_values() { return operands(); }
2633
2634 const_op_range incoming_values() const { return operands(); }
2635
2636 /// Return the number of incoming edges
2637 ///
2638 unsigned getNumIncomingValues() const { return getNumOperands(); }
2639
2640 /// Return incoming value number x
2641 ///
2642 Value *getIncomingValue(unsigned i) const {
2643 return getOperand(i);
2644 }
2645 void setIncomingValue(unsigned i, Value *V) {
2646 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2646, __PRETTY_FUNCTION__))
;
2647 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2648, __PRETTY_FUNCTION__))
2648 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2648, __PRETTY_FUNCTION__))
;
2649 setOperand(i, V);
2650 }
2651
2652 static unsigned getOperandNumForIncomingValue(unsigned i) {
2653 return i;
2654 }
2655
2656 static unsigned getIncomingValueNumForOperand(unsigned i) {
2657 return i;
2658 }
2659
2660 /// Return incoming basic block number @p i.
2661 ///
2662 BasicBlock *getIncomingBlock(unsigned i) const {
2663 return block_begin()[i];
2664 }
2665
2666 /// Return incoming basic block corresponding
2667 /// to an operand of the PHI.
2668 ///
2669 BasicBlock *getIncomingBlock(const Use &U) const {
2670 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2670, __PRETTY_FUNCTION__))
;
2671 return getIncomingBlock(unsigned(&U - op_begin()));
2672 }
2673
2674 /// Return incoming basic block corresponding
2675 /// to value use iterator.
2676 ///
2677 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2678 return getIncomingBlock(I.getUse());
2679 }
2680
2681 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2682 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 block_begin()[i] = BB;
2684 }
2685
2686 /// Replace every incoming basic block \p Old to basic block \p New.
2687 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2688 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2688, __PRETTY_FUNCTION__))
;
2689 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2690 if (getIncomingBlock(Op) == Old)
2691 setIncomingBlock(Op, New);
2692 }
2693
2694 /// Add an incoming value to the end of the PHI list
2695 ///
2696 void addIncoming(Value *V, BasicBlock *BB) {
2697 if (getNumOperands() == ReservedSpace)
2698 growOperands(); // Get more space!
2699 // Initialize some new operands.
2700 setNumHungOffUseOperands(getNumOperands() + 1);
2701 setIncomingValue(getNumOperands() - 1, V);
2702 setIncomingBlock(getNumOperands() - 1, BB);
2703 }
2704
2705 /// Remove an incoming value. This is useful if a
2706 /// predecessor basic block is deleted. The value removed is returned.
2707 ///
2708 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2709 /// is true), the PHI node is destroyed and any uses of it are replaced with
2710 /// dummy values. The only time there should be zero incoming values to a PHI
2711 /// node is when the block is dead, so this strategy is sound.
2712 ///
2713 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2714
2715 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2716 int Idx = getBasicBlockIndex(BB);
2717 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2717, __PRETTY_FUNCTION__))
;
2718 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2719 }
2720
2721 /// Return the first index of the specified basic
2722 /// block in the value list for this PHI. Returns -1 if no instance.
2723 ///
2724 int getBasicBlockIndex(const BasicBlock *BB) const {
2725 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2726 if (block_begin()[i] == BB)
2727 return i;
2728 return -1;
2729 }
2730
2731 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2732 int Idx = getBasicBlockIndex(BB);
2733 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2733, __PRETTY_FUNCTION__))
;
2734 return getIncomingValue(Idx);
2735 }
2736
2737 /// Set every incoming value(s) for block \p BB to \p V.
2738 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2739 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2739, __PRETTY_FUNCTION__))
;
2740 bool Found = false;
2741 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2742 if (getIncomingBlock(Op) == BB) {
2743 Found = true;
2744 setIncomingValue(Op, V);
2745 }
2746 (void)Found;
2747 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2747, __PRETTY_FUNCTION__))
;
2748 }
2749
2750 /// If the specified PHI node always merges together the
2751 /// same value, return the value, otherwise return null.
2752 Value *hasConstantValue() const;
2753
2754 /// Whether the specified PHI node always merges
2755 /// together the same value, assuming undefs are equal to a unique
2756 /// non-undef value.
2757 bool hasConstantOrUndefValue() const;
2758
2759 /// If the PHI node is complete which means all of its parent's predecessors
2760 /// have incoming value in this PHI, return true, otherwise return false.
2761 bool isComplete() const {
2762 return llvm::all_of(predecessors(getParent()),
2763 [this](const BasicBlock *Pred) {
2764 return getBasicBlockIndex(Pred) >= 0;
2765 });
2766 }
2767
2768 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2769 static bool classof(const Instruction *I) {
2770 return I->getOpcode() == Instruction::PHI;
2771 }
2772 static bool classof(const Value *V) {
2773 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2774 }
2775
2776private:
2777 void growOperands();
2778};
2779
2780template <>
2781struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2782};
2783
2784DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2784, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2784, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2785
2786//===----------------------------------------------------------------------===//
2787// LandingPadInst Class
2788//===----------------------------------------------------------------------===//
2789
2790//===---------------------------------------------------------------------------
2791/// The landingpad instruction holds all of the information
2792/// necessary to generate correct exception handling. The landingpad instruction
2793/// cannot be moved from the top of a landing pad block, which itself is
2794/// accessible only from the 'unwind' edge of an invoke. This uses the
2795/// SubclassData field in Value to store whether or not the landingpad is a
2796/// cleanup.
2797///
2798class LandingPadInst : public Instruction {
2799 using CleanupField = BoolBitfieldElementT<0>;
2800
2801 /// The number of operands actually allocated. NumOperands is
2802 /// the number actually in use.
2803 unsigned ReservedSpace;
2804
2805 LandingPadInst(const LandingPadInst &LP);
2806
2807public:
2808 enum ClauseType { Catch, Filter };
2809
2810private:
2811 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2812 const Twine &NameStr, Instruction *InsertBefore);
2813 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2814 const Twine &NameStr, BasicBlock *InsertAtEnd);
2815
2816 // Allocate space for exactly zero operands.
2817 void *operator new(size_t s) {
2818 return User::operator new(s);
2819 }
2820
2821 void growOperands(unsigned Size);
2822 void init(unsigned NumReservedValues, const Twine &NameStr);
2823
2824protected:
2825 // Note: Instruction needs to be a friend here to call cloneImpl.
2826 friend class Instruction;
2827
2828 LandingPadInst *cloneImpl() const;
2829
2830public:
2831 /// Constructors - NumReservedClauses is a hint for the number of incoming
2832 /// clauses that this landingpad will have (use 0 if you really have no idea).
2833 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2834 const Twine &NameStr = "",
2835 Instruction *InsertBefore = nullptr);
2836 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2837 const Twine &NameStr, BasicBlock *InsertAtEnd);
2838
2839 /// Provide fast operand accessors
2840 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2841
2842 /// Return 'true' if this landingpad instruction is a
2843 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2844 /// doesn't catch the exception.
2845 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2846
2847 /// Indicate that this landingpad instruction is a cleanup.
2848 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2849
2850 /// Add a catch or filter clause to the landing pad.
2851 void addClause(Constant *ClauseVal);
2852
2853 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2854 /// determine what type of clause this is.
2855 Constant *getClause(unsigned Idx) const {
2856 return cast<Constant>(getOperandList()[Idx]);
2857 }
2858
2859 /// Return 'true' if the clause and index Idx is a catch clause.
2860 bool isCatch(unsigned Idx) const {
2861 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2862 }
2863
2864 /// Return 'true' if the clause and index Idx is a filter clause.
2865 bool isFilter(unsigned Idx) const {
2866 return isa<ArrayType>(getOperandList()[Idx]->getType());
2867 }
2868
2869 /// Get the number of clauses for this landing pad.
2870 unsigned getNumClauses() const { return getNumOperands(); }
2871
2872 /// Grow the size of the operand list to accommodate the new
2873 /// number of clauses.
2874 void reserveClauses(unsigned Size) { growOperands(Size); }
2875
2876 // Methods for support type inquiry through isa, cast, and dyn_cast:
2877 static bool classof(const Instruction *I) {
2878 return I->getOpcode() == Instruction::LandingPad;
2879 }
2880 static bool classof(const Value *V) {
2881 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2882 }
2883};
2884
2885template <>
2886struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2887};
2888
2889DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2889, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2889, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2890
2891//===----------------------------------------------------------------------===//
2892// ReturnInst Class
2893//===----------------------------------------------------------------------===//
2894
2895//===---------------------------------------------------------------------------
2896/// Return a value (possibly void), from a function. Execution
2897/// does not continue in this function any longer.
2898///
2899class ReturnInst : public Instruction {
2900 ReturnInst(const ReturnInst &RI);
2901
2902private:
2903 // ReturnInst constructors:
2904 // ReturnInst() - 'ret void' instruction
2905 // ReturnInst( null) - 'ret void' instruction
2906 // ReturnInst(Value* X) - 'ret X' instruction
2907 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2908 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2909 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2910 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2911 //
2912 // NOTE: If the Value* passed is of type void then the constructor behaves as
2913 // if it was passed NULL.
2914 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2915 Instruction *InsertBefore = nullptr);
2916 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2917 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2918
2919protected:
2920 // Note: Instruction needs to be a friend here to call cloneImpl.
2921 friend class Instruction;
2922
2923 ReturnInst *cloneImpl() const;
2924
2925public:
2926 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2927 Instruction *InsertBefore = nullptr) {
2928 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2929 }
2930
2931 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2932 BasicBlock *InsertAtEnd) {
2933 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2934 }
2935
2936 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2937 return new(0) ReturnInst(C, InsertAtEnd);
2938 }
2939
2940 /// Provide fast operand accessors
2941 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2942
2943 /// Convenience accessor. Returns null if there is no return value.
2944 Value *getReturnValue() const {
2945 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2946 }
2947
2948 unsigned getNumSuccessors() const { return 0; }
2949
2950 // Methods for support type inquiry through isa, cast, and dyn_cast:
2951 static bool classof(const Instruction *I) {
2952 return (I->getOpcode() == Instruction::Ret);
2953 }
2954 static bool classof(const Value *V) {
2955 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2956 }
2957
2958private:
2959 BasicBlock *getSuccessor(unsigned idx) const {
2960 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2960)
;
2961 }
2962
2963 void setSuccessor(unsigned idx, BasicBlock *B) {
2964 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2964)
;
2965 }
2966};
2967
2968template <>
2969struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2970};
2971
2972DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2972, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 2972, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2973
2974//===----------------------------------------------------------------------===//
2975// BranchInst Class
2976//===----------------------------------------------------------------------===//
2977
2978//===---------------------------------------------------------------------------
2979/// Conditional or Unconditional Branch instruction.
