Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1089, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/include -I /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-11-21-121427-42170-1 -x c++ /build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// This pass uses alias analysis for two purposes:
16//
17// 1. Moving loop invariant loads and calls out of loops. If we can determine
18// that a load or call inside of a loop never aliases anything stored to,
19// we can hoist it or sink it like any other instruction.
20// 2. Scalar Promotion of Memory - If there is a store instruction inside of
21// the loop, we try to move the store to happen AFTER the loop instead of
22// inside of the loop. This can only happen if a few conditions are true:
23// A. The pointer stored through is loop invariant
24// B. There are no stores or loads in the loop which _may_ alias the
25// pointer. There are no calls in the loop which mod/ref the pointer.
26// If these conditions are true, we can promote the loads and stores in the
27// loop of the pointer to use a temporary alloca'd variable. We then use
28// the SSAUpdater to construct the appropriate SSA form for the value.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/Transforms/Scalar/LICM.h"
33#include "llvm/ADT/SetOperations.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/BasicAliasAnalysis.h"
38#include "llvm/Analysis/BlockFrequencyInfo.h"
39#include "llvm/Analysis/CaptureTracking.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/GlobalsModRef.h"
42#include "llvm/Analysis/GuardUtils.h"
43#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
44#include "llvm/Analysis/Loads.h"
45#include "llvm/Analysis/LoopInfo.h"
46#include "llvm/Analysis/LoopIterator.h"
47#include "llvm/Analysis/LoopPass.h"
48#include "llvm/Analysis/MemoryBuiltins.h"
49#include "llvm/Analysis/MemorySSA.h"
50#include "llvm/Analysis/MemorySSAUpdater.h"
51#include "llvm/Analysis/MustExecute.h"
52#include "llvm/Analysis/OptimizationRemarkEmitter.h"
53#include "llvm/Analysis/ScalarEvolution.h"
54#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
55#include "llvm/Analysis/TargetLibraryInfo.h"
56#include "llvm/Analysis/ValueTracking.h"
57#include "llvm/IR/CFG.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/DataLayout.h"
60#include "llvm/IR/DebugInfoMetadata.h"
61#include "llvm/IR/DerivedTypes.h"
62#include "llvm/IR/Dominators.h"
63#include "llvm/IR/Instructions.h"
64#include "llvm/IR/IntrinsicInst.h"
65#include "llvm/IR/LLVMContext.h"
66#include "llvm/IR/Metadata.h"
67#include "llvm/IR/PatternMatch.h"
68#include "llvm/IR/PredIteratorCache.h"
69#include "llvm/InitializePasses.h"
70#include "llvm/Support/CommandLine.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Scalar.h"
74#include "llvm/Transforms/Scalar/LoopPassManager.h"
75#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
76#include "llvm/Transforms/Utils/BasicBlockUtils.h"
77#include "llvm/Transforms/Utils/Local.h"
78#include "llvm/Transforms/Utils/LoopUtils.h"
79#include "llvm/Transforms/Utils/SSAUpdater.h"
80#include <algorithm>
81#include <utility>
82using namespace llvm;
83
84#define DEBUG_TYPE"licm" "licm"
85
86STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
87STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
88STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
89STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
90STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
91STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
92STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
93
94/// Memory promotion is enabled by default.
95static cl::opt<bool>
96 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
97 cl::desc("Disable memory promotion in LICM pass"));
98
99static cl::opt<bool> ControlFlowHoisting(
100 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
101 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
102
103static cl::opt<unsigned> HoistSinkColdnessThreshold(
104 "licm-coldness-threshold", cl::Hidden, cl::init(4),
105 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
106 "block for LICM to be considered beneficial"));
107
108static cl::opt<uint32_t> MaxNumUsesTraversed(
109 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
110 cl::desc("Max num uses visited for identifying load "
111 "invariance in loop using invariant start (default = 8)"));
112
113// Default value of zero implies we use the regular alias set tracker mechanism
114// instead of the cross product using AA to identify aliasing of the memory
115// location we are interested in.
116static cl::opt<int>
117LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
118 cl::desc("How many instruction to cross product using AA"));
119
120// Experimental option to allow imprecision in LICM in pathological cases, in
121// exchange for faster compile. This is to be removed if MemorySSA starts to
122// address the same issue. This flag applies only when LICM uses MemorySSA
123// instead on AliasSetTracker. LICM calls MemorySSAWalker's
124// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
125// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
126// which may not be precise, since optimizeUses is capped. The result is
127// correct, but we may not get as "far up" as possible to get which access is
128// clobbering the one queried.
129cl::opt<unsigned> llvm::SetLicmMssaOptCap(
130 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
131 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
132 "for faster compile. Caps the MemorySSA clobbering calls."));
133
134// Experimentally, memory promotion carries less importance than sinking and
135// hoisting. Limit when we do promotion when using MemorySSA, in order to save
136// compile time.
137cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
138 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
139 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
140 "effect. When MSSA in LICM is enabled, then this is the maximum "
141 "number of accesses allowed to be present in a loop in order to "
142 "enable memory promotion."));
143
144static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
145static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
146 const LoopSafetyInfo *SafetyInfo,
147 TargetTransformInfo *TTI, bool &FreeInLoop);
148static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
149 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
150 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
151 OptimizationRemarkEmitter *ORE);
152static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
153 BlockFrequencyInfo *BFI, const Loop *CurLoop,
154 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
155 OptimizationRemarkEmitter *ORE);
156static bool isSafeToExecuteUnconditionally(Instruction &Inst,
157 const DominatorTree *DT,
158 const Loop *CurLoop,
159 const LoopSafetyInfo *SafetyInfo,
160 OptimizationRemarkEmitter *ORE,
161 const Instruction *CtxI = nullptr);
162static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
163 AliasSetTracker *CurAST, Loop *CurLoop,
164 AAResults *AA);
165static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
166 Loop *CurLoop,
167 SinkAndHoistLICMFlags &Flags);
168static Instruction *cloneInstructionInExitBlock(
169 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
170 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
171
172static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
173 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
174
175static void moveInstructionBefore(Instruction &I, Instruction &Dest,
176 ICFLoopSafetyInfo &SafetyInfo,
177 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
178
179namespace {
180struct LoopInvariantCodeMotion {
181 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
182 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
183 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
184 OptimizationRemarkEmitter *ORE);
185
186 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
187 unsigned LicmMssaNoAccForPromotionCap)
188 : LicmMssaOptCap(LicmMssaOptCap),
189 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
190
191private:
192 unsigned LicmMssaOptCap;
193 unsigned LicmMssaNoAccForPromotionCap;
194
195 std::unique_ptr<AliasSetTracker>
196 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
197 std::unique_ptr<AliasSetTracker>
198 collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
199 MemorySSAUpdater *MSSAU);
200};
201
202struct LegacyLICMPass : public LoopPass {
203 static char ID; // Pass identification, replacement for typeid
204 LegacyLICMPass(
205 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
206 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
207 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
208 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
209 }
210
211 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
212 if (skipLoop(L))
213 return false;
214
215 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
216 MemorySSA *MSSA = EnableMSSALoopDependency
217 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
218 : nullptr;
219 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
220 BlockFrequencyInfo *BFI =
221 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
222 : nullptr;
223 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
224 // pass. Function analyses need to be preserved across loop transformations
225 // but ORE cannot be preserved (see comment before the pass definition).
226 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
227 return LICM.runOnLoop(
228 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
229 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
230 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
231 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
232 *L->getHeader()->getParent()),
233 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
234 *L->getHeader()->getParent()),
235 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
236 }
237
238 /// This transformation requires natural loop information & requires that
239 /// loop preheaders be inserted into the CFG...
240 ///
241 void getAnalysisUsage(AnalysisUsage &AU) const override {
242 AU.addPreserved<DominatorTreeWrapperPass>();
243 AU.addPreserved<LoopInfoWrapperPass>();
244 AU.addRequired<TargetLibraryInfoWrapperPass>();
245 if (EnableMSSALoopDependency) {
246 AU.addRequired<MemorySSAWrapperPass>();
247 AU.addPreserved<MemorySSAWrapperPass>();
248 }
249 AU.addRequired<TargetTransformInfoWrapperPass>();
250 getLoopAnalysisUsage(AU);
251 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
252 AU.addPreserved<LazyBlockFrequencyInfoPass>();
253 AU.addPreserved<LazyBranchProbabilityInfoPass>();
254 }
255
256private:
257 LoopInvariantCodeMotion LICM;
258};
259} // namespace
260
261PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
262 LoopStandardAnalysisResults &AR, LPMUpdater &) {
263 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
264 // pass. Function analyses need to be preserved across loop transformations
265 // but ORE cannot be preserved (see comment before the pass definition).
266 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
267
268 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
269 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
270 &AR.SE, AR.MSSA, &ORE))
271 return PreservedAnalyses::all();
272
273 auto PA = getLoopPassPreservedAnalyses();
274
275 PA.preserve<DominatorTreeAnalysis>();
276 PA.preserve<LoopAnalysis>();
277 if (AR.MSSA)
278 PA.preserve<MemorySSAAnalysis>();
279
280 return PA;
281}
282
283char LegacyLICMPass::ID = 0;
284INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
285 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
286INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
287INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
288INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
289INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
290INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
291INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
292 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
293
294Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
295Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
296 unsigned LicmMssaNoAccForPromotionCap) {
297 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
298}
299
300/// Hoist expressions out of the specified loop. Note, alias info for inner
301/// loop is not preserved so it is not a good idea to run LICM multiple
302/// times on one loop.
303bool LoopInvariantCodeMotion::runOnLoop(
304 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
305 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
306 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
307 bool Changed = false;
308
309 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 309, __PRETTY_FUNCTION__))
;
310
311 // If this loop has metadata indicating that LICM is not to be performed then
312 // just exit.
