Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1142, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-09-17-195756-12974-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp

1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// This pass uses alias analysis for two purposes:
16//
17// 1. Moving loop invariant loads and calls out of loops. If we can determine
18// that a load or call inside of a loop never aliases anything stored to,
19// we can hoist it or sink it like any other instruction.
20// 2. Scalar Promotion of Memory - If there is a store instruction inside of
21// the loop, we try to move the store to happen AFTER the loop instead of
22// inside of the loop. This can only happen if a few conditions are true:
23// A. The pointer stored through is loop invariant
24// B. There are no stores or loads in the loop which _may_ alias the
25// pointer. There are no calls in the loop which mod/ref the pointer.
26// If these conditions are true, we can promote the loads and stores in the
27// loop of the pointer to use a temporary alloca'd variable. We then use
28// the SSAUpdater to construct the appropriate SSA form for the value.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/Transforms/Scalar/LICM.h"
33#include "llvm/ADT/SetOperations.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/BasicAliasAnalysis.h"
38#include "llvm/Analysis/BlockFrequencyInfo.h"
39#include "llvm/Analysis/CaptureTracking.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/GlobalsModRef.h"
42#include "llvm/Analysis/GuardUtils.h"
43#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
44#include "llvm/Analysis/Loads.h"
45#include "llvm/Analysis/LoopInfo.h"
46#include "llvm/Analysis/LoopIterator.h"
47#include "llvm/Analysis/LoopPass.h"
48#include "llvm/Analysis/MemoryBuiltins.h"
49#include "llvm/Analysis/MemorySSA.h"
50#include "llvm/Analysis/MemorySSAUpdater.h"
51#include "llvm/Analysis/MustExecute.h"
52#include "llvm/Analysis/OptimizationRemarkEmitter.h"
53#include "llvm/Analysis/ScalarEvolution.h"
54#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55#include "llvm/Analysis/TargetLibraryInfo.h"
56#include "llvm/Analysis/ValueTracking.h"
57#include "llvm/IR/CFG.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfoMetadata.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/Instructions.h"
64#include "llvm/IR/IntrinsicInst.h"
65#include "llvm/IR/LLVMContext.h"
66#include "llvm/IR/Metadata.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/PredIteratorCache.h"
69#include "llvm/InitializePasses.h"
70#include "llvm/Support/CommandLine.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Scalar.h"
74#include "llvm/Transforms/Scalar/LoopPassManager.h"
75#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
76#include "llvm/Transforms/Utils/BasicBlockUtils.h"
77#include "llvm/Transforms/Utils/Local.h"
78#include "llvm/Transforms/Utils/LoopUtils.h"
79#include "llvm/Transforms/Utils/SSAUpdater.h"
80#include <algorithm>
81#include <utility>
82using namespace llvm;
83
84#define DEBUG_TYPE"licm" "licm"
85
86STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
87STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
88STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
89STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
90STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
91STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
92STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
93
94/// Memory promotion is enabled by default.
95static cl::opt<bool>
96 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
97 cl::desc("Disable memory promotion in LICM pass"));
98
99static cl::opt<bool> ControlFlowHoisting(
100 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
101 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
102
103static cl::opt<unsigned> HoistSinkColdnessThreshold(
104 "licm-coldness-threshold", cl::Hidden, cl::init(4),
105 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
106 "block for LICM to be considered beneficial"));
107
108static cl::opt<uint32_t> MaxNumUsesTraversed(
109 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
110 cl::desc("Max num uses visited for identifying load "
111 "invariance in loop using invariant start (default = 8)"));
112
113// Default value of zero implies we use the regular alias set tracker mechanism
114// instead of the cross product using AA to identify aliasing of the memory
115// location we are interested in.
116static cl::opt<int>
117LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
118 cl::desc("How many instruction to cross product using AA"));
119
120// Experimental option to allow imprecision in LICM in pathological cases, in
121// exchange for faster compile. This is to be removed if MemorySSA starts to
122// address the same issue. This flag applies only when LICM uses MemorySSA
123// instead on AliasSetTracker. LICM calls MemorySSAWalker's
124// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
125// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
126// which may not be precise, since optimizeUses is capped. The result is
127// correct, but we may not get as "far up" as possible to get which access is
128// clobbering the one queried.
129cl::opt<unsigned> llvm::SetLicmMssaOptCap(
130 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
131 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
132 "for faster compile. Caps the MemorySSA clobbering calls."));
133
134// Experimentally, memory promotion carries less importance than sinking and
135// hoisting. Limit when we do promotion when using MemorySSA, in order to save
136// compile time.
137cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
138 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
139 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
140 "effect. When MSSA in LICM is enabled, then this is the maximum "
141 "number of accesses allowed to be present in a loop in order to "
142 "enable memory promotion."));
143
144static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
145static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
146 const LoopSafetyInfo *SafetyInfo,
147 TargetTransformInfo *TTI, bool &FreeInLoop);
148static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
149 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
150 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
151 OptimizationRemarkEmitter *ORE);
152static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
153 BlockFrequencyInfo *BFI, const Loop *CurLoop,
154 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
155 OptimizationRemarkEmitter *ORE);
156static bool isSafeToExecuteUnconditionally(Instruction &Inst,
157 const DominatorTree *DT,
158 const Loop *CurLoop,
159 const LoopSafetyInfo *SafetyInfo,
160 OptimizationRemarkEmitter *ORE,
161 const Instruction *CtxI = nullptr);
162static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
163 AliasSetTracker *CurAST, Loop *CurLoop,
164 AAResults *AA);
165static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
166 Loop *CurLoop,
167 SinkAndHoistLICMFlags &Flags);
168static Instruction *cloneInstructionInExitBlock(
169 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
170 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
171
172static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
173 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
174
175static void moveInstructionBefore(Instruction &I, Instruction &Dest,
176 ICFLoopSafetyInfo &SafetyInfo,
177 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
178
179namespace {
180struct LoopInvariantCodeMotion {
181 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
182 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
183 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
184 OptimizationRemarkEmitter *ORE);
185
186 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
187 unsigned LicmMssaNoAccForPromotionCap)
188 : LicmMssaOptCap(LicmMssaOptCap),
189 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
190
191private:
192 unsigned LicmMssaOptCap;
193 unsigned LicmMssaNoAccForPromotionCap;
194
195 std::unique_ptr<AliasSetTracker>
196 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
197 std::unique_ptr<AliasSetTracker>
198 collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
199 MemorySSAUpdater *MSSAU);
200};
201
202struct LegacyLICMPass : public LoopPass {
203 static char ID; // Pass identification, replacement for typeid
204 LegacyLICMPass(
205 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
206 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
207 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
208 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
209 }
210
211 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
212 if (skipLoop(L))
213 return false;
214
215 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
216 MemorySSA *MSSA = EnableMSSALoopDependency
217 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
218 : nullptr;
219 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
220 BlockFrequencyInfo *BFI =
221 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
222 : nullptr;
223 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
224 // pass. Function analyses need to be preserved across loop transformations
225 // but ORE cannot be preserved (see comment before the pass definition).
226 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
227 return LICM.runOnLoop(
228 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
229 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
230 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
231 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
232 *L->getHeader()->getParent()),
233 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
234 *L->getHeader()->getParent()),
235 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
236 }
237
238 /// This transformation requires natural loop information & requires that
239 /// loop preheaders be inserted into the CFG...
240 ///
241 void getAnalysisUsage(AnalysisUsage &AU) const override {
242 AU.addPreserved<DominatorTreeWrapperPass>();
243 AU.addPreserved<LoopInfoWrapperPass>();
244 AU.addRequired<TargetLibraryInfoWrapperPass>();
245 if (EnableMSSALoopDependency) {
246 AU.addRequired<MemorySSAWrapperPass>();
247 AU.addPreserved<MemorySSAWrapperPass>();
248 }
249 AU.addRequired<TargetTransformInfoWrapperPass>();
250 getLoopAnalysisUsage(AU);
251 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
252 AU.addPreserved<LazyBlockFrequencyInfoPass>();
253 AU.addPreserved<LazyBranchProbabilityInfoPass>();
254 }
255
256private:
257 LoopInvariantCodeMotion LICM;
258};
259} // namespace
260
261PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
262 LoopStandardAnalysisResults &AR, LPMUpdater &) {
263 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
264 // pass. Function analyses need to be preserved across loop transformations
265 // but ORE cannot be preserved (see comment before the pass definition).
266 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
267
268 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
269 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
270 &AR.SE, AR.MSSA, &ORE))
271 return PreservedAnalyses::all();
272
273 auto PA = getLoopPassPreservedAnalyses();
274
275 PA.preserve<DominatorTreeAnalysis>();
276 PA.preserve<LoopAnalysis>();
277 if (AR.MSSA)
278 PA.preserve<MemorySSAAnalysis>();
279
280 return PA;
281}
282
283char LegacyLICMPass::ID = 0;
284INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
285 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
286INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
287INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
288INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
289INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
290INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
291INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
292 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
293
294Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
295Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
296 unsigned LicmMssaNoAccForPromotionCap) {
297 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
298}
299
300/// Hoist expressions out of the specified loop. Note, alias info for inner
301/// loop is not preserved so it is not a good idea to run LICM multiple
302/// times on one loop.
303bool LoopInvariantCodeMotion::runOnLoop(
304 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
305 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
306 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
307 bool Changed = false;
308
309 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 309, __PRETTY_FUNCTION__))
;
310
311 // If this loop has metadata indicating that LICM is not to be performed then
312 // just exit.
313 if (hasDisableLICMTransformsHint(L)) {
314 return false;
315 }
316
317 std::unique_ptr<AliasSetTracker> CurAST;
318 std::unique_ptr<MemorySSAUpdater> MSSAU;
319 bool NoOfMemAccTooLarge = false;
320 unsigned LicmMssaOptCounter = 0;
321
322 if (!MSSA) {
323 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using Alias Set Tracker.\n"
; } } while (false)
;
324 CurAST = collectAliasInfoForLoop(L, LI, AA);
325 } else {
326 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using MemorySSA.\n"; } } while
(false)
;
327 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
328
329 unsigned AccessCapCount = 0;
330 for (auto *BB : L->getBlocks()) {
331 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
332 for (const auto &MA : *Accesses) {
333 (void)MA;
334 AccessCapCount++;
335 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
336 NoOfMemAccTooLarge = true;
337 break;
338 }
339 }
340 }
341 if (NoOfMemAccTooLarge)
342 break;
343 }
344 }
345
346 // Get the preheader block to move instructions into...
347 BasicBlock *Preheader = L->getLoopPreheader();
348
349 // Compute loop safety information.
350 ICFLoopSafetyInfo SafetyInfo;
351 SafetyInfo.computeLoopSafetyInfo(L);
352
353 // We want to visit all of the instructions in this loop... that are not parts
354 // of our subloops (they have already had their invariants hoisted out of
355 // their loop, into this loop, so there is no need to process the BODIES of
356 // the subloops).
357 //
358 // Traverse the body of the loop in depth first order on the dominator tree so
359 // that we are guaranteed to see definitions before we see uses. This allows
360 // us to sink instructions in one pass, without iteration. After sinking
361 // instructions, we perform another pass to hoist them out of the loop.
362 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
363 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
364 /*IsSink=*/true};
365 if (L->hasDedicatedExits())
366 Changed |=
367 sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
368 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
369 Flags.IsSink = false;
370 if (Preheader)
371 Changed |=
372 hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
373 CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);
374
375 // Now that all loop invariants have been removed from the loop, promote any
376 // memory references to scalars that we can.
377 // Don't sink stores from loops without dedicated block exits. Exits
378 // containing indirect branches are not transformed by loop simplify,
379 // make sure we catch that. An additional load may be generated in the
380 // preheader for SSA updater, so also avoid sinking when no preheader
381 // is available.
382 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
383 !NoOfMemAccTooLarge) {
384 // Figure out the loop exits and their insertion points
385 SmallVector<BasicBlock *, 8> ExitBlocks;
386 L->getUniqueExitBlocks(ExitBlocks);
387
388 // We can't insert into a catchswitch.
389 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
390 return isa<CatchSwitchInst>(Exit->getTerminator());
391 });
392
393 if (!HasCatchSwitch) {
394 SmallVector<Instruction *, 8> InsertPts;
395 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
396 InsertPts.reserve(ExitBlocks.size());
397 if (MSSAU)
398 MSSAInsertPts.reserve(ExitBlocks.size());
399 for (BasicBlock *ExitBlock : ExitBlocks) {
400 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
401 if (MSSAU)
402 MSSAInsertPts.push_back(nullptr);
403 }
404
405 PredIteratorCache PIC;
406
407 bool Promoted = false;
408
409 // Build an AST using MSSA.
410 if (!CurAST.get())
411 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
412
413 // Loop over all of the alias sets in the tracker object.
414 for (AliasSet &AS : *CurAST) {
415 // We can promote this alias set if it has a store, if it is a "Must"
416 // alias set, if the pointer is loop invariant, and if we are not
417 // eliminating any volatile loads or stores.
418 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
419 !L->isLoopInvariant(AS.begin()->getValue()))
420 continue;
421
422 assert(((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 424, __PRETTY_FUNCTION__))
423 !AS.empty() &&((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 424, __PRETTY_FUNCTION__))
424 "Must alias set should have at least one pointer element in it!")((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 424, __PRETTY_FUNCTION__))
;
425
426 SmallSetVector<Value *, 8> PointerMustAliases;
427 for (const auto &ASI : AS)
428 PointerMustAliases.insert(ASI.getValue());
429
430 Promoted |= promoteLoopAccessesToScalars(
431 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
432 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
433 }
434
435 // Once we have promoted values across the loop body we have to
436 // recursively reform LCSSA as any nested loop may now have values defined
437 // within the loop used in the outer loop.
438 // FIXME: This is really heavy handed. It would be a bit better to use an
439 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
440 // it as it went.
441 if (Promoted)
442 formLCSSARecursively(*L, *DT, LI, SE);
443
444 Changed |= Promoted;
445 }
446 }
447
448 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
449 // specifically moving instructions across the loop boundary and so it is
450 // especially in need of sanity checking here.
451 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 451, __PRETTY_FUNCTION__))
;
452 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&(((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 453, __PRETTY_FUNCTION__))
453 "Parent loop not left in LCSSA form after LICM!")(((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 453, __PRETTY_FUNCTION__))
;
454
455 if (MSSAU.get() && VerifyMemorySSA)
456 MSSAU->getMemorySSA()->verifyMemorySSA();
457
458 if (Changed && SE)
459 SE->forgetLoopDispositions(L);
460 return Changed;
461}
462
463/// Walk the specified region of the CFG (defined by all blocks dominated by
464/// the specified block, and that are in the current loop) in reverse depth
465/// first order w.r.t the DominatorTree. This allows us to visit uses before
466/// definitions, allowing us to sink a loop body in one pass without iteration.
467///
468bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
469 DominatorTree *DT, BlockFrequencyInfo *BFI,
470 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
471 Loop *CurLoop, AliasSetTracker *CurAST,
472 MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
473 SinkAndHoistLICMFlags &Flags,
474 OptimizationRemarkEmitter *ORE) {
475
476 // Verify inputs.
477 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 479, __PRETTY_FUNCTION__))
478 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 479, __PRETTY_FUNCTION__))
479 "Unexpected input to sinkRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 479, __PRETTY_FUNCTION__))
;
480 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 481, __PRETTY_FUNCTION__))
481 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 481, __PRETTY_FUNCTION__))
;
482
483 // We want to visit children before parents. We will enque all the parents
484 // before their children in the worklist and process the worklist in reverse
485 // order.
486 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
487
488 bool Changed = false;
489 for (DomTreeNode *DTN : reverse(Worklist)) {
490 BasicBlock *BB = DTN->getBlock();
491 // Only need to process the contents of this block if it is not part of a
492 // subloop (which would already have been processed).
493 if (inSubLoop(BB, CurLoop, LI))
494 continue;
495
496 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
497 Instruction &I = *--II;
498
499 // If the instruction is dead, we would try to sink it because it isn't
500 // used in the loop, instead, just delete it.
501 if (isInstructionTriviallyDead(&I, TLI)) {
502 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
503 salvageKnowledge(&I);
504 salvageDebugInfo(I);
505 ++II;
506 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
507 Changed = true;
508 continue;
509 }
510
511 // Check to see if we can sink this instruction to the exit blocks
512 // of the loop. We can do this if the all users of the instruction are
513 // outside of the loop. In this case, it doesn't even matter if the
514 // operands of the instruction are loop invariant.
515 //
516 bool FreeInLoop = false;
517 if (!I.mayHaveSideEffects() &&
518 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
519 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
520 ORE)) {
521 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
522 if (!FreeInLoop) {
523 ++II;
524 salvageDebugInfo(I);
525 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
526 }
527 Changed = true;
528 }
529 }
530 }
531 }
532 if (MSSAU && VerifyMemorySSA)
533 MSSAU->getMemorySSA()->verifyMemorySSA();
534 return Changed;
535}
536
537namespace {
538// This is a helper class for hoistRegion to make it able to hoist control flow
539// in order to be able to hoist phis. The way this works is that we initially
540// start hoisting to the loop preheader, and when we see a loop invariant branch
541// we make note of this. When we then come to hoist an instruction that's
542// conditional on such a branch we duplicate the branch and the relevant control
543// flow, then hoist the instruction into the block corresponding to its original
544// block in the duplicated control flow.