2980///
2981class BranchInst : public Instruction {
2982 /// Ops list - Branches are strange. The operands are ordered:
2983 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2984 /// they don't have to check for cond/uncond branchness. These are mostly
2985 /// accessed relative from op_end().
2986 BranchInst(const BranchInst &BI);
2987 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2988 // BranchInst(BB *B) - 'br B'
2989 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2990 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2991 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2992 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2993 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2994 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2995 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2996 Instruction *InsertBefore = nullptr);
2997 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2998 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2999 BasicBlock *InsertAtEnd);
3000
3001 void AssertOK();
3002
3003protected:
3004 // Note: Instruction needs to be a friend here to call cloneImpl.
3005 friend class Instruction;
3006
3007 BranchInst *cloneImpl() const;
3008
3009public:
3010 /// Iterator type that casts an operand to a basic block.
3011 ///
3012 /// This only makes sense because the successors are stored as adjacent
3013 /// operands for branch instructions.
3014 struct succ_op_iterator
3015 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3016 std::random_access_iterator_tag, BasicBlock *,
3017 ptrdiff_t, BasicBlock *, BasicBlock *> {
3018 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3019
3020 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3021 BasicBlock *operator->() const { return operator*(); }
3022 };
3023
3024 /// The const version of `succ_op_iterator`.
3025 struct const_succ_op_iterator
3026 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3027 std::random_access_iterator_tag,
3028 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3029 const BasicBlock *> {
3030 explicit const_succ_op_iterator(const_value_op_iterator I)
3031 : iterator_adaptor_base(I) {}
3032
3033 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3034 const BasicBlock *operator->() const { return operator*(); }
3035 };
3036
3037 static BranchInst *Create(BasicBlock *IfTrue,
3038 Instruction *InsertBefore = nullptr) {
3039 return new(1) BranchInst(IfTrue, InsertBefore);
3040 }
3041
3042 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3043 Value *Cond, Instruction *InsertBefore = nullptr) {
3044 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3045 }
3046
3047 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3048 return new(1) BranchInst(IfTrue, InsertAtEnd);
3049 }
3050
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3052 Value *Cond, BasicBlock *InsertAtEnd) {
3053 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3054 }
3055
3056 /// Transparently provide more efficient getOperand methods.
3057 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3058
3059 bool isUnconditional() const { return getNumOperands() == 1; }
3060 bool isConditional() const { return getNumOperands() == 3; }
3061
3062 Value *getCondition() const {
3063 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3063, __PRETTY_FUNCTION__))
;
3064 return Op<-3>();
3065 }
3066
3067 void setCondition(Value *V) {
3068 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3068, __PRETTY_FUNCTION__))
;
3069 Op<-3>() = V;
3070 }
3071
3072 unsigned getNumSuccessors() const { return 1+isConditional(); }
3073
3074 BasicBlock *getSuccessor(unsigned i) const {
3075 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3075, __PRETTY_FUNCTION__))
;
3076 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3077 }
3078
3079 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3080 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3080, __PRETTY_FUNCTION__))
;
3081 *(&Op<-1>() - idx) = NewSucc;
3082 }
3083
3084 /// Swap the successors of this branch instruction.
3085 ///
3086 /// Swaps the successors of the branch instruction. This also swaps any
3087 /// branch weight metadata associated with the instruction so that it
3088 /// continues to map correctly to each operand.
3089 void swapSuccessors();
3090
3091 iterator_range<succ_op_iterator> successors() {
3092 return make_range(
3093 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3094 succ_op_iterator(value_op_end()));
3095 }
3096
3097 iterator_range<const_succ_op_iterator> successors() const {
3098 return make_range(const_succ_op_iterator(
3099 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3100 const_succ_op_iterator(value_op_end()));
3101 }
3102
3103 // Methods for support type inquiry through isa, cast, and dyn_cast:
3104 static bool classof(const Instruction *I) {
3105 return (I->getOpcode() == Instruction::Br);
3106 }
3107 static bool classof(const Value *V) {
3108 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3109 }
3110};
3111
3112template <>
3113struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3114};
3115
3116DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3116, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3116, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3117
3118//===----------------------------------------------------------------------===//
3119// SwitchInst Class
3120//===----------------------------------------------------------------------===//
3121
3122//===---------------------------------------------------------------------------
3123/// Multiway switch
3124///
3125class SwitchInst : public Instruction {
3126 unsigned ReservedSpace;
3127
3128 // Operand[0] = Value to switch on
3129 // Operand[1] = Default basic block destination
3130 // Operand[2n ] = Value to match
3131 // Operand[2n+1] = BasicBlock to go to on match
3132 SwitchInst(const SwitchInst &SI);
3133
3134 /// Create a new switch instruction, specifying a value to switch on and a
3135 /// default destination. The number of additional cases can be specified here
3136 /// to make memory allocation more efficient. This constructor can also
3137 /// auto-insert before another instruction.
3138 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3139 Instruction *InsertBefore);
3140
3141 /// Create a new switch instruction, specifying a value to switch on and a
3142 /// default destination. The number of additional cases can be specified here
3143 /// to make memory allocation more efficient. This constructor also
3144 /// auto-inserts at the end of the specified BasicBlock.
3145 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3146 BasicBlock *InsertAtEnd);
3147
3148 // allocate space for exactly zero operands
3149 void *operator new(size_t s) {
3150 return User::operator new(s);
3151 }
3152
3153 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3154 void growOperands();
3155
3156protected:
3157 // Note: Instruction needs to be a friend here to call cloneImpl.
3158 friend class Instruction;
3159
3160 SwitchInst *cloneImpl() const;
3161
3162public:
3163 // -2
3164 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3165
3166 template <typename CaseHandleT> class CaseIteratorImpl;
3167
3168 /// A handle to a particular switch case. It exposes a convenient interface
3169 /// to both the case value and the successor block.
3170 ///
3171 /// We define this as a template and instantiate it to form both a const and
3172 /// non-const handle.
3173 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3174 class CaseHandleImpl {
3175 // Directly befriend both const and non-const iterators.
3176 friend class SwitchInst::CaseIteratorImpl<
3177 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3178
3179 protected:
3180 // Expose the switch type we're parameterized with to the iterator.
3181 using SwitchInstType = SwitchInstT;
3182
3183 SwitchInstT *SI;
3184 ptrdiff_t Index;
3185
3186 CaseHandleImpl() = default;
3187 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3188
3189 public:
3190 /// Resolves case value for current case.
3191 ConstantIntT *getCaseValue() const {
3192 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3193, __PRETTY_FUNCTION__))
3193 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3193, __PRETTY_FUNCTION__))
;
3194 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3195 }
3196
3197 /// Resolves successor for current case.
3198 BasicBlockT *getCaseSuccessor() const {
3199 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3201, __PRETTY_FUNCTION__))
3200 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3201, __PRETTY_FUNCTION__))
3201 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3201, __PRETTY_FUNCTION__))
;
3202 return SI->getSuccessor(getSuccessorIndex());
3203 }
3204
3205 /// Returns number of current case.
3206 unsigned getCaseIndex() const { return Index; }
3207
3208 /// Returns successor index for current case successor.
3209 unsigned getSuccessorIndex() const {
3210 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3212, __PRETTY_FUNCTION__))
3211 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3212, __PRETTY_FUNCTION__))
3212 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3212, __PRETTY_FUNCTION__))
;
3213 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3214 }
3215
3216 bool operator==(const CaseHandleImpl &RHS) const {
3217 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
;
3218 return Index == RHS.Index;
3219 }
3220 };
3221
3222 using ConstCaseHandle =
3223 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3224
3225 class CaseHandle
3226 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3227 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3228
3229 public:
3230 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3231
3232 /// Sets the new value for current case.
3233 void setValue(ConstantInt *V) {
3234 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3235, __PRETTY_FUNCTION__))
3235 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3235, __PRETTY_FUNCTION__))
;
3236 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3237 }
3238
3239 /// Sets the new successor for current case.
3240 void setSuccessor(BasicBlock *S) {
3241 SI->setSuccessor(getSuccessorIndex(), S);
3242 }
3243 };
3244
3245 template <typename CaseHandleT>
3246 class CaseIteratorImpl
3247 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3248 std::random_access_iterator_tag,
3249 CaseHandleT> {
3250 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3251
3252 CaseHandleT Case;
3253
3254 public:
3255 /// Default constructed iterator is in an invalid state until assigned to
3256 /// a case for a particular switch.
3257 CaseIteratorImpl() = default;
3258
3259 /// Initializes case iterator for given SwitchInst and for given
3260 /// case number.
3261 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3262
3263 /// Initializes case iterator for given SwitchInst and for given
3264 /// successor index.
3265 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3266 unsigned SuccessorIndex) {
3267 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3268, __PRETTY_FUNCTION__))
3268 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3268, __PRETTY_FUNCTION__))
;
3269 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3270 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3271 }
3272
3273 /// Support converting to the const variant. This will be a no-op for const
3274 /// variant.
3275 operator CaseIteratorImpl<ConstCaseHandle>() const {
3276 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3277 }
3278
3279 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3280 // Check index correctness after addition.
3281 // Note: Index == getNumCases() means end().
3282 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3284, __PRETTY_FUNCTION__))
3283 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3284, __PRETTY_FUNCTION__))
3284 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3284, __PRETTY_FUNCTION__))
;
3285 Case.Index += N;
3286 return *this;
3287 }
3288 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3289 // Check index correctness after subtraction.
3290 // Note: Case.Index == getNumCases() means end().
3291 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3293, __PRETTY_FUNCTION__))
3292 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3293, __PRETTY_FUNCTION__))
3293 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3293, __PRETTY_FUNCTION__))
;
3294 Case.Index -= N;
3295 return *this;
3296 }
3297 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3298 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3298, __PRETTY_FUNCTION__))
;
3299 return Case.Index - RHS.Case.Index;
3300 }
3301 bool operator==(const CaseIteratorImpl &RHS) const {
3302 return Case == RHS.Case;
3303 }
3304 bool operator<(const CaseIteratorImpl &RHS) const {
3305 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3305, __PRETTY_FUNCTION__))
;
3306 return Case.Index < RHS.Case.Index;
3307 }
3308 CaseHandleT &operator*() { return Case; }
3309 const CaseHandleT &operator*() const { return Case; }
3310 };
3311
3312 using CaseIt = CaseIteratorImpl<CaseHandle>;
3313 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3314
3315 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3316 unsigned NumCases,
3317 Instruction *InsertBefore = nullptr) {
3318 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3319 }
3320
3321 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3322 unsigned NumCases, BasicBlock *InsertAtEnd) {
3323 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3324 }
3325
3326 /// Provide fast operand accessors
3327 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3328
3329 // Accessor Methods for Switch stmt
3330 Value *getCondition() const { return getOperand(0); }
3331 void setCondition(Value *V) { setOperand(0, V); }
3332
3333 BasicBlock *getDefaultDest() const {
3334 return cast<BasicBlock>(getOperand(1));
3335 }
3336
3337 void setDefaultDest(BasicBlock *DefaultCase) {
3338 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3339 }
3340
3341 /// Return the number of 'cases' in this switch instruction, excluding the
3342 /// default case.