313 if (hasDisableLICMTransformsHint(L)) {
314 return false;
315 }
316
317 std::unique_ptr<AliasSetTracker> CurAST;
318 std::unique_ptr<MemorySSAUpdater> MSSAU;
319 bool NoOfMemAccTooLarge = false;
320 unsigned LicmMssaOptCounter = 0;
321
322 if (!MSSA) {
323 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using Alias Set Tracker.\n"
; } } while (false)
;
324 CurAST = collectAliasInfoForLoop(L, LI, AA);
325 } else {
326 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using MemorySSA.\n"; } } while
(false)
;
327 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
328
329 unsigned AccessCapCount = 0;
330 for (auto *BB : L->getBlocks()) {
331 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
332 for (const auto &MA : *Accesses) {
333 (void)MA;
334 AccessCapCount++;
335 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
336 NoOfMemAccTooLarge = true;
337 break;
338 }
339 }
340 }
341 if (NoOfMemAccTooLarge)
342 break;
343 }
344 }
345
346 // Get the preheader block to move instructions into...
347 BasicBlock *Preheader = L->getLoopPreheader();
348
349 // Compute loop safety information.
350 ICFLoopSafetyInfo SafetyInfo;
351 SafetyInfo.computeLoopSafetyInfo(L);
352
353 // We want to visit all of the instructions in this loop... that are not parts
354 // of our subloops (they have already had their invariants hoisted out of
355 // their loop, into this loop, so there is no need to process the BODIES of
356 // the subloops).
357 //
358 // Traverse the body of the loop in depth first order on the dominator tree so
359 // that we are guaranteed to see definitions before we see uses. This allows
360 // us to sink instructions in one pass, without iteration. After sinking
361 // instructions, we perform another pass to hoist them out of the loop.
362 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
363 LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
364 /*IsSink=*/true};
365 if (L->hasDedicatedExits())
366 Changed |=
367 sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
368 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
369 Flags.IsSink = false;
370 if (Preheader)
371 Changed |=
372 hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
373 CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE);
374
375 // Now that all loop invariants have been removed from the loop, promote any
376 // memory references to scalars that we can.
377 // Don't sink stores from loops without dedicated block exits. Exits
378 // containing indirect branches are not transformed by loop simplify,
379 // make sure we catch that. An additional load may be generated in the
380 // preheader for SSA updater, so also avoid sinking when no preheader
381 // is available.
382 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
383 !NoOfMemAccTooLarge) {
384 // Figure out the loop exits and their insertion points
385 SmallVector<BasicBlock *, 8> ExitBlocks;
386 L->getUniqueExitBlocks(ExitBlocks);
387
388 // We can't insert into a catchswitch.
389 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
390 return isa<CatchSwitchInst>(Exit->getTerminator());
391 });
392
393 if (!HasCatchSwitch) {
394 SmallVector<Instruction *, 8> InsertPts;
395 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
396 InsertPts.reserve(ExitBlocks.size());
397 if (MSSAU)
398 MSSAInsertPts.reserve(ExitBlocks.size());
399 for (BasicBlock *ExitBlock : ExitBlocks) {
400 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
401 if (MSSAU)
402 MSSAInsertPts.push_back(nullptr);
403 }
404
405 PredIteratorCache PIC;
406
407 bool Promoted = false;
408
409 // Build an AST using MSSA.
410 if (!CurAST.get())
411 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
412
413 // Loop over all of the alias sets in the tracker object.
414 for (AliasSet &AS : *CurAST) {
415 // We can promote this alias set if it has a store, if it is a "Must"
416 // alias set, if the pointer is loop invariant, and if we are not
417 // eliminating any volatile loads or stores.
418 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
419 !L->isLoopInvariant(AS.begin()->getValue()))
420 continue;
421
422 assert(((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 424, __PRETTY_FUNCTION__))
423 !AS.empty() &&((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 424, __PRETTY_FUNCTION__))
424 "Must alias set should have at least one pointer element in it!")((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 424, __PRETTY_FUNCTION__))
;
425
426 SmallSetVector<Value *, 8> PointerMustAliases;
427 for (const auto &ASI : AS)
428 PointerMustAliases.insert(ASI.getValue());
429
430 Promoted |= promoteLoopAccessesToScalars(
431 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
432 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
433 }
434
435 // Once we have promoted values across the loop body we have to
436 // recursively reform LCSSA as any nested loop may now have values defined
437 // within the loop used in the outer loop.
438 // FIXME: This is really heavy handed. It would be a bit better to use an
439 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
440 // it as it went.
441 if (Promoted)
442 formLCSSARecursively(*L, *DT, LI, SE);
443
444 Changed |= Promoted;
445 }
446 }
447
448 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
449 // specifically moving instructions across the loop boundary and so it is
450 // especially in need of sanity checking here.
451 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 451, __PRETTY_FUNCTION__))
;
452 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&(((L->isOutermost() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 453, __PRETTY_FUNCTION__))
453 "Parent loop not left in LCSSA form after LICM!")(((L->isOutermost() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 453, __PRETTY_FUNCTION__))
;
454
455 if (MSSAU.get() && VerifyMemorySSA)
456 MSSAU->getMemorySSA()->verifyMemorySSA();
457
458 if (Changed && SE)
459 SE->forgetLoopDispositions(L);
460 return Changed;
461}
462
463/// Walk the specified region of the CFG (defined by all blocks dominated by
464/// the specified block, and that are in the current loop) in reverse depth
465/// first order w.r.t the DominatorTree. This allows us to visit uses before
466/// definitions, allowing us to sink a loop body in one pass without iteration.
467///
468bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
469 DominatorTree *DT, BlockFrequencyInfo *BFI,
470 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
471 Loop *CurLoop, AliasSetTracker *CurAST,
472 MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
473 SinkAndHoistLICMFlags &Flags,
474 OptimizationRemarkEmitter *ORE) {
475
476 // Verify inputs.
477 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 479, __PRETTY_FUNCTION__))
478 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 479, __PRETTY_FUNCTION__))
479 "Unexpected input to sinkRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 479, __PRETTY_FUNCTION__))
;
480 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 481, __PRETTY_FUNCTION__))
481 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 481, __PRETTY_FUNCTION__))
;
482
483 // We want to visit children before parents. We will enque all the parents
484 // before their children in the worklist and process the worklist in reverse
485 // order.
486 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
487
488 bool Changed = false;
489 for (DomTreeNode *DTN : reverse(Worklist)) {
490 BasicBlock *BB = DTN->getBlock();
491 // Only need to process the contents of this block if it is not part of a
492 // subloop (which would already have been processed).
493 if (inSubLoop(BB, CurLoop, LI))
494 continue;
495
496 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
497 Instruction &I = *--II;
498
499 // If the instruction is dead, we would try to sink it because it isn't
500 // used in the loop, instead, just delete it.
501 if (isInstructionTriviallyDead(&I, TLI)) {
502 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
503 salvageKnowledge(&I);
504 salvageDebugInfo(I);
505 ++II;
506 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
507 Changed = true;
508 continue;
509 }
510
511 // Check to see if we can sink this instruction to the exit blocks
512 // of the loop. We can do this if the all users of the instruction are
513 // outside of the loop. In this case, it doesn't even matter if the
514 // operands of the instruction are loop invariant.
515 //
516 bool FreeInLoop = false;
517 if (!I.mayHaveSideEffects() &&
518 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
519 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
520 ORE)) {
521 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
522 if (!FreeInLoop) {
523 ++II;
524 salvageDebugInfo(I);
525 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
526 }
527 Changed = true;
528 }
529 }
530 }
531 }
532 if (MSSAU && VerifyMemorySSA)
533 MSSAU->getMemorySSA()->verifyMemorySSA();
534 return Changed;
535}
536
537namespace {
538// This is a helper class for hoistRegion to make it able to hoist control flow
539// in order to be able to hoist phis. The way this works is that we initially
540// start hoisting to the loop preheader, and when we see a loop invariant branch
541// we make note of this. When we then come to hoist an instruction that's
542// conditional on such a branch we duplicate the branch and the relevant control
543// flow, then hoist the instruction into the block corresponding to its original
544// block in the duplicated control flow.
545class ControlFlowHoister {
546private:
547 // Information about the loop we are hoisting from
548 LoopInfo *LI;
549 DominatorTree *DT;
550 Loop *CurLoop;
551 MemorySSAUpdater *MSSAU;
552
553 // A map of blocks in the loop to the block their instructions will be hoisted
554 // to.
555 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
556
557 // The branches that we can hoist, mapped to the block that marks a
558 // convergence point of their control flow.
559 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
560
561public:
562 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
563 MemorySSAUpdater *MSSAU)
564 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
565
566 void registerPossiblyHoistableBranch(BranchInst *BI) {
567 // We can only hoist conditional branches with loop invariant operands.
568 if (!ControlFlowHoisting || !BI->isConditional() ||
569 !CurLoop->hasLoopInvariantOperands(BI))
570 return;
571
572 // The branch destinations need to be in the loop, and we don't gain
573 // anything by duplicating conditional branches with duplicate successors,
574 // as it's essentially the same as an unconditional branch.
575 BasicBlock *TrueDest = BI->getSuccessor(0);
576 BasicBlock *FalseDest = BI->getSuccessor(1);
577 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
578 TrueDest == FalseDest)
579 return;
580
581 // We can hoist BI if one branch destination is the successor of the other,
582 // or both have common successor which we check by seeing if the
583 // intersection of their successors is non-empty.
584 // TODO: This could be expanded to allowing branches where both ends
585 // eventually converge to a single block.
586 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
587 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
588 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
589 BasicBlock *CommonSucc = nullptr;
590 if (TrueDestSucc.count(FalseDest)) {
591 CommonSucc = FalseDest;
592 } else if (FalseDestSucc.count(TrueDest)) {
593 CommonSucc = TrueDest;
594 } else {
595 set_intersect(TrueDestSucc, FalseDestSucc);
596 // If there's one common successor use that.
597 if (TrueDestSucc.size() == 1)
598 CommonSucc = *TrueDestSucc.begin();
599 // If there's more than one pick whichever appears first in the block list
600 // (we can't use the value returned by TrueDestSucc.begin() as it's
601 // unpredicatable which element gets returned).
602 else if (!TrueDestSucc.empty()) {
603 Function *F = TrueDest->getParent();
604 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
605 auto It = std::find_if(F->begin(), F->end(), IsSucc);
606 assert(It != F->end() && "Could not find successor in function")((It != F->end() && "Could not find successor in function"
) ? static_cast<void> (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 606, __PRETTY_FUNCTION__))
;
607 CommonSucc = &*It;
608 }
609 }
610 // The common successor has to be dominated by the branch, as otherwise
611 // there will be some other path to the successor that will not be
612 // controlled by this branch so any phi we hoist would be controlled by the
613 // wrong condition. This also takes care of avoiding hoisting of loop back
614 // edges.