545class ControlFlowHoister {
546private:
547 // Information about the loop we are hoisting from
548 LoopInfo *LI;
549 DominatorTree *DT;
550 Loop *CurLoop;
551 MemorySSAUpdater *MSSAU;
552
553 // A map of blocks in the loop to the block their instructions will be hoisted
554 // to.
555 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
556
557 // The branches that we can hoist, mapped to the block that marks a
558 // convergence point of their control flow.
559 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
560
561public:
562 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
563 MemorySSAUpdater *MSSAU)
564 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
565
566 void registerPossiblyHoistableBranch(BranchInst *BI) {
567 // We can only hoist conditional branches with loop invariant operands.
568 if (!ControlFlowHoisting || !BI->isConditional() ||
569 !CurLoop->hasLoopInvariantOperands(BI))
570 return;
571
572 // The branch destinations need to be in the loop, and we don't gain
573 // anything by duplicating conditional branches with duplicate successors,
574 // as it's essentially the same as an unconditional branch.
575 BasicBlock *TrueDest = BI->getSuccessor(0);
576 BasicBlock *FalseDest = BI->getSuccessor(1);
577 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
578 TrueDest == FalseDest)
579 return;
580
581 // We can hoist BI if one branch destination is the successor of the other,
582 // or both have common successor which we check by seeing if the
583 // intersection of their successors is non-empty.
584 // TODO: This could be expanded to allowing branches where both ends
585 // eventually converge to a single block.
586 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
587 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
588 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
589 BasicBlock *CommonSucc = nullptr;
590 if (TrueDestSucc.count(FalseDest)) {
591 CommonSucc = FalseDest;
592 } else if (FalseDestSucc.count(TrueDest)) {
593 CommonSucc = TrueDest;
594 } else {
595 set_intersect(TrueDestSucc, FalseDestSucc);
596 // If there's one common successor use that.
597 if (TrueDestSucc.size() == 1)
598 CommonSucc = *TrueDestSucc.begin();
599 // If there's more than one pick whichever appears first in the block list
600 // (we can't use the value returned by TrueDestSucc.begin() as it's
601 // unpredicatable which element gets returned).
602 else if (!TrueDestSucc.empty()) {
603 Function *F = TrueDest->getParent();
604 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
605 auto It = std::find_if(F->begin(), F->end(), IsSucc);
606 assert(It != F->end() && "Could not find successor in function")((It != F->end() && "Could not find successor in function"
) ? static_cast<void> (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 606, __PRETTY_FUNCTION__))
;
607 CommonSucc = &*It;
608 }
609 }
610 // The common successor has to be dominated by the branch, as otherwise
611 // there will be some other path to the successor that will not be
612 // controlled by this branch so any phi we hoist would be controlled by the
613 // wrong condition. This also takes care of avoiding hoisting of loop back
614 // edges.
615 // TODO: In some cases this could be relaxed if the successor is dominated
616 // by another block that's been hoisted and we can guarantee that the
617 // control flow has been replicated exactly.
618 if (CommonSucc && DT->dominates(BI, CommonSucc))
619 HoistableBranches[BI] = CommonSucc;
620 }
621
622 bool canHoistPHI(PHINode *PN) {
623 // The phi must have loop invariant operands.
624 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
625 return false;
626 // We can hoist phis if the block they are in is the target of hoistable
627 // branches which cover all of the predecessors of the block.
628 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
629 BasicBlock *BB = PN->getParent();
630 for (BasicBlock *PredBB : predecessors(BB))
631 PredecessorBlocks.insert(PredBB);
632 // If we have less predecessor blocks than predecessors then the phi will
633 // have more than one incoming value for the same block which we can't
634 // handle.
635 // TODO: This could be handled be erasing some of the duplicate incoming
636 // values.
637 if (PredecessorBlocks.size() != pred_size(BB))
638 return false;
639 for (auto &Pair : HoistableBranches) {
640 if (Pair.second == BB) {
641 // Which blocks are predecessors via this branch depends on if the
642 // branch is triangle-like or diamond-like.
643 if (Pair.first->getSuccessor(0) == BB) {
644 PredecessorBlocks.erase(Pair.first->getParent());
645 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
646 } else if (Pair.first->getSuccessor(1) == BB) {
647 PredecessorBlocks.erase(Pair.first->getParent());
648 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
649 } else {
650 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
651 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
652 }
653 }
654 }
655 // PredecessorBlocks will now be empty if for every predecessor of BB we
656 // found a hoistable branch source.
657 return PredecessorBlocks.empty();
658 }
659
660 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
661 if (!ControlFlowHoisting)
662 return CurLoop->getLoopPreheader();
663 // If BB has already been hoisted, return that
664 if (HoistDestinationMap.count(BB))
665 return HoistDestinationMap[BB];
666
667 // Check if this block is conditional based on a pending branch
668 auto HasBBAsSuccessor =
669 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
670 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
671 Pair.first->getSuccessor(1) == BB);
672 };
673 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
674 HasBBAsSuccessor);
675
676 // If not involved in a pending branch, hoist to preheader
677 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
678 if (It == HoistableBranches.end()) {
679 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
680 << " as hoist destination for " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
681 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
;
682 HoistDestinationMap[BB] = InitialPreheader;
683 return InitialPreheader;
684 }
685 BranchInst *BI = It->first;
686 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 688, __PRETTY_FUNCTION__))
687 HoistableBranches.end() &&((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 688, __PRETTY_FUNCTION__))
688 "BB is expected to be the target of at most one branch")((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 688, __PRETTY_FUNCTION__))
;
689
690 LLVMContext &C = BB->getContext();
691 BasicBlock *TrueDest = BI->getSuccessor(0);
692 BasicBlock *FalseDest = BI->getSuccessor(1);
693 BasicBlock *CommonSucc = HoistableBranches[BI];
694 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
695
696 // Create hoisted versions of blocks that currently don't have them
697 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
698 if (HoistDestinationMap.count(Orig))
699 return HoistDestinationMap[Orig];
700 BasicBlock *New =
701 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
702 HoistDestinationMap[Orig] = New;
703 DT->addNewBlock(New, HoistTarget);
704 if (CurLoop->getParentLoop())
705 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
706 ++NumCreatedBlocks;
707 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
708 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
709 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
710 return New;
711 };
712 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
713 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
714 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
715
716 // Link up these blocks with branches.
717 if (!HoistCommonSucc->getTerminator()) {
718 // The new common successor we've generated will branch to whatever that
719 // hoist target branched to.
720 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
721 assert(TargetSucc && "Expected hoist target to have a single successor")((TargetSucc && "Expected hoist target to have a single successor"
) ? static_cast<void> (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 721, __PRETTY_FUNCTION__))
;
722 HoistCommonSucc->moveBefore(TargetSucc);
723 BranchInst::Create(TargetSucc, HoistCommonSucc);
724 }
725 if (!HoistTrueDest->getTerminator()) {
726 HoistTrueDest->moveBefore(HoistCommonSucc);
727 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
728 }
729 if (!HoistFalseDest->getTerminator()) {
730 HoistFalseDest->moveBefore(HoistCommonSucc);
731 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
732 }
733
734 // If BI is being cloned to what was originally the preheader then
735 // HoistCommonSucc will now be the new preheader.
736 if (HoistTarget == InitialPreheader) {
737 // Phis in the loop header now need to use the new preheader.
738 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
739 if (MSSAU)
740 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
741 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
742 // The new preheader dominates the loop header.
743 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
744 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
745 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
746 // The preheader hoist destination is now the new preheader, with the
747 // exception of the hoist destination of this branch.
748 for (auto &Pair : HoistDestinationMap)
749 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
750 Pair.second = HoistCommonSucc;
751 }
752
753 // Now finally clone BI.
754 ReplaceInstWithInst(
755 HoistTarget->getTerminator(),
756 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
757 ++NumClonedBranches;
758
759 assert(CurLoop->getLoopPreheader() &&((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 760, __PRETTY_FUNCTION__))
760 "Hoisting blocks should not have destroyed preheader")((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 760, __PRETTY_FUNCTION__))
;
761 return HoistDestinationMap[BB];
762 }
763};
764} // namespace
765
766// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
767// only worthwhile if the destination block is actually colder than current
768// block.
769static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
770 OptimizationRemarkEmitter *ORE,
771 BlockFrequencyInfo *BFI) {
772 // Check block frequency only when runtime profile is available
773 // to avoid pathological cases. With static profile, lean towards
774 // hosting because it helps canonicalize the loop for vectorizer.
775 if (!DstBlock->getParent()->hasProfileData())
776 return true;
777
778 if (!HoistSinkColdnessThreshold || !BFI)
779 return true;
780
781 BasicBlock *SrcBlock = I.getParent();
782 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
783 BFI->getBlockFreq(SrcBlock).getFrequency()) {
784 ORE->emit([&]() {
785 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
786 << "failed to sink or hoist instruction because containing block "
787 "has lower frequency than destination block";
788 });
789 return false;
790 }
791
792 return true;
793}
794
795/// Walk the specified region of the CFG (defined by all blocks dominated by
796/// the specified block, and that are in the current loop) in depth first
797/// order w.r.t the DominatorTree. This allows us to visit definitions before
798/// uses, allowing us to hoist a loop body in one pass without iteration.
799///
800bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
801 DominatorTree *DT, BlockFrequencyInfo *BFI,
802 TargetLibraryInfo *TLI, Loop *CurLoop,
803 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
804 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
805 SinkAndHoistLICMFlags &Flags,
806 OptimizationRemarkEmitter *ORE) {
807 // Verify inputs.
808 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 810, __PRETTY_FUNCTION__))
809 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 810, __PRETTY_FUNCTION__))
810 "Unexpected input to hoistRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 810, __PRETTY_FUNCTION__))
;
811 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 812, __PRETTY_FUNCTION__))
812 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 812, __PRETTY_FUNCTION__))
;
813
814 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
815
816 // Keep track of instructions that have been hoisted, as they may need to be
817 // re-hoisted if they end up not dominating all of their uses.
818 SmallVector<Instruction *, 16> HoistedInstructions;
819
820 // For PHI hoisting to work we need to hoist blocks before their successors.
821 // We can do this by iterating through the blocks in the loop in reverse
822 // post-order.
823 LoopBlocksRPO Worklist(CurLoop);
824 Worklist.perform(LI);
825 bool Changed = false;
826 for (BasicBlock *BB : Worklist) {
827 // Only need to process the contents of this block if it is not part of a
828 // subloop (which would already have been processed).
829 if (inSubLoop(BB, CurLoop, LI))
830 continue;
831
832 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
833 Instruction &I = *II++;
834 // Try constant folding this instruction. If all the operands are
835 // constants, it is technically hoistable, but it would be better to
836 // just fold it.
837 if (Constant *C = ConstantFoldInstruction(
838 &I, I.getModule()->getDataLayout(), TLI)) {
839 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
840 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
841 if (CurAST)
842 CurAST->copyValue(&I, C);
843 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
844 I.replaceAllUsesWith(C);
845 if (isInstructionTriviallyDead(&I, TLI))
846 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
847 Changed = true;
848 continue;
849 }
850
851 // Try hoisting the instruction out to the preheader. We can only do
852 // this if all of the operands of the instruction are loop invariant and
853 // if it is safe to hoist the instruction. We also check block frequency
854 // to make sure instruction only gets hoisted into colder blocks.
855 // TODO: It may be safe to hoist if we are hoisting to a conditional block
856 // and we have accurately duplicated the control flow from the loop header
857 // to that block.
858 if (CurLoop->hasLoopInvariantOperands(&I) &&
859 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
860 ORE) &&
861 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
862 isSafeToExecuteUnconditionally(
863 I, DT, CurLoop, SafetyInfo, ORE,
864 CurLoop->getLoopPreheader()->getTerminator())) {
865 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
866 MSSAU, SE, ORE);
867 HoistedInstructions.push_back(&I);
868 Changed = true;
869 continue;
870 }
871
872 // Attempt to remove floating point division out of the loop by
873 // converting it to a reciprocal multiplication.
874 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
875 CurLoop->isLoopInvariant(I.getOperand(1))) {
876 auto Divisor = I.getOperand(1);
877 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
878 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
879 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
880 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
881 ReciprocalDivisor->insertBefore(&I);
882
883 auto Product =
884 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
885 Product->setFastMathFlags(I.getFastMathFlags());
886 SafetyInfo->insertInstructionTo(Product, I.getParent());
887 Product->insertAfter(&I);
888 I.replaceAllUsesWith(Product);
889 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
890
891 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
892 SafetyInfo, MSSAU, SE, ORE);
893 HoistedInstructions.push_back(ReciprocalDivisor);
894 Changed = true;
895 continue;
896 }
897
898 auto IsInvariantStart = [&](Instruction &I) {
899 using namespace PatternMatch;
900 return I.use_empty() &&
901 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
902 };
903 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
904 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
905 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
906 };
907 if ((IsInvariantStart(I) || isGuard(&I)) &&
908 CurLoop->hasLoopInvariantOperands(&I) &&
909 MustExecuteWithoutWritesBefore(I)) {
910 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
911 MSSAU, SE, ORE);
912 HoistedInstructions.push_back(&I);
913 Changed = true;
914 continue;
915 }
916
917 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
918 if (CFH.canHoistPHI(PN)) {
919 // Redirect incoming blocks first to ensure that we create hoisted
920 // versions of those blocks before we hoist the phi.
921 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
922 PN->setIncomingBlock(
923 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
924 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
925 MSSAU, SE, ORE);
926 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((DT->dominates(PN, BB) && "Conditional PHIs not expected"
) ? static_cast<void> (0) : __assert_fail ("DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 926, __PRETTY_FUNCTION__))
;
927 Changed = true;
928 continue;
929 }
930 }
931
932 // Remember possibly hoistable branches so we can actually hoist them
933 // later if needed.
934 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
935 CFH.registerPossiblyHoistableBranch(BI);
936 }
937 }
938
939 // If we hoisted instructions to a conditional block they may not dominate
940 // their uses that weren't hoisted (such as phis where some operands are not
941 // loop invariant). If so make them unconditional by moving them to their
942 // immediate dominator. We iterate through the instructions in reverse order
943 // which ensures that when we rehoist an instruction we rehoist its operands,
944 // and also keep track of where in the block we are rehoisting to to make sure
945 // that we rehoist instructions before the instructions that use them.
946 Instruction *HoistPoint = nullptr;
947 if (ControlFlowHoisting) {
948 for (Instruction *I : reverse(HoistedInstructions)) {
949 if (!llvm::all_of(I->uses(),
950 [&](Use &U) { return DT->dominates(I, U); })) {
951 BasicBlock *Dominator =
952 DT->getNode(I->getParent())->getIDom()->getBlock();
953 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
954 if (HoistPoint)
955 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 956, __PRETTY_FUNCTION__))
956 "New hoist point expected to dominate old hoist point")((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 956, __PRETTY_FUNCTION__))
;
957 HoistPoint = Dominator->getTerminator();
958 }
959 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
960 << HoistPoint->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
961 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
;
962 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
963 HoistPoint = I;
964 Changed = true;
965 }
966 }
967 }
968 if (MSSAU && VerifyMemorySSA)
969 MSSAU->getMemorySSA()->verifyMemorySSA();
970
971 // Now that we've finished hoisting make sure that LI and DT are still
972 // valid.
973#ifdef EXPENSIVE_CHECKS
974 if (Changed) {
975 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 976, __PRETTY_FUNCTION__))
976 "Dominator tree verification failed")((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 976, __PRETTY_FUNCTION__))
;
977 LI->verify(*DT);
978 }
979#endif
980
981 return Changed;
982}
983
984// Return true if LI is invariant within scope of the loop. LI is invariant if
985// CurLoop is dominated by an invariant.start representing the same memory
986// location and size as the memory location LI loads from, and also the
987// invariant.start has no uses.
988static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
989 Loop *CurLoop) {
990 Value *Addr = LI->getOperand(0);
991 const DataLayout &DL = LI->getModule()->getDataLayout();
992 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
993
994 // It is not currently possible for clang to generate an invariant.start
995 // intrinsic with scalable vector types because we don't support thread local
996 // sizeless types and we don't permit sizeless types in structs or classes.
997 // Furthermore, even if support is added for this in future the intrinsic
998 // itself is defined to have a size of -1 for variable sized objects. This
999 // makes it impossible to verify if the intrinsic envelops our region of
1000 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1001 // types would have a -1 parameter, but the former is clearly double the size
1002 // of the latter.
1003 if (LocSizeInBits.isScalable())
27
Assuming the condition is true
28
Taking true branch
1004 return false;
29
Returning zero, which participates in a condition later
1005
1006 // if the type is i8 addrspace(x)*, we know this is the type of
1007 // llvm.invariant.start operand
1008 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1009 LI->getPointerAddressSpace());
1010 unsigned BitcastsVisited = 0;
1011 // Look through bitcasts until we reach the i8* type (this is invariant.start
1012 // operand type).
1013 while (Addr->getType() != PtrInt8Ty) {
1014 auto *BC = dyn_cast<BitCastInst>(Addr);
1015 // Avoid traversing high number of bitcast uses.
1016 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1017 return false;
1018 Addr = BC->getOperand(0);
1019 }
1020
1021 unsigned UsesVisited = 0;
1022 // Traverse all uses of the load operand value, to see if invariant.start is
1023 // one of the uses, and whether it dominates the load instruction.
1024 for (auto *U : Addr->users()) {
1025 // Avoid traversing for Load operand with high number of users.
1026 if (++UsesVisited > MaxNumUsesTraversed)
1027 return false;
1028 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1029 // If there are escaping uses of invariant.start instruction, the load maybe
1030 // non-invariant.
