Bug Summary

File:lib/Transforms/Scalar/LICM.cpp
Warning:line 1164, column 41
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp

/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp

1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// This pass uses alias analysis for two purposes:
16//
17// 1. Moving loop invariant loads and calls out of loops. If we can determine
18// that a load or call inside of a loop never aliases anything stored to,
19// we can hoist it or sink it like any other instruction.
20// 2. Scalar Promotion of Memory - If there is a store instruction inside of
21// the loop, we try to move the store to happen AFTER the loop instead of
22// inside of the loop. This can only happen if a few conditions are true:
23// A. The pointer stored through is loop invariant
24// B. There are no stores or loads in the loop which _may_ alias the
25// pointer. There are no calls in the loop which mod/ref the pointer.
26// If these conditions are true, we can promote the loads and stores in the
27// loop of the pointer to use a temporary alloca'd variable. We then use
28// the SSAUpdater to construct the appropriate SSA form for the value.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/Transforms/Scalar/LICM.h"
33#include "llvm/ADT/SetOperations.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/BasicAliasAnalysis.h"
38#include "llvm/Analysis/CaptureTracking.h"
39#include "llvm/Analysis/ConstantFolding.h"
40#include "llvm/Analysis/GlobalsModRef.h"
41#include "llvm/Analysis/GuardUtils.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/LoopIterator.h"
45#include "llvm/Analysis/LoopPass.h"
46#include "llvm/Analysis/MemoryBuiltins.h"
47#include "llvm/Analysis/MemorySSA.h"
48#include "llvm/Analysis/MemorySSAUpdater.h"
49#include "llvm/Analysis/OptimizationRemarkEmitter.h"
50#include "llvm/Analysis/ScalarEvolution.h"
51#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52#include "llvm/Analysis/TargetLibraryInfo.h"
53#include "llvm/Analysis/ValueTracking.h"
54#include "llvm/IR/CFG.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DebugInfoMetadata.h"
58#include "llvm/IR/DerivedTypes.h"
59#include "llvm/IR/Dominators.h"
60#include "llvm/IR/Instructions.h"
61#include "llvm/IR/IntrinsicInst.h"
62#include "llvm/IR/LLVMContext.h"
63#include "llvm/IR/Metadata.h"
64#include "llvm/IR/PatternMatch.h"
65#include "llvm/IR/PredIteratorCache.h"
66#include "llvm/Support/CommandLine.h"
67#include "llvm/Support/Debug.h"
68#include "llvm/Support/raw_ostream.h"
69#include "llvm/Transforms/Scalar.h"
70#include "llvm/Transforms/Scalar/LoopPassManager.h"
71#include "llvm/Transforms/Utils/BasicBlockUtils.h"
72#include "llvm/Transforms/Utils/Local.h"
73#include "llvm/Transforms/Utils/LoopUtils.h"
74#include "llvm/Transforms/Utils/SSAUpdater.h"
75#include <algorithm>
76#include <utility>
77using namespace llvm;
78
79#define DEBUG_TYPE"licm" "licm"
80
81STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
82STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
83STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
84STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
85STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
86STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
87STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
88
89/// Memory promotion is enabled by default.
90static cl::opt<bool>
91 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
92 cl::desc("Disable memory promotion in LICM pass"));
93
94static cl::opt<bool> ControlFlowHoisting(
95 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
96 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
97
98static cl::opt<uint32_t> MaxNumUsesTraversed(
99 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
100 cl::desc("Max num uses visited for identifying load "
101 "invariance in loop using invariant start (default = 8)"));
102
103// Default value of zero implies we use the regular alias set tracker mechanism
104// instead of the cross product using AA to identify aliasing of the memory
105// location we are interested in.
106static cl::opt<int>
107LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
108 cl::desc("How many instruction to cross product using AA"));
109
110// Experimental option to allow imprecision in LICM in pathological cases, in
111// exchange for faster compile. This is to be removed if MemorySSA starts to
112// address the same issue. This flag applies only when LICM uses MemorySSA
113// instead on AliasSetTracker. LICM calls MemorySSAWalker's
114// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
115// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
116// which may not be precise, since optimizeUses is capped. The result is
117// correct, but we may not get as "far up" as possible to get which access is
118// clobbering the one queried.
119cl::opt<unsigned> llvm::SetLicmMssaOptCap(
120 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
121 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
122 "for faster compile. Caps the MemorySSA clobbering calls."));
123
124// Experimentally, memory promotion carries less importance than sinking and
125// hoisting. Limit when we do promotion when using MemorySSA, in order to save
126// compile time.
127cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
128 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
129 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
130 "effect. When MSSA in LICM is enabled, then this is the maximum "
131 "number of accesses allowed to be present in a loop in order to "
132 "enable memory promotion."));
133
134static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
135static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
136 const LoopSafetyInfo *SafetyInfo,
137 TargetTransformInfo *TTI, bool &FreeInLoop);
138static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
139 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
140 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
141static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
142 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
143 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
144static bool isSafeToExecuteUnconditionally(Instruction &Inst,
145 const DominatorTree *DT,
146 const Loop *CurLoop,
147 const LoopSafetyInfo *SafetyInfo,
148 OptimizationRemarkEmitter *ORE,
149 const Instruction *CtxI = nullptr);
150static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
151 AliasSetTracker *CurAST, Loop *CurLoop,
152 AliasAnalysis *AA);
153static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
154 Loop *CurLoop,
155 SinkAndHoistLICMFlags &Flags);
156static Instruction *CloneInstructionInExitBlock(
157 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
158 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
159
160static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
161 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
162
163static void moveInstructionBefore(Instruction &I, Instruction &Dest,
164 ICFLoopSafetyInfo &SafetyInfo,
165 MemorySSAUpdater *MSSAU);
166
167namespace {
168struct LoopInvariantCodeMotion {
169 using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
170 bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
171 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
172 ScalarEvolution *SE, MemorySSA *MSSA,
173 OptimizationRemarkEmitter *ORE, bool DeleteAST);
174
175 ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
176 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
177 unsigned LicmMssaNoAccForPromotionCap)
178 : LicmMssaOptCap(LicmMssaOptCap),
179 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
180
181private:
182 ASTrackerMapTy LoopToAliasSetMap;
183 unsigned LicmMssaOptCap;
184 unsigned LicmMssaNoAccForPromotionCap;
185
186 std::unique_ptr<AliasSetTracker>
187 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
188 std::unique_ptr<AliasSetTracker>
189 collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
190 MemorySSAUpdater *MSSAU);
191};
192
193struct LegacyLICMPass : public LoopPass {
194 static char ID; // Pass identification, replacement for typeid
195 LegacyLICMPass(
196 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
197 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
198 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
199 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
200 }
201
202 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
203 if (skipLoop(L)) {
204 // If we have run LICM on a previous loop but now we are skipping
205 // (because we've hit the opt-bisect limit), we need to clear the
206 // loop alias information.
207 LICM.getLoopToAliasSetMap().clear();
208 return false;
209 }
210
211 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
212 MemorySSA *MSSA = EnableMSSALoopDependency
213 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
214 : nullptr;
215 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
216 // pass. Function analyses need to be preserved across loop transformations
217 // but ORE cannot be preserved (see comment before the pass definition).
218 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
219 return LICM.runOnLoop(L,
220 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
221 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
222 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
223 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
224 *L->getHeader()->getParent()),
225 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
226 *L->getHeader()->getParent()),
227 SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
228 }
229
230 /// This transformation requires natural loop information & requires that
231 /// loop preheaders be inserted into the CFG...
232 ///
233 void getAnalysisUsage(AnalysisUsage &AU) const override {
234 AU.addPreserved<DominatorTreeWrapperPass>();
235 AU.addPreserved<LoopInfoWrapperPass>();
236 AU.addRequired<TargetLibraryInfoWrapperPass>();
237 if (EnableMSSALoopDependency) {
238 AU.addRequired<MemorySSAWrapperPass>();
239 AU.addPreserved<MemorySSAWrapperPass>();
240 }
241 AU.addRequired<TargetTransformInfoWrapperPass>();
242 getLoopAnalysisUsage(AU);
243 }
244
245 using llvm::Pass::doFinalization;
246
247 bool doFinalization() override {
248 auto &AliasSetMap = LICM.getLoopToAliasSetMap();
249 // All loops in the AliasSetMap should be cleaned up already. The only case
250 // where we fail to do so is if an outer loop gets deleted before LICM
251 // visits it.
252 assert(all_of(AliasSetMap,((all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy
::value_type &KV) { return !KV.first->getParentLoop();
}) && "Didn't free loop alias sets") ? static_cast<
void> (0) : __assert_fail ("all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { return !KV.first->getParentLoop(); }) && \"Didn't free loop alias sets\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 256, __PRETTY_FUNCTION__))
253 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {((all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy
::value_type &KV) { return !KV.first->getParentLoop();
}) && "Didn't free loop alias sets") ? static_cast<
void> (0) : __assert_fail ("all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { return !KV.first->getParentLoop(); }) && \"Didn't free loop alias sets\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 256, __PRETTY_FUNCTION__))
254 return !KV.first->getParentLoop();((all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy
::value_type &KV) { return !KV.first->getParentLoop();
}) && "Didn't free loop alias sets") ? static_cast<
void> (0) : __assert_fail ("all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { return !KV.first->getParentLoop(); }) && \"Didn't free loop alias sets\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 256, __PRETTY_FUNCTION__))
255 }) &&((all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy
::value_type &KV) { return !KV.first->getParentLoop();
}) && "Didn't free loop alias sets") ? static_cast<
void> (0) : __assert_fail ("all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { return !KV.first->getParentLoop(); }) && \"Didn't free loop alias sets\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 256, __PRETTY_FUNCTION__))
256 "Didn't free loop alias sets")((all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy
::value_type &KV) { return !KV.first->getParentLoop();
}) && "Didn't free loop alias sets") ? static_cast<
void> (0) : __assert_fail ("all_of(AliasSetMap, [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { return !KV.first->getParentLoop(); }) && \"Didn't free loop alias sets\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 256, __PRETTY_FUNCTION__))
;
257 AliasSetMap.clear();
258 return false;
259 }
260
261private:
262 LoopInvariantCodeMotion LICM;
263
264 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
265 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
266 Loop *L) override;
267
268 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
269 /// set.
270 void deleteAnalysisValue(Value *V, Loop *L) override;
271
272 /// Simple Analysis hook. Delete loop L from alias set map.
273 void deleteAnalysisLoop(Loop *L) override;
274};
275} // namespace
276
277PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
278 LoopStandardAnalysisResults &AR, LPMUpdater &) {
279 const auto &FAM =
280 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
281 Function *F = L.getHeader()->getParent();
282
283 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
284 // FIXME: This should probably be optional rather than required.
285 if (!ORE)
286 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
287 "cached at a higher level");
288
289 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
290 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
291 AR.MSSA, ORE, true))
292 return PreservedAnalyses::all();
293
294 auto PA = getLoopPassPreservedAnalyses();
295
296 PA.preserve<DominatorTreeAnalysis>();
297 PA.preserve<LoopAnalysis>();
298 if (AR.MSSA)
299 PA.preserve<MemorySSAAnalysis>();
300
301 return PA;
302}
303
304char LegacyLICMPass::ID = 0;
305INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
306 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
307INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
308INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
309INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
310INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
311INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
312 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
313
314Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
315Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
316 unsigned LicmMssaNoAccForPromotionCap) {
317 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
318}
319
320/// Hoist expressions out of the specified loop. Note, alias info for inner
321/// loop is not preserved so it is not a good idea to run LICM multiple
322/// times on one loop.
323/// We should delete AST for inner loops in the new pass manager to avoid
324/// memory leak.
325///
326bool LoopInvariantCodeMotion::runOnLoop(
327 Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
328 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
329 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
330 bool Changed = false;
331
332 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 332, __PRETTY_FUNCTION__))
;
333
334 // If this loop has metadata indicating that LICM is not to be performed then
335 // just exit.
336 if (hasDisableLICMTransformsHint(L)) {
337 return false;
338 }
339
340 std::unique_ptr<AliasSetTracker> CurAST;
341 std::unique_ptr<MemorySSAUpdater> MSSAU;
342 bool NoOfMemAccTooLarge = false;
343 unsigned LicmMssaOptCounter = 0;
344
345 if (!MSSA) {
346 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using Alias Set Tracker.\n"
; } } while (false)
;
347 CurAST = collectAliasInfoForLoop(L, LI, AA);
348 } else {
349 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using MemorySSA.\n"; } } while
(false)
;
350 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
351
352 unsigned AccessCapCount = 0;
353 for (auto *BB : L->getBlocks()) {
354 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
355 for (const auto &MA : *Accesses) {
356 (void)MA;
357 AccessCapCount++;
358 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
359 NoOfMemAccTooLarge = true;
360 break;
361 }
362 }
363 }
364 if (NoOfMemAccTooLarge)
365 break;
366 }
367 }
368
369 // Get the preheader block to move instructions into...
370 BasicBlock *Preheader = L->getLoopPreheader();
371
372 // Compute loop safety information.
373 ICFLoopSafetyInfo SafetyInfo(DT);
374 SafetyInfo.computeLoopSafetyInfo(L);
375
376 // We want to visit all of the instructions in this loop... that are not parts
377 // of our subloops (they have already had their invariants hoisted out of
378 // their loop, into this loop, so there is no need to process the BODIES of
379 // the subloops).
380 //
381 // Traverse the body of the loop in depth first order on the dominator tree so
382 // that we are guaranteed to see definitions before we see uses. This allows
383 // us to sink instructions in one pass, without iteration. After sinking
384 // instructions, we perform another pass to hoist them out of the loop.
385 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
386 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
387 /*IsSink=*/true};
388 if (L->hasDedicatedExits())
389 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
390 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
391 Flags.IsSink = false;
392 if (Preheader)
393 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
394 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
395
396 // Now that all loop invariants have been removed from the loop, promote any
397 // memory references to scalars that we can.
398 // Don't sink stores from loops without dedicated block exits. Exits
399 // containing indirect branches are not transformed by loop simplify,
400 // make sure we catch that. An additional load may be generated in the
401 // preheader for SSA updater, so also avoid sinking when no preheader
402 // is available.
403 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
404 !NoOfMemAccTooLarge) {
405 // Figure out the loop exits and their insertion points
406 SmallVector<BasicBlock *, 8> ExitBlocks;
407 L->getUniqueExitBlocks(ExitBlocks);
408
409 // We can't insert into a catchswitch.
410 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
411 return isa<CatchSwitchInst>(Exit->getTerminator());
412 });
413
414 if (!HasCatchSwitch) {
415 SmallVector<Instruction *, 8> InsertPts;
416 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
417 InsertPts.reserve(ExitBlocks.size());
418 if (MSSAU)
419 MSSAInsertPts.reserve(ExitBlocks.size());
420 for (BasicBlock *ExitBlock : ExitBlocks) {
421 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
422 if (MSSAU)
423 MSSAInsertPts.push_back(nullptr);
424 }
425
426 PredIteratorCache PIC;
427
428 bool Promoted = false;
429
430 // Build an AST using MSSA.
431 if (!CurAST.get())
432 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
433
434 // Loop over all of the alias sets in the tracker object.
435 for (AliasSet &AS : *CurAST) {
436 // We can promote this alias set if it has a store, if it is a "Must"
437 // alias set, if the pointer is loop invariant, and if we are not
438 // eliminating any volatile loads or stores.
439 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
440 !L->isLoopInvariant(AS.begin()->getValue()))
441 continue;
442
443 assert(((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 445, __PRETTY_FUNCTION__))
444 !AS.empty() &&((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 445, __PRETTY_FUNCTION__))
445 "Must alias set should have at least one pointer element in it!")((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 445, __PRETTY_FUNCTION__))
;
446
447 SmallSetVector<Value *, 8> PointerMustAliases;
448 for (const auto &ASI : AS)
449 PointerMustAliases.insert(ASI.getValue());
450
451 Promoted |= promoteLoopAccessesToScalars(
452 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
453 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
454 }
455
456 // Once we have promoted values across the loop body we have to
457 // recursively reform LCSSA as any nested loop may now have values defined
458 // within the loop used in the outer loop.
459 // FIXME: This is really heavy handed. It would be a bit better to use an
460 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
461 // it as it went.
462 if (Promoted)
463 formLCSSARecursively(*L, *DT, LI, SE);
464
465 Changed |= Promoted;
466 }
467 }
468
469 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
470 // specifically moving instructions across the loop boundary and so it is
471 // especially in need of sanity checking here.
472 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 472, __PRETTY_FUNCTION__))
;
473 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&(((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 474, __PRETTY_FUNCTION__))
474 "Parent loop not left in LCSSA form after LICM!")(((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 474, __PRETTY_FUNCTION__))
;
475
476 // If this loop is nested inside of another one, save the alias information
477 // for when we process the outer loop.
478 if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
479 LoopToAliasSetMap[L] = std::move(CurAST);
480
481 if (MSSAU.get() && VerifyMemorySSA)
482 MSSAU->getMemorySSA()->verifyMemorySSA();
483
484 if (Changed && SE)
485 SE->forgetLoopDispositions(L);
486 return Changed;
487}
488
489/// Walk the specified region of the CFG (defined by all blocks dominated by
490/// the specified block, and that are in the current loop) in reverse depth
491/// first order w.r.t the DominatorTree. This allows us to visit uses before
492/// definitions, allowing us to sink a loop body in one pass without iteration.
493///
494bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
495 DominatorTree *DT, TargetLibraryInfo *TLI,
496 TargetTransformInfo *TTI, Loop *CurLoop,
497 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
498 ICFLoopSafetyInfo *SafetyInfo,
499 SinkAndHoistLICMFlags &Flags,
500 OptimizationRemarkEmitter *ORE) {
501
502 // Verify inputs.
503 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 505, __PRETTY_FUNCTION__))
504 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 505, __PRETTY_FUNCTION__))
505 "Unexpected input to sinkRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 505, __PRETTY_FUNCTION__))
;
506 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 507, __PRETTY_FUNCTION__))
507 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 507, __PRETTY_FUNCTION__))
;
508
509 // We want to visit children before parents. We will enque all the parents
510 // before their children in the worklist and process the worklist in reverse
511 // order.
512 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
513
514 bool Changed = false;
515 for (DomTreeNode *DTN : reverse(Worklist)) {
516 BasicBlock *BB = DTN->getBlock();
517 // Only need to process the contents of this block if it is not part of a
518 // subloop (which would already have been processed).
519 if (inSubLoop(BB, CurLoop, LI))
520 continue;
521
522 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
523 Instruction &I = *--II;
524
525 // If the instruction is dead, we would try to sink it because it isn't
526 // used in the loop, instead, just delete it.
527 if (isInstructionTriviallyDead(&I, TLI)) {
528 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
529 salvageDebugInfo(I);
530 ++II;
531 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
532 Changed = true;
533 continue;
534 }
535
536 // Check to see if we can sink this instruction to the exit blocks
537 // of the loop. We can do this if the all users of the instruction are
538 // outside of the loop. In this case, it doesn't even matter if the
539 // operands of the instruction are loop invariant.
540 //
541 bool FreeInLoop = false;
542 if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
543 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
544 ORE) &&
545 !I.mayHaveSideEffects()) {
546 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
547 if (!FreeInLoop) {
548 ++II;
549 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
550 }
551 Changed = true;
552 }
553 }
554 }
555 }
556 if (MSSAU && VerifyMemorySSA)
557 MSSAU->getMemorySSA()->verifyMemorySSA();
558 return Changed;
559}
560
561namespace {
562// This is a helper class for hoistRegion to make it able to hoist control flow
563// in order to be able to hoist phis. The way this works is that we initially
564// start hoisting to the loop preheader, and when we see a loop invariant branch
565// we make note of this. When we then come to hoist an instruction that's
566// conditional on such a branch we duplicate the branch and the relevant control
567// flow, then hoist the instruction into the block corresponding to its original
568// block in the duplicated control flow.
569class ControlFlowHoister {
570private:
571 // Information about the loop we are hoisting from
572 LoopInfo *LI;
573 DominatorTree *DT;
574 Loop *CurLoop;
575 MemorySSAUpdater *MSSAU;
576
577 // A map of blocks in the loop to the block their instructions will be hoisted
578 // to.
579 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
580
581 // The branches that we can hoist, mapped to the block that marks a
582 // convergence point of their control flow.
583 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
584
585public:
586 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
587 MemorySSAUpdater *MSSAU)
588 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
589
590 void registerPossiblyHoistableBranch(BranchInst *BI) {
591 // We can only hoist conditional branches with loop invariant operands.
592 if (!ControlFlowHoisting || !BI->isConditional() ||
593 !CurLoop->hasLoopInvariantOperands(BI))
594 return;
595
596 // The branch destinations need to be in the loop, and we don't gain
597 // anything by duplicating conditional branches with duplicate successors,
598 // as it's essentially the same as an unconditional branch.
599 BasicBlock *TrueDest = BI->getSuccessor(0);
600 BasicBlock *FalseDest = BI->getSuccessor(1);
601 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
602 TrueDest == FalseDest)
603 return;
604
605 // We can hoist BI if one branch destination is the successor of the other,
606 // or both have common successor which we check by seeing if the
607 // intersection of their successors is non-empty.
608 // TODO: This could be expanded to allowing branches where both ends
609 // eventually converge to a single block.
610 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
611 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
612 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
613 BasicBlock *CommonSucc = nullptr;
614 if (TrueDestSucc.count(FalseDest)) {
615 CommonSucc = FalseDest;
616 } else if (FalseDestSucc.count(TrueDest)) {
617 CommonSucc = TrueDest;
618 } else {
619 set_intersect(TrueDestSucc, FalseDestSucc);
620 // If there's one common successor use that.
621 if (TrueDestSucc.size() == 1)
622 CommonSucc = *TrueDestSucc.begin();
623 // If there's more than one pick whichever appears first in the block list
624 // (we can't use the value returned by TrueDestSucc.begin() as it's
625 // unpredicatable which element gets returned).
626 else if (!TrueDestSucc.empty()) {
627 Function *F = TrueDest->getParent();
628 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
629 auto It = std::find_if(F->begin(), F->end(), IsSucc);
630 assert(It != F->end() && "Could not find successor in function")((It != F->end() && "Could not find successor in function"
) ? static_cast<void> (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 630, __PRETTY_FUNCTION__))
;
631 CommonSucc = &*It;
632 }
633 }
634 // The common successor has to be dominated by the branch, as otherwise
635 // there will be some other path to the successor that will not be
636 // controlled by this branch so any phi we hoist would be controlled by the
637 // wrong condition. This also takes care of avoiding hoisting of loop back
638 // edges.
639 // TODO: In some cases this could be relaxed if the successor is dominated
640 // by another block that's been hoisted and we can guarantee that the
641 // control flow has been replicated exactly.
642 if (CommonSucc && DT->dominates(BI, CommonSucc))
643 HoistableBranches[BI] = CommonSucc;
644 }
645
646 bool canHoistPHI(PHINode *PN) {
647 // The phi must have loop invariant operands.
648 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
649 return false;
650 // We can hoist phis if the block they are in is the target of hoistable
651 // branches which cover all of the predecessors of the block.
652 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
653 BasicBlock *BB = PN->getParent();
654 for (BasicBlock *PredBB : predecessors(BB))
655 PredecessorBlocks.insert(PredBB);
656 // If we have less predecessor blocks than predecessors then the phi will
657 // have more than one incoming value for the same block which we can't
658 // handle.
659 // TODO: This could be handled be erasing some of the duplicate incoming
660 // values.
661 if (PredecessorBlocks.size() != pred_size(BB))
662 return false;
663 for (auto &Pair : HoistableBranches) {
664 if (Pair.second == BB) {
665 // Which blocks are predecessors via this branch depends on if the
666 // branch is triangle-like or diamond-like.
667 if (Pair.first->getSuccessor(0) == BB) {
668 PredecessorBlocks.erase(Pair.first->getParent());
669 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
670 } else if (Pair.first->getSuccessor(1) == BB) {
671 PredecessorBlocks.erase(Pair.first->getParent());
672 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
673 } else {
674 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
675 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
676 }
677 }
678 }
679 // PredecessorBlocks will now be empty if for every predecessor of BB we
680 // found a hoistable branch source.