615 // TODO: In some cases this could be relaxed if the successor is dominated
616 // by another block that's been hoisted and we can guarantee that the
617 // control flow has been replicated exactly.
618 if (CommonSucc && DT->dominates(BI, CommonSucc))
619 HoistableBranches[BI] = CommonSucc;
620 }
621
622 bool canHoistPHI(PHINode *PN) {
623 // The phi must have loop invariant operands.
624 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
625 return false;
626 // We can hoist phis if the block they are in is the target of hoistable
627 // branches which cover all of the predecessors of the block.
628 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
629 BasicBlock *BB = PN->getParent();
630 for (BasicBlock *PredBB : predecessors(BB))
631 PredecessorBlocks.insert(PredBB);
632 // If we have less predecessor blocks than predecessors then the phi will
633 // have more than one incoming value for the same block which we can't
634 // handle.
635 // TODO: This could be handled be erasing some of the duplicate incoming
636 // values.
637 if (PredecessorBlocks.size() != pred_size(BB))
638 return false;
639 for (auto &Pair : HoistableBranches) {
640 if (Pair.second == BB) {
641 // Which blocks are predecessors via this branch depends on if the
642 // branch is triangle-like or diamond-like.
643 if (Pair.first->getSuccessor(0) == BB) {
644 PredecessorBlocks.erase(Pair.first->getParent());
645 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
646 } else if (Pair.first->getSuccessor(1) == BB) {
647 PredecessorBlocks.erase(Pair.first->getParent());
648 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
649 } else {
650 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
651 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
652 }
653 }
654 }
655 // PredecessorBlocks will now be empty if for every predecessor of BB we
656 // found a hoistable branch source.
657 return PredecessorBlocks.empty();
658 }
659
660 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
661 if (!ControlFlowHoisting)
662 return CurLoop->getLoopPreheader();
663 // If BB has already been hoisted, return that
664 if (HoistDestinationMap.count(BB))
665 return HoistDestinationMap[BB];
666
667 // Check if this block is conditional based on a pending branch
668 auto HasBBAsSuccessor =
669 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
670 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
671 Pair.first->getSuccessor(1) == BB);
672 };
673 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
674 HasBBAsSuccessor);
675
676 // If not involved in a pending branch, hoist to preheader
677 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
678 if (It == HoistableBranches.end()) {
679 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
680 << " as hoist destination for " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
681 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getName() << " as hoist destination for " <<
BB->getName() << "\n"; } } while (false)
;
682 HoistDestinationMap[BB] = InitialPreheader;
683 return InitialPreheader;
684 }
685 BranchInst *BI = It->first;
686 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 688, __PRETTY_FUNCTION__))
687 HoistableBranches.end() &&((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 688, __PRETTY_FUNCTION__))
688 "BB is expected to be the target of at most one branch")((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 688, __PRETTY_FUNCTION__))
;
689
690 LLVMContext &C = BB->getContext();
691 BasicBlock *TrueDest = BI->getSuccessor(0);
692 BasicBlock *FalseDest = BI->getSuccessor(1);
693 BasicBlock *CommonSucc = HoistableBranches[BI];
694 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
695
696 // Create hoisted versions of blocks that currently don't have them
697 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
698 if (HoistDestinationMap.count(Orig))
699 return HoistDestinationMap[Orig];
700 BasicBlock *New =
701 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
702 HoistDestinationMap[Orig] = New;
703 DT->addNewBlock(New, HoistTarget);
704 if (CurLoop->getParentLoop())
705 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
706 ++NumCreatedBlocks;
707 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
708 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
709 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
710 return New;
711 };
712 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
713 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
714 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
715
716 // Link up these blocks with branches.
717 if (!HoistCommonSucc->getTerminator()) {
718 // The new common successor we've generated will branch to whatever that
719 // hoist target branched to.
720 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
721 assert(TargetSucc && "Expected hoist target to have a single successor")((TargetSucc && "Expected hoist target to have a single successor"
) ? static_cast<void> (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 721, __PRETTY_FUNCTION__))
;
722 HoistCommonSucc->moveBefore(TargetSucc);
723 BranchInst::Create(TargetSucc, HoistCommonSucc);
724 }
725 if (!HoistTrueDest->getTerminator()) {
726 HoistTrueDest->moveBefore(HoistCommonSucc);
727 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
728 }
729 if (!HoistFalseDest->getTerminator()) {
730 HoistFalseDest->moveBefore(HoistCommonSucc);
731 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
732 }
733
734 // If BI is being cloned to what was originally the preheader then
735 // HoistCommonSucc will now be the new preheader.
736 if (HoistTarget == InitialPreheader) {
737 // Phis in the loop header now need to use the new preheader.
738 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
739 if (MSSAU)
740 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
741 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
742 // The new preheader dominates the loop header.
743 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
744 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
745 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
746 // The preheader hoist destination is now the new preheader, with the
747 // exception of the hoist destination of this branch.
748 for (auto &Pair : HoistDestinationMap)
749 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
750 Pair.second = HoistCommonSucc;
751 }
752
753 // Now finally clone BI.
754 ReplaceInstWithInst(
755 HoistTarget->getTerminator(),
756 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
757 ++NumClonedBranches;
758
759 assert(CurLoop->getLoopPreheader() &&((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 760, __PRETTY_FUNCTION__))
760 "Hoisting blocks should not have destroyed preheader")((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 760, __PRETTY_FUNCTION__))
;
761 return HoistDestinationMap[BB];
762 }
763};
764} // namespace
765
766// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
767// only worthwhile if the destination block is actually colder than current
768// block.
769static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
770 OptimizationRemarkEmitter *ORE,
771 BlockFrequencyInfo *BFI) {
772 // Check block frequency only when runtime profile is available
773 // to avoid pathological cases. With static profile, lean towards
774 // hosting because it helps canonicalize the loop for vectorizer.
775 if (!DstBlock->getParent()->hasProfileData())
776 return true;
777
778 if (!HoistSinkColdnessThreshold || !BFI)
779 return true;
780
781 BasicBlock *SrcBlock = I.getParent();
782 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
783 BFI->getBlockFreq(SrcBlock).getFrequency()) {
784 ORE->emit([&]() {
785 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
786 << "failed to sink or hoist instruction because containing block "
787 "has lower frequency than destination block";
788 });
789 return false;
790 }
791
792 return true;
793}
794
795/// Walk the specified region of the CFG (defined by all blocks dominated by
796/// the specified block, and that are in the current loop) in depth first
797/// order w.r.t the DominatorTree. This allows us to visit definitions before
798/// uses, allowing us to hoist a loop body in one pass without iteration.
799///
800bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
801 DominatorTree *DT, BlockFrequencyInfo *BFI,
802 TargetLibraryInfo *TLI, Loop *CurLoop,
803 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
804 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
805 SinkAndHoistLICMFlags &Flags,
806 OptimizationRemarkEmitter *ORE) {
807 // Verify inputs.
808 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 810, __PRETTY_FUNCTION__))
809 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 810, __PRETTY_FUNCTION__))
810 "Unexpected input to hoistRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 810, __PRETTY_FUNCTION__))
;
811 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 812, __PRETTY_FUNCTION__))
812 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 812, __PRETTY_FUNCTION__))
;
813
814 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
815
816 // Keep track of instructions that have been hoisted, as they may need to be
817 // re-hoisted if they end up not dominating all of their uses.
818 SmallVector<Instruction *, 16> HoistedInstructions;
819
820 // For PHI hoisting to work we need to hoist blocks before their successors.
821 // We can do this by iterating through the blocks in the loop in reverse
822 // post-order.
823 LoopBlocksRPO Worklist(CurLoop);
824 Worklist.perform(LI);
825 bool Changed = false;
826 for (BasicBlock *BB : Worklist) {
827 // Only need to process the contents of this block if it is not part of a
828 // subloop (which would already have been processed).
829 if (inSubLoop(BB, CurLoop, LI))
830 continue;
831
832 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
833 Instruction &I = *II++;
834 // Try constant folding this instruction. If all the operands are
835 // constants, it is technically hoistable, but it would be better to
836 // just fold it.
837 if (Constant *C = ConstantFoldInstruction(
838 &I, I.getModule()->getDataLayout(), TLI)) {
839 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
840 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
841 if (CurAST)
842 CurAST->copyValue(&I, C);
843 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
844 I.replaceAllUsesWith(C);
845 if (isInstructionTriviallyDead(&I, TLI))
846 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
847 Changed = true;
848 continue;
849 }
850
851 // Try hoisting the instruction out to the preheader. We can only do
852 // this if all of the operands of the instruction are loop invariant and
853 // if it is safe to hoist the instruction. We also check block frequency
854 // to make sure instruction only gets hoisted into colder blocks.
855 // TODO: It may be safe to hoist if we are hoisting to a conditional block
856 // and we have accurately duplicated the control flow from the loop header
857 // to that block.
858 if (CurLoop->hasLoopInvariantOperands(&I) &&
859 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
860 ORE) &&
861 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
862 isSafeToExecuteUnconditionally(
863 I, DT, CurLoop, SafetyInfo, ORE,
864 CurLoop->getLoopPreheader()->getTerminator())) {
865 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
866 MSSAU, SE, ORE);
867 HoistedInstructions.push_back(&I);
868 Changed = true;
869 continue;
870 }
871
872 // Attempt to remove floating point division out of the loop by
873 // converting it to a reciprocal multiplication.