1031 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1032 !II->use_empty())
1033 continue;
1034 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1035 // The intrinsic supports having a -1 argument for variable sized objects
1036 // so we should check for that here.
1037 if (InvariantSize->isNegative())
1038 continue;
1039 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1040 // Confirm the invariant.start location size contains the load operand size
1041 // in bits. Also, the invariant.start should dominate the load, and we
1042 // should not hoist the load out of a loop that contains this dominating
1043 // invariant.start.
1044 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1045 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1046 return true;
1047 }
1048
1049 return false;
1050}
1051
1052namespace {
1053/// Return true if-and-only-if we know how to (mechanically) both hoist and
1054/// sink a given instruction out of a loop. Does not address legality
1055/// concerns such as aliasing or speculation safety.
1056bool isHoistableAndSinkableInst(Instruction &I) {
1057 // Only these instructions are hoistable/sinkable.
1058 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
2
Assuming 'I' is a 'LoadInst'
3
Returning the value 1, which participates in a condition later
1059 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1060 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1061 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1062 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1063 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1064 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1065}
1066/// Return true if all of the alias sets within this AST are known not to
1067/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1068bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1069 const Loop *L) {
1070 if (CurAST) {
1071 for (AliasSet &AS : *CurAST) {
1072 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1073 return false;
1074 }
1075 }
1076 return true;
1077 } else { /*MSSAU*/
1078 for (auto *BB : L->getBlocks())
1079 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1080 return false;
1081 return true;
1082 }
1083}
1084
1085/// Return true if I is the only Instruction with a MemoryAccess in L.
1086bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1087 const MemorySSAUpdater *MSSAU) {
1088 for (auto *BB : L->getBlocks())
1089 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1090 int NotAPhi = 0;
1091 for (const auto &Acc : *Accs) {
1092 if (isa<MemoryPhi>(&Acc))
1093 continue;
1094 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1095 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1096 return false;
1097 }
1098 }
1099 return true;
1100}
1101}
1102
1103bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1104 Loop *CurLoop, AliasSetTracker *CurAST,
1105 MemorySSAUpdater *MSSAU,
1106 bool TargetExecutesOncePerLoop,
1107 SinkAndHoistLICMFlags *Flags,
1108 OptimizationRemarkEmitter *ORE) {
1109 // If we don't understand the instruction, bail early.
1110 if (!isHoistableAndSinkableInst(I))
1
Calling 'isHoistableAndSinkableInst'
4
Returning from 'isHoistableAndSinkableInst'
5
Taking false branch
1111 return false;
1112
1113 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
6
Assuming 'MSSAU' is null
7
'?' condition is false
8
'MSSA' initialized to a null pointer value
1114 if (MSSA
8.1
'MSSA' is null
8.1
'MSSA' is null
8.1
'MSSA' is null
)
9
Taking false branch
1115 assert(Flags != nullptr && "Flags cannot be null.")((Flags != nullptr && "Flags cannot be null.") ? static_cast
<void> (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1115, __PRETTY_FUNCTION__))
;
1116
1117 // Loads have extra constraints we have to verify before we can hoist them.
1118 if (LoadInst *LI
10.1
'LI' is non-null
10.1
'LI' is non-null
10.1
'LI' is non-null
= dyn_cast<LoadInst>(&I)) {
10
Assuming the object is a 'LoadInst'
11
Taking true branch
1119 if (!LI->isUnordered())
12
Calling 'LoadInst::isUnordered'
17
Returning from 'LoadInst::isUnordered'
18
Taking false branch
1120 return false; // Don't sink/hoist volatile or ordered atomic loads!
1121
1122 // Loads from constant memory are always safe to move, even if they end up
1123 // in the same alias set as something that ends up being modified.
1124 if (AA->pointsToConstantMemory(LI->getOperand(0)))
19
Assuming the condition is false
20
Taking false branch
1125 return true;
1126 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
21
Calling 'Instruction::hasMetadata'
23
Returning from 'Instruction::hasMetadata'
24
Taking false branch
1127 return true;
1128
1129 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
25
Assuming the condition is false
1130 return false; // Don't risk duplicating unordered loads
1131
1132 // This checks for an invariant.start dominating the load.
1133 if (isLoadInvariantInLoop(LI, DT, CurLoop))
26
Calling 'isLoadInvariantInLoop'
30
Returning from 'isLoadInvariantInLoop'
31
Taking false branch
1134 return true;
1135
1136 bool Invalidated;
1137 if (CurAST)
32
Assuming 'CurAST' is null
33
Taking false branch
1138 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1139 CurLoop, AA);
1140 else
1141 Invalidated = pointerInvalidatedByLoopWithMSSA(
1142 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
34
Called C++ object pointer is null
1143 // Check loop-invariant address because this may also be a sinkable load
1144 // whose address is not necessarily loop-invariant.
1145 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1146 ORE->emit([&]() {
1147 return OptimizationRemarkMissed(
1148 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1149 << "failed to move load with loop-invariant address "
1150 "because the loop may invalidate its value";
1151 });
1152
1153 return !Invalidated;
1154 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1155 // Don't sink or hoist dbg info; it's legal, but not useful.
1156 if (isa<DbgInfoIntrinsic>(I))
1157 return false;
1158
1159 // Don't sink calls which can throw.
1160 if (CI->mayThrow())
1161 return false;
1162
1163 using namespace PatternMatch;
1164 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1165 // Assumes don't actually alias anything or throw
1166 return true;
1167
1168 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1169 // Widenable conditions don't actually alias anything or throw
1170 return true;
1171
1172 // Handle simple cases by querying alias analysis.
1173 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1174 if (Behavior == FMRB_DoesNotAccessMemory)
1175 return true;
1176 if (AAResults::onlyReadsMemory(Behavior)) {
1177 // A readonly argmemonly function only reads from memory pointed to by
1178 // it's arguments with arbitrary offsets. If we can prove there are no
1179 // writes to this memory in the loop, we can hoist or sink.
1180 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1181 // TODO: expand to writeable arguments
1182 for (Value *Op : CI->arg_operands())
1183 if (Op->getType()->isPointerTy()) {
1184 bool Invalidated;
1185 if (CurAST)
1186 Invalidated = pointerInvalidatedByLoop(
1187 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1188 CurAST, CurLoop, AA);
1189 else
1190 Invalidated = pointerInvalidatedByLoopWithMSSA(
1191 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1192 *Flags);
1193 if (Invalidated)
1194 return false;
1195 }
1196 return true;
1197 }
1198
1199 // If this call only reads from memory and there are no writes to memory
1200 // in the loop, we can hoist or sink the call as appropriate.
1201 if (isReadOnly(CurAST, MSSAU, CurLoop))
1202 return true;
1203 }
1204
1205 // FIXME: This should use mod/ref information to see if we can hoist or
1206 // sink the call.
1207
1208 return false;
1209 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1210 // Fences alias (most) everything to provide ordering. For the moment,
1211 // just give up if there are any other memory operations in the loop.
1212 if (CurAST) {
1213 auto Begin = CurAST->begin();
1214 assert(Begin != CurAST->end() && "must contain FI")((Begin != CurAST->end() && "must contain FI") ? static_cast
<void> (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215 if (std::next(Begin) != CurAST->end())
1216 // constant memory for instance, TODO: handle better
1217 return false;
1218 auto *UniqueI = Begin->getUniqueInstruction();
1219 if (!UniqueI)
1220 // other memory op, give up
1221 return false;
1222 (void)FI; // suppress unused variable warning
1223 assert(UniqueI == FI && "AS must contain FI")((UniqueI == FI && "AS must contain FI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1223, __PRETTY_FUNCTION__))
;
1224 return true;
1225 } else // MSSAU
1226 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1227 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1228 if (!SI->isUnordered())
1229 return false; // Don't sink/hoist volatile or ordered atomic store!
1230
1231 // We can only hoist a store that we can prove writes a value which is not
1232 // read or overwritten within the loop. For those cases, we fallback to
1233 // load store promotion instead. TODO: We can extend this to cases where
1234 // there is exactly one write to the location and that write dominates an
1235 // arbitrary number of reads in the loop.
1236 if (CurAST) {
1237 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1238
1239 if (AS.isRef() || !AS.isMustAlias())
1240 // Quick exit test, handled by the full path below as well.
1241 return false;
1242 auto *UniqueI = AS.getUniqueInstruction();
1243 if (!UniqueI)
1244 // other memory op, give up
1245 return false;
1246 assert(UniqueI == SI && "AS must contain SI")((UniqueI == SI && "AS must contain SI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1246, __PRETTY_FUNCTION__))
;
1247 return true;
1248 } else { // MSSAU
1249 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1250 return true;
1251 // If there are more accesses than the Promotion cap, give up, we're not
1252 // walking a list that long.
1253 if (Flags->NoOfMemAccTooLarge)
1254 return false;
1255 // Check store only if there's still "quota" to check clobber.
1256 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1257 return false;
1258 // If there are interfering Uses (i.e. their defining access is in the
1259 // loop), or ordered loads (stored as Defs!), don't move this store.
1260 // Could do better here, but this is conservatively correct.
1261 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1262 // moving accesses. Can also extend to dominating uses.
1263 auto *SIMD = MSSA->getMemoryAccess(SI);
1264 for (auto *BB : CurLoop->getBlocks())
1265 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1266 for (const auto &MA : *Accesses)
1267 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1268 auto *MD = MU->getDefiningAccess();
1269 if (!MSSA->isLiveOnEntryDef(MD) &&
1270 CurLoop->contains(MD->getBlock()))
1271 return false;
1272 // Disable hoisting past potentially interfering loads. Optimized
1273 // Uses may point to an access outside the loop, as getClobbering
1274 // checks the previous iteration when walking the backedge.
1275 // FIXME: More precise: no Uses that alias SI.
1276 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1277 return false;
1278 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1279 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1280 (void)LI; // Silence warning.
1281 assert(!LI->isUnordered() && "Expected unordered load")((!LI->isUnordered() && "Expected unordered load")
? static_cast<void> (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1281, __PRETTY_FUNCTION__))
;
1282 return false;
1283 }
1284 // Any call, while it may not be clobbering SI, it may be a use.
1285 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1286 // Check if the call may read from the memory locattion written
1287 // to by SI. Check CI's attributes and arguments; the number of
1288 // such checks performed is limited above by NoOfMemAccTooLarge.
1289 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1290 if (isModOrRefSet(MRI))
1291 return false;
1292 }
1293 }
1294 }
1295
1296 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1297 Flags->LicmMssaOptCounter++;
1298 // If there are no clobbering Defs in the loop, store is safe to hoist.
1299 return MSSA->isLiveOnEntryDef(Source) ||
1300 !CurLoop->contains(Source->getBlock());
1301 }
1302 }
1303
1304 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((!I.mayReadOrWriteMemory() && "unhandled aliasing") ?
static_cast<void> (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305
1306 // We've established mechanical ability and aliasing, it's up to the caller
1307 // to check fault safety
1308 return true;
1309}
1310
1311/// Returns true if a PHINode is a trivially replaceable with an
1312/// Instruction.
1313/// This is true when all incoming values are that instruction.
1314/// This pattern occurs most often with LCSSA PHI nodes.
1315///
1316static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1317 for (const Value *IncValue : PN.incoming_values())
1318 if (IncValue != &I)
1319 return false;
1320
1321 return true;
1322}
1323
1324/// Return true if the instruction is free in the loop.
1325static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1326 const TargetTransformInfo *TTI) {
1327
1328 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1329 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1330 TargetTransformInfo::TCC_Free)
1331 return false;
1332 // For a GEP, we cannot simply use getUserCost because currently it
1333 // optimistically assume that a GEP will fold into addressing mode
1334 // regardless of its users.
1335 const BasicBlock *BB = GEP->getParent();
1336 for (const User *U : GEP->users()) {
1337 const Instruction *UI = cast<Instruction>(U);
1338 if (CurLoop->contains(UI) &&
1339 (BB != UI->getParent() ||
1340 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1341 return false;
1342 }
1343 return true;
1344 } else
1345 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1346 TargetTransformInfo::TCC_Free;
1347}
1348
1349/// Return true if the only users of this instruction are outside of
1350/// the loop. If this is true, we can sink the instruction to the exit
1351/// blocks of the loop.
1352///
1353/// We also return true if the instruction could be folded away in lowering.
1354/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1355static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1356 const LoopSafetyInfo *SafetyInfo,
1357 TargetTransformInfo *TTI, bool &FreeInLoop) {
1358 const auto &BlockColors = SafetyInfo->getBlockColors();
1359 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1360 for (const User *U : I.users()) {
1361 const Instruction *UI = cast<Instruction>(U);
1362 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1363 const BasicBlock *BB = PN->getParent();
1364 // We cannot sink uses in catchswitches.
1365 if (isa<CatchSwitchInst>(BB->getTerminator()))
1366 return false;
1367
1368 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1369 // phi use is too muddled.
1370 if (isa<CallInst>(I))
1371 if (!BlockColors.empty() &&
1372 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1373 return false;
1374 }
1375
1376 if (CurLoop->contains(UI)) {
1377 if (IsFree) {
1378 FreeInLoop = true;
1379 continue;
1380 }
1381 return false;
1382 }
1383 }
1384 return true;
1385}
1386
1387static Instruction *cloneInstructionInExitBlock(
1388 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1389 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1390 Instruction *New;
1391 if (auto *CI = dyn_cast<CallInst>(&I)) {
1392 const auto &BlockColors = SafetyInfo->getBlockColors();
1393
1394 // Sinking call-sites need to be handled differently from other
1395 // instructions. The cloned call-site needs a funclet bundle operand
1396 // appropriate for its location in the CFG.
1397 SmallVector<OperandBundleDef, 1> OpBundles;
1398 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1399 BundleIdx != BundleEnd; ++BundleIdx) {
1400 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1401 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1402 continue;
1403
1404 OpBundles.emplace_back(Bundle);
1405 }
1406
1407 if (!BlockColors.empty()) {
1408 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1409 assert(CV.size() == 1 && "non-unique color for exit block!")((CV.size() == 1 && "non-unique color for exit block!"
) ? static_cast<void> (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1409, __PRETTY_FUNCTION__))
;
1410 BasicBlock *BBColor = CV.front();
1411 Instruction *EHPad = BBColor->getFirstNonPHI();
1412 if (EHPad->isEHPad())
1413 OpBundles.emplace_back("funclet", EHPad);
1414 }
1415
1416 New = CallInst::Create(CI, OpBundles);
1417 } else {
1418 New = I.clone();
1419 }
1420
1421 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1422 if (!I.getName().empty())
1423 New->setName(I.getName() + ".le");
1424
1425 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1426 // Create a new MemoryAccess and let MemorySSA set its defining access.
1427 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1428 New, nullptr, New->getParent(), MemorySSA::Beginning);
1429 if (NewMemAcc) {
1430 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1431 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1432 else {
1433 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1434 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1435 }
1436 }
1437 }
1438
1439 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1440 // particularly cheap because we can rip off the PHI node that we're
1441 // replacing for the number and blocks of the predecessors.
1442 // OPT: If this shows up in a profile, we can instead finish sinking all
1443 // invariant instructions, and then walk their operands to re-establish
1444 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1445 // sinking bottom-up.
1446 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1447 ++OI)
1448 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1449 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1450 if (!OLoop->contains(&PN)) {
1451 PHINode *OpPN =
1452 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1453 OInst->getName() + ".lcssa", &ExitBlock.front());
1454 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1455 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1456 *OI = OpPN;
1457 }
1458 return New;
1459}
1460
1461static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1462 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1463 if (AST)
1464 AST->deleteValue(&I);
1465 if (MSSAU)
1466 MSSAU->removeMemoryAccess(&I);
1467 SafetyInfo.removeInstruction(&I);
1468 I.eraseFromParent();
1469}
1470
1471static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1472 ICFLoopSafetyInfo &SafetyInfo,
1473 MemorySSAUpdater *MSSAU,
1474 ScalarEvolution *SE) {
1475 SafetyInfo.removeInstruction(&I);
1476 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1477 I.moveBefore(&Dest);
1478 if (MSSAU)
1479 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1480 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1481 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1482 MemorySSA::BeforeTerminator);
1483 if (SE)
1484 SE->forgetValue(&I);
1485}
1486
1487static Instruction *sinkThroughTriviallyReplaceablePHI(
1488 PHINode *TPN, Instruction *I, LoopInfo *LI,
1489 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1490 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1491 MemorySSAUpdater *MSSAU) {
1492 assert(isTriviallyReplaceablePHI(*TPN, *I) &&((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1493, __PRETTY_FUNCTION__))
1493 "Expect only trivially replaceable PHI")((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1493, __PRETTY_FUNCTION__))
;
1494 BasicBlock *ExitBlock = TPN->getParent();
1495 Instruction *New;
1496 auto It = SunkCopies.find(ExitBlock);
1497 if (It != SunkCopies.end())
1498 New = It->second;
1499 else
1500 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1501 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1502 return New;
1503}
1504
1505static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1506 BasicBlock *BB = PN->getParent();
1507 if (!BB->canSplitPredecessors())
1508 return false;
1509 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1510 // it require updating BlockColors for all offspring blocks accordingly. By
1511 // skipping such corner case, we can make updating BlockColors after splitting
1512 // predecessor fairly simple.