681 return PredecessorBlocks.empty();
682 }
683
684 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
685 if (!ControlFlowHoisting)
686 return CurLoop->getLoopPreheader();
687 // If BB has already been hoisted, return that
688 if (HoistDestinationMap.count(BB))
689 return HoistDestinationMap[BB];
690
691 // Check if this block is conditional based on a pending branch
692 auto HasBBAsSuccessor =
693 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
694 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
695 Pair.first->getSuccessor(1) == BB);
696 };
697 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
698 HasBBAsSuccessor);
699
700 // If not involved in a pending branch, hoist to preheader
701 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
702 if (It == HoistableBranches.end()) {
703 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
704 << " as hoist destination for " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
705 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
;
706 HoistDestinationMap[BB] = InitialPreheader;
707 return InitialPreheader;
708 }
709 BranchInst *BI = It->first;
710 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 712, __PRETTY_FUNCTION__))
711 HoistableBranches.end() &&((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 712, __PRETTY_FUNCTION__))
712 "BB is expected to be the target of at most one branch")((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 712, __PRETTY_FUNCTION__))
;
713
714 LLVMContext &C = BB->getContext();
715 BasicBlock *TrueDest = BI->getSuccessor(0);
716 BasicBlock *FalseDest = BI->getSuccessor(1);
717 BasicBlock *CommonSucc = HoistableBranches[BI];
718 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
719
720 // Create hoisted versions of blocks that currently don't have them
721 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
722 if (HoistDestinationMap.count(Orig))
723 return HoistDestinationMap[Orig];
724 BasicBlock *New =
725 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
726 HoistDestinationMap[Orig] = New;
727 DT->addNewBlock(New, HoistTarget);
728 if (CurLoop->getParentLoop())
729 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
730 ++NumCreatedBlocks;
731 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
732 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
733 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
734 return New;
735 };
736 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
737 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
738 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
739
740 // Link up these blocks with branches.
741 if (!HoistCommonSucc->getTerminator()) {
742 // The new common successor we've generated will branch to whatever that
743 // hoist target branched to.
744 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
745 assert(TargetSucc && "Expected hoist target to have a single successor")((TargetSucc && "Expected hoist target to have a single successor"
) ? static_cast<void> (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 745, __PRETTY_FUNCTION__))
;
746 HoistCommonSucc->moveBefore(TargetSucc);
747 BranchInst::Create(TargetSucc, HoistCommonSucc);
748 }
749 if (!HoistTrueDest->getTerminator()) {
750 HoistTrueDest->moveBefore(HoistCommonSucc);
751 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
752 }
753 if (!HoistFalseDest->getTerminator()) {
754 HoistFalseDest->moveBefore(HoistCommonSucc);
755 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
756 }
757
758 // If BI is being cloned to what was originally the preheader then
759 // HoistCommonSucc will now be the new preheader.
760 if (HoistTarget == InitialPreheader) {
761 // Phis in the loop header now need to use the new preheader.
762 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
763 if (MSSAU)
764 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
765 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
766 // The new preheader dominates the loop header.
767 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
768 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
769 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
770 // The preheader hoist destination is now the new preheader, with the
771 // exception of the hoist destination of this branch.
772 for (auto &Pair : HoistDestinationMap)
773 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
774 Pair.second = HoistCommonSucc;
775 }
776
777 // Now finally clone BI.
778 ReplaceInstWithInst(
779 HoistTarget->getTerminator(),
780 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
781 ++NumClonedBranches;
782
783 assert(CurLoop->getLoopPreheader() &&((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 784, __PRETTY_FUNCTION__))
784 "Hoisting blocks should not have destroyed preheader")((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 784, __PRETTY_FUNCTION__))
;
785 return HoistDestinationMap[BB];
786 }
787};
788} // namespace
789
790/// Walk the specified region of the CFG (defined by all blocks dominated by
791/// the specified block, and that are in the current loop) in depth first
792/// order w.r.t the DominatorTree. This allows us to visit definitions before
793/// uses, allowing us to hoist a loop body in one pass without iteration.
794///
795bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
796 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
797 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
798 ICFLoopSafetyInfo *SafetyInfo,
799 SinkAndHoistLICMFlags &Flags,
800 OptimizationRemarkEmitter *ORE) {
801 // Verify inputs.
802 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 804, __PRETTY_FUNCTION__))
803 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 804, __PRETTY_FUNCTION__))
804 "Unexpected input to hoistRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 804, __PRETTY_FUNCTION__))
;
805 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 806, __PRETTY_FUNCTION__))
806 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 806, __PRETTY_FUNCTION__))
;
807
808 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
809
810 // Keep track of instructions that have been hoisted, as they may need to be
811 // re-hoisted if they end up not dominating all of their uses.
812 SmallVector<Instruction *, 16> HoistedInstructions;
813
814 // For PHI hoisting to work we need to hoist blocks before their successors.
815 // We can do this by iterating through the blocks in the loop in reverse
816 // post-order.
817 LoopBlocksRPO Worklist(CurLoop);
818 Worklist.perform(LI);
819 bool Changed = false;
820 for (BasicBlock *BB : Worklist) {
821 // Only need to process the contents of this block if it is not part of a
822 // subloop (which would already have been processed).
823 if (inSubLoop(BB, CurLoop, LI))
824 continue;
825
826 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
827 Instruction &I = *II++;
828 // Try constant folding this instruction. If all the operands are
829 // constants, it is technically hoistable, but it would be better to
830 // just fold it.
831 if (Constant *C = ConstantFoldInstruction(
832 &I, I.getModule()->getDataLayout(), TLI)) {
833 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
834 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
835 if (CurAST)
836 CurAST->copyValue(&I, C);
837 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
838 I.replaceAllUsesWith(C);
839 if (isInstructionTriviallyDead(&I, TLI))
840 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
841 Changed = true;
842 continue;
843 }
844
845 // Try hoisting the instruction out to the preheader. We can only do
846 // this if all of the operands of the instruction are loop invariant and
847 // if it is safe to hoist the instruction.
848 // TODO: It may be safe to hoist if we are hoisting to a conditional block
849 // and we have accurately duplicated the control flow from the loop header
850 // to that block.
851 if (CurLoop->hasLoopInvariantOperands(&I) &&
852 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
853 ORE) &&
854 isSafeToExecuteUnconditionally(
855 I, DT, CurLoop, SafetyInfo, ORE,
856 CurLoop->getLoopPreheader()->getTerminator())) {
857 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
858 MSSAU, ORE);
859 HoistedInstructions.push_back(&I);
860 Changed = true;
861 continue;
862 }
863
864 // Attempt to remove floating point division out of the loop by
865 // converting it to a reciprocal multiplication.
866 if (I.getOpcode() == Instruction::FDiv &&
867 CurLoop->isLoopInvariant(I.getOperand(1)) &&
868 I.hasAllowReciprocal()) {
869 auto Divisor = I.getOperand(1);
870 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
871 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
872 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
873 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
874 ReciprocalDivisor->insertBefore(&I);
875
876 auto Product =
877 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
878 Product->setFastMathFlags(I.getFastMathFlags());
879 SafetyInfo->insertInstructionTo(Product, I.getParent());
880 Product->insertAfter(&I);
881 I.replaceAllUsesWith(Product);
882 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
883
884 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
885 SafetyInfo, MSSAU, ORE);
886 HoistedInstructions.push_back(ReciprocalDivisor);
887 Changed = true;
888 continue;
889 }
890
891 auto IsInvariantStart = [&](Instruction &I) {
892 using namespace PatternMatch;
893 return I.use_empty() &&
894 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
895 };
896 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
897 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
898 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
899 };
900 if ((IsInvariantStart(I) || isGuard(&I)) &&
901 CurLoop->hasLoopInvariantOperands(&I) &&
902 MustExecuteWithoutWritesBefore(I)) {
903 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
904 MSSAU, ORE);
905 HoistedInstructions.push_back(&I);
906 Changed = true;
907 continue;
908 }
909
910 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
911 if (CFH.canHoistPHI(PN)) {
912 // Redirect incoming blocks first to ensure that we create hoisted
913 // versions of those blocks before we hoist the phi.
914 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
915 PN->setIncomingBlock(
916 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
917 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
918 MSSAU, ORE);
919 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((DT->dominates(PN, BB) && "Conditional PHIs not expected"
) ? static_cast<void> (0) : __assert_fail ("DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 919, __PRETTY_FUNCTION__))
;
920 Changed = true;
921 continue;
922 }
923 }
924
925 // Remember possibly hoistable branches so we can actually hoist them
926 // later if needed.
927 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
928 CFH.registerPossiblyHoistableBranch(BI);
929 }
930 }
931
932 // If we hoisted instructions to a conditional block they may not dominate
933 // their uses that weren't hoisted (such as phis where some operands are not
934 // loop invariant). If so make them unconditional by moving them to their
935 // immediate dominator. We iterate through the instructions in reverse order
936 // which ensures that when we rehoist an instruction we rehoist its operands,
937 // and also keep track of where in the block we are rehoisting to to make sure
938 // that we rehoist instructions before the instructions that use them.
939 Instruction *HoistPoint = nullptr;
940 if (ControlFlowHoisting) {
941 for (Instruction *I : reverse(HoistedInstructions)) {
942 if (!llvm::all_of(I->uses(),
943 [&](Use &U) { return DT->dominates(I, U); })) {
944 BasicBlock *Dominator =
945 DT->getNode(I->getParent())->getIDom()->getBlock();
946 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
947 if (HoistPoint)
948 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 949, __PRETTY_FUNCTION__))
949 "New hoist point expected to dominate old hoist point")((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 949, __PRETTY_FUNCTION__))
;
950 HoistPoint = Dominator->getTerminator();
951 }
952 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
953 << HoistPoint->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
954 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
;
955 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU);
956 HoistPoint = I;
957 Changed = true;
958 }
959 }
960 }
961 if (MSSAU && VerifyMemorySSA)
962 MSSAU->getMemorySSA()->verifyMemorySSA();
963
964 // Now that we've finished hoisting make sure that LI and DT are still
965 // valid.
966#ifdef EXPENSIVE_CHECKS
967 if (Changed) {
968 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 969, __PRETTY_FUNCTION__))
969 "Dominator tree verification failed")((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 969, __PRETTY_FUNCTION__))
;
970 LI->verify(*DT);
971 }
972#endif
973
974 return Changed;
975}
976
977// Return true if LI is invariant within scope of the loop. LI is invariant if
978// CurLoop is dominated by an invariant.start representing the same memory
979// location and size as the memory location LI loads from, and also the
980// invariant.start has no uses.
981static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
982 Loop *CurLoop) {
983 Value *Addr = LI->getOperand(0);
984 const DataLayout &DL = LI->getModule()->getDataLayout();
985 const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
986
987 // if the type is i8 addrspace(x)*, we know this is the type of
988 // llvm.invariant.start operand
989 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
990 LI->getPointerAddressSpace());
991 unsigned BitcastsVisited = 0;
992 // Look through bitcasts until we reach the i8* type (this is invariant.start
993 // operand type).
994 while (Addr->getType() != PtrInt8Ty) {
995 auto *BC = dyn_cast<BitCastInst>(Addr);
996 // Avoid traversing high number of bitcast uses.
997 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
998 return false;
999 Addr = BC->getOperand(0);
1000 }
1001
1002 unsigned UsesVisited = 0;
1003 // Traverse all uses of the load operand value, to see if invariant.start is
1004 // one of the uses, and whether it dominates the load instruction.
1005 for (auto *U : Addr->users()) {
1006 // Avoid traversing for Load operand with high number of users.
1007 if (++UsesVisited > MaxNumUsesTraversed)
1008 return false;
1009 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1010 // If there are escaping uses of invariant.start instruction, the load maybe
1011 // non-invariant.
1012 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1013 !II->use_empty())
1014 continue;
1015 unsigned InvariantSizeInBits =
1016 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
1017 // Confirm the invariant.start location size contains the load operand size
1018 // in bits. Also, the invariant.start should dominate the load, and we
1019 // should not hoist the load out of a loop that contains this dominating
1020 // invariant.start.
1021 if (LocSizeInBits <= InvariantSizeInBits &&
1022 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1023 return true;
1024 }
1025
1026 return false;
1027}
1028
1029namespace {
1030/// Return true if-and-only-if we know how to (mechanically) both hoist and
1031/// sink a given instruction out of a loop. Does not address legality
1032/// concerns such as aliasing or speculation safety.
1033bool isHoistableAndSinkableInst(Instruction &I) {
1034 // Only these instructions are hoistable/sinkable.
1035 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
2
Assuming 'I' is not a 'LoadInst'
3
Assuming 'I' is not a 'StoreInst'
4
Assuming 'I' is not a 'CallInst'
17
Returning the value 1, which participates in a condition later
1036 isa<FenceInst>(I) || isa<CastInst>(I) ||
5
Assuming 'I' is not a 'FenceInst'
6
Assuming 'I' is not a 'CastInst'
1037 isa<UnaryOperator>(I) || isa<BinaryOperator>(I) ||
7
Assuming 'I' is not a 'UnaryOperator'
8
Assuming 'I' is not a 'BinaryOperator'
1038 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
9
Assuming 'I' is not a 'SelectInst'
10
Assuming 'I' is not a 'GetElementPtrInst'
11
Assuming 'I' is not a 'CmpInst'
1039 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
12
Assuming 'I' is not a 'InsertElementInst'
13
Assuming 'I' is not a 'ExtractElementInst'
1040 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
14
Assuming 'I' is not a 'ShuffleVectorInst'
15
Assuming 'I' is not a 'ExtractValueInst'
1041 isa<InsertValueInst>(I));
16
Assuming 'I' is a 'InsertValueInst'
1042}
1043/// Return true if all of the alias sets within this AST are known not to
1044/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1045bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1046 const Loop *L) {
1047 if (CurAST) {
1048 for (AliasSet &AS : *CurAST) {
1049 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1050 return false;
1051 }
1052 }
1053 return true;
1054 } else { /*MSSAU*/
1055 for (auto *BB : L->getBlocks())
1056 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1057 return false;
1058 return true;
1059 }
1060}
1061
1062/// Return true if I is the only Instruction with a MemoryAccess in L.
1063bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1064 const MemorySSAUpdater *MSSAU) {
1065 for (auto *BB : L->getBlocks())
1066 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1067 int NotAPhi = 0;
1068 for (const auto &Acc : *Accs) {
1069 if (isa<MemoryPhi>(&Acc))
1070 continue;
1071 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1072 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1073 return false;
1074 }
1075 }
1076 return true;
1077}
1078}
1079
1080bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1081 Loop *CurLoop, AliasSetTracker *CurAST,
1082 MemorySSAUpdater *MSSAU,
1083 bool TargetExecutesOncePerLoop,
1084 SinkAndHoistLICMFlags *Flags,
1085 OptimizationRemarkEmitter *ORE) {
1086 // If we don't understand the instruction, bail early.
1087 if (!isHoistableAndSinkableInst(I))
1
Calling 'isHoistableAndSinkableInst'
18
Returning from 'isHoistableAndSinkableInst'
19
Taking false branch
1088 return false;
1089
1090 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
20
Assuming 'MSSAU' is null
21
'?' condition is false
22
'MSSA' initialized to a null pointer value
1091 if (MSSA
22.1
'MSSA' is null
22.1
'MSSA' is null
22.1
'MSSA' is null
22.1
'MSSA' is null
)
23
Taking false branch
1092 assert(Flags != nullptr && "Flags cannot be null.")((Flags != nullptr && "Flags cannot be null.") ? static_cast
<void> (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1092, __PRETTY_FUNCTION__))
;
1093
1094 // Loads have extra constraints we have to verify before we can hoist them.
1095 if (LoadInst *LI
24.1
'LI' is null
24.1
'LI' is null
24.1
'LI' is null
24.1
'LI' is null
= dyn_cast<LoadInst>(&I)) {
24
Assuming the object is not a 'LoadInst'
25
Taking false branch
1096 if (!LI->isUnordered())
1097 return false; // Don't sink/hoist volatile or ordered atomic loads!
1098
1099 // Loads from constant memory are always safe to move, even if they end up
1100 // in the same alias set as something that ends up being modified.
1101 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1102 return true;
1103 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1104 return true;
1105
1106 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1107 return false; // Don't risk duplicating unordered loads
1108
1109 // This checks for an invariant.start dominating the load.
1110 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1111 return true;
1112
1113 bool Invalidated;
1114 if (CurAST)
1115 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1116 CurLoop, AA);
1117 else
1118 Invalidated = pointerInvalidatedByLoopWithMSSA(
1119 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1120 // Check loop-invariant address because this may also be a sinkable load
1121 // whose address is not necessarily loop-invariant.
1122 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1123 ORE->emit([&]() {
1124 return OptimizationRemarkMissed(
1125 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1126 << "failed to move load with loop-invariant address "
1127 "because the loop may invalidate its value";
1128 });
1129
1130 return !Invalidated;
1131 } else if (CallInst *CI
26.1
'CI' is non-null
26.1
'CI' is non-null
26.1
'CI' is non-null
26.1
'CI' is non-null
= dyn_cast<CallInst>(&I)) {
26
Assuming the object is a 'CallInst'
27
Taking true branch
1132 // Don't sink or hoist dbg info; it's legal, but not useful.
1133 if (isa<DbgInfoIntrinsic>(I))
28
Assuming 'I' is not a 'DbgInfoIntrinsic'
29
Taking false branch
1134 return false;
1135
1136 // Don't sink calls which can throw.
1137 if (CI->mayThrow())
30
Assuming the condition is false
31
Taking false branch
1138 return false;
1139
1140 using namespace PatternMatch;
1141 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
32
Calling 'match<llvm::CallInst, llvm::PatternMatch::IntrinsicID_match>'
39
Returning from 'match<llvm::CallInst, llvm::PatternMatch::IntrinsicID_match>'
40
Taking false branch
1142 // Assumes don't actually alias anything or throw
1143 return true;
1144
1145 // Handle simple cases by querying alias analysis.
1146 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1147 if (Behavior == FMRB_DoesNotAccessMemory)
41
Assuming 'Behavior' is not equal to FMRB_DoesNotAccessMemory
42
Taking false branch
1148 return true;
1149 if (AliasAnalysis::onlyReadsMemory(Behavior)) {
43
Calling 'AAResults::onlyReadsMemory'
46
Returning from 'AAResults::onlyReadsMemory'
47
Taking true branch
1150 // A readonly argmemonly function only reads from memory pointed to by
1151 // it's arguments with arbitrary offsets. If we can prove there are no
1152 // writes to this memory in the loop, we can hoist or sink.
1153 if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
48
Calling 'AAResults::onlyAccessesArgPointees'
51
Returning from 'AAResults::onlyAccessesArgPointees'
52
Taking true branch
1154 // TODO: expand to writeable arguments
1155 for (Value *Op : CI->arg_operands())
53
Assuming '__begin5' is not equal to '__end5'
1156 if (Op->getType()->isPointerTy()) {
54
Calling 'Type::isPointerTy'
57
Returning from 'Type::isPointerTy'
58
Taking true branch
1157 bool Invalidated;
1158 if (CurAST)
59
Assuming 'CurAST' is null
60
Taking false branch
1159 Invalidated = pointerInvalidatedByLoop(
1160 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1161 CurAST, CurLoop, AA);
1162 else
1163 Invalidated = pointerInvalidatedByLoopWithMSSA(
1164 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
61
Called C++ object pointer is null
1165 *Flags);
1166 if (Invalidated)
1167 return false;
1168 }
1169 return true;
1170 }
1171
1172 // If this call only reads from memory and there are no writes to memory
1173 // in the loop, we can hoist or sink the call as appropriate.
1174 if (isReadOnly(CurAST, MSSAU, CurLoop))
1175 return true;
1176 }
1177
1178 // FIXME: This should use mod/ref information to see if we can hoist or
1179 // sink the call.
1180
1181 return false;
1182 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1183 // Fences alias (most) everything to provide ordering. For the moment,
1184 // just give up if there are any other memory operations in the loop.
1185 if (CurAST) {
1186 auto Begin = CurAST->begin();
1187 assert(Begin != CurAST->end() && "must contain FI")((Begin != CurAST->end() && "must contain FI") ? static_cast
<void> (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1187, __PRETTY_FUNCTION__))
;
1188 if (std::next(Begin) != CurAST->end())
1189 // constant memory for instance, TODO: handle better
1190 return false;
1191 auto *UniqueI = Begin->getUniqueInstruction();
1192 if (!UniqueI)
1193 // other memory op, give up
1194 return false;
1195 (void)FI; // suppress unused variable warning
1196 assert(UniqueI == FI && "AS must contain FI")((UniqueI == FI && "AS must contain FI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1196, __PRETTY_FUNCTION__))
;
1197 return true;
1198 } else // MSSAU
1199 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1200 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1201 if (!SI->isUnordered())
1202 return false; // Don't sink/hoist volatile or ordered atomic store!
1203
1204 // We can only hoist a store that we can prove writes a value which is not
1205 // read or overwritten within the loop. For those cases, we fallback to
1206 // load store promotion instead. TODO: We can extend this to cases where
1207 // there is exactly one write to the location and that write dominates an
1208 // arbitrary number of reads in the loop.
1209 if (CurAST) {
1210 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1211
1212 if (AS.isRef() || !AS.isMustAlias())
1213 // Quick exit test, handled by the full path below as well.
1214 return false;
1215 auto *UniqueI = AS.getUniqueInstruction();
1216 if (!UniqueI)
1217 // other memory op, give up
1218 return false;
1219 assert(UniqueI == SI && "AS must contain SI")((UniqueI == SI && "AS must contain SI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1219, __PRETTY_FUNCTION__))
;
1220 return true;
1221 } else { // MSSAU
1222 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1223 return true;
1224 // If there are more accesses than the Promotion cap, give up, we're not
1225 // walking a list that long.
1226 if (Flags->NoOfMemAccTooLarge)
1227 return false;
1228 // Check store only if there's still "quota" to check clobber.
1229 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1230 return false;
1231 // If there are interfering Uses (i.e. their defining access is in the
1232 // loop), or ordered loads (stored as Defs!), don't move this store.
1233 // Could do better here, but this is conservatively correct.
1234 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1235 // moving accesses. Can also extend to dominating uses.
1236 auto *SIMD = MSSA->getMemoryAccess(SI);
1237 for (auto *BB : CurLoop->getBlocks())
1238 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1239 for (const auto &MA : *Accesses)
1240 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1241 auto *MD = MU->getDefiningAccess();
1242 if (!MSSA->isLiveOnEntryDef(MD) &&
1243 CurLoop->contains(MD->getBlock()))
1244 return false;
1245 // Disable hoisting past potentially interfering loads. Optimized
1246 // Uses may point to an access outside the loop, as getClobbering
1247 // checks the previous iteration when walking the backedge.
1248 // FIXME: More precise: no Uses that alias SI.
1249 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1250 return false;
1251 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1252 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1253 (void)LI; // Silence warning.
1254 assert(!LI->isUnordered() && "Expected unordered load")((!LI->isUnordered() && "Expected unordered load")
? static_cast<void> (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1254, __PRETTY_FUNCTION__))
;
1255 return false;
1256 }
1257 // Any call, while it may not be clobbering SI, it may be a use.
1258 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1259 // Check if the call may read from the memory locattion written
1260 // to by SI. Check CI's attributes and arguments; the number of
1261 // such checks performed is limited above by NoOfMemAccTooLarge.
1262 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1263 if (isModOrRefSet(MRI))
1264 return false;
1265 }
1266 }
1267 }
1268
1269 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1270 Flags->LicmMssaOptCounter++;
1271 // If there are no clobbering Defs in the loop, store is safe to hoist.