874 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
875 CurLoop->isLoopInvariant(I.getOperand(1))) {
876 auto Divisor = I.getOperand(1);
877 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
878 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
879 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
880 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
881 ReciprocalDivisor->insertBefore(&I);
882
883 auto Product =
884 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
885 Product->setFastMathFlags(I.getFastMathFlags());
886 SafetyInfo->insertInstructionTo(Product, I.getParent());
887 Product->insertAfter(&I);
888 I.replaceAllUsesWith(Product);
889 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
890
891 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
892 SafetyInfo, MSSAU, SE, ORE);
893 HoistedInstructions.push_back(ReciprocalDivisor);
894 Changed = true;
895 continue;
896 }
897
898 auto IsInvariantStart = [&](Instruction &I) {
899 using namespace PatternMatch;
900 return I.use_empty() &&
901 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
902 };
903 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
904 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
905 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
906 };
907 if ((IsInvariantStart(I) || isGuard(&I)) &&
908 CurLoop->hasLoopInvariantOperands(&I) &&
909 MustExecuteWithoutWritesBefore(I)) {
910 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
911 MSSAU, SE, ORE);
912 HoistedInstructions.push_back(&I);
913 Changed = true;
914 continue;
915 }
916
917 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
918 if (CFH.canHoistPHI(PN)) {
919 // Redirect incoming blocks first to ensure that we create hoisted
920 // versions of those blocks before we hoist the phi.
921 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
922 PN->setIncomingBlock(
923 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
924 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
925 MSSAU, SE, ORE);
926 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((DT->dominates(PN, BB) && "Conditional PHIs not expected"
) ? static_cast<void> (0) : __assert_fail ("DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 926, __PRETTY_FUNCTION__))
;
927 Changed = true;
928 continue;
929 }
930 }
931
932 // Remember possibly hoistable branches so we can actually hoist them
933 // later if needed.
934 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
935 CFH.registerPossiblyHoistableBranch(BI);
936 }
937 }
938
939 // If we hoisted instructions to a conditional block they may not dominate
940 // their uses that weren't hoisted (such as phis where some operands are not
941 // loop invariant). If so make them unconditional by moving them to their
942 // immediate dominator. We iterate through the instructions in reverse order
943 // which ensures that when we rehoist an instruction we rehoist its operands,
944 // and also keep track of where in the block we are rehoisting to to make sure
945 // that we rehoist instructions before the instructions that use them.
946 Instruction *HoistPoint = nullptr;
947 if (ControlFlowHoisting) {
948 for (Instruction *I : reverse(HoistedInstructions)) {
949 if (!llvm::all_of(I->uses(),
950 [&](Use &U) { return DT->dominates(I, U); })) {
951 BasicBlock *Dominator =
952 DT->getNode(I->getParent())->getIDom()->getBlock();
953 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
954 if (HoistPoint)
955 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 956, __PRETTY_FUNCTION__))
956 "New hoist point expected to dominate old hoist point")((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 956, __PRETTY_FUNCTION__))
;
957 HoistPoint = Dominator->getTerminator();
958 }
959 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
960 << HoistPoint->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
961 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getName() << ": " << *I <<
"\n"; } } while (false)
;
962 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
963 HoistPoint = I;
964 Changed = true;
965 }
966 }
967 }
968 if (MSSAU && VerifyMemorySSA)
969 MSSAU->getMemorySSA()->verifyMemorySSA();
970
971 // Now that we've finished hoisting make sure that LI and DT are still
972 // valid.
973#ifdef EXPENSIVE_CHECKS
974 if (Changed) {
975 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 976, __PRETTY_FUNCTION__))
976 "Dominator tree verification failed")((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 976, __PRETTY_FUNCTION__))
;
977 LI->verify(*DT);
978 }
979#endif
980
981 return Changed;
982}
983
984// Return true if LI is invariant within scope of the loop. LI is invariant if
985// CurLoop is dominated by an invariant.start representing the same memory
986// location and size as the memory location LI loads from, and also the
987// invariant.start has no uses.
988static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
989 Loop *CurLoop) {
990 Value *Addr = LI->getOperand(0);
991 const DataLayout &DL = LI->getModule()->getDataLayout();
992 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
993
994 // It is not currently possible for clang to generate an invariant.start
995 // intrinsic with scalable vector types because we don't support thread local
996 // sizeless types and we don't permit sizeless types in structs or classes.
997 // Furthermore, even if support is added for this in future the intrinsic
998 // itself is defined to have a size of -1 for variable sized objects. This
999 // makes it impossible to verify if the intrinsic envelops our region of
1000 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1001 // types would have a -1 parameter, but the former is clearly double the size
1002 // of the latter.
1003 if (LocSizeInBits.isScalable())
1004 return false;
1005
1006 // if the type is i8 addrspace(x)*, we know this is the type of
1007 // llvm.invariant.start operand
1008 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1009 LI->getPointerAddressSpace());
1010 unsigned BitcastsVisited = 0;
1011 // Look through bitcasts until we reach the i8* type (this is invariant.start
1012 // operand type).
1013 while (Addr->getType() != PtrInt8Ty) {
1014 auto *BC = dyn_cast<BitCastInst>(Addr);
1015 // Avoid traversing high number of bitcast uses.
1016 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1017 return false;
1018 Addr = BC->getOperand(0);
1019 }
1020
1021 unsigned UsesVisited = 0;
1022 // Traverse all uses of the load operand value, to see if invariant.start is
1023 // one of the uses, and whether it dominates the load instruction.
1024 for (auto *U : Addr->users()) {
1025 // Avoid traversing for Load operand with high number of users.
1026 if (++UsesVisited > MaxNumUsesTraversed)
1027 return false;
1028 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1029 // If there are escaping uses of invariant.start instruction, the load maybe
1030 // non-invariant.
1031 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1032 !II->use_empty())
1033 continue;
1034 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1035 // The intrinsic supports having a -1 argument for variable sized objects
1036 // so we should check for that here.
1037 if (InvariantSize->isNegative())
1038 continue;
1039 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1040 // Confirm the invariant.start location size contains the load operand size
1041 // in bits. Also, the invariant.start should dominate the load, and we
1042 // should not hoist the load out of a loop that contains this dominating
1043 // invariant.start.
1044 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1045 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1046 return true;
1047 }
1048
1049 return false;
1050}
1051
1052namespace {
1053/// Return true if-and-only-if we know how to (mechanically) both hoist and
1054/// sink a given instruction out of a loop. Does not address legality
1055/// concerns such as aliasing or speculation safety.
1056bool isHoistableAndSinkableInst(Instruction &I) {
1057 // Only these instructions are hoistable/sinkable.
1058 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
2
Assuming 'I' is a 'LoadInst'
3
Returning the value 1, which participates in a condition later
1059 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1060 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1061 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1062 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1063 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1064 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1065}
1066/// Return true if all of the alias sets within this AST are known not to
1067/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1068bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1069 const Loop *L) {
1070 if (CurAST) {
1071 for (AliasSet &AS : *CurAST) {
1072 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1073 return false;
1074 }
1075 }
1076 return true;
1077 } else { /*MSSAU*/
1078 for (auto *BB : L->getBlocks())
1079 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1080 return false;
1081 return true;
1082 }
1083}
1084
1085/// Return true if I is the only Instruction with a MemoryAccess in L.
1086bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1087 const MemorySSAUpdater *MSSAU) {
1088 for (auto *BB : L->getBlocks())
19
Assuming '__begin1' is not equal to '__end1'
1089 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
20
Called C++ object pointer is null
1090 int NotAPhi = 0;
1091 for (const auto &Acc : *Accs) {
1092 if (isa<MemoryPhi>(&Acc))
1093 continue;
1094 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1095 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1096 return false;
1097 }
1098 }
1099 return true;
1100}
1101}
1102
1103bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1104 Loop *CurLoop, AliasSetTracker *CurAST,
1105 MemorySSAUpdater *MSSAU,
1106 bool TargetExecutesOncePerLoop,
1107 SinkAndHoistLICMFlags *Flags,
1108 OptimizationRemarkEmitter *ORE) {
1109 // If we don't understand the instruction, bail early.
1110 if (!isHoistableAndSinkableInst(I))
1
Calling 'isHoistableAndSinkableInst'
4
Returning from 'isHoistableAndSinkableInst'
5
Taking false branch
1111 return false;
1112
1113 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
6
Assuming 'MSSAU' is null
7
'?' condition is false
1114 if (MSSA
7.1
'MSSA' is null
)
8
Taking false branch
1115 assert(Flags != nullptr && "Flags cannot be null.")((Flags != nullptr && "Flags cannot be null.") ? static_cast
<void> (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1115, __PRETTY_FUNCTION__))
;
1116
1117 // Loads have extra constraints we have to verify before we can hoist them.
1118 if (LoadInst *LI
9.1
'LI' is null
= dyn_cast<LoadInst>(&I)) {
9
Assuming the object is not a 'LoadInst'
10
Taking false branch
1119 if (!LI->isUnordered())
1120 return false; // Don't sink/hoist volatile or ordered atomic loads!
1121
1122 // Loads from constant memory are always safe to move, even if they end up
1123 // in the same alias set as something that ends up being modified.
1124 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1125 return true;
1126 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1127 return true;
1128
1129 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1130 return false; // Don't risk duplicating unordered loads
1131
1132 // This checks for an invariant.start dominating the load.
1133 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1134 return true;
1135
1136 bool Invalidated;
1137 if (CurAST)
1138 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1139 CurLoop, AA);
1140 else
1141 Invalidated = pointerInvalidatedByLoopWithMSSA(
1142 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1143 // Check loop-invariant address because this may also be a sinkable load
1144 // whose address is not necessarily loop-invariant.
1145 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1146 ORE->emit([&]() {
1147 return OptimizationRemarkMissed(
1148 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1149 << "failed to move load with loop-invariant address "
1150 "because the loop may invalidate its value";
1151 });
1152
1153 return !Invalidated;
1154 } else if (CallInst *CI
11.1
'CI' is null
= dyn_cast<CallInst>(&I)) {
11
Assuming the object is not a 'CallInst'
12
Taking false branch
1155 // Don't sink or hoist dbg info; it's legal, but not useful.
1156 if (isa<DbgInfoIntrinsic>(I))
1157 return false;
1158
1159 // Don't sink calls which can throw.
1160 if (CI->mayThrow())
1161 return false;
1162
1163 using namespace PatternMatch;
1164 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1165 // Assumes don't actually alias anything or throw
1166 return true;
1167
1168 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1169 // Widenable conditions don't actually alias anything or throw
1170 return true;
1171
1172 // Handle simple cases by querying alias analysis.