1513 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1514 return false;
1515 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1516 BasicBlock *BBPred = *PI;
1517 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1518 isa<CallBrInst>(BBPred->getTerminator()))
1519 return false;
1520 }
1521 return true;
1522}
1523
1524static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1525 LoopInfo *LI, const Loop *CurLoop,
1526 LoopSafetyInfo *SafetyInfo,
1527 MemorySSAUpdater *MSSAU) {
1528#ifndef NDEBUG
1529 SmallVector<BasicBlock *, 32> ExitBlocks;
1530 CurLoop->getUniqueExitBlocks(ExitBlocks);
1531 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1532 ExitBlocks.end());
1533#endif
1534 BasicBlock *ExitBB = PN->getParent();
1535 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1535, __PRETTY_FUNCTION__))
;
1536
1537 // Split predecessors of the loop exit to make instructions in the loop are
1538 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1539 // loop in the canonical form where each predecessor of each exit block should
1540 // be contained within the loop. For example, this will convert the loop below
1541 // from
1542 //
1543 // LB1:
1544 // %v1 =
1545 // br %LE, %LB2
1546 // LB2:
1547 // %v2 =
1548 // br %LE, %LB1
1549 // LE:
1550 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1551 //
1552 // to
1553 //
1554 // LB1:
1555 // %v1 =
1556 // br %LE.split, %LB2
1557 // LB2:
1558 // %v2 =
1559 // br %LE.split2, %LB1
1560 // LE.split:
1561 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1562 // br %LE
1563 // LE.split2:
1564 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1565 // br %LE
1566 // LE:
1567 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1568 //
1569 const auto &BlockColors = SafetyInfo->getBlockColors();
1570 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1571 while (!PredBBs.empty()) {
1572 BasicBlock *PredBB = *PredBBs.begin();
1573 assert(CurLoop->contains(PredBB) &&((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1574, __PRETTY_FUNCTION__))
1574 "Expect all predecessors are in the loop")((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1574, __PRETTY_FUNCTION__))
;
1575 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1576 BasicBlock *NewPred = SplitBlockPredecessors(
1577 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1578 // Since we do not allow splitting EH-block with BlockColors in
1579 // canSplitPredecessors(), we can simply assign predecessor's color to
1580 // the new block.
1581 if (!BlockColors.empty())
1582 // Grab a reference to the ColorVector to be inserted before getting the
1583 // reference to the vector we are copying because inserting the new
1584 // element in BlockColors might cause the map to be reallocated.
1585 SafetyInfo->copyColors(NewPred, PredBB);
1586 }
1587 PredBBs.remove(PredBB);
1588 }
1589}
1590
1591/// When an instruction is found to only be used outside of the loop, this
1592/// function moves it to the exit blocks and patches up SSA form as needed.
1593/// This method is guaranteed to remove the original instruction from its
1594/// position, and may either delete it or move it to outside of the loop.
1595///
1596static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1597 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1598 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1599 OptimizationRemarkEmitter *ORE) {
1600 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1601 ORE->emit([&]() {
1602 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1603 << "sinking " << ore::NV("Inst", &I);
1604 });
1605 bool Changed = false;
1606 if (isa<LoadInst>(I))
1607 ++NumMovedLoads;
1608 else if (isa<CallInst>(I))
1609 ++NumMovedCalls;
1610 ++NumSunk;
1611
1612 // Iterate over users to be ready for actual sinking. Replace users via
1613 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1614 SmallPtrSet<Instruction *, 8> VisitedUsers;
1615 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1616 auto *User = cast<Instruction>(*UI);
1617 Use &U = UI.getUse();
1618 ++UI;
1619
1620 if (VisitedUsers.count(User) || CurLoop->contains(User))
1621 continue;
1622
1623 if (!DT->isReachableFromEntry(User->getParent())) {
1624 U = UndefValue::get(I.getType());
1625 Changed = true;
1626 continue;
1627 }
1628
1629 // The user must be a PHI node.
1630 PHINode *PN = cast<PHINode>(User);
1631
1632 // Surprisingly, instructions can be used outside of loops without any
1633 // exits. This can only happen in PHI nodes if the incoming block is
1634 // unreachable.
1635 BasicBlock *BB = PN->getIncomingBlock(U);
1636 if (!DT->isReachableFromEntry(BB)) {
1637 U = UndefValue::get(I.getType());
1638 Changed = true;
1639 continue;
1640 }
1641
1642 VisitedUsers.insert(PN);
1643 if (isTriviallyReplaceablePHI(*PN, I))
1644 continue;
1645
1646 if (!canSplitPredecessors(PN, SafetyInfo))
1647 return Changed;
1648
1649 // Split predecessors of the PHI so that we can make users trivially
1650 // replaceable.
1651 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1652
1653 // Should rebuild the iterators, as they may be invalidated by
1654 // splitPredecessorsOfLoopExit().
1655 UI = I.user_begin();
1656 UE = I.user_end();
1657 }
1658
1659 if (VisitedUsers.empty())
1660 return Changed;
1661
1662#ifndef NDEBUG
1663 SmallVector<BasicBlock *, 32> ExitBlocks;
1664 CurLoop->getUniqueExitBlocks(ExitBlocks);
1665 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1666 ExitBlocks.end());
1667#endif
1668
1669 // Clones of this instruction. Don't create more than one per exit block!
1670 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1671
1672 // If this instruction is only used outside of the loop, then all users are
1673 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1674 // the instruction.
1675 // First check if I is worth sinking for all uses. Sink only when it is worth
1676 // across all uses.
1677 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1678 SmallVector<PHINode *, 8> ExitPNs;
1679 for (auto *UI : Users) {
1680 auto *User = cast<Instruction>(UI);
1681
1682 if (CurLoop->contains(User))
1683 continue;
1684
1685 PHINode *PN = cast<PHINode>(User);
1686 assert(ExitBlockSet.count(PN->getParent()) &&((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1687, __PRETTY_FUNCTION__))
1687 "The LCSSA PHI is not in an exit block!")((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1687, __PRETTY_FUNCTION__))
;
1688 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1689 return Changed;
1690 }
1691
1692 ExitPNs.push_back(PN);
1693 }
1694
1695 for (auto *PN : ExitPNs) {
1696
1697 // The PHI must be trivially replaceable.
1698 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1699 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1700 PN->replaceAllUsesWith(New);
1701 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1702 Changed = true;
1703 }
1704 return Changed;
1705}
1706
1707/// When an instruction is found to only use loop invariant operands that
1708/// is safe to hoist, this instruction is called to do the dirty work.
1709///
1710static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1711 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1712 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1713 OptimizationRemarkEmitter *ORE) {
1714 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
1715 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
;
1716 ORE->emit([&]() {
1717 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1718 << ore::NV("Inst", &I);
1719 });
1720
1721 // Metadata can be dependent on conditions we are hoisting above.
1722 // Conservatively strip all metadata on the instruction unless we were
1723 // guaranteed to execute I if we entered the loop, in which case the metadata
1724 // is valid in the loop preheader.
1725 if (I.hasMetadataOtherThanDebugLoc() &&
1726 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1727 // time in isGuaranteedToExecute if we don't actually have anything to
1728 // drop. It is a compile time optimization, not required for correctness.
1729 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1730 I.dropUnknownNonDebugMetadata();
1731
1732 if (isa<PHINode>(I))
1733 // Move the new node to the end of the phi list in the destination block.
1734 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1735 else
1736 // Move the new node to the destination block, before its terminator.
1737 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1738
1739 // Apply line 0 debug locations when we are moving instructions to different
1740 // basic blocks because we want to avoid jumpy line tables.
1741 if (const DebugLoc &DL = I.getDebugLoc())
1742 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1743
1744 if (isa<LoadInst>(I))
1745 ++NumMovedLoads;
1746 else if (isa<CallInst>(I))
1747 ++NumMovedCalls;
1748 ++NumHoisted;
1749}
1750
1751/// Only sink or hoist an instruction if it is not a trapping instruction,
1752/// or if the instruction is known not to trap when moved to the preheader.
1753/// or if it is a trapping instruction and is guaranteed to execute.
1754static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1755 const DominatorTree *DT,
1756 const Loop *CurLoop,
1757 const LoopSafetyInfo *SafetyInfo,
1758 OptimizationRemarkEmitter *ORE,
1759 const Instruction *CtxI) {
1760 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1761 return true;
1762
1763 bool GuaranteedToExecute =
1764 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1765
1766 if (!GuaranteedToExecute) {
1767 auto *LI = dyn_cast<LoadInst>(&Inst);
1768 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1769 ORE->emit([&]() {
1770 return OptimizationRemarkMissed(
1771 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1772 << "failed to hoist load with loop-invariant address "
1773 "because load is conditionally executed";
1774 });
1775 }
1776
1777 return GuaranteedToExecute;
1778}
1779
1780namespace {
1781class LoopPromoter : public LoadAndStorePromoter {
1782 Value *SomePtr; // Designated pointer to store to.
1783 const SmallSetVector<Value *, 8> &PointerMustAliases;
1784 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1785 SmallVectorImpl<Instruction *> &LoopInsertPts;
1786 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1787 PredIteratorCache &PredCache;
1788 AliasSetTracker &AST;
1789 MemorySSAUpdater *MSSAU;
1790 LoopInfo &LI;
1791 DebugLoc DL;
1792 int Alignment;
1793 bool UnorderedAtomic;
1794 AAMDNodes AATags;
1795 ICFLoopSafetyInfo &SafetyInfo;
1796
1797 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1798 if (Instruction *I = dyn_cast<Instruction>(V))
1799 if (Loop *L = LI.getLoopFor(I->getParent()))
1800 if (!L->contains(BB)) {
1801 // We need to create an LCSSA PHI node for the incoming value and
1802 // store that.
1803 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1804 I->getName() + ".lcssa", &BB->front());
1805 for (BasicBlock *Pred : PredCache.get(BB))
1806 PN->addIncoming(I, Pred);
1807 return PN;
1808 }
1809 return V;
1810 }
1811
1812public:
1813 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1814 const SmallSetVector<Value *, 8> &PMA,
1815 SmallVectorImpl<BasicBlock *> &LEB,
1816 SmallVectorImpl<Instruction *> &LIP,
1817 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1818 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1819 DebugLoc dl, int alignment, bool UnorderedAtomic,
1820 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1821 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1822 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1823 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1824 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1825 SafetyInfo(SafetyInfo) {}
1826
1827 bool isInstInList(Instruction *I,
1828 const SmallVectorImpl<Instruction *> &) const override {
1829 Value *Ptr;
1830 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1831 Ptr = LI->getOperand(0);
1832 else
1833 Ptr = cast<StoreInst>(I)->getPointerOperand();
1834 return PointerMustAliases.count(Ptr);
1835 }
1836
1837 void doExtraRewritesBeforeFinalDeletion() override {
1838 // Insert stores after in the loop exit blocks. Each exit block gets a
1839 // store of the live-out values that feed them. Since we've already told
1840 // the SSA updater about the defs in the loop and the preheader
1841 // definition, it is all set and we can start using it.
1842 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1843 BasicBlock *ExitBlock = LoopExitBlocks[i];
1844 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1845 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1846 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1847 Instruction *InsertPos = LoopInsertPts[i];
1848 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1849 if (UnorderedAtomic)
1850 NewSI->setOrdering(AtomicOrdering::Unordered);
1851 NewSI->setAlignment(Align(Alignment));
1852 NewSI->setDebugLoc(DL);
1853 if (AATags)
1854 NewSI->setAAMetadata(AATags);
1855
1856 if (MSSAU) {
1857 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1858 MemoryAccess *NewMemAcc;
1859 if (!MSSAInsertPoint) {
1860 NewMemAcc = MSSAU->createMemoryAccessInBB(
1861 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1862 } else {
1863 NewMemAcc =
1864 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1865 }
1866 MSSAInsertPts[i] = NewMemAcc;
1867 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1868 // FIXME: true for safety, false may still be correct.
1869 }
1870 }
1871 }
1872
1873 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1874 // Update alias analysis.
1875 AST.copyValue(LI, V);
1876 }
1877 void instructionDeleted(Instruction *I) const override {
1878 SafetyInfo.removeInstruction(I);
1879 AST.deleteValue(I);
1880 if (MSSAU)
1881 MSSAU->removeMemoryAccess(I);
1882 }
1883};
1884
1885
1886/// Return true iff we can prove that a caller of this function can not inspect
1887/// the contents of the provided object in a well defined program.
1888bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1889 if (isa<AllocaInst>(Object))
1890 // Since the alloca goes out of scope, we know the caller can't retain a
1891 // reference to it and be well defined. Thus, we don't need to check for
1892 // capture.
1893 return true;
1894
1895 // For all other objects we need to know that the caller can't possibly
1896 // have gotten a reference to the object. There are two components of
1897 // that:
1898 // 1) Object can't be escaped by this function. This is what
1899 // PointerMayBeCaptured checks.
1900 // 2) Object can't have been captured at definition site. For this, we
1901 // need to know the return value is noalias. At the moment, we use a
1902 // weaker condition and handle only AllocLikeFunctions (which are
1903 // known to be noalias). TODO
1904 return isAllocLikeFn(Object, TLI) &&
1905 !PointerMayBeCaptured(Object, true, true);
1906}
1907
1908} // namespace
1909
1910/// Try to promote memory values to scalars by sinking stores out of the
1911/// loop and moving loads to before the loop. We do this by looping over
1912/// the stores in the loop, looking for stores to Must pointers which are
1913/// loop invariant.
1914///
1915bool llvm::promoteLoopAccessesToScalars(
1916 const SmallSetVector<Value *, 8> &PointerMustAliases,
1917 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1918 SmallVectorImpl<Instruction *> &InsertPts,
1919 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1920 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1921 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1922 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1923 // Verify inputs.
1924 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1926, __PRETTY_FUNCTION__))
1925 CurAST != nullptr && SafetyInfo != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1926, __PRETTY_FUNCTION__))
1926 "Unexpected Input to promoteLoopAccessesToScalars")((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1926, __PRETTY_FUNCTION__))
;
1927
1928 Value *SomePtr = *PointerMustAliases.begin();
1929 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1930
1931 // It is not safe to promote a load/store from the loop if the load/store is
1932 // conditional. For example, turning:
1933 //
1934 // for () { if (c) *P += 1; }
1935 //
1936 // into:
1937 //
1938 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1939 //
1940 // is not safe, because *P may only be valid to access if 'c' is true.
1941 //
1942 // The safety property divides into two parts:
1943 // p1) The memory may not be dereferenceable on entry to the loop. In this
1944 // case, we can't insert the required load in the preheader.
1945 // p2) The memory model does not allow us to insert a store along any dynamic
1946 // path which did not originally have one.
1947 //
1948 // If at least one store is guaranteed to execute, both properties are
1949 // satisfied, and promotion is legal.
1950 //
1951 // This, however, is not a necessary condition. Even if no store/load is
1952 // guaranteed to execute, we can still establish these properties.
1953 // We can establish (p1) by proving that hoisting the load into the preheader
1954 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1955 // can use any access within the alias set to prove dereferenceability,
1956 // since they're all must alias.
1957 //
1958 // There are two ways establish (p2):
1959 // a) Prove the location is thread-local. In this case the memory model
1960 // requirement does not apply, and stores are safe to insert.
1961 // b) Prove a store dominates every exit block. In this case, if an exit
1962 // blocks is reached, the original dynamic path would have taken us through
1963 // the store, so inserting a store into the exit block is safe. Note that this
1964 // is different from the store being guaranteed to execute. For instance,
1965 // if an exception is thrown on the first iteration of the loop, the original
1966 // store is never executed, but the exit blocks are not executed either.
1967
1968 bool DereferenceableInPH = false;
1969 bool SafeToInsertStore = false;
1970
1971 SmallVector<Instruction *, 64> LoopUses;
1972
1973 // We start with an alignment of one and try to find instructions that allow
1974 // us to prove better alignment.
1975 Align Alignment;
1976 // Keep track of which types of access we see
1977 bool SawUnorderedAtomic = false;
1978 bool SawNotAtomic = false;
1979 AAMDNodes AATags;
1980
1981 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1982
1983 bool IsKnownThreadLocalObject = false;
1984 if (SafetyInfo->anyBlockMayThrow()) {
1985 // If a loop can throw, we have to insert a store along each unwind edge.
1986 // That said, we can't actually make the unwind edge explicit. Therefore,
1987 // we have to prove that the store is dead along the unwind edge. We do
1988 // this by proving that the caller can't have a reference to the object
1989 // after return and thus can't possibly load from the object.
1990 Value *Object = getUnderlyingObject(SomePtr);
1991 if (!isKnownNonEscaping(Object, TLI))
1992 return false;
1993 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1994 // visible to other threads if captured and used during their lifetimes.
1995 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1996 }
1997
1998 // Check that all of the pointers in the alias set have the same type. We
1999 // cannot (yet) promote a memory location that is loaded and stored in
2000 // different sizes. While we are at it, collect alignment and AA info.
2001 for (Value *ASIV : PointerMustAliases) {
2002 // Check that all of the pointers in the alias set have the same type. We
2003 // cannot (yet) promote a memory location that is loaded and stored in
2004 // different sizes.
2005 if (SomePtr->getType() != ASIV->getType())
2006 return false;
2007
2008 for (User *U : ASIV->users()) {
2009 // Ignore instructions that are outside the loop.
2010 Instruction *UI = dyn_cast<Instruction>(U);
2011 if (!UI || !CurLoop->contains(UI))
2012 continue;
2013
2014 // If there is an non-load/store instruction in the loop, we can't promote
2015 // it.