1272 return MSSA->isLiveOnEntryDef(Source) ||
1273 !CurLoop->contains(Source->getBlock());
1274 }
1275 }
1276
1277 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((!I.mayReadOrWriteMemory() && "unhandled aliasing") ?
static_cast<void> (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1277, __PRETTY_FUNCTION__))
;
1278
1279 // We've established mechanical ability and aliasing, it's up to the caller
1280 // to check fault safety
1281 return true;
1282}
1283
1284/// Returns true if a PHINode is a trivially replaceable with an
1285/// Instruction.
1286/// This is true when all incoming values are that instruction.
1287/// This pattern occurs most often with LCSSA PHI nodes.
1288///
1289static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1290 for (const Value *IncValue : PN.incoming_values())
1291 if (IncValue != &I)
1292 return false;
1293
1294 return true;
1295}
1296
1297/// Return true if the instruction is free in the loop.
1298static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1299 const TargetTransformInfo *TTI) {
1300
1301 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1302 if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
1303 return false;
1304 // For a GEP, we cannot simply use getUserCost because currently it
1305 // optimistically assume that a GEP will fold into addressing mode
1306 // regardless of its users.
1307 const BasicBlock *BB = GEP->getParent();
1308 for (const User *U : GEP->users()) {
1309 const Instruction *UI = cast<Instruction>(U);
1310 if (CurLoop->contains(UI) &&
1311 (BB != UI->getParent() ||
1312 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1313 return false;
1314 }
1315 return true;
1316 } else
1317 return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
1318}
1319
1320/// Return true if the only users of this instruction are outside of
1321/// the loop. If this is true, we can sink the instruction to the exit
1322/// blocks of the loop.
1323///
1324/// We also return true if the instruction could be folded away in lowering.
1325/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1326static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1327 const LoopSafetyInfo *SafetyInfo,
1328 TargetTransformInfo *TTI, bool &FreeInLoop) {
1329 const auto &BlockColors = SafetyInfo->getBlockColors();
1330 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1331 for (const User *U : I.users()) {
1332 const Instruction *UI = cast<Instruction>(U);
1333 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1334 const BasicBlock *BB = PN->getParent();
1335 // We cannot sink uses in catchswitches.
1336 if (isa<CatchSwitchInst>(BB->getTerminator()))
1337 return false;
1338
1339 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1340 // phi use is too muddled.
1341 if (isa<CallInst>(I))
1342 if (!BlockColors.empty() &&
1343 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1344 return false;
1345 }
1346
1347 if (CurLoop->contains(UI)) {
1348 if (IsFree) {
1349 FreeInLoop = true;
1350 continue;
1351 }
1352 return false;
1353 }
1354 }
1355 return true;
1356}
1357
1358static Instruction *CloneInstructionInExitBlock(
1359 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1360 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1361 Instruction *New;
1362 if (auto *CI = dyn_cast<CallInst>(&I)) {
1363 const auto &BlockColors = SafetyInfo->getBlockColors();
1364
1365 // Sinking call-sites need to be handled differently from other
1366 // instructions. The cloned call-site needs a funclet bundle operand
1367 // appropriate for its location in the CFG.
1368 SmallVector<OperandBundleDef, 1> OpBundles;
1369 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1370 BundleIdx != BundleEnd; ++BundleIdx) {
1371 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1372 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1373 continue;
1374
1375 OpBundles.emplace_back(Bundle);
1376 }
1377
1378 if (!BlockColors.empty()) {
1379 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1380 assert(CV.size() == 1 && "non-unique color for exit block!")((CV.size() == 1 && "non-unique color for exit block!"
) ? static_cast<void> (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1380, __PRETTY_FUNCTION__))
;
1381 BasicBlock *BBColor = CV.front();
1382 Instruction *EHPad = BBColor->getFirstNonPHI();
1383 if (EHPad->isEHPad())
1384 OpBundles.emplace_back("funclet", EHPad);
1385 }
1386
1387 New = CallInst::Create(CI, OpBundles);
1388 } else {
1389 New = I.clone();
1390 }
1391
1392 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1393 if (!I.getName().empty())
1394 New->setName(I.getName() + ".le");
1395
1396 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1397 // Create a new MemoryAccess and let MemorySSA set its defining access.
1398 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1399 New, nullptr, New->getParent(), MemorySSA::Beginning);
1400 if (NewMemAcc) {
1401 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1402 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1403 else {
1404 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1405 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1406 }
1407 }
1408 }
1409
1410 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1411 // particularly cheap because we can rip off the PHI node that we're
1412 // replacing for the number and blocks of the predecessors.
1413 // OPT: If this shows up in a profile, we can instead finish sinking all
1414 // invariant instructions, and then walk their operands to re-establish
1415 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1416 // sinking bottom-up.
1417 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1418 ++OI)
1419 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1420 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1421 if (!OLoop->contains(&PN)) {
1422 PHINode *OpPN =
1423 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1424 OInst->getName() + ".lcssa", &ExitBlock.front());
1425 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1426 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1427 *OI = OpPN;
1428 }
1429 return New;
1430}
1431
1432static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1433 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1434 if (AST)
1435 AST->deleteValue(&I);
1436 if (MSSAU)
1437 MSSAU->removeMemoryAccess(&I);
1438 SafetyInfo.removeInstruction(&I);
1439 I.eraseFromParent();
1440}
1441
1442static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1443 ICFLoopSafetyInfo &SafetyInfo,
1444 MemorySSAUpdater *MSSAU) {
1445 SafetyInfo.removeInstruction(&I);
1446 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1447 I.moveBefore(&Dest);
1448 if (MSSAU)
1449 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1450 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1451 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End);
1452}
1453
1454static Instruction *sinkThroughTriviallyReplaceablePHI(
1455 PHINode *TPN, Instruction *I, LoopInfo *LI,
1456 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1457 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1458 MemorySSAUpdater *MSSAU) {
1459 assert(isTriviallyReplaceablePHI(*TPN, *I) &&((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1460, __PRETTY_FUNCTION__))
1460 "Expect only trivially replaceable PHI")((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1460, __PRETTY_FUNCTION__))
;
1461 BasicBlock *ExitBlock = TPN->getParent();
1462 Instruction *New;
1463 auto It = SunkCopies.find(ExitBlock);
1464 if (It != SunkCopies.end())
1465 New = It->second;
1466 else
1467 New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
1468 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1469 return New;
1470}
1471
1472static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1473 BasicBlock *BB = PN->getParent();
1474 if (!BB->canSplitPredecessors())
1475 return false;
1476 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1477 // it require updating BlockColors for all offspring blocks accordingly. By
1478 // skipping such corner case, we can make updating BlockColors after splitting
1479 // predecessor fairly simple.
1480 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1481 return false;
1482 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1483 BasicBlock *BBPred = *PI;
1484 if (isa<IndirectBrInst>(BBPred->getTerminator()))
1485 return false;
1486 }
1487 return true;
1488}
1489
1490static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1491 LoopInfo *LI, const Loop *CurLoop,
1492 LoopSafetyInfo *SafetyInfo,
1493 MemorySSAUpdater *MSSAU) {
1494#ifndef NDEBUG
1495 SmallVector<BasicBlock *, 32> ExitBlocks;
1496 CurLoop->getUniqueExitBlocks(ExitBlocks);
1497 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1498 ExitBlocks.end());
1499#endif
1500 BasicBlock *ExitBB = PN->getParent();
1501 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1501, __PRETTY_FUNCTION__))
;
1502
1503 // Split predecessors of the loop exit to make instructions in the loop are
1504 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1505 // loop in the canonical form where each predecessor of each exit block should
1506 // be contained within the loop. For example, this will convert the loop below
1507 // from
1508 //
1509 // LB1:
1510 // %v1 =
1511 // br %LE, %LB2
1512 // LB2:
1513 // %v2 =
1514 // br %LE, %LB1
1515 // LE:
1516 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1517 //
1518 // to
1519 //
1520 // LB1:
1521 // %v1 =
1522 // br %LE.split, %LB2
1523 // LB2:
1524 // %v2 =
1525 // br %LE.split2, %LB1
1526 // LE.split:
1527 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1528 // br %LE
1529 // LE.split2:
1530 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1531 // br %LE
1532 // LE:
1533 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1534 //
1535 const auto &BlockColors = SafetyInfo->getBlockColors();
1536 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1537 while (!PredBBs.empty()) {
1538 BasicBlock *PredBB = *PredBBs.begin();
1539 assert(CurLoop->contains(PredBB) &&((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1540, __PRETTY_FUNCTION__))
1540 "Expect all predecessors are in the loop")((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1540, __PRETTY_FUNCTION__))
;
1541 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1542 BasicBlock *NewPred = SplitBlockPredecessors(
1543 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1544 // Since we do not allow splitting EH-block with BlockColors in
1545 // canSplitPredecessors(), we can simply assign predecessor's color to
1546 // the new block.
1547 if (!BlockColors.empty())
1548 // Grab a reference to the ColorVector to be inserted before getting the
1549 // reference to the vector we are copying because inserting the new
1550 // element in BlockColors might cause the map to be reallocated.
1551 SafetyInfo->copyColors(NewPred, PredBB);
1552 }
1553 PredBBs.remove(PredBB);
1554 }
1555}
1556
1557/// When an instruction is found to only be used outside of the loop, this
1558/// function moves it to the exit blocks and patches up SSA form as needed.
1559/// This method is guaranteed to remove the original instruction from its
1560/// position, and may either delete it or move it to outside of the loop.
1561///
1562static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1563 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1564 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1565 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1566 ORE->emit([&]() {
1567 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1568 << "sinking " << ore::NV("Inst", &I);
1569 });
1570 bool Changed = false;
1571 if (isa<LoadInst>(I))
1572 ++NumMovedLoads;
1573 else if (isa<CallInst>(I))
1574 ++NumMovedCalls;
1575 ++NumSunk;
1576
1577 // Iterate over users to be ready for actual sinking. Replace users via
1578 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1579 SmallPtrSet<Instruction *, 8> VisitedUsers;
1580 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1581 auto *User = cast<Instruction>(*UI);
1582 Use &U = UI.getUse();
1583 ++UI;
1584
1585 if (VisitedUsers.count(User) || CurLoop->contains(User))
1586 continue;
1587
1588 if (!DT->isReachableFromEntry(User->getParent())) {
1589 U = UndefValue::get(I.getType());
1590 Changed = true;
1591 continue;
1592 }
1593
1594 // The user must be a PHI node.
1595 PHINode *PN = cast<PHINode>(User);
1596
1597 // Surprisingly, instructions can be used outside of loops without any
1598 // exits. This can only happen in PHI nodes if the incoming block is
1599 // unreachable.
1600 BasicBlock *BB = PN->getIncomingBlock(U);
1601 if (!DT->isReachableFromEntry(BB)) {
1602 U = UndefValue::get(I.getType());
1603 Changed = true;
1604 continue;
1605 }
1606
1607 VisitedUsers.insert(PN);
1608 if (isTriviallyReplaceablePHI(*PN, I))
1609 continue;
1610
1611 if (!canSplitPredecessors(PN, SafetyInfo))
1612 return Changed;
1613
1614 // Split predecessors of the PHI so that we can make users trivially
1615 // replaceable.
1616 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1617
1618 // Should rebuild the iterators, as they may be invalidated by
1619 // splitPredecessorsOfLoopExit().
1620 UI = I.user_begin();
1621 UE = I.user_end();
1622 }
1623
1624 if (VisitedUsers.empty())
1625 return Changed;
1626
1627#ifndef NDEBUG
1628 SmallVector<BasicBlock *, 32> ExitBlocks;
1629 CurLoop->getUniqueExitBlocks(ExitBlocks);
1630 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1631 ExitBlocks.end());
1632#endif
1633
1634 // Clones of this instruction. Don't create more than one per exit block!
1635 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1636
1637 // If this instruction is only used outside of the loop, then all users are
1638 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1639 // the instruction.
1640 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1641 for (auto *UI : Users) {
1642 auto *User = cast<Instruction>(UI);
1643
1644 if (CurLoop->contains(User))
1645 continue;
1646
1647 PHINode *PN = cast<PHINode>(User);
1648 assert(ExitBlockSet.count(PN->getParent()) &&((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1649, __PRETTY_FUNCTION__))
1649 "The LCSSA PHI is not in an exit block!")((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1649, __PRETTY_FUNCTION__))
;
1650 // The PHI must be trivially replaceable.
1651 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1652 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1653 PN->replaceAllUsesWith(New);
1654 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1655 Changed = true;
1656 }
1657 return Changed;
1658}
1659
1660/// When an instruction is found to only use loop invariant operands that
1661/// is safe to hoist, this instruction is called to do the dirty work.
1662///
1663static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1664 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1665 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1666 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
1667 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
;
1668 ORE->emit([&]() {
1669 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1670 << ore::NV("Inst", &I);
1671 });
1672
1673 // Metadata can be dependent on conditions we are hoisting above.
1674 // Conservatively strip all metadata on the instruction unless we were
1675 // guaranteed to execute I if we entered the loop, in which case the metadata
1676 // is valid in the loop preheader.
1677 if (I.hasMetadataOtherThanDebugLoc() &&
1678 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1679 // time in isGuaranteedToExecute if we don't actually have anything to
1680 // drop. It is a compile time optimization, not required for correctness.
1681 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1682 I.dropUnknownNonDebugMetadata();
1683
1684 if (isa<PHINode>(I))
1685 // Move the new node to the end of the phi list in the destination block.
1686 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU);
1687 else
1688 // Move the new node to the destination block, before its terminator.
1689 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU);
1690
1691 // Apply line 0 debug locations when we are moving instructions to different
1692 // basic blocks because we want to avoid jumpy line tables.
1693 if (const DebugLoc &DL = I.getDebugLoc())
1694 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1695
1696 if (isa<LoadInst>(I))
1697 ++NumMovedLoads;
1698 else if (isa<CallInst>(I))
1699 ++NumMovedCalls;
1700 ++NumHoisted;
1701}
1702
1703/// Only sink or hoist an instruction if it is not a trapping instruction,
1704/// or if the instruction is known not to trap when moved to the preheader.
1705/// or if it is a trapping instruction and is guaranteed to execute.
1706static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1707 const DominatorTree *DT,
1708 const Loop *CurLoop,
1709 const LoopSafetyInfo *SafetyInfo,
1710 OptimizationRemarkEmitter *ORE,
1711 const Instruction *CtxI) {
1712 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1713 return true;
1714
1715 bool GuaranteedToExecute =
1716 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1717
1718 if (!GuaranteedToExecute) {
1719 auto *LI = dyn_cast<LoadInst>(&Inst);
1720 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1721 ORE->emit([&]() {
1722 return OptimizationRemarkMissed(
1723 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1724 << "failed to hoist load with loop-invariant address "
1725 "because load is conditionally executed";
1726 });
1727 }
1728
1729 return GuaranteedToExecute;
1730}
1731
1732namespace {
1733class LoopPromoter : public LoadAndStorePromoter {
1734 Value *SomePtr; // Designated pointer to store to.
1735 const SmallSetVector<Value *, 8> &PointerMustAliases;
1736 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1737 SmallVectorImpl<Instruction *> &LoopInsertPts;
1738 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1739 PredIteratorCache &PredCache;
1740 AliasSetTracker &AST;
1741 MemorySSAUpdater *MSSAU;
1742 LoopInfo &LI;
1743 DebugLoc DL;
1744 int Alignment;
1745 bool UnorderedAtomic;
1746 AAMDNodes AATags;
1747 ICFLoopSafetyInfo &SafetyInfo;
1748
1749 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1750 if (Instruction *I = dyn_cast<Instruction>(V))
1751 if (Loop *L = LI.getLoopFor(I->getParent()))
1752 if (!L->contains(BB)) {
1753 // We need to create an LCSSA PHI node for the incoming value and
1754 // store that.
1755 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1756 I->getName() + ".lcssa", &BB->front());
1757 for (BasicBlock *Pred : PredCache.get(BB))
1758 PN->addIncoming(I, Pred);
1759 return PN;
1760 }
1761 return V;
1762 }
1763
1764public:
1765 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1766 const SmallSetVector<Value *, 8> &PMA,
1767 SmallVectorImpl<BasicBlock *> &LEB,
1768 SmallVectorImpl<Instruction *> &LIP,
1769 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1770 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1771 DebugLoc dl, int alignment, bool UnorderedAtomic,
1772 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1773 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1774 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1775 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1776 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1777 SafetyInfo(SafetyInfo) {}
1778
1779 bool isInstInList(Instruction *I,
1780 const SmallVectorImpl<Instruction *> &) const override {
1781 Value *Ptr;
1782 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1783 Ptr = LI->getOperand(0);
1784 else
1785 Ptr = cast<StoreInst>(I)->getPointerOperand();
1786 return PointerMustAliases.count(Ptr);
1787 }
1788
1789 void doExtraRewritesBeforeFinalDeletion() override {
1790 // Insert stores after in the loop exit blocks. Each exit block gets a
1791 // store of the live-out values that feed them. Since we've already told
1792 // the SSA updater about the defs in the loop and the preheader
1793 // definition, it is all set and we can start using it.
1794 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1795 BasicBlock *ExitBlock = LoopExitBlocks[i];
1796 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1797 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1798 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1799 Instruction *InsertPos = LoopInsertPts[i];
1800 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1801 if (UnorderedAtomic)
1802 NewSI->setOrdering(AtomicOrdering::Unordered);
1803 NewSI->setAlignment(MaybeAlign(Alignment));
1804 NewSI->setDebugLoc(DL);
1805 if (AATags)
1806 NewSI->setAAMetadata(AATags);
1807
1808 if (MSSAU) {
1809 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1810 MemoryAccess *NewMemAcc;
1811 if (!MSSAInsertPoint) {
1812 NewMemAcc = MSSAU->createMemoryAccessInBB(
1813 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1814 } else {
1815 NewMemAcc =
1816 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1817 }
1818 MSSAInsertPts[i] = NewMemAcc;
1819 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1820 // FIXME: true for safety, false may still be correct.
1821 }
1822 }
1823 }
1824
1825 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1826 // Update alias analysis.
1827 AST.copyValue(LI, V);
1828 }
1829 void instructionDeleted(Instruction *I) const override {
1830 SafetyInfo.removeInstruction(I);
1831 AST.deleteValue(I);
1832 if (MSSAU)
1833 MSSAU->removeMemoryAccess(I);
1834 }
1835};
1836
1837
1838/// Return true iff we can prove that a caller of this function can not inspect
1839/// the contents of the provided object in a well defined program.
1840bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1841 if (isa<AllocaInst>(Object))
1842 // Since the alloca goes out of scope, we know the caller can't retain a
1843 // reference to it and be well defined. Thus, we don't need to check for
1844 // capture.
1845 return true;
1846
1847 // For all other objects we need to know that the caller can't possibly
1848 // have gotten a reference to the object. There are two components of
1849 // that:
1850 // 1) Object can't be escaped by this function. This is what
1851 // PointerMayBeCaptured checks.
1852 // 2) Object can't have been captured at definition site. For this, we
1853 // need to know the return value is noalias. At the moment, we use a
1854 // weaker condition and handle only AllocLikeFunctions (which are
1855 // known to be noalias). TODO
1856 return isAllocLikeFn(Object, TLI) &&
1857 !PointerMayBeCaptured(Object, true, true);
1858}
1859
1860} // namespace
1861
1862/// Try to promote memory values to scalars by sinking stores out of the
1863/// loop and moving loads to before the loop. We do this by looping over
1864/// the stores in the loop, looking for stores to Must pointers which are
1865/// loop invariant.
1866///
1867bool llvm::promoteLoopAccessesToScalars(
1868 const SmallSetVector<Value *, 8> &PointerMustAliases,
1869 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1870 SmallVectorImpl<Instruction *> &InsertPts,
1871 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1872 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1873 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1874 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1875 // Verify inputs.
1876 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1878, __PRETTY_FUNCTION__))
1877 CurAST != nullptr && SafetyInfo != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1878, __PRETTY_FUNCTION__))
1878 "Unexpected Input to promoteLoopAccessesToScalars")((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && CurAST != nullptr && SafetyInfo !=
nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 1878, __PRETTY_FUNCTION__))
;
1879
1880 Value *SomePtr = *PointerMustAliases.begin();
1881 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1882
1883 // It is not safe to promote a load/store from the loop if the load/store is
1884 // conditional. For example, turning:
1885 //
1886 // for () { if (c) *P += 1; }
1887 //
1888 // into:
1889 //
1890 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1891 //
1892 // is not safe, because *P may only be valid to access if 'c' is true.
1893 //
1894 // The safety property divides into two parts:
1895 // p1) The memory may not be dereferenceable on entry to the loop. In this
1896 // case, we can't insert the required load in the preheader.
1897 // p2) The memory model does not allow us to insert a store along any dynamic
1898 // path which did not originally have one.
1899 //
1900 // If at least one store is guaranteed to execute, both properties are
1901 // satisfied, and promotion is legal.
1902 //
1903 // This, however, is not a necessary condition. Even if no store/load is
1904 // guaranteed to execute, we can still establish these properties.
1905 // We can establish (p1) by proving that hoisting the load into the preheader
1906 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1907 // can use any access within the alias set to prove dereferenceability,
1908 // since they're all must alias.
1909 //
1910 // There are two ways establish (p2):
1911 // a) Prove the location is thread-local. In this case the memory model
1912 // requirement does not apply, and stores are safe to insert.
1913 // b) Prove a store dominates every exit block. In this case, if an exit
1914 // blocks is reached, the original dynamic path would have taken us through
1915 // the store, so inserting a store into the exit block is safe. Note that this
1916 // is different from the store being guaranteed to execute. For instance,
1917 // if an exception is thrown on the first iteration of the loop, the original
1918 // store is never executed, but the exit blocks are not executed either.
1919
1920 bool DereferenceableInPH = false;
1921 bool SafeToInsertStore = false;
1922
1923 SmallVector<Instruction *, 64> LoopUses;
1924
1925 // We start with an alignment of one and try to find instructions that allow
1926 // us to prove better alignment.
1927 unsigned Alignment = 1;
1928 // Keep track of which types of access we see
1929 bool SawUnorderedAtomic = false;
1930 bool SawNotAtomic = false;
1931 AAMDNodes AATags;
1932
1933 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1934
1935 bool IsKnownThreadLocalObject = false;
1936 if (SafetyInfo->anyBlockMayThrow()) {
1937 // If a loop can throw, we have to insert a store along each unwind edge.
1938 // That said, we can't actually make the unwind edge explicit. Therefore,
1939 // we have to prove that the store is dead along the unwind edge. We do
1940 // this by proving that the caller can't have a reference to the object
1941 // after return and thus can't possibly load from the object.
1942 Value *Object = GetUnderlyingObject(SomePtr, MDL);
1943 if (!isKnownNonEscaping(Object, TLI))
1944 return false;
1945 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1946 // visible to other threads if captured and used during their lifetimes.
1947 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1948 }
1949
1950 // Check that all of the pointers in the alias set have the same type. We
1951 // cannot (yet) promote a memory location that is loaded and stored in
1952 // different sizes. While we are at it, collect alignment and AA info.
1953 for (Value *ASIV : PointerMustAliases) {
1954 // Check that all of the pointers in the alias set have the same type. We
1955 // cannot (yet) promote a memory location that is loaded and stored in
1956 // different sizes.
1957 if (SomePtr->getType() != ASIV->getType())
1958 return false;
1959
1960 for (User *U : ASIV->users()) {
1961 // Ignore instructions that are outside the loop.
1962 Instruction *UI = dyn_cast<Instruction>(U);
1963 if (!UI || !CurLoop->contains(UI))
1964 continue;
1965
1966 // If there is an non-load/store instruction in the loop, we can't promote
1967 // it.
1968 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1969 if (!Load->isUnordered())
1970 return false;
1971
1972 SawUnorderedAtomic |= Load->isAtomic();
1973 SawNotAtomic |= !Load->isAtomic();
1974
1975 unsigned InstAlignment = Load->getAlignment();
1976 if (!InstAlignment)
1977 InstAlignment =
1978 MDL.getABITypeAlignment(Load->getType());
1979
1980 // Note that proving a load safe to speculate requires proving
1981 // sufficient alignment at the target location. Proving it guaranteed
1982 // to execute does as well. Thus we can increase our guaranteed
1983 // alignment as well.