3343 unsigned getNumCases() const {
3344 return getNumOperands()/2 - 1;
3345 }
3346
3347 /// Returns a read/write iterator that points to the first case in the
3348 /// SwitchInst.
3349 CaseIt case_begin() {
3350 return CaseIt(this, 0);
3351 }
3352
3353 /// Returns a read-only iterator that points to the first case in the
3354 /// SwitchInst.
3355 ConstCaseIt case_begin() const {
3356 return ConstCaseIt(this, 0);
3357 }
3358
3359 /// Returns a read/write iterator that points one past the last in the
3360 /// SwitchInst.
3361 CaseIt case_end() {
3362 return CaseIt(this, getNumCases());
3363 }
3364
3365 /// Returns a read-only iterator that points one past the last in the
3366 /// SwitchInst.
3367 ConstCaseIt case_end() const {
3368 return ConstCaseIt(this, getNumCases());
3369 }
3370
3371 /// Iteration adapter for range-for loops.
3372 iterator_range<CaseIt> cases() {
3373 return make_range(case_begin(), case_end());
3374 }
3375
3376 /// Constant iteration adapter for range-for loops.
3377 iterator_range<ConstCaseIt> cases() const {
3378 return make_range(case_begin(), case_end());
3379 }
3380
3381 /// Returns an iterator that points to the default case.
3382 /// Note: this iterator allows to resolve successor only. Attempt
3383 /// to resolve case value causes an assertion.
3384 /// Also note, that increment and decrement also causes an assertion and
3385 /// makes iterator invalid.
3386 CaseIt case_default() {
3387 return CaseIt(this, DefaultPseudoIndex);
3388 }
3389 ConstCaseIt case_default() const {
3390 return ConstCaseIt(this, DefaultPseudoIndex);
3391 }
3392
3393 /// Search all of the case values for the specified constant. If it is
3394 /// explicitly handled, return the case iterator of it, otherwise return
3395 /// default case iterator to indicate that it is handled by the default
3396 /// handler.
3397 CaseIt findCaseValue(const ConstantInt *C) {
3398 CaseIt I = llvm::find_if(
3399 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3400 if (I != case_end())
3401 return I;
3402
3403 return case_default();
3404 }
3405 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3406 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3407 return Case.getCaseValue() == C;
3408 });
3409 if (I != case_end())
3410 return I;
3411
3412 return case_default();
3413 }
3414
3415 /// Finds the unique case value for a given successor. Returns null if the
3416 /// successor is not found, not unique, or is the default case.
3417 ConstantInt *findCaseDest(BasicBlock *BB) {
3418 if (BB == getDefaultDest())
3419 return nullptr;
3420
3421 ConstantInt *CI = nullptr;
3422 for (auto Case : cases()) {
3423 if (Case.getCaseSuccessor() != BB)
3424 continue;
3425
3426 if (CI)
3427 return nullptr; // Multiple cases lead to BB.
3428
3429 CI = Case.getCaseValue();
3430 }
3431
3432 return CI;
3433 }
3434
3435 /// Add an entry to the switch instruction.
3436 /// Note:
3437 /// This action invalidates case_end(). Old case_end() iterator will
3438 /// point to the added case.
3439 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3440
3441 /// This method removes the specified case and its successor from the switch
3442 /// instruction. Note that this operation may reorder the remaining cases at
3443 /// index idx and above.
3444 /// Note:
3445 /// This action invalidates iterators for all cases following the one removed,
3446 /// including the case_end() iterator. It returns an iterator for the next
3447 /// case.
3448 CaseIt removeCase(CaseIt I);
3449
3450 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3451 BasicBlock *getSuccessor(unsigned idx) const {
3452 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3452, __PRETTY_FUNCTION__))
;
3453 return cast<BasicBlock>(getOperand(idx*2+1));
3454 }
3455 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3456 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3456, __PRETTY_FUNCTION__))
;
3457 setOperand(idx * 2 + 1, NewSucc);
3458 }
3459
3460 // Methods for support type inquiry through isa, cast, and dyn_cast:
3461 static bool classof(const Instruction *I) {
3462 return I->getOpcode() == Instruction::Switch;
3463 }
3464 static bool classof(const Value *V) {
3465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3466 }
3467};
3468
3469/// A wrapper class to simplify modification of SwitchInst cases along with
3470/// their prof branch_weights metadata.
3471class SwitchInstProfUpdateWrapper {
3472 SwitchInst &SI;
3473 Optional<SmallVector<uint32_t, 8> > Weights = None;
3474 bool Changed = false;
3475
3476protected:
3477 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3478
3479 MDNode *buildProfBranchWeightsMD();
3480
3481 void init();
3482
3483public:
3484 using CaseWeightOpt = Optional<uint32_t>;
3485 SwitchInst *operator->() { return &SI; }
3486 SwitchInst &operator*() { return SI; }
3487 operator SwitchInst *() { return &SI; }
3488
3489 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3490
3491 ~SwitchInstProfUpdateWrapper() {
3492 if (Changed)
3493 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3494 }
3495
3496 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3497 /// correspondent branch weight.
3498 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3499
3500 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3501 /// specified branch weight for the added case.
3502 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3503
3504 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3505 /// this object to not touch the underlying SwitchInst in destructor.
3506 SymbolTableList<Instruction>::iterator eraseFromParent();
3507
3508 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3509 CaseWeightOpt getSuccessorWeight(unsigned idx);
3510
3511 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3512};
3513
3514template <>
3515struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3516};
3517
3518DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3518, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3518, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3519
3520//===----------------------------------------------------------------------===//
3521// IndirectBrInst Class
3522//===----------------------------------------------------------------------===//
3523
3524//===---------------------------------------------------------------------------
3525/// Indirect Branch Instruction.
3526///
3527class IndirectBrInst : public Instruction {
3528 unsigned ReservedSpace;
3529
3530 // Operand[0] = Address to jump to
3531 // Operand[n+1] = n-th destination
3532 IndirectBrInst(const IndirectBrInst &IBI);
3533
3534 /// Create a new indirectbr instruction, specifying an
3535 /// Address to jump to. The number of expected destinations can be specified
3536 /// here to make memory allocation more efficient. This constructor can also
3537 /// autoinsert before another instruction.
3538 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3539
3540 /// Create a new indirectbr instruction, specifying an
3541 /// Address to jump to. The number of expected destinations can be specified
3542 /// here to make memory allocation more efficient. This constructor also
3543 /// autoinserts at the end of the specified BasicBlock.
3544 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3545
3546 // allocate space for exactly zero operands
3547 void *operator new(size_t s) {
3548 return User::operator new(s);
3549 }
3550
3551 void init(Value *Address, unsigned NumDests);
3552 void growOperands();
3553
3554protected:
3555 // Note: Instruction needs to be a friend here to call cloneImpl.
3556 friend class Instruction;
3557
3558 IndirectBrInst *cloneImpl() const;
3559
3560public:
3561 /// Iterator type that casts an operand to a basic block.
3562 ///
3563 /// This only makes sense because the successors are stored as adjacent
3564 /// operands for indirectbr instructions.
3565 struct succ_op_iterator
3566 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3567 std::random_access_iterator_tag, BasicBlock *,
3568 ptrdiff_t, BasicBlock *, BasicBlock *> {
3569 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3570
3571 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3572 BasicBlock *operator->() const { return operator*(); }
3573 };
3574
3575 /// The const version of `succ_op_iterator`.
3576 struct const_succ_op_iterator
3577 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3578 std::random_access_iterator_tag,
3579 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3580 const BasicBlock *> {
3581 explicit const_succ_op_iterator(const_value_op_iterator I)
3582 : iterator_adaptor_base(I) {}
3583
3584 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3585 const BasicBlock *operator->() const { return operator*(); }
3586 };
3587
3588 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3589 Instruction *InsertBefore = nullptr) {
3590 return new IndirectBrInst(Address, NumDests, InsertBefore);
3591 }
3592
3593 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3594 BasicBlock *InsertAtEnd) {
3595 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3596 }
3597
3598 /// Provide fast operand accessors.
3599 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3600
3601 // Accessor Methods for IndirectBrInst instruction.
3602 Value *getAddress() { return getOperand(0); }
3603 const Value *getAddress() const { return getOperand(0); }
3604 void setAddress(Value *V) { setOperand(0, V); }
3605
3606 /// return the number of possible destinations in this
3607 /// indirectbr instruction.
3608 unsigned getNumDestinations() const { return getNumOperands()-1; }
3609
3610 /// Return the specified destination.
3611 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3612 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3613
3614 /// Add a destination.
3615 ///
3616 void addDestination(BasicBlock *Dest);
3617
3618 /// This method removes the specified successor from the
3619 /// indirectbr instruction.
3620 void removeDestination(unsigned i);
3621
3622 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3623 BasicBlock *getSuccessor(unsigned i) const {
3624 return cast<BasicBlock>(getOperand(i+1));
3625 }
3626 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3627 setOperand(i + 1, NewSucc);
3628 }
3629
3630 iterator_range<succ_op_iterator> successors() {
3631 return make_range(succ_op_iterator(std::next(value_op_begin())),
3632 succ_op_iterator(value_op_end()));
3633 }
3634
3635 iterator_range<const_succ_op_iterator> successors() const {
3636 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3637 const_succ_op_iterator(value_op_end()));
3638 }
3639
3640 // Methods for support type inquiry through isa, cast, and dyn_cast:
3641 static bool classof(const Instruction *I) {
3642 return I->getOpcode() == Instruction::IndirectBr;
3643 }
3644 static bool classof(const Value *V) {
3645 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3646 }
3647};
3648
3649template <>
3650struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3651};
3652
3653DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3653, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3653, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3654
3655//===----------------------------------------------------------------------===//
3656// InvokeInst Class
3657//===----------------------------------------------------------------------===//
3658
3659/// Invoke instruction. The SubclassData field is used to hold the
3660/// calling convention of the call.
3661///
3662class InvokeInst : public CallBase {
3663 /// The number of operands for this call beyond the called function,
3664 /// arguments, and operand bundles.
3665 static constexpr int NumExtraOperands = 2;
3666
3667 /// The index from the end of the operand array to the normal destination.
3668 static constexpr int NormalDestOpEndIdx = -3;
3669
3670 /// The index from the end of the operand array to the unwind destination.
3671 static constexpr int UnwindDestOpEndIdx = -2;
3672
3673 InvokeInst(const InvokeInst &BI);
3674
3675 /// Construct an InvokeInst given a range of arguments.
3676 ///
3677 /// Construct an InvokeInst from a range of arguments
3678 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3679 BasicBlock *IfException, ArrayRef<Value *> Args,
3680 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3681 const Twine &NameStr, Instruction *InsertBefore);
3682
3683 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3684 BasicBlock *IfException, ArrayRef<Value *> Args,
3685 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3686 const Twine &NameStr, BasicBlock *InsertAtEnd);
3687
3688 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3689 BasicBlock *IfException, ArrayRef<Value *> Args,
3690 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3691
3692 /// Compute the number of operands to allocate.
3693 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3694 // We need one operand for the called function, plus our extra operands and
3695 // the input operand counts provided.
3696 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3697 }
3698
3699protected:
3700 // Note: Instruction needs to be a friend here to call cloneImpl.
3701 friend class Instruction;
3702
3703 InvokeInst *cloneImpl() const;
3704
3705public:
3706 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3707 BasicBlock *IfException, ArrayRef<Value *> Args,
3708 const Twine &NameStr,
3709 Instruction *InsertBefore = nullptr) {
3710 int NumOperands = ComputeNumOperands(Args.size());
3711 return new (NumOperands)
3712 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3713 NameStr, InsertBefore);
3714 }
3715
3716 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3717 BasicBlock *IfException, ArrayRef<Value *> Args,
3718 ArrayRef<OperandBundleDef> Bundles = None,
3719 const Twine &NameStr = "",
3720 Instruction *InsertBefore = nullptr) {
3721 int NumOperands =
3722 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3723 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3724
3725 return new (NumOperands, DescriptorBytes)
3726 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3727 NameStr, InsertBefore);
3728 }
3729
3730 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3731 BasicBlock *IfException, ArrayRef<Value *> Args,
3732 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3733 int NumOperands = ComputeNumOperands(Args.size());
3734 return new (NumOperands)
3735 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3736 NameStr, InsertAtEnd);
3737 }
3738
3739 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles,
3742 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3743 int NumOperands =
3744 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3745 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3746
3747 return new (NumOperands, DescriptorBytes)
3748 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3749 NameStr, InsertAtEnd);
3750 }
3751
3752 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3753 BasicBlock *IfException, ArrayRef<Value *> Args,
3754 const Twine &NameStr,
3755 Instruction *InsertBefore = nullptr) {
3756 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3757 IfException, Args, None, NameStr, InsertBefore);
3758 }
3759
3760 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3761 BasicBlock *IfException, ArrayRef<Value *> Args,
3762 ArrayRef<OperandBundleDef> Bundles = None,
3763 const Twine &NameStr = "",
3764 Instruction *InsertBefore = nullptr) {
3765 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3766 IfException, Args, Bundles, NameStr, InsertBefore);
3767 }
3768
3769 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3770 BasicBlock *IfException, ArrayRef<Value *> Args,
3771 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3772 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3773 IfException, Args, NameStr, InsertAtEnd);
3774 }
3775
3776 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3777 BasicBlock *IfException, ArrayRef<Value *> Args,
3778 ArrayRef<OperandBundleDef> Bundles,
3779 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3780 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3781 IfException, Args, Bundles, NameStr, InsertAtEnd);
3782 }
3783
3784 /// Create a clone of \p II with a different set of operand bundles and
3785 /// insert it before \p InsertPt.
3786 ///
3787 /// The returned invoke instruction is identical to \p II in every way except
3788 /// that the operand bundles for the new instruction are set to the operand
3789 /// bundles in \p Bundles.
3790 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3791 Instruction *InsertPt = nullptr);
3792
3793 /// Create a clone of \p II with a different set of operand bundles and
3794 /// insert it before \p InsertPt.
3795 ///
3796 /// The returned invoke instruction is identical to \p II in every way except
3797 /// that the operand bundle for the new instruction is set to the operand
3798 /// bundle in \p Bundle.
3799 static InvokeInst *CreateWithReplacedBundle(InvokeInst *II,
3800 OperandBundleDef Bundles,
3801 Instruction *InsertPt = nullptr);
3802
3803 // get*Dest - Return the destination basic blocks...
3804 BasicBlock *getNormalDest() const {
3805 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3806 }
3807 BasicBlock *getUnwindDest() const {
3808 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3809 }
3810 void setNormalDest(BasicBlock *B) {
3811 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3812 }
3813 void setUnwindDest(BasicBlock *B) {
3814 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3815 }
3816
3817 /// Get the landingpad instruction from the landing pad
3818 /// block (the unwind destination).
3819 LandingPadInst *getLandingPadInst() const;
3820
3821 BasicBlock *getSuccessor(unsigned i) const {
3822 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3822, __PRETTY_FUNCTION__))
;
3823 return i == 0 ? getNormalDest() : getUnwindDest();
3824 }
3825
3826 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3827 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 3827, __PRETTY_FUNCTION__))
;
3828 if (i == 0)
3829 setNormalDest(NewSucc);
3830 else
3831 setUnwindDest(NewSucc);
3832 }
3833
3834 unsigned getNumSuccessors() const { return 2; }
3835
3836 // Methods for support type inquiry through isa, cast, and dyn_cast:
3837 static bool classof(const Instruction *I) {
3838 return (I->getOpcode() == Instruction::Invoke);
3839 }
3840 static bool classof(const Value *V) {
3841 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3842 }
3843
3844private:
3845 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3846 // method so that subclasses cannot accidentally use it.
3847 template <typename Bitfield>
3848 void setSubclassData(typename Bitfield::Type Value) {
3849 Instruction::setSubclassData<Bitfield>(Value);
3850 }
3851};
3852
3853InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3854 BasicBlock *IfException, ArrayRef<Value *> Args,
3855 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3856 const Twine &NameStr, Instruction *InsertBefore)
3857 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3858 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3859 InsertBefore) {
3860 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3861}
3862
3863InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3864 BasicBlock *IfException, ArrayRef<Value *> Args,
3865 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3866 const Twine &NameStr, BasicBlock *InsertAtEnd)
3867 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3868 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3869 InsertAtEnd) {
3870 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3871}
3872
3873//===----------------------------------------------------------------------===//
3874// CallBrInst Class
3875//===----------------------------------------------------------------------===//
3876
3877/// CallBr instruction, tracking function calls that may not return control but
3878/// instead transfer it to a third location. The SubclassData field is used to
3879/// hold the calling convention of the call.
3880///
3881class CallBrInst : public CallBase {
3882
3883 unsigned NumIndirectDests;
3884
3885 CallBrInst(const CallBrInst &BI);
3886
3887 /// Construct a CallBrInst given a range of arguments.
3888 ///
3889 /// Construct a CallBrInst from a range of arguments
3890 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3891 ArrayRef<BasicBlock *> IndirectDests,
3892 ArrayRef<Value *> Args,
3893 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3894 const Twine &NameStr, Instruction *InsertBefore);
3895
3896 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3897 ArrayRef<BasicBlock *> IndirectDests,
3898 ArrayRef<Value *> Args,
3899 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3900 const Twine &NameStr, BasicBlock *InsertAtEnd);
3901
3902 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3903 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3904 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3905
3906 /// Should the Indirect Destinations change, scan + update the Arg list.
3907 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3908
3909 /// Compute the number of operands to allocate.
3910 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3911 int NumBundleInputs = 0) {
3912 // We need one operand for the called function, plus our extra operands and
3913 // the input operand counts provided.
3914 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3915 }
3916
3917protected:
3918 // Note: Instruction needs to be a friend here to call cloneImpl.
3919 friend class Instruction;
3920
3921 CallBrInst *cloneImpl() const;
3922
3923public:
3924 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3925 BasicBlock *DefaultDest,
3926 ArrayRef<BasicBlock *> IndirectDests,
3927 ArrayRef<Value *> Args, const Twine &NameStr,
3928 Instruction *InsertBefore = nullptr) {
3929 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3930 return new (NumOperands)
3931 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3932 NumOperands, NameStr, InsertBefore);
3933 }
3934
3935 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3936 BasicBlock *DefaultDest,
3937 ArrayRef<BasicBlock *> IndirectDests,
3938 ArrayRef<Value *> Args,
3939 ArrayRef<OperandBundleDef> Bundles = None,
3940 const Twine &NameStr = "",
3941 Instruction *InsertBefore = nullptr) {
3942 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3943 CountBundleInputs(Bundles));
3944 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3945
3946 return new (NumOperands, DescriptorBytes)
3947 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3948 NumOperands, NameStr, InsertBefore);
3949 }
3950
3951 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3952 BasicBlock *DefaultDest,
3953 ArrayRef<BasicBlock *> IndirectDests,
3954 ArrayRef<Value *> Args, const Twine &NameStr,
3955 BasicBlock *InsertAtEnd) {
3956 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3957 return new (NumOperands)
3958 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3959 NumOperands, NameStr, InsertAtEnd);
3960 }
3961
3962 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3963 BasicBlock *DefaultDest,
3964 ArrayRef<BasicBlock *> IndirectDests,
3965 ArrayRef<Value *> Args,
3966 ArrayRef<OperandBundleDef> Bundles,
3967 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3968 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3969 CountBundleInputs(Bundles));
3970 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3971
3972 return new (NumOperands, DescriptorBytes)
3973 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3974 NumOperands, NameStr, InsertAtEnd);
3975 }
3976
3977 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args, const Twine &NameStr,
3980 Instruction *InsertBefore = nullptr) {
3981 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3982 IndirectDests, Args, NameStr, InsertBefore);
3983 }
3984
3985 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3986 ArrayRef<BasicBlock *> IndirectDests,
3987 ArrayRef<Value *> Args,
3988 ArrayRef<OperandBundleDef> Bundles = None,
3989 const Twine &NameStr = "",
3990 Instruction *InsertBefore = nullptr) {
3991 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3992 IndirectDests, Args, Bundles, NameStr, InsertBefore);
3993 }
3994
3995 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3996 ArrayRef<BasicBlock *> IndirectDests,
3997 ArrayRef<Value *> Args, const Twine &NameStr,
3998 BasicBlock *InsertAtEnd) {
3999 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4000 IndirectDests, Args, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionCallee Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4010 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4011 }
4012
4013 /// Create a clone of \p CBI with a different set of operand bundles and
4014 /// insert it before \p InsertPt.