2016 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2017 if (!Load->isUnordered())
2018 return false;
2019
2020 SawUnorderedAtomic |= Load->isAtomic();
2021 SawNotAtomic |= !Load->isAtomic();
2022
2023 Align InstAlignment = Load->getAlign();
2024
2025 // Note that proving a load safe to speculate requires proving
2026 // sufficient alignment at the target location. Proving it guaranteed
2027 // to execute does as well. Thus we can increase our guaranteed
2028 // alignment as well.
2029 if (!DereferenceableInPH || (InstAlignment > Alignment))
2030 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
2031 ORE, Preheader->getTerminator())) {
2032 DereferenceableInPH = true;
2033 Alignment = std::max(Alignment, InstAlignment);
2034 }
2035 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2036 // Stores *of* the pointer are not interesting, only stores *to* the
2037 // pointer.
2038 if (UI->getOperand(1) != ASIV)
2039 continue;
2040 if (!Store->isUnordered())
2041 return false;
2042
2043 SawUnorderedAtomic |= Store->isAtomic();
2044 SawNotAtomic |= !Store->isAtomic();
2045
2046 // If the store is guaranteed to execute, both properties are satisfied.
2047 // We may want to check if a store is guaranteed to execute even if we
2048 // already know that promotion is safe, since it may have higher
2049 // alignment than any other guaranteed stores, in which case we can
2050 // raise the alignment on the promoted store.
2051 Align InstAlignment = Store->getAlign();
2052
2053 if (!DereferenceableInPH || !SafeToInsertStore ||
2054 (InstAlignment > Alignment)) {
2055 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2056 DereferenceableInPH = true;
2057 SafeToInsertStore = true;
2058 Alignment = std::max(Alignment, InstAlignment);
2059 }
2060 }
2061
2062 // If a store dominates all exit blocks, it is safe to sink.
2063 // As explained above, if an exit block was executed, a dominating
2064 // store must have been executed at least once, so we are not
2065 // introducing stores on paths that did not have them.
2066 // Note that this only looks at explicit exit blocks. If we ever
2067 // start sinking stores into unwind edges (see above), this will break.
2068 if (!SafeToInsertStore)
2069 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2070 return DT->dominates(Store->getParent(), Exit);
2071 });
2072
2073 // If the store is not guaranteed to execute, we may still get
2074 // deref info through it.
2075 if (!DereferenceableInPH) {
2076 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2077 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2078 Store->getAlign(), MDL, Preheader->getTerminator(), DT);
2079 }
2080 } else
2081 return false; // Not a load or store.
2082
2083 // Merge the AA tags.
2084 if (LoopUses.empty()) {
2085 // On the first load/store, just take its AA tags.
2086 UI->getAAMetadata(AATags);
2087 } else if (AATags) {
2088 UI->getAAMetadata(AATags, /* Merge = */ true);
2089 }
2090
2091 LoopUses.push_back(UI);
2092 }
2093 }
2094
2095 // If we found both an unordered atomic instruction and a non-atomic memory
2096 // access, bail. We can't blindly promote non-atomic to atomic since we
2097 // might not be able to lower the result. We can't downgrade since that
2098 // would violate memory model. Also, align 0 is an error for atomics.
2099 if (SawUnorderedAtomic && SawNotAtomic)
2100 return false;
2101
2102 // If we're inserting an atomic load in the preheader, we must be able to
2103 // lower it. We're only guaranteed to be able to lower naturally aligned
2104 // atomics.
2105 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2106 if (SawUnorderedAtomic &&
2107 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2108 return false;
2109
2110 // If we couldn't prove we can hoist the load, bail.
2111 if (!DereferenceableInPH)
2112 return false;
2113
2114 // We know we can hoist the load, but don't have a guaranteed store.
2115 // Check whether the location is thread-local. If it is, then we can insert
2116 // stores along paths which originally didn't have them without violating the
2117 // memory model.
2118 if (!SafeToInsertStore) {
2119 if (IsKnownThreadLocalObject)
2120 SafeToInsertStore = true;
2121 else {
2122 Value *Object = getUnderlyingObject(SomePtr);
2123 SafeToInsertStore =
2124 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2125 !PointerMayBeCaptured(Object, true, true);
2126 }
2127 }
2128
2129 // If we've still failed to prove we can sink the store, give up.
2130 if (!SafeToInsertStore)
2131 return false;
2132
2133 // Otherwise, this is safe to promote, lets do it!
2134 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2135 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2136 ORE->emit([&]() {
2137 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2138 LoopUses[0])
2139 << "Moving accesses to memory location out of the loop";
2140 });
2141 ++NumPromoted;
2142
2143 // Look at all the loop uses, and try to merge their locations.
2144 std::vector<const DILocation *> LoopUsesLocs;
2145 for (auto U : LoopUses)
2146 LoopUsesLocs.push_back(U->getDebugLoc().get());
2147 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2148
2149 // We use the SSAUpdater interface to insert phi nodes as required.
2150 SmallVector<PHINode *, 16> NewPHIs;
2151 SSAUpdater SSA(&NewPHIs);
2152 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2153 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2154 Alignment.value(), SawUnorderedAtomic, AATags,
2155 *SafetyInfo);
2156
2157 // Set up the preheader to have a definition of the value. It is the live-out
2158 // value from the preheader that uses in the loop will use.
2159 LoadInst *PreheaderLoad = new LoadInst(
2160 SomePtr->getType()->getPointerElementType(), SomePtr,
2161 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2162 if (SawUnorderedAtomic)
2163 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2164 PreheaderLoad->setAlignment(Alignment);
2165 PreheaderLoad->setDebugLoc(DebugLoc());
2166 if (AATags)
2167 PreheaderLoad->setAAMetadata(AATags);
2168 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2169
2170 if (MSSAU) {
2171 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2172 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2173 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2174 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2175 }
2176
2177 if (MSSAU && VerifyMemorySSA)
2178 MSSAU->getMemorySSA()->verifyMemorySSA();
2179 // Rewrite all the loads in the loop and remember all the definitions from
2180 // stores in the loop.
2181 Promoter.run(LoopUses);
2182
2183 if (MSSAU && VerifyMemorySSA)
2184 MSSAU->getMemorySSA()->verifyMemorySSA();
2185 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2186 if (PreheaderLoad->use_empty())
2187 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2188
2189 return true;
2190}
2191
2192/// Returns an owning pointer to an alias set which incorporates aliasing info
2193/// from L and all subloops of L.
2194std::unique_ptr<AliasSetTracker>
2195LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2196 AAResults *AA) {
2197 auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2198
2199 // Add everything from all the sub loops.
2200 for (Loop *InnerL : L->getSubLoops())
2201 for (BasicBlock *BB : InnerL->blocks())
2202 CurAST->add(*BB);
2203
2204 // And merge in this loop (without anything from inner loops).
2205 for (BasicBlock *BB : L->blocks())
2206 if (LI->getLoopFor(BB) == L)
2207 CurAST->add(*BB);
2208
2209 return CurAST;
2210}
2211
2212std::unique_ptr<AliasSetTracker>
2213LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2214 Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
2215 auto *MSSA = MSSAU->getMemorySSA();
2216 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2217 CurAST->addAllInstructionsInLoopUsingMSSA();
2218 return CurAST;
2219}
2220
2221static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2222 AliasSetTracker *CurAST, Loop *CurLoop,
2223 AAResults *AA) {
2224 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2225 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2226
2227 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2228 return isInvalidatedAccordingToAST;
2229
2230 // Check with a diagnostic analysis if we can refine the information above.
2231 // This is to identify the limitations of using the AST.
2232 // The alias set mechanism used by LICM has a major weakness in that it
2233 // combines all things which may alias into a single set *before* asking
2234 // modref questions. As a result, a single readonly call within a loop will
2235 // collapse all loads and stores into a single alias set and report
2236 // invalidation if the loop contains any store. For example, readonly calls
2237 // with deopt states have this form and create a general alias set with all
2238 // loads and stores. In order to get any LICM in loops containing possible
2239 // deopt states we need a more precise invalidation of checking the mod ref
2240 // info of each instruction within the loop and LI. This has a complexity of
2241 // O(N^2), so currently, it is used only as a diagnostic tool since the
2242 // default value of LICMN2Threshold is zero.
2243
2244 // Don't look at nested loops.
2245 if (CurLoop->begin() != CurLoop->end())
2246 return true;
2247
2248 int N = 0;
2249 for (BasicBlock *BB : CurLoop->getBlocks())
2250 for (Instruction &I : *BB) {
2251 if (N >= LICMN2Theshold) {
2252 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
2253 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
;
2254 return true;
2255 }
2256 N++;
2257 auto Res = AA->getModRefInfo(&I, MemLoc);
2258 if (isModSet(Res)) {
2259 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
2260 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
;
2261 return true;
2262 }
2263 }
2264 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr) << "\n"; } } while (false)
;
2265 return false;
2266}
2267
2268static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2269 Loop *CurLoop,
2270 SinkAndHoistLICMFlags &Flags) {
2271 // For hoisting, use the walker to determine safety
2272 if (!Flags.IsSink) {
2273 MemoryAccess *Source;
2274 // See declaration of SetLicmMssaOptCap for usage details.
2275 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2276 Source = MU->getDefiningAccess();
2277 else {
2278 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2279 Flags.LicmMssaOptCounter++;
2280 }
2281 return !MSSA->isLiveOnEntryDef(Source) &&
2282 CurLoop->contains(Source->getBlock());
2283 }
2284
2285 // For sinking, we'd need to check all Defs below this use. The getClobbering
2286 // call will look on the backedge of the loop, but will check aliasing with
2287 // the instructions on the previous iteration.
2288 // For example:
2289 // for (i ... )
2290 // load a[i] ( Use (LoE)
2291 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2292 // i++;
2293 // The load sees no clobbering inside the loop, as the backedge alias check
2294 // does phi translation, and will check aliasing against store a[i-1].
2295 // However sinking the load outside the loop, below the store is incorrect.
2296
2297 // For now, only sink if there are no Defs in the loop, and the existing ones
2298 // precede the use and are in the same block.
2299 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2300 // needs PostDominatorTreeAnalysis.
2301 // FIXME: More precise: no Defs that alias this Use.
2302 if (Flags.NoOfMemAccTooLarge)
2303 return true;
2304 for (auto *BB : CurLoop->getBlocks())
2305 if (auto *Accesses = MSSA->getBlockDefs(BB))
2306 for (const auto &MA : *Accesses)
2307 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2308 if (MU->getBlock() != MD->getBlock() ||
2309 !MSSA->locallyDominates(MD, MU))
2310 return true;
2311 return false;
2312}
2313
2314/// Little predicate that returns true if the specified basic block is in
2315/// a subloop of the current one, not the current one itself.
2316///
2317static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2318 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((CurLoop->contains(BB) && "Only valid if BB is IN the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2318, __PRETTY_FUNCTION__))
;
2319 return LI->getLoopFor(BB) != CurLoop;
2320}

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
13
Assuming the condition is false
16
Returning the value 1, which participates in a condition later
262 getOrdering() == AtomicOrdering::Unordered) &&
14
Assuming the condition is true
263 !isVolatile();
15
Assuming the condition is true
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 898, __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
941 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
957 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Exchange the two operands to this instruction in such a way that it does
1294 /// not modify the semantics of the instruction. The predicate value may be
1295 /// changed to retain the same result if the predicate is order dependent
1296 /// (e.g. ult).
1297 /// Swap operands and adjust predicate.
1298 void swapOperands() {
1299 setPredicate(getSwappedPredicate());
1300 Op<0>().swap(Op<1>());
1301 }
1302
1303 // Methods for support type inquiry through isa, cast, and dyn_cast:
1304 static bool classof(const Instruction *I) {
1305 return I->getOpcode() == Instruction::ICmp;
1306 }
1307 static bool classof(const Value *V) {
1308 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1309 }
1310};
1311
1312//===----------------------------------------------------------------------===//
1313// FCmpInst Class
1314//===----------------------------------------------------------------------===//
1315
1316/// This instruction compares its operands according to the predicate given
1317/// to the constructor. It only operates on floating point values or packed
1318/// vectors of floating point values. The operands must be identical types.
1319/// Represents a floating point comparison operator.
1320class FCmpInst: public CmpInst {
1321 void AssertOK() {
1322 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1322, __PRETTY_FUNCTION__))
;
1323 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1324, __PRETTY_FUNCTION__))
1324 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1324, __PRETTY_FUNCTION__))
;
1325 // Check that the operands are the right type
1326 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1327, __PRETTY_FUNCTION__))
1327 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1327, __PRETTY_FUNCTION__))
;
1328 }
1329
1330protected:
1331 // Note: Instruction needs to be a friend here to call cloneImpl.
1332 friend class Instruction;
1333
1334 /// Clone an identical FCmpInst
1335 FCmpInst *cloneImpl() const;
1336
1337public:
1338 /// Constructor with insert-before-instruction semantics.
1339 FCmpInst(
1340 Instruction *InsertBefore, ///< Where to insert
1341 Predicate pred, ///< The predicate to use for the comparison
1342 Value *LHS, ///< The left-hand-side of the expression
1343 Value *RHS, ///< The right-hand-side of the expression
1344 const Twine &NameStr = "" ///< Name of the instruction
1345 ) : CmpInst(makeCmpResultType(LHS->getType()),
1346 Instruction::FCmp, pred, LHS, RHS, NameStr,
1347 InsertBefore) {
1348 AssertOK();
1349 }
1350
1351 /// Constructor with insert-at-end semantics.
1352 FCmpInst(
1353 BasicBlock &InsertAtEnd, ///< Block to insert into.
1354 Predicate pred, ///< The predicate to use for the comparison
1355 Value *LHS, ///< The left-hand-side of the expression
1356 Value *RHS, ///< The right-hand-side of the expression
1357 const Twine &NameStr = "" ///< Name of the instruction
1358 ) : CmpInst(makeCmpResultType(LHS->getType()),
1359 Instruction::FCmp, pred, LHS, RHS, NameStr,
1360 &InsertAtEnd) {
1361 AssertOK();
1362 }
1363
1364 /// Constructor with no-insertion semantics
1365 FCmpInst(
1366 Predicate Pred, ///< The predicate to use for the comparison
1367 Value *LHS, ///< The left-hand-side of the expression
1368 Value *RHS, ///< The right-hand-side of the expression
1369 const Twine &NameStr = "", ///< Name of the instruction
1370 Instruction *FlagsSource = nullptr
1371 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1372 RHS, NameStr, nullptr, FlagsSource) {
1373 AssertOK();
1374 }
1375
1376 /// @returns true if the predicate of this instruction is EQ or NE.
1377 /// Determine if this is an equality predicate.
1378 static bool isEquality(Predicate Pred) {
1379 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1380 Pred == FCMP_UNE;
1381 }
1382
1383 /// @returns true if the predicate of this instruction is EQ or NE.
1384 /// Determine if this is an equality predicate.
1385 bool isEquality() const { return isEquality(getPredicate()); }
1386
1387 /// @returns true if the predicate of this instruction is commutative.
1388 /// Determine if this is a commutative predicate.
1389 bool isCommutative() const {
1390 return isEquality() ||
1391 getPredicate() == FCMP_FALSE ||
1392 getPredicate() == FCMP_TRUE ||
1393 getPredicate() == FCMP_ORD ||
1394 getPredicate() == FCMP_UNO;
1395 }
1396
1397 /// @returns true if the predicate is relational (not EQ or NE).
1398 /// Determine if this a relational predicate.
1399 bool isRelational() const { return !isEquality(); }
1400
1401 /// Exchange the two operands to this instruction in such a way that it does
1402 /// not modify the semantics of the instruction. The predicate value may be
1403 /// changed to retain the same result if the predicate is order dependent
1404 /// (e.g. ult).
1405 /// Swap operands and adjust predicate.
1406 void swapOperands() {
1407 setPredicate(getSwappedPredicate());
1408 Op<0>().swap(Op<1>());
1409 }
1410
1411 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1412 static bool classof(const Instruction *I) {
1413 return I->getOpcode() == Instruction::FCmp;
1414 }
1415 static bool classof(const Value *V) {
1416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1417 }
1418};
1419
1420//===----------------------------------------------------------------------===//
1421/// This class represents a function call, abstracting a target
1422/// machine's calling convention. This class uses low bit of the SubClassData
1423/// field to indicate whether or not this is a tail call. The rest of the bits
1424/// hold the calling convention of the call.
1425///
1426class CallInst : public CallBase {
1427 CallInst(const CallInst &CI);
1428
1429 /// Construct a CallInst given a range of arguments.
1430 /// Construct a CallInst from a range of arguments
1431 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1432 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1433 Instruction *InsertBefore);
1434
1435 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1436 const Twine &NameStr, Instruction *InsertBefore)
1437 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1438
1439 /// Construct a CallInst given a range of arguments.
1440 /// Construct a CallInst from a range of arguments
1441 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1442 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1443 BasicBlock *InsertAtEnd);
1444
1445 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1446 Instruction *InsertBefore);
1447
1448 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1449 BasicBlock *InsertAtEnd);
1450
1451 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1452 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1453 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1454
1455 /// Compute the number of operands to allocate.
1456 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1457 // We need one operand for the called function, plus the input operand
1458 // counts provided.
1459 return 1 + NumArgs + NumBundleInputs;
1460 }
1461
1462protected:
1463 // Note: Instruction needs to be a friend here to call cloneImpl.