1984 if (!DereferenceableInPH || (InstAlignment > Alignment))
1985 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1986 ORE, Preheader->getTerminator())) {
1987 DereferenceableInPH = true;
1988 Alignment = std::max(Alignment, InstAlignment);
1989 }
1990 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
1991 // Stores *of* the pointer are not interesting, only stores *to* the
1992 // pointer.
1993 if (UI->getOperand(1) != ASIV)
1994 continue;
1995 if (!Store->isUnordered())
1996 return false;
1997
1998 SawUnorderedAtomic |= Store->isAtomic();
1999 SawNotAtomic |= !Store->isAtomic();
2000
2001 // If the store is guaranteed to execute, both properties are satisfied.
2002 // We may want to check if a store is guaranteed to execute even if we
2003 // already know that promotion is safe, since it may have higher
2004 // alignment than any other guaranteed stores, in which case we can
2005 // raise the alignment on the promoted store.
2006 unsigned InstAlignment = Store->getAlignment();
2007 if (!InstAlignment)
2008 InstAlignment =
2009 MDL.getABITypeAlignment(Store->getValueOperand()->getType());
2010
2011 if (!DereferenceableInPH || !SafeToInsertStore ||
2012 (InstAlignment > Alignment)) {
2013 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2014 DereferenceableInPH = true;
2015 SafeToInsertStore = true;
2016 Alignment = std::max(Alignment, InstAlignment);
2017 }
2018 }
2019
2020 // If a store dominates all exit blocks, it is safe to sink.
2021 // As explained above, if an exit block was executed, a dominating
2022 // store must have been executed at least once, so we are not
2023 // introducing stores on paths that did not have them.
2024 // Note that this only looks at explicit exit blocks. If we ever
2025 // start sinking stores into unwind edges (see above), this will break.
2026 if (!SafeToInsertStore)
2027 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2028 return DT->dominates(Store->getParent(), Exit);
2029 });
2030
2031 // If the store is not guaranteed to execute, we may still get
2032 // deref info through it.
2033 if (!DereferenceableInPH) {
2034 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2035 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2036 Store->getAlignment(), MDL, Preheader->getTerminator(), DT);
2037 }
2038 } else
2039 return false; // Not a load or store.
2040
2041 // Merge the AA tags.
2042 if (LoopUses.empty()) {
2043 // On the first load/store, just take its AA tags.
2044 UI->getAAMetadata(AATags);
2045 } else if (AATags) {
2046 UI->getAAMetadata(AATags, /* Merge = */ true);
2047 }
2048
2049 LoopUses.push_back(UI);
2050 }
2051 }
2052
2053 // If we found both an unordered atomic instruction and a non-atomic memory
2054 // access, bail. We can't blindly promote non-atomic to atomic since we
2055 // might not be able to lower the result. We can't downgrade since that
2056 // would violate memory model. Also, align 0 is an error for atomics.
2057 if (SawUnorderedAtomic && SawNotAtomic)
2058 return false;
2059
2060 // If we're inserting an atomic load in the preheader, we must be able to
2061 // lower it. We're only guaranteed to be able to lower naturally aligned
2062 // atomics.
2063 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2064 if (SawUnorderedAtomic &&
2065 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2066 return false;
2067
2068 // If we couldn't prove we can hoist the load, bail.
2069 if (!DereferenceableInPH)
2070 return false;
2071
2072 // We know we can hoist the load, but don't have a guaranteed store.
2073 // Check whether the location is thread-local. If it is, then we can insert
2074 // stores along paths which originally didn't have them without violating the
2075 // memory model.
2076 if (!SafeToInsertStore) {
2077 if (IsKnownThreadLocalObject)
2078 SafeToInsertStore = true;
2079 else {
2080 Value *Object = GetUnderlyingObject(SomePtr, MDL);
2081 SafeToInsertStore =
2082 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2083 !PointerMayBeCaptured(Object, true, true);
2084 }
2085 }
2086
2087 // If we've still failed to prove we can sink the store, give up.
2088 if (!SafeToInsertStore)
2089 return false;
2090
2091 // Otherwise, this is safe to promote, lets do it!
2092 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2093 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2094 ORE->emit([&]() {
2095 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2096 LoopUses[0])
2097 << "Moving accesses to memory location out of the loop";
2098 });
2099 ++NumPromoted;
2100
2101 // Grab a debug location for the inserted loads/stores; given that the
2102 // inserted loads/stores have little relation to the original loads/stores,
2103 // this code just arbitrarily picks a location from one, since any debug
2104 // location is better than none.
2105 DebugLoc DL = LoopUses[0]->getDebugLoc();
2106
2107 // We use the SSAUpdater interface to insert phi nodes as required.
2108 SmallVector<PHINode *, 16> NewPHIs;
2109 SSAUpdater SSA(&NewPHIs);
2110 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2111 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2112 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
2113
2114 // Set up the preheader to have a definition of the value. It is the live-out
2115 // value from the preheader that uses in the loop will use.
2116 LoadInst *PreheaderLoad = new LoadInst(
2117 SomePtr->getType()->getPointerElementType(), SomePtr,
2118 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2119 if (SawUnorderedAtomic)
2120 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2121 PreheaderLoad->setAlignment(MaybeAlign(Alignment));
2122 PreheaderLoad->setDebugLoc(DL);
2123 if (AATags)
2124 PreheaderLoad->setAAMetadata(AATags);
2125 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2126
2127 if (MSSAU) {
2128 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2129 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2130 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2131 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2132 }
2133
2134 if (MSSAU && VerifyMemorySSA)
2135 MSSAU->getMemorySSA()->verifyMemorySSA();
2136 // Rewrite all the loads in the loop and remember all the definitions from
2137 // stores in the loop.
2138 Promoter.run(LoopUses);
2139
2140 if (MSSAU && VerifyMemorySSA)
2141 MSSAU->getMemorySSA()->verifyMemorySSA();
2142 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2143 if (PreheaderLoad->use_empty())
2144 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2145
2146 return true;
2147}
2148
2149/// Returns an owning pointer to an alias set which incorporates aliasing info
2150/// from L and all subloops of L.
2151/// FIXME: In new pass manager, there is no helper function to handle loop
2152/// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2153/// from scratch for every loop. Hook up with the helper functions when
2154/// available in the new pass manager to avoid redundant computation.
2155std::unique_ptr<AliasSetTracker>
2156LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2157 AliasAnalysis *AA) {
2158 std::unique_ptr<AliasSetTracker> CurAST;
2159 SmallVector<Loop *, 4> RecomputeLoops;
2160 for (Loop *InnerL : L->getSubLoops()) {
2161 auto MapI = LoopToAliasSetMap.find(InnerL);
2162 // If the AST for this inner loop is missing it may have been merged into
2163 // some other loop's AST and then that loop unrolled, and so we need to
2164 // recompute it.
2165 if (MapI == LoopToAliasSetMap.end()) {
2166 RecomputeLoops.push_back(InnerL);
2167 continue;
2168 }
2169 std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
2170
2171 if (CurAST) {
2172 // What if InnerLoop was modified by other passes ?
2173 // Once we've incorporated the inner loop's AST into ours, we don't need
2174 // the subloop's anymore.
2175 CurAST->add(*InnerAST);
2176 } else {
2177 CurAST = std::move(InnerAST);
2178 }
2179 LoopToAliasSetMap.erase(MapI);
2180 }
2181 if (!CurAST)
2182 CurAST = std::make_unique<AliasSetTracker>(*AA);
2183
2184 // Add everything from the sub loops that are no longer directly available.
2185 for (Loop *InnerL : RecomputeLoops)
2186 for (BasicBlock *BB : InnerL->blocks())
2187 CurAST->add(*BB);
2188
2189 // And merge in this loop (without anything from inner loops).
2190 for (BasicBlock *BB : L->blocks())
2191 if (LI->getLoopFor(BB) == L)
2192 CurAST->add(*BB);
2193
2194 return CurAST;
2195}
2196
2197std::unique_ptr<AliasSetTracker>
2198LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2199 Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
2200 auto *MSSA = MSSAU->getMemorySSA();
2201 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2202 CurAST->addAllInstructionsInLoopUsingMSSA();
2203 return CurAST;
2204}
2205
2206/// Simple analysis hook. Clone alias set info.
2207///
2208void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
2209 Loop *L) {
2210 auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2211 if (ASTIt == LICM.getLoopToAliasSetMap().end())
2212 return;
2213
2214 ASTIt->second->copyValue(From, To);
2215}
2216
2217/// Simple Analysis hook. Delete value V from alias set
2218///
2219void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
2220 auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2221 if (ASTIt == LICM.getLoopToAliasSetMap().end())
2222 return;
2223
2224 ASTIt->second->deleteValue(V);
2225}
2226
2227/// Simple Analysis hook. Delete value L from alias set map.
2228///
2229void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
2230 if (!LICM.getLoopToAliasSetMap().count(L))
2231 return;
2232
2233 LICM.getLoopToAliasSetMap().erase(L);
2234}
2235
2236static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2237 AliasSetTracker *CurAST, Loop *CurLoop,
2238 AliasAnalysis *AA) {
2239 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2240 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2241
2242 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2243 return isInvalidatedAccordingToAST;
2244
2245 // Check with a diagnostic analysis if we can refine the information above.
2246 // This is to identify the limitations of using the AST.
2247 // The alias set mechanism used by LICM has a major weakness in that it
2248 // combines all things which may alias into a single set *before* asking
2249 // modref questions. As a result, a single readonly call within a loop will
2250 // collapse all loads and stores into a single alias set and report
2251 // invalidation if the loop contains any store. For example, readonly calls
2252 // with deopt states have this form and create a general alias set with all
2253 // loads and stores. In order to get any LICM in loops containing possible
2254 // deopt states we need a more precise invalidation of checking the mod ref
2255 // info of each instruction within the loop and LI. This has a complexity of
2256 // O(N^2), so currently, it is used only as a diagnostic tool since the
2257 // default value of LICMN2Threshold is zero.
2258
2259 // Don't look at nested loops.
2260 if (CurLoop->begin() != CurLoop->end())
2261 return true;
2262
2263 int N = 0;
2264 for (BasicBlock *BB : CurLoop->getBlocks())
2265 for (Instruction &I : *BB) {
2266 if (N >= LICMN2Theshold) {
2267 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
2268 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
;
2269 return true;
2270 }
2271 N++;
2272 auto Res = AA->getModRefInfo(&I, MemLoc);
2273 if (isModSet(Res)) {
2274 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
2275 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
;
2276 return true;
2277 }
2278 }
2279 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr) << "\n"; } } while (false)
;
2280 return false;
2281}
2282
2283static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2284 Loop *CurLoop,
2285 SinkAndHoistLICMFlags &Flags) {
2286 // For hoisting, use the walker to determine safety
2287 if (!Flags.IsSink) {
2288 MemoryAccess *Source;
2289 // See declaration of SetLicmMssaOptCap for usage details.
2290 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2291 Source = MU->getDefiningAccess();
2292 else {
2293 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2294 Flags.LicmMssaOptCounter++;
2295 }
2296 return !MSSA->isLiveOnEntryDef(Source) &&
2297 CurLoop->contains(Source->getBlock());
2298 }
2299
2300 // For sinking, we'd need to check all Defs below this use. The getClobbering
2301 // call will look on the backedge of the loop, but will check aliasing with
2302 // the instructions on the previous iteration.
2303 // For example:
2304 // for (i ... )
2305 // load a[i] ( Use (LoE)
2306 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2307 // i++;
2308 // The load sees no clobbering inside the loop, as the backedge alias check
2309 // does phi translation, and will check aliasing against store a[i-1].
2310 // However sinking the load outside the loop, below the store is incorrect.
2311
2312 // For now, only sink if there are no Defs in the loop, and the existing ones
2313 // precede the use and are in the same block.
2314 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2315 // needs PostDominatorTreeAnalysis.
2316 // FIXME: More precise: no Defs that alias this Use.
2317 if (Flags.NoOfMemAccTooLarge)
2318 return true;
2319 for (auto *BB : CurLoop->getBlocks())
2320 if (auto *Accesses = MSSA->getBlockDefs(BB))
2321 for (const auto &MA : *Accesses)
2322 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2323 if (MU->getBlock() != MD->getBlock() ||
2324 !MSSA->locallyDominates(MD, MU))
2325 return true;
2326 return false;
2327}
2328
2329/// Little predicate that returns true if the specified basic block is in
2330/// a subloop of the current one, not the current one itself.
2331///
2332static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2333 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((CurLoop->contains(BB) && "Only valid if BB is IN the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-10~svn374877/lib/Transforms/Scalar/LICM.cpp"
, 2333, __PRETTY_FUNCTION__))
;
2334 return LI->getLoopFor(BB) != CurLoop;
2335}

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/Casting.h"
42#include <cstdint>
43
44namespace llvm {
45namespace PatternMatch {
46
47template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48 return const_cast<Pattern &>(P).match(V);
33
Calling 'IntrinsicID_match::match'
37
Returning from 'IntrinsicID_match::match'
38
Returning zero, which participates in a condition later
49}
50
51template <typename SubPattern_t> struct OneUse_match {
52 SubPattern_t SubPattern;
53
54 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55
56 template <typename OpTy> bool match(OpTy *V) {
57 return V->hasOneUse() && SubPattern.match(V);
58 }
59};
60
61template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62 return SubPattern;
63}
64
65template <typename Class> struct class_match {
66 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67};
68
69/// Match an arbitrary value and ignore it.
70inline class_match<Value> m_Value() { return class_match<Value>(); }
71
72/// Match an arbitrary binary operation and ignore it.
73inline class_match<BinaryOperator> m_BinOp() {
74 return class_match<BinaryOperator>();
75}
76
77/// Matches any compare instruction and ignore it.
78inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
79
80/// Match an arbitrary ConstantInt and ignore it.
81inline class_match<ConstantInt> m_ConstantInt() {
82 return class_match<ConstantInt>();
83}
84
85/// Match an arbitrary undef constant.
86inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
87
88/// Match an arbitrary Constant and ignore it.
89inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
90
91/// Match an arbitrary basic block value and ignore it.
92inline class_match<BasicBlock> m_BasicBlock() {
93 return class_match<BasicBlock>();
94}
95
96/// Inverting matcher
97template <typename Ty> struct match_unless {
98 Ty M;
99
100 match_unless(const Ty &Matcher) : M(Matcher) {}
101
102 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
103};
104
105/// Match if the inner matcher does *NOT* match.
106template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
107 return match_unless<Ty>(M);
108}
109
110/// Matching combinators
111template <typename LTy, typename RTy> struct match_combine_or {
112 LTy L;
113 RTy R;
114
115 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
116
117 template <typename ITy> bool match(ITy *V) {
118 if (L.match(V))
119 return true;
120 if (R.match(V))
121 return true;
122 return false;
123 }
124};
125
126template <typename LTy, typename RTy> struct match_combine_and {
127 LTy L;
128 RTy R;
129
130 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
131
132 template <typename ITy> bool match(ITy *V) {
133 if (L.match(V))
134 if (R.match(V))
135 return true;
136 return false;
137 }
138};
139
140/// Combine two pattern matchers matching L || R
141template <typename LTy, typename RTy>
142inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
143 return match_combine_or<LTy, RTy>(L, R);
144}
145
146/// Combine two pattern matchers matching L && R
147template <typename LTy, typename RTy>
148inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
149 return match_combine_and<LTy, RTy>(L, R);
150}
151
152struct apint_match {
153 const APInt *&Res;
154
155 apint_match(const APInt *&R) : Res(R) {}
156
157 template <typename ITy> bool match(ITy *V) {
158 if (auto *CI = dyn_cast<ConstantInt>(V)) {
159 Res = &CI->getValue();
160 return true;
161 }
162 if (V->getType()->isVectorTy())
163 if (const auto *C = dyn_cast<Constant>(V))
164 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
165 Res = &CI->getValue();
166 return true;
167 }
168 return false;
169 }
170};
171// Either constexpr if or renaming ConstantFP::getValueAPF to
172// ConstantFP::getValue is needed to do it via single template
173// function for both apint/apfloat.
174struct apfloat_match {
175 const APFloat *&Res;
176 apfloat_match(const APFloat *&R) : Res(R) {}
177 template <typename ITy> bool match(ITy *V) {
178 if (auto *CI = dyn_cast<ConstantFP>(V)) {
179 Res = &CI->getValueAPF();
180 return true;
181 }
182 if (V->getType()->isVectorTy())
183 if (const auto *C = dyn_cast<Constant>(V))
184 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
185 Res = &CI->getValueAPF();
186 return true;
187 }
188 return false;
189 }
190};
191
192/// Match a ConstantInt or splatted ConstantVector, binding the
193/// specified pointer to the contained APInt.
194inline apint_match m_APInt(const APInt *&Res) { return Res; }
195
196/// Match a ConstantFP or splatted ConstantVector, binding the
197/// specified pointer to the contained APFloat.
198inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
199
200template <int64_t Val> struct constantint_match {
201 template <typename ITy> bool match(ITy *V) {
202 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
203 const APInt &CIV = CI->getValue();
204 if (Val >= 0)
205 return CIV == static_cast<uint64_t>(Val);
206 // If Val is negative, and CI is shorter than it, truncate to the right
207 // number of bits. If it is larger, then we have to sign extend. Just
208 // compare their negated values.
209 return -CIV == -Val;
210 }
211 return false;
212 }
213};
214
215/// Match a ConstantInt with a specific value.
216template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
217 return constantint_match<Val>();
218}
219
220/// This helper class is used to match scalar and vector integer constants that
221/// satisfy a specified predicate.
222/// For vector constants, undefined elements are ignored.
223template <typename Predicate> struct cst_pred_ty : public Predicate {
224 template <typename ITy> bool match(ITy *V) {
225 if (const auto *CI = dyn_cast<ConstantInt>(V))
226 return this->isValue(CI->getValue());
227 if (V->getType()->isVectorTy()) {
228 if (const auto *C = dyn_cast<Constant>(V)) {
229 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
230 return this->isValue(CI->getValue());
231
232 // Non-splat vector constant: check each element for a match.
233 unsigned NumElts = V->getType()->getVectorNumElements();
234 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/PatternMatch.h"
, 234, __PRETTY_FUNCTION__))
;
235 bool HasNonUndefElements = false;
236 for (unsigned i = 0; i != NumElts; ++i) {
237 Constant *Elt = C->getAggregateElement(i);
238 if (!Elt)
239 return false;
240 if (isa<UndefValue>(Elt))
241 continue;
242 auto *CI = dyn_cast<ConstantInt>(Elt);
243 if (!CI || !this->isValue(CI->getValue()))
244 return false;
245 HasNonUndefElements = true;
246 }
247 return HasNonUndefElements;
248 }
249 }
250 return false;
251 }
252};
253
254/// This helper class is used to match scalar and vector constants that
255/// satisfy a specified predicate, and bind them to an APInt.
256template <typename Predicate> struct api_pred_ty : public Predicate {
257 const APInt *&Res;
258
259 api_pred_ty(const APInt *&R) : Res(R) {}
260
261 template <typename ITy> bool match(ITy *V) {
262 if (const auto *CI = dyn_cast<ConstantInt>(V))
263 if (this->isValue(CI->getValue())) {
264 Res = &CI->getValue();
265 return true;
266 }
267 if (V->getType()->isVectorTy())
268 if (const auto *C = dyn_cast<Constant>(V))
269 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
270 if (this->isValue(CI->getValue())) {
271 Res = &CI->getValue();
272 return true;
273 }
274
275 return false;
276 }
277};
278
279/// This helper class is used to match scalar and vector floating-point
280/// constants that satisfy a specified predicate.
281/// For vector constants, undefined elements are ignored.
282template <typename Predicate> struct cstfp_pred_ty : public Predicate {
283 template <typename ITy> bool match(ITy *V) {
284 if (const auto *CF = dyn_cast<ConstantFP>(V))
285 return this->isValue(CF->getValueAPF());
286 if (V->getType()->isVectorTy()) {
287 if (const auto *C = dyn_cast<Constant>(V)) {
288 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
289 return this->isValue(CF->getValueAPF());
290
291 // Non-splat vector constant: check each element for a match.
292 unsigned NumElts = V->getType()->getVectorNumElements();
293 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/PatternMatch.h"
, 293, __PRETTY_FUNCTION__))
;
294 bool HasNonUndefElements = false;
295 for (unsigned i = 0; i != NumElts; ++i) {
296 Constant *Elt = C->getAggregateElement(i);
297 if (!Elt)
298 return false;
299 if (isa<UndefValue>(Elt))
300 continue;
301 auto *CF = dyn_cast<ConstantFP>(Elt);
302 if (!CF || !this->isValue(CF->getValueAPF()))
303 return false;
304 HasNonUndefElements = true;
305 }
306 return HasNonUndefElements;
307 }
308 }
309 return false;
310 }
311};
312
313///////////////////////////////////////////////////////////////////////////////
314//
315// Encapsulate constant value queries for use in templated predicate matchers.
316// This allows checking if constants match using compound predicates and works
317// with vector constants, possibly with relaxed constraints. For example, ignore
318// undef values.
319//
320///////////////////////////////////////////////////////////////////////////////
321
322struct is_any_apint {
323 bool isValue(const APInt &C) { return true; }
324};
325/// Match an integer or vector with any integral constant.
326/// For vectors, this includes constants with undefined elements.
327inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
328 return cst_pred_ty<is_any_apint>();
329}
330
331struct is_all_ones {
332 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
333};
334/// Match an integer or vector with all bits set.
335/// For vectors, this includes constants with undefined elements.
336inline cst_pred_ty<is_all_ones> m_AllOnes() {
337 return cst_pred_ty<is_all_ones>();
338}
339
340struct is_maxsignedvalue {
341 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
342};
343/// Match an integer or vector with values having all bits except for the high
344/// bit set (0x7f...).
345/// For vectors, this includes constants with undefined elements.
346inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
347 return cst_pred_ty<is_maxsignedvalue>();
348}
349inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
350 return V;
351}
352
353struct is_negative {
354 bool isValue(const APInt &C) { return C.isNegative(); }
355};
356/// Match an integer or vector of negative values.
357/// For vectors, this includes constants with undefined elements.
358inline cst_pred_ty<is_negative> m_Negative() {
359 return cst_pred_ty<is_negative>();
360}
361inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
362 return V;
363}
364
365struct is_nonnegative {
366 bool isValue(const APInt &C) { return C.isNonNegative(); }
367};
368/// Match an integer or vector of nonnegative values.
369/// For vectors, this includes constants with undefined elements.
370inline cst_pred_ty<is_nonnegative> m_NonNegative() {
371 return cst_pred_ty<is_nonnegative>();
372}
373inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
374 return V;
375}
376
377struct is_one {
378 bool isValue(const APInt &C) { return C.isOneValue(); }
379};
380/// Match an integer 1 or a vector with all elements equal to 1.
381/// For vectors, this includes constants with undefined elements.
382inline cst_pred_ty<is_one> m_One() {
383 return cst_pred_ty<is_one>();
384}
385
386struct is_zero_int {
387 bool isValue(const APInt &C) { return C.isNullValue(); }
388};
389/// Match an integer 0 or a vector with all elements equal to 0.
390/// For vectors, this includes constants with undefined elements.
391inline cst_pred_ty<is_zero_int> m_ZeroInt() {
392 return cst_pred_ty<is_zero_int>();
393}
394
395struct is_zero {
396 template <typename ITy> bool match(ITy *V) {
397 auto *C = dyn_cast<Constant>(V);
398 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
399 }
400};
401/// Match any null constant or a vector with all elements equal to 0.
402/// For vectors, this includes constants with undefined elements.
403inline is_zero m_Zero() {
404 return is_zero();
405}
406
407struct is_power2 {
408 bool isValue(const APInt &C) { return C.isPowerOf2(); }
409};
410/// Match an integer or vector power-of-2.
411/// For vectors, this includes constants with undefined elements.
412inline cst_pred_ty<is_power2> m_Power2() {
413 return cst_pred_ty<is_power2>();
414}
415inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
416 return V;
417}
418
419struct is_negated_power2 {
420 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
421};
422/// Match a integer or vector negated power-of-2.