1173 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1174 if (Behavior == FMRB_DoesNotAccessMemory)
1175 return true;
1176 if (AAResults::onlyReadsMemory(Behavior)) {
1177 // A readonly argmemonly function only reads from memory pointed to by
1178 // it's arguments with arbitrary offsets. If we can prove there are no
1179 // writes to this memory in the loop, we can hoist or sink.
1180 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1181 // TODO: expand to writeable arguments
1182 for (Value *Op : CI->arg_operands())
1183 if (Op->getType()->isPointerTy()) {
1184 bool Invalidated;
1185 if (CurAST)
1186 Invalidated = pointerInvalidatedByLoop(
1187 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1188 CurAST, CurLoop, AA);
1189 else
1190 Invalidated = pointerInvalidatedByLoopWithMSSA(
1191 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1192 *Flags);
1193 if (Invalidated)
1194 return false;
1195 }
1196 return true;
1197 }
1198
1199 // If this call only reads from memory and there are no writes to memory
1200 // in the loop, we can hoist or sink the call as appropriate.
1201 if (isReadOnly(CurAST, MSSAU, CurLoop))
1202 return true;
1203 }
1204
1205 // FIXME: This should use mod/ref information to see if we can hoist or
1206 // sink the call.
1207
1208 return false;
1209 } else if (auto *FI
13.1
'FI' is non-null
= dyn_cast<FenceInst>(&I)) {
13
Assuming the object is a 'FenceInst'
14
Taking true branch
1210 // Fences alias (most) everything to provide ordering. For the moment,
1211 // just give up if there are any other memory operations in the loop.
1212 if (CurAST) {
15
Assuming 'CurAST' is null
16
Taking false branch
1213 auto Begin = CurAST->begin();
1214 assert(Begin != CurAST->end() && "must contain FI")((Begin != CurAST->end() && "must contain FI") ? static_cast
<void> (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1214, __PRETTY_FUNCTION__))
;
1215 if (std::next(Begin) != CurAST->end())
1216 // constant memory for instance, TODO: handle better
1217 return false;
1218 auto *UniqueI = Begin->getUniqueInstruction();
1219 if (!UniqueI)
1220 // other memory op, give up
1221 return false;
1222 (void)FI; // suppress unused variable warning
1223 assert(UniqueI == FI && "AS must contain FI")((UniqueI == FI && "AS must contain FI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1223, __PRETTY_FUNCTION__))
;
1224 return true;
1225 } else // MSSAU
1226 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
17
Passing null pointer value via 3rd parameter 'MSSAU'
18
Calling 'isOnlyMemoryAccess'
1227 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1228 if (!SI->isUnordered())
1229 return false; // Don't sink/hoist volatile or ordered atomic store!
1230
1231 // We can only hoist a store that we can prove writes a value which is not
1232 // read or overwritten within the loop. For those cases, we fallback to
1233 // load store promotion instead. TODO: We can extend this to cases where
1234 // there is exactly one write to the location and that write dominates an
1235 // arbitrary number of reads in the loop.
1236 if (CurAST) {
1237 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1238
1239 if (AS.isRef() || !AS.isMustAlias())
1240 // Quick exit test, handled by the full path below as well.
1241 return false;
1242 auto *UniqueI = AS.getUniqueInstruction();
1243 if (!UniqueI)
1244 // other memory op, give up
1245 return false;
1246 assert(UniqueI == SI && "AS must contain SI")((UniqueI == SI && "AS must contain SI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1246, __PRETTY_FUNCTION__))
;
1247 return true;
1248 } else { // MSSAU
1249 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1250 return true;
1251 // If there are more accesses than the Promotion cap, give up, we're not
1252 // walking a list that long.
1253 if (Flags->NoOfMemAccTooLarge)
1254 return false;
1255 // Check store only if there's still "quota" to check clobber.
1256 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1257 return false;
1258 // If there are interfering Uses (i.e. their defining access is in the
1259 // loop), or ordered loads (stored as Defs!), don't move this store.
1260 // Could do better here, but this is conservatively correct.
1261 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1262 // moving accesses. Can also extend to dominating uses.
1263 auto *SIMD = MSSA->getMemoryAccess(SI);
1264 for (auto *BB : CurLoop->getBlocks())
1265 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1266 for (const auto &MA : *Accesses)
1267 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1268 auto *MD = MU->getDefiningAccess();
1269 if (!MSSA->isLiveOnEntryDef(MD) &&
1270 CurLoop->contains(MD->getBlock()))
1271 return false;
1272 // Disable hoisting past potentially interfering loads. Optimized
1273 // Uses may point to an access outside the loop, as getClobbering
1274 // checks the previous iteration when walking the backedge.
1275 // FIXME: More precise: no Uses that alias SI.
1276 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
1277 return false;
1278 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1279 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1280 (void)LI; // Silence warning.
1281 assert(!LI->isUnordered() && "Expected unordered load")((!LI->isUnordered() && "Expected unordered load")
? static_cast<void> (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1281, __PRETTY_FUNCTION__))
;
1282 return false;
1283 }
1284 // Any call, while it may not be clobbering SI, it may be a use.
1285 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1286 // Check if the call may read from the memory locattion written
1287 // to by SI. Check CI's attributes and arguments; the number of
1288 // such checks performed is limited above by NoOfMemAccTooLarge.
1289 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1290 if (isModOrRefSet(MRI))
1291 return false;
1292 }
1293 }
1294 }
1295
1296 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1297 Flags->LicmMssaOptCounter++;
1298 // If there are no clobbering Defs in the loop, store is safe to hoist.
1299 return MSSA->isLiveOnEntryDef(Source) ||
1300 !CurLoop->contains(Source->getBlock());
1301 }
1302 }
1303
1304 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((!I.mayReadOrWriteMemory() && "unhandled aliasing") ?
static_cast<void> (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305
1306 // We've established mechanical ability and aliasing, it's up to the caller
1307 // to check fault safety
1308 return true;
1309}
1310
1311/// Returns true if a PHINode is a trivially replaceable with an
1312/// Instruction.
1313/// This is true when all incoming values are that instruction.
1314/// This pattern occurs most often with LCSSA PHI nodes.
1315///
1316static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1317 for (const Value *IncValue : PN.incoming_values())
1318 if (IncValue != &I)
1319 return false;
1320
1321 return true;
1322}
1323
1324/// Return true if the instruction is free in the loop.
1325static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1326 const TargetTransformInfo *TTI) {
1327
1328 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1329 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1330 TargetTransformInfo::TCC_Free)
1331 return false;
1332 // For a GEP, we cannot simply use getUserCost because currently it
1333 // optimistically assume that a GEP will fold into addressing mode
1334 // regardless of its users.
1335 const BasicBlock *BB = GEP->getParent();
1336 for (const User *U : GEP->users()) {
1337 const Instruction *UI = cast<Instruction>(U);
1338 if (CurLoop->contains(UI) &&
1339 (BB != UI->getParent() ||
1340 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1341 return false;
1342 }
1343 return true;
1344 } else
1345 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1346 TargetTransformInfo::TCC_Free;
1347}
1348
1349/// Return true if the only users of this instruction are outside of
1350/// the loop. If this is true, we can sink the instruction to the exit
1351/// blocks of the loop.
1352///
1353/// We also return true if the instruction could be folded away in lowering.
1354/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1355static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1356 const LoopSafetyInfo *SafetyInfo,
1357 TargetTransformInfo *TTI, bool &FreeInLoop) {
1358 const auto &BlockColors = SafetyInfo->getBlockColors();
1359 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1360 for (const User *U : I.users()) {
1361 const Instruction *UI = cast<Instruction>(U);
1362 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1363 const BasicBlock *BB = PN->getParent();
1364 // We cannot sink uses in catchswitches.
1365 if (isa<CatchSwitchInst>(BB->getTerminator()))
1366 return false;
1367
1368 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1369 // phi use is too muddled.
1370 if (isa<CallInst>(I))
1371 if (!BlockColors.empty() &&
1372 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1373 return false;
1374 }
1375
1376 if (CurLoop->contains(UI)) {
1377 if (IsFree) {
1378 FreeInLoop = true;
1379 continue;
1380 }
1381 return false;
1382 }
1383 }
1384 return true;
1385}
1386
1387static Instruction *cloneInstructionInExitBlock(
1388 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1389 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1390 Instruction *New;
1391 if (auto *CI = dyn_cast<CallInst>(&I)) {
1392 const auto &BlockColors = SafetyInfo->getBlockColors();
1393
1394 // Sinking call-sites need to be handled differently from other
1395 // instructions. The cloned call-site needs a funclet bundle operand
1396 // appropriate for its location in the CFG.
1397 SmallVector<OperandBundleDef, 1> OpBundles;
1398 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1399 BundleIdx != BundleEnd; ++BundleIdx) {
1400 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1401 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1402 continue;
1403
1404 OpBundles.emplace_back(Bundle);
1405 }
1406
1407 if (!BlockColors.empty()) {
1408 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1409 assert(CV.size() == 1 && "non-unique color for exit block!")((CV.size() == 1 && "non-unique color for exit block!"
) ? static_cast<void> (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1409, __PRETTY_FUNCTION__))
;
1410 BasicBlock *BBColor = CV.front();
1411 Instruction *EHPad = BBColor->getFirstNonPHI();
1412 if (EHPad->isEHPad())
1413 OpBundles.emplace_back("funclet", EHPad);
1414 }
1415
1416 New = CallInst::Create(CI, OpBundles);
1417 } else {
1418 New = I.clone();
1419 }
1420
1421 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1422 if (!I.getName().empty())
1423 New->setName(I.getName() + ".le");
1424
1425 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1426 // Create a new MemoryAccess and let MemorySSA set its defining access.
1427 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1428 New, nullptr, New->getParent(), MemorySSA::Beginning);
1429 if (NewMemAcc) {
1430 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1431 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1432 else {
1433 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1434 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1435 }
1436 }
1437 }
1438
1439 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1440 // particularly cheap because we can rip off the PHI node that we're
1441 // replacing for the number and blocks of the predecessors.
1442 // OPT: If this shows up in a profile, we can instead finish sinking all
1443 // invariant instructions, and then walk their operands to re-establish
1444 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1445 // sinking bottom-up.