1464 friend class Instruction;
1465
1466 CallInst *cloneImpl() const;
1467
1468public:
1469 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1470 Instruction *InsertBefore = nullptr) {
1471 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1472 }
1473
1474 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1475 const Twine &NameStr,
1476 Instruction *InsertBefore = nullptr) {
1477 return new (ComputeNumOperands(Args.size()))
1478 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1479 }
1480
1481 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1482 ArrayRef<OperandBundleDef> Bundles = None,
1483 const Twine &NameStr = "",
1484 Instruction *InsertBefore = nullptr) {
1485 const int NumOperands =
1486 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1487 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1488
1489 return new (NumOperands, DescriptorBytes)
1490 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1491 }
1492
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1494 BasicBlock *InsertAtEnd) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1500 return new (ComputeNumOperands(Args.size()))
1501 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1502 }
1503
1504 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1505 ArrayRef<OperandBundleDef> Bundles,
1506 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1507 const int NumOperands =
1508 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1509 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1510
1511 return new (NumOperands, DescriptorBytes)
1512 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1513 }
1514
1515 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1516 Instruction *InsertBefore = nullptr) {
1517 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1518 InsertBefore);
1519 }
1520
1521 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1522 ArrayRef<OperandBundleDef> Bundles = None,
1523 const Twine &NameStr = "",
1524 Instruction *InsertBefore = nullptr) {
1525 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1526 NameStr, InsertBefore);
1527 }
1528
1529 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1530 const Twine &NameStr,
1531 Instruction *InsertBefore = nullptr) {
1532 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1533 InsertBefore);
1534 }
1535
1536 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1537 BasicBlock *InsertAtEnd) {
1538 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1539 InsertAtEnd);
1540 }
1541
1542 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1543 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1544 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1545 InsertAtEnd);
1546 }
1547
1548 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1549 ArrayRef<OperandBundleDef> Bundles,
1550 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1551 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1552 NameStr, InsertAtEnd);
1553 }
1554
1555 /// Create a clone of \p CI with a different set of operand bundles and
1556 /// insert it before \p InsertPt.
1557 ///
1558 /// The returned call instruction is identical \p CI in every way except that
1559 /// the operand bundles for the new instruction are set to the operand bundles
1560 /// in \p Bundles.
1561 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1562 Instruction *InsertPt = nullptr);
1563
1564 /// Create a clone of \p CI with a different set of operand bundles and
1565 /// insert it before \p InsertPt.
1566 ///
1567 /// The returned call instruction is identical \p CI in every way except that
1568 /// the operand bundle for the new instruction is set to the operand bundle
1569 /// in \p Bundle.
1570 static CallInst *CreateWithReplacedBundle(CallInst *CI,
1571 OperandBundleDef Bundle,
1572 Instruction *InsertPt = nullptr);
1573
1574 /// Generate the IR for a call to malloc:
1575 /// 1. Compute the malloc call's argument as the specified type's size,
1576 /// possibly multiplied by the array size if the array size is not
1577 /// constant 1.
1578 /// 2. Call malloc with that argument.
1579 /// 3. Bitcast the result of the malloc call to the specified type.
1580 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1581 Type *AllocTy, Value *AllocSize,
1582 Value *ArraySize = nullptr,
1583 Function *MallocF = nullptr,
1584 const Twine &Name = "");
1585 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1586 Type *AllocTy, Value *AllocSize,
1587 Value *ArraySize = nullptr,
1588 Function *MallocF = nullptr,
1589 const Twine &Name = "");
1590 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1591 Type *AllocTy, Value *AllocSize,
1592 Value *ArraySize = nullptr,
1593 ArrayRef<OperandBundleDef> Bundles = None,
1594 Function *MallocF = nullptr,
1595 const Twine &Name = "");
1596 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1597 Type *AllocTy, Value *AllocSize,
1598 Value *ArraySize = nullptr,
1599 ArrayRef<OperandBundleDef> Bundles = None,
1600 Function *MallocF = nullptr,
1601 const Twine &Name = "");
1602 /// Generate the IR for a call to the builtin free function.
1603 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1604 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1605 static Instruction *CreateFree(Value *Source,
1606 ArrayRef<OperandBundleDef> Bundles,
1607 Instruction *InsertBefore);
1608 static Instruction *CreateFree(Value *Source,
1609 ArrayRef<OperandBundleDef> Bundles,
1610 BasicBlock *InsertAtEnd);
1611
1612 // Note that 'musttail' implies 'tail'.
1613 enum TailCallKind : unsigned {
1614 TCK_None = 0,
1615 TCK_Tail = 1,
1616 TCK_MustTail = 2,
1617 TCK_NoTail = 3,
1618 TCK_LAST = TCK_NoTail
1619 };
1620
1621 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1622 static_assert(
1623 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1624 "Bitfields must be contiguous");
1625
1626 TailCallKind getTailCallKind() const {
1627 return getSubclassData<TailCallKindField>();
1628 }
1629
1630 bool isTailCall() const {
1631 TailCallKind Kind = getTailCallKind();
1632 return Kind == TCK_Tail || Kind == TCK_MustTail;
1633 }
1634
1635 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1636
1637 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1638
1639 void setTailCallKind(TailCallKind TCK) {
1640 setSubclassData<TailCallKindField>(TCK);
1641 }
1642
1643 void setTailCall(bool IsTc = true) {
1644 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1645 }
1646
1647 /// Return true if the call can return twice
1648 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1649 void setCanReturnTwice() {
1650 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1651 }
1652
1653 // Methods for support type inquiry through isa, cast, and dyn_cast:
1654 static bool classof(const Instruction *I) {
1655 return I->getOpcode() == Instruction::Call;
1656 }
1657 static bool classof(const Value *V) {
1658 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1659 }
1660
1661 /// Updates profile metadata by scaling it by \p S / \p T.
1662 void updateProfWeight(uint64_t S, uint64_t T);
1663
1664private:
1665 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1666 // method so that subclasses cannot accidentally use it.
1667 template <typename Bitfield>
1668 void setSubclassData(typename Bitfield::Type Value) {
1669 Instruction::setSubclassData<Bitfield>(Value);
1670 }
1671};
1672
1673CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1674 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1675 BasicBlock *InsertAtEnd)
1676 : CallBase(Ty->getReturnType(), Instruction::Call,
1677 OperandTraits<CallBase>::op_end(this) -
1678 (Args.size() + CountBundleInputs(Bundles) + 1),
1679 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1680 InsertAtEnd) {
1681 init(Ty, Func, Args, Bundles, NameStr);
1682}
1683
1684CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1685 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1686 Instruction *InsertBefore)
1687 : CallBase(Ty->getReturnType(), Instruction::Call,
1688 OperandTraits<CallBase>::op_end(this) -
1689 (Args.size() + CountBundleInputs(Bundles) + 1),
1690 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1691 InsertBefore) {
1692 init(Ty, Func, Args, Bundles, NameStr);
1693}
1694
1695//===----------------------------------------------------------------------===//
1696// SelectInst Class
1697//===----------------------------------------------------------------------===//
1698
1699/// This class represents the LLVM 'select' instruction.
1700///
1701class SelectInst : public Instruction {
1702 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1703 Instruction *InsertBefore)
1704 : Instruction(S1->getType(), Instruction::Select,
1705 &Op<0>(), 3, InsertBefore) {
1706 init(C, S1, S2);
1707 setName(NameStr);
1708 }
1709
1710 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1711 BasicBlock *InsertAtEnd)
1712 : Instruction(S1->getType(), Instruction::Select,
1713 &Op<0>(), 3, InsertAtEnd) {
1714 init(C, S1, S2);
1715 setName(NameStr);
1716 }
1717
1718 void init(Value *C, Value *S1, Value *S2) {
1719 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1719, __PRETTY_FUNCTION__))
;
1720 Op<0>() = C;
1721 Op<1>() = S1;
1722 Op<2>() = S2;
1723 }
1724
1725protected:
1726 // Note: Instruction needs to be a friend here to call cloneImpl.
1727 friend class Instruction;
1728
1729 SelectInst *cloneImpl() const;
1730
1731public:
1732 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1733 const Twine &NameStr = "",
1734 Instruction *InsertBefore = nullptr,
1735 Instruction *MDFrom = nullptr) {
1736 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1737 if (MDFrom)
1738 Sel->copyMetadata(*MDFrom);
1739 return Sel;
1740 }
1741
1742 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1743 const Twine &NameStr,
1744 BasicBlock *InsertAtEnd) {
1745 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1746 }
1747
1748 const Value *getCondition() const { return Op<0>(); }
1749 const Value *getTrueValue() const { return Op<1>(); }
1750 const Value *getFalseValue() const { return Op<2>(); }
1751 Value *getCondition() { return Op<0>(); }
1752 Value *getTrueValue() { return Op<1>(); }
1753 Value *getFalseValue() { return Op<2>(); }
1754
1755 void setCondition(Value *V) { Op<0>() = V; }
1756 void setTrueValue(Value *V) { Op<1>() = V; }
1757 void setFalseValue(Value *V) { Op<2>() = V; }
1758
1759 /// Swap the true and false values of the select instruction.
1760 /// This doesn't swap prof metadata.
1761 void swapValues() { Op<1>().swap(Op<2>()); }
1762
1763 /// Return a string if the specified operands are invalid
1764 /// for a select operation, otherwise return null.
1765 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1766
1767 /// Transparently provide more efficient getOperand methods.
1768 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1769
1770 OtherOps getOpcode() const {
1771 return static_cast<OtherOps>(Instruction::getOpcode());
1772 }
1773
1774 // Methods for support type inquiry through isa, cast, and dyn_cast:
1775 static bool classof(const Instruction *I) {
1776 return I->getOpcode() == Instruction::Select;
1777 }
1778 static bool classof(const Value *V) {
1779 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1780 }
1781};
1782
1783template <>
1784struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1785};
1786
1787DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1787, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1787, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1788
1789//===----------------------------------------------------------------------===//
1790// VAArgInst Class
1791//===----------------------------------------------------------------------===//
1792
1793/// This class represents the va_arg llvm instruction, which returns
1794/// an argument of the specified type given a va_list and increments that list
1795///
1796class VAArgInst : public UnaryInstruction {
1797protected:
1798 // Note: Instruction needs to be a friend here to call cloneImpl.
1799 friend class Instruction;
1800
1801 VAArgInst *cloneImpl() const;
1802
1803public:
1804 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1805 Instruction *InsertBefore = nullptr)
1806 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1807 setName(NameStr);
1808 }
1809
1810 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1811 BasicBlock *InsertAtEnd)
1812 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1813 setName(NameStr);
1814 }
1815
1816 Value *getPointerOperand() { return getOperand(0); }
1817 const Value *getPointerOperand() const { return getOperand(0); }
1818 static unsigned getPointerOperandIndex() { return 0U; }
1819
1820 // Methods for support type inquiry through isa, cast, and dyn_cast:
1821 static bool classof(const Instruction *I) {
1822 return I->getOpcode() == VAArg;
1823 }
1824 static bool classof(const Value *V) {
1825 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1826 }
1827};
1828
1829//===----------------------------------------------------------------------===//
1830// ExtractElementInst Class
1831//===----------------------------------------------------------------------===//
1832
1833/// This instruction extracts a single (scalar)
1834/// element from a VectorType value
1835///
1836class ExtractElementInst : public Instruction {
1837 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1838 Instruction *InsertBefore = nullptr);
1839 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1840 BasicBlock *InsertAtEnd);
1841
1842protected:
1843 // Note: Instruction needs to be a friend here to call cloneImpl.
1844 friend class Instruction;
1845
1846 ExtractElementInst *cloneImpl() const;
1847
1848public:
1849 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1850 const Twine &NameStr = "",
1851 Instruction *InsertBefore = nullptr) {
1852 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1853 }
1854
1855 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1856 const Twine &NameStr,
1857 BasicBlock *InsertAtEnd) {
1858 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1859 }
1860
1861 /// Return true if an extractelement instruction can be
1862 /// formed with the specified operands.
1863 static bool isValidOperands(const Value *Vec, const Value *Idx);
1864
1865 Value *getVectorOperand() { return Op<0>(); }
1866 Value *getIndexOperand() { return Op<1>(); }
1867 const Value *getVectorOperand() const { return Op<0>(); }
1868 const Value *getIndexOperand() const { return Op<1>(); }
1869
1870 VectorType *getVectorOperandType() const {
1871 return cast<VectorType>(getVectorOperand()->getType());
1872 }
1873
1874 /// Transparently provide more efficient getOperand methods.
1875 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1876
1877 // Methods for support type inquiry through isa, cast, and dyn_cast:
1878 static bool classof(const Instruction *I) {
1879 return I->getOpcode() == Instruction::ExtractElement;
1880 }
1881 static bool classof(const Value *V) {
1882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1883 }
1884};
1885
1886template <>
1887struct OperandTraits<ExtractElementInst> :
1888 public FixedNumOperandTraits<ExtractElementInst, 2> {
1889};
1890
1891DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1891, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1891, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1892
1893//===----------------------------------------------------------------------===//
1894// InsertElementInst Class
1895//===----------------------------------------------------------------------===//
1896
1897/// This instruction inserts a single (scalar)
1898/// element into a VectorType value
1899///
1900class InsertElementInst : public Instruction {
1901 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1902 const Twine &NameStr = "",
1903 Instruction *InsertBefore = nullptr);
1904 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1905 BasicBlock *InsertAtEnd);
1906
1907protected:
1908 // Note: Instruction needs to be a friend here to call cloneImpl.
1909 friend class Instruction;
1910
1911 InsertElementInst *cloneImpl() const;
1912
1913public:
1914 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1915 const Twine &NameStr = "",
1916 Instruction *InsertBefore = nullptr) {
1917 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1918 }
1919
1920 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1921 const Twine &NameStr,
1922 BasicBlock *InsertAtEnd) {
1923 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1924 }
1925
1926 /// Return true if an insertelement instruction can be
1927 /// formed with the specified operands.
1928 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1929 const Value *Idx);
1930
1931 /// Overload to return most specific vector type.
1932 ///
1933 VectorType *getType() const {
1934 return cast<VectorType>(Instruction::getType());
1935 }
1936
1937 /// Transparently provide more efficient getOperand methods.
1938 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1939
1940 // Methods for support type inquiry through isa, cast, and dyn_cast:
1941 static bool classof(const Instruction *I) {
1942 return I->getOpcode() == Instruction::InsertElement;
1943 }
1944 static bool classof(const Value *V) {
1945 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1946 }
1947};
1948
1949template <>
1950struct OperandTraits<InsertElementInst> :
1951 public FixedNumOperandTraits<InsertElementInst, 3> {
1952};
1953
1954DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1954, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 1954, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1955
1956//===----------------------------------------------------------------------===//
1957// ShuffleVectorInst Class
1958//===----------------------------------------------------------------------===//
1959
1960constexpr int UndefMaskElem = -1;
1961
1962/// This instruction constructs a fixed permutation of two
1963/// input vectors.
1964///
1965/// For each element of the result vector, the shuffle mask selects an element
1966/// from one of the input vectors to copy to the result. Non-negative elements
1967/// in the mask represent an index into the concatenated pair of input vectors.
1968/// UndefMaskElem (-1) specifies that the result element is undefined.
1969///
1970/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1971/// requirement may be relaxed in the future.
1972class ShuffleVectorInst : public Instruction {
1973 SmallVector<int, 4> ShuffleMask;
1974 Constant *ShuffleMaskForBitcode;
1975
1976protected:
1977 // Note: Instruction needs to be a friend here to call cloneImpl.
1978 friend class Instruction;
1979
1980 ShuffleVectorInst *cloneImpl() const;
1981
1982public:
1983 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1984 const Twine &NameStr = "",
1985 Instruction *InsertBefor = nullptr);
1986 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1987 const Twine &NameStr, BasicBlock *InsertAtEnd);
1988 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1989 const Twine &NameStr = "",
1990 Instruction *InsertBefor = nullptr);
1991 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1992 const Twine &NameStr, BasicBlock *InsertAtEnd);
1993
1994 void *operator new(size_t s) { return User::operator new(s, 2); }
1995
1996 /// Swap the operands and adjust the mask to preserve the semantics
1997 /// of the instruction.
1998 void commute();
1999
2000 /// Return true if a shufflevector instruction can be
2001 /// formed with the specified operands.
2002 static bool isValidOperands(const Value *V1, const Value *V2,
2003 const Value *Mask);
2004 static bool isValidOperands(const Value *V1, const Value *V2,
2005 ArrayRef<int> Mask);
2006
2007 /// Overload to return most specific vector type.
2008 ///
2009 VectorType *getType() const {
2010 return cast<VectorType>(Instruction::getType());
2011 }
2012
2013 /// Transparently provide more efficient getOperand methods.
2014 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2015
2016 /// Return the shuffle mask value of this instruction for the given element
2017 /// index. Return UndefMaskElem if the element is undef.
2018 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2019
2020 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2021 /// elements of the mask are returned as UndefMaskElem.
2022 static void getShuffleMask(const Constant *Mask,
2023 SmallVectorImpl<int> &Result);
2024
2025 /// Return the mask for this instruction as a vector of integers. Undefined
2026 /// elements of the mask are returned as UndefMaskElem.
2027 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2028 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2029 }
2030
2031 /// Return the mask for this instruction, for use in bitcode.
2032 ///
2033 /// TODO: This is temporary until we decide a new bitcode encoding for
2034 /// shufflevector.
2035 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2036
2037 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2038 Type *ResultTy);
2039
2040 void setShuffleMask(ArrayRef<int> Mask);
2041
2042 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2043
2044 /// Return true if this shuffle returns a vector with a different number of
2045 /// elements than its source vectors.