423/// For vectors, this includes constants with undefined elements.
424inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
425 return cst_pred_ty<is_negated_power2>();
426}
427inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
428 return V;
429}
430
431struct is_power2_or_zero {
432 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
433};
434/// Match an integer or vector of 0 or power-of-2 values.
435/// For vectors, this includes constants with undefined elements.
436inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
437 return cst_pred_ty<is_power2_or_zero>();
438}
439inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
440 return V;
441}
442
443struct is_sign_mask {
444 bool isValue(const APInt &C) { return C.isSignMask(); }
445};
446/// Match an integer or vector with only the sign bit(s) set.
447/// For vectors, this includes constants with undefined elements.
448inline cst_pred_ty<is_sign_mask> m_SignMask() {
449 return cst_pred_ty<is_sign_mask>();
450}
451
452struct is_lowbit_mask {
453 bool isValue(const APInt &C) { return C.isMask(); }
454};
455/// Match an integer or vector with only the low bit(s) set.
456/// For vectors, this includes constants with undefined elements.
457inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
458 return cst_pred_ty<is_lowbit_mask>();
459}
460
461struct icmp_pred_with_threshold {
462 ICmpInst::Predicate Pred;
463 const APInt *Thr;
464 bool isValue(const APInt &C) {
465 switch (Pred) {
466 case ICmpInst::Predicate::ICMP_EQ:
467 return C.eq(*Thr);
468 case ICmpInst::Predicate::ICMP_NE:
469 return C.ne(*Thr);
470 case ICmpInst::Predicate::ICMP_UGT:
471 return C.ugt(*Thr);
472 case ICmpInst::Predicate::ICMP_UGE:
473 return C.uge(*Thr);
474 case ICmpInst::Predicate::ICMP_ULT:
475 return C.ult(*Thr);
476 case ICmpInst::Predicate::ICMP_ULE:
477 return C.ule(*Thr);
478 case ICmpInst::Predicate::ICMP_SGT:
479 return C.sgt(*Thr);
480 case ICmpInst::Predicate::ICMP_SGE:
481 return C.sge(*Thr);
482 case ICmpInst::Predicate::ICMP_SLT:
483 return C.slt(*Thr);
484 case ICmpInst::Predicate::ICMP_SLE:
485 return C.sle(*Thr);
486 default:
487 llvm_unreachable("Unhandled ICmp predicate")::llvm::llvm_unreachable_internal("Unhandled ICmp predicate",
"/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/PatternMatch.h"
, 487)
;
488 }
489 }
490};
491/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
492/// to Threshold. For vectors, this includes constants with undefined elements.
493inline cst_pred_ty<icmp_pred_with_threshold>
494m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
495 cst_pred_ty<icmp_pred_with_threshold> P;
496 P.Pred = Predicate;
497 P.Thr = &Threshold;
498 return P;
499}
500
501struct is_nan {
502 bool isValue(const APFloat &C) { return C.isNaN(); }
503};
504/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
505/// For vectors, this includes constants with undefined elements.
506inline cstfp_pred_ty<is_nan> m_NaN() {
507 return cstfp_pred_ty<is_nan>();
508}
509
510struct is_any_zero_fp {
511 bool isValue(const APFloat &C) { return C.isZero(); }
512};
513/// Match a floating-point negative zero or positive zero.
514/// For vectors, this includes constants with undefined elements.
515inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
516 return cstfp_pred_ty<is_any_zero_fp>();
517}
518
519struct is_pos_zero_fp {
520 bool isValue(const APFloat &C) { return C.isPosZero(); }
521};
522/// Match a floating-point positive zero.
523/// For vectors, this includes constants with undefined elements.
524inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
525 return cstfp_pred_ty<is_pos_zero_fp>();
526}
527
528struct is_neg_zero_fp {
529 bool isValue(const APFloat &C) { return C.isNegZero(); }
530};
531/// Match a floating-point negative zero.
532/// For vectors, this includes constants with undefined elements.
533inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
534 return cstfp_pred_ty<is_neg_zero_fp>();
535}
536
537///////////////////////////////////////////////////////////////////////////////
538
539template <typename Class> struct bind_ty {
540 Class *&VR;
541
542 bind_ty(Class *&V) : VR(V) {}
543
544 template <typename ITy> bool match(ITy *V) {
545 if (auto *CV = dyn_cast<Class>(V)) {
546 VR = CV;
547 return true;
548 }
549 return false;
550 }
551};
552
553/// Match a value, capturing it if we match.
554inline bind_ty<Value> m_Value(Value *&V) { return V; }
555inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
556
557/// Match an instruction, capturing it if we match.
558inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
559/// Match a binary operator, capturing it if we match.
560inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
561
562/// Match a ConstantInt, capturing the value if we match.
563inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
564
565/// Match a Constant, capturing the value if we match.
566inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
567
568/// Match a ConstantFP, capturing the value if we match.
569inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
570
571/// Match a basic block value, capturing it if we match.
572inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
573inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
574 return V;
575}
576
577/// Match a specified Value*.
578struct specificval_ty {
579 const Value *Val;
580
581 specificval_ty(const Value *V) : Val(V) {}
582
583 template <typename ITy> bool match(ITy *V) { return V == Val; }
584};
585
586/// Match if we have a specific specified value.
587inline specificval_ty m_Specific(const Value *V) { return V; }
588
589/// Stores a reference to the Value *, not the Value * itself,
590/// thus can be used in commutative matchers.
591template <typename Class> struct deferredval_ty {
592 Class *const &Val;
593
594 deferredval_ty(Class *const &V) : Val(V) {}
595
596 template <typename ITy> bool match(ITy *const V) { return V == Val; }
597};
598
599/// A commutative-friendly version of m_Specific().
600inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
601inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
602 return V;
603}
604
605/// Match a specified floating point value or vector of all elements of
606/// that value.
607struct specific_fpval {
608 double Val;
609
610 specific_fpval(double V) : Val(V) {}
611
612 template <typename ITy> bool match(ITy *V) {
613 if (const auto *CFP = dyn_cast<ConstantFP>(V))
614 return CFP->isExactlyValue(Val);
615 if (V->getType()->isVectorTy())
616 if (const auto *C = dyn_cast<Constant>(V))
617 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
618 return CFP->isExactlyValue(Val);
619 return false;
620 }
621};
622
623/// Match a specific floating point value or vector with all elements
624/// equal to the value.
625inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
626
627/// Match a float 1.0 or vector with all elements equal to 1.0.
628inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
629
630struct bind_const_intval_ty {
631 uint64_t &VR;
632
633 bind_const_intval_ty(uint64_t &V) : VR(V) {}
634
635 template <typename ITy> bool match(ITy *V) {
636 if (const auto *CV = dyn_cast<ConstantInt>(V))
637 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
638 VR = CV->getZExtValue();
639 return true;
640 }
641 return false;
642 }
643};
644
645/// Match a specified integer value or vector of all elements of that
646/// value.
647struct specific_intval {
648 APInt Val;
649
650 specific_intval(APInt V) : Val(std::move(V)) {}
651
652 template <typename ITy> bool match(ITy *V) {
653 const auto *CI = dyn_cast<ConstantInt>(V);
654 if (!CI && V->getType()->isVectorTy())
655 if (const auto *C = dyn_cast<Constant>(V))
656 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
657
658 return CI && APInt::isSameValue(CI->getValue(), Val);
659 }
660};
661
662/// Match a specific integer value or vector with all elements equal to
663/// the value.
664inline specific_intval m_SpecificInt(APInt V) {
665 return specific_intval(std::move(V));
666}
667
668inline specific_intval m_SpecificInt(uint64_t V) {
669 return m_SpecificInt(APInt(64, V));
670}
671
672/// Match a ConstantInt and bind to its value. This does not match
673/// ConstantInts wider than 64-bits.
674inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
675
676/// Match a specified basic block value.
677struct specific_bbval {
678 BasicBlock *Val;
679
680 specific_bbval(BasicBlock *Val) : Val(Val) {}
681
682 template <typename ITy> bool match(ITy *V) {
683 const auto *BB = dyn_cast<BasicBlock>(V);
684 return BB && BB == Val;
685 }
686};
687
688/// Match a specific basic block value.
689inline specific_bbval m_SpecificBB(BasicBlock *BB) {
690 return specific_bbval(BB);
691}
692
693/// A commutative-friendly version of m_Specific().
694inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
695 return BB;
696}
697inline deferredval_ty<const BasicBlock>
698m_Deferred(const BasicBlock *const &BB) {
699 return BB;
700}
701
702//===----------------------------------------------------------------------===//
703// Matcher for any binary operator.
704//
705template <typename LHS_t, typename RHS_t, bool Commutable = false>
706struct AnyBinaryOp_match {
707 LHS_t L;
708 RHS_t R;
709
710 // The evaluation order is always stable, regardless of Commutability.
711 // The LHS is always matched first.
712 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
713
714 template <typename OpTy> bool match(OpTy *V) {
715 if (auto *I = dyn_cast<BinaryOperator>(V))
716 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
717 (Commutable && L.match(I->getOperand(1)) &&
718 R.match(I->getOperand(0)));
719 return false;
720 }
721};
722
723template <typename LHS, typename RHS>
724inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
725 return AnyBinaryOp_match<LHS, RHS>(L, R);
726}
727
728//===----------------------------------------------------------------------===//
729// Matchers for specific binary operators.
730//
731
732template <typename LHS_t, typename RHS_t, unsigned Opcode,
733 bool Commutable = false>
734struct BinaryOp_match {
735 LHS_t L;
736 RHS_t R;
737
738 // The evaluation order is always stable, regardless of Commutability.
739 // The LHS is always matched first.
740 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
741
742 template <typename OpTy> bool match(OpTy *V) {
743 if (V->getValueID() == Value::InstructionVal + Opcode) {
744 auto *I = cast<BinaryOperator>(V);
745 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
746 (Commutable && L.match(I->getOperand(1)) &&
747 R.match(I->getOperand(0)));
748 }
749 if (auto *CE = dyn_cast<ConstantExpr>(V))
750 return CE->getOpcode() == Opcode &&
751 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
752 (Commutable && L.match(CE->getOperand(1)) &&
753 R.match(CE->getOperand(0))));
754 return false;
755 }
756};
757
758template <typename LHS, typename RHS>
759inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
760 const RHS &R) {
761 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
762}
763
764template <typename LHS, typename RHS>
765inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
766 const RHS &R) {
767 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
768}
769
770template <typename LHS, typename RHS>
771inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
772 const RHS &R) {
773 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
774}
775
776template <typename LHS, typename RHS>
777inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
778 const RHS &R) {
779 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
780}
781
782template <typename Op_t> struct FNeg_match {
783 Op_t X;
784
785 FNeg_match(const Op_t &Op) : X(Op) {}
786 template <typename OpTy> bool match(OpTy *V) {
787 auto *FPMO = dyn_cast<FPMathOperator>(V);
788 if (!FPMO) return false;
789
790 if (FPMO->getOpcode() == Instruction::FNeg)
791 return X.match(FPMO->getOperand(0));
792
793 if (FPMO->getOpcode() == Instruction::FSub) {
794 if (FPMO->hasNoSignedZeros()) {
795 // With 'nsz', any zero goes.
796 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
797 return false;
798 } else {
799 // Without 'nsz', we need fsub -0.0, X exactly.
800 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
801 return false;
802 }
803
804 return X.match(FPMO->getOperand(1));
805 }
806
807 return false;
808 }
809};
810
811/// Match 'fneg X' as 'fsub -0.0, X'.
812template <typename OpTy>
813inline FNeg_match<OpTy>
814m_FNeg(const OpTy &X) {
815 return FNeg_match<OpTy>(X);
816}
817
818/// Match 'fneg X' as 'fsub +-0.0, X'.
819template <typename RHS>
820inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
821m_FNegNSZ(const RHS &X) {
822 return m_FSub(m_AnyZeroFP(), X);
823}
824
825template <typename LHS, typename RHS>
826inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
827 const RHS &R) {
828 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
829}
830
831template <typename LHS, typename RHS>
832inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
833 const RHS &R) {
834 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
835}
836
837template <typename LHS, typename RHS>
838inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
839 const RHS &R) {
840 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
841}
842
843template <typename LHS, typename RHS>
844inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
845 const RHS &R) {
846 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
847}
848
849template <typename LHS, typename RHS>
850inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
851 const RHS &R) {
852 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
853}
854
855template <typename LHS, typename RHS>
856inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
857 const RHS &R) {
858 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
859}
860
861template <typename LHS, typename RHS>
862inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
863 const RHS &R) {
864 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
865}
866
867template <typename LHS, typename RHS>
868inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
869 const RHS &R) {
870 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
871}
872
873template <typename LHS, typename RHS>
874inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
875 const RHS &R) {
876 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
877}
878
879template <typename LHS, typename RHS>
880inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
881 const RHS &R) {
882 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
883}
884
885template <typename LHS, typename RHS>
886inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
887 const RHS &R) {
888 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
889}
890
891template <typename LHS, typename RHS>
892inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
893 const RHS &R) {
894 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
895}
896
897template <typename LHS, typename RHS>
898inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
899 const RHS &R) {
900 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
901}
902
903template <typename LHS, typename RHS>
904inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
905 const RHS &R) {
906 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
907}
908
909template <typename LHS_t, typename RHS_t, unsigned Opcode,
910 unsigned WrapFlags = 0>
911struct OverflowingBinaryOp_match {
912 LHS_t L;
913 RHS_t R;
914
915 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
916 : L(LHS), R(RHS) {}
917
918 template <typename OpTy> bool match(OpTy *V) {
919 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
920 if (Op->getOpcode() != Opcode)
921 return false;
922 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
923 !Op->hasNoUnsignedWrap())
924 return false;
925 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
926 !Op->hasNoSignedWrap())
927 return false;
928 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
929 }
930 return false;
931 }
932};
933
934template <typename LHS, typename RHS>
935inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
936 OverflowingBinaryOperator::NoSignedWrap>
937m_NSWAdd(const LHS &L, const RHS &R) {
938 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
939 OverflowingBinaryOperator::NoSignedWrap>(
940 L, R);
941}
942template <typename LHS, typename RHS>
943inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
944 OverflowingBinaryOperator::NoSignedWrap>
945m_NSWSub(const LHS &L, const RHS &R) {
946 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
947 OverflowingBinaryOperator::NoSignedWrap>(
948 L, R);
949}
950template <typename LHS, typename RHS>
951inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
952 OverflowingBinaryOperator::NoSignedWrap>
953m_NSWMul(const LHS &L, const RHS &R) {
954 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
955 OverflowingBinaryOperator::NoSignedWrap>(
956 L, R);
957}
958template <typename LHS, typename RHS>
959inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
960 OverflowingBinaryOperator::NoSignedWrap>
961m_NSWShl(const LHS &L, const RHS &R) {
962 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
963 OverflowingBinaryOperator::NoSignedWrap>(
964 L, R);
965}
966
967template <typename LHS, typename RHS>
968inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
969 OverflowingBinaryOperator::NoUnsignedWrap>
970m_NUWAdd(const LHS &L, const RHS &R) {
971 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
972 OverflowingBinaryOperator::NoUnsignedWrap>(
973 L, R);
974}
975template <typename LHS, typename RHS>
976inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
977 OverflowingBinaryOperator::NoUnsignedWrap>
978m_NUWSub(const LHS &L, const RHS &R) {
979 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
980 OverflowingBinaryOperator::NoUnsignedWrap>(
981 L, R);
982}
983template <typename LHS, typename RHS>
984inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
985 OverflowingBinaryOperator::NoUnsignedWrap>
986m_NUWMul(const LHS &L, const RHS &R) {
987 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
988 OverflowingBinaryOperator::NoUnsignedWrap>(
989 L, R);
990}
991template <typename LHS, typename RHS>
992inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
993 OverflowingBinaryOperator::NoUnsignedWrap>
994m_NUWShl(const LHS &L, const RHS &R) {
995 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
996 OverflowingBinaryOperator::NoUnsignedWrap>(
997 L, R);
998}
999
1000//===----------------------------------------------------------------------===//
1001// Class that matches a group of binary opcodes.
1002//
1003template <typename LHS_t, typename RHS_t, typename Predicate>
1004struct BinOpPred_match : Predicate {
1005 LHS_t L;
1006 RHS_t R;
1007
1008 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1009
1010 template <typename OpTy> bool match(OpTy *V) {
1011 if (auto *I = dyn_cast<Instruction>(V))
1012 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1013 R.match(I->getOperand(1));
1014 if (auto *CE = dyn_cast<ConstantExpr>(V))
1015 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1016 R.match(CE->getOperand(1));
1017 return false;
1018 }
1019};
1020
1021struct is_shift_op {
1022 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1023};
1024
1025struct is_right_shift_op {
1026 bool isOpType(unsigned Opcode) {
1027 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1028 }
1029};
1030
1031struct is_logical_shift_op {
1032 bool isOpType(unsigned Opcode) {
1033 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1034 }
1035};
1036
1037struct is_bitwiselogic_op {
1038 bool isOpType(unsigned Opcode) {
1039 return Instruction::isBitwiseLogicOp(Opcode);
1040 }
1041};
1042
1043struct is_idiv_op {
1044 bool isOpType(unsigned Opcode) {
1045 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1046 }
1047};
1048
1049struct is_irem_op {
1050 bool isOpType(unsigned Opcode) {
1051 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1052 }
1053};
1054
1055/// Matches shift operations.
1056template <typename LHS, typename RHS>
1057inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1058 const RHS &R) {
1059 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1060}
1061
1062/// Matches logical shift operations.
1063template <typename LHS, typename RHS>
1064inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1065 const RHS &R) {
1066 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1067}
1068
1069/// Matches logical shift operations.
1070template <typename LHS, typename RHS>
1071inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1072m_LogicalShift(const LHS &L, const RHS &R) {
1073 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1074}
1075
1076/// Matches bitwise logic operations.
1077template <typename LHS, typename RHS>
1078inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1079m_BitwiseLogic(const LHS &L, const RHS &R) {
1080 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1081}
1082
1083/// Matches integer division operations.
1084template <typename LHS, typename RHS>
1085inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1086 const RHS &R) {
1087 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1088}
1089
1090/// Matches integer remainder operations.
1091template <typename LHS, typename RHS>
1092inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1093 const RHS &R) {
1094 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1095}
1096
1097//===----------------------------------------------------------------------===//
1098// Class that matches exact binary ops.
1099//
1100template <typename SubPattern_t> struct Exact_match {
1101 SubPattern_t SubPattern;
1102
1103 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1104
1105 template <typename OpTy> bool match(OpTy *V) {
1106 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1107 return PEO->isExact() && SubPattern.match(V);
1108 return false;
1109 }
1110};
1111
1112template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1113 return SubPattern;
1114}
1115
1116//===----------------------------------------------------------------------===//
1117// Matchers for CmpInst classes
1118//
1119
1120template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1121 bool Commutable = false>
1122struct CmpClass_match {
1123 PredicateTy &Predicate;
1124 LHS_t L;
1125 RHS_t R;
1126
1127 // The evaluation order is always stable, regardless of Commutability.
1128 // The LHS is always matched first.
1129 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1130 : Predicate(Pred), L(LHS), R(RHS) {}
1131
1132 template <typename OpTy> bool match(OpTy *V) {
1133 if (auto *I = dyn_cast<Class>(V))
1134 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1135 (Commutable && L.match(I->getOperand(1)) &&
1136 R.match(I->getOperand(0)))) {
1137 Predicate = I->getPredicate();
1138 return true;
1139 }
1140 return false;
1141 }
1142};
1143
1144template <typename LHS, typename RHS>
1145inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1146m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1147 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1148}
1149
1150template <typename LHS, typename RHS>
1151inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1152m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1153 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1154}
1155
1156template <typename LHS, typename RHS>
1157inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1158m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1159 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1160}
1161
1162//===----------------------------------------------------------------------===//
1163// Matchers for instructions with a given opcode and number of operands.
1164//
1165
1166/// Matches instructions with Opcode and three operands.
1167template <typename T0, unsigned Opcode> struct OneOps_match {
1168 T0 Op1;
1169
1170 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1171
1172 template <typename OpTy> bool match(OpTy *V) {
1173 if (V->getValueID() == Value::InstructionVal + Opcode) {
1174 auto *I = cast<Instruction>(V);
1175 return Op1.match(I->getOperand(0));
1176 }
1177 return false;
1178 }
1179};
1180
1181/// Matches instructions with Opcode and three operands.
1182template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1183 T0 Op1;
1184 T1 Op2;
1185
1186 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1187
1188 template <typename OpTy> bool match(OpTy *V) {
1189 if (V->getValueID() == Value::InstructionVal + Opcode) {
1190 auto *I = cast<Instruction>(V);
1191 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1192 }
1193 return false;
1194 }
1195};
1196
1197/// Matches instructions with Opcode and three operands.
1198template <typename T0, typename T1, typename T2, unsigned Opcode>
1199struct ThreeOps_match {
1200 T0 Op1;
1201 T1 Op2;
1202 T2 Op3;
1203
1204 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1205 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1206
1207 template <typename OpTy> bool match(OpTy *V) {
1208 if (V->getValueID() == Value::InstructionVal + Opcode) {
1209 auto *I = cast<Instruction>(V);
1210 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1211 Op3.match(I->getOperand(2));
1212 }
1213 return false;
1214 }
1215};
1216
1217/// Matches SelectInst.
1218template <typename Cond, typename LHS, typename RHS>
1219inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1220m_Select(const Cond &C, const LHS &L, const RHS &R) {
1221 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1222}
1223
1224/// This matches a select of two constants, e.g.:
1225/// m_SelectCst<-1, 0>(m_Value(V))
1226template <int64_t L, int64_t R, typename Cond>
1227inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1228 Instruction::Select>
1229m_SelectCst(const Cond &C) {
1230 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1231}
1232
1233/// Matches InsertElementInst.
1234template <typename Val_t, typename Elt_t, typename Idx_t>
1235inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1236m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1237 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1238 Val, Elt, Idx);
1239}
1240
1241/// Matches ExtractElementInst.
1242template <typename Val_t, typename Idx_t>
1243inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1244m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1245 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1246}
1247
1248/// Matches ShuffleVectorInst.
1249template <typename V1_t, typename V2_t, typename Mask_t>
1250inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1251m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1252 return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1253 m);
1254}
1255
1256/// Matches LoadInst.
1257template <typename OpTy>
1258inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1259 return OneOps_match<OpTy, Instruction::Load>(Op);
1260}
1261
1262/// Matches StoreInst.
1263template <typename ValueOpTy, typename PointerOpTy>
1264inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1265m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1266 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1267 PointerOp);
1268}
1269
1270//===----------------------------------------------------------------------===//
1271// Matchers for CastInst classes
1272//
1273
1274template <typename Op_t, unsigned Opcode> struct CastClass_match {
1275 Op_t Op;
1276
1277 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1278
1279 template <typename OpTy> bool match(OpTy *V) {
1280 if (auto *O = dyn_cast<Operator>(V))
1281 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1282 return false;
1283 }
1284};
1285
1286/// Matches BitCast.
1287template <typename OpTy>
1288inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1289 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1290}
1291
1292/// Matches PtrToInt.
1293template <typename OpTy>
1294inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1295 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1296}
1297
1298/// Matches Trunc.
1299template <typename OpTy>
1300inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1301 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1302}
1303
1304template <typename OpTy>
1305inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1306m_TruncOrSelf(const OpTy &Op) {
1307 return m_CombineOr(m_Trunc(Op), Op);
1308}
1309
1310/// Matches SExt.
1311template <typename OpTy>
1312inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1313 return CastClass_match<OpTy, Instruction::SExt>(Op);
1314}
1315
1316/// Matches ZExt.
1317template <typename OpTy>
1318inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1319 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1320}
1321
1322template <typename OpTy>
1323inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1324m_ZExtOrSelf(const OpTy &Op) {
1325 return m_CombineOr(m_ZExt(Op), Op);
1326}
1327
1328template <typename OpTy>
1329inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1330m_SExtOrSelf(const OpTy &Op) {
1331 return m_CombineOr(m_SExt(Op), Op);
1332}
1333
1334template <typename OpTy>
1335inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1336 CastClass_match<OpTy, Instruction::SExt>>
1337m_ZExtOrSExt(const OpTy &Op) {
1338 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1339}
1340
1341template <typename OpTy>
1342inline match_combine_or<
1343 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1344 CastClass_match<OpTy, Instruction::SExt>>,
1345 OpTy>
1346m_ZExtOrSExtOrSelf(const OpTy &Op) {
1347 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1348}
1349
1350/// Matches UIToFP.
1351template <typename OpTy>
1352inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1353 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1354}
1355
1356/// Matches SIToFP.
1357template <typename OpTy>
1358inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1359 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1360}
1361
1362/// Matches FPTrunc
1363template <typename OpTy>
1364inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1365 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1366}
1367
1368/// Matches FPExt
1369template <typename OpTy>
1370inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1371 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1372}
1373
1374//===----------------------------------------------------------------------===//
1375// Matchers for control flow.
1376//
1377
1378struct br_match {
1379 BasicBlock *&Succ;
1380
1381 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1382
1383 template <typename OpTy> bool match(OpTy *V) {
1384 if (auto *BI = dyn_cast<BranchInst>(V))
1385 if (BI->isUnconditional()) {
1386 Succ = BI->getSuccessor(0);
1387 return true;
1388 }
1389 return false;
1390 }
1391};
1392
1393inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1394
1395template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1396struct brc_match {
1397 Cond_t Cond;
1398 TrueBlock_t T;
1399 FalseBlock_t F;
1400
1401 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1402 : Cond(C), T(t), F(f) {}
1403
1404 template <typename OpTy> bool match(OpTy *V) {
1405 if (auto *BI = dyn_cast<BranchInst>(V))
1406 if (BI->isConditional() && Cond.match(BI->getCondition()))
1407 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1408 return false;
1409 }
1410};
1411
1412template <typename Cond_t>
1413inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1414m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1415 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1416 C, m_BasicBlock(T), m_BasicBlock(F));
1417}
1418
1419template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1420inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1421m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1422 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1423}
1424
1425//===----------------------------------------------------------------------===//
1426// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1427//
1428
1429template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1430 bool Commutable = false>
1431struct MaxMin_match {
1432 LHS_t L;
1433 RHS_t R;
1434
1435 // The evaluation order is always stable, regardless of Commutability.
1436 // The LHS is always matched first.
1437 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1438
1439 template <typename OpTy> bool match(OpTy *V) {
1440 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1441 auto *SI = dyn_cast<SelectInst>(V);
1442 if (!SI)
1443 return false;
1444 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1445 if (!Cmp)
1446 return false;
1447 // At this point we have a select conditioned on a comparison. Check that
1448 // it is the values returned by the select that are being compared.
1449 Value *TrueVal = SI->getTrueValue();
1450 Value *FalseVal = SI->getFalseValue();
1451 Value *LHS = Cmp->getOperand(0);
1452 Value *RHS = Cmp->getOperand(1);
1453 if ((TrueVal != LHS || FalseVal != RHS) &&
1454 (TrueVal != RHS || FalseVal != LHS))
1455 return false;
1456 typename CmpInst_t::Predicate Pred =
1457 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1458 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1459 if (!Pred_t::match(Pred))
1460 return false;
1461 // It does! Bind the operands.
1462 return (L.match(LHS) && R.match(RHS)) ||
1463 (Commutable && L.match(RHS) && R.match(LHS));
1464 }
1465};
1466
1467/// Helper class for identifying signed max predicates.
1468struct smax_pred_ty {
1469 static bool match(ICmpInst::Predicate Pred) {
1470 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1471 }
1472};
1473
1474/// Helper class for identifying signed min predicates.
1475struct smin_pred_ty {
1476 static bool match(ICmpInst::Predicate Pred) {
1477 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1478 }
1479};
1480
1481/// Helper class for identifying unsigned max predicates.
1482struct umax_pred_ty {
1483 static bool match(ICmpInst::Predicate Pred) {
1484 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1485 }
1486};
1487
1488/// Helper class for identifying unsigned min predicates.
1489struct umin_pred_ty {
1490 static bool match(ICmpInst::Predicate Pred) {
1491 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1492 }
1493};
1494
1495/// Helper class for identifying ordered max predicates.
1496struct ofmax_pred_ty {
1497 static bool match(FCmpInst::Predicate Pred) {
1498 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1499 }
1500};
1501
1502/// Helper class for identifying ordered min predicates.
1503struct ofmin_pred_ty {
1504 static bool match(FCmpInst::Predicate Pred) {
1505 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1506 }
1507};
1508
1509/// Helper class for identifying unordered max predicates.
1510struct ufmax_pred_ty {
1511 static bool match(FCmpInst::Predicate Pred) {
1512 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1513 }
1514};
1515
1516/// Helper class for identifying unordered min predicates.
1517struct ufmin_pred_ty {
1518 static bool match(FCmpInst::Predicate Pred) {
1519 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1520 }
1521};
1522
1523template <typename LHS, typename RHS>
1524inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1525 const RHS &R) {
1526 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1527}
1528
1529template <typename LHS, typename RHS>
1530inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1531 const RHS &R) {
1532 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1533}
1534
1535template <typename LHS, typename RHS>
1536inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1537 const RHS &R) {
1538 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1539}
1540
1541template <typename LHS, typename RHS>
1542inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1543 const RHS &R) {
1544 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1545}
1546
1547/// Match an 'ordered' floating point maximum function.
1548/// Floating point has one special value 'NaN'. Therefore, there is no total
1549/// order. However, if we can ignore the 'NaN' value (for example, because of a
1550/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1551/// semantics. In the presence of 'NaN' we have to preserve the original
1552/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1553///
1554/// max(L, R) iff L and R are not NaN
1555/// m_OrdFMax(L, R) = R iff L or R are NaN
1556template <typename LHS, typename RHS>
1557inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1558 const RHS &R) {
1559 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1560}
1561
1562/// Match an 'ordered' floating point minimum function.
1563/// Floating point has one special value 'NaN'. Therefore, there is no total
1564/// order. However, if we can ignore the 'NaN' value (for example, because of a
1565/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1566/// semantics. In the presence of 'NaN' we have to preserve the original
1567/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1568///
1569/// min(L, R) iff L and R are not NaN
1570/// m_OrdFMin(L, R) = R iff L or R are NaN
1571template <typename LHS, typename RHS>
1572inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1573 const RHS &R) {
1574 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1575}
1576
1577/// Match an 'unordered' floating point maximum function.
1578/// Floating point has one special value 'NaN'. Therefore, there is no total
1579/// order. However, if we can ignore the 'NaN' value (for example, because of a
1580/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1581/// semantics. In the presence of 'NaN' we have to preserve the original
1582/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1583///
1584/// max(L, R) iff L and R are not NaN
1585/// m_UnordFMax(L, R) = L iff L or R are NaN
1586template <typename LHS, typename RHS>
1587inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1588m_UnordFMax(const LHS &L, const RHS &R) {
1589 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1590}
1591
1592/// Match an 'unordered' floating point minimum function.
1593/// Floating point has one special value 'NaN'. Therefore, there is no total
1594/// order. However, if we can ignore the 'NaN' value (for example, because of a
1595/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1596/// semantics. In the presence of 'NaN' we have to preserve the original
1597/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1598///
1599/// min(L, R) iff L and R are not NaN
1600/// m_UnordFMin(L, R) = L iff L or R are NaN
1601template <typename LHS, typename RHS>
1602inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1603m_UnordFMin(const LHS &L, const RHS &R) {
1604 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1605}
1606
1607//===----------------------------------------------------------------------===//
1608// Matchers for overflow check patterns: e.g. (a + b) u< a
1609//
1610
1611template <typename LHS_t, typename RHS_t, typename Sum_t>
1612struct UAddWithOverflow_match {
1613 LHS_t L;
1614 RHS_t R;
1615 Sum_t S;
1616
1617 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1618 : L(L), R(R), S(S) {}
1619
1620 template <typename OpTy> bool match(OpTy *V) {
1621 Value *ICmpLHS, *ICmpRHS;
1622 ICmpInst::Predicate Pred;
1623 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1624 return false;
1625
1626 Value *AddLHS, *AddRHS;
1627 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1628
1629 // (a + b) u< a, (a + b) u< b
1630 if (Pred == ICmpInst::ICMP_ULT)
1631 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1632 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1633
1634 // a >u (a + b), b >u (a + b)
1635 if (Pred == ICmpInst::ICMP_UGT)
1636 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1637 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1638
1639 // Match special-case for increment-by-1.
1640 if (Pred == ICmpInst::ICMP_EQ) {
1641 // (a + 1) == 0
1642 // (1 + a) == 0
1643 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1644 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1645 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1646 // 0 == (a + 1)
1647 // 0 == (1 + a)
1648 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1649 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1650 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1651 }
1652
1653 return false;
1654 }
1655};
1656
1657/// Match an icmp instruction checking for unsigned overflow on addition.
1658///
1659/// S is matched to the addition whose result is being checked for overflow, and
1660/// L and R are matched to the LHS and RHS of S.
1661template <typename LHS_t, typename RHS_t, typename Sum_t>
1662UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1663m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1664 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1665}
1666
1667template <typename Opnd_t> struct Argument_match {
1668 unsigned OpI;
1669 Opnd_t Val;
1670
1671 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1672
1673 template <typename OpTy> bool match(OpTy *V) {
1674 // FIXME: Should likely be switched to use `CallBase`.
1675 if (const auto *CI = dyn_cast<CallInst>(V))
1676 return Val.match(CI->getArgOperand(OpI));
1677 return false;
1678 }
1679};
1680
1681/// Match an argument.
1682template <unsigned OpI, typename Opnd_t>
1683inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1684 return Argument_match<Opnd_t>(OpI, Op);
1685}
1686
1687/// Intrinsic matchers.
1688struct IntrinsicID_match {
1689 unsigned ID;
1690
1691 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1692
1693 template <typename OpTy> bool match(OpTy *V) {
1694 if (const auto *CI
34.1
'CI' is null
34.1
'CI' is null
34.1
'CI' is null
34.1
'CI' is null
= dyn_cast<CallInst>(V))
34
Assuming 'V' is not a 'CallInst'
35
Taking false branch
1695 if (const auto *F = CI->getCalledFunction())
1696 return F->getIntrinsicID() == ID;
1697 return false;
36
Returning zero, which participates in a condition later
1698 }
1699};
1700
1701/// Intrinsic matches are combinations of ID matchers, and argument
1702/// matchers. Higher arity matcher are defined recursively in terms of and-ing
1703/// them with lower arity matchers. Here's some convenient typedefs for up to
1704/// several arguments, and more can be added as needed
1705template <typename T0 = void, typename T1 = void, typename T2 = void,
1706 typename T3 = void, typename T4 = void, typename T5 = void,
1707 typename T6 = void, typename T7 = void, typename T8 = void,
1708 typename T9 = void, typename T10 = void>
1709struct m_Intrinsic_Ty;
1710template <typename T0> struct m_Intrinsic_Ty<T0> {
1711 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1712};
1713template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1714 using Ty =
1715 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1716};
1717template <typename T0, typename T1, typename T2>
1718struct m_Intrinsic_Ty<T0, T1, T2> {
1719 using Ty =
1720 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1721 Argument_match<T2>>;
1722};
1723template <typename T0, typename T1, typename T2, typename T3>
1724struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1725 using Ty =
1726 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1727 Argument_match<T3>>;
1728};
1729
1730/// Match intrinsic calls like this:
1731/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1732template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1733 return IntrinsicID_match(IntrID);
1734}
1735
1736template <Intrinsic::ID IntrID, typename T0>
1737inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1738 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1739}
1740
1741template <Intrinsic::ID IntrID, typename T0, typename T1>
1742inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1743 const T1 &Op1) {
1744 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1745}
1746
1747template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1748inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1749m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1750 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1751}
1752
1753template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1754 typename T3>
1755inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1756m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1757 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1758}
1759
1760// Helper intrinsic matching specializations.
1761template <typename Opnd0>
1762inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1763 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1764}
1765
1766template <typename Opnd0>
1767inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1768 return m_Intrinsic<Intrinsic::bswap>(Op0);
1769}
1770
1771template <typename Opnd0>
1772inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1773 return m_Intrinsic<Intrinsic::fabs>(Op0);
1774}
1775
1776template <typename Opnd0>
1777inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1778 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1779}
1780
1781template <typename Opnd0, typename Opnd1>
1782inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1783 const Opnd1 &Op1) {
1784 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1785}
1786
1787template <typename Opnd0, typename Opnd1>
1788inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1789 const Opnd1 &Op1) {
1790 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1791}
1792
1793//===----------------------------------------------------------------------===//
1794// Matchers for two-operands operators with the operators in either order
1795//
1796
1797/// Matches a BinaryOperator with LHS and RHS in either order.
1798template <typename LHS, typename RHS>
1799inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1800 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1801}
1802
1803/// Matches an ICmp with a predicate over LHS and RHS in either order.
1804/// Does not swap the predicate.
1805template <typename LHS, typename RHS>
1806inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1807m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1808 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1809 R);
1810}
1811
1812/// Matches a Add with LHS and RHS in either order.
1813template <typename LHS, typename RHS>
1814inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1815 const RHS &R) {
1816 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1817}
1818
1819/// Matches a Mul with LHS and RHS in either order.
1820template <typename LHS, typename RHS>
1821inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1822 const RHS &R) {
1823 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1824}
1825
1826/// Matches an And with LHS and RHS in either order.
1827template <typename LHS, typename RHS>
1828inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1829 const RHS &R) {
1830 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1831}
1832
1833/// Matches an Or with LHS and RHS in either order.
1834template <typename LHS, typename RHS>
1835inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1836 const RHS &R) {
1837 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1838}
1839
1840/// Matches an Xor with LHS and RHS in either order.
1841template <typename LHS, typename RHS>
1842inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1843 const RHS &R) {
1844 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1845}
1846
1847/// Matches a 'Neg' as 'sub 0, V'.
1848template <typename ValTy>
1849inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1850m_Neg(const ValTy &V) {
1851 return m_Sub(m_ZeroInt(), V);
1852}
1853
1854/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1855template <typename ValTy>
1856inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1857m_Not(const ValTy &V) {
1858 return m_c_Xor(V, m_AllOnes());
1859}
1860
1861/// Matches an SMin with LHS and RHS in either order.
1862template <typename LHS, typename RHS>
1863inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1864m_c_SMin(const LHS &L, const RHS &R) {
1865 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1866}
1867/// Matches an SMax with LHS and RHS in either order.
1868template <typename LHS, typename RHS>
1869inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1870m_c_SMax(const LHS &L, const RHS &R) {
1871 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1872}
1873/// Matches a UMin with LHS and RHS in either order.
1874template <typename LHS, typename RHS>
1875inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1876m_c_UMin(const LHS &L, const RHS &R) {
1877 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1878}
1879/// Matches a UMax with LHS and RHS in either order.
1880template <typename LHS, typename RHS>
1881inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1882m_c_UMax(const LHS &L, const RHS &R) {
1883 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1884}
1885
1886/// Matches FAdd with LHS and RHS in either order.
1887template <typename LHS, typename RHS>
1888inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1889m_c_FAdd(const LHS &L, const RHS &R) {
1890 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1891}
1892
1893/// Matches FMul with LHS and RHS in either order.
1894template <typename LHS, typename RHS>
1895inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1896m_c_FMul(const LHS &L, const RHS &R) {
1897 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1898}
1899
1900template <typename Opnd_t> struct Signum_match {
1901 Opnd_t Val;
1902 Signum_match(const Opnd_t &V) : Val(V) {}
1903
1904 template <typename OpTy> bool match(OpTy *V) {
1905 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1906 if (TypeSize == 0)
1907 return false;
1908
1909 unsigned ShiftWidth = TypeSize - 1;
1910 Value *OpL = nullptr, *OpR = nullptr;
1911
1912 // This is the representation of signum we match:
1913 //
1914 // signum(x) == (x >> 63) | (-x >>u 63)
1915 //
1916 // An i1 value is its own signum, so it's correct to match
1917 //
1918 // signum(x) == (x >> 0) | (-x >>u 0)
1919 //
1920 // for i1 values.
1921
1922 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1923 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1924 auto Signum = m_Or(LHS, RHS);
1925
1926 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1927 }
1928};
1929
1930/// Matches a signum pattern.
1931///
1932/// signum(x) =
1933/// x > 0 -> 1
1934/// x == 0 -> 0
1935/// x < 0 -> -1
1936template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1937 return Signum_match<Val_t>(V);
1938}
1939
1940} // end namespace PatternMatch
1941} // end namespace llvm
1942
1943#endif // LLVM_IR_PATTERNMATCH_H

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/Analysis/AliasAnalysis.h

1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the generic AliasAnalysis interface, which is used as the
10// common interface used by all clients of alias analysis information, and
11// implemented by all alias analysis implementations. Mod/Ref information is
12// also captured by this interface.
13//
14// Implementations of this interface must implement the various virtual methods,
15// which automatically provides functionality for the entire suite of client
16// APIs.
17//
18// This API identifies memory regions with the MemoryLocation class. The pointer
19// component specifies the base memory address of the region. The Size specifies
20// the maximum size (in address units) of the memory region, or
21// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22// identifies the "type" of the memory reference; see the
23// TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26// - Pointers that point to two completely different objects in memory never
27// alias, regardless of the value of the Size component.
28// - NoAlias doesn't imply inequal pointers. The most obvious example of this
29// is two pointers to constant memory. Even if they are equal, constant
30// memory is never stored to, so there will never be any dependencies.
31// In this and other situations, the pointers may be both NoAlias and
32// MustAlias at the same time. The current API can only return one result,
33// though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38#define LLVM_ANALYSIS_ALIASANALYSIS_H
39
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/None.h"
42#include "llvm/ADT/Optional.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/Analysis/MemoryLocation.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/Pass.h"
51#include <cstdint>
52#include <functional>
53#include <memory>
54#include <vector>
55
56namespace llvm {
57
58class AnalysisUsage;
59class BasicAAResult;
60class BasicBlock;
61class DominatorTree;
62class OrderedBasicBlock;
63class Value;
64
65/// The possible results of an alias query.
66///
67/// These results are always computed between two MemoryLocation objects as
68/// a query to some alias analysis.
69///
70/// Note that these are unscoped enumerations because we would like to support
71/// implicitly testing a result for the existence of any possible aliasing with
72/// a conversion to bool, but an "enum class" doesn't support this. The
73/// canonical names from the literature are suffixed and unique anyways, and so
74/// they serve as global constants in LLVM for these results.
75///
76/// See docs/AliasAnalysis.html for more information on the specific meanings
77/// of these values.
78enum AliasResult : uint8_t {
79 /// The two locations do not alias at all.
80 ///
81 /// This value is arranged to convert to false, while all other values
82 /// convert to true. This allows a boolean context to convert the result to
83 /// a binary flag indicating whether there is the possibility of aliasing.
84 NoAlias = 0,
85 /// The two locations may or may not alias. This is the least precise result.
86 MayAlias,
87 /// The two locations alias, but only due to a partial overlap.
88 PartialAlias,
89 /// The two locations precisely alias each other.
90 MustAlias,
91};
92
93/// << operator for AliasResult.
94raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
95
96/// Flags indicating whether a memory access modifies or references memory.
97///
98/// This is no access at all, a modification, a reference, or both
99/// a modification and a reference. These are specifically structured such that
100/// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
101/// work with any of the possible values.
102enum class ModRefInfo : uint8_t {
103 /// Must is provided for completeness, but no routines will return only
104 /// Must today. See definition of Must below.
105 Must = 0,
106 /// The access may reference the value stored in memory,
107 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
108 MustRef = 1,
109 /// The access may modify the value stored in memory,
110 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
111 MustMod = 2,
112 /// The access may reference, modify or both the value stored in memory,
113 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114 MustModRef = MustRef | MustMod,
115 /// The access neither references nor modifies the value stored in memory.
116 NoModRef = 4,
117 /// The access may reference the value stored in memory.
118 Ref = NoModRef | MustRef,
119 /// The access may modify the value stored in memory.
120 Mod = NoModRef | MustMod,
121 /// The access may reference and may modify the value stored in memory.
122 ModRef = Ref | Mod,
123
124 /// About Must:
125 /// Must is set in a best effort manner.
126 /// We usually do not try our best to infer Must, instead it is merely
127 /// another piece of "free" information that is presented when available.
128 /// Must set means there was certainly a MustAlias found. For calls,
129 /// where multiple arguments are checked (argmemonly), this translates to
130 /// only MustAlias or NoAlias was found.
131 /// Must is not set for RAR accesses, even if the two locations must
132 /// alias. The reason is that two read accesses translate to an early return
133 /// of NoModRef. An additional alias check to set Must may be
134 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
135 /// We refer to Must being *set* when the most significant bit is *cleared*.
136 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
137};
138
139LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isNoModRef(const ModRefInfo MRI) {
140 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
141 static_cast<int>(ModRefInfo::Must);
142}
143LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isModOrRefSet(const ModRefInfo MRI) {
144 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
145}
146LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isModAndRefSet(const ModRefInfo MRI) {
147 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
148 static_cast<int>(ModRefInfo::MustModRef);
149}
150LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isModSet(const ModRefInfo MRI) {
151 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
152}
153LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isRefSet(const ModRefInfo MRI) {
154 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
155}
156LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isMustSet(const ModRefInfo MRI) {
157 return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
158}
159
160LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo setMod(const ModRefInfo MRI) {
161 return ModRefInfo(static_cast<int>(MRI) |
162 static_cast<int>(ModRefInfo::MustMod));
163}
164LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo setRef(const ModRefInfo MRI) {
165 return ModRefInfo(static_cast<int>(MRI) |
166 static_cast<int>(ModRefInfo::MustRef));
167}
168LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo setMust(const ModRefInfo MRI) {
169 return ModRefInfo(static_cast<int>(MRI) &
170 static_cast<int>(ModRefInfo::MustModRef));
171}
172LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
173 return ModRefInfo(static_cast<int>(MRI) |
174 static_cast<int>(ModRefInfo::MustModRef));
175}
176LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo clearMod(const ModRefInfo MRI) {
177 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
178}
179LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo clearRef(const ModRefInfo MRI) {
180 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
181}
182LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo clearMust(const ModRefInfo MRI) {
183 return ModRefInfo(static_cast<int>(MRI) |
184 static_cast<int>(ModRefInfo::NoModRef));
185}
186LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo unionModRef(const ModRefInfo MRI1,
187 const ModRefInfo MRI2) {
188 return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
189}
190LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
191 const ModRefInfo MRI2) {
192 return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
193}
194
195/// The locations at which a function might access memory.
196///
197/// These are primarily used in conjunction with the \c AccessKind bits to
198/// describe both the nature of access and the locations of access for a
199/// function call.
200enum FunctionModRefLocation {
201 /// Base case is no access to memory.
202 FMRL_Nowhere = 0,
203 /// Access to memory via argument pointers.
204 FMRL_ArgumentPointees = 8,
205 /// Memory that is inaccessible via LLVM IR.
206 FMRL_InaccessibleMem = 16,
207 /// Access to any memory.
208 FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
209};
210
211/// Summary of how a function affects memory in the program.
212///
213/// Loads from constant globals are not considered memory accesses for this
214/// interface. Also, functions may freely modify stack space local to their
215/// invocation without having to report it through these interfaces.
216enum FunctionModRefBehavior {
217 /// This function does not perform any non-local loads or stores to memory.
218 ///
219 /// This property corresponds to the GCC 'const' attribute.
220 /// This property corresponds to the LLVM IR 'readnone' attribute.
221 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222 FMRB_DoesNotAccessMemory =
223 FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
224
225 /// The only memory references in this function (if it has any) are
226 /// non-volatile loads from objects pointed to by its pointer-typed
227 /// arguments, with arbitrary offsets.
228 ///
229 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
230 FMRB_OnlyReadsArgumentPointees =
231 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
232
233 /// The only memory references in this function (if it has any) are
234 /// non-volatile loads and stores from objects pointed to by its
235 /// pointer-typed arguments, with arbitrary offsets.
236 ///
237 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
238 FMRB_OnlyAccessesArgumentPointees =
239 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
240
241 /// The only memory references in this function (if it has any) are
242 /// references of memory that is otherwise inaccessible via LLVM IR.
243 ///
244 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
245 FMRB_OnlyAccessesInaccessibleMem =
246 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
247
248 /// The function may perform non-volatile loads and stores of objects
249 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
250 /// it may also perform loads and stores of memory that is otherwise
251 /// inaccessible via LLVM IR.
252 ///
253 /// This property corresponds to the LLVM IR
254 /// inaccessiblemem_or_argmemonly attribute.
255 FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
256 FMRL_ArgumentPointees |
257 static_cast<int>(ModRefInfo::ModRef),
258
259 /// This function does not perform any non-local stores or volatile loads,
260 /// but may read from any memory location.
261 ///
262 /// This property corresponds to the GCC 'pure' attribute.
263 /// This property corresponds to the LLVM IR 'readonly' attribute.
264 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
265 FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
266
267 // This function does not read from memory anywhere, but may write to any
268 // memory location.
269 //
270 // This property corresponds to the LLVM IR 'writeonly' attribute.
271 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
272 FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
273
274 /// This indicates that the function could not be classified into one of the
275 /// behaviors above.
276 FMRB_UnknownModRefBehavior =
277 FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
278};
279
280// Wrapper method strips bits significant only in FunctionModRefBehavior,
281// to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
282// ModRefInfo enum changes, the wrapper can be updated to & with the new enum
283// entry with all bits set to 1.
284LLVM_NODISCARD[[clang::warn_unused_result]] inline ModRefInfo
285createModRefInfo(const FunctionModRefBehavior FMRB) {
286 return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
287}
288
289/// This class stores info we want to provide to or retain within an alias
290/// query. By default, the root query is stateless and starts with a freshly
291/// constructed info object. Specific alias analyses can use this query info to
292/// store per-query state that is important for recursive or nested queries to
293/// avoid recomputing. To enable preserving this state across multiple queries
294/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
295/// The information stored in an `AAQueryInfo` is currently limitted to the
296/// caches used by BasicAA, but can further be extended to fit other AA needs.
297class AAQueryInfo {
298public:
299 using LocPair = std::pair<MemoryLocation, MemoryLocation>;
300 using AliasCacheT = SmallDenseMap<LocPair, AliasResult, 8>;
301 AliasCacheT AliasCache;
302
303 using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
304 IsCapturedCacheT IsCapturedCache;
305
306 AAQueryInfo() : AliasCache(), IsCapturedCache() {}
307};
308
309class BatchAAResults;
310
311class AAResults {
312public:
313 // Make these results default constructable and movable. We have to spell
314 // these out because MSVC won't synthesize them.
315 AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
316 AAResults(AAResults &&Arg);
317 ~AAResults();
318
319 /// Register a specific AA result.
320 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
321 // FIXME: We should use a much lighter weight system than the usual
322 // polymorphic pattern because we don't own AAResult. It should
323 // ideally involve two pointers and no separate allocation.
324 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
325 }
326
327 /// Register a function analysis ID that the results aggregation depends on.
328 ///
329 /// This is used in the new pass manager to implement the invalidation logic
330 /// where we must invalidate the results aggregation if any of our component
331 /// analyses become invalid.
332 void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
333
334 /// Handle invalidation events in the new pass manager.
335 ///
336 /// The aggregation is invalidated if any of the underlying analyses is
337 /// invalidated.
338 bool invalidate(Function &F, const PreservedAnalyses &PA,
339 FunctionAnalysisManager::Invalidator &Inv);
340
341 //===--------------------------------------------------------------------===//
342 /// \name Alias Queries
343 /// @{
344
345 /// The main low level interface to the alias analysis implementation.
346 /// Returns an AliasResult indicating whether the two pointers are aliased to
347 /// each other. This is the interface that must be implemented by specific
348 /// alias analysis implementations.
349 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
350
351 /// A convenience wrapper around the primary \c alias interface.
352 AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
353 LocationSize V2Size) {
354 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
355 }
356
357 /// A convenience wrapper around the primary \c alias interface.
358 AliasResult alias(const Value *V1, const Value *V2) {
359 return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
360 }
361
362 /// A trivial helper function to check to see if the specified pointers are
363 /// no-alias.
364 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
365 return alias(LocA, LocB) == NoAlias;
366 }
367
368 /// A convenience wrapper around the \c isNoAlias helper interface.
369 bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
370 LocationSize V2Size) {
371 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
372 }
373
374 /// A convenience wrapper around the \c isNoAlias helper interface.
375 bool isNoAlias(const Value *V1, const Value *V2) {
376 return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
377 }
378
379 /// A trivial helper function to check to see if the specified pointers are
380 /// must-alias.
381 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
382 return alias(LocA, LocB) == MustAlias;
383 }
384
385 /// A convenience wrapper around the \c isMustAlias helper interface.
386 bool isMustAlias(const Value *V1, const Value *V2) {
387 return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
388 MustAlias;
389 }
390
391 /// Checks whether the given location points to constant memory, or if
392 /// \p OrLocal is true whether it points to a local alloca.
393 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
394
395 /// A convenience wrapper around the primary \c pointsToConstantMemory
396 /// interface.
397 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
398 return pointsToConstantMemory(MemoryLocation(P), OrLocal);
399 }
400
401 /// @}
402 //===--------------------------------------------------------------------===//
403 /// \name Simple mod/ref information
404 /// @{
405
406 /// Get the ModRef info associated with a pointer argument of a call. The
407 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
408 /// that these bits do not necessarily account for the overall behavior of
409 /// the function, but rather only provide additional per-argument
410 /// information. This never sets ModRefInfo::Must.
411 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
412
413 /// Return the behavior of the given call site.
414 FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
415
416 /// Return the behavior when calling the given function.
417 FunctionModRefBehavior getModRefBehavior(const Function *F);
418
419 /// Checks if the specified call is known to never read or write memory.
420 ///
421 /// Note that if the call only reads from known-constant memory, it is also
422 /// legal to return true. Also, calls that unwind the stack are legal for
423 /// this predicate.
424 ///
425 /// Many optimizations (such as CSE and LICM) can be performed on such calls
426 /// without worrying about aliasing properties, and many calls have this
427 /// property (e.g. calls to 'sin' and 'cos').
428 ///
429 /// This property corresponds to the GCC 'const' attribute.
430 bool doesNotAccessMemory(const CallBase *Call) {
431 return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
432 }
433
434 /// Checks if the specified function is known to never read or write memory.
435 ///
436 /// Note that if the function only reads from known-constant memory, it is
437 /// also legal to return true. Also, function that unwind the stack are legal
438 /// for this predicate.
439 ///
440 /// Many optimizations (such as CSE and LICM) can be performed on such calls
441 /// to such functions without worrying about aliasing properties, and many
442 /// functions have this property (e.g. 'sin' and 'cos').
443 ///
444 /// This property corresponds to the GCC 'const' attribute.
445 bool doesNotAccessMemory(const Function *F) {
446 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
447 }
448
449 /// Checks if the specified call is known to only read from non-volatile
450 /// memory (or not access memory at all).
451 ///
452 /// Calls that unwind the stack are legal for this predicate.
453 ///
454 /// This property allows many common optimizations to be performed in the
455 /// absence of interfering store instructions, such as CSE of strlen calls.
456 ///
457 /// This property corresponds to the GCC 'pure' attribute.
458 bool onlyReadsMemory(const CallBase *Call) {
459 return onlyReadsMemory(getModRefBehavior(Call));
460 }
461
462 /// Checks if the specified function is known to only read from non-volatile
463 /// memory (or not access memory at all).
464 ///
465 /// Functions that unwind the stack are legal for this predicate.
466 ///
467 /// This property allows many common optimizations to be performed in the
468 /// absence of interfering store instructions, such as CSE of strlen calls.
469 ///
470 /// This property corresponds to the GCC 'pure' attribute.
471 bool onlyReadsMemory(const Function *F) {
472 return onlyReadsMemory(getModRefBehavior(F));
473 }
474
475 /// Checks if functions with the specified behavior are known to only read
476 /// from non-volatile memory (or not access memory at all).
477 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
478 return !isModSet(createModRefInfo(MRB));
44
Assuming the condition is true
45
Returning the value 1, which participates in a condition later
479 }
480
481 /// Checks if functions with the specified behavior are known to only write
482 /// memory (or not access memory at all).
483 static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
484 return !isRefSet(createModRefInfo(MRB));
485 }
486
487 /// Checks if functions with the specified behavior are known to read and
488 /// write at most from objects pointed to by their pointer-typed arguments
489 /// (with arbitrary offsets).
490 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
491 return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
49
Assuming the condition is true
50
Returning the value 1, which participates in a condition later
492 }
493
494 /// Checks if functions with the specified behavior are known to potentially
495 /// read or write from objects pointed to be their pointer-typed arguments
496 /// (with arbitrary offsets).
497 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
498 return isModOrRefSet(createModRefInfo(MRB)) &&
499 (MRB & FMRL_ArgumentPointees);
500 }
501
502 /// Checks if functions with the specified behavior are known to read and
503 /// write at most from memory that is inaccessible from LLVM IR.
504 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
505 return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
506 }
507
508 /// Checks if functions with the specified behavior are known to potentially
509 /// read or write from memory that is inaccessible from LLVM IR.
510 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
511 return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
512 }
513
514 /// Checks if functions with the specified behavior are known to read and
515 /// write at most from memory that is inaccessible from LLVM IR or objects
516 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
517 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
518 return !(MRB & FMRL_Anywhere &
519 ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
520 }
521
522 /// getModRefInfo (for call sites) - Return information about whether
523 /// a particular call site modifies or reads the specified memory location.
524 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
525
526 /// getModRefInfo (for call sites) - A convenience wrapper.
527 ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
528 LocationSize Size) {
529 return getModRefInfo(Call, MemoryLocation(P, Size));
530 }
531
532 /// getModRefInfo (for loads) - Return information about whether
533 /// a particular load modifies or reads the specified memory location.
534 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
535
536 /// getModRefInfo (for loads) - A convenience wrapper.
537 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
538 LocationSize Size) {
539 return getModRefInfo(L, MemoryLocation(P, Size));
540 }
541
542 /// getModRefInfo (for stores) - Return information about whether
543 /// a particular store modifies or reads the specified memory location.
544 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
545
546 /// getModRefInfo (for stores) - A convenience wrapper.
547 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
548 LocationSize Size) {
549 return getModRefInfo(S, MemoryLocation(P, Size));
550 }
551
552 /// getModRefInfo (for fences) - Return information about whether
553 /// a particular store modifies or reads the specified memory location.
554 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
555
556 /// getModRefInfo (for fences) - A convenience wrapper.
557 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
558 LocationSize Size) {
559 return getModRefInfo(S, MemoryLocation(P, Size));
560 }
561
562 /// getModRefInfo (for cmpxchges) - Return information about whether
563 /// a particular cmpxchg modifies or reads the specified memory location.
564 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
565 const MemoryLocation &Loc);
566
567 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
568 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
569 LocationSize Size) {
570 return getModRefInfo(CX, MemoryLocation(P, Size));
571 }
572
573 /// getModRefInfo (for atomicrmws) - Return information about whether
574 /// a particular atomicrmw modifies or reads the specified memory location.
575 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
576
577 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
578 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
579 LocationSize Size) {
580 return getModRefInfo(RMW, MemoryLocation(P, Size));
581 }
582
583 /// getModRefInfo (for va_args) - Return information about whether
584 /// a particular va_arg modifies or reads the specified memory location.
585 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
586
587 /// getModRefInfo (for va_args) - A convenience wrapper.
588 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
589 LocationSize Size) {
590 return getModRefInfo(I, MemoryLocation(P, Size));
591 }
592
593 /// getModRefInfo (for catchpads) - Return information about whether
594 /// a particular catchpad modifies or reads the specified memory location.
595 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
596
597 /// getModRefInfo (for catchpads) - A convenience wrapper.
598 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
599 LocationSize Size) {
600 return getModRefInfo(I, MemoryLocation(P, Size));
601 }
602
603 /// getModRefInfo (for catchrets) - Return information about whether
604 /// a particular catchret modifies or reads the specified memory location.
605 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
606
607 /// getModRefInfo (for catchrets) - A convenience wrapper.
608 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
609 LocationSize Size) {
610 return getModRefInfo(I, MemoryLocation(P, Size));
611 }
612
613 /// Check whether or not an instruction may read or write the optionally
614 /// specified memory location.
615 ///
616 ///
617 /// An instruction that doesn't read or write memory may be trivially LICM'd
618 /// for example.
619 ///
620 /// For function calls, this delegates to the alias-analysis specific
621 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
622 /// helpers above.
623 ModRefInfo getModRefInfo(const Instruction *I,
624 const Optional<MemoryLocation> &OptLoc) {
625 AAQueryInfo AAQIP;
626 return getModRefInfo(I, OptLoc, AAQIP);
627 }
628
629 /// A convenience wrapper for constructing the memory location.
630 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
631 LocationSize Size) {
632 return getModRefInfo(I, MemoryLocation(P, Size));
633 }
634
635 /// Return information about whether a call and an instruction may refer to
636 /// the same memory locations.
637 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
638
639 /// Return information about whether two call sites may refer to the same set
640 /// of memory locations. See the AA documentation for details:
641 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
642 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
643
644 /// Return information about whether a particular call site modifies
645 /// or reads the specified memory location \p MemLoc before instruction \p I
646 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
647 /// instruction ordering queries inside the BasicBlock containing \p I.
648 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
649 /// set.
650 ModRefInfo callCapturesBefore(const Instruction *I,
651 const MemoryLocation &MemLoc, DominatorTree *DT,
652 OrderedBasicBlock *OBB = nullptr);
653
654 /// A convenience wrapper to synthesize a memory location.
655 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
656 LocationSize Size, DominatorTree *DT,
657 OrderedBasicBlock *OBB = nullptr) {
658 return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
659 }
660
661 /// @}
662 //===--------------------------------------------------------------------===//
663 /// \name Higher level methods for querying mod/ref information.
664 /// @{
665
666 /// Check if it is possible for execution of the specified basic block to
667 /// modify the location Loc.
668 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
669
670 /// A convenience wrapper synthesizing a memory location.
671 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
672 LocationSize Size) {
673 return canBasicBlockModify(BB, MemoryLocation(P, Size));
674 }
675
676 /// Check if it is possible for the execution of the specified instructions
677 /// to mod\ref (according to the mode) the location Loc.
678 ///
679 /// The instructions to consider are all of the instructions in the range of
680 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
681 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
682 const MemoryLocation &Loc,
683 const ModRefInfo Mode);
684
685 /// A convenience wrapper synthesizing a memory location.
686 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
687 const Value *Ptr, LocationSize Size,
688 const ModRefInfo Mode) {
689 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
690 }
691
692private:
693 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
694 AAQueryInfo &AAQI);
695 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
696 bool OrLocal = false);
697 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
698 AAQueryInfo &AAQIP);
699 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
700 AAQueryInfo &AAQI);
701 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
702 AAQueryInfo &AAQI);
703 ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
704 AAQueryInfo &AAQI);
705 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
706 AAQueryInfo &AAQI);
707 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
708 AAQueryInfo &AAQI);
709 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
710 AAQueryInfo &AAQI);
711 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
712 const MemoryLocation &Loc, AAQueryInfo &AAQI);
713 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
714 AAQueryInfo &AAQI);
715 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
716 AAQueryInfo &AAQI);
717 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
718 AAQueryInfo &AAQI);
719 ModRefInfo getModRefInfo(const Instruction *I,
720 const Optional<MemoryLocation> &OptLoc,
721 AAQueryInfo &AAQIP) {
722 if (OptLoc == None) {
723 if (const auto *Call = dyn_cast<CallBase>(I)) {
724 return createModRefInfo(getModRefBehavior(Call));
725 }
726 }
727
728 const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
729
730 switch (I->getOpcode()) {
731 case Instruction::VAArg:
732 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
733 case Instruction::Load:
734 return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
735 case Instruction::Store:
736 return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
737 case Instruction::Fence:
738 return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
739 case Instruction::AtomicCmpXchg:
740 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
741 case Instruction::AtomicRMW:
742 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
743 case Instruction::Call:
744 return getModRefInfo((const CallInst *)I, Loc, AAQIP);
745 case Instruction::Invoke:
746 return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
747 case Instruction::CatchPad:
748 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
749 case Instruction::CatchRet:
750 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
751 default:
752 return ModRefInfo::NoModRef;
753 }
754 }
755
756 class Concept;
757
758 template <typename T> class Model;
759
760 template <typename T> friend class AAResultBase;
761
762 const TargetLibraryInfo &TLI;
763
764 std::vector<std::unique_ptr<Concept>> AAs;
765
766 std::vector<AnalysisKey *> AADeps;
767
768 friend class BatchAAResults;
769};
770
771/// This class is a wrapper over an AAResults, and it is intended to be used
772/// only when there are no IR changes inbetween queries. BatchAAResults is
773/// reusing the same `AAQueryInfo` to preserve the state across queries,
774/// esentially making AA work in "batch mode". The internal state cannot be
775/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
776/// or create a new BatchAAResults.
777class BatchAAResults {
778 AAResults &AA;
779 AAQueryInfo AAQI;
780
781public:
782 BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
783 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
784 return AA.alias(LocA, LocB, AAQI);
785 }
786 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
787 return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
788 }
789 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
790 return AA.getModRefInfo(Call, Loc, AAQI);
791 }
792 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
793 return AA.getModRefInfo(Call1, Call2, AAQI);
794 }
795 ModRefInfo getModRefInfo(const Instruction *I,
796 const Optional<MemoryLocation> &OptLoc) {
797 return AA.getModRefInfo(I, OptLoc, AAQI);
798 }
799 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
800 return AA.getModRefInfo(I, Call2, AAQI);
801 }
802 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
803 return AA.getArgModRefInfo(Call, ArgIdx);
804 }
805 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
806 return AA.getModRefBehavior(Call);
807 }
808};
809
810/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
811/// pointer or reference.
812using AliasAnalysis = AAResults;
813
814/// A private abstract base class describing the concept of an individual alias
815/// analysis implementation.
816///
817/// This interface is implemented by any \c Model instantiation. It is also the
818/// interface which a type used to instantiate the model must provide.
819///
820/// All of these methods model methods by the same name in the \c
821/// AAResults class. Only differences and specifics to how the
822/// implementations are called are documented here.
823class AAResults::Concept {
824public:
825 virtual ~Concept() = 0;
826
827 /// An update API used internally by the AAResults to provide
828 /// a handle back to the top level aggregation.
829 virtual void setAAResults(AAResults *NewAAR) = 0;
830
831 //===--------------------------------------------------------------------===//
832 /// \name Alias Queries
833 /// @{
834
835 /// The main low level interface to the alias analysis implementation.
836 /// Returns an AliasResult indicating whether the two pointers are aliased to
837 /// each other. This is the interface that must be implemented by specific
838 /// alias analysis implementations.
839 virtual AliasResult alias(const MemoryLocation &LocA,
840 const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
841
842 /// Checks whether the given location points to constant memory, or if
843 /// \p OrLocal is true whether it points to a local alloca.
844 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
845 AAQueryInfo &AAQI, bool OrLocal) = 0;
846
847 /// @}
848 //===--------------------------------------------------------------------===//
849 /// \name Simple mod/ref information
850 /// @{
851
852 /// Get the ModRef info associated with a pointer argument of a callsite. The
853 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
854 /// that these bits do not necessarily account for the overall behavior of
855 /// the function, but rather only provide additional per-argument
856 /// information.
857 virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
858 unsigned ArgIdx) = 0;
859
860 /// Return the behavior of the given call site.
861 virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
862
863 /// Return the behavior when calling the given function.
864 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
865
866 /// getModRefInfo (for call sites) - Return information about whether
867 /// a particular call site modifies or reads the specified memory location.
868 virtual ModRefInfo getModRefInfo(const CallBase *Call,
869 const MemoryLocation &Loc,
870 AAQueryInfo &AAQI) = 0;
871
872 /// Return information about whether two call sites may refer to the same set
873 /// of memory locations. See the AA documentation for details:
874 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
875 virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
876 AAQueryInfo &AAQI) = 0;
877
878 /// @}
879};
880
881/// A private class template which derives from \c Concept and wraps some other
882/// type.
883///
884/// This models the concept by directly forwarding each interface point to the
885/// wrapped type which must implement a compatible interface. This provides
886/// a type erased binding.
887template <typename AAResultT> class AAResults::Model final : public Concept {
888 AAResultT &Result;
889
890public:
891 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
892 Result.setAAResults(&AAR);
893 }
894 ~Model() override = default;
895
896 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
897
898 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
899 AAQueryInfo &AAQI) override {
900 return Result.alias(LocA, LocB, AAQI);
901 }
902
903 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
904 bool OrLocal) override {
905 return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
906 }
907
908 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
909 return Result.getArgModRefInfo(Call, ArgIdx);
910 }
911
912 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
913 return Result.getModRefBehavior(Call);
914 }
915
916 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
917 return Result.getModRefBehavior(F);
918 }
919
920 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
921 AAQueryInfo &AAQI) override {
922 return Result.getModRefInfo(Call, Loc, AAQI);
923 }
924
925 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
926 AAQueryInfo &AAQI) override {
927 return Result.getModRefInfo(Call1, Call2, AAQI);
928 }
929};
930
931/// A CRTP-driven "mixin" base class to help implement the function alias
932/// analysis results concept.
933///
934/// Because of the nature of many alias analysis implementations, they often
935/// only implement a subset of the interface. This base class will attempt to
936/// implement the remaining portions of the interface in terms of simpler forms
937/// of the interface where possible, and otherwise provide conservatively
938/// correct fallback implementations.
939///
940/// Implementors of an alias analysis should derive from this CRTP, and then
941/// override specific methods that they wish to customize. There is no need to
942/// use virtual anywhere, the CRTP base class does static dispatch to the
943/// derived type passed into it.
944template <typename DerivedT> class AAResultBase {
945 // Expose some parts of the interface only to the AAResults::Model
946 // for wrapping. Specifically, this allows the model to call our
947 // setAAResults method without exposing it as a fully public API.
948 friend class AAResults::Model<DerivedT>;
949
950 /// A pointer to the AAResults object that this AAResult is
951 /// aggregated within. May be null if not aggregated.
952 AAResults *AAR = nullptr;
953
954 /// Helper to dispatch calls back through the derived type.
955 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
956
957 /// A setter for the AAResults pointer, which is used to satisfy the
958 /// AAResults::Model contract.
959 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
960
961protected:
962 /// This proxy class models a common pattern where we delegate to either the
963 /// top-level \c AAResults aggregation if one is registered, or to the
964 /// current result if none are registered.
965 class AAResultsProxy {
966 AAResults *AAR;
967 DerivedT &CurrentResult;
968
969 public:
970 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
971 : AAR(AAR), CurrentResult(CurrentResult) {}
972
973 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
974 AAQueryInfo &AAQI) {
975 return AAR ? AAR->alias(LocA, LocB, AAQI)
976 : CurrentResult.alias(LocA, LocB, AAQI);
977 }
978
979 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
980 bool OrLocal) {
981 return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
982 : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
983 }
984
985 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
986 return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
987 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
988 }
989
990 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
991 return AAR ? AAR->getModRefBehavior(Call)
992 : CurrentResult.getModRefBehavior(Call);
993 }
994
995 FunctionModRefBehavior getModRefBehavior(const Function *F) {
996 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
997 }
998
999 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1000 AAQueryInfo &AAQI) {
1001 return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1002 : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1003 }
1004
1005 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1006 AAQueryInfo &AAQI) {
1007 return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1008 : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1009 }
1010 };
1011
1012 explicit AAResultBase() = default;
1013
1014 // Provide all the copy and move constructors so that derived types aren't
1015 // constrained.
1016 AAResultBase(const AAResultBase &Arg) {}
1017 AAResultBase(AAResultBase &&Arg) {}
1018
1019 /// Get a proxy for the best AA result set to query at this time.
1020 ///
1021 /// When this result is part of a larger aggregation, this will proxy to that
1022 /// aggregation. When this result is used in isolation, it will just delegate
1023 /// back to the derived class's implementation.
1024 ///
1025 /// Note that callers of this need to take considerable care to not cause
1026 /// performance problems when they use this routine, in the case of a large
1027 /// number of alias analyses being aggregated, it can be expensive to walk
1028 /// back across the chain.
1029 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1030
1031public:
1032 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1033 AAQueryInfo &AAQI) {
1034 return MayAlias;
1035 }
1036
1037 bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1038 bool OrLocal) {
1039 return false;
1040 }
1041
1042 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1043 return ModRefInfo::ModRef;
1044 }
1045
1046 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1047 return FMRB_UnknownModRefBehavior;
1048 }
1049
1050 FunctionModRefBehavior getModRefBehavior(const Function *F) {
1051 return FMRB_UnknownModRefBehavior;
1052 }
1053
1054 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1055 AAQueryInfo &AAQI) {
1056 return ModRefInfo::ModRef;
1057 }
1058
1059 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1060 AAQueryInfo &AAQI) {
1061 return ModRefInfo::ModRef;
1062 }
1063};
1064
1065/// Return true if this pointer is returned by a noalias function.
1066bool isNoAliasCall(const Value *V);
1067
1068/// Return true if this is an argument with the noalias attribute.
1069bool isNoAliasArgument(const Value *V);
1070
1071/// Return true if this pointer refers to a distinct and identifiable object.
1072/// This returns true for:
1073/// Global Variables and Functions (but not Global Aliases)
1074/// Allocas
1075/// ByVal and NoAlias Arguments
1076/// NoAlias returns (e.g. calls to malloc)
1077///
1078bool isIdentifiedObject(const Value *V);
1079
1080/// Return true if V is umabigously identified at the function-level.
1081/// Different IdentifiedFunctionLocals can't alias.
1082/// Further, an IdentifiedFunctionLocal can not alias with any function
1083/// arguments other than itself, which is not necessarily true for
1084/// IdentifiedObjects.
1085bool isIdentifiedFunctionLocal(const Value *V);
1086
1087/// A manager for alias analyses.
1088///
1089/// This class can have analyses registered with it and when run, it will run
1090/// all of them and aggregate their results into single AA results interface
1091/// that dispatches across all of the alias analysis results available.
1092///
1093/// Note that the order in which analyses are registered is very significant.
1094/// That is the order in which the results will be aggregated and queried.
1095///
1096/// This manager effectively wraps the AnalysisManager for registering alias
1097/// analyses. When you register your alias analysis with this manager, it will
1098/// ensure the analysis itself is registered with its AnalysisManager.
1099///
1100/// The result of this analysis is only invalidated if one of the particular
1101/// aggregated AA results end up being invalidated. This removes the need to
1102/// explicitly preserve the results of `AAManager`. Note that analyses should no
1103/// longer be registered once the `AAManager` is run.
1104class AAManager : public AnalysisInfoMixin<AAManager> {
1105public:
1106 using Result = AAResults;
1107
1108 /// Register a specific AA result.
1109 template <typename AnalysisT> void registerFunctionAnalysis() {
1110 ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1111 }
1112
1113 /// Register a specific AA result.
1114 template <typename AnalysisT> void registerModuleAnalysis() {
1115 ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1116 }
1117
1118 Result run(Function &F, FunctionAnalysisManager &AM) {
1119 Result R(AM.getResult<TargetLibraryAnalysis>(F));
1120 for (auto &Getter : ResultGetters)
1121 (*Getter)(F, AM, R);
1122 return R;
1123 }
1124
1125private:
1126 friend AnalysisInfoMixin<AAManager>;
1127
1128 static AnalysisKey Key;
1129
1130 SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1131 AAResults &AAResults),
1132 4> ResultGetters;
1133
1134 template <typename AnalysisT>
1135 static void getFunctionAAResultImpl(Function &F,
1136 FunctionAnalysisManager &AM,
1137 AAResults &AAResults) {
1138 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1139 AAResults.addAADependencyID(AnalysisT::ID());
1140 }
1141
1142 template <typename AnalysisT>
1143 static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1144 AAResults &AAResults) {
1145 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1146 auto &MAM = MAMProxy.getManager();
1147 if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1148 AAResults.addAAResult(*R);
1149 MAMProxy
1150 .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1151 }
1152 }
1153};
1154
1155/// A wrapper pass to provide the legacy pass manager access to a suitably
1156/// prepared AAResults object.
1157class AAResultsWrapperPass : public FunctionPass {
1158 std::unique_ptr<AAResults> AAR;
1159
1160public:
1161 static char ID;
1162
1163 AAResultsWrapperPass();
1164
1165 AAResults &getAAResults() { return *AAR; }
1166 const AAResults &getAAResults() const { return *AAR; }
1167
1168 bool runOnFunction(Function &F) override;
1169
1170 void getAnalysisUsage(AnalysisUsage &AU) const override;
1171};
1172
1173/// A wrapper pass for external alias analyses. This just squirrels away the
1174/// callback used to run any analyses and register their results.
1175struct ExternalAAWrapperPass : ImmutablePass {
1176 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1177
1178 CallbackT CB;
1179
1180 static char ID;
1181
1182 ExternalAAWrapperPass() : ImmutablePass(ID) {
1183 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1184 }
1185
1186 explicit ExternalAAWrapperPass(CallbackT CB)
1187 : ImmutablePass(ID), CB(std::move(CB)) {
1188 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1189 }
1190
1191 void getAnalysisUsage(AnalysisUsage &AU) const override {
1192 AU.setPreservesAll();
1193 }
1194};
1195
1196FunctionPass *createAAResultsWrapperPass();
1197
1198/// A wrapper pass around a callback which can be used to populate the
1199/// AAResults in the AAResultsWrapperPass from an external AA.
1200///
1201/// The callback provided here will be used each time we prepare an AAResults
1202/// object, and will receive a reference to the function wrapper pass, the
1203/// function, and the AAResults object to populate. This should be used when
1204/// setting up a custom pass pipeline to inject a hook into the AA results.
1205ImmutablePass *createExternalAAWrapperPass(
1206 std::function<void(Pass &, Function &, AAResults &)> Callback);
1207
1208/// A helper for the legacy pass manager to create a \c AAResults
1209/// object populated to the best of our ability for a particular function when
1210/// inside of a \c ModulePass or a \c CallGraphSCCPass.
1211///
1212/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1213/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1214/// getAnalysisUsage.
1215AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1216
1217/// A helper for the legacy pass manager to populate \p AU to add uses to make
1218/// sure the analyses required by \p createLegacyPMAAResults are available.
1219void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1220
1221} // end namespace llvm
1222
1223#endif // LLVM_ANALYSIS_ALIASANALYSIS_H

/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h

1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/CBindingWrapping.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/TypeSize.h"
25#include <cassert>
26#include <cstdint>
27#include <iterator>
28
29namespace llvm {
30
31template<class GraphType> struct GraphTraits;
32class IntegerType;
33class LLVMContext;
34class PointerType;
35class raw_ostream;
36class StringRef;
37
38/// The instances of the Type class are immutable: once they are created,
39/// they are never changed. Also note that only one instance of a particular
40/// type is ever created. Thus seeing if two types are equal is a matter of
41/// doing a trivial pointer comparison. To enforce that no two equal instances
42/// are created, Type instances can only be created via static factory methods
43/// in class Type and in derived classes. Once allocated, Types are never
44/// free'd.
45///
46class Type {
47public:
48 //===--------------------------------------------------------------------===//
49 /// Definitions of all of the base types for the Type system. Based on this
50 /// value, you can cast to a class defined in DerivedTypes.h.
51 /// Note: If you add an element to this, you need to add an element to the
52 /// Type::getPrimitiveType function, or else things will break!
53 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54 ///
55 enum TypeID {
56 // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
57 VoidTyID = 0, ///< 0: type with no size
58 HalfTyID, ///< 1: 16-bit floating point type
59 FloatTyID, ///< 2: 32-bit floating point type
60 DoubleTyID, ///< 3: 64-bit floating point type
61 X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
62 FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
63 PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
64 LabelTyID, ///< 7: Labels
65 MetadataTyID, ///< 8: Metadata
66 X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
67 TokenTyID, ///< 10: Tokens
68
69 // Derived types... see DerivedTypes.h file.
70 // Make sure FirstDerivedTyID stays up to date!
71 IntegerTyID, ///< 11: Arbitrary bit width integers
72 FunctionTyID, ///< 12: Functions
73 StructTyID, ///< 13: Structures
74 ArrayTyID, ///< 14: Arrays
75 PointerTyID, ///< 15: Pointers
76 VectorTyID ///< 16: SIMD 'packed' format, or other vector type
77 };
78
79private:
80 /// This refers to the LLVMContext in which this type was uniqued.
81 LLVMContext &Context;
82
83 TypeID ID : 8; // The current base type of this type.
84 unsigned SubclassData : 24; // Space for subclasses to store data.
85 // Note that this should be synchronized with
86 // MAX_INT_BITS value in IntegerType class.
87
88protected:
89 friend class LLVMContextImpl;
90
91 explicit Type(LLVMContext &C, TypeID tid)
92 : Context(C), ID(tid), SubclassData(0) {}
93 ~Type() = default;
94
95 unsigned getSubclassData() const { return SubclassData; }
96
97 void setSubclassData(unsigned val) {
98 SubclassData = val;
99 // Ensure we don't have any accidental truncation.
100 assert(getSubclassData() == val && "Subclass data too large for field")((getSubclassData() == val && "Subclass data too large for field"
) ? static_cast<void> (0) : __assert_fail ("getSubclassData() == val && \"Subclass data too large for field\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 100, __PRETTY_FUNCTION__))
;
101 }
102
103 /// Keeps track of how many Type*'s there are in the ContainedTys list.
104 unsigned NumContainedTys = 0;
105
106 /// A pointer to the array of Types contained by this Type. For example, this
107 /// includes the arguments of a function type, the elements of a structure,
108 /// the pointee of a pointer, the element type of an array, etc. This pointer
109 /// may be 0 for types that don't contain other types (Integer, Double,
110 /// Float).
111 Type * const *ContainedTys = nullptr;
112
113 static bool isSequentialType(TypeID TyID) {
114 return TyID == ArrayTyID || TyID == VectorTyID;
115 }
116
117public:
118 /// Print the current type.
119 /// Omit the type details if \p NoDetails == true.
120 /// E.g., let %st = type { i32, i16 }
121 /// When \p NoDetails is true, we only print %st.
122 /// Put differently, \p NoDetails prints the type as if
123 /// inlined with the operands when printing an instruction.
124 void print(raw_ostream &O, bool IsForDebug = false,
125 bool NoDetails = false) const;
126
127 void dump() const;
128
129 /// Return the LLVMContext in which this type was uniqued.
130 LLVMContext &getContext() const { return Context; }
131
132 //===--------------------------------------------------------------------===//
133 // Accessors for working with types.
134 //
135
136 /// Return the type id for the type. This will return one of the TypeID enum
137 /// elements defined above.
138 TypeID getTypeID() const { return ID; }
139
140 /// Return true if this is 'void'.
141 bool isVoidTy() const { return getTypeID() == VoidTyID; }
142
143 /// Return true if this is 'half', a 16-bit IEEE fp type.
144 bool isHalfTy() const { return getTypeID() == HalfTyID; }
145
146 /// Return true if this is 'float', a 32-bit IEEE fp type.
147 bool isFloatTy() const { return getTypeID() == FloatTyID; }
148
149 /// Return true if this is 'double', a 64-bit IEEE fp type.
150 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151
152 /// Return true if this is x86 long double.
153 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154
155 /// Return true if this is 'fp128'.
156 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157
158 /// Return true if this is powerpc long double.
159 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160
161 /// Return true if this is one of the six floating-point types
162 bool isFloatingPointTy() const {
163 return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
164 getTypeID() == DoubleTyID ||
165 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
166 getTypeID() == PPC_FP128TyID;
167 }
168
169 const fltSemantics &getFltSemantics() const {
170 switch (getTypeID()) {
171 case HalfTyID: return APFloat::IEEEhalf();
172 case FloatTyID: return APFloat::IEEEsingle();
173 case DoubleTyID: return APFloat::IEEEdouble();
174 case X86_FP80TyID: return APFloat::x87DoubleExtended();
175 case FP128TyID: return APFloat::IEEEquad();
176 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
177 default: llvm_unreachable("Invalid floating type")::llvm::llvm_unreachable_internal("Invalid floating type", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 177)
;
178 }
179 }
180
181 /// Return true if this is X86 MMX.
182 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
183
184 /// Return true if this is a FP type or a vector of FP.
185 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
186
187 /// Return true if this is 'label'.
188 bool isLabelTy() const { return getTypeID() == LabelTyID; }
189
190 /// Return true if this is 'metadata'.
191 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
192
193 /// Return true if this is 'token'.
194 bool isTokenTy() const { return getTypeID() == TokenTyID; }
195
196 /// True if this is an instance of IntegerType.
197 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
198
199 /// Return true if this is an IntegerType of the given width.
200 bool isIntegerTy(unsigned Bitwidth) const;
201
202 /// Return true if this is an integer type or a vector of integer types.
203 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
204
205 /// Return true if this is an integer type or a vector of integer types of
206 /// the given width.
207 bool isIntOrIntVectorTy(unsigned BitWidth) const {
208 return getScalarType()->isIntegerTy(BitWidth);
209 }
210
211 /// Return true if this is an integer type or a pointer type.
212 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
213
214 /// True if this is an instance of FunctionType.
215 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
216
217 /// True if this is an instance of StructType.
218 bool isStructTy() const { return getTypeID() == StructTyID; }
219
220 /// True if this is an instance of ArrayType.
221 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
222
223 /// True if this is an instance of PointerType.
224 bool isPointerTy() const { return getTypeID() == PointerTyID; }
55
Assuming the condition is true
56
Returning the value 1, which participates in a condition later
225
226 /// Return true if this is a pointer type or a vector of pointer types.
227 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
228
229 /// True if this is an instance of VectorType.
230 bool isVectorTy() const { return getTypeID() == VectorTyID; }
231
232 /// Return true if this type could be converted with a lossless BitCast to
233 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
234 /// same size only where no re-interpretation of the bits is done.
235 /// Determine if this type could be losslessly bitcast to Ty
236 bool canLosslesslyBitCastTo(Type *Ty) const;
237
238 /// Return true if this type is empty, that is, it has no elements or all of
239 /// its elements are empty.
240 bool isEmptyTy() const;
241
242 /// Return true if the type is "first class", meaning it is a valid type for a
243 /// Value.
244 bool isFirstClassType() const {
245 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
246 }
247
248 /// Return true if the type is a valid type for a register in codegen. This
249 /// includes all first-class types except struct and array types.
250 bool isSingleValueType() const {
251 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
252 isPointerTy() || isVectorTy();
253 }
254
255 /// Return true if the type is an aggregate type. This means it is valid as
256 /// the first operand of an insertvalue or extractvalue instruction. This
257 /// includes struct and array types, but does not include vector types.
258 bool isAggregateType() const {
259 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
260 }
261
262 /// Return true if it makes sense to take the size of this type. To get the
263 /// actual size for a particular target, it is reasonable to use the
264 /// DataLayout subsystem to do this.
265 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
266 // If it's a primitive, it is always sized.
267 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
268 getTypeID() == PointerTyID ||
269 getTypeID() == X86_MMXTyID)
270 return true;
271 // If it is not something that can have a size (e.g. a function or label),
272 // it doesn't have a size.
273 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
274 getTypeID() != VectorTyID)
275 return false;
276 // Otherwise we have to try harder to decide.
277 return isSizedDerivedType(Visited);
278 }
279
280 /// Return the basic size of this type if it is a primitive type. These are
281 /// fixed by LLVM and are not target-dependent.
282 /// This will return zero if the type does not have a size or is not a
283 /// primitive type.
284 ///
285 /// If this is a scalable vector type, the scalable property will be set and
286 /// the runtime size will be a positive integer multiple of the base size.
287 ///
288 /// Note that this may not reflect the size of memory allocated for an
289 /// instance of the type or the number of bytes that are written when an
290 /// instance of the type is stored to memory. The DataLayout class provides
291 /// additional query functions to provide this information.
292 ///
293 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__));
294
295 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
296 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
297 /// type.
298 unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__));
299
300 /// Return the width of the mantissa of this type. This is only valid on
301 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
302 /// ppc long double), this method returns -1.
303 int getFPMantissaWidth() const;
304
305 /// If this is a vector type, return the element type, otherwise return
306 /// 'this'.
307 Type *getScalarType() const {
308 if (isVectorTy())
309 return getVectorElementType();
310 return const_cast<Type*>(this);
311 }
312
313 //===--------------------------------------------------------------------===//
314 // Type Iteration support.
315 //
316 using subtype_iterator = Type * const *;
317
318 subtype_iterator subtype_begin() const { return ContainedTys; }
319 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
320 ArrayRef<Type*> subtypes() const {
321 return makeArrayRef(subtype_begin(), subtype_end());
322 }
323
324 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
325
326 subtype_reverse_iterator subtype_rbegin() const {
327 return subtype_reverse_iterator(subtype_end());
328 }
329 subtype_reverse_iterator subtype_rend() const {
330 return subtype_reverse_iterator(subtype_begin());
331 }
332
333 /// This method is used to implement the type iterator (defined at the end of
334 /// the file). For derived types, this returns the types 'contained' in the
335 /// derived type.
336 Type *getContainedType(unsigned i) const {
337 assert(i < NumContainedTys && "Index out of range!")((i < NumContainedTys && "Index out of range!") ? static_cast
<void> (0) : __assert_fail ("i < NumContainedTys && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 337, __PRETTY_FUNCTION__))
;
338 return ContainedTys[i];
339 }
340
341 /// Return the number of types in the derived type.
342 unsigned getNumContainedTypes() const { return NumContainedTys; }
343
344 //===--------------------------------------------------------------------===//
345 // Helper methods corresponding to subclass methods. This forces a cast to
346 // the specified subclass and calls its accessor. "getVectorNumElements" (for
347 // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
348 // only intended to cover the core methods that are frequently used, helper
349 // methods should not be added here.
350
351 inline unsigned getIntegerBitWidth() const;
352
353 inline Type *getFunctionParamType(unsigned i) const;
354 inline unsigned getFunctionNumParams() const;
355 inline bool isFunctionVarArg() const;
356
357 inline StringRef getStructName() const;
358 inline unsigned getStructNumElements() const;
359 inline Type *getStructElementType(unsigned N) const;
360
361 inline Type *getSequentialElementType() const {
362 assert(isSequentialType(getTypeID()) && "Not a sequential type!")((isSequentialType(getTypeID()) && "Not a sequential type!"
) ? static_cast<void> (0) : __assert_fail ("isSequentialType(getTypeID()) && \"Not a sequential type!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 362, __PRETTY_FUNCTION__))
;
363 return ContainedTys[0];
364 }
365
366 inline uint64_t getArrayNumElements() const;
367
368 Type *getArrayElementType() const {
369 assert(getTypeID() == ArrayTyID)((getTypeID() == ArrayTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == ArrayTyID", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 369, __PRETTY_FUNCTION__))
;
370 return ContainedTys[0];
371 }
372
373 inline bool getVectorIsScalable() const;
374 inline unsigned getVectorNumElements() const;
375 Type *getVectorElementType() const {
376 assert(getTypeID() == VectorTyID)((getTypeID() == VectorTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == VectorTyID", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 376, __PRETTY_FUNCTION__))
;
377 return ContainedTys[0];
378 }
379
380 Type *getPointerElementType() const {
381 assert(getTypeID() == PointerTyID)((getTypeID() == PointerTyID) ? static_cast<void> (0) :
__assert_fail ("getTypeID() == PointerTyID", "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 381, __PRETTY_FUNCTION__))
;
382 return ContainedTys[0];
383 }
384
385 /// Given scalar/vector integer type, returns a type with elements twice as
386 /// wide as in the original type. For vectors, preserves element count.
387 inline Type *getExtendedType() const;
388
389 /// Get the address space of this pointer or pointer vector type.
390 inline unsigned getPointerAddressSpace() const;
391
392 //===--------------------------------------------------------------------===//
393 // Static members exported by the Type class itself. Useful for getting
394 // instances of Type.
395 //
396
397 /// Return a type based on an identifier.
398 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
399
400 //===--------------------------------------------------------------------===//
401 // These are the builtin types that are always available.
402 //
403 static Type *getVoidTy(LLVMContext &C);
404 static Type *getLabelTy(LLVMContext &C);
405 static Type *getHalfTy(LLVMContext &C);
406 static Type *getFloatTy(LLVMContext &C);
407 static Type *getDoubleTy(LLVMContext &C);
408 static Type *getMetadataTy(LLVMContext &C);
409 static Type *getX86_FP80Ty(LLVMContext &C);
410 static Type *getFP128Ty(LLVMContext &C);
411 static Type *getPPC_FP128Ty(LLVMContext &C);
412 static Type *getX86_MMXTy(LLVMContext &C);
413 static Type *getTokenTy(LLVMContext &C);
414 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
415 static IntegerType *getInt1Ty(LLVMContext &C);
416 static IntegerType *getInt8Ty(LLVMContext &C);
417 static IntegerType *getInt16Ty(LLVMContext &C);
418 static IntegerType *getInt32Ty(LLVMContext &C);
419 static IntegerType *getInt64Ty(LLVMContext &C);
420 static IntegerType *getInt128Ty(LLVMContext &C);
421 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
422 int noOfBits = sizeof(ScalarTy) * CHAR_BIT8;
423 if (std::is_integral<ScalarTy>::value) {
424 return (Type*) Type::getIntNTy(C, noOfBits);
425 } else if (std::is_floating_point<ScalarTy>::value) {
426 switch (noOfBits) {
427 case 32:
428 return Type::getFloatTy(C);
429 case 64:
430 return Type::getDoubleTy(C);
431 }
432 }
433 llvm_unreachable("Unsupported type in Type::getScalarTy")::llvm::llvm_unreachable_internal("Unsupported type in Type::getScalarTy"
, "/build/llvm-toolchain-snapshot-10~svn374877/include/llvm/IR/Type.h"
, 433)
;
434 }
435
436 //===--------------------------------------------------------------------===//
437 // Convenience methods for getting pointer types with one of the above builtin
438 // types as pointee.
439 //
440 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
441 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
442 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
443 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
444 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
445 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
446 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
447 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
448 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
449 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
450 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
451 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
452 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
453
454 /// Return a pointer to the current type. This is equivalent to
455 /// PointerType::get(Foo, AddrSpace).
456 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
457
458private:
459 /// Derived types like structures and arrays are sized iff all of the members
460 /// of the type are sized as well. Since asking for their size is relatively
461 /// uncommon, move this operation out-of-line.
462 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
463};
464
465// Printing of types.
466inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
467 T.print(OS);
468 return OS;
469}
470
471// allow isa<PointerType>(x) to work without DerivedTypes.h included.
472template <> struct isa_impl<PointerType, Type> {
473 static inline bool doit(const Type &Ty) {
474 return Ty.getTypeID() == Type::PointerTyID;
475 }
476};
477
478// Create wrappers for C Binding types (see CBindingWrapping.h).
479DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast<
Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return
reinterpret_cast<LLVMTypeRef>(const_cast<Type*>(
P)); } template<typename T> inline T *unwrap(LLVMTypeRef
P) { return cast<T>(unwrap(P)); }
480
481/* Specialized opaque type conversions.
482 */
483inline Type **unwrap(LLVMTypeRef* Tys) {
484 return reinterpret_cast<Type**>(Tys);
485}
486
487inline LLVMTypeRef *wrap(Type **Tys) {
488 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
489}
490
491} // end namespace llvm
492
493#endif // LLVM_IR_TYPE_H