4015 ///
4016 /// The returned callbr instruction is identical to \p CBI in every way
4017 /// except that the operand bundles for the new instruction are set to the
4018 /// operand bundles in \p Bundles.
4019 static CallBrInst *Create(CallBrInst *CBI,
4020 ArrayRef<OperandBundleDef> Bundles,
4021 Instruction *InsertPt = nullptr);
4022
4023 /// Return the number of callbr indirect dest labels.
4024 ///
4025 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4026
4027 /// getIndirectDestLabel - Return the i-th indirect dest label.
4028 ///
4029 Value *getIndirectDestLabel(unsigned i) const {
4030 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4030, __PRETTY_FUNCTION__))
;
4031 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4032 1);
4033 }
4034
4035 Value *getIndirectDestLabelUse(unsigned i) const {
4036 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4036, __PRETTY_FUNCTION__))
;
4037 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4038 1);
4039 }
4040
4041 // Return the destination basic blocks...
4042 BasicBlock *getDefaultDest() const {
4043 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4044 }
4045 BasicBlock *getIndirectDest(unsigned i) const {
4046 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4047 }
4048 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4049 SmallVector<BasicBlock *, 16> IndirectDests;
4050 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4051 IndirectDests.push_back(getIndirectDest(i));
4052 return IndirectDests;
4053 }
4054 void setDefaultDest(BasicBlock *B) {
4055 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4056 }
4057 void setIndirectDest(unsigned i, BasicBlock *B) {
4058 updateArgBlockAddresses(i, B);
4059 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4060 }
4061
4062 BasicBlock *getSuccessor(unsigned i) const {
4063 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4064, __PRETTY_FUNCTION__))
4064 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4064, __PRETTY_FUNCTION__))
;
4065 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4066 }
4067
4068 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4069 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4070, __PRETTY_FUNCTION__))
4070 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4070, __PRETTY_FUNCTION__))
;
4071 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4072 }
4073
4074 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4075
4076 // Methods for support type inquiry through isa, cast, and dyn_cast:
4077 static bool classof(const Instruction *I) {
4078 return (I->getOpcode() == Instruction::CallBr);
4079 }
4080 static bool classof(const Value *V) {
4081 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4082 }
4083
4084private:
4085 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4086 // method so that subclasses cannot accidentally use it.
4087 template <typename Bitfield>
4088 void setSubclassData(typename Bitfield::Type Value) {
4089 Instruction::setSubclassData<Bitfield>(Value);
4090 }
4091};
4092
4093CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4094 ArrayRef<BasicBlock *> IndirectDests,
4095 ArrayRef<Value *> Args,
4096 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4097 const Twine &NameStr, Instruction *InsertBefore)
4098 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4099 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4100 InsertBefore) {
4101 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4102}
4103
4104CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4105 ArrayRef<BasicBlock *> IndirectDests,
4106 ArrayRef<Value *> Args,
4107 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4108 const Twine &NameStr, BasicBlock *InsertAtEnd)
4109 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4110 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4111 InsertAtEnd) {
4112 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4113}
4114
4115//===----------------------------------------------------------------------===//
4116// ResumeInst Class
4117//===----------------------------------------------------------------------===//
4118
4119//===---------------------------------------------------------------------------
4120/// Resume the propagation of an exception.
4121///
4122class ResumeInst : public Instruction {
4123 ResumeInst(const ResumeInst &RI);
4124
4125 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4126 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4127
4128protected:
4129 // Note: Instruction needs to be a friend here to call cloneImpl.
4130 friend class Instruction;
4131
4132 ResumeInst *cloneImpl() const;
4133
4134public:
4135 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4136 return new(1) ResumeInst(Exn, InsertBefore);
4137 }
4138
4139 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4140 return new(1) ResumeInst(Exn, InsertAtEnd);
4141 }
4142
4143 /// Provide fast operand accessors
4144 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4145
4146 /// Convenience accessor.
4147 Value *getValue() const { return Op<0>(); }
4148
4149 unsigned getNumSuccessors() const { return 0; }
4150
4151 // Methods for support type inquiry through isa, cast, and dyn_cast:
4152 static bool classof(const Instruction *I) {
4153 return I->getOpcode() == Instruction::Resume;
4154 }
4155 static bool classof(const Value *V) {
4156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4157 }
4158
4159private:
4160 BasicBlock *getSuccessor(unsigned idx) const {
4161 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4161)
;
4162 }
4163
4164 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4165 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4165)
;
4166 }
4167};
4168
4169template <>
4170struct OperandTraits<ResumeInst> :
4171 public FixedNumOperandTraits<ResumeInst, 1> {
4172};
4173
4174DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4174, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4174, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4175
4176//===----------------------------------------------------------------------===//
4177// CatchSwitchInst Class
4178//===----------------------------------------------------------------------===//
4179class CatchSwitchInst : public Instruction {
4180 using UnwindDestField = BoolBitfieldElementT<0>;
4181
4182 /// The number of operands actually allocated. NumOperands is
4183 /// the number actually in use.
4184 unsigned ReservedSpace;
4185
4186 // Operand[0] = Outer scope
4187 // Operand[1] = Unwind block destination
4188 // Operand[n] = BasicBlock to go to on match
4189 CatchSwitchInst(const CatchSwitchInst &CSI);
4190
4191 /// Create a new switch instruction, specifying a
4192 /// default destination. The number of additional handlers can be specified
4193 /// here to make memory allocation more efficient.
4194 /// This constructor can also autoinsert before another instruction.
4195 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4196 unsigned NumHandlers, const Twine &NameStr,
4197 Instruction *InsertBefore);
4198
4199 /// Create a new switch instruction, specifying a
4200 /// default destination. The number of additional handlers can be specified
4201 /// here to make memory allocation more efficient.
4202 /// This constructor also autoinserts at the end of the specified BasicBlock.
4203 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4204 unsigned NumHandlers, const Twine &NameStr,
4205 BasicBlock *InsertAtEnd);
4206
4207 // allocate space for exactly zero operands
4208 void *operator new(size_t s) { return User::operator new(s); }
4209
4210 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4211 void growOperands(unsigned Size);
4212
4213protected:
4214 // Note: Instruction needs to be a friend here to call cloneImpl.
4215 friend class Instruction;
4216
4217 CatchSwitchInst *cloneImpl() const;
4218
4219public:
4220 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4221 unsigned NumHandlers,
4222 const Twine &NameStr = "",
4223 Instruction *InsertBefore = nullptr) {
4224 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4225 InsertBefore);
4226 }
4227
4228 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4229 unsigned NumHandlers, const Twine &NameStr,
4230 BasicBlock *InsertAtEnd) {
4231 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4232 InsertAtEnd);
4233 }
4234
4235 /// Provide fast operand accessors
4236 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4237
4238 // Accessor Methods for CatchSwitch stmt
4239 Value *getParentPad() const { return getOperand(0); }
4240 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4241
4242 // Accessor Methods for CatchSwitch stmt
4243 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4244 bool unwindsToCaller() const { return !hasUnwindDest(); }
4245 BasicBlock *getUnwindDest() const {
4246 if (hasUnwindDest())
4247 return cast<BasicBlock>(getOperand(1));
4248 return nullptr;
4249 }
4250 void setUnwindDest(BasicBlock *UnwindDest) {
4251 assert(UnwindDest)((UnwindDest) ? static_cast<void> (0) : __assert_fail (
"UnwindDest", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4251, __PRETTY_FUNCTION__))
;
4252 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4252, __PRETTY_FUNCTION__))
;
4253 setOperand(1, UnwindDest);
4254 }
4255
4256 /// return the number of 'handlers' in this catchswitch
4257 /// instruction, except the default handler
4258 unsigned getNumHandlers() const {
4259 if (hasUnwindDest())
4260 return getNumOperands() - 2;
4261 return getNumOperands() - 1;
4262 }
4263
4264private:
4265 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4266 static const BasicBlock *handler_helper(const Value *V) {
4267 return cast<BasicBlock>(V);
4268 }
4269
4270public:
4271 using DerefFnTy = BasicBlock *(*)(Value *);
4272 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4273 using handler_range = iterator_range<handler_iterator>;
4274 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4275 using const_handler_iterator =
4276 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4277 using const_handler_range = iterator_range<const_handler_iterator>;
4278
4279 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4280 handler_iterator handler_begin() {
4281 op_iterator It = op_begin() + 1;
4282 if (hasUnwindDest())
4283 ++It;
4284 return handler_iterator(It, DerefFnTy(handler_helper));
4285 }
4286
4287 /// Returns an iterator that points to the first handler in the
4288 /// CatchSwitchInst.
4289 const_handler_iterator handler_begin() const {
4290 const_op_iterator It = op_begin() + 1;
4291 if (hasUnwindDest())
4292 ++It;
4293 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4294 }
4295
4296 /// Returns a read-only iterator that points one past the last
4297 /// handler in the CatchSwitchInst.
4298 handler_iterator handler_end() {
4299 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4300 }
4301
4302 /// Returns an iterator that points one past the last handler in the
4303 /// CatchSwitchInst.
4304 const_handler_iterator handler_end() const {
4305 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4306 }
4307
4308 /// iteration adapter for range-for loops.
4309 handler_range handlers() {
4310 return make_range(handler_begin(), handler_end());
4311 }
4312
4313 /// iteration adapter for range-for loops.
4314 const_handler_range handlers() const {
4315 return make_range(handler_begin(), handler_end());
4316 }
4317
4318 /// Add an entry to the switch instruction...
4319 /// Note:
4320 /// This action invalidates handler_end(). Old handler_end() iterator will
4321 /// point to the added handler.
4322 void addHandler(BasicBlock *Dest);
4323
4324 void removeHandler(handler_iterator HI);
4325
4326 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4327 BasicBlock *getSuccessor(unsigned Idx) const {
4328 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4329, __PRETTY_FUNCTION__))
4329 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4329, __PRETTY_FUNCTION__))
;
4330 return cast<BasicBlock>(getOperand(Idx + 1));
4331 }
4332 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4333 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4334, __PRETTY_FUNCTION__))
4334 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4334, __PRETTY_FUNCTION__))
;
4335 setOperand(Idx + 1, NewSucc);
4336 }
4337
4338 // Methods for support type inquiry through isa, cast, and dyn_cast:
4339 static bool classof(const Instruction *I) {
4340 return I->getOpcode() == Instruction::CatchSwitch;
4341 }
4342 static bool classof(const Value *V) {
4343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4344 }
4345};
4346
4347template <>
4348struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4349
4350DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4350, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this))[i_nocapture].get()); } void CatchSwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchSwitchInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4350, __PRETTY_FUNCTION__)); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4351
4352//===----------------------------------------------------------------------===//
4353// CleanupPadInst Class
4354//===----------------------------------------------------------------------===//
4355class CleanupPadInst : public FuncletPadInst {
4356private:
4357 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4358 unsigned Values, const Twine &NameStr,
4359 Instruction *InsertBefore)
4360 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4361 NameStr, InsertBefore) {}
4362 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4363 unsigned Values, const Twine &NameStr,
4364 BasicBlock *InsertAtEnd)
4365 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4366 NameStr, InsertAtEnd) {}
4367
4368public:
4369 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4370 const Twine &NameStr = "",
4371 Instruction *InsertBefore = nullptr) {
4372 unsigned Values = 1 + Args.size();
4373 return new (Values)
4374 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4375 }
4376
4377 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4378 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4379 unsigned Values = 1 + Args.size();
4380 return new (Values)
4381 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4382 }
4383
4384 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4385 static bool classof(const Instruction *I) {
4386 return I->getOpcode() == Instruction::CleanupPad;
4387 }
4388 static bool classof(const Value *V) {
4389 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4390 }
4391};
4392
4393//===----------------------------------------------------------------------===//
4394// CatchPadInst Class
4395//===----------------------------------------------------------------------===//
4396class CatchPadInst : public FuncletPadInst {
4397private:
4398 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4399 unsigned Values, const Twine &NameStr,
4400 Instruction *InsertBefore)
4401 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4402 NameStr, InsertBefore) {}
4403 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4404 unsigned Values, const Twine &NameStr,
4405 BasicBlock *InsertAtEnd)
4406 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4407 NameStr, InsertAtEnd) {}
4408
4409public:
4410 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4411 const Twine &NameStr = "",
4412 Instruction *InsertBefore = nullptr) {
4413 unsigned Values = 1 + Args.size();
4414 return new (Values)
4415 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4416 }
4417
4418 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4419 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4420 unsigned Values = 1 + Args.size();
4421 return new (Values)
4422 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4423 }
4424
4425 /// Convenience accessors
4426 CatchSwitchInst *getCatchSwitch() const {
4427 return cast<CatchSwitchInst>(Op<-1>());
4428 }
4429 void setCatchSwitch(Value *CatchSwitch) {
4430 assert(CatchSwitch)((CatchSwitch) ? static_cast<void> (0) : __assert_fail (
"CatchSwitch", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4430, __PRETTY_FUNCTION__))
;
4431 Op<-1>() = CatchSwitch;
4432 }
4433
4434 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4435 static bool classof(const Instruction *I) {
4436 return I->getOpcode() == Instruction::CatchPad;
4437 }
4438 static bool classof(const Value *V) {
4439 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4440 }
4441};
4442
4443//===----------------------------------------------------------------------===//
4444// CatchReturnInst Class
4445//===----------------------------------------------------------------------===//
4446
4447class CatchReturnInst : public Instruction {
4448 CatchReturnInst(const CatchReturnInst &RI);
4449 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4450 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4451
4452 void init(Value *CatchPad, BasicBlock *BB);
4453
4454protected:
4455 // Note: Instruction needs to be a friend here to call cloneImpl.
4456 friend class Instruction;
4457
4458 CatchReturnInst *cloneImpl() const;
4459
4460public:
4461 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4462 Instruction *InsertBefore = nullptr) {
4463 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4463, __PRETTY_FUNCTION__))
;
4464 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4464, __PRETTY_FUNCTION__))
;
4465 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4466 }
4467
4468 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4469 BasicBlock *InsertAtEnd) {
4470 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4470, __PRETTY_FUNCTION__))
;
4471 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4471, __PRETTY_FUNCTION__))
;
4472 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4473 }
4474
4475 /// Provide fast operand accessors
4476 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4477
4478 /// Convenience accessors.
4479 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4480 void setCatchPad(CatchPadInst *CatchPad) {
4481 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4481, __PRETTY_FUNCTION__))
;
4482 Op<0>() = CatchPad;
4483 }
4484
4485 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4486 void setSuccessor(BasicBlock *NewSucc) {
4487 assert(NewSucc)((NewSucc) ? static_cast<void> (0) : __assert_fail ("NewSucc"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4487, __PRETTY_FUNCTION__))
;
4488 Op<1>() = NewSucc;
4489 }
4490 unsigned getNumSuccessors() const { return 1; }
4491
4492 /// Get the parentPad of this catchret's catchpad's catchswitch.
4493 /// The successor block is implicitly a member of this funclet.
4494 Value *getCatchSwitchParentPad() const {
4495 return getCatchPad()->getCatchSwitch()->getParentPad();
4496 }
4497
4498 // Methods for support type inquiry through isa, cast, and dyn_cast:
4499 static bool classof(const Instruction *I) {
4500 return (I->getOpcode() == Instruction::CatchRet);
4501 }
4502 static bool classof(const Value *V) {
4503 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4504 }
4505
4506private:
4507 BasicBlock *getSuccessor(unsigned Idx) const {
4508 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4508, __PRETTY_FUNCTION__))
;
4509 return getSuccessor();
4510 }
4511
4512 void setSuccessor(unsigned Idx, BasicBlock *B) {
4513 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4513, __PRETTY_FUNCTION__))
;
4514 setSuccessor(B);
4515 }
4516};
4517
4518template <>
4519struct OperandTraits<CatchReturnInst>
4520 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4521
4522DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4522, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this))[i_nocapture].get()); } void CatchReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchReturnInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4522, __PRETTY_FUNCTION__)); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4523
4524//===----------------------------------------------------------------------===//
4525// CleanupReturnInst Class
4526//===----------------------------------------------------------------------===//
4527
4528class CleanupReturnInst : public Instruction {
4529 using UnwindDestField = BoolBitfieldElementT<0>;
4530
4531private:
4532 CleanupReturnInst(const CleanupReturnInst &RI);
4533 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4534 Instruction *InsertBefore = nullptr);
4535 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4536 BasicBlock *InsertAtEnd);
4537
4538 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4539
4540protected:
4541 // Note: Instruction needs to be a friend here to call cloneImpl.
4542 friend class Instruction;
4543
4544 CleanupReturnInst *cloneImpl() const;
4545
4546public:
4547 static CleanupReturnInst *Create(Value *CleanupPad,
4548 BasicBlock *UnwindBB = nullptr,
4549 Instruction *InsertBefore = nullptr) {
4550 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4550, __PRETTY_FUNCTION__))
;
4551 unsigned Values = 1;
4552 if (UnwindBB)
4553 ++Values;
4554 return new (Values)
4555 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4556 }
4557
4558 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4559 BasicBlock *InsertAtEnd) {
4560 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4560, __PRETTY_FUNCTION__))
;
4561 unsigned Values = 1;
4562 if (UnwindBB)
4563 ++Values;
4564 return new (Values)
4565 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4566 }
4567
4568 /// Provide fast operand accessors
4569 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4570
4571 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4572 bool unwindsToCaller() const { return !hasUnwindDest(); }
4573
4574 /// Convenience accessor.
4575 CleanupPadInst *getCleanupPad() const {
4576 return cast<CleanupPadInst>(Op<0>());
4577 }
4578 void setCleanupPad(CleanupPadInst *CleanupPad) {
4579 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4579, __PRETTY_FUNCTION__))
;
4580 Op<0>() = CleanupPad;
4581 }
4582
4583 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4584
4585 BasicBlock *getUnwindDest() const {
4586 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4587 }
4588 void setUnwindDest(BasicBlock *NewDest) {
4589 assert(NewDest)((NewDest) ? static_cast<void> (0) : __assert_fail ("NewDest"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4589, __PRETTY_FUNCTION__))
;
4590 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4590, __PRETTY_FUNCTION__))
;
4591 Op<1>() = NewDest;
4592 }
4593
4594 // Methods for support type inquiry through isa, cast, and dyn_cast:
4595 static bool classof(const Instruction *I) {
4596 return (I->getOpcode() == Instruction::CleanupRet);
4597 }
4598 static bool classof(const Value *V) {
4599 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4600 }
4601
4602private:
4603 BasicBlock *getSuccessor(unsigned Idx) const {
4604 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4604, __PRETTY_FUNCTION__))
;
4605 return getUnwindDest();
4606 }
4607
4608 void setSuccessor(unsigned Idx, BasicBlock *B) {
4609 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4609, __PRETTY_FUNCTION__))
;
4610 setUnwindDest(B);
4611 }
4612
4613 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4614 // method so that subclasses cannot accidentally use it.
4615 template <typename Bitfield>
4616 void setSubclassData(typename Bitfield::Type Value) {
4617 Instruction::setSubclassData<Bitfield>(Value);
4618 }
4619};
4620
4621template <>
4622struct OperandTraits<CleanupReturnInst>
4623 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4624
4625DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CleanupReturnInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4625, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<CleanupReturnInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4625, __PRETTY_FUNCTION__)); OperandTraits<CleanupReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CleanupReturnInst::getNumOperands() const { return OperandTraits
<CleanupReturnInst>::operands(this); } template <int
Idx_nocapture> Use &CleanupReturnInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CleanupReturnInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
4626
4627//===----------------------------------------------------------------------===//
4628// UnreachableInst Class
4629//===----------------------------------------------------------------------===//
4630
4631//===---------------------------------------------------------------------------
4632/// This function has undefined behavior. In particular, the
4633/// presence of this instruction indicates some higher level knowledge that the
4634/// end of the block cannot be reached.
4635///
4636class UnreachableInst : public Instruction {
4637protected:
4638 // Note: Instruction needs to be a friend here to call cloneImpl.
4639 friend class Instruction;
4640
4641 UnreachableInst *cloneImpl() const;
4642
4643public:
4644 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4645 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4646
4647 // allocate space for exactly zero operands
4648 void *operator new(size_t s) {
4649 return User::operator new(s, 0);
4650 }
4651
4652 unsigned getNumSuccessors() const { return 0; }
4653
4654 // Methods for support type inquiry through isa, cast, and dyn_cast:
4655 static bool classof(const Instruction *I) {
4656 return I->getOpcode() == Instruction::Unreachable;
4657 }
4658 static bool classof(const Value *V) {
4659 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4660 }
4661
4662private:
4663 BasicBlock *getSuccessor(unsigned idx) const {
4664 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4664)
;
4665 }
4666
4667 void setSuccessor(unsigned idx, BasicBlock *B) {
4668 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 4668)
;
4669 }
4670};
4671
4672//===----------------------------------------------------------------------===//
4673// TruncInst Class
4674//===----------------------------------------------------------------------===//
4675
4676/// This class represents a truncation of integer types.
4677class TruncInst : public CastInst {
4678protected:
4679 // Note: Instruction needs to be a friend here to call cloneImpl.
4680 friend class Instruction;
4681
4682 /// Clone an identical TruncInst
4683 TruncInst *cloneImpl() const;
4684
4685public:
4686 /// Constructor with insert-before-instruction semantics
4687 TruncInst(
4688 Value *S, ///< The value to be truncated
4689 Type *Ty, ///< The (smaller) type to truncate to
4690 const Twine &NameStr = "", ///< A name for the new instruction
4691 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4692 );
4693
4694 /// Constructor with insert-at-end-of-block semantics
4695 TruncInst(
4696 Value *S, ///< The value to be truncated
4697 Type *Ty, ///< The (smaller) type to truncate to
4698 const Twine &NameStr, ///< A name for the new instruction
4699 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4700 );
4701
4702 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4703 static bool classof(const Instruction *I) {
4704 return I->getOpcode() == Trunc;
4705 }
4706 static bool classof(const Value *V) {
4707 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4708 }
4709};
4710
4711//===----------------------------------------------------------------------===//
4712// ZExtInst Class
4713//===----------------------------------------------------------------------===//
4714
4715/// This class represents zero extension of integer types.
4716class ZExtInst : public CastInst {
4717protected:
4718 // Note: Instruction needs to be a friend here to call cloneImpl.
4719 friend class Instruction;
4720
4721 /// Clone an identical ZExtInst
4722 ZExtInst *cloneImpl() const;
4723
4724public:
4725 /// Constructor with insert-before-instruction semantics
4726 ZExtInst(
4727 Value *S, ///< The value to be zero extended
4728 Type *Ty, ///< The type to zero extend to
4729 const Twine &NameStr = "", ///< A name for the new instruction
4730 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4731 );
4732
4733 /// Constructor with insert-at-end semantics.
4734 ZExtInst(
4735 Value *S, ///< The value to be zero extended
4736 Type *Ty, ///< The type to zero extend to
4737 const Twine &NameStr, ///< A name for the new instruction
4738 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4739 );
4740
4741 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4742 static bool classof(const Instruction *I) {
4743 return I->getOpcode() == ZExt;
4744 }
4745 static bool classof(const Value *V) {
4746 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4747 }
4748};
4749
4750//===----------------------------------------------------------------------===//
4751// SExtInst Class
4752//===----------------------------------------------------------------------===//
4753
4754/// This class represents a sign extension of integer types.
4755class SExtInst : public CastInst {
4756protected:
4757 // Note: Instruction needs to be a friend here to call cloneImpl.
4758 friend class Instruction;
4759
4760 /// Clone an identical SExtInst
4761 SExtInst *cloneImpl() const;
4762
4763public:
4764 /// Constructor with insert-before-instruction semantics
4765 SExtInst(
4766 Value *S, ///< The value to be sign extended
4767 Type *Ty, ///< The type to sign extend to
4768 const Twine &NameStr = "", ///< A name for the new instruction
4769 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4770 );
4771
4772 /// Constructor with insert-at-end-of-block semantics
4773 SExtInst(
4774 Value *S, ///< The value to be sign extended
4775 Type *Ty, ///< The type to sign extend to
4776 const Twine &NameStr, ///< A name for the new instruction
4777 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4778 );
4779
4780 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4781 static bool classof(const Instruction *I) {
4782 return I->getOpcode() == SExt;
4783 }
4784 static bool classof(const Value *V) {
4785 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4786 }
4787};
4788
4789//===----------------------------------------------------------------------===//
4790// FPTruncInst Class
4791//===----------------------------------------------------------------------===//
4792
4793/// This class represents a truncation of floating point types.
4794class FPTruncInst : public CastInst {
4795protected:
4796 // Note: Instruction needs to be a friend here to call cloneImpl.
4797 friend class Instruction;
4798
4799 /// Clone an identical FPTruncInst
4800 FPTruncInst *cloneImpl() const;
4801
4802public:
4803 /// Constructor with insert-before-instruction semantics
4804 FPTruncInst(
4805 Value *S, ///< The value to be truncated
4806 Type *Ty, ///< The type to truncate to
4807 const Twine &NameStr = "", ///< A name for the new instruction
4808 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4809 );
4810
4811 /// Constructor with insert-before-instruction semantics
4812 FPTruncInst(
4813 Value *S, ///< The value to be truncated
4814 Type *Ty, ///< The type to truncate to
4815 const Twine &NameStr, ///< A name for the new instruction
4816 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4817 );
4818
4819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4820 static bool classof(const Instruction *I) {
4821 return I->getOpcode() == FPTrunc;
4822 }
4823 static bool classof(const Value *V) {
4824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4825 }
4826};
4827
4828//===----------------------------------------------------------------------===//
4829// FPExtInst Class
4830//===----------------------------------------------------------------------===//
4831
4832/// This class represents an extension of floating point types.
4833class FPExtInst : public CastInst {
4834protected:
4835 // Note: Instruction needs to be a friend here to call cloneImpl.
4836 friend class Instruction;
4837
4838 /// Clone an identical FPExtInst
4839 FPExtInst *cloneImpl() const;
4840
4841public:
4842 /// Constructor with insert-before-instruction semantics
4843 FPExtInst(
4844 Value *S, ///< The value to be extended
4845 Type *Ty, ///< The type to extend to
4846 const Twine &NameStr = "", ///< A name for the new instruction
4847 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4848 );
4849
4850 /// Constructor with insert-at-end-of-block semantics
4851 FPExtInst(
4852 Value *S, ///< The value to be extended
4853 Type *Ty, ///< The type to extend to
4854 const Twine &NameStr, ///< A name for the new instruction
4855 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4856 );
4857
4858 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4859 static bool classof(const Instruction *I) {
4860 return I->getOpcode() == FPExt;
4861 }
4862 static bool classof(const Value *V) {
4863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4864 }
4865};
4866
4867//===----------------------------------------------------------------------===//
4868// UIToFPInst Class
4869//===----------------------------------------------------------------------===//
4870
4871/// This class represents a cast unsigned integer to floating point.
4872class UIToFPInst : public CastInst {
4873protected:
4874 // Note: Instruction needs to be a friend here to call cloneImpl.
4875 friend class Instruction;
4876
4877 /// Clone an identical UIToFPInst
4878 UIToFPInst *cloneImpl() const;
4879
4880public:
4881 /// Constructor with insert-before-instruction semantics
4882 UIToFPInst(
4883 Value *S, ///< The value to be converted
4884 Type *Ty, ///< The type to convert to
4885 const Twine &NameStr = "", ///< A name for the new instruction
4886 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4887 );
4888
4889 /// Constructor with insert-at-end-of-block semantics
4890 UIToFPInst(
4891 Value *S, ///< The value to be converted
4892 Type *Ty, ///< The type to convert to
4893 const Twine &NameStr, ///< A name for the new instruction
4894 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4895 );
4896
4897 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4898 static bool classof(const Instruction *I) {
4899 return I->getOpcode() == UIToFP;
4900 }
4901 static bool classof(const Value *V) {
4902 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4903 }
4904};
4905
4906//===----------------------------------------------------------------------===//
4907// SIToFPInst Class
4908//===----------------------------------------------------------------------===//
4909
4910/// This class represents a cast from signed integer to floating point.
4911class SIToFPInst : public CastInst {
4912protected:
4913 // Note: Instruction needs to be a friend here to call cloneImpl.
4914 friend class Instruction;
4915
4916 /// Clone an identical SIToFPInst
4917 SIToFPInst *cloneImpl() const;
4918
4919public:
4920 /// Constructor with insert-before-instruction semantics
4921 SIToFPInst(
4922 Value *S, ///< The value to be converted
4923 Type *Ty, ///< The type to convert to
4924 const Twine &NameStr = "", ///< A name for the new instruction
4925 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4926 );
4927
4928 /// Constructor with insert-at-end-of-block semantics
4929 SIToFPInst(
4930 Value *S, ///< The value to be converted
4931 Type *Ty, ///< The type to convert to
4932 const Twine &NameStr, ///< A name for the new instruction
4933 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4934 );
4935
4936 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4937 static bool classof(const Instruction *I) {
4938 return I->getOpcode() == SIToFP;
4939 }
4940 static bool classof(const Value *V) {
4941 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4942 }
4943};
4944
4945//===----------------------------------------------------------------------===//
4946// FPToUIInst Class
4947//===----------------------------------------------------------------------===//
4948
4949/// This class represents a cast from floating point to unsigned integer
4950class FPToUIInst : public CastInst {
4951protected:
4952 // Note: Instruction needs to be a friend here to call cloneImpl.
4953 friend class Instruction;
4954
4955 /// Clone an identical FPToUIInst
4956 FPToUIInst *cloneImpl() const;
4957
4958public:
4959 /// Constructor with insert-before-instruction semantics
4960 FPToUIInst(
4961 Value *S, ///< The value to be converted
4962 Type *Ty, ///< The type to convert to
4963 const Twine &NameStr = "", ///< A name for the new instruction
4964 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4965 );
4966
4967 /// Constructor with insert-at-end-of-block semantics
4968 FPToUIInst(
4969 Value *S, ///< The value to be converted
4970 Type *Ty, ///< The type to convert to
4971 const Twine &NameStr, ///< A name for the new instruction
4972 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4973 );
4974
4975 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4976 static bool classof(const Instruction *I) {
4977 return I->getOpcode() == FPToUI;
4978 }
4979 static bool classof(const Value *V) {
4980 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4981 }
4982};
4983
4984//===----------------------------------------------------------------------===//
4985// FPToSIInst Class
4986//===----------------------------------------------------------------------===//
4987
4988/// This class represents a cast from floating point to signed integer.
4989class FPToSIInst : public CastInst {
4990protected:
4991 // Note: Instruction needs to be a friend here to call cloneImpl.
4992 friend class Instruction;
4993
4994 /// Clone an identical FPToSIInst
4995 FPToSIInst *cloneImpl() const;
4996
4997public:
4998 /// Constructor with insert-before-instruction semantics
4999 FPToSIInst(
5000 Value *S, ///< The value to be converted
5001 Type *Ty, ///< The type to convert to
5002 const Twine &NameStr = "", ///< A name for the new instruction
5003 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5004 );
5005
5006 /// Constructor with insert-at-end-of-block semantics
5007 FPToSIInst(
5008 Value *S, ///< The value to be converted
5009 Type *Ty, ///< The type to convert to
5010 const Twine &NameStr, ///< A name for the new instruction
5011 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5012 );
5013
5014 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5015 static bool classof(const Instruction *I) {
5016 return I->getOpcode() == FPToSI;
5017 }
5018 static bool classof(const Value *V) {
5019 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5020 }
5021};
5022
5023//===----------------------------------------------------------------------===//
5024// IntToPtrInst Class
5025//===----------------------------------------------------------------------===//
5026
5027/// This class represents a cast from an integer to a pointer.
5028class IntToPtrInst : public CastInst {
5029public:
5030 // Note: Instruction needs to be a friend here to call cloneImpl.
5031 friend class Instruction;
5032
5033 /// Constructor with insert-before-instruction semantics
5034 IntToPtrInst(
5035 Value *S, ///< The value to be converted
5036 Type *Ty, ///< The type to convert to
5037 const Twine &NameStr = "", ///< A name for the new instruction
5038 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5039 );
5040
5041 /// Constructor with insert-at-end-of-block semantics
5042 IntToPtrInst(
5043 Value *S, ///< The value to be converted
5044 Type *Ty, ///< The type to convert to
5045 const Twine &NameStr, ///< A name for the new instruction
5046 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5047 );
5048
5049 /// Clone an identical IntToPtrInst.
5050 IntToPtrInst *cloneImpl() const;
5051
5052 /// Returns the address space of this instruction's pointer type.
5053 unsigned getAddressSpace() const {
5054 return getType()->getPointerAddressSpace();
5055 }
5056
5057 // Methods for support type inquiry through isa, cast, and dyn_cast:
5058 static bool classof(const Instruction *I) {
5059 return I->getOpcode() == IntToPtr;
5060 }
5061 static bool classof(const Value *V) {
5062 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5063 }
5064};
5065
5066//===----------------------------------------------------------------------===//
5067// PtrToIntInst Class
5068//===----------------------------------------------------------------------===//
5069
5070/// This class represents a cast from a pointer to an integer.
5071class PtrToIntInst : public CastInst {
5072protected:
5073 // Note: Instruction needs to be a friend here to call cloneImpl.
5074 friend class Instruction;
5075
5076 /// Clone an identical PtrToIntInst.
5077 PtrToIntInst *cloneImpl() const;
5078
5079public:
5080 /// Constructor with insert-before-instruction semantics
5081 PtrToIntInst(
5082 Value *S, ///< The value to be converted
5083 Type *Ty, ///< The type to convert to
5084 const Twine &NameStr = "", ///< A name for the new instruction
5085 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5086 );
5087
5088 /// Constructor with insert-at-end-of-block semantics
5089 PtrToIntInst(
5090 Value *S, ///< The value to be converted
5091 Type *Ty, ///< The type to convert to
5092 const Twine &NameStr, ///< A name for the new instruction
5093 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5094 );
5095
5096 /// Gets the pointer operand.
5097 Value *getPointerOperand() { return getOperand(0); }
5098 /// Gets the pointer operand.
5099 const Value *getPointerOperand() const { return getOperand(0); }
5100 /// Gets the operand index of the pointer operand.
5101 static unsigned getPointerOperandIndex() { return 0U; }
5102
5103 /// Returns the address space of the pointer operand.
5104 unsigned getPointerAddressSpace() const {
5105 return getPointerOperand()->getType()->getPointerAddressSpace();
5106 }
5107
5108 // Methods for support type inquiry through isa, cast, and dyn_cast:
5109 static bool classof(const Instruction *I) {
5110 return I->getOpcode() == PtrToInt;
5111 }
5112 static bool classof(const Value *V) {
5113 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5114 }
5115};
5116
5117//===----------------------------------------------------------------------===//
5118// BitCastInst Class
5119//===----------------------------------------------------------------------===//
5120
5121/// This class represents a no-op cast from one type to another.
5122class BitCastInst : public CastInst {
5123protected:
5124 // Note: Instruction needs to be a friend here to call cloneImpl.
5125 friend class Instruction;
5126
5127 /// Clone an identical BitCastInst.
5128 BitCastInst *cloneImpl() const;
5129
5130public:
5131 /// Constructor with insert-before-instruction semantics
5132 BitCastInst(
5133 Value *S, ///< The value to be casted
5134 Type *Ty, ///< The type to casted to
5135 const Twine &NameStr = "", ///< A name for the new instruction
5136 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5137 );
5138
5139 /// Constructor with insert-at-end-of-block semantics
5140 BitCastInst(
5141 Value *S, ///< The value to be casted
5142 Type *Ty, ///< The type to casted to
5143 const Twine &NameStr, ///< A name for the new instruction
5144 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5145 );
5146
5147 // Methods for support type inquiry through isa, cast, and dyn_cast:
5148 static bool classof(const Instruction *I) {
5149 return I->getOpcode() == BitCast;
5150 }
5151 static bool classof(const Value *V) {
5152 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5153 }
5154};
5155
5156//===----------------------------------------------------------------------===//
5157// AddrSpaceCastInst Class
5158//===----------------------------------------------------------------------===//
5159
5160/// This class represents a conversion between pointers from one address space
5161/// to another.
5162class AddrSpaceCastInst : public CastInst {
5163protected:
5164 // Note: Instruction needs to be a friend here to call cloneImpl.
5165 friend class Instruction;
5166
5167 /// Clone an identical AddrSpaceCastInst.
5168 AddrSpaceCastInst *cloneImpl() const;
5169
5170public:
5171 /// Constructor with insert-before-instruction semantics
5172 AddrSpaceCastInst(
5173 Value *S, ///< The value to be casted
5174 Type *Ty, ///< The type to casted to
5175 const Twine &NameStr = "", ///< A name for the new instruction
5176 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5177 );
5178
5179 /// Constructor with insert-at-end-of-block semantics
5180 AddrSpaceCastInst(
5181 Value *S, ///< The value to be casted
5182 Type *Ty, ///< The type to casted to
5183 const Twine &NameStr, ///< A name for the new instruction
5184 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5185 );
5186
5187 // Methods for support type inquiry through isa, cast, and dyn_cast:
5188 static bool classof(const Instruction *I) {
5189 return I->getOpcode() == AddrSpaceCast;
5190 }
5191 static bool classof(const Value *V) {
5192 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5193 }
5194
5195 /// Gets the pointer operand.
5196 Value *getPointerOperand() {
5197 return getOperand(0);
5198 }
5199
5200 /// Gets the pointer operand.
5201 const Value *getPointerOperand() const {
5202 return getOperand(0);
5203 }
5204
5205 /// Gets the operand index of the pointer operand.
5206 static unsigned getPointerOperandIndex() {
5207 return 0U;
5208 }
5209
5210 /// Returns the address space of the pointer operand.
5211 unsigned getSrcAddressSpace() const {
5212 return getPointerOperand()->getType()->getPointerAddressSpace();
5213 }
5214
5215 /// Returns the address space of the result.
5216 unsigned getDestAddressSpace() const {
5217 return getType()->getPointerAddressSpace();
5218 }
5219};
5220
5221/// A helper function that returns the pointer operand of a load or store
5222/// instruction. Returns nullptr if not load or store.
5223inline const Value *getLoadStorePointerOperand(const Value *V) {
5224 if (auto *Load = dyn_cast<LoadInst>(V))
5225 return Load->getPointerOperand();
5226 if (auto *Store = dyn_cast<StoreInst>(V))
5227 return Store->getPointerOperand();
5228 return nullptr;
5229}
5230inline Value *getLoadStorePointerOperand(Value *V) {
5231 return const_cast<Value *>(
5232 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5233}
5234
5235/// A helper function that returns the pointer operand of a load, store
5236/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5237inline const Value *getPointerOperand(const Value *V) {
5238 if (auto *Ptr = getLoadStorePointerOperand(V))
5239 return Ptr;
5240 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5241 return Gep->getPointerOperand();
5242 return nullptr;
5243}
5244inline Value *getPointerOperand(Value *V) {
5245 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5246}
5247
5248/// A helper function that returns the alignment of load or store instruction.
5249inline Align getLoadStoreAlignment(Value *I) {
5250 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 5251, __PRETTY_FUNCTION__))
5251 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 5251, __PRETTY_FUNCTION__))
;
5252 if (auto *LI = dyn_cast<LoadInst>(I))
5253 return LI->getAlign();
5254 return cast<StoreInst>(I)->getAlign();
5255}
5256
5257/// A helper function that returns the address space of the pointer operand of
5258/// load or store instruction.
5259inline unsigned getLoadStoreAddressSpace(Value *I) {
5260 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 5261, __PRETTY_FUNCTION__))
5261 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200828100629+cfde93e5d6b/llvm/include/llvm/IR/Instructions.h"
, 5261, __PRETTY_FUNCTION__))
;
5262 if (auto *LI = dyn_cast<LoadInst>(I))
5263 return LI->getPointerAddressSpace();
5264 return cast<StoreInst>(I)->getPointerAddressSpace();
5265}
5266
5267//===----------------------------------------------------------------------===//
5268// FreezeInst Class
5269//===----------------------------------------------------------------------===//
5270
5271/// This class represents a freeze function that returns random concrete
5272/// value if an operand is either a poison value or an undef value
5273class FreezeInst : public UnaryInstruction {
5274protected:
5275 // Note: Instruction needs to be a friend here to call cloneImpl.
5276 friend class Instruction;
5277
5278 /// Clone an identical FreezeInst
5279 FreezeInst *cloneImpl() const;
5280
5281public:
5282 explicit FreezeInst(Value *S,
5283 const Twine &NameStr = "",
5284 Instruction *InsertBefore = nullptr);
5285 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5286
5287 // Methods for support type inquiry through isa, cast, and dyn_cast:
5288 static inline bool classof(const Instruction *I) {
5289 return I->getOpcode() == Freeze;
5290 }
5291 static inline bool classof(const Value *V) {
5292 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5293 }
5294};
5295
5296} // end namespace llvm
5297
5298#endif // LLVM_IR_INSTRUCTIONS_H