2046 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2047 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2048 bool changesLength() const {
2049 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2050 ->getElementCount()
2051 .getKnownMinValue();
2052 unsigned NumMaskElts = ShuffleMask.size();
2053 return NumSourceElts != NumMaskElts;
2054 }
2055
2056 /// Return true if this shuffle returns a vector with a greater number of
2057 /// elements than its source vectors.
2058 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2059 bool increasesLength() const {
2060 unsigned NumSourceElts =
2061 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2062 unsigned NumMaskElts = ShuffleMask.size();
2063 return NumSourceElts < NumMaskElts;
2064 }
2065
2066 /// Return true if this shuffle mask chooses elements from exactly one source
2067 /// vector.
2068 /// Example: <7,5,undef,7>
2069 /// This assumes that vector operands are the same length as the mask.
2070 static bool isSingleSourceMask(ArrayRef<int> Mask);
2071 static bool isSingleSourceMask(const Constant *Mask) {
2072 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2072, __PRETTY_FUNCTION__))
;
2073 SmallVector<int, 16> MaskAsInts;
2074 getShuffleMask(Mask, MaskAsInts);
2075 return isSingleSourceMask(MaskAsInts);
2076 }
2077
2078 /// Return true if this shuffle chooses elements from exactly one source
2079 /// vector without changing the length of that vector.
2080 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2081 /// TODO: Optionally allow length-changing shuffles.
2082 bool isSingleSource() const {
2083 return !changesLength() && isSingleSourceMask(ShuffleMask);
2084 }
2085
2086 /// Return true if this shuffle mask chooses elements from exactly one source
2087 /// vector without lane crossings. A shuffle using this mask is not
2088 /// necessarily a no-op because it may change the number of elements from its
2089 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2090 /// Example: <undef,undef,2,3>
2091 static bool isIdentityMask(ArrayRef<int> Mask);
2092 static bool isIdentityMask(const Constant *Mask) {
2093 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2093, __PRETTY_FUNCTION__))
;
2094 SmallVector<int, 16> MaskAsInts;
2095 getShuffleMask(Mask, MaskAsInts);
2096 return isIdentityMask(MaskAsInts);
2097 }
2098
2099 /// Return true if this shuffle chooses elements from exactly one source
2100 /// vector without lane crossings and does not change the number of elements
2101 /// from its input vectors.
2102 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2103 bool isIdentity() const {
2104 return !changesLength() && isIdentityMask(ShuffleMask);
2105 }
2106
2107 /// Return true if this shuffle lengthens exactly one source vector with
2108 /// undefs in the high elements.
2109 bool isIdentityWithPadding() const;
2110
2111 /// Return true if this shuffle extracts the first N elements of exactly one
2112 /// source vector.
2113 bool isIdentityWithExtract() const;
2114
2115 /// Return true if this shuffle concatenates its 2 source vectors. This
2116 /// returns false if either input is undefined. In that case, the shuffle is
2117 /// is better classified as an identity with padding operation.
2118 bool isConcat() const;
2119
2120 /// Return true if this shuffle mask chooses elements from its source vectors
2121 /// without lane crossings. A shuffle using this mask would be
2122 /// equivalent to a vector select with a constant condition operand.
2123 /// Example: <4,1,6,undef>
2124 /// This returns false if the mask does not choose from both input vectors.
2125 /// In that case, the shuffle is better classified as an identity shuffle.
2126 /// This assumes that vector operands are the same length as the mask
2127 /// (a length-changing shuffle can never be equivalent to a vector select).
2128 static bool isSelectMask(ArrayRef<int> Mask);
2129 static bool isSelectMask(const Constant *Mask) {
2130 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2130, __PRETTY_FUNCTION__))
;
2131 SmallVector<int, 16> MaskAsInts;
2132 getShuffleMask(Mask, MaskAsInts);
2133 return isSelectMask(MaskAsInts);
2134 }
2135
2136 /// Return true if this shuffle chooses elements from its source vectors
2137 /// without lane crossings and all operands have the same number of elements.
2138 /// In other words, this shuffle is equivalent to a vector select with a
2139 /// constant condition operand.
2140 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2141 /// This returns false if the mask does not choose from both input vectors.
2142 /// In that case, the shuffle is better classified as an identity shuffle.
2143 /// TODO: Optionally allow length-changing shuffles.
2144 bool isSelect() const {
2145 return !changesLength() && isSelectMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle mask swaps the order of elements from exactly
2149 /// one source vector.
2150 /// Example: <7,6,undef,4>
2151 /// This assumes that vector operands are the same length as the mask.
2152 static bool isReverseMask(ArrayRef<int> Mask);
2153 static bool isReverseMask(const Constant *Mask) {
2154 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2154, __PRETTY_FUNCTION__))
;
2155 SmallVector<int, 16> MaskAsInts;
2156 getShuffleMask(Mask, MaskAsInts);
2157 return isReverseMask(MaskAsInts);
2158 }
2159
2160 /// Return true if this shuffle swaps the order of elements from exactly
2161 /// one source vector.
2162 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2163 /// TODO: Optionally allow length-changing shuffles.
2164 bool isReverse() const {
2165 return !changesLength() && isReverseMask(ShuffleMask);
2166 }
2167
2168 /// Return true if this shuffle mask chooses all elements with the same value
2169 /// as the first element of exactly one source vector.
2170 /// Example: <4,undef,undef,4>
2171 /// This assumes that vector operands are the same length as the mask.
2172 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2173 static bool isZeroEltSplatMask(const Constant *Mask) {
2174 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2174, __PRETTY_FUNCTION__))
;
2175 SmallVector<int, 16> MaskAsInts;
2176 getShuffleMask(Mask, MaskAsInts);
2177 return isZeroEltSplatMask(MaskAsInts);
2178 }
2179
2180 /// Return true if all elements of this shuffle are the same value as the
2181 /// first element of exactly one source vector without changing the length
2182 /// of that vector.
2183 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2184 /// TODO: Optionally allow length-changing shuffles.
2185 /// TODO: Optionally allow splats from other elements.
2186 bool isZeroEltSplat() const {
2187 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2188 }
2189
2190 /// Return true if this shuffle mask is a transpose mask.
2191 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2192 /// even- or odd-numbered vector elements from two n-dimensional source
2193 /// vectors and write each result into consecutive elements of an
2194 /// n-dimensional destination vector. Two shuffles are necessary to complete
2195 /// the transpose, one for the even elements and another for the odd elements.
2196 /// This description closely follows how the TRN1 and TRN2 AArch64
2197 /// instructions operate.
2198 ///
2199 /// For example, a simple 2x2 matrix can be transposed with:
2200 ///
2201 /// ; Original matrix
2202 /// m0 = < a, b >
2203 /// m1 = < c, d >
2204 ///
2205 /// ; Transposed matrix
2206 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2207 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2208 ///
2209 /// For matrices having greater than n columns, the resulting nx2 transposed
2210 /// matrix is stored in two result vectors such that one vector contains
2211 /// interleaved elements from all the even-numbered rows and the other vector
2212 /// contains interleaved elements from all the odd-numbered rows. For example,
2213 /// a 2x4 matrix can be transposed with:
2214 ///
2215 /// ; Original matrix
2216 /// m0 = < a, b, c, d >
2217 /// m1 = < e, f, g, h >
2218 ///
2219 /// ; Transposed matrix
2220 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2221 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2222 static bool isTransposeMask(ArrayRef<int> Mask);
2223 static bool isTransposeMask(const Constant *Mask) {
2224 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2224, __PRETTY_FUNCTION__))
;
2225 SmallVector<int, 16> MaskAsInts;
2226 getShuffleMask(Mask, MaskAsInts);
2227 return isTransposeMask(MaskAsInts);
2228 }
2229
2230 /// Return true if this shuffle transposes the elements of its inputs without
2231 /// changing the length of the vectors. This operation may also be known as a
2232 /// merge or interleave. See the description for isTransposeMask() for the
2233 /// exact specification.
2234 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2235 bool isTranspose() const {
2236 return !changesLength() && isTransposeMask(ShuffleMask);
2237 }
2238
2239 /// Return true if this shuffle mask is an extract subvector mask.
2240 /// A valid extract subvector mask returns a smaller vector from a single
2241 /// source operand. The base extraction index is returned as well.
2242 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2243 int &Index);
2244 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2245 int &Index) {
2246 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2246, __PRETTY_FUNCTION__))
;
2247 SmallVector<int, 16> MaskAsInts;
2248 getShuffleMask(Mask, MaskAsInts);
2249 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2250 }
2251
2252 /// Return true if this shuffle mask is an extract subvector mask.
2253 bool isExtractSubvectorMask(int &Index) const {
2254 int NumSrcElts =
2255 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2256 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2257 }
2258
2259 /// Change values in a shuffle permute mask assuming the two vector operands
2260 /// of length InVecNumElts have swapped position.
2261 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2262 unsigned InVecNumElts) {
2263 for (int &Idx : Mask) {
2264 if (Idx == -1)
2265 continue;
2266 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2267 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2268, __PRETTY_FUNCTION__))
2268 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2268, __PRETTY_FUNCTION__))
;
2269 }
2270 }
2271
2272 // Methods for support type inquiry through isa, cast, and dyn_cast:
2273 static bool classof(const Instruction *I) {
2274 return I->getOpcode() == Instruction::ShuffleVector;
2275 }
2276 static bool classof(const Value *V) {
2277 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2278 }
2279};
2280
2281template <>
2282struct OperandTraits<ShuffleVectorInst>
2283 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2284
2285DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2285, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2285, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2286
2287//===----------------------------------------------------------------------===//
2288// ExtractValueInst Class
2289//===----------------------------------------------------------------------===//
2290
2291/// This instruction extracts a struct member or array
2292/// element value from an aggregate value.
2293///
2294class ExtractValueInst : public UnaryInstruction {
2295 SmallVector<unsigned, 4> Indices;
2296
2297 ExtractValueInst(const ExtractValueInst &EVI);
2298
2299 /// Constructors - Create a extractvalue instruction with a base aggregate
2300 /// value and a list of indices. The first ctor can optionally insert before
2301 /// an existing instruction, the second appends the new instruction to the
2302 /// specified BasicBlock.
2303 inline ExtractValueInst(Value *Agg,
2304 ArrayRef<unsigned> Idxs,
2305 const Twine &NameStr,
2306 Instruction *InsertBefore);
2307 inline ExtractValueInst(Value *Agg,
2308 ArrayRef<unsigned> Idxs,
2309 const Twine &NameStr, BasicBlock *InsertAtEnd);
2310
2311 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2312
2313protected:
2314 // Note: Instruction needs to be a friend here to call cloneImpl.
2315 friend class Instruction;
2316
2317 ExtractValueInst *cloneImpl() const;
2318
2319public:
2320 static ExtractValueInst *Create(Value *Agg,
2321 ArrayRef<unsigned> Idxs,
2322 const Twine &NameStr = "",
2323 Instruction *InsertBefore = nullptr) {
2324 return new
2325 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2326 }
2327
2328 static ExtractValueInst *Create(Value *Agg,
2329 ArrayRef<unsigned> Idxs,
2330 const Twine &NameStr,
2331 BasicBlock *InsertAtEnd) {
2332 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2333 }
2334
2335 /// Returns the type of the element that would be extracted
2336 /// with an extractvalue instruction with the specified parameters.
2337 ///
2338 /// Null is returned if the indices are invalid for the specified type.
2339 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2340
2341 using idx_iterator = const unsigned*;
2342
2343 inline idx_iterator idx_begin() const { return Indices.begin(); }
2344 inline idx_iterator idx_end() const { return Indices.end(); }
2345 inline iterator_range<idx_iterator> indices() const {
2346 return make_range(idx_begin(), idx_end());
2347 }
2348
2349 Value *getAggregateOperand() {
2350 return getOperand(0);
2351 }
2352 const Value *getAggregateOperand() const {
2353 return getOperand(0);
2354 }
2355 static unsigned getAggregateOperandIndex() {
2356 return 0U; // get index for modifying correct operand
2357 }
2358
2359 ArrayRef<unsigned> getIndices() const {
2360 return Indices;
2361 }
2362
2363 unsigned getNumIndices() const {
2364 return (unsigned)Indices.size();
2365 }
2366
2367 bool hasIndices() const {
2368 return true;
2369 }
2370
2371 // Methods for support type inquiry through isa, cast, and dyn_cast:
2372 static bool classof(const Instruction *I) {
2373 return I->getOpcode() == Instruction::ExtractValue;
2374 }
2375 static bool classof(const Value *V) {
2376 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2377 }
2378};
2379
2380ExtractValueInst::ExtractValueInst(Value *Agg,
2381 ArrayRef<unsigned> Idxs,
2382 const Twine &NameStr,
2383 Instruction *InsertBefore)
2384 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2385 ExtractValue, Agg, InsertBefore) {
2386 init(Idxs, NameStr);
2387}
2388
2389ExtractValueInst::ExtractValueInst(Value *Agg,
2390 ArrayRef<unsigned> Idxs,
2391 const Twine &NameStr,
2392 BasicBlock *InsertAtEnd)
2393 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2394 ExtractValue, Agg, InsertAtEnd) {
2395 init(Idxs, NameStr);
2396}
2397
2398//===----------------------------------------------------------------------===//
2399// InsertValueInst Class
2400//===----------------------------------------------------------------------===//
2401
2402/// This instruction inserts a struct field of array element
2403/// value into an aggregate value.
2404///
2405class InsertValueInst : public Instruction {
2406 SmallVector<unsigned, 4> Indices;
2407
2408 InsertValueInst(const InsertValueInst &IVI);
2409
2410 /// Constructors - Create a insertvalue instruction with a base aggregate
2411 /// value, a value to insert, and a list of indices. The first ctor can
2412 /// optionally insert before an existing instruction, the second appends
2413 /// the new instruction to the specified BasicBlock.
2414 inline InsertValueInst(Value *Agg, Value *Val,
2415 ArrayRef<unsigned> Idxs,
2416 const Twine &NameStr,
2417 Instruction *InsertBefore);
2418 inline InsertValueInst(Value *Agg, Value *Val,
2419 ArrayRef<unsigned> Idxs,
2420 const Twine &NameStr, BasicBlock *InsertAtEnd);
2421
2422 /// Constructors - These two constructors are convenience methods because one
2423 /// and two index insertvalue instructions are so common.
2424 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2425 const Twine &NameStr = "",
2426 Instruction *InsertBefore = nullptr);
2427 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2428 BasicBlock *InsertAtEnd);
2429
2430 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2431 const Twine &NameStr);
2432
2433protected:
2434 // Note: Instruction needs to be a friend here to call cloneImpl.
2435 friend class Instruction;
2436
2437 InsertValueInst *cloneImpl() const;
2438
2439public:
2440 // allocate space for exactly two operands
2441 void *operator new(size_t s) {
2442 return User::operator new(s, 2);
2443 }
2444
2445 static InsertValueInst *Create(Value *Agg, Value *Val,
2446 ArrayRef<unsigned> Idxs,
2447 const Twine &NameStr = "",
2448 Instruction *InsertBefore = nullptr) {
2449 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2450 }
2451
2452 static InsertValueInst *Create(Value *Agg, Value *Val,
2453 ArrayRef<unsigned> Idxs,
2454 const Twine &NameStr,
2455 BasicBlock *InsertAtEnd) {
2456 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2457 }
2458
2459 /// Transparently provide more efficient getOperand methods.
2460 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2461
2462 using idx_iterator = const unsigned*;
2463
2464 inline idx_iterator idx_begin() const { return Indices.begin(); }
2465 inline idx_iterator idx_end() const { return Indices.end(); }
2466 inline iterator_range<idx_iterator> indices() const {
2467 return make_range(idx_begin(), idx_end());
2468 }
2469
2470 Value *getAggregateOperand() {
2471 return getOperand(0);
2472 }
2473 const Value *getAggregateOperand() const {
2474 return getOperand(0);
2475 }
2476 static unsigned getAggregateOperandIndex() {
2477 return 0U; // get index for modifying correct operand
2478 }
2479
2480 Value *getInsertedValueOperand() {
2481 return getOperand(1);
2482 }
2483 const Value *getInsertedValueOperand() const {
2484 return getOperand(1);
2485 }
2486 static unsigned getInsertedValueOperandIndex() {
2487 return 1U; // get index for modifying correct operand
2488 }
2489
2490 ArrayRef<unsigned> getIndices() const {
2491 return Indices;
2492 }
2493
2494 unsigned getNumIndices() const {
2495 return (unsigned)Indices.size();
2496 }
2497
2498 bool hasIndices() const {
2499 return true;
2500 }
2501
2502 // Methods for support type inquiry through isa, cast, and dyn_cast:
2503 static bool classof(const Instruction *I) {
2504 return I->getOpcode() == Instruction::InsertValue;
2505 }
2506 static bool classof(const Value *V) {
2507 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2508 }
2509};
2510
2511template <>
2512struct OperandTraits<InsertValueInst> :
2513 public FixedNumOperandTraits<InsertValueInst, 2> {
2514};
2515
2516InsertValueInst::InsertValueInst(Value *Agg,
2517 Value *Val,
2518 ArrayRef<unsigned> Idxs,
2519 const Twine &NameStr,
2520 Instruction *InsertBefore)
2521 : Instruction(Agg->getType(), InsertValue,
2522 OperandTraits<InsertValueInst>::op_begin(this),
2523 2, InsertBefore) {
2524 init(Agg, Val, Idxs, NameStr);
2525}
2526
2527InsertValueInst::InsertValueInst(Value *Agg,
2528 Value *Val,
2529 ArrayRef<unsigned> Idxs,
2530 const Twine &NameStr,
2531 BasicBlock *InsertAtEnd)
2532 : Instruction(Agg->getType(), InsertValue,
2533 OperandTraits<InsertValueInst>::op_begin(this),
2534 2, InsertAtEnd) {
2535 init(Agg, Val, Idxs, NameStr);
2536}
2537
2538DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2538, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2538, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2539
2540//===----------------------------------------------------------------------===//
2541// PHINode Class
2542//===----------------------------------------------------------------------===//
2543
2544// PHINode - The PHINode class is used to represent the magical mystical PHI
2545// node, that can not exist in nature, but can be synthesized in a computer
2546// scientist's overactive imagination.