1446 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1447 ++OI)
1448 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1449 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1450 if (!OLoop->contains(&PN)) {
1451 PHINode *OpPN =
1452 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1453 OInst->getName() + ".lcssa", &ExitBlock.front());
1454 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1455 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1456 *OI = OpPN;
1457 }
1458 return New;
1459}
1460
1461static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1462 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1463 if (AST)
1464 AST->deleteValue(&I);
1465 if (MSSAU)
1466 MSSAU->removeMemoryAccess(&I);
1467 SafetyInfo.removeInstruction(&I);
1468 I.eraseFromParent();
1469}
1470
1471static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1472 ICFLoopSafetyInfo &SafetyInfo,
1473 MemorySSAUpdater *MSSAU,
1474 ScalarEvolution *SE) {
1475 SafetyInfo.removeInstruction(&I);
1476 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1477 I.moveBefore(&Dest);
1478 if (MSSAU)
1479 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1480 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1481 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1482 MemorySSA::BeforeTerminator);
1483 if (SE)
1484 SE->forgetValue(&I);
1485}
1486
1487static Instruction *sinkThroughTriviallyReplaceablePHI(
1488 PHINode *TPN, Instruction *I, LoopInfo *LI,
1489 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1490 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1491 MemorySSAUpdater *MSSAU) {
1492 assert(isTriviallyReplaceablePHI(*TPN, *I) &&((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1493, __PRETTY_FUNCTION__))
1493 "Expect only trivially replaceable PHI")((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1493, __PRETTY_FUNCTION__))
;
1494 BasicBlock *ExitBlock = TPN->getParent();
1495 Instruction *New;
1496 auto It = SunkCopies.find(ExitBlock);
1497 if (It != SunkCopies.end())
1498 New = It->second;
1499 else
1500 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1501 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1502 return New;
1503}
1504
1505static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1506 BasicBlock *BB = PN->getParent();
1507 if (!BB->canSplitPredecessors())
1508 return false;
1509 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1510 // it require updating BlockColors for all offspring blocks accordingly. By
1511 // skipping such corner case, we can make updating BlockColors after splitting
1512 // predecessor fairly simple.
1513 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1514 return false;
1515 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1516 BasicBlock *BBPred = *PI;
1517 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1518 isa<CallBrInst>(BBPred->getTerminator()))
1519 return false;
1520 }
1521 return true;
1522}
1523
1524static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1525 LoopInfo *LI, const Loop *CurLoop,
1526 LoopSafetyInfo *SafetyInfo,
1527 MemorySSAUpdater *MSSAU) {
1528#ifndef NDEBUG
1529 SmallVector<BasicBlock *, 32> ExitBlocks;
1530 CurLoop->getUniqueExitBlocks(ExitBlocks);
1531 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1532 ExitBlocks.end());
1533#endif
1534 BasicBlock *ExitBB = PN->getParent();
1535 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1535, __PRETTY_FUNCTION__))
;
1536
1537 // Split predecessors of the loop exit to make instructions in the loop are
1538 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1539 // loop in the canonical form where each predecessor of each exit block should
1540 // be contained within the loop. For example, this will convert the loop below
1541 // from
1542 //
1543 // LB1:
1544 // %v1 =
1545 // br %LE, %LB2
1546 // LB2:
1547 // %v2 =
1548 // br %LE, %LB1
1549 // LE:
1550 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1551 //
1552 // to
1553 //
1554 // LB1:
1555 // %v1 =
1556 // br %LE.split, %LB2
1557 // LB2:
1558 // %v2 =
1559 // br %LE.split2, %LB1
1560 // LE.split:
1561 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1562 // br %LE
1563 // LE.split2:
1564 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1565 // br %LE
1566 // LE:
1567 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1568 //
1569 const auto &BlockColors = SafetyInfo->getBlockColors();
1570 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1571 while (!PredBBs.empty()) {
1572 BasicBlock *PredBB = *PredBBs.begin();
1573 assert(CurLoop->contains(PredBB) &&((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1574, __PRETTY_FUNCTION__))
1574 "Expect all predecessors are in the loop")((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1574, __PRETTY_FUNCTION__))
;
1575 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1576 BasicBlock *NewPred = SplitBlockPredecessors(
1577 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1578 // Since we do not allow splitting EH-block with BlockColors in
1579 // canSplitPredecessors(), we can simply assign predecessor's color to
1580 // the new block.
1581 if (!BlockColors.empty())
1582 // Grab a reference to the ColorVector to be inserted before getting the
1583 // reference to the vector we are copying because inserting the new
1584 // element in BlockColors might cause the map to be reallocated.
1585 SafetyInfo->copyColors(NewPred, PredBB);
1586 }
1587 PredBBs.remove(PredBB);
1588 }
1589}
1590
1591/// When an instruction is found to only be used outside of the loop, this
1592/// function moves it to the exit blocks and patches up SSA form as needed.
1593/// This method is guaranteed to remove the original instruction from its
1594/// position, and may either delete it or move it to outside of the loop.
1595///
1596static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1597 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1598 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1599 OptimizationRemarkEmitter *ORE) {
1600 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1601 ORE->emit([&]() {
1602 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1603 << "sinking " << ore::NV("Inst", &I);
1604 });
1605 bool Changed = false;
1606 if (isa<LoadInst>(I))
1607 ++NumMovedLoads;
1608 else if (isa<CallInst>(I))
1609 ++NumMovedCalls;
1610 ++NumSunk;
1611
1612 // Iterate over users to be ready for actual sinking. Replace users via
1613 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1614 SmallPtrSet<Instruction *, 8> VisitedUsers;
1615 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1616 auto *User = cast<Instruction>(*UI);
1617 Use &U = UI.getUse();
1618 ++UI;
1619
1620 if (VisitedUsers.count(User) || CurLoop->contains(User))
1621 continue;
1622
1623 if (!DT->isReachableFromEntry(User->getParent())) {
1624 U = UndefValue::get(I.getType());
1625 Changed = true;
1626 continue;
1627 }
1628
1629 // The user must be a PHI node.
1630 PHINode *PN = cast<PHINode>(User);
1631
1632 // Surprisingly, instructions can be used outside of loops without any
1633 // exits. This can only happen in PHI nodes if the incoming block is
1634 // unreachable.
1635 BasicBlock *BB = PN->getIncomingBlock(U);
1636 if (!DT->isReachableFromEntry(BB)) {
1637 U = UndefValue::get(I.getType());
1638 Changed = true;
1639 continue;
1640 }
1641
1642 VisitedUsers.insert(PN);
1643 if (isTriviallyReplaceablePHI(*PN, I))
1644 continue;
1645
1646 if (!canSplitPredecessors(PN, SafetyInfo))
1647 return Changed;
1648
1649 // Split predecessors of the PHI so that we can make users trivially
1650 // replaceable.
1651 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1652
1653 // Should rebuild the iterators, as they may be invalidated by
1654 // splitPredecessorsOfLoopExit().
1655 UI = I.user_begin();
1656 UE = I.user_end();
1657 }
1658
1659 if (VisitedUsers.empty())
1660 return Changed;
1661
1662#ifndef NDEBUG
1663 SmallVector<BasicBlock *, 32> ExitBlocks;
1664 CurLoop->getUniqueExitBlocks(ExitBlocks);
1665 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1666 ExitBlocks.end());
1667#endif
1668
1669 // Clones of this instruction. Don't create more than one per exit block!
1670 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1671
1672 // If this instruction is only used outside of the loop, then all users are
1673 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1674 // the instruction.
1675 // First check if I is worth sinking for all uses. Sink only when it is worth
1676 // across all uses.
1677 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1678 SmallVector<PHINode *, 8> ExitPNs;
1679 for (auto *UI : Users) {
1680 auto *User = cast<Instruction>(UI);
1681
1682 if (CurLoop->contains(User))
1683 continue;
1684
1685 PHINode *PN = cast<PHINode>(User);
1686 assert(ExitBlockSet.count(PN->getParent()) &&((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1687, __PRETTY_FUNCTION__))
1687 "The LCSSA PHI is not in an exit block!")((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1687, __PRETTY_FUNCTION__))
;
1688 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1689 return Changed;
1690 }
1691
1692 ExitPNs.push_back(PN);
1693 }
1694
1695 for (auto *PN : ExitPNs) {
1696
1697 // The PHI must be trivially replaceable.
1698 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1699 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1700 PN->replaceAllUsesWith(New);
1701 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1702 Changed = true;
1703 }
1704 return Changed;
1705}
1706
1707/// When an instruction is found to only use loop invariant operands that
1708/// is safe to hoist, this instruction is called to do the dirty work.
1709///
1710static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1711 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1712 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1713 OptimizationRemarkEmitter *ORE) {
1714 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
1715 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getName() << ": " << I << "\n"; } } while
(false)
;
1716 ORE->emit([&]() {
1717 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1718 << ore::NV("Inst", &I);
1719 });
1720
1721 // Metadata can be dependent on conditions we are hoisting above.
1722 // Conservatively strip all metadata on the instruction unless we were
1723 // guaranteed to execute I if we entered the loop, in which case the metadata
1724 // is valid in the loop preheader.
1725 if (I.hasMetadataOtherThanDebugLoc() &&
1726 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1727 // time in isGuaranteedToExecute if we don't actually have anything to
1728 // drop. It is a compile time optimization, not required for correctness.
1729 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1730 I.dropUnknownNonDebugMetadata();
1731
1732 if (isa<PHINode>(I))
1733 // Move the new node to the end of the phi list in the destination block.
1734 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1735 else
1736 // Move the new node to the destination block, before its terminator.
1737 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1738
1739 I.updateLocationAfterHoist();
1740
1741 if (isa<LoadInst>(I))
1742 ++NumMovedLoads;
1743 else if (isa<CallInst>(I))
1744 ++NumMovedCalls;
1745 ++NumHoisted;
1746}
1747
1748/// Only sink or hoist an instruction if it is not a trapping instruction,
1749/// or if the instruction is known not to trap when moved to the preheader.
1750/// or if it is a trapping instruction and is guaranteed to execute.
1751static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1752 const DominatorTree *DT,
1753 const Loop *CurLoop,
1754 const LoopSafetyInfo *SafetyInfo,
1755 OptimizationRemarkEmitter *ORE,
1756 const Instruction *CtxI) {
1757 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1758 return true;
1759
1760 bool GuaranteedToExecute =
1761 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1762
1763 if (!GuaranteedToExecute) {
1764 auto *LI = dyn_cast<LoadInst>(&Inst);
1765 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1766 ORE->emit([&]() {
1767 return OptimizationRemarkMissed(
1768 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1769 << "failed to hoist load with loop-invariant address "
1770 "because load is conditionally executed";
1771 });
1772 }
1773
1774 return GuaranteedToExecute;
1775}
1776
1777namespace {
1778class LoopPromoter : public LoadAndStorePromoter {
1779 Value *SomePtr; // Designated pointer to store to.
1780 const SmallSetVector<Value *, 8> &PointerMustAliases;
1781 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1782 SmallVectorImpl<Instruction *> &LoopInsertPts;
1783 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1784 PredIteratorCache &PredCache;
1785 AliasSetTracker *AST;
1786 MemorySSAUpdater *MSSAU;
1787 LoopInfo &LI;
1788 DebugLoc DL;
1789 int Alignment;
1790 bool UnorderedAtomic;
1791 AAMDNodes AATags;
1792 ICFLoopSafetyInfo &SafetyInfo;
1793
1794 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1795 if (Instruction *I = dyn_cast<Instruction>(V))
1796 if (Loop *L = LI.getLoopFor(I->getParent()))
1797 if (!L->contains(BB)) {
1798 // We need to create an LCSSA PHI node for the incoming value and
1799 // store that.
1800 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1801 I->getName() + ".lcssa", &BB->front());
1802 for (BasicBlock *Pred : PredCache.get(BB))
1803 PN->addIncoming(I, Pred);
1804 return PN;
1805 }
1806 return V;
1807 }
1808
1809public:
1810 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1811 const SmallSetVector<Value *, 8> &PMA,
1812 SmallVectorImpl<BasicBlock *> &LEB,
1813 SmallVectorImpl<Instruction *> &LIP,
1814 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1815 AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1816 DebugLoc dl, int alignment, bool UnorderedAtomic,
1817 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1818 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1819 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1820 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1821 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1822 SafetyInfo(SafetyInfo) {}
1823
1824 bool isInstInList(Instruction *I,
1825 const SmallVectorImpl<Instruction *> &) const override {
1826 Value *Ptr;
1827 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1828 Ptr = LI->getOperand(0);
1829 else
1830 Ptr = cast<StoreInst>(I)->getPointerOperand();
1831 return PointerMustAliases.count(Ptr);
1832 }
1833
1834 void doExtraRewritesBeforeFinalDeletion() override {
1835 // Insert stores after in the loop exit blocks. Each exit block gets a
1836 // store of the live-out values that feed them. Since we've already told
1837 // the SSA updater about the defs in the loop and the preheader
1838 // definition, it is all set and we can start using it.
1839 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1840 BasicBlock *ExitBlock = LoopExitBlocks[i];
1841 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1842 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1843 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1844 Instruction *InsertPos = LoopInsertPts[i];
1845 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1846 if (UnorderedAtomic)
1847 NewSI->setOrdering(AtomicOrdering::Unordered);
1848 NewSI->setAlignment(Align(Alignment));
1849 NewSI->setDebugLoc(DL);
1850 if (AATags)
1851 NewSI->setAAMetadata(AATags);
1852
1853 if (MSSAU) {
1854 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1855 MemoryAccess *NewMemAcc;
1856 if (!MSSAInsertPoint) {
1857 NewMemAcc = MSSAU->createMemoryAccessInBB(
1858 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1859 } else {
1860 NewMemAcc =
1861 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1862 }
1863 MSSAInsertPts[i] = NewMemAcc;
1864 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1865 // FIXME: true for safety, false may still be correct.
1866 }
1867 }
1868 }
1869
1870 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1871 // Update alias analysis.
1872 if (AST)
1873 AST->copyValue(LI, V);
1874 }
1875 void instructionDeleted(Instruction *I) const override {
1876 SafetyInfo.removeInstruction(I);
1877 if (AST)
1878 AST->deleteValue(I);
1879 if (MSSAU)
1880 MSSAU->removeMemoryAccess(I);
1881 }
1882};
1883
1884
1885/// Return true iff we can prove that a caller of this function can not inspect
1886/// the contents of the provided object in a well defined program.
1887bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1888 if (isa<AllocaInst>(Object))
1889 // Since the alloca goes out of scope, we know the caller can't retain a
1890 // reference to it and be well defined. Thus, we don't need to check for
1891 // capture.
1892 return true;
1893
1894 // For all other objects we need to know that the caller can't possibly
1895 // have gotten a reference to the object. There are two components of
1896 // that:
1897 // 1) Object can't be escaped by this function. This is what
1898 // PointerMayBeCaptured checks.
1899 // 2) Object can't have been captured at definition site. For this, we
1900 // need to know the return value is noalias. At the moment, we use a
1901 // weaker condition and handle only AllocLikeFunctions (which are
1902 // known to be noalias). TODO
1903 return isAllocLikeFn(Object, TLI) &&
1904 !PointerMayBeCaptured(Object, true, true);
1905}
1906
1907} // namespace
1908
1909/// Try to promote memory values to scalars by sinking stores out of the
1910/// loop and moving loads to before the loop. We do this by looping over
1911/// the stores in the loop, looking for stores to Must pointers which are
1912/// loop invariant.
1913///
1914bool llvm::promoteLoopAccessesToScalars(
1915 const SmallSetVector<Value *, 8> &PointerMustAliases,
1916 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1917 SmallVectorImpl<Instruction *> &InsertPts,
1918 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1919 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1920 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1921 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1922 // Verify inputs.
1923 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1925, __PRETTY_FUNCTION__))
1924 SafetyInfo != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1925, __PRETTY_FUNCTION__))
1925 "Unexpected Input to promoteLoopAccessesToScalars")((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1925, __PRETTY_FUNCTION__))
;
1926
1927 Value *SomePtr = *PointerMustAliases.begin();
1928 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1929
1930 // It is not safe to promote a load/store from the loop if the load/store is
1931 // conditional. For example, turning:
1932 //
1933 // for () { if (c) *P += 1; }
1934 //
1935 // into:
1936 //
1937 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1938 //
1939 // is not safe, because *P may only be valid to access if 'c' is true.
1940 //
1941 // The safety property divides into two parts:
1942 // p1) The memory may not be dereferenceable on entry to the loop. In this
1943 // case, we can't insert the required load in the preheader.
1944 // p2) The memory model does not allow us to insert a store along any dynamic
1945 // path which did not originally have one.
1946 //
1947 // If at least one store is guaranteed to execute, both properties are
1948 // satisfied, and promotion is legal.
1949 //
1950 // This, however, is not a necessary condition. Even if no store/load is
1951 // guaranteed to execute, we can still establish these properties.
1952 // We can establish (p1) by proving that hoisting the load into the preheader
1953 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1954 // can use any access within the alias set to prove dereferenceability,
1955 // since they're all must alias.
1956 //
1957 // There are two ways establish (p2):
1958 // a) Prove the location is thread-local. In this case the memory model
1959 // requirement does not apply, and stores are safe to insert.
1960 // b) Prove a store dominates every exit block. In this case, if an exit
1961 // blocks is reached, the original dynamic path would have taken us through
1962 // the store, so inserting a store into the exit block is safe. Note that this
1963 // is different from the store being guaranteed to execute. For instance,
1964 // if an exception is thrown on the first iteration of the loop, the original
1965 // store is never executed, but the exit blocks are not executed either.
1966
1967 bool DereferenceableInPH = false;
1968 bool SafeToInsertStore = false;
1969
1970 SmallVector<Instruction *, 64> LoopUses;
1971
1972 // We start with an alignment of one and try to find instructions that allow
1973 // us to prove better alignment.
1974 Align Alignment;
1975 // Keep track of which types of access we see
1976 bool SawUnorderedAtomic = false;
1977 bool SawNotAtomic = false;
1978 AAMDNodes AATags;
1979
1980 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1981
1982 bool IsKnownThreadLocalObject = false;
1983 if (SafetyInfo->anyBlockMayThrow()) {
1984 // If a loop can throw, we have to insert a store along each unwind edge.
1985 // That said, we can't actually make the unwind edge explicit. Therefore,
1986 // we have to prove that the store is dead along the unwind edge. We do
1987 // this by proving that the caller can't have a reference to the object
1988 // after return and thus can't possibly load from the object.
1989 Value *Object = getUnderlyingObject(SomePtr);
1990 if (!isKnownNonEscaping(Object, TLI))
1991 return false;
1992 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1993 // visible to other threads if captured and used during their lifetimes.
1994 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1995 }
1996
1997 // Check that all of the pointers in the alias set have the same type. We
1998 // cannot (yet) promote a memory location that is loaded and stored in
1999 // different sizes. While we are at it, collect alignment and AA info.
2000 for (Value *ASIV : PointerMustAliases) {
2001 // Check that all of the pointers in the alias set have the same type. We
2002 // cannot (yet) promote a memory location that is loaded and stored in
2003 // different sizes.
2004 if (SomePtr->getType() != ASIV->getType())
2005 return false;
2006
2007 for (User *U : ASIV->users()) {
2008 // Ignore instructions that are outside the loop.
2009 Instruction *UI = dyn_cast<Instruction>(U);
2010 if (!UI || !CurLoop->contains(UI))
2011 continue;
2012
2013 // If there is an non-load/store instruction in the loop, we can't promote
2014 // it.
2015 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2016 if (!Load->isUnordered())
2017 return false;
2018
2019 SawUnorderedAtomic |= Load->isAtomic();
2020 SawNotAtomic |= !Load->isAtomic();
2021
2022 Align InstAlignment = Load->getAlign();
2023
2024 // Note that proving a load safe to speculate requires proving
2025 // sufficient alignment at the target location. Proving it guaranteed
2026 // to execute does as well. Thus we can increase our guaranteed
2027 // alignment as well.
2028 if (!DereferenceableInPH || (InstAlignment > Alignment))
2029 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
2030 ORE, Preheader->getTerminator())) {
2031 DereferenceableInPH = true;
2032 Alignment = std::max(Alignment, InstAlignment);
2033 }
2034 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2035 // Stores *of* the pointer are not interesting, only stores *to* the
2036 // pointer.
2037 if (UI->getOperand(1) != ASIV)
2038 continue;
2039 if (!Store->isUnordered())
2040 return false;
2041
2042 SawUnorderedAtomic |= Store->isAtomic();
2043 SawNotAtomic |= !Store->isAtomic();
2044
2045 // If the store is guaranteed to execute, both properties are satisfied.
2046 // We may want to check if a store is guaranteed to execute even if we
2047 // already know that promotion is safe, since it may have higher
2048 // alignment than any other guaranteed stores, in which case we can
2049 // raise the alignment on the promoted store.
2050 Align InstAlignment = Store->getAlign();
2051
2052 if (!DereferenceableInPH || !SafeToInsertStore ||
2053 (InstAlignment > Alignment)) {
2054 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2055 DereferenceableInPH = true;
2056 SafeToInsertStore = true;
2057 Alignment = std::max(Alignment, InstAlignment);
2058 }
2059 }
2060
2061 // If a store dominates all exit blocks, it is safe to sink.
2062 // As explained above, if an exit block was executed, a dominating
2063 // store must have been executed at least once, so we are not
2064 // introducing stores on paths that did not have them.
2065 // Note that this only looks at explicit exit blocks. If we ever
2066 // start sinking stores into unwind edges (see above), this will break.
2067 if (!SafeToInsertStore)
2068 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2069 return DT->dominates(Store->getParent(), Exit);
2070 });
2071
2072 // If the store is not guaranteed to execute, we may still get
2073 // deref info through it.
2074 if (!DereferenceableInPH) {
2075 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2076 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2077 Store->getAlign(), MDL, Preheader->getTerminator(), DT);
2078 }
2079 } else
2080 return false; // Not a load or store.
2081
2082 // Merge the AA tags.
2083 if (LoopUses.empty()) {
2084 // On the first load/store, just take its AA tags.
2085 UI->getAAMetadata(AATags);
2086 } else if (AATags) {
2087 UI->getAAMetadata(AATags, /* Merge = */ true);
2088 }
2089
2090 LoopUses.push_back(UI);
2091 }
2092 }
2093
2094 // If we found both an unordered atomic instruction and a non-atomic memory
2095 // access, bail. We can't blindly promote non-atomic to atomic since we
2096 // might not be able to lower the result. We can't downgrade since that
2097 // would violate memory model. Also, align 0 is an error for atomics.
2098 if (SawUnorderedAtomic && SawNotAtomic)
2099 return false;
2100
2101 // If we're inserting an atomic load in the preheader, we must be able to
2102 // lower it. We're only guaranteed to be able to lower naturally aligned
2103 // atomics.
2104 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2105 if (SawUnorderedAtomic &&
2106 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2107 return false;
2108
2109 // If we couldn't prove we can hoist the load, bail.
2110 if (!DereferenceableInPH)
2111 return false;
2112
2113 // We know we can hoist the load, but don't have a guaranteed store.
2114 // Check whether the location is thread-local. If it is, then we can insert
2115 // stores along paths which originally didn't have them without violating the
2116 // memory model.
2117 if (!SafeToInsertStore) {
2118 if (IsKnownThreadLocalObject)
2119 SafeToInsertStore = true;
2120 else {
2121 Value *Object = getUnderlyingObject(SomePtr);
2122 SafeToInsertStore =
2123 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2124 !PointerMayBeCaptured(Object, true, true);
2125 }
2126 }
2127
2128 // If we've still failed to prove we can sink the store, give up.
2129 if (!SafeToInsertStore)
2130 return false;
2131
2132 // Otherwise, this is safe to promote, lets do it!
2133 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2134 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2135 ORE->emit([&]() {
2136 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2137 LoopUses[0])
2138 << "Moving accesses to memory location out of the loop";
2139 });
2140 ++NumPromoted;
2141
2142 // Look at all the loop uses, and try to merge their locations.
2143 std::vector<const DILocation *> LoopUsesLocs;
2144 for (auto U : LoopUses)
2145 LoopUsesLocs.push_back(U->getDebugLoc().get());
2146 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2147
2148 // We use the SSAUpdater interface to insert phi nodes as required.
2149 SmallVector<PHINode *, 16> NewPHIs;
2150 SSAUpdater SSA(&NewPHIs);
2151 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2152 InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
2153 Alignment.value(), SawUnorderedAtomic, AATags,
2154 *SafetyInfo);
2155
2156 // Set up the preheader to have a definition of the value. It is the live-out
2157 // value from the preheader that uses in the loop will use.
2158 LoadInst *PreheaderLoad = new LoadInst(
2159 SomePtr->getType()->getPointerElementType(), SomePtr,
2160 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2161 if (SawUnorderedAtomic)
2162 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2163 PreheaderLoad->setAlignment(Alignment);
2164 PreheaderLoad->setDebugLoc(DebugLoc());
2165 if (AATags)
2166 PreheaderLoad->setAAMetadata(AATags);
2167 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2168
2169 if (MSSAU) {
2170 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2171 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2172 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2173 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2174 }
2175
2176 if (MSSAU && VerifyMemorySSA)
2177 MSSAU->getMemorySSA()->verifyMemorySSA();
2178 // Rewrite all the loads in the loop and remember all the definitions from
2179 // stores in the loop.
2180 Promoter.run(LoopUses);
2181
2182 if (MSSAU && VerifyMemorySSA)
2183 MSSAU->getMemorySSA()->verifyMemorySSA();
2184 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2185 if (PreheaderLoad->use_empty())
2186 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2187
2188 return true;
2189}
2190
2191/// Returns an owning pointer to an alias set which incorporates aliasing info
2192/// from L and all subloops of L.
2193std::unique_ptr<AliasSetTracker>
2194LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2195 AAResults *AA) {
2196 auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2197
2198 // Add everything from all the sub loops.
2199 for (Loop *InnerL : L->getSubLoops())
2200 for (BasicBlock *BB : InnerL->blocks())
2201 CurAST->add(*BB);
2202
2203 // And merge in this loop (without anything from inner loops).
2204 for (BasicBlock *BB : L->blocks())
2205 if (LI->getLoopFor(BB) == L)
2206 CurAST->add(*BB);
2207
2208 return CurAST;
2209}
2210
2211std::unique_ptr<AliasSetTracker>
2212LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2213 Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
2214 auto *MSSA = MSSAU->getMemorySSA();
2215 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2216 CurAST->addAllInstructionsInLoopUsingMSSA();
2217 return CurAST;
2218}
2219
2220static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2221 AliasSetTracker *CurAST, Loop *CurLoop,
2222 AAResults *AA) {
2223 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2224 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2225
2226 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2227 return isInvalidatedAccordingToAST;
2228
2229 // Check with a diagnostic analysis if we can refine the information above.
2230 // This is to identify the limitations of using the AST.
2231 // The alias set mechanism used by LICM has a major weakness in that it
2232 // combines all things which may alias into a single set *before* asking
2233 // modref questions. As a result, a single readonly call within a loop will
2234 // collapse all loads and stores into a single alias set and report
2235 // invalidation if the loop contains any store. For example, readonly calls
2236 // with deopt states have this form and create a general alias set with all
2237 // loads and stores. In order to get any LICM in loops containing possible
2238 // deopt states we need a more precise invalidation of checking the mod ref
2239 // info of each instruction within the loop and LI. This has a complexity of
2240 // O(N^2), so currently, it is used only as a diagnostic tool since the
2241 // default value of LICMN2Threshold is zero.
2242
2243 // Don't look at nested loops.
2244 if (CurLoop->begin() != CurLoop->end())
2245 return true;
2246
2247 int N = 0;
2248 for (BasicBlock *BB : CurLoop->getBlocks())
2249 for (Instruction &I : *BB) {
2250 if (N >= LICMN2Theshold) {
2251 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
2252 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
;
2253 return true;
2254 }
2255 N++;
2256 auto Res = AA->getModRefInfo(&I, MemLoc);
2257 if (isModSet(Res)) {
2258 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
2259 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
;
2260 return true;
2261 }
2262 }
2263 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr) << "\n"; } } while (false)
;
2264 return false;
2265}
2266
2267static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2268 Loop *CurLoop,
2269 SinkAndHoistLICMFlags &Flags) {
2270 // For hoisting, use the walker to determine safety
2271 if (!Flags.IsSink) {
2272 MemoryAccess *Source;
2273 // See declaration of SetLicmMssaOptCap for usage details.
2274 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2275 Source = MU->getDefiningAccess();
2276 else {
2277 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2278 Flags.LicmMssaOptCounter++;
2279 }
2280 return !MSSA->isLiveOnEntryDef(Source) &&
2281 CurLoop->contains(Source->getBlock());
2282 }
2283
2284 // For sinking, we'd need to check all Defs below this use. The getClobbering
2285 // call will look on the backedge of the loop, but will check aliasing with
2286 // the instructions on the previous iteration.
2287 // For example:
2288 // for (i ... )
2289 // load a[i] ( Use (LoE)
2290 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2291 // i++;
2292 // The load sees no clobbering inside the loop, as the backedge alias check
2293 // does phi translation, and will check aliasing against store a[i-1].
2294 // However sinking the load outside the loop, below the store is incorrect.
2295
2296 // For now, only sink if there are no Defs in the loop, and the existing ones
2297 // precede the use and are in the same block.
2298 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2299 // needs PostDominatorTreeAnalysis.
2300 // FIXME: More precise: no Defs that alias this Use.
2301 if (Flags.NoOfMemAccTooLarge)
2302 return true;
2303 for (auto *BB : CurLoop->getBlocks())
2304 if (auto *Accesses = MSSA->getBlockDefs(BB))
2305 for (const auto &MA : *Accesses)
2306 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2307 if (MU->getBlock() != MD->getBlock() ||
2308 !MSSA->locallyDominates(MD, MU))
2309 return true;
2310 return false;
2311}
2312
2313/// Little predicate that returns true if the specified basic block is in
2314/// a subloop of the current one, not the current one itself.
2315///
2316static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2317 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((CurLoop->contains(BB) && "Only valid if BB is IN the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-12.0.0~++20201102111116+1ed2ca68191/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2317, __PRETTY_FUNCTION__))
;
2318 return LI->getLoopFor(BB) != CurLoop;
2319}