2547//
2548class PHINode : public Instruction {
2549 /// The number of operands actually allocated. NumOperands is
2550 /// the number actually in use.
2551 unsigned ReservedSpace;
2552
2553 PHINode(const PHINode &PN);
2554
2555 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2556 const Twine &NameStr = "",
2557 Instruction *InsertBefore = nullptr)
2558 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2559 ReservedSpace(NumReservedValues) {
2560 setName(NameStr);
2561 allocHungoffUses(ReservedSpace);
2562 }
2563
2564 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2565 BasicBlock *InsertAtEnd)
2566 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2567 ReservedSpace(NumReservedValues) {
2568 setName(NameStr);
2569 allocHungoffUses(ReservedSpace);
2570 }
2571
2572protected:
2573 // Note: Instruction needs to be a friend here to call cloneImpl.
2574 friend class Instruction;
2575
2576 PHINode *cloneImpl() const;
2577
2578 // allocHungoffUses - this is more complicated than the generic
2579 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2580 // values and pointers to the incoming blocks, all in one allocation.
2581 void allocHungoffUses(unsigned N) {
2582 User::allocHungoffUses(N, /* IsPhi */ true);
2583 }
2584
2585public:
2586 /// Constructors - NumReservedValues is a hint for the number of incoming
2587 /// edges that this phi node will have (use 0 if you really have no idea).
2588 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2589 const Twine &NameStr = "",
2590 Instruction *InsertBefore = nullptr) {
2591 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2592 }
2593
2594 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2595 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2596 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2597 }
2598
2599 /// Provide fast operand accessors
2600 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2601
2602 // Block iterator interface. This provides access to the list of incoming
2603 // basic blocks, which parallels the list of incoming values.
2604
2605 using block_iterator = BasicBlock **;
2606 using const_block_iterator = BasicBlock * const *;
2607
2608 block_iterator block_begin() {
2609 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2610 }
2611
2612 const_block_iterator block_begin() const {
2613 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2614 }
2615
2616 block_iterator block_end() {
2617 return block_begin() + getNumOperands();
2618 }
2619
2620 const_block_iterator block_end() const {
2621 return block_begin() + getNumOperands();
2622 }
2623
2624 iterator_range<block_iterator> blocks() {
2625 return make_range(block_begin(), block_end());
2626 }
2627
2628 iterator_range<const_block_iterator> blocks() const {
2629 return make_range(block_begin(), block_end());
2630 }
2631
2632 op_range incoming_values() { return operands(); }
2633
2634 const_op_range incoming_values() const { return operands(); }
2635
2636 /// Return the number of incoming edges
2637 ///
2638 unsigned getNumIncomingValues() const { return getNumOperands(); }
2639
2640 /// Return incoming value number x
2641 ///
2642 Value *getIncomingValue(unsigned i) const {
2643 return getOperand(i);
2644 }
2645 void setIncomingValue(unsigned i, Value *V) {
2646 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2646, __PRETTY_FUNCTION__))
;
2647 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2648, __PRETTY_FUNCTION__))
2648 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2648, __PRETTY_FUNCTION__))
;
2649 setOperand(i, V);
2650 }
2651
2652 static unsigned getOperandNumForIncomingValue(unsigned i) {
2653 return i;
2654 }
2655
2656 static unsigned getIncomingValueNumForOperand(unsigned i) {
2657 return i;
2658 }
2659
2660 /// Return incoming basic block number @p i.
2661 ///
2662 BasicBlock *getIncomingBlock(unsigned i) const {
2663 return block_begin()[i];
2664 }
2665
2666 /// Return incoming basic block corresponding
2667 /// to an operand of the PHI.
2668 ///
2669 BasicBlock *getIncomingBlock(const Use &U) const {
2670 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2670, __PRETTY_FUNCTION__))
;
2671 return getIncomingBlock(unsigned(&U - op_begin()));
2672 }
2673
2674 /// Return incoming basic block corresponding
2675 /// to value use iterator.
2676 ///
2677 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2678 return getIncomingBlock(I.getUse());
2679 }
2680
2681 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2682 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 block_begin()[i] = BB;
2684 }
2685
2686 /// Replace every incoming basic block \p Old to basic block \p New.
2687 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2688 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2688, __PRETTY_FUNCTION__))
;
2689 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2690 if (getIncomingBlock(Op) == Old)
2691 setIncomingBlock(Op, New);
2692 }
2693
2694 /// Add an incoming value to the end of the PHI list
2695 ///
2696 void addIncoming(Value *V, BasicBlock *BB) {
2697 if (getNumOperands() == ReservedSpace)
2698 growOperands(); // Get more space!
2699 // Initialize some new operands.
2700 setNumHungOffUseOperands(getNumOperands() + 1);
2701 setIncomingValue(getNumOperands() - 1, V);
2702 setIncomingBlock(getNumOperands() - 1, BB);
2703 }
2704
2705 /// Remove an incoming value. This is useful if a
2706 /// predecessor basic block is deleted. The value removed is returned.
2707 ///
2708 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2709 /// is true), the PHI node is destroyed and any uses of it are replaced with
2710 /// dummy values. The only time there should be zero incoming values to a PHI
2711 /// node is when the block is dead, so this strategy is sound.
2712 ///
2713 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2714
2715 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2716 int Idx = getBasicBlockIndex(BB);
2717 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2717, __PRETTY_FUNCTION__))
;
2718 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2719 }
2720
2721 /// Return the first index of the specified basic
2722 /// block in the value list for this PHI. Returns -1 if no instance.
2723 ///
2724 int getBasicBlockIndex(const BasicBlock *BB) const {
2725 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2726 if (block_begin()[i] == BB)
2727 return i;
2728 return -1;
2729 }
2730
2731 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2732 int Idx = getBasicBlockIndex(BB);
2733 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2733, __PRETTY_FUNCTION__))
;
2734 return getIncomingValue(Idx);
2735 }
2736
2737 /// Set every incoming value(s) for block \p BB to \p V.
2738 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2739 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2739, __PRETTY_FUNCTION__))
;
2740 bool Found = false;
2741 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2742 if (getIncomingBlock(Op) == BB) {
2743 Found = true;
2744 setIncomingValue(Op, V);
2745 }
2746 (void)Found;
2747 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2747, __PRETTY_FUNCTION__))
;
2748 }
2749
2750 /// If the specified PHI node always merges together the
2751 /// same value, return the value, otherwise return null.
2752 Value *hasConstantValue() const;
2753
2754 /// Whether the specified PHI node always merges
2755 /// together the same value, assuming undefs are equal to a unique
2756 /// non-undef value.
2757 bool hasConstantOrUndefValue() const;
2758
2759 /// If the PHI node is complete which means all of its parent's predecessors
2760 /// have incoming value in this PHI, return true, otherwise return false.
2761 bool isComplete() const {
2762 return llvm::all_of(predecessors(getParent()),
2763 [this](const BasicBlock *Pred) {
2764 return getBasicBlockIndex(Pred) >= 0;
2765 });
2766 }
2767
2768 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2769 static bool classof(const Instruction *I) {
2770 return I->getOpcode() == Instruction::PHI;
2771 }
2772 static bool classof(const Value *V) {
2773 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2774 }
2775
2776private:
2777 void growOperands();
2778};
2779
2780template <>
2781struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2782};
2783
2784DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2784, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2784, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2785
2786//===----------------------------------------------------------------------===//
2787// LandingPadInst Class
2788//===----------------------------------------------------------------------===//
2789
2790//===---------------------------------------------------------------------------
2791/// The landingpad instruction holds all of the information
2792/// necessary to generate correct exception handling. The landingpad instruction
2793/// cannot be moved from the top of a landing pad block, which itself is
2794/// accessible only from the 'unwind' edge of an invoke. This uses the
2795/// SubclassData field in Value to store whether or not the landingpad is a
2796/// cleanup.
2797///
2798class LandingPadInst : public Instruction {
2799 using CleanupField = BoolBitfieldElementT<0>;
2800
2801 /// The number of operands actually allocated. NumOperands is
2802 /// the number actually in use.
2803 unsigned ReservedSpace;
2804
2805 LandingPadInst(const LandingPadInst &LP);
2806
2807public:
2808 enum ClauseType { Catch, Filter };
2809
2810private:
2811 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2812 const Twine &NameStr, Instruction *InsertBefore);
2813 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2814 const Twine &NameStr, BasicBlock *InsertAtEnd);
2815
2816 // Allocate space for exactly zero operands.
2817 void *operator new(size_t s) {
2818 return User::operator new(s);
2819 }
2820
2821 void growOperands(unsigned Size);
2822 void init(unsigned NumReservedValues, const Twine &NameStr);
2823
2824protected:
2825 // Note: Instruction needs to be a friend here to call cloneImpl.
2826 friend class Instruction;
2827
2828 LandingPadInst *cloneImpl() const;
2829
2830public:
2831 /// Constructors - NumReservedClauses is a hint for the number of incoming
2832 /// clauses that this landingpad will have (use 0 if you really have no idea).
2833 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2834 const Twine &NameStr = "",
2835 Instruction *InsertBefore = nullptr);
2836 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2837 const Twine &NameStr, BasicBlock *InsertAtEnd);
2838
2839 /// Provide fast operand accessors
2840 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2841
2842 /// Return 'true' if this landingpad instruction is a
2843 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2844 /// doesn't catch the exception.
2845 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2846
2847 /// Indicate that this landingpad instruction is a cleanup.
2848 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2849
2850 /// Add a catch or filter clause to the landing pad.
2851 void addClause(Constant *ClauseVal);
2852
2853 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2854 /// determine what type of clause this is.
2855 Constant *getClause(unsigned Idx) const {
2856 return cast<Constant>(getOperandList()[Idx]);
2857 }
2858
2859 /// Return 'true' if the clause and index Idx is a catch clause.
2860 bool isCatch(unsigned Idx) const {
2861 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2862 }
2863
2864 /// Return 'true' if the clause and index Idx is a filter clause.
2865 bool isFilter(unsigned Idx) const {
2866 return isa<ArrayType>(getOperandList()[Idx]->getType());
2867 }
2868
2869 /// Get the number of clauses for this landing pad.
2870 unsigned getNumClauses() const { return getNumOperands(); }
2871
2872 /// Grow the size of the operand list to accommodate the new
2873 /// number of clauses.
2874 void reserveClauses(unsigned Size) { growOperands(Size); }
2875
2876 // Methods for support type inquiry through isa, cast, and dyn_cast:
2877 static bool classof(const Instruction *I) {
2878 return I->getOpcode() == Instruction::LandingPad;
2879 }
2880 static bool classof(const Value *V) {
2881 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2882 }
2883};
2884
2885template <>
2886struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2887};
2888
2889DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2889, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2889, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2890
2891//===----------------------------------------------------------------------===//
2892// ReturnInst Class
2893//===----------------------------------------------------------------------===//
2894
2895//===---------------------------------------------------------------------------
2896/// Return a value (possibly void), from a function. Execution
2897/// does not continue in this function any longer.
2898///
2899class ReturnInst : public Instruction {
2900 ReturnInst(const ReturnInst &RI);
2901
2902private:
2903 // ReturnInst constructors:
2904 // ReturnInst() - 'ret void' instruction
2905 // ReturnInst( null) - 'ret void' instruction
2906 // ReturnInst(Value* X) - 'ret X' instruction
2907 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2908 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2909 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2910 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2911 //
2912 // NOTE: If the Value* passed is of type void then the constructor behaves as
2913 // if it was passed NULL.
2914 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2915 Instruction *InsertBefore = nullptr);
2916 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2917 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2918
2919protected:
2920 // Note: Instruction needs to be a friend here to call cloneImpl.
2921 friend class Instruction;
2922
2923 ReturnInst *cloneImpl() const;
2924
2925public:
2926 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2927 Instruction *InsertBefore = nullptr) {
2928 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2929 }
2930
2931 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2932 BasicBlock *InsertAtEnd) {
2933 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2934 }
2935
2936 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2937 return new(0) ReturnInst(C, InsertAtEnd);
2938 }
2939
2940 /// Provide fast operand accessors
2941 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2942
2943 /// Convenience accessor. Returns null if there is no return value.
2944 Value *getReturnValue() const {
2945 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2946 }
2947
2948 unsigned getNumSuccessors() const { return 0; }
2949
2950 // Methods for support type inquiry through isa, cast, and dyn_cast:
2951 static bool classof(const Instruction *I) {
2952 return (I->getOpcode() == Instruction::Ret);
2953 }
2954 static bool classof(const Value *V) {
2955 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2956 }
2957
2958private:
2959 BasicBlock *getSuccessor(unsigned idx) const {
2960 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2960)
;
2961 }
2962
2963 void setSuccessor(unsigned idx, BasicBlock *B) {
2964 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2964)
;
2965 }
2966};
2967
2968template <>
2969struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2970};
2971
2972DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2972, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 2972, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2973
2974//===----------------------------------------------------------------------===//
2975// BranchInst Class
2976//===----------------------------------------------------------------------===//
2977
2978//===---------------------------------------------------------------------------
2979/// Conditional or Unconditional Branch instruction.
2980///
2981class BranchInst : public Instruction {
2982 /// Ops list - Branches are strange. The operands are ordered:
2983 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2984 /// they don't have to check for cond/uncond branchness. These are mostly
2985 /// accessed relative from op_end().
2986 BranchInst(const BranchInst &BI);
2987 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2988 // BranchInst(BB *B) - 'br B'
2989 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2990 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2991 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2992 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2993 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2994 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2995 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2996 Instruction *InsertBefore = nullptr);
2997 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2998 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2999 BasicBlock *InsertAtEnd);
3000
3001 void AssertOK();
3002
3003protected:
3004 // Note: Instruction needs to be a friend here to call cloneImpl.
3005 friend class Instruction;
3006
3007 BranchInst *cloneImpl() const;
3008
3009public:
3010 /// Iterator type that casts an operand to a basic block.
3011 ///
3012 /// This only makes sense because the successors are stored as adjacent
3013 /// operands for branch instructions.
3014 struct succ_op_iterator
3015 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3016 std::random_access_iterator_tag, BasicBlock *,
3017 ptrdiff_t, BasicBlock *, BasicBlock *> {
3018 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3019
3020 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3021 BasicBlock *operator->() const { return operator*(); }
3022 };
3023
3024 /// The const version of `succ_op_iterator`.
3025 struct const_succ_op_iterator
3026 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3027 std::random_access_iterator_tag,
3028 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3029 const BasicBlock *> {
3030 explicit const_succ_op_iterator(const_value_op_iterator I)
3031 : iterator_adaptor_base(I) {}
3032
3033 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3034 const BasicBlock *operator->() const { return operator*(); }
3035 };
3036
3037 static BranchInst *Create(BasicBlock *IfTrue,
3038 Instruction *InsertBefore = nullptr) {
3039 return new(1) BranchInst(IfTrue, InsertBefore);
3040 }
3041
3042 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3043 Value *Cond, Instruction *InsertBefore = nullptr) {
3044 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3045 }
3046
3047 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3048 return new(1) BranchInst(IfTrue, InsertAtEnd);
3049 }
3050
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3052 Value *Cond, BasicBlock *InsertAtEnd) {
3053 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3054 }
3055
3056 /// Transparently provide more efficient getOperand methods.
3057 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3058
3059 bool isUnconditional() const { return getNumOperands() == 1; }
3060 bool isConditional() const { return getNumOperands() == 3; }
3061
3062 Value *getCondition() const {
3063 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 3063, __PRETTY_FUNCTION__))
;
3064 return Op<-3>();
3065 }
3066
3067 void setCondition(Value *V) {
3068 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 3068, __PRETTY_FUNCTION__))
;
3069 Op<-3>() = V;
3070 }
3071
3072 unsigned getNumSuccessors() const { return 1+isConditional(); }
3073
3074 BasicBlock *getSuccessor(unsigned i) const {
3075 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 3075, __PRETTY_FUNCTION__))
;
3076 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3077 }
3078
3079 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3080 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/IR/Instructions.h"
, 3080, __PRETTY_FUNCTION__))
;
3081 *(&Op<-1>() - idx) = NewSucc;
3082 }
3083
3084 /// Swap the successors of this branch instruction.
3085 ///
3086 /// Swaps the successors of the branch instruction. This also swaps any
3087 /// branch weight metadata associated with the instruction so that it
3088 /// continues to map correctly to each operand.
3089 void swapSuccessors();
3090
3091 iterator_range<succ_op_iterator> successors() {
3092 return make_range(
3093 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3094 succ_op_iterator(value_op_end()));
3095 }
3096
3097 iterator_range<const_succ_op_iterator> successors() const {
3098 return make_range(const_succ_op_iterator(
3099 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3100 const_succ_op_iterator(value_op_end()));
3101 }
3102
3103 // Methods for support type inquiry through isa, cast, and dyn_cast: