Bug Summary

File:llvm/lib/Analysis/LazyValueInfo.cpp
Warning:line 1295, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LazyValueInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/lib/Analysis -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-05-202135-9119-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp

/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp

1//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interface for lazy computation of value constraint
10// information.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/LazyValueInfo.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/TargetLibraryInfo.h"
22#include "llvm/Analysis/ValueLattice.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/AssemblyAnnotationWriter.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/ConstantRange.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/PatternMatch.h"
35#include "llvm/IR/ValueHandle.h"
36#include "llvm/InitializePasses.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/FormattedStream.h"
39#include "llvm/Support/KnownBits.h"
40#include "llvm/Support/raw_ostream.h"
41#include <map>
42using namespace llvm;
43using namespace PatternMatch;
44
45#define DEBUG_TYPE"lazy-value-info" "lazy-value-info"
46
47// This is the number of worklist items we will process to try to discover an
48// answer for a given value.
49static const unsigned MaxProcessedPerValue = 500;
50
51char LazyValueInfoWrapperPass::ID = 0;
52LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
53 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
54}
55INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry
&Registry) {
56 "Lazy Value Information Analysis", false, true)static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry
&Registry) {
57INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
58INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
59INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Information Analysis"
, "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass>
), false, true); Registry.registerPass(*PI, true); return PI;
} static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag
; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag
, initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry
)); }
60 "Lazy Value Information Analysis", false, true)PassInfo *PI = new PassInfo( "Lazy Value Information Analysis"
, "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass>
), false, true); Registry.registerPass(*PI, true); return PI;
} static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag
; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag
, initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry
)); }
61
62namespace llvm {
63 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
64}
65
66AnalysisKey LazyValueAnalysis::Key;
67
68/// Returns true if this lattice value represents at most one possible value.
69/// This is as precise as any lattice value can get while still representing
70/// reachable code.
71static bool hasSingleValue(const ValueLatticeElement &Val) {
72 if (Val.isConstantRange() &&
73 Val.getConstantRange().isSingleElement())
74 // Integer constants are single element ranges
75 return true;
76 if (Val.isConstant())
77 // Non integer constants
78 return true;
79 return false;
80}
81
82/// Combine two sets of facts about the same value into a single set of
83/// facts. Note that this method is not suitable for merging facts along
84/// different paths in a CFG; that's what the mergeIn function is for. This
85/// is for merging facts gathered about the same value at the same location
86/// through two independent means.
87/// Notes:
88/// * This method does not promise to return the most precise possible lattice
89/// value implied by A and B. It is allowed to return any lattice element
90/// which is at least as strong as *either* A or B (unless our facts
91/// conflict, see below).
92/// * Due to unreachable code, the intersection of two lattice values could be
93/// contradictory. If this happens, we return some valid lattice value so as
94/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
95/// we do not make this guarantee. TODO: This would be a useful enhancement.
96static ValueLatticeElement intersect(const ValueLatticeElement &A,
97 const ValueLatticeElement &B) {
98 // Undefined is the strongest state. It means the value is known to be along
99 // an unreachable path.
100 if (A.isUnknown())
101 return A;
102 if (B.isUnknown())
103 return B;
104
105 // If we gave up for one, but got a useable fact from the other, use it.
106 if (A.isOverdefined())
107 return B;
108 if (B.isOverdefined())
109 return A;
110
111 // Can't get any more precise than constants.
112 if (hasSingleValue(A))
113 return A;
114 if (hasSingleValue(B))
115 return B;
116
117 // Could be either constant range or not constant here.
118 if (!A.isConstantRange() || !B.isConstantRange()) {
119 // TODO: Arbitrary choice, could be improved
120 return A;
121 }
122
123 // Intersect two constant ranges
124 ConstantRange Range =
125 A.getConstantRange().intersectWith(B.getConstantRange());
126 // Note: An empty range is implicitly converted to unknown or undef depending
127 // on MayIncludeUndef internally.
128 return ValueLatticeElement::getRange(
129 std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() |
130 B.isConstantRangeIncludingUndef());
131}
132
133//===----------------------------------------------------------------------===//
134// LazyValueInfoCache Decl
135//===----------------------------------------------------------------------===//
136
137namespace {
138 /// A callback value handle updates the cache when values are erased.
139 class LazyValueInfoCache;
140 struct LVIValueHandle final : public CallbackVH {
141 LazyValueInfoCache *Parent;
142
143 LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr)
144 : CallbackVH(V), Parent(P) { }
145
146 void deleted() override;
147 void allUsesReplacedWith(Value *V) override {
148 deleted();
149 }
150 };
151} // end anonymous namespace
152
153namespace {
154 using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>;
155
156 /// This is the cache kept by LazyValueInfo which
157 /// maintains information about queries across the clients' queries.
158 class LazyValueInfoCache {
159 /// This is all of the cached information for one basic block. It contains
160 /// the per-value lattice elements, as well as a separate set for
161 /// overdefined values to reduce memory usage. Additionally pointers
162 /// dereferenced in the block are cached for nullability queries.
163 struct BlockCacheEntry {
164 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
165 SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
166 // None indicates that the nonnull pointers for this basic block
167 // block have not been computed yet.
168 Optional<NonNullPointerSet> NonNullPointers;
169 };
170
171 /// Cached information per basic block.
172 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
173 BlockCache;
174 /// Set of value handles used to erase values from the cache on deletion.
175 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
176
177 const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const {
178 auto It = BlockCache.find_as(BB);
179 if (It == BlockCache.end())
180 return nullptr;
181 return It->second.get();
182 }
183
184 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
185 auto It = BlockCache.find_as(BB);
186 if (It == BlockCache.end())
187 It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() })
188 .first;
189
190 return It->second.get();
191 }
192
193 void addValueHandle(Value *Val) {
194 auto HandleIt = ValueHandles.find_as(Val);
195 if (HandleIt == ValueHandles.end())
196 ValueHandles.insert({ Val, this });
197 }
198
199 public:
200 void insertResult(Value *Val, BasicBlock *BB,
201 const ValueLatticeElement &Result) {
202 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
203
204 // Insert over-defined values into their own cache to reduce memory
205 // overhead.
206 if (Result.isOverdefined())
207 Entry->OverDefined.insert(Val);
208 else
209 Entry->LatticeElements.insert({ Val, Result });
210
211 addValueHandle(Val);
212 }
213
214 Optional<ValueLatticeElement> getCachedValueInfo(Value *V,
215 BasicBlock *BB) const {
216 const BlockCacheEntry *Entry = getBlockEntry(BB);
217 if (!Entry)
218 return None;
219
220 if (Entry->OverDefined.count(V))
221 return ValueLatticeElement::getOverdefined();
222
223 auto LatticeIt = Entry->LatticeElements.find_as(V);
224 if (LatticeIt == Entry->LatticeElements.end())
225 return None;
226
227 return LatticeIt->second;
228 }
229
230 bool isNonNullAtEndOfBlock(
231 Value *V, BasicBlock *BB,
232 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
233 BlockCacheEntry *Entry = getOrCreateBlockEntry(BB);
234 if (!Entry->NonNullPointers) {
235 Entry->NonNullPointers = InitFn(BB);
236 for (Value *V : *Entry->NonNullPointers)
237 addValueHandle(V);
238 }
239
240 return Entry->NonNullPointers->count(V);
241 }
242
243 /// clear - Empty the cache.
244 void clear() {
245 BlockCache.clear();
246 ValueHandles.clear();
247 }
248
249 /// Inform the cache that a given value has been deleted.
250 void eraseValue(Value *V);
251
252 /// This is part of the update interface to inform the cache
253 /// that a block has been deleted.
254 void eraseBlock(BasicBlock *BB);
255
256 /// Updates the cache to remove any influence an overdefined value in
257 /// OldSucc might have (unless also overdefined in NewSucc). This just
258 /// flushes elements from the cache and does not add any.
259 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
260 };
261}
262
263void LazyValueInfoCache::eraseValue(Value *V) {
264 for (auto &Pair : BlockCache) {
265 Pair.second->LatticeElements.erase(V);
266 Pair.second->OverDefined.erase(V);
267 if (Pair.second->NonNullPointers)
268 Pair.second->NonNullPointers->erase(V);
269 }
270
271 auto HandleIt = ValueHandles.find_as(V);
272 if (HandleIt != ValueHandles.end())
273 ValueHandles.erase(HandleIt);
274}
275
276void LVIValueHandle::deleted() {
277 // This erasure deallocates *this, so it MUST happen after we're done
278 // using any and all members of *this.
279 Parent->eraseValue(*this);
280}
281
282void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
283 BlockCache.erase(BB);
284}
285
286void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
287 BasicBlock *NewSucc) {
288 // When an edge in the graph has been threaded, values that we could not
289 // determine a value for before (i.e. were marked overdefined) may be
290 // possible to solve now. We do NOT try to proactively update these values.
291 // Instead, we clear their entries from the cache, and allow lazy updating to
292 // recompute them when needed.
293
294 // The updating process is fairly simple: we need to drop cached info
295 // for all values that were marked overdefined in OldSucc, and for those same
296 // values in any successor of OldSucc (except NewSucc) in which they were
297 // also marked overdefined.
298 std::vector<BasicBlock*> worklist;
299 worklist.push_back(OldSucc);
300
301 const BlockCacheEntry *Entry = getBlockEntry(OldSucc);
302 if (!Entry || Entry->OverDefined.empty())
303 return; // Nothing to process here.
304 SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(),
305 Entry->OverDefined.end());
306
307 // Use a worklist to perform a depth-first search of OldSucc's successors.
308 // NOTE: We do not need a visited list since any blocks we have already
309 // visited will have had their overdefined markers cleared already, and we
310 // thus won't loop to their successors.
311 while (!worklist.empty()) {
312 BasicBlock *ToUpdate = worklist.back();
313 worklist.pop_back();
314
315 // Skip blocks only accessible through NewSucc.
316 if (ToUpdate == NewSucc) continue;
317
318 // If a value was marked overdefined in OldSucc, and is here too...
319 auto OI = BlockCache.find_as(ToUpdate);
320 if (OI == BlockCache.end() || OI->second->OverDefined.empty())
321 continue;
322 auto &ValueSet = OI->second->OverDefined;
323
324 bool changed = false;
325 for (Value *V : ValsToClear) {
326 if (!ValueSet.erase(V))
327 continue;
328
329 // If we removed anything, then we potentially need to update
330 // blocks successors too.
331 changed = true;
332 }
333
334 if (!changed) continue;
335
336 llvm::append_range(worklist, successors(ToUpdate));
337 }
338}
339
340
341namespace {
342/// An assembly annotator class to print LazyValueCache information in
343/// comments.
344class LazyValueInfoImpl;
345class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
346 LazyValueInfoImpl *LVIImpl;
347 // While analyzing which blocks we can solve values for, we need the dominator
348 // information.
349 DominatorTree &DT;
350
351public:
352 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
353 : LVIImpl(L), DT(DTree) {}
354
355 void emitBasicBlockStartAnnot(const BasicBlock *BB,
356 formatted_raw_ostream &OS) override;
357
358 void emitInstructionAnnot(const Instruction *I,
359 formatted_raw_ostream &OS) override;
360};
361}
362namespace {
363// The actual implementation of the lazy analysis and update. Note that the
364// inheritance from LazyValueInfoCache is intended to be temporary while
365// splitting the code and then transitioning to a has-a relationship.
366class LazyValueInfoImpl {
367
368 /// Cached results from previous queries
369 LazyValueInfoCache TheCache;
370
371 /// This stack holds the state of the value solver during a query.
372 /// It basically emulates the callstack of the naive
373 /// recursive value lookup process.
374 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
375
376 /// Keeps track of which block-value pairs are in BlockValueStack.
377 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
378
379 /// Push BV onto BlockValueStack unless it's already in there.
380 /// Returns true on success.
381 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
382 if (!BlockValueSet.insert(BV).second)
383 return false; // It's already in the stack.
384
385 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "PUSH: " << *BV.
second << " in " << BV.first->getName() <<
"\n"; } } while (false)
386 << BV.first->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "PUSH: " << *BV.
second << " in " << BV.first->getName() <<
"\n"; } } while (false)
;
387 BlockValueStack.push_back(BV);
388 return true;
389 }
390
391 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
392 const DataLayout &DL; ///< A mandatory DataLayout
393
394 /// Declaration of the llvm.experimental.guard() intrinsic,
395 /// if it exists in the module.
396 Function *GuardDecl;
397
398 Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB);
399 Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F,
400 BasicBlock *T, Instruction *CxtI = nullptr);
401
402 // These methods process one work item and may add more. A false value
403 // returned means that the work item was not completely processed and must
404 // be revisited after going through the new items.
405 bool solveBlockValue(Value *Val, BasicBlock *BB);
406 Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB);
407 Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val,
408 BasicBlock *BB);
409 Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN,
410 BasicBlock *BB);
411 Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S,
412 BasicBlock *BB);
413 Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI,
414 BasicBlock *BB);
415 Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
416 Instruction *I, BasicBlock *BB,
417 std::function<ConstantRange(const ConstantRange &,
418 const ConstantRange &)> OpFn);
419 Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI,
420 BasicBlock *BB);
421 Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI,
422 BasicBlock *BB);
423 Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic(
424 WithOverflowInst *WO, BasicBlock *BB);
425 Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II,
426 BasicBlock *BB);
427 Optional<ValueLatticeElement> solveBlockValueExtractValue(
428 ExtractValueInst *EVI, BasicBlock *BB);
429 bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB);
430 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
431 ValueLatticeElement &BBLV,
432 Instruction *BBI);
433
434 void solve();
435
436public:
437 /// This is the query interface to determine the lattice value for the
438 /// specified Value* at the context instruction (if specified) or at the
439 /// start of the block.
440 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
441 Instruction *CxtI = nullptr);
442
443 /// This is the query interface to determine the lattice value for the
444 /// specified Value* at the specified instruction using only information
445 /// from assumes/guards and range metadata. Unlike getValueInBlock(), no
446 /// recursive query is performed.
447 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
448
449 /// This is the query interface to determine the lattice
450 /// value for the specified Value* that is true on the specified edge.
451 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
452 BasicBlock *ToBB,
453 Instruction *CxtI = nullptr);
454
455 /// Complete flush all previously computed values
456 void clear() {
457 TheCache.clear();
458 }
459
460 /// Printing the LazyValueInfo Analysis.
461 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
462 LazyValueInfoAnnotatedWriter Writer(this, DTree);
463 F.print(OS, &Writer);
464 }
465
466 /// This is part of the update interface to inform the cache
467 /// that a block has been deleted.
468 void eraseBlock(BasicBlock *BB) {
469 TheCache.eraseBlock(BB);
470 }
471
472 /// This is the update interface to inform the cache that an edge from
473 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
474 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
475
476 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
477 Function *GuardDecl)
478 : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
479};
480} // end anonymous namespace
481
482
483void LazyValueInfoImpl::solve() {
484 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
485 BlockValueStack.begin(), BlockValueStack.end());
486
487 unsigned processedCount = 0;
488 while (!BlockValueStack.empty()) {
489 processedCount++;
490 // Abort if we have to process too many values to get a result for this one.
491 // Because of the design of the overdefined cache currently being per-block
492 // to avoid naming-related issues (IE it wants to try to give different
493 // results for the same name in different blocks), overdefined results don't
494 // get cached globally, which in turn means we will often try to rediscover
495 // the same overdefined result again and again. Once something like
496 // PredicateInfo is used in LVI or CVP, we should be able to make the
497 // overdefined cache global, and remove this throttle.
498 if (processedCount > MaxProcessedPerValue) {
499 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n"
; } } while (false)
500 dbgs() << "Giving up on stack because we are getting too deep\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n"
; } } while (false)
;
501 // Fill in the original values
502 while (!StartingStack.empty()) {
503 std::pair<BasicBlock *, Value *> &e = StartingStack.back();
504 TheCache.insertResult(e.second, e.first,
505 ValueLatticeElement::getOverdefined());
506 StartingStack.pop_back();
507 }
508 BlockValueSet.clear();
509 BlockValueStack.clear();
510 return;
511 }
512 std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
513 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!")((BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"
) ? static_cast<void> (0) : __assert_fail ("BlockValueSet.count(e) && \"Stack value should be in BlockValueSet!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 513, __PRETTY_FUNCTION__))
;
514
515 if (solveBlockValue(e.second, e.first)) {
516 // The work item was completely processed.
517 assert(BlockValueStack.back() == e && "Nothing should have been pushed!")((BlockValueStack.back() == e && "Nothing should have been pushed!"
) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() == e && \"Nothing should have been pushed!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 517, __PRETTY_FUNCTION__))
;
518#ifndef NDEBUG
519 Optional<ValueLatticeElement> BBLV =
520 TheCache.getCachedValueInfo(e.second, e.first);
521 assert(BBLV && "Result should be in cache!")((BBLV && "Result should be in cache!") ? static_cast
<void> (0) : __assert_fail ("BBLV && \"Result should be in cache!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 521, __PRETTY_FUNCTION__))
;
522 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "POP " << *e.second
<< " in " << e.first->getName() << " = "
<< *BBLV << "\n"; } } while (false)
523 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "POP " << *e.second
<< " in " << e.first->getName() << " = "
<< *BBLV << "\n"; } } while (false)
524 << *BBLV << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "POP " << *e.second
<< " in " << e.first->getName() << " = "
<< *BBLV << "\n"; } } while (false)
;
525#endif
526
527 BlockValueStack.pop_back();
528 BlockValueSet.erase(e);
529 } else {
530 // More work needs to be done before revisiting.
531 assert(BlockValueStack.back() != e && "Stack should have been pushed!")((BlockValueStack.back() != e && "Stack should have been pushed!"
) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() != e && \"Stack should have been pushed!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 531, __PRETTY_FUNCTION__))
;
532 }
533 }
534}
535
536Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val,
537 BasicBlock *BB) {
538 // If already a constant, there is nothing to compute.
539 if (Constant *VC = dyn_cast<Constant>(Val))
540 return ValueLatticeElement::get(VC);
541
542 if (Optional<ValueLatticeElement> OptLatticeVal =
543 TheCache.getCachedValueInfo(Val, BB))
544 return OptLatticeVal;
545
546 // We have hit a cycle, assume overdefined.
547 if (!pushBlockValue({ BB, Val }))
548 return ValueLatticeElement::getOverdefined();
549
550 // Yet to be resolved.
551 return None;
552}
553
554static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
555 switch (BBI->getOpcode()) {
556 default: break;
557 case Instruction::Load:
558 case Instruction::Call:
559 case Instruction::Invoke:
560 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
561 if (isa<IntegerType>(BBI->getType())) {
562 return ValueLatticeElement::getRange(
563 getConstantRangeFromMetadata(*Ranges));
564 }
565 break;
566 };
567 // Nothing known - will be intersected with other facts
568 return ValueLatticeElement::getOverdefined();
569}
570
571bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
572 assert(!isa<Constant>(Val) && "Value should not be constant")((!isa<Constant>(Val) && "Value should not be constant"
) ? static_cast<void> (0) : __assert_fail ("!isa<Constant>(Val) && \"Value should not be constant\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 572, __PRETTY_FUNCTION__))
;
573 assert(!TheCache.getCachedValueInfo(Val, BB) &&((!TheCache.getCachedValueInfo(Val, BB) && "Value should not be in cache"
) ? static_cast<void> (0) : __assert_fail ("!TheCache.getCachedValueInfo(Val, BB) && \"Value should not be in cache\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 574, __PRETTY_FUNCTION__))
574 "Value should not be in cache")((!TheCache.getCachedValueInfo(Val, BB) && "Value should not be in cache"
) ? static_cast<void> (0) : __assert_fail ("!TheCache.getCachedValueInfo(Val, BB) && \"Value should not be in cache\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 574, __PRETTY_FUNCTION__))
;
575
576 // Hold off inserting this value into the Cache in case we have to return
577 // false and come back later.
578 Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
579 if (!Res)
580 // Work pushed, will revisit
581 return false;
582
583 TheCache.insertResult(Val, BB, *Res);
584 return true;
585}
586
587Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl(
588 Value *Val, BasicBlock *BB) {
589 Instruction *BBI = dyn_cast<Instruction>(Val);
590 if (!BBI || BBI->getParent() != BB)
591 return solveBlockValueNonLocal(Val, BB);
592
593 if (PHINode *PN = dyn_cast<PHINode>(BBI))
594 return solveBlockValuePHINode(PN, BB);
595
596 if (auto *SI = dyn_cast<SelectInst>(BBI))
597 return solveBlockValueSelect(SI, BB);
598
599 // If this value is a nonnull pointer, record it's range and bailout. Note
600 // that for all other pointer typed values, we terminate the search at the
601 // definition. We could easily extend this to look through geps, bitcasts,
602 // and the like to prove non-nullness, but it's not clear that's worth it
603 // compile time wise. The context-insensitive value walk done inside
604 // isKnownNonZero gets most of the profitable cases at much less expense.
605 // This does mean that we have a sensitivity to where the defining
606 // instruction is placed, even if it could legally be hoisted much higher.
607 // That is unfortunate.
608 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
609 if (PT && isKnownNonZero(BBI, DL))
610 return ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
611
612 if (BBI->getType()->isIntegerTy()) {
613 if (auto *CI = dyn_cast<CastInst>(BBI))
614 return solveBlockValueCast(CI, BB);
615
616 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
617 return solveBlockValueBinaryOp(BO, BB);
618
619 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
620 return solveBlockValueExtractValue(EVI, BB);
621
622 if (auto *II = dyn_cast<IntrinsicInst>(BBI))
623 return solveBlockValueIntrinsic(II, BB);
624 }
625
626 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - unknown inst def found.\n"; }
} while (false)
627 << "' - unknown inst def found.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - unknown inst def found.\n"; }
} while (false)
;
628 return getFromRangeMetadata(BBI);
629}
630
631static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) {
632 // TODO: Use NullPointerIsDefined instead.
633 if (Ptr->getType()->getPointerAddressSpace() == 0)
634 PtrSet.insert(getUnderlyingObject(Ptr));
635}
636
637static void AddNonNullPointersByInstruction(
638 Instruction *I, NonNullPointerSet &PtrSet) {
639 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
640 AddNonNullPointer(L->getPointerOperand(), PtrSet);
641 } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
642 AddNonNullPointer(S->getPointerOperand(), PtrSet);
643 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
644 if (MI->isVolatile()) return;
645
646 // FIXME: check whether it has a valuerange that excludes zero?
647 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
648 if (!Len || Len->isZero()) return;
649
650 AddNonNullPointer(MI->getRawDest(), PtrSet);
651 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
652 AddNonNullPointer(MTI->getRawSource(), PtrSet);
653 }
654}
655
656bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) {
657 if (NullPointerIsDefined(BB->getParent(),
658 Val->getType()->getPointerAddressSpace()))
659 return false;
660
661 Val = getUnderlyingObject(Val);
662 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
663 NonNullPointerSet NonNullPointers;
664 for (Instruction &I : *BB)
665 AddNonNullPointersByInstruction(&I, NonNullPointers);
666 return NonNullPointers;
667 });
668}
669
670Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal(
671 Value *Val, BasicBlock *BB) {
672 ValueLatticeElement Result; // Start Undefined.
673
674 // If this is the entry block, we must be asking about an argument. The
675 // value is overdefined.
676 if (BB == &BB->getParent()->getEntryBlock()) {
677 assert(isa<Argument>(Val) && "Unknown live-in to the entry block")((isa<Argument>(Val) && "Unknown live-in to the entry block"
) ? static_cast<void> (0) : __assert_fail ("isa<Argument>(Val) && \"Unknown live-in to the entry block\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 677, __PRETTY_FUNCTION__))
;
678 return ValueLatticeElement::getOverdefined();
679 }
680
681 // Loop over all of our predecessors, merging what we know from them into
682 // result. If we encounter an unexplored predecessor, we eagerly explore it
683 // in a depth first manner. In practice, this has the effect of discovering
684 // paths we can't analyze eagerly without spending compile times analyzing
685 // other paths. This heuristic benefits from the fact that predecessors are
686 // frequently arranged such that dominating ones come first and we quickly
687 // find a path to function entry. TODO: We should consider explicitly
688 // canonicalizing to make this true rather than relying on this happy
689 // accident.
690 for (BasicBlock *Pred : predecessors(BB)) {
691 Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
692 if (!EdgeResult)
693 // Explore that input, then return here
694 return None;
695
696 Result.mergeIn(*EdgeResult);
697
698 // If we hit overdefined, exit early. The BlockVals entry is already set
699 // to overdefined.
700 if (Result.isOverdefined()) {
701 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (non local).\n"
; } } while (false)
702 << "' - overdefined because of pred (non local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (non local).\n"
; } } while (false)
;
703 return Result;
704 }
705 }
706
707 // Return the merged value, which is more precise than 'overdefined'.
708 assert(!Result.isOverdefined())((!Result.isOverdefined()) ? static_cast<void> (0) : __assert_fail
("!Result.isOverdefined()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 708, __PRETTY_FUNCTION__))
;
709 return Result;
710}
711
712Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode(
713 PHINode *PN, BasicBlock *BB) {
714 ValueLatticeElement Result; // Start Undefined.
715
716 // Loop over all of our predecessors, merging what we know from them into
717 // result. See the comment about the chosen traversal order in
718 // solveBlockValueNonLocal; the same reasoning applies here.
719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
720 BasicBlock *PhiBB = PN->getIncomingBlock(i);
721 Value *PhiVal = PN->getIncomingValue(i);
722 // Note that we can provide PN as the context value to getEdgeValue, even
723 // though the results will be cached, because PN is the value being used as
724 // the cache key in the caller.
725 Optional<ValueLatticeElement> EdgeResult =
726 getEdgeValue(PhiVal, PhiBB, BB, PN);
727 if (!EdgeResult)
728 // Explore that input, then return here
729 return None;
730
731 Result.mergeIn(*EdgeResult);
732
733 // If we hit overdefined, exit early. The BlockVals entry is already set
734 // to overdefined.
735 if (Result.isOverdefined()) {
736 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (local).\n"
; } } while (false)
737 << "' - overdefined because of pred (local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (local).\n"
; } } while (false)
;
738
739 return Result;
740 }
741 }
742
743 // Return the merged value, which is more precise than 'overdefined'.
744 assert(!Result.isOverdefined() && "Possible PHI in entry block?")((!Result.isOverdefined() && "Possible PHI in entry block?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isOverdefined() && \"Possible PHI in entry block?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 744, __PRETTY_FUNCTION__))
;
745 return Result;
746}
747
748static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
749 bool isTrueDest = true);
750
751// If we can determine a constraint on the value given conditions assumed by
752// the program, intersect those constraints with BBLV
753void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
754 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
755 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
756 if (!BBI)
757 return;
758
759 BasicBlock *BB = BBI->getParent();
760 for (auto &AssumeVH : AC->assumptionsFor(Val)) {
761 if (!AssumeVH)
762 continue;
763
764 // Only check assumes in the block of the context instruction. Other
765 // assumes will have already been taken into account when the value was
766 // propagated from predecessor blocks.
767 auto *I = cast<CallInst>(AssumeVH);
768 if (I->getParent() != BB || !isValidAssumeForContext(I, BBI))
769 continue;
770
771 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
772 }
773
774 // If guards are not used in the module, don't spend time looking for them
775 if (GuardDecl && !GuardDecl->use_empty() &&
776 BBI->getIterator() != BB->begin()) {
777 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
778 BB->rend())) {
779 Value *Cond = nullptr;
780 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
781 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
782 }
783 }
784
785 if (BBLV.isOverdefined()) {
786 // Check whether we're checking at the terminator, and the pointer has
787 // been dereferenced in this block.
788 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
789 if (PTy && BB->getTerminator() == BBI &&
790 isNonNullAtEndOfBlock(Val, BB))
791 BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
792 }
793}
794
795Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect(
796 SelectInst *SI, BasicBlock *BB) {
797 // Recurse on our inputs if needed
798 Optional<ValueLatticeElement> OptTrueVal =
799 getBlockValue(SI->getTrueValue(), BB);
800 if (!OptTrueVal)
801 return None;
802 ValueLatticeElement &TrueVal = *OptTrueVal;
803
804 Optional<ValueLatticeElement> OptFalseVal =
805 getBlockValue(SI->getFalseValue(), BB);
806 if (!OptFalseVal)
807 return None;
808 ValueLatticeElement &FalseVal = *OptFalseVal;
809
810 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
811 const ConstantRange &TrueCR = TrueVal.getConstantRange();
812 const ConstantRange &FalseCR = FalseVal.getConstantRange();
813 Value *LHS = nullptr;
814 Value *RHS = nullptr;
815 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
816 // Is this a min specifically of our two inputs? (Avoid the risk of
817 // ValueTracking getting smarter looking back past our immediate inputs.)
818 if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
819 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
820 ConstantRange ResultCR = [&]() {
821 switch (SPR.Flavor) {
822 default:
823 llvm_unreachable("unexpected minmax type!")::llvm::llvm_unreachable_internal("unexpected minmax type!", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 823)
;
824 case SPF_SMIN: /// Signed minimum
825 return TrueCR.smin(FalseCR);
826 case SPF_UMIN: /// Unsigned minimum
827 return TrueCR.umin(FalseCR);
828 case SPF_SMAX: /// Signed maximum
829 return TrueCR.smax(FalseCR);
830 case SPF_UMAX: /// Unsigned maximum
831 return TrueCR.umax(FalseCR);
832 };
833 }();
834 return ValueLatticeElement::getRange(
835 ResultCR, TrueVal.isConstantRangeIncludingUndef() |
836 FalseVal.isConstantRangeIncludingUndef());
837 }
838
839 if (SPR.Flavor == SPF_ABS) {
840 if (LHS == SI->getTrueValue())
841 return ValueLatticeElement::getRange(
842 TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef());
843 if (LHS == SI->getFalseValue())
844 return ValueLatticeElement::getRange(
845 FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef());
846 }
847
848 if (SPR.Flavor == SPF_NABS) {
849 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
850 if (LHS == SI->getTrueValue())
851 return ValueLatticeElement::getRange(
852 Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef());
853 if (LHS == SI->getFalseValue())
854 return ValueLatticeElement::getRange(
855 Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef());
856 }
857 }
858
859 // Can we constrain the facts about the true and false values by using the
860 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
861 // TODO: We could potentially refine an overdefined true value above.
862 Value *Cond = SI->getCondition();
863 TrueVal = intersect(TrueVal,
864 getValueFromCondition(SI->getTrueValue(), Cond, true));
865 FalseVal = intersect(FalseVal,
866 getValueFromCondition(SI->getFalseValue(), Cond, false));
867
868 ValueLatticeElement Result = TrueVal;
869 Result.mergeIn(FalseVal);
870 return Result;
871}
872
873Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V,
874 Instruction *CxtI,
875 BasicBlock *BB) {
876 Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB);
877 if (!OptVal)
878 return None;
879
880 ValueLatticeElement &Val = *OptVal;
881 intersectAssumeOrGuardBlockValueConstantRange(V, Val, CxtI);
882 if (Val.isConstantRange())
883 return Val.getConstantRange();
884
885 const unsigned OperandBitWidth = DL.getTypeSizeInBits(V->getType());
886 return ConstantRange::getFull(OperandBitWidth);
887}
888
889Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast(
890 CastInst *CI, BasicBlock *BB) {
891 // Without knowing how wide the input is, we can't analyze it in any useful
892 // way.
893 if (!CI->getOperand(0)->getType()->isSized())
894 return ValueLatticeElement::getOverdefined();
895
896 // Filter out casts we don't know how to reason about before attempting to
897 // recurse on our operand. This can cut a long search short if we know we're
898 // not going to be able to get any useful information anways.
899 switch (CI->getOpcode()) {
900 case Instruction::Trunc:
901 case Instruction::SExt:
902 case Instruction::ZExt:
903 case Instruction::BitCast:
904 break;
905 default:
906 // Unhandled instructions are overdefined.
907 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown cast).\n"
; } } while (false)
908 << "' - overdefined (unknown cast).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown cast).\n"
; } } while (false)
;
909 return ValueLatticeElement::getOverdefined();
910 }
911
912 // Figure out the range of the LHS. If that fails, we still apply the
913 // transfer rule on the full set since we may be able to locally infer
914 // interesting facts.
915 Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB);
916 if (!LHSRes.hasValue())
917 // More work to do before applying this transfer rule.
918 return None;
919 const ConstantRange &LHSRange = LHSRes.getValue();
920
921 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
922
923 // NOTE: We're currently limited by the set of operations that ConstantRange
924 // can evaluate symbolically. Enhancing that set will allows us to analyze
925 // more definitions.
926 return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
927 ResultBitWidth));
928}
929
930Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
931 Instruction *I, BasicBlock *BB,
932 std::function<ConstantRange(const ConstantRange &,
933 const ConstantRange &)> OpFn) {
934 // Figure out the ranges of the operands. If that fails, use a
935 // conservative range, but apply the transfer rule anyways. This
936 // lets us pick up facts from expressions like "and i32 (call i32
937 // @foo()), 32"
938 Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB);
939 Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB);
940 if (!LHSRes.hasValue() || !RHSRes.hasValue())
941 // More work to do before applying this transfer rule.
942 return None;
943
944 const ConstantRange &LHSRange = LHSRes.getValue();
945 const ConstantRange &RHSRange = RHSRes.getValue();
946 return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
947}
948
949Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp(
950 BinaryOperator *BO, BasicBlock *BB) {
951 assert(BO->getOperand(0)->getType()->isSized() &&((BO->getOperand(0)->getType()->isSized() &&
"all operands to binary operators are sized") ? static_cast<
void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 952, __PRETTY_FUNCTION__))
952 "all operands to binary operators are sized")((BO->getOperand(0)->getType()->isSized() &&
"all operands to binary operators are sized") ? static_cast<
void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 952, __PRETTY_FUNCTION__))
;
953 if (BO->getOpcode() == Instruction::Xor) {
954 // Xor is the only operation not supported by ConstantRange::binaryOp().
955 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown binary operator).\n"
; } } while (false)
956 << "' - overdefined (unknown binary operator).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown binary operator).\n"
; } } while (false)
;
957 return ValueLatticeElement::getOverdefined();
958 }
959
960 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
961 unsigned NoWrapKind = 0;
962 if (OBO->hasNoUnsignedWrap())
963 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
964 if (OBO->hasNoSignedWrap())
965 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
966
967 return solveBlockValueBinaryOpImpl(
968 BO, BB,
969 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
970 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
971 });
972 }
973
974 return solveBlockValueBinaryOpImpl(
975 BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
976 return CR1.binaryOp(BO->getOpcode(), CR2);
977 });
978}
979
980Optional<ValueLatticeElement>
981LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO,
982 BasicBlock *BB) {
983 return solveBlockValueBinaryOpImpl(
984 WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
985 return CR1.binaryOp(WO->getBinaryOp(), CR2);
986 });
987}
988
989Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic(
990 IntrinsicInst *II, BasicBlock *BB) {
991 if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
992 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - unknown intrinsic.\n"; } } while
(false)
993 << "' - unknown intrinsic.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - unknown intrinsic.\n"; } } while
(false)
;
994 return getFromRangeMetadata(II);
995 }
996
997 SmallVector<ConstantRange, 2> OpRanges;
998 for (Value *Op : II->args()) {
999 Optional<ConstantRange> Range = getRangeFor(Op, II, BB);
1000 if (!Range)
1001 return None;
1002 OpRanges.push_back(*Range);
1003 }
1004
1005 return ValueLatticeElement::getRange(
1006 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges));
1007}
1008
1009Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue(
1010 ExtractValueInst *EVI, BasicBlock *BB) {
1011 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1012 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1013 return solveBlockValueOverflowIntrinsic(WO, BB);
1014
1015 // Handle extractvalue of insertvalue to allow further simplification
1016 // based on replaced with.overflow intrinsics.
1017 if (Value *V = SimplifyExtractValueInst(
1018 EVI->getAggregateOperand(), EVI->getIndices(),
1019 EVI->getModule()->getDataLayout()))
1020 return getBlockValue(V, BB);
1021
1022 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown extractvalue).\n"
; } } while (false)
1023 << "' - overdefined (unknown extractvalue).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown extractvalue).\n"
; } } while (false)
;
1024 return ValueLatticeElement::getOverdefined();
1025}
1026
1027static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val,
1028 ICmpInst::Predicate Pred) {
1029 if (LHS == Val)
1030 return true;
1031
1032 // Handle range checking idiom produced by InstCombine. We will subtract the
1033 // offset from the allowed range for RHS in this case.
1034 const APInt *C;
1035 if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) {
1036 Offset = *C;
1037 return true;
1038 }
1039
1040 // Handle the symmetric case. This appears in saturation patterns like
1041 // (x == 16) ? 16 : (x + 1).
1042 if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) {
1043 Offset = -*C;
1044 return true;
1045 }
1046
1047 // If (x | y) < C, then (x < C) && (y < C).
1048 if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) &&
1049 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE))
1050 return true;
1051
1052 // If (x & y) > C, then (x > C) && (y > C).
1053 if (match(LHS, m_c_And(m_Specific(Val), m_Value())) &&
1054 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE))
1055 return true;
1056
1057 return false;
1058}
1059
1060/// Get value range for a "(Val + Offset) Pred RHS" condition.
1061static ValueLatticeElement getValueFromSimpleICmpCondition(
1062 CmpInst::Predicate Pred, Value *RHS, const APInt &Offset) {
1063 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1064 /*isFullSet=*/true);
1065 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1066 RHSRange = ConstantRange(CI->getValue());
1067 else if (Instruction *I = dyn_cast<Instruction>(RHS))
1068 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1069 RHSRange = getConstantRangeFromMetadata(*Ranges);
1070
1071 ConstantRange TrueValues =
1072 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1073 return ValueLatticeElement::getRange(TrueValues.subtract(Offset));
1074}
1075
1076static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1077 bool isTrueDest) {
1078 Value *LHS = ICI->getOperand(0);
1079 Value *RHS = ICI->getOperand(1);
1080
1081 // Get the predicate that must hold along the considered edge.
1082 CmpInst::Predicate EdgePred =
1083 isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate();
1084
1085 if (isa<Constant>(RHS)) {
1086 if (ICI->isEquality() && LHS == Val) {
1087 if (EdgePred == ICmpInst::ICMP_EQ)
1088 return ValueLatticeElement::get(cast<Constant>(RHS));
1089 else if (!isa<UndefValue>(RHS))
1090 return ValueLatticeElement::getNot(cast<Constant>(RHS));
1091 }
1092 }
1093
1094 Type *Ty = Val->getType();
1095 if (!Ty->isIntegerTy())
1096 return ValueLatticeElement::getOverdefined();
1097
1098 APInt Offset(Ty->getScalarSizeInBits(), 0);
1099 if (matchICmpOperand(Offset, LHS, Val, EdgePred))
1100 return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset);
1101
1102 CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred);
1103 if (matchICmpOperand(Offset, RHS, Val, SwappedPred))
1104 return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset);
1105
1106 // If (Val & Mask) == C then all the masked bits are known and we can compute
1107 // a value range based on that.
1108 const APInt *Mask, *C;
1109 if (EdgePred == ICmpInst::ICMP_EQ &&
1110 match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) &&
1111 match(RHS, m_APInt(C))) {
1112 KnownBits Known;
1113 Known.Zero = ~*C & *Mask;
1114 Known.One = *C & *Mask;
1115 return ValueLatticeElement::getRange(
1116 ConstantRange::fromKnownBits(Known, /*IsSigned*/ false));
1117 }
1118
1119 return ValueLatticeElement::getOverdefined();
1120}
1121
1122// Handle conditions of the form
1123// extractvalue(op.with.overflow(%x, C), 1).
1124static ValueLatticeElement getValueFromOverflowCondition(
1125 Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1126 // TODO: This only works with a constant RHS for now. We could also compute
1127 // the range of the RHS, but this doesn't fit into the current structure of
1128 // the edge value calculation.
1129 const APInt *C;
1130 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1131 return ValueLatticeElement::getOverdefined();
1132
1133 // Calculate the possible values of %x for which no overflow occurs.
1134 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1135 WO->getBinaryOp(), *C, WO->getNoWrapKind());
1136
1137 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1138 // constrained to it's inverse (all values that might cause overflow).
1139 if (IsTrueDest)
1140 NWR = NWR.inverse();
1141 return ValueLatticeElement::getRange(NWR);
1142}
1143
1144static ValueLatticeElement
1145getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1146 SmallDenseMap<Value*, ValueLatticeElement> &Visited);
1147
1148static ValueLatticeElement
1149getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1150 SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
1151 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1152 return getValueFromICmpCondition(Val, ICI, isTrueDest);
1153
1154 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1155 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1156 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1157 return getValueFromOverflowCondition(Val, WO, isTrueDest);
1158
1159 Value *L, *R;
1160 bool IsAnd;
1161 if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))))
1162 IsAnd = true;
1163 else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R))))
1164 IsAnd = false;
1165 else
1166 return ValueLatticeElement::getOverdefined();
1167
1168 // Prevent infinite recursion if Cond references itself as in this example:
1169 // Cond: "%tmp4 = and i1 %tmp4, undef"
1170 // BL: "%tmp4 = and i1 %tmp4, undef"
1171 // BR: "i1 undef"
1172 if (L == Cond || R == Cond)
1173 return ValueLatticeElement::getOverdefined();
1174
1175 // if (L && R) -> intersect L and R
1176 // if (!(L || R)) -> intersect L and R
1177 // if (L || R) -> union L and R
1178 // if (!(L && R)) -> union L and R
1179 if (isTrueDest ^ IsAnd) {
1180 ValueLatticeElement V = getValueFromCondition(Val, L, isTrueDest, Visited);
1181 if (V.isOverdefined())
1182 return V;
1183 V.mergeIn(getValueFromCondition(Val, R, isTrueDest, Visited));
1184 return V;
1185 }
1186
1187 return intersect(getValueFromCondition(Val, L, isTrueDest, Visited),
1188 getValueFromCondition(Val, R, isTrueDest, Visited));
1189}
1190
1191static ValueLatticeElement
1192getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1193 SmallDenseMap<Value*, ValueLatticeElement> &Visited) {
1194 auto I = Visited.find(Cond);
1195 if (I != Visited.end())
1196 return I->second;
1197
1198 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1199 Visited[Cond] = Result;
1200 return Result;
1201}
1202
1203ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1204 bool isTrueDest) {
1205 assert(Cond && "precondition")((Cond && "precondition") ? static_cast<void> (
0) : __assert_fail ("Cond && \"precondition\"", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1205, __PRETTY_FUNCTION__))
;
1206 SmallDenseMap<Value*, ValueLatticeElement> Visited;
1207 return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1208}
1209
1210// Return true if Usr has Op as an operand, otherwise false.
1211static bool usesOperand(User *Usr, Value *Op) {
1212 return is_contained(Usr->operands(), Op);
1213}
1214
1215// Return true if the instruction type of Val is supported by
1216// constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only.
1217// Call this before calling constantFoldUser() to find out if it's even worth
1218// attempting to call it.
1219static bool isOperationFoldable(User *Usr) {
1220 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr);
1221}
1222
1223// Check if Usr can be simplified to an integer constant when the value of one
1224// of its operands Op is an integer constant OpConstVal. If so, return it as an
1225// lattice value range with a single element or otherwise return an overdefined
1226// lattice value.
1227static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1228 const APInt &OpConstVal,
1229 const DataLayout &DL) {
1230 assert(isOperationFoldable(Usr) && "Precondition")((isOperationFoldable(Usr) && "Precondition") ? static_cast
<void> (0) : __assert_fail ("isOperationFoldable(Usr) && \"Precondition\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1232 // Check if Usr can be simplified to a constant.
1233 if (auto *CI = dyn_cast<CastInst>(Usr)) {
1234 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op")((CI->getOperand(0) == Op && "Operand 0 isn't Op")
? static_cast<void> (0) : __assert_fail ("CI->getOperand(0) == Op && \"Operand 0 isn't Op\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1234, __PRETTY_FUNCTION__))
;
1235 if (auto *C = dyn_cast_or_null<ConstantInt>(
1236 SimplifyCastInst(CI->getOpcode(), OpConst,
1237 CI->getDestTy(), DL))) {
1238 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1239 }
1240 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1241 bool Op0Match = BO->getOperand(0) == Op;
1242 bool Op1Match = BO->getOperand(1) == Op;
1243 assert((Op0Match || Op1Match) &&(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match"
) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1244, __PRETTY_FUNCTION__))
1244 "Operand 0 nor Operand 1 isn't a match")(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match"
) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1244, __PRETTY_FUNCTION__))
;
1245 Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1246 Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1247 if (auto *C = dyn_cast_or_null<ConstantInt>(
1248 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1249 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1250 }
1251 } else if (isa<FreezeInst>(Usr)) {
1252 assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op")((cast<FreezeInst>(Usr)->getOperand(0) == Op &&
"Operand 0 isn't Op") ? static_cast<void> (0) : __assert_fail
("cast<FreezeInst>(Usr)->getOperand(0) == Op && \"Operand 0 isn't Op\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1252, __PRETTY_FUNCTION__))
;
1253 return ValueLatticeElement::getRange(ConstantRange(OpConstVal));
1254 }
1255 return ValueLatticeElement::getOverdefined();
1256}
1257
1258/// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1259/// Val is not constrained on the edge. Result is unspecified if return value
1260/// is false.
1261static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val,
1262 BasicBlock *BBFrom,
1263 BasicBlock *BBTo) {
1264 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1265 // know that v != 0.
1266 if (BranchInst *BI
11.1
'BI' is non-null
11.1
'BI' is non-null
11.1
'BI' is non-null
= dyn_cast<BranchInst>(BBFrom->getTerminator())) {
11
Assuming the object is a 'BranchInst'
12
Taking true branch
1267 // If this is a conditional branch and only one successor goes to BBTo, then
1268 // we may be able to infer something from the condition.
1269 if (BI->isConditional() &&
13
Calling 'BranchInst::isConditional'
16
Returning from 'BranchInst::isConditional'
17
Taking true branch
1270 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1271 bool isTrueDest = BI->getSuccessor(0) == BBTo;
18
Assuming pointer value is null
1272 assert(BI->getSuccessor(!isTrueDest) == BBTo &&((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"
) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1273, __PRETTY_FUNCTION__))
19
'?' condition is true
1273 "BBTo isn't a successor of BBFrom")((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"
) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1273, __PRETTY_FUNCTION__))
;
1274 Value *Condition = BI->getCondition();
1275
1276 // If V is the condition of the branch itself, then we know exactly what
1277 // it is.
1278 if (Condition == Val)
20
Assuming 'Condition' is not equal to 'Val'
21
Taking false branch
1279 return ValueLatticeElement::get(ConstantInt::get(
1280 Type::getInt1Ty(Val->getContext()), isTrueDest));
1281
1282 // If the condition of the branch is an equality comparison, we may be
1283 // able to infer the value.
1284 ValueLatticeElement Result = getValueFromCondition(Val, Condition,
1285 isTrueDest);
1286 if (!Result.isOverdefined())
22
Calling 'ValueLatticeElement::isOverdefined'
25
Returning from 'ValueLatticeElement::isOverdefined'
26
Taking false branch
1287 return Result;
1288
1289 if (User *Usr
27.1
'Usr' is non-null
27.1
'Usr' is non-null
27.1
'Usr' is non-null
= dyn_cast<User>(Val)) {
27
Assuming 'Val' is a 'User'
28
Taking true branch
1290 assert(Result.isOverdefined() && "Result isn't overdefined")((Result.isOverdefined() && "Result isn't overdefined"
) ? static_cast<void> (0) : __assert_fail ("Result.isOverdefined() && \"Result isn't overdefined\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1290, __PRETTY_FUNCTION__))
;
29
'?' condition is true
1291 // Check with isOperationFoldable() first to avoid linearly iterating
1292 // over the operands unnecessarily which can be expensive for
1293 // instructions with many operands.
1294 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
30
Assuming the object is a 'IntegerType'
31
Taking true branch
1295 const DataLayout &DL = BBTo->getModule()->getDataLayout();
32
Called C++ object pointer is null
1296 if (usesOperand(Usr, Condition)) {
1297 // If Val has Condition as an operand and Val can be folded into a
1298 // constant with either Condition == true or Condition == false,
1299 // propagate the constant.
1300 // eg.
1301 // ; %Val is true on the edge to %then.
1302 // %Val = and i1 %Condition, true.
1303 // br %Condition, label %then, label %else
1304 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1305 Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1306 } else {
1307 // If one of Val's operand has an inferred value, we may be able to
1308 // infer the value of Val.
1309 // eg.
1310 // ; %Val is 94 on the edge to %then.
1311 // %Val = add i8 %Op, 1
1312 // %Condition = icmp eq i8 %Op, 93
1313 // br i1 %Condition, label %then, label %else
1314 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1315 Value *Op = Usr->getOperand(i);
1316 ValueLatticeElement OpLatticeVal =
1317 getValueFromCondition(Op, Condition, isTrueDest);
1318 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1319 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1320 break;
1321 }
1322 }
1323 }
1324 }
1325 }
1326 if (!Result.isOverdefined())
1327 return Result;
1328 }
1329 }
1330
1331 // If the edge was formed by a switch on the value, then we may know exactly
1332 // what it is.
1333 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1334 Value *Condition = SI->getCondition();
1335 if (!isa<IntegerType>(Val->getType()))
1336 return None;
1337 bool ValUsesConditionAndMayBeFoldable = false;
1338 if (Condition != Val) {
1339 // Check if Val has Condition as an operand.
1340 if (User *Usr = dyn_cast<User>(Val))
1341 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1342 usesOperand(Usr, Condition);
1343 if (!ValUsesConditionAndMayBeFoldable)
1344 return None;
1345 }
1346 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&(((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
"Condition != Val nor Val doesn't use Condition") ? static_cast
<void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1347, __PRETTY_FUNCTION__))
1347 "Condition != Val nor Val doesn't use Condition")(((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
"Condition != Val nor Val doesn't use Condition") ? static_cast
<void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1347, __PRETTY_FUNCTION__))
;
1348
1349 bool DefaultCase = SI->getDefaultDest() == BBTo;
1350 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1351 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1352
1353 for (auto Case : SI->cases()) {
1354 APInt CaseValue = Case.getCaseValue()->getValue();
1355 ConstantRange EdgeVal(CaseValue);
1356 if (ValUsesConditionAndMayBeFoldable) {
1357 User *Usr = cast<User>(Val);
1358 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1359 ValueLatticeElement EdgeLatticeVal =
1360 constantFoldUser(Usr, Condition, CaseValue, DL);
1361 if (EdgeLatticeVal.isOverdefined())
1362 return None;
1363 EdgeVal = EdgeLatticeVal.getConstantRange();
1364 }
1365 if (DefaultCase) {
1366 // It is possible that the default destination is the destination of
1367 // some cases. We cannot perform difference for those cases.
1368 // We know Condition != CaseValue in BBTo. In some cases we can use
1369 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1370 // only do this when f is identity (i.e. Val == Condition), but we
1371 // should be able to do this for any injective f.
1372 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1373 EdgesVals = EdgesVals.difference(EdgeVal);
1374 } else if (Case.getCaseSuccessor() == BBTo)
1375 EdgesVals = EdgesVals.unionWith(EdgeVal);
1376 }
1377 return ValueLatticeElement::getRange(std::move(EdgesVals));
1378 }
1379 return None;
1380}
1381
1382/// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1383/// the basic block if the edge does not constrain Val.
1384Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue(
1385 Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) {
1386 // If already a constant, there is nothing to compute.
1387 if (Constant *VC
7.1
'VC' is null
7.1
'VC' is null
7.1
'VC' is null
= dyn_cast<Constant>(Val))
7
Assuming 'Val' is not a 'Constant'
8
Taking false branch
1388 return ValueLatticeElement::get(VC);
1389
1390 ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo)
9
Passing value via 3rd parameter 'BBTo'
10
Calling 'getEdgeValueLocal'
1391 .getValueOr(ValueLatticeElement::getOverdefined());
1392 if (hasSingleValue(LocalResult))
1393 // Can't get any more precise here
1394 return LocalResult;
1395
1396 Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom);
1397 if (!OptInBlock)
1398 return None;
1399 ValueLatticeElement &InBlock = *OptInBlock;
1400
1401 // Try to intersect ranges of the BB and the constraint on the edge.
1402 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1403 BBFrom->getTerminator());
1404 // We can use the context instruction (generically the ultimate instruction
1405 // the calling pass is trying to simplify) here, even though the result of
1406 // this function is generally cached when called from the solve* functions
1407 // (and that cached result might be used with queries using a different
1408 // context instruction), because when this function is called from the solve*
1409 // functions, the context instruction is not provided. When called from
1410 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1411 // but then the result is not cached.
1412 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1413
1414 return intersect(LocalResult, InBlock);
1415}
1416
1417ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1418 Instruction *CxtI) {
1419 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting block end value "
<< *V << " at '" << BB->getName() <<
"'\n"; } } while (false)
1420 << BB->getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting block end value "
<< *V << " at '" << BB->getName() <<
"'\n"; } } while (false)
;
1421
1422 assert(BlockValueStack.empty() && BlockValueSet.empty())((BlockValueStack.empty() && BlockValueSet.empty()) ?
static_cast<void> (0) : __assert_fail ("BlockValueStack.empty() && BlockValueSet.empty()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1422, __PRETTY_FUNCTION__))
;
1423 Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB);
1424 if (!OptResult) {
1425 solve();
1426 OptResult = getBlockValue(V, BB);
1427 assert(OptResult && "Value not available after solving")((OptResult && "Value not available after solving") ?
static_cast<void> (0) : __assert_fail ("OptResult && \"Value not available after solving\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1427, __PRETTY_FUNCTION__))
;
1428 }
1429 ValueLatticeElement Result = *OptResult;
1430 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1431
1432 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " Result = " <<
Result << "\n"; } } while (false)
;
1433 return Result;
1434}
1435
1436ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1437 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting value " <<
*V << " at '" << CxtI->getName() << "'\n"
; } } while (false)
1438 << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting value " <<
*V << " at '" << CxtI->getName() << "'\n"
; } } while (false)
;
1439
1440 if (auto *C = dyn_cast<Constant>(V))
1441 return ValueLatticeElement::get(C);
1442
1443 ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1444 if (auto *I = dyn_cast<Instruction>(V))
1445 Result = getFromRangeMetadata(I);
1446 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1447
1448 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " Result = " <<
Result << "\n"; } } while (false)
;
1449 return Result;
1450}
1451
1452ValueLatticeElement LazyValueInfoImpl::
1453getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1454 Instruction *CxtI) {
1455 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting edge value "
<< *V << " from '" << FromBB->getName()
<< "' to '" << ToBB->getName() << "'\n"
; } } while (false)
3
Assuming 'DebugFlag' is false
4
Loop condition is false. Exiting loop
1456 << FromBB->getName() << "' to '" << ToBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting edge value "
<< *V << " from '" << FromBB->getName()
<< "' to '" << ToBB->getName() << "'\n"
; } } while (false)
1457 << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting edge value "
<< *V << " from '" << FromBB->getName()
<< "' to '" << ToBB->getName() << "'\n"
; } } while (false)
;
1458
1459 Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI);
5
Passing value via 3rd parameter 'BBTo'
6
Calling 'LazyValueInfoImpl::getEdgeValue'
1460 if (!Result) {
1461 solve();
1462 Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1463 assert(Result && "More work to do after problem solved?")((Result && "More work to do after problem solved?") ?
static_cast<void> (0) : __assert_fail ("Result && \"More work to do after problem solved?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1463, __PRETTY_FUNCTION__))
;
1464 }
1465
1466 LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " Result = " <<
*Result << "\n"; } } while (false)
;
1467 return *Result;
1468}
1469
1470void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1471 BasicBlock *NewSucc) {
1472 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1473}
1474
1475//===----------------------------------------------------------------------===//
1476// LazyValueInfo Impl
1477//===----------------------------------------------------------------------===//
1478
1479/// This lazily constructs the LazyValueInfoImpl.
1480static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1481 const Module *M) {
1482 if (!PImpl) {
1483 assert(M && "getCache() called with a null Module")((M && "getCache() called with a null Module") ? static_cast
<void> (0) : __assert_fail ("M && \"getCache() called with a null Module\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1483, __PRETTY_FUNCTION__))
;
1484 const DataLayout &DL = M->getDataLayout();
1485 Function *GuardDecl = M->getFunction(
1486 Intrinsic::getName(Intrinsic::experimental_guard));
1487 PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl);
1488 }
1489 return *static_cast<LazyValueInfoImpl*>(PImpl);
1490}
1491
1492bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1493 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1494 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1495
1496 if (Info.PImpl)
1497 getImpl(Info.PImpl, Info.AC, F.getParent()).clear();
1498
1499 // Fully lazy.
1500 return false;
1501}
1502
1503void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1504 AU.setPreservesAll();
1505 AU.addRequired<AssumptionCacheTracker>();
1506 AU.addRequired<TargetLibraryInfoWrapperPass>();
1507}
1508
1509LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1510
1511LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1512
1513void LazyValueInfo::releaseMemory() {
1514 // If the cache was allocated, free it.
1515 if (PImpl) {
1516 delete &getImpl(PImpl, AC, nullptr);
1517 PImpl = nullptr;
1518 }
1519}
1520
1521bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1522 FunctionAnalysisManager::Invalidator &Inv) {
1523 // We need to invalidate if we have either failed to preserve this analyses
1524 // result directly or if any of its dependencies have been invalidated.
1525 auto PAC = PA.getChecker<LazyValueAnalysis>();
1526 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()))
1527 return true;
1528
1529 return false;
1530}
1531
1532void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1533
1534LazyValueInfo LazyValueAnalysis::run(Function &F,
1535 FunctionAnalysisManager &FAM) {
1536 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1537 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1538
1539 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI);
1540}
1541
1542/// Returns true if we can statically tell that this value will never be a
1543/// "useful" constant. In practice, this means we've got something like an
1544/// alloca or a malloc call for which a comparison against a constant can
1545/// only be guarding dead code. Note that we are potentially giving up some
1546/// precision in dead code (a constant result) in favour of avoiding a
1547/// expensive search for a easily answered common query.
1548static bool isKnownNonConstant(Value *V) {
1549 V = V->stripPointerCasts();
1550 // The return val of alloc cannot be a Constant.
1551 if (isa<AllocaInst>(V))
1552 return true;
1553 return false;
1554}
1555
1556Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) {
1557 // Bail out early if V is known not to be a Constant.
1558 if (isKnownNonConstant(V))
1559 return nullptr;
1560
1561 BasicBlock *BB = CxtI->getParent();
1562 ValueLatticeElement Result =
1563 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1564
1565 if (Result.isConstant())
1566 return Result.getConstant();
1567 if (Result.isConstantRange()) {
1568 const ConstantRange &CR = Result.getConstantRange();
1569 if (const APInt *SingleVal = CR.getSingleElement())
1570 return ConstantInt::get(V->getContext(), *SingleVal);
1571 }
1572 return nullptr;
1573}
1574
1575ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI,
1576 bool UndefAllowed) {
1577 assert(V->getType()->isIntegerTy())((V->getType()->isIntegerTy()) ? static_cast<void>
(0) : __assert_fail ("V->getType()->isIntegerTy()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1577, __PRETTY_FUNCTION__))
;
1578 unsigned Width = V->getType()->getIntegerBitWidth();
1579 BasicBlock *BB = CxtI->getParent();
1580 ValueLatticeElement Result =
1581 getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI);
1582 if (Result.isUnknown())
1583 return ConstantRange::getEmpty(Width);
1584 if (Result.isConstantRange(UndefAllowed))
1585 return Result.getConstantRange(UndefAllowed);
1586 // We represent ConstantInt constants as constant ranges but other kinds
1587 // of integer constants, i.e. ConstantExpr will be tagged as constants
1588 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1589, __PRETTY_FUNCTION__))
1589 "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1589, __PRETTY_FUNCTION__))
;
1590 return ConstantRange::getFull(Width);
1591}
1592
1593/// Determine whether the specified value is known to be a
1594/// constant on the specified edge. Return null if not.
1595Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1596 BasicBlock *ToBB,
1597 Instruction *CxtI) {
1598 Module *M = FromBB->getModule();
1599 ValueLatticeElement Result =
1600 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1601
1602 if (Result.isConstant())
1603 return Result.getConstant();
1604 if (Result.isConstantRange()) {
1605 const ConstantRange &CR = Result.getConstantRange();
1606 if (const APInt *SingleVal = CR.getSingleElement())
1607 return ConstantInt::get(V->getContext(), *SingleVal);
1608 }
1609 return nullptr;
1610}
1611
1612ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1613 BasicBlock *FromBB,
1614 BasicBlock *ToBB,
1615 Instruction *CxtI) {
1616 unsigned Width = V->getType()->getIntegerBitWidth();
1617 Module *M = FromBB->getModule();
1618 ValueLatticeElement Result =
1619 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1
Passing value via 3rd parameter 'ToBB'
2
Calling 'LazyValueInfoImpl::getValueOnEdge'
1620
1621 if (Result.isUnknown())
1622 return ConstantRange::getEmpty(Width);
1623 if (Result.isConstantRange())
1624 return Result.getConstantRange();
1625 // We represent ConstantInt constants as constant ranges but other kinds
1626 // of integer constants, i.e. ConstantExpr will be tagged as constants
1627 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1628, __PRETTY_FUNCTION__))
1628 "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1628, __PRETTY_FUNCTION__))
;
1629 return ConstantRange::getFull(Width);
1630}
1631
1632static LazyValueInfo::Tristate
1633getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1634 const DataLayout &DL, TargetLibraryInfo *TLI) {
1635 // If we know the value is a constant, evaluate the conditional.
1636 Constant *Res = nullptr;
1637 if (Val.isConstant()) {
1638 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1639 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1640 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1641 return LazyValueInfo::Unknown;
1642 }
1643
1644 if (Val.isConstantRange()) {
1645 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1646 if (!CI) return LazyValueInfo::Unknown;
1647
1648 const ConstantRange &CR = Val.getConstantRange();
1649 if (Pred == ICmpInst::ICMP_EQ) {
1650 if (!CR.contains(CI->getValue()))
1651 return LazyValueInfo::False;
1652
1653 if (CR.isSingleElement())
1654 return LazyValueInfo::True;
1655 } else if (Pred == ICmpInst::ICMP_NE) {
1656 if (!CR.contains(CI->getValue()))
1657 return LazyValueInfo::True;
1658
1659 if (CR.isSingleElement())
1660 return LazyValueInfo::False;
1661 } else {
1662 // Handle more complex predicates.
1663 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1664 (ICmpInst::Predicate)Pred, CI->getValue());
1665 if (TrueValues.contains(CR))
1666 return LazyValueInfo::True;
1667 if (TrueValues.inverse().contains(CR))
1668 return LazyValueInfo::False;
1669 }
1670 return LazyValueInfo::Unknown;
1671 }
1672
1673 if (Val.isNotConstant()) {
1674 // If this is an equality comparison, we can try to fold it knowing that
1675 // "V != C1".
1676 if (Pred == ICmpInst::ICMP_EQ) {
1677 // !C1 == C -> false iff C1 == C.
1678 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1679 Val.getNotConstant(), C, DL,
1680 TLI);
1681 if (Res->isNullValue())
1682 return LazyValueInfo::False;
1683 } else if (Pred == ICmpInst::ICMP_NE) {
1684 // !C1 != C -> true iff C1 == C.
1685 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1686 Val.getNotConstant(), C, DL,
1687 TLI);
1688 if (Res->isNullValue())
1689 return LazyValueInfo::True;
1690 }
1691 return LazyValueInfo::Unknown;
1692 }
1693
1694 return LazyValueInfo::Unknown;
1695}
1696
1697/// Determine whether the specified value comparison with a constant is known to
1698/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1699LazyValueInfo::Tristate
1700LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1701 BasicBlock *FromBB, BasicBlock *ToBB,
1702 Instruction *CxtI) {
1703 Module *M = FromBB->getModule();
1704 ValueLatticeElement Result =
1705 getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI);
1706
1707 return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI);
1708}
1709
1710LazyValueInfo::Tristate
1711LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1712 Instruction *CxtI, bool UseBlockValue) {
1713 // Is or is not NonNull are common predicates being queried. If
1714 // isKnownNonZero can tell us the result of the predicate, we can
1715 // return it quickly. But this is only a fastpath, and falling
1716 // through would still be correct.
1717 Module *M = CxtI->getModule();
1718 const DataLayout &DL = M->getDataLayout();
1719 if (V->getType()->isPointerTy() && C->isNullValue() &&
1720 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1721 if (Pred == ICmpInst::ICMP_EQ)
1722 return LazyValueInfo::False;
1723 else if (Pred == ICmpInst::ICMP_NE)
1724 return LazyValueInfo::True;
1725 }
1726
1727 ValueLatticeElement Result = UseBlockValue
1728 ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI)
1729 : getImpl(PImpl, AC, M).getValueAt(V, CxtI);
1730 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1731 if (Ret != Unknown)
1732 return Ret;
1733
1734 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1735 // LVI as a whole tries to compute a lattice value which is conservatively
1736 // correct at a given location. In this case, we have a predicate which we
1737 // weren't able to prove about the merged result, and we're pushing that
1738 // predicate back along each incoming edge to see if we can prove it
1739 // separately for each input. As a motivating example, consider:
1740 // bb1:
1741 // %v1 = ... ; constantrange<1, 5>
1742 // br label %merge
1743 // bb2:
1744 // %v2 = ... ; constantrange<10, 20>
1745 // br label %merge
1746 // merge:
1747 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1748 // %pred = icmp eq i32 %phi, 8
1749 // We can't tell from the lattice value for '%phi' that '%pred' is false
1750 // along each path, but by checking the predicate over each input separately,
1751 // we can.
1752 // We limit the search to one step backwards from the current BB and value.
1753 // We could consider extending this to search further backwards through the
1754 // CFG and/or value graph, but there are non-obvious compile time vs quality
1755 // tradeoffs.
1756 if (CxtI) {
1757 BasicBlock *BB = CxtI->getParent();
1758
1759 // Function entry or an unreachable block. Bail to avoid confusing
1760 // analysis below.
1761 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1762 if (PI == PE)
1763 return Unknown;
1764
1765 // If V is a PHI node in the same block as the context, we need to ask
1766 // questions about the predicate as applied to the incoming value along
1767 // each edge. This is useful for eliminating cases where the predicate is
1768 // known along all incoming edges.
1769 if (auto *PHI = dyn_cast<PHINode>(V))
1770 if (PHI->getParent() == BB) {
1771 Tristate Baseline = Unknown;
1772 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1773 Value *Incoming = PHI->getIncomingValue(i);
1774 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1775 // Note that PredBB may be BB itself.
1776 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1777 CxtI);
1778
1779 // Keep going as long as we've seen a consistent known result for
1780 // all inputs.
1781 Baseline = (i == 0) ? Result /* First iteration */
1782 : (Baseline == Result ? Baseline : Unknown); /* All others */
1783 if (Baseline == Unknown)
1784 break;
1785 }
1786 if (Baseline != Unknown)
1787 return Baseline;
1788 }
1789
1790 // For a comparison where the V is outside this block, it's possible
1791 // that we've branched on it before. Look to see if the value is known
1792 // on all incoming edges.
1793 if (!isa<Instruction>(V) ||
1794 cast<Instruction>(V)->getParent() != BB) {
1795 // For predecessor edge, determine if the comparison is true or false
1796 // on that edge. If they're all true or all false, we can conclude
1797 // the value of the comparison in this block.
1798 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1799 if (Baseline != Unknown) {
1800 // Check that all remaining incoming values match the first one.
1801 while (++PI != PE) {
1802 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1803 if (Ret != Baseline) break;
1804 }
1805 // If we terminated early, then one of the values didn't match.
1806 if (PI == PE) {
1807 return Baseline;
1808 }
1809 }
1810 }
1811 }
1812 return Unknown;
1813}
1814
1815void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1816 BasicBlock *NewSucc) {
1817 if (PImpl) {
1818 getImpl(PImpl, AC, PredBB->getModule())
1819 .threadEdge(PredBB, OldSucc, NewSucc);
1820 }
1821}
1822
1823void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1824 if (PImpl) {
1825 getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB);
1826 }
1827}
1828
1829
1830void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1831 if (PImpl) {
1832 getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS);
1833 }
1834}
1835
1836// Print the LVI for the function arguments at the start of each basic block.
1837void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1838 const BasicBlock *BB, formatted_raw_ostream &OS) {
1839 // Find if there are latticevalues defined for arguments of the function.
1840 auto *F = BB->getParent();
1841 for (auto &Arg : F->args()) {
1842 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1843 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1844 if (Result.isUnknown())
1845 continue;
1846 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1847 }
1848}
1849
1850// This function prints the LVI analysis for the instruction I at the beginning
1851// of various basic blocks. It relies on calculated values that are stored in
1852// the LazyValueInfoCache, and in the absence of cached values, recalculate the
1853// LazyValueInfo for `I`, and print that info.
1854void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1855 const Instruction *I, formatted_raw_ostream &OS) {
1856
1857 auto *ParentBB = I->getParent();
1858 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
1859 // We can generate (solve) LVI values only for blocks that are dominated by
1860 // the I's parent. However, to avoid generating LVI for all dominating blocks,
1861 // that contain redundant/uninteresting information, we print LVI for
1862 // blocks that may use this LVI information (such as immediate successor
1863 // blocks, and blocks that contain uses of `I`).
1864 auto printResult = [&](const BasicBlock *BB) {
1865 if (!BlocksContainingLVI.insert(BB).second)
1866 return;
1867 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1868 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
1869 OS << "; LatticeVal for: '" << *I << "' in BB: '";
1870 BB->printAsOperand(OS, false);
1871 OS << "' is: " << Result << "\n";
1872 };
1873
1874 printResult(ParentBB);
1875 // Print the LVI analysis results for the immediate successor blocks, that
1876 // are dominated by `ParentBB`.
1877 for (auto *BBSucc : successors(ParentBB))
1878 if (DT.dominates(ParentBB, BBSucc))
1879 printResult(BBSucc);
1880
1881 // Print LVI in blocks where `I` is used.
1882 for (auto *U : I->users())
1883 if (auto *UseI = dyn_cast<Instruction>(U))
1884 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
1885 printResult(UseI->getParent());
1886
1887}
1888
1889namespace {
1890// Printer class for LazyValueInfo results.
1891class LazyValueInfoPrinter : public FunctionPass {
1892public:
1893 static char ID; // Pass identification, replacement for typeid
1894 LazyValueInfoPrinter() : FunctionPass(ID) {
1895 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1896 }
1897
1898 void getAnalysisUsage(AnalysisUsage &AU) const override {
1899 AU.setPreservesAll();
1900 AU.addRequired<LazyValueInfoWrapperPass>();
1901 AU.addRequired<DominatorTreeWrapperPass>();
1902 }
1903
1904 // Get the mandatory dominator tree analysis and pass this in to the
1905 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
1906 bool runOnFunction(Function &F) override {
1907 dbgs() << "LVI for function '" << F.getName() << "':\n";
1908 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
1909 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1910 LVI.printLVI(F, DTree, dbgs());
1911 return false;
1912 }
1913};
1914}
1915
1916char LazyValueInfoPrinter::ID = 0;
1917INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry
&Registry) {
1918 "Lazy Value Info Printer Pass", false, false)static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry
&Registry) {
1919INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry);
1920INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info"
, &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LazyValueInfoPrinter>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag
; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry &
Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag
, initializeLazyValueInfoPrinterPassOnce, std::ref(Registry))
; }
1921 "Lazy Value Info Printer Pass", false, false)PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info"
, &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LazyValueInfoPrinter>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag
; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry &
Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag
, initializeLazyValueInfoPrinterPassOnce, std::ref(Registry))
; }

/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 898, __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
941 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
957 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Return true if the predicate is SGT or UGT.
1294 ///
1295 static bool isGT(Predicate P) {
1296 return P == ICMP_SGT || P == ICMP_UGT;
1297 }
1298
1299 /// Return true if the predicate is SLT or ULT.
1300 ///
1301 static bool isLT(Predicate P) {
1302 return P == ICMP_SLT || P == ICMP_ULT;
1303 }
1304
1305 /// Return true if the predicate is SGE or UGE.
1306 ///
1307 static bool isGE(Predicate P) {
1308 return P == ICMP_SGE || P == ICMP_UGE;
1309 }
1310
1311 /// Return true if the predicate is SLE or ULE.
1312 ///
1313 static bool isLE(Predicate P) {
1314 return P == ICMP_SLE || P == ICMP_ULE;
1315 }
1316
1317 /// Exchange the two operands to this instruction in such a way that it does
1318 /// not modify the semantics of the instruction. The predicate value may be
1319 /// changed to retain the same result if the predicate is order dependent
1320 /// (e.g. ult).
1321 /// Swap operands and adjust predicate.
1322 void swapOperands() {
1323 setPredicate(getSwappedPredicate());
1324 Op<0>().swap(Op<1>());
1325 }
1326
1327 // Methods for support type inquiry through isa, cast, and dyn_cast:
1328 static bool classof(const Instruction *I) {
1329 return I->getOpcode() == Instruction::ICmp;
1330 }
1331 static bool classof(const Value *V) {
1332 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333 }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// FCmpInst Class
1338//===----------------------------------------------------------------------===//
1339
1340/// This instruction compares its operands according to the predicate given
1341/// to the constructor. It only operates on floating point values or packed
1342/// vectors of floating point values. The operands must be identical types.
1343/// Represents a floating point comparison operator.
1344class FCmpInst: public CmpInst {
1345 void AssertOK() {
1346 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1346, __PRETTY_FUNCTION__))
;
1347 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
1348 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
;
1349 // Check that the operands are the right type
1350 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
1351 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
;
1352 }
1353
1354protected:
1355 // Note: Instruction needs to be a friend here to call cloneImpl.
1356 friend class Instruction;
1357
1358 /// Clone an identical FCmpInst
1359 FCmpInst *cloneImpl() const;
1360
1361public:
1362 /// Constructor with insert-before-instruction semantics.
1363 FCmpInst(
1364 Instruction *InsertBefore, ///< Where to insert
1365 Predicate pred, ///< The predicate to use for the comparison
1366 Value *LHS, ///< The left-hand-side of the expression
1367 Value *RHS, ///< The right-hand-side of the expression
1368 const Twine &NameStr = "" ///< Name of the instruction
1369 ) : CmpInst(makeCmpResultType(LHS->getType()),
1370 Instruction::FCmp, pred, LHS, RHS, NameStr,
1371 InsertBefore) {
1372 AssertOK();
1373 }
1374
1375 /// Constructor with insert-at-end semantics.
1376 FCmpInst(
1377 BasicBlock &InsertAtEnd, ///< Block to insert into.
1378 Predicate pred, ///< The predicate to use for the comparison
1379 Value *LHS, ///< The left-hand-side of the expression
1380 Value *RHS, ///< The right-hand-side of the expression
1381 const Twine &NameStr = "" ///< Name of the instruction
1382 ) : CmpInst(makeCmpResultType(LHS->getType()),
1383 Instruction::FCmp, pred, LHS, RHS, NameStr,
1384 &InsertAtEnd) {
1385 AssertOK();
1386 }
1387
1388 /// Constructor with no-insertion semantics
1389 FCmpInst(
1390 Predicate Pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "", ///< Name of the instruction
1394 Instruction *FlagsSource = nullptr
1395 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396 RHS, NameStr, nullptr, FlagsSource) {
1397 AssertOK();
1398 }
1399
1400 /// @returns true if the predicate of this instruction is EQ or NE.
1401 /// Determine if this is an equality predicate.
1402 static bool isEquality(Predicate Pred) {
1403 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404 Pred == FCMP_UNE;
1405 }
1406
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 bool isEquality() const { return isEquality(getPredicate()); }
1410
1411 /// @returns true if the predicate of this instruction is commutative.
1412 /// Determine if this is a commutative predicate.
1413 bool isCommutative() const {
1414 return isEquality() ||
1415 getPredicate() == FCMP_FALSE ||
1416 getPredicate() == FCMP_TRUE ||
1417 getPredicate() == FCMP_ORD ||
1418 getPredicate() == FCMP_UNO;
1419 }
1420
1421 /// @returns true if the predicate is relational (not EQ or NE).
1422 /// Determine if this a relational predicate.
1423 bool isRelational() const { return !isEquality(); }
1424
1425 /// Exchange the two operands to this instruction in such a way that it does
1426 /// not modify the semantics of the instruction. The predicate value may be
1427 /// changed to retain the same result if the predicate is order dependent
1428 /// (e.g. ult).
1429 /// Swap operands and adjust predicate.
1430 void swapOperands() {
1431 setPredicate(getSwappedPredicate());
1432 Op<0>().swap(Op<1>());
1433 }
1434
1435 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436 static bool classof(const Instruction *I) {
1437 return I->getOpcode() == Instruction::FCmp;
1438 }
1439 static bool classof(const Value *V) {
1440 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441 }
1442};
1443
1444//===----------------------------------------------------------------------===//
1445/// This class represents a function call, abstracting a target
1446/// machine's calling convention. This class uses low bit of the SubClassData
1447/// field to indicate whether or not this is a tail call. The rest of the bits
1448/// hold the calling convention of the call.
1449///
1450class CallInst : public CallBase {
1451 CallInst(const CallInst &CI);
1452
1453 /// Construct a CallInst given a range of arguments.
1454 /// Construct a CallInst from a range of arguments
1455 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457 Instruction *InsertBefore);
1458
1459 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460 const Twine &NameStr, Instruction *InsertBefore)
1461 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462
1463 /// Construct a CallInst given a range of arguments.
1464 /// Construct a CallInst from a range of arguments
1465 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467 BasicBlock *InsertAtEnd);
1468
1469 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470 Instruction *InsertBefore);
1471
1472 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473 BasicBlock *InsertAtEnd);
1474
1475 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478
1479 /// Compute the number of operands to allocate.
1480 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481 // We need one operand for the called function, plus the input operand
1482 // counts provided.
1483 return 1 + NumArgs + NumBundleInputs;
1484 }
1485
1486protected:
1487 // Note: Instruction needs to be a friend here to call cloneImpl.
1488 friend class Instruction;
1489
1490 CallInst *cloneImpl() const;
1491
1492public:
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494 Instruction *InsertBefore = nullptr) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr,
1500 Instruction *InsertBefore = nullptr) {
1501 return new (ComputeNumOperands(Args.size()))
1502 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 const int NumOperands =
1510 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512
1513 return new (NumOperands, DescriptorBytes)
1514 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515 }
1516
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518 BasicBlock *InsertAtEnd) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return new (ComputeNumOperands(Args.size()))
1525 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526 }
1527
1528 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 const int NumOperands =
1532 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534
1535 return new (NumOperands, DescriptorBytes)
1536 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537 }
1538
1539 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540 Instruction *InsertBefore = nullptr) {
1541 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542 InsertBefore);
1543 }
1544
1545 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546 ArrayRef<OperandBundleDef> Bundles = None,
1547 const Twine &NameStr = "",
1548 Instruction *InsertBefore = nullptr) {
1549 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550 NameStr, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 Instruction *InsertBefore = nullptr) {
1556 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557 InsertBefore);
1558 }
1559
1560 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561 BasicBlock *InsertAtEnd) {
1562 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563 InsertAtEnd);
1564 }
1565
1566 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569 InsertAtEnd);
1570 }
1571
1572 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573 ArrayRef<OperandBundleDef> Bundles,
1574 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576 NameStr, InsertAtEnd);
1577 }
1578
1579 /// Create a clone of \p CI with a different set of operand bundles and
1580 /// insert it before \p InsertPt.
1581 ///
1582 /// The returned call instruction is identical \p CI in every way except that
1583 /// the operand bundles for the new instruction are set to the operand bundles
1584 /// in \p Bundles.
1585 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586 Instruction *InsertPt = nullptr);
1587
1588 /// Generate the IR for a call to malloc:
1589 /// 1. Compute the malloc call's argument as the specified type's size,
1590 /// possibly multiplied by the array size if the array size is not
1591 /// constant 1.
1592 /// 2. Call malloc with that argument.
1593 /// 3. Bitcast the result of the malloc call to the specified type.
1594 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1595 Type *AllocTy, Value *AllocSize,
1596 Value *ArraySize = nullptr,
1597 Function *MallocF = nullptr,
1598 const Twine &Name = "");
1599 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1600 Type *AllocTy, Value *AllocSize,
1601 Value *ArraySize = nullptr,
1602 Function *MallocF = nullptr,
1603 const Twine &Name = "");
1604 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 ArrayRef<OperandBundleDef> Bundles = None,
1608 Function *MallocF = nullptr,
1609 const Twine &Name = "");
1610 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1611 Type *AllocTy, Value *AllocSize,
1612 Value *ArraySize = nullptr,
1613 ArrayRef<OperandBundleDef> Bundles = None,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 /// Generate the IR for a call to the builtin free function.
1617 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1618 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1619 static Instruction *CreateFree(Value *Source,
1620 ArrayRef<OperandBundleDef> Bundles,
1621 Instruction *InsertBefore);
1622 static Instruction *CreateFree(Value *Source,
1623 ArrayRef<OperandBundleDef> Bundles,
1624 BasicBlock *InsertAtEnd);
1625
1626 // Note that 'musttail' implies 'tail'.
1627 enum TailCallKind : unsigned {
1628 TCK_None = 0,
1629 TCK_Tail = 1,
1630 TCK_MustTail = 2,
1631 TCK_NoTail = 3,
1632 TCK_LAST = TCK_NoTail
1633 };
1634
1635 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1636 static_assert(
1637 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1638 "Bitfields must be contiguous");
1639
1640 TailCallKind getTailCallKind() const {
1641 return getSubclassData<TailCallKindField>();
1642 }
1643
1644 bool isTailCall() const {
1645 TailCallKind Kind = getTailCallKind();
1646 return Kind == TCK_Tail || Kind == TCK_MustTail;
1647 }
1648
1649 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1650
1651 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1652
1653 void setTailCallKind(TailCallKind TCK) {
1654 setSubclassData<TailCallKindField>(TCK);
1655 }
1656
1657 void setTailCall(bool IsTc = true) {
1658 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1659 }
1660
1661 /// Return true if the call can return twice
1662 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1663 void setCanReturnTwice() {
1664 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1665 }
1666
1667 // Methods for support type inquiry through isa, cast, and dyn_cast:
1668 static bool classof(const Instruction *I) {
1669 return I->getOpcode() == Instruction::Call;
1670 }
1671 static bool classof(const Value *V) {
1672 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1673 }
1674
1675 /// Updates profile metadata by scaling it by \p S / \p T.
1676 void updateProfWeight(uint64_t S, uint64_t T);
1677
1678private:
1679 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1680 // method so that subclasses cannot accidentally use it.
1681 template <typename Bitfield>
1682 void setSubclassData(typename Bitfield::Type Value) {
1683 Instruction::setSubclassData<Bitfield>(Value);
1684 }
1685};
1686
1687CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1688 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1689 BasicBlock *InsertAtEnd)
1690 : CallBase(Ty->getReturnType(), Instruction::Call,
1691 OperandTraits<CallBase>::op_end(this) -
1692 (Args.size() + CountBundleInputs(Bundles) + 1),
1693 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1694 InsertAtEnd) {
1695 init(Ty, Func, Args, Bundles, NameStr);
1696}
1697
1698CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1699 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1700 Instruction *InsertBefore)
1701 : CallBase(Ty->getReturnType(), Instruction::Call,
1702 OperandTraits<CallBase>::op_end(this) -
1703 (Args.size() + CountBundleInputs(Bundles) + 1),
1704 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1705 InsertBefore) {
1706 init(Ty, Func, Args, Bundles, NameStr);
1707}
1708
1709//===----------------------------------------------------------------------===//
1710// SelectInst Class
1711//===----------------------------------------------------------------------===//
1712
1713/// This class represents the LLVM 'select' instruction.
1714///
1715class SelectInst : public Instruction {
1716 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1717 Instruction *InsertBefore)
1718 : Instruction(S1->getType(), Instruction::Select,
1719 &Op<0>(), 3, InsertBefore) {
1720 init(C, S1, S2);
1721 setName(NameStr);
1722 }
1723
1724 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1725 BasicBlock *InsertAtEnd)
1726 : Instruction(S1->getType(), Instruction::Select,
1727 &Op<0>(), 3, InsertAtEnd) {
1728 init(C, S1, S2);
1729 setName(NameStr);
1730 }
1731
1732 void init(Value *C, Value *S1, Value *S2) {
1733 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1733, __PRETTY_FUNCTION__))
;
1734 Op<0>() = C;
1735 Op<1>() = S1;
1736 Op<2>() = S2;
1737 }
1738
1739protected:
1740 // Note: Instruction needs to be a friend here to call cloneImpl.
1741 friend class Instruction;
1742
1743 SelectInst *cloneImpl() const;
1744
1745public:
1746 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1747 const Twine &NameStr = "",
1748 Instruction *InsertBefore = nullptr,
1749 Instruction *MDFrom = nullptr) {
1750 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1751 if (MDFrom)
1752 Sel->copyMetadata(*MDFrom);
1753 return Sel;
1754 }
1755
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr,
1758 BasicBlock *InsertAtEnd) {
1759 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1760 }
1761
1762 const Value *getCondition() const { return Op<0>(); }
1763 const Value *getTrueValue() const { return Op<1>(); }
1764 const Value *getFalseValue() const { return Op<2>(); }
1765 Value *getCondition() { return Op<0>(); }
1766 Value *getTrueValue() { return Op<1>(); }
1767 Value *getFalseValue() { return Op<2>(); }
1768
1769 void setCondition(Value *V) { Op<0>() = V; }
1770 void setTrueValue(Value *V) { Op<1>() = V; }
1771 void setFalseValue(Value *V) { Op<2>() = V; }
1772
1773 /// Swap the true and false values of the select instruction.
1774 /// This doesn't swap prof metadata.
1775 void swapValues() { Op<1>().swap(Op<2>()); }
1776
1777 /// Return a string if the specified operands are invalid
1778 /// for a select operation, otherwise return null.
1779 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1780
1781 /// Transparently provide more efficient getOperand methods.
1782 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1783
1784 OtherOps getOpcode() const {
1785 return static_cast<OtherOps>(Instruction::getOpcode());
1786 }
1787
1788 // Methods for support type inquiry through isa, cast, and dyn_cast:
1789 static bool classof(const Instruction *I) {
1790 return I->getOpcode() == Instruction::Select;
1791 }
1792 static bool classof(const Value *V) {
1793 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1794 }
1795};
1796
1797template <>
1798struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1799};
1800
1801DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1801, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1801, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1802
1803//===----------------------------------------------------------------------===//
1804// VAArgInst Class
1805//===----------------------------------------------------------------------===//
1806
1807/// This class represents the va_arg llvm instruction, which returns
1808/// an argument of the specified type given a va_list and increments that list
1809///
1810class VAArgInst : public UnaryInstruction {
1811protected:
1812 // Note: Instruction needs to be a friend here to call cloneImpl.
1813 friend class Instruction;
1814
1815 VAArgInst *cloneImpl() const;
1816
1817public:
1818 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1819 Instruction *InsertBefore = nullptr)
1820 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1821 setName(NameStr);
1822 }
1823
1824 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1825 BasicBlock *InsertAtEnd)
1826 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1827 setName(NameStr);
1828 }
1829
1830 Value *getPointerOperand() { return getOperand(0); }
1831 const Value *getPointerOperand() const { return getOperand(0); }
1832 static unsigned getPointerOperandIndex() { return 0U; }
1833
1834 // Methods for support type inquiry through isa, cast, and dyn_cast:
1835 static bool classof(const Instruction *I) {
1836 return I->getOpcode() == VAArg;
1837 }
1838 static bool classof(const Value *V) {
1839 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1840 }
1841};
1842
1843//===----------------------------------------------------------------------===//
1844// ExtractElementInst Class
1845//===----------------------------------------------------------------------===//
1846
1847/// This instruction extracts a single (scalar)
1848/// element from a VectorType value
1849///
1850class ExtractElementInst : public Instruction {
1851 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1852 Instruction *InsertBefore = nullptr);
1853 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1854 BasicBlock *InsertAtEnd);
1855
1856protected:
1857 // Note: Instruction needs to be a friend here to call cloneImpl.
1858 friend class Instruction;
1859
1860 ExtractElementInst *cloneImpl() const;
1861
1862public:
1863 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1864 const Twine &NameStr = "",
1865 Instruction *InsertBefore = nullptr) {
1866 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1867 }
1868
1869 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1870 const Twine &NameStr,
1871 BasicBlock *InsertAtEnd) {
1872 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1873 }
1874
1875 /// Return true if an extractelement instruction can be
1876 /// formed with the specified operands.
1877 static bool isValidOperands(const Value *Vec, const Value *Idx);
1878
1879 Value *getVectorOperand() { return Op<0>(); }
1880 Value *getIndexOperand() { return Op<1>(); }
1881 const Value *getVectorOperand() const { return Op<0>(); }
1882 const Value *getIndexOperand() const { return Op<1>(); }
1883
1884 VectorType *getVectorOperandType() const {
1885 return cast<VectorType>(getVectorOperand()->getType());
1886 }
1887
1888 /// Transparently provide more efficient getOperand methods.
1889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1890
1891 // Methods for support type inquiry through isa, cast, and dyn_cast:
1892 static bool classof(const Instruction *I) {
1893 return I->getOpcode() == Instruction::ExtractElement;
1894 }
1895 static bool classof(const Value *V) {
1896 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1897 }
1898};
1899
1900template <>
1901struct OperandTraits<ExtractElementInst> :
1902 public FixedNumOperandTraits<ExtractElementInst, 2> {
1903};
1904
1905DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1905, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1905, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1906
1907//===----------------------------------------------------------------------===//
1908// InsertElementInst Class
1909//===----------------------------------------------------------------------===//
1910
1911/// This instruction inserts a single (scalar)
1912/// element into a VectorType value
1913///
1914class InsertElementInst : public Instruction {
1915 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1916 const Twine &NameStr = "",
1917 Instruction *InsertBefore = nullptr);
1918 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1919 BasicBlock *InsertAtEnd);
1920
1921protected:
1922 // Note: Instruction needs to be a friend here to call cloneImpl.
1923 friend class Instruction;
1924
1925 InsertElementInst *cloneImpl() const;
1926
1927public:
1928 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1929 const Twine &NameStr = "",
1930 Instruction *InsertBefore = nullptr) {
1931 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1932 }
1933
1934 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1935 const Twine &NameStr,
1936 BasicBlock *InsertAtEnd) {
1937 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1938 }
1939
1940 /// Return true if an insertelement instruction can be
1941 /// formed with the specified operands.
1942 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1943 const Value *Idx);
1944
1945 /// Overload to return most specific vector type.
1946 ///
1947 VectorType *getType() const {
1948 return cast<VectorType>(Instruction::getType());
1949 }
1950
1951 /// Transparently provide more efficient getOperand methods.
1952 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1953
1954 // Methods for support type inquiry through isa, cast, and dyn_cast:
1955 static bool classof(const Instruction *I) {
1956 return I->getOpcode() == Instruction::InsertElement;
1957 }
1958 static bool classof(const Value *V) {
1959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1960 }
1961};
1962
1963template <>
1964struct OperandTraits<InsertElementInst> :
1965 public FixedNumOperandTraits<InsertElementInst, 3> {
1966};
1967
1968DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1968, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 1968, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1969
1970//===----------------------------------------------------------------------===//
1971// ShuffleVectorInst Class
1972//===----------------------------------------------------------------------===//
1973
1974constexpr int UndefMaskElem = -1;
1975
1976/// This instruction constructs a fixed permutation of two
1977/// input vectors.
1978///
1979/// For each element of the result vector, the shuffle mask selects an element
1980/// from one of the input vectors to copy to the result. Non-negative elements
1981/// in the mask represent an index into the concatenated pair of input vectors.
1982/// UndefMaskElem (-1) specifies that the result element is undefined.
1983///
1984/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1985/// requirement may be relaxed in the future.
1986class ShuffleVectorInst : public Instruction {
1987 SmallVector<int, 4> ShuffleMask;
1988 Constant *ShuffleMaskForBitcode;
1989
1990protected:
1991 // Note: Instruction needs to be a friend here to call cloneImpl.
1992 friend class Instruction;
1993
1994 ShuffleVectorInst *cloneImpl() const;
1995
1996public:
1997 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1998 const Twine &NameStr = "",
1999 Instruction *InsertBefor = nullptr);
2000 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2001 const Twine &NameStr, BasicBlock *InsertAtEnd);
2002 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2003 const Twine &NameStr = "",
2004 Instruction *InsertBefor = nullptr);
2005 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2006 const Twine &NameStr, BasicBlock *InsertAtEnd);
2007
2008 void *operator new(size_t s) { return User::operator new(s, 2); }
2009
2010 /// Swap the operands and adjust the mask to preserve the semantics
2011 /// of the instruction.
2012 void commute();
2013
2014 /// Return true if a shufflevector instruction can be
2015 /// formed with the specified operands.
2016 static bool isValidOperands(const Value *V1, const Value *V2,
2017 const Value *Mask);
2018 static bool isValidOperands(const Value *V1, const Value *V2,
2019 ArrayRef<int> Mask);
2020
2021 /// Overload to return most specific vector type.
2022 ///
2023 VectorType *getType() const {
2024 return cast<VectorType>(Instruction::getType());
2025 }
2026
2027 /// Transparently provide more efficient getOperand methods.
2028 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2029
2030 /// Return the shuffle mask value of this instruction for the given element
2031 /// index. Return UndefMaskElem if the element is undef.
2032 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2033
2034 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2035 /// elements of the mask are returned as UndefMaskElem.
2036 static void getShuffleMask(const Constant *Mask,
2037 SmallVectorImpl<int> &Result);
2038
2039 /// Return the mask for this instruction as a vector of integers. Undefined
2040 /// elements of the mask are returned as UndefMaskElem.
2041 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2042 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2043 }
2044
2045 /// Return the mask for this instruction, for use in bitcode.
2046 ///
2047 /// TODO: This is temporary until we decide a new bitcode encoding for
2048 /// shufflevector.
2049 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2050
2051 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2052 Type *ResultTy);
2053
2054 void setShuffleMask(ArrayRef<int> Mask);
2055
2056 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2057
2058 /// Return true if this shuffle returns a vector with a different number of
2059 /// elements than its source vectors.
2060 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2061 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2062 bool changesLength() const {
2063 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2064 ->getElementCount()
2065 .getKnownMinValue();
2066 unsigned NumMaskElts = ShuffleMask.size();
2067 return NumSourceElts != NumMaskElts;
2068 }
2069
2070 /// Return true if this shuffle returns a vector with a greater number of
2071 /// elements than its source vectors.
2072 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2073 bool increasesLength() const {
2074 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2075 ->getElementCount()
2076 .getKnownMinValue();
2077 unsigned NumMaskElts = ShuffleMask.size();
2078 return NumSourceElts < NumMaskElts;
2079 }
2080
2081 /// Return true if this shuffle mask chooses elements from exactly one source
2082 /// vector.
2083 /// Example: <7,5,undef,7>
2084 /// This assumes that vector operands are the same length as the mask.
2085 static bool isSingleSourceMask(ArrayRef<int> Mask);
2086 static bool isSingleSourceMask(const Constant *Mask) {
2087 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2087, __PRETTY_FUNCTION__))
;
2088 SmallVector<int, 16> MaskAsInts;
2089 getShuffleMask(Mask, MaskAsInts);
2090 return isSingleSourceMask(MaskAsInts);
2091 }
2092
2093 /// Return true if this shuffle chooses elements from exactly one source
2094 /// vector without changing the length of that vector.
2095 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2096 /// TODO: Optionally allow length-changing shuffles.
2097 bool isSingleSource() const {
2098 return !changesLength() && isSingleSourceMask(ShuffleMask);
2099 }
2100
2101 /// Return true if this shuffle mask chooses elements from exactly one source
2102 /// vector without lane crossings. A shuffle using this mask is not
2103 /// necessarily a no-op because it may change the number of elements from its
2104 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2105 /// Example: <undef,undef,2,3>
2106 static bool isIdentityMask(ArrayRef<int> Mask);
2107 static bool isIdentityMask(const Constant *Mask) {
2108 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2108, __PRETTY_FUNCTION__))
;
2109 SmallVector<int, 16> MaskAsInts;
2110 getShuffleMask(Mask, MaskAsInts);
2111 return isIdentityMask(MaskAsInts);
2112 }
2113
2114 /// Return true if this shuffle chooses elements from exactly one source
2115 /// vector without lane crossings and does not change the number of elements
2116 /// from its input vectors.
2117 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2118 bool isIdentity() const {
2119 return !changesLength() && isIdentityMask(ShuffleMask);
2120 }
2121
2122 /// Return true if this shuffle lengthens exactly one source vector with
2123 /// undefs in the high elements.
2124 bool isIdentityWithPadding() const;
2125
2126 /// Return true if this shuffle extracts the first N elements of exactly one
2127 /// source vector.
2128 bool isIdentityWithExtract() const;
2129
2130 /// Return true if this shuffle concatenates its 2 source vectors. This
2131 /// returns false if either input is undefined. In that case, the shuffle is
2132 /// is better classified as an identity with padding operation.
2133 bool isConcat() const;
2134
2135 /// Return true if this shuffle mask chooses elements from its source vectors
2136 /// without lane crossings. A shuffle using this mask would be
2137 /// equivalent to a vector select with a constant condition operand.
2138 /// Example: <4,1,6,undef>
2139 /// This returns false if the mask does not choose from both input vectors.
2140 /// In that case, the shuffle is better classified as an identity shuffle.
2141 /// This assumes that vector operands are the same length as the mask
2142 /// (a length-changing shuffle can never be equivalent to a vector select).
2143 static bool isSelectMask(ArrayRef<int> Mask);
2144 static bool isSelectMask(const Constant *Mask) {
2145 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2145, __PRETTY_FUNCTION__))
;
2146 SmallVector<int, 16> MaskAsInts;
2147 getShuffleMask(Mask, MaskAsInts);
2148 return isSelectMask(MaskAsInts);
2149 }
2150
2151 /// Return true if this shuffle chooses elements from its source vectors
2152 /// without lane crossings and all operands have the same number of elements.
2153 /// In other words, this shuffle is equivalent to a vector select with a
2154 /// constant condition operand.
2155 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2156 /// This returns false if the mask does not choose from both input vectors.
2157 /// In that case, the shuffle is better classified as an identity shuffle.
2158 /// TODO: Optionally allow length-changing shuffles.
2159 bool isSelect() const {
2160 return !changesLength() && isSelectMask(ShuffleMask);
2161 }
2162
2163 /// Return true if this shuffle mask swaps the order of elements from exactly
2164 /// one source vector.
2165 /// Example: <7,6,undef,4>
2166 /// This assumes that vector operands are the same length as the mask.
2167 static bool isReverseMask(ArrayRef<int> Mask);
2168 static bool isReverseMask(const Constant *Mask) {
2169 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2169, __PRETTY_FUNCTION__))
;
2170 SmallVector<int, 16> MaskAsInts;
2171 getShuffleMask(Mask, MaskAsInts);
2172 return isReverseMask(MaskAsInts);
2173 }
2174
2175 /// Return true if this shuffle swaps the order of elements from exactly
2176 /// one source vector.
2177 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2178 /// TODO: Optionally allow length-changing shuffles.
2179 bool isReverse() const {
2180 return !changesLength() && isReverseMask(ShuffleMask);
2181 }
2182
2183 /// Return true if this shuffle mask chooses all elements with the same value
2184 /// as the first element of exactly one source vector.
2185 /// Example: <4,undef,undef,4>
2186 /// This assumes that vector operands are the same length as the mask.
2187 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2188 static bool isZeroEltSplatMask(const Constant *Mask) {
2189 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2189, __PRETTY_FUNCTION__))
;
2190 SmallVector<int, 16> MaskAsInts;
2191 getShuffleMask(Mask, MaskAsInts);
2192 return isZeroEltSplatMask(MaskAsInts);
2193 }
2194
2195 /// Return true if all elements of this shuffle are the same value as the
2196 /// first element of exactly one source vector without changing the length
2197 /// of that vector.
2198 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2199 /// TODO: Optionally allow length-changing shuffles.
2200 /// TODO: Optionally allow splats from other elements.
2201 bool isZeroEltSplat() const {
2202 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2203 }
2204
2205 /// Return true if this shuffle mask is a transpose mask.
2206 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2207 /// even- or odd-numbered vector elements from two n-dimensional source
2208 /// vectors and write each result into consecutive elements of an
2209 /// n-dimensional destination vector. Two shuffles are necessary to complete
2210 /// the transpose, one for the even elements and another for the odd elements.
2211 /// This description closely follows how the TRN1 and TRN2 AArch64
2212 /// instructions operate.
2213 ///
2214 /// For example, a simple 2x2 matrix can be transposed with:
2215 ///
2216 /// ; Original matrix
2217 /// m0 = < a, b >
2218 /// m1 = < c, d >
2219 ///
2220 /// ; Transposed matrix
2221 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2222 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2223 ///
2224 /// For matrices having greater than n columns, the resulting nx2 transposed
2225 /// matrix is stored in two result vectors such that one vector contains
2226 /// interleaved elements from all the even-numbered rows and the other vector
2227 /// contains interleaved elements from all the odd-numbered rows. For example,
2228 /// a 2x4 matrix can be transposed with:
2229 ///
2230 /// ; Original matrix
2231 /// m0 = < a, b, c, d >
2232 /// m1 = < e, f, g, h >
2233 ///
2234 /// ; Transposed matrix
2235 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2236 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2237 static bool isTransposeMask(ArrayRef<int> Mask);
2238 static bool isTransposeMask(const Constant *Mask) {
2239 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2239, __PRETTY_FUNCTION__))
;
2240 SmallVector<int, 16> MaskAsInts;
2241 getShuffleMask(Mask, MaskAsInts);
2242 return isTransposeMask(MaskAsInts);
2243 }
2244
2245 /// Return true if this shuffle transposes the elements of its inputs without
2246 /// changing the length of the vectors. This operation may also be known as a
2247 /// merge or interleave. See the description for isTransposeMask() for the
2248 /// exact specification.
2249 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2250 bool isTranspose() const {
2251 return !changesLength() && isTransposeMask(ShuffleMask);
2252 }
2253
2254 /// Return true if this shuffle mask is an extract subvector mask.
2255 /// A valid extract subvector mask returns a smaller vector from a single
2256 /// source operand. The base extraction index is returned as well.
2257 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2258 int &Index);
2259 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2260 int &Index) {
2261 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2261, __PRETTY_FUNCTION__))
;
2262 // Not possible to express a shuffle mask for a scalable vector for this
2263 // case.
2264 if (isa<ScalableVectorType>(Mask->getType()))
2265 return false;
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2269 }
2270
2271 /// Return true if this shuffle mask is an extract subvector mask.
2272 bool isExtractSubvectorMask(int &Index) const {
2273 // Not possible to express a shuffle mask for a scalable vector for this
2274 // case.
2275 if (isa<ScalableVectorType>(getType()))
2276 return false;
2277
2278 int NumSrcElts =
2279 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2280 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2281 }
2282
2283 /// Change values in a shuffle permute mask assuming the two vector operands
2284 /// of length InVecNumElts have swapped position.
2285 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2286 unsigned InVecNumElts) {
2287 for (int &Idx : Mask) {
2288 if (Idx == -1)
2289 continue;
2290 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2291 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2292, __PRETTY_FUNCTION__))
2292 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2292, __PRETTY_FUNCTION__))
;
2293 }
2294 }
2295
2296 // Methods for support type inquiry through isa, cast, and dyn_cast:
2297 static bool classof(const Instruction *I) {
2298 return I->getOpcode() == Instruction::ShuffleVector;
2299 }
2300 static bool classof(const Value *V) {
2301 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2302 }
2303};
2304
2305template <>
2306struct OperandTraits<ShuffleVectorInst>
2307 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2308
2309DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2309, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2309, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2310
2311//===----------------------------------------------------------------------===//
2312// ExtractValueInst Class
2313//===----------------------------------------------------------------------===//
2314
2315/// This instruction extracts a struct member or array
2316/// element value from an aggregate value.
2317///
2318class ExtractValueInst : public UnaryInstruction {
2319 SmallVector<unsigned, 4> Indices;
2320
2321 ExtractValueInst(const ExtractValueInst &EVI);
2322
2323 /// Constructors - Create a extractvalue instruction with a base aggregate
2324 /// value and a list of indices. The first ctor can optionally insert before
2325 /// an existing instruction, the second appends the new instruction to the
2326 /// specified BasicBlock.
2327 inline ExtractValueInst(Value *Agg,
2328 ArrayRef<unsigned> Idxs,
2329 const Twine &NameStr,
2330 Instruction *InsertBefore);
2331 inline ExtractValueInst(Value *Agg,
2332 ArrayRef<unsigned> Idxs,
2333 const Twine &NameStr, BasicBlock *InsertAtEnd);
2334
2335 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2336
2337protected:
2338 // Note: Instruction needs to be a friend here to call cloneImpl.
2339 friend class Instruction;
2340
2341 ExtractValueInst *cloneImpl() const;
2342
2343public:
2344 static ExtractValueInst *Create(Value *Agg,
2345 ArrayRef<unsigned> Idxs,
2346 const Twine &NameStr = "",
2347 Instruction *InsertBefore = nullptr) {
2348 return new
2349 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2350 }
2351
2352 static ExtractValueInst *Create(Value *Agg,
2353 ArrayRef<unsigned> Idxs,
2354 const Twine &NameStr,
2355 BasicBlock *InsertAtEnd) {
2356 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2357 }
2358
2359 /// Returns the type of the element that would be extracted
2360 /// with an extractvalue instruction with the specified parameters.
2361 ///
2362 /// Null is returned if the indices are invalid for the specified type.
2363 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2364
2365 using idx_iterator = const unsigned*;
2366
2367 inline idx_iterator idx_begin() const { return Indices.begin(); }
2368 inline idx_iterator idx_end() const { return Indices.end(); }
2369 inline iterator_range<idx_iterator> indices() const {
2370 return make_range(idx_begin(), idx_end());
2371 }
2372
2373 Value *getAggregateOperand() {
2374 return getOperand(0);
2375 }
2376 const Value *getAggregateOperand() const {
2377 return getOperand(0);
2378 }
2379 static unsigned getAggregateOperandIndex() {
2380 return 0U; // get index for modifying correct operand
2381 }
2382
2383 ArrayRef<unsigned> getIndices() const {
2384 return Indices;
2385 }
2386
2387 unsigned getNumIndices() const {
2388 return (unsigned)Indices.size();
2389 }
2390
2391 bool hasIndices() const {
2392 return true;
2393 }
2394
2395 // Methods for support type inquiry through isa, cast, and dyn_cast:
2396 static bool classof(const Instruction *I) {
2397 return I->getOpcode() == Instruction::ExtractValue;
2398 }
2399 static bool classof(const Value *V) {
2400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2401 }
2402};
2403
2404ExtractValueInst::ExtractValueInst(Value *Agg,
2405 ArrayRef<unsigned> Idxs,
2406 const Twine &NameStr,
2407 Instruction *InsertBefore)
2408 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2409 ExtractValue, Agg, InsertBefore) {
2410 init(Idxs, NameStr);
2411}
2412
2413ExtractValueInst::ExtractValueInst(Value *Agg,
2414 ArrayRef<unsigned> Idxs,
2415 const Twine &NameStr,
2416 BasicBlock *InsertAtEnd)
2417 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2418 ExtractValue, Agg, InsertAtEnd) {
2419 init(Idxs, NameStr);
2420}
2421
2422//===----------------------------------------------------------------------===//
2423// InsertValueInst Class
2424//===----------------------------------------------------------------------===//
2425
2426/// This instruction inserts a struct field of array element
2427/// value into an aggregate value.
2428///
2429class InsertValueInst : public Instruction {
2430 SmallVector<unsigned, 4> Indices;
2431
2432 InsertValueInst(const InsertValueInst &IVI);
2433
2434 /// Constructors - Create a insertvalue instruction with a base aggregate
2435 /// value, a value to insert, and a list of indices. The first ctor can
2436 /// optionally insert before an existing instruction, the second appends
2437 /// the new instruction to the specified BasicBlock.
2438 inline InsertValueInst(Value *Agg, Value *Val,
2439 ArrayRef<unsigned> Idxs,
2440 const Twine &NameStr,
2441 Instruction *InsertBefore);
2442 inline InsertValueInst(Value *Agg, Value *Val,
2443 ArrayRef<unsigned> Idxs,
2444 const Twine &NameStr, BasicBlock *InsertAtEnd);
2445
2446 /// Constructors - These two constructors are convenience methods because one
2447 /// and two index insertvalue instructions are so common.
2448 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2449 const Twine &NameStr = "",
2450 Instruction *InsertBefore = nullptr);
2451 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2452 BasicBlock *InsertAtEnd);
2453
2454 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr);
2456
2457protected:
2458 // Note: Instruction needs to be a friend here to call cloneImpl.
2459 friend class Instruction;
2460
2461 InsertValueInst *cloneImpl() const;
2462
2463public:
2464 // allocate space for exactly two operands
2465 void *operator new(size_t s) {
2466 return User::operator new(s, 2);
2467 }
2468
2469 static InsertValueInst *Create(Value *Agg, Value *Val,
2470 ArrayRef<unsigned> Idxs,
2471 const Twine &NameStr = "",
2472 Instruction *InsertBefore = nullptr) {
2473 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2474 }
2475
2476 static InsertValueInst *Create(Value *Agg, Value *Val,
2477 ArrayRef<unsigned> Idxs,
2478 const Twine &NameStr,
2479 BasicBlock *InsertAtEnd) {
2480 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2481 }
2482
2483 /// Transparently provide more efficient getOperand methods.
2484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2485
2486 using idx_iterator = const unsigned*;
2487
2488 inline idx_iterator idx_begin() const { return Indices.begin(); }
2489 inline idx_iterator idx_end() const { return Indices.end(); }
2490 inline iterator_range<idx_iterator> indices() const {
2491 return make_range(idx_begin(), idx_end());
2492 }
2493
2494 Value *getAggregateOperand() {
2495 return getOperand(0);
2496 }
2497 const Value *getAggregateOperand() const {
2498 return getOperand(0);
2499 }
2500 static unsigned getAggregateOperandIndex() {
2501 return 0U; // get index for modifying correct operand
2502 }
2503
2504 Value *getInsertedValueOperand() {
2505 return getOperand(1);
2506 }
2507 const Value *getInsertedValueOperand() const {
2508 return getOperand(1);
2509 }
2510 static unsigned getInsertedValueOperandIndex() {
2511 return 1U; // get index for modifying correct operand
2512 }
2513
2514 ArrayRef<unsigned> getIndices() const {
2515 return Indices;
2516 }
2517
2518 unsigned getNumIndices() const {
2519 return (unsigned)Indices.size();
2520 }
2521
2522 bool hasIndices() const {
2523 return true;
2524 }
2525
2526 // Methods for support type inquiry through isa, cast, and dyn_cast:
2527 static bool classof(const Instruction *I) {
2528 return I->getOpcode() == Instruction::InsertValue;
2529 }
2530 static bool classof(const Value *V) {
2531 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2532 }
2533};
2534
2535template <>
2536struct OperandTraits<InsertValueInst> :
2537 public FixedNumOperandTraits<InsertValueInst, 2> {
2538};
2539
2540InsertValueInst::InsertValueInst(Value *Agg,
2541 Value *Val,
2542 ArrayRef<unsigned> Idxs,
2543 const Twine &NameStr,
2544 Instruction *InsertBefore)
2545 : Instruction(Agg->getType(), InsertValue,
2546 OperandTraits<InsertValueInst>::op_begin(this),
2547 2, InsertBefore) {
2548 init(Agg, Val, Idxs, NameStr);
2549}
2550
2551InsertValueInst::InsertValueInst(Value *Agg,
2552 Value *Val,
2553 ArrayRef<unsigned> Idxs,
2554 const Twine &NameStr,
2555 BasicBlock *InsertAtEnd)
2556 : Instruction(Agg->getType(), InsertValue,
2557 OperandTraits<InsertValueInst>::op_begin(this),
2558 2, InsertAtEnd) {
2559 init(Agg, Val, Idxs, NameStr);
2560}
2561
2562DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2562, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2562, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2563
2564//===----------------------------------------------------------------------===//
2565// PHINode Class
2566//===----------------------------------------------------------------------===//
2567
2568// PHINode - The PHINode class is used to represent the magical mystical PHI
2569// node, that can not exist in nature, but can be synthesized in a computer
2570// scientist's overactive imagination.
2571//
2572class PHINode : public Instruction {
2573 /// The number of operands actually allocated. NumOperands is
2574 /// the number actually in use.
2575 unsigned ReservedSpace;
2576
2577 PHINode(const PHINode &PN);
2578
2579 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2580 const Twine &NameStr = "",
2581 Instruction *InsertBefore = nullptr)
2582 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2583 ReservedSpace(NumReservedValues) {
2584 setName(NameStr);
2585 allocHungoffUses(ReservedSpace);
2586 }
2587
2588 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2589 BasicBlock *InsertAtEnd)
2590 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2591 ReservedSpace(NumReservedValues) {
2592 setName(NameStr);
2593 allocHungoffUses(ReservedSpace);
2594 }
2595
2596protected:
2597 // Note: Instruction needs to be a friend here to call cloneImpl.
2598 friend class Instruction;
2599
2600 PHINode *cloneImpl() const;
2601
2602 // allocHungoffUses - this is more complicated than the generic
2603 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2604 // values and pointers to the incoming blocks, all in one allocation.
2605 void allocHungoffUses(unsigned N) {
2606 User::allocHungoffUses(N, /* IsPhi */ true);
2607 }
2608
2609public:
2610 /// Constructors - NumReservedValues is a hint for the number of incoming
2611 /// edges that this phi node will have (use 0 if you really have no idea).
2612 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2613 const Twine &NameStr = "",
2614 Instruction *InsertBefore = nullptr) {
2615 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2616 }
2617
2618 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2619 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2620 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2621 }
2622
2623 /// Provide fast operand accessors
2624 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2625
2626 // Block iterator interface. This provides access to the list of incoming
2627 // basic blocks, which parallels the list of incoming values.
2628
2629 using block_iterator = BasicBlock **;
2630 using const_block_iterator = BasicBlock * const *;
2631
2632 block_iterator block_begin() {
2633 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2634 }
2635
2636 const_block_iterator block_begin() const {
2637 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2638 }
2639
2640 block_iterator block_end() {
2641 return block_begin() + getNumOperands();
2642 }
2643
2644 const_block_iterator block_end() const {
2645 return block_begin() + getNumOperands();
2646 }
2647
2648 iterator_range<block_iterator> blocks() {
2649 return make_range(block_begin(), block_end());
2650 }
2651
2652 iterator_range<const_block_iterator> blocks() const {
2653 return make_range(block_begin(), block_end());
2654 }
2655
2656 op_range incoming_values() { return operands(); }
2657
2658 const_op_range incoming_values() const { return operands(); }
2659
2660 /// Return the number of incoming edges
2661 ///
2662 unsigned getNumIncomingValues() const { return getNumOperands(); }
2663
2664 /// Return incoming value number x
2665 ///
2666 Value *getIncomingValue(unsigned i) const {
2667 return getOperand(i);
2668 }
2669 void setIncomingValue(unsigned i, Value *V) {
2670 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2670, __PRETTY_FUNCTION__))
;
2671 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
2672 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
;
2673 setOperand(i, V);
2674 }
2675
2676 static unsigned getOperandNumForIncomingValue(unsigned i) {
2677 return i;
2678 }
2679
2680 static unsigned getIncomingValueNumForOperand(unsigned i) {
2681 return i;
2682 }
2683
2684 /// Return incoming basic block number @p i.
2685 ///
2686 BasicBlock *getIncomingBlock(unsigned i) const {
2687 return block_begin()[i];
2688 }
2689
2690 /// Return incoming basic block corresponding
2691 /// to an operand of the PHI.
2692 ///
2693 BasicBlock *getIncomingBlock(const Use &U) const {
2694 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 return getIncomingBlock(unsigned(&U - op_begin()));
2696 }
2697
2698 /// Return incoming basic block corresponding
2699 /// to value use iterator.
2700 ///
2701 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2702 return getIncomingBlock(I.getUse());
2703 }
2704
2705 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2706 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2706, __PRETTY_FUNCTION__))
;
2707 block_begin()[i] = BB;
2708 }
2709
2710 /// Replace every incoming basic block \p Old to basic block \p New.
2711 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2712 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2712, __PRETTY_FUNCTION__))
;
2713 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2714 if (getIncomingBlock(Op) == Old)
2715 setIncomingBlock(Op, New);
2716 }
2717
2718 /// Add an incoming value to the end of the PHI list
2719 ///
2720 void addIncoming(Value *V, BasicBlock *BB) {
2721 if (getNumOperands() == ReservedSpace)
2722 growOperands(); // Get more space!
2723 // Initialize some new operands.
2724 setNumHungOffUseOperands(getNumOperands() + 1);
2725 setIncomingValue(getNumOperands() - 1, V);
2726 setIncomingBlock(getNumOperands() - 1, BB);
2727 }
2728
2729 /// Remove an incoming value. This is useful if a
2730 /// predecessor basic block is deleted. The value removed is returned.
2731 ///
2732 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2733 /// is true), the PHI node is destroyed and any uses of it are replaced with
2734 /// dummy values. The only time there should be zero incoming values to a PHI
2735 /// node is when the block is dead, so this strategy is sound.
2736 ///
2737 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2738
2739 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2740 int Idx = getBasicBlockIndex(BB);
2741 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2741, __PRETTY_FUNCTION__))
;
2742 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2743 }
2744
2745 /// Return the first index of the specified basic
2746 /// block in the value list for this PHI. Returns -1 if no instance.
2747 ///
2748 int getBasicBlockIndex(const BasicBlock *BB) const {
2749 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2750 if (block_begin()[i] == BB)
2751 return i;
2752 return -1;
2753 }
2754
2755 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2756 int Idx = getBasicBlockIndex(BB);
2757 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2757, __PRETTY_FUNCTION__))
;
2758 return getIncomingValue(Idx);
2759 }
2760
2761 /// Set every incoming value(s) for block \p BB to \p V.
2762 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2763 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2763, __PRETTY_FUNCTION__))
;
2764 bool Found = false;
2765 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2766 if (getIncomingBlock(Op) == BB) {
2767 Found = true;
2768 setIncomingValue(Op, V);
2769 }
2770 (void)Found;
2771 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2771, __PRETTY_FUNCTION__))
;
2772 }
2773
2774 /// If the specified PHI node always merges together the
2775 /// same value, return the value, otherwise return null.
2776 Value *hasConstantValue() const;
2777
2778 /// Whether the specified PHI node always merges
2779 /// together the same value, assuming undefs are equal to a unique
2780 /// non-undef value.
2781 bool hasConstantOrUndefValue() const;
2782
2783 /// If the PHI node is complete which means all of its parent's predecessors
2784 /// have incoming value in this PHI, return true, otherwise return false.
2785 bool isComplete() const {
2786 return llvm::all_of(predecessors(getParent()),
2787 [this](const BasicBlock *Pred) {
2788 return getBasicBlockIndex(Pred) >= 0;
2789 });
2790 }
2791
2792 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2793 static bool classof(const Instruction *I) {
2794 return I->getOpcode() == Instruction::PHI;
2795 }
2796 static bool classof(const Value *V) {
2797 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2798 }
2799
2800private:
2801 void growOperands();
2802};
2803
2804template <>
2805struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2806};
2807
2808DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2808, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2808, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2809
2810//===----------------------------------------------------------------------===//
2811// LandingPadInst Class
2812//===----------------------------------------------------------------------===//
2813
2814//===---------------------------------------------------------------------------
2815/// The landingpad instruction holds all of the information
2816/// necessary to generate correct exception handling. The landingpad instruction
2817/// cannot be moved from the top of a landing pad block, which itself is
2818/// accessible only from the 'unwind' edge of an invoke. This uses the
2819/// SubclassData field in Value to store whether or not the landingpad is a
2820/// cleanup.
2821///
2822class LandingPadInst : public Instruction {
2823 using CleanupField = BoolBitfieldElementT<0>;
2824
2825 /// The number of operands actually allocated. NumOperands is
2826 /// the number actually in use.
2827 unsigned ReservedSpace;
2828
2829 LandingPadInst(const LandingPadInst &LP);
2830
2831public:
2832 enum ClauseType { Catch, Filter };
2833
2834private:
2835 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2836 const Twine &NameStr, Instruction *InsertBefore);
2837 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 // Allocate space for exactly zero operands.
2841 void *operator new(size_t s) {
2842 return User::operator new(s);
2843 }
2844
2845 void growOperands(unsigned Size);
2846 void init(unsigned NumReservedValues, const Twine &NameStr);
2847
2848protected:
2849 // Note: Instruction needs to be a friend here to call cloneImpl.
2850 friend class Instruction;
2851
2852 LandingPadInst *cloneImpl() const;
2853
2854public:
2855 /// Constructors - NumReservedClauses is a hint for the number of incoming
2856 /// clauses that this landingpad will have (use 0 if you really have no idea).
2857 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2858 const Twine &NameStr = "",
2859 Instruction *InsertBefore = nullptr);
2860 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2861 const Twine &NameStr, BasicBlock *InsertAtEnd);
2862
2863 /// Provide fast operand accessors
2864 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2865
2866 /// Return 'true' if this landingpad instruction is a
2867 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2868 /// doesn't catch the exception.
2869 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2870
2871 /// Indicate that this landingpad instruction is a cleanup.
2872 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2873
2874 /// Add a catch or filter clause to the landing pad.
2875 void addClause(Constant *ClauseVal);
2876
2877 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2878 /// determine what type of clause this is.
2879 Constant *getClause(unsigned Idx) const {
2880 return cast<Constant>(getOperandList()[Idx]);
2881 }
2882
2883 /// Return 'true' if the clause and index Idx is a catch clause.
2884 bool isCatch(unsigned Idx) const {
2885 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2886 }
2887
2888 /// Return 'true' if the clause and index Idx is a filter clause.
2889 bool isFilter(unsigned Idx) const {
2890 return isa<ArrayType>(getOperandList()[Idx]->getType());
2891 }
2892
2893 /// Get the number of clauses for this landing pad.
2894 unsigned getNumClauses() const { return getNumOperands(); }
2895
2896 /// Grow the size of the operand list to accommodate the new
2897 /// number of clauses.
2898 void reserveClauses(unsigned Size) { growOperands(Size); }
2899
2900 // Methods for support type inquiry through isa, cast, and dyn_cast:
2901 static bool classof(const Instruction *I) {
2902 return I->getOpcode() == Instruction::LandingPad;
2903 }
2904 static bool classof(const Value *V) {
2905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2906 }
2907};
2908
2909template <>
2910struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2911};
2912
2913DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2913, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2913, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2914
2915//===----------------------------------------------------------------------===//
2916// ReturnInst Class
2917//===----------------------------------------------------------------------===//
2918
2919//===---------------------------------------------------------------------------
2920/// Return a value (possibly void), from a function. Execution
2921/// does not continue in this function any longer.
2922///
2923class ReturnInst : public Instruction {
2924 ReturnInst(const ReturnInst &RI);
2925
2926private:
2927 // ReturnInst constructors:
2928 // ReturnInst() - 'ret void' instruction
2929 // ReturnInst( null) - 'ret void' instruction
2930 // ReturnInst(Value* X) - 'ret X' instruction
2931 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2932 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2933 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2934 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2935 //
2936 // NOTE: If the Value* passed is of type void then the constructor behaves as
2937 // if it was passed NULL.
2938 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2939 Instruction *InsertBefore = nullptr);
2940 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2941 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2942
2943protected:
2944 // Note: Instruction needs to be a friend here to call cloneImpl.
2945 friend class Instruction;
2946
2947 ReturnInst *cloneImpl() const;
2948
2949public:
2950 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2951 Instruction *InsertBefore = nullptr) {
2952 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2953 }
2954
2955 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2956 BasicBlock *InsertAtEnd) {
2957 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2958 }
2959
2960 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2961 return new(0) ReturnInst(C, InsertAtEnd);
2962 }
2963
2964 /// Provide fast operand accessors
2965 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2966
2967 /// Convenience accessor. Returns null if there is no return value.
2968 Value *getReturnValue() const {
2969 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2970 }
2971
2972 unsigned getNumSuccessors() const { return 0; }
2973
2974 // Methods for support type inquiry through isa, cast, and dyn_cast:
2975 static bool classof(const Instruction *I) {
2976 return (I->getOpcode() == Instruction::Ret);
2977 }
2978 static bool classof(const Value *V) {
2979 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2980 }
2981
2982private:
2983 BasicBlock *getSuccessor(unsigned idx) const {
2984 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2984)
;
2985 }
2986
2987 void setSuccessor(unsigned idx, BasicBlock *B) {
2988 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2988)
;
2989 }
2990};
2991
2992template <>
2993struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2994};
2995
2996DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2996, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 2996, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2997
2998//===----------------------------------------------------------------------===//
2999// BranchInst Class
3000//===----------------------------------------------------------------------===//
3001
3002//===---------------------------------------------------------------------------
3003/// Conditional or Unconditional Branch instruction.
3004///
3005class BranchInst : public Instruction {
3006 /// Ops list - Branches are strange. The operands are ordered:
3007 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3008 /// they don't have to check for cond/uncond branchness. These are mostly
3009 /// accessed relative from op_end().
3010 BranchInst(const BranchInst &BI);
3011 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3012 // BranchInst(BB *B) - 'br B'
3013 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3014 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3015 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3016 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3017 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3018 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3019 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3020 Instruction *InsertBefore = nullptr);
3021 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3022 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3023 BasicBlock *InsertAtEnd);
3024
3025 void AssertOK();
3026
3027protected:
3028 // Note: Instruction needs to be a friend here to call cloneImpl.
3029 friend class Instruction;
3030
3031 BranchInst *cloneImpl() const;
3032
3033public:
3034 /// Iterator type that casts an operand to a basic block.
3035 ///
3036 /// This only makes sense because the successors are stored as adjacent
3037 /// operands for branch instructions.
3038 struct succ_op_iterator
3039 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3040 std::random_access_iterator_tag, BasicBlock *,
3041 ptrdiff_t, BasicBlock *, BasicBlock *> {
3042 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3043
3044 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3045 BasicBlock *operator->() const { return operator*(); }
3046 };
3047
3048 /// The const version of `succ_op_iterator`.
3049 struct const_succ_op_iterator
3050 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3051 std::random_access_iterator_tag,
3052 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3053 const BasicBlock *> {
3054 explicit const_succ_op_iterator(const_value_op_iterator I)
3055 : iterator_adaptor_base(I) {}
3056
3057 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3058 const BasicBlock *operator->() const { return operator*(); }
3059 };
3060
3061 static BranchInst *Create(BasicBlock *IfTrue,
3062 Instruction *InsertBefore = nullptr) {
3063 return new(1) BranchInst(IfTrue, InsertBefore);
3064 }
3065
3066 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3067 Value *Cond, Instruction *InsertBefore = nullptr) {
3068 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3069 }
3070
3071 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3072 return new(1) BranchInst(IfTrue, InsertAtEnd);
3073 }
3074
3075 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3076 Value *Cond, BasicBlock *InsertAtEnd) {
3077 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3078 }
3079
3080 /// Transparently provide more efficient getOperand methods.
3081 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3082
3083 bool isUnconditional() const { return getNumOperands() == 1; }
3084 bool isConditional() const { return getNumOperands() == 3; }
14
Assuming the condition is true
15
Returning the value 1, which participates in a condition later
3085
3086 Value *getCondition() const {
3087 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3087, __PRETTY_FUNCTION__))
;
3088 return Op<-3>();
3089 }
3090
3091 void setCondition(Value *V) {
3092 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3092, __PRETTY_FUNCTION__))
;
3093 Op<-3>() = V;
3094 }
3095
3096 unsigned getNumSuccessors() const { return 1+isConditional(); }
3097
3098 BasicBlock *getSuccessor(unsigned i) const {
3099 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3099, __PRETTY_FUNCTION__))
;
3100 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3101 }
3102
3103 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3104 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3104, __PRETTY_FUNCTION__))
;
3105 *(&Op<-1>() - idx) = NewSucc;
3106 }
3107
3108 /// Swap the successors of this branch instruction.
3109 ///
3110 /// Swaps the successors of the branch instruction. This also swaps any
3111 /// branch weight metadata associated with the instruction so that it
3112 /// continues to map correctly to each operand.
3113 void swapSuccessors();
3114
3115 iterator_range<succ_op_iterator> successors() {
3116 return make_range(
3117 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3118 succ_op_iterator(value_op_end()));
3119 }
3120
3121 iterator_range<const_succ_op_iterator> successors() const {
3122 return make_range(const_succ_op_iterator(
3123 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3124 const_succ_op_iterator(value_op_end()));
3125 }
3126
3127 // Methods for support type inquiry through isa, cast, and dyn_cast:
3128 static bool classof(const Instruction *I) {
3129 return (I->getOpcode() == Instruction::Br);
3130 }
3131 static bool classof(const Value *V) {
3132 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3133 }
3134};
3135
3136template <>
3137struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3138};
3139
3140DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3140, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3140, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3141
3142//===----------------------------------------------------------------------===//
3143// SwitchInst Class
3144//===----------------------------------------------------------------------===//
3145
3146//===---------------------------------------------------------------------------
3147/// Multiway switch
3148///
3149class SwitchInst : public Instruction {
3150 unsigned ReservedSpace;
3151
3152 // Operand[0] = Value to switch on
3153 // Operand[1] = Default basic block destination
3154 // Operand[2n ] = Value to match
3155 // Operand[2n+1] = BasicBlock to go to on match
3156 SwitchInst(const SwitchInst &SI);
3157
3158 /// Create a new switch instruction, specifying a value to switch on and a
3159 /// default destination. The number of additional cases can be specified here
3160 /// to make memory allocation more efficient. This constructor can also
3161 /// auto-insert before another instruction.
3162 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3163 Instruction *InsertBefore);
3164
3165 /// Create a new switch instruction, specifying a value to switch on and a
3166 /// default destination. The number of additional cases can be specified here
3167 /// to make memory allocation more efficient. This constructor also
3168 /// auto-inserts at the end of the specified BasicBlock.
3169 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3170 BasicBlock *InsertAtEnd);
3171
3172 // allocate space for exactly zero operands
3173 void *operator new(size_t s) {
3174 return User::operator new(s);
3175 }
3176
3177 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3178 void growOperands();
3179
3180protected:
3181 // Note: Instruction needs to be a friend here to call cloneImpl.
3182 friend class Instruction;
3183
3184 SwitchInst *cloneImpl() const;
3185
3186public:
3187 // -2
3188 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3189
3190 template <typename CaseHandleT> class CaseIteratorImpl;
3191
3192 /// A handle to a particular switch case. It exposes a convenient interface
3193 /// to both the case value and the successor block.
3194 ///
3195 /// We define this as a template and instantiate it to form both a const and
3196 /// non-const handle.
3197 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3198 class CaseHandleImpl {
3199 // Directly befriend both const and non-const iterators.
3200 friend class SwitchInst::CaseIteratorImpl<
3201 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3202
3203 protected:
3204 // Expose the switch type we're parameterized with to the iterator.
3205 using SwitchInstType = SwitchInstT;
3206
3207 SwitchInstT *SI;
3208 ptrdiff_t Index;
3209
3210 CaseHandleImpl() = default;
3211 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3212
3213 public:
3214 /// Resolves case value for current case.
3215 ConstantIntT *getCaseValue() const {
3216 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
3217 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
;
3218 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3219 }
3220
3221 /// Resolves successor for current case.
3222 BasicBlockT *getCaseSuccessor() const {
3223 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
3224 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
3225 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
;
3226 return SI->getSuccessor(getSuccessorIndex());
3227 }
3228
3229 /// Returns number of current case.
3230 unsigned getCaseIndex() const { return Index; }
3231
3232 /// Returns successor index for current case successor.
3233 unsigned getSuccessorIndex() const {
3234 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
3235 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
3236 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
;
3237 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3238 }
3239
3240 bool operator==(const CaseHandleImpl &RHS) const {
3241 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3241, __PRETTY_FUNCTION__))
;
3242 return Index == RHS.Index;
3243 }
3244 };
3245
3246 using ConstCaseHandle =
3247 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3248
3249 class CaseHandle
3250 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3251 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3252
3253 public:
3254 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3255
3256 /// Sets the new value for current case.
3257 void setValue(ConstantInt *V) {
3258 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3259, __PRETTY_FUNCTION__))
3259 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3259, __PRETTY_FUNCTION__))
;
3260 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3261 }
3262
3263 /// Sets the new successor for current case.
3264 void setSuccessor(BasicBlock *S) {
3265 SI->setSuccessor(getSuccessorIndex(), S);
3266 }
3267 };
3268
3269 template <typename CaseHandleT>
3270 class CaseIteratorImpl
3271 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3272 std::random_access_iterator_tag,
3273 CaseHandleT> {
3274 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3275
3276 CaseHandleT Case;
3277
3278 public:
3279 /// Default constructed iterator is in an invalid state until assigned to
3280 /// a case for a particular switch.
3281 CaseIteratorImpl() = default;
3282
3283 /// Initializes case iterator for given SwitchInst and for given
3284 /// case number.
3285 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3286
3287 /// Initializes case iterator for given SwitchInst and for given
3288 /// successor index.
3289 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3290 unsigned SuccessorIndex) {
3291 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3292, __PRETTY_FUNCTION__))
3292 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3292, __PRETTY_FUNCTION__))
;
3293 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3294 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3295 }
3296
3297 /// Support converting to the const variant. This will be a no-op for const
3298 /// variant.
3299 operator CaseIteratorImpl<ConstCaseHandle>() const {
3300 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3301 }
3302
3303 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3304 // Check index correctness after addition.
3305 // Note: Index == getNumCases() means end().
3306 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
3307 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
3308 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
;
3309 Case.Index += N;
3310 return *this;
3311 }
3312 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3313 // Check index correctness after subtraction.
3314 // Note: Case.Index == getNumCases() means end().
3315 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
3316 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
3317 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
;
3318 Case.Index -= N;
3319 return *this;
3320 }
3321 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3322 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3322, __PRETTY_FUNCTION__))
;
3323 return Case.Index - RHS.Case.Index;
3324 }
3325 bool operator==(const CaseIteratorImpl &RHS) const {
3326 return Case == RHS.Case;
3327 }
3328 bool operator<(const CaseIteratorImpl &RHS) const {
3329 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3329, __PRETTY_FUNCTION__))
;
3330 return Case.Index < RHS.Case.Index;
3331 }
3332 CaseHandleT &operator*() { return Case; }
3333 const CaseHandleT &operator*() const { return Case; }
3334 };
3335
3336 using CaseIt = CaseIteratorImpl<CaseHandle>;
3337 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3338
3339 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3340 unsigned NumCases,
3341 Instruction *InsertBefore = nullptr) {
3342 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3343 }
3344
3345 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3346 unsigned NumCases, BasicBlock *InsertAtEnd) {
3347 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3348 }
3349
3350 /// Provide fast operand accessors
3351 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3352
3353 // Accessor Methods for Switch stmt
3354 Value *getCondition() const { return getOperand(0); }
3355 void setCondition(Value *V) { setOperand(0, V); }
3356
3357 BasicBlock *getDefaultDest() const {
3358 return cast<BasicBlock>(getOperand(1));
3359 }
3360
3361 void setDefaultDest(BasicBlock *DefaultCase) {
3362 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3363 }
3364
3365 /// Return the number of 'cases' in this switch instruction, excluding the
3366 /// default case.
3367 unsigned getNumCases() const {
3368 return getNumOperands()/2 - 1;
3369 }
3370
3371 /// Returns a read/write iterator that points to the first case in the
3372 /// SwitchInst.
3373 CaseIt case_begin() {
3374 return CaseIt(this, 0);
3375 }
3376
3377 /// Returns a read-only iterator that points to the first case in the
3378 /// SwitchInst.
3379 ConstCaseIt case_begin() const {
3380 return ConstCaseIt(this, 0);
3381 }
3382
3383 /// Returns a read/write iterator that points one past the last in the
3384 /// SwitchInst.
3385 CaseIt case_end() {
3386 return CaseIt(this, getNumCases());
3387 }
3388
3389 /// Returns a read-only iterator that points one past the last in the
3390 /// SwitchInst.
3391 ConstCaseIt case_end() const {
3392 return ConstCaseIt(this, getNumCases());
3393 }
3394
3395 /// Iteration adapter for range-for loops.
3396 iterator_range<CaseIt> cases() {
3397 return make_range(case_begin(), case_end());
3398 }
3399
3400 /// Constant iteration adapter for range-for loops.
3401 iterator_range<ConstCaseIt> cases() const {
3402 return make_range(case_begin(), case_end());
3403 }
3404
3405 /// Returns an iterator that points to the default case.
3406 /// Note: this iterator allows to resolve successor only. Attempt
3407 /// to resolve case value causes an assertion.
3408 /// Also note, that increment and decrement also causes an assertion and
3409 /// makes iterator invalid.
3410 CaseIt case_default() {
3411 return CaseIt(this, DefaultPseudoIndex);
3412 }
3413 ConstCaseIt case_default() const {
3414 return ConstCaseIt(this, DefaultPseudoIndex);
3415 }
3416
3417 /// Search all of the case values for the specified constant. If it is
3418 /// explicitly handled, return the case iterator of it, otherwise return
3419 /// default case iterator to indicate that it is handled by the default
3420 /// handler.
3421 CaseIt findCaseValue(const ConstantInt *C) {
3422 CaseIt I = llvm::find_if(
3423 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3424 if (I != case_end())
3425 return I;
3426
3427 return case_default();
3428 }
3429 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3430 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3431 return Case.getCaseValue() == C;
3432 });
3433 if (I != case_end())
3434 return I;
3435
3436 return case_default();
3437 }
3438
3439 /// Finds the unique case value for a given successor. Returns null if the
3440 /// successor is not found, not unique, or is the default case.
3441 ConstantInt *findCaseDest(BasicBlock *BB) {
3442 if (BB == getDefaultDest())
3443 return nullptr;
3444
3445 ConstantInt *CI = nullptr;
3446 for (auto Case : cases()) {
3447 if (Case.getCaseSuccessor() != BB)
3448 continue;
3449
3450 if (CI)
3451 return nullptr; // Multiple cases lead to BB.
3452
3453 CI = Case.getCaseValue();
3454 }
3455
3456 return CI;
3457 }
3458
3459 /// Add an entry to the switch instruction.
3460 /// Note:
3461 /// This action invalidates case_end(). Old case_end() iterator will
3462 /// point to the added case.
3463 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3464
3465 /// This method removes the specified case and its successor from the switch
3466 /// instruction. Note that this operation may reorder the remaining cases at
3467 /// index idx and above.
3468 /// Note:
3469 /// This action invalidates iterators for all cases following the one removed,
3470 /// including the case_end() iterator. It returns an iterator for the next
3471 /// case.
3472 CaseIt removeCase(CaseIt I);
3473
3474 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3475 BasicBlock *getSuccessor(unsigned idx) const {
3476 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3476, __PRETTY_FUNCTION__))
;
3477 return cast<BasicBlock>(getOperand(idx*2+1));
3478 }
3479 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3480 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3480, __PRETTY_FUNCTION__))
;
3481 setOperand(idx * 2 + 1, NewSucc);
3482 }
3483
3484 // Methods for support type inquiry through isa, cast, and dyn_cast:
3485 static bool classof(const Instruction *I) {
3486 return I->getOpcode() == Instruction::Switch;
3487 }
3488 static bool classof(const Value *V) {
3489 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3490 }
3491};
3492
3493/// A wrapper class to simplify modification of SwitchInst cases along with
3494/// their prof branch_weights metadata.
3495class SwitchInstProfUpdateWrapper {
3496 SwitchInst &SI;
3497 Optional<SmallVector<uint32_t, 8> > Weights = None;
3498 bool Changed = false;
3499
3500protected:
3501 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3502
3503 MDNode *buildProfBranchWeightsMD();
3504
3505 void init();
3506
3507public:
3508 using CaseWeightOpt = Optional<uint32_t>;
3509 SwitchInst *operator->() { return &SI; }
3510 SwitchInst &operator*() { return SI; }
3511 operator SwitchInst *() { return &SI; }
3512
3513 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3514
3515 ~SwitchInstProfUpdateWrapper() {
3516 if (Changed)
3517 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3518 }
3519
3520 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3521 /// correspondent branch weight.
3522 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3523
3524 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3525 /// specified branch weight for the added case.
3526 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3527
3528 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3529 /// this object to not touch the underlying SwitchInst in destructor.
3530 SymbolTableList<Instruction>::iterator eraseFromParent();
3531
3532 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3533 CaseWeightOpt getSuccessorWeight(unsigned idx);
3534
3535 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3536};
3537
3538template <>
3539struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3540};
3541
3542DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3542, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3542, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3543
3544//===----------------------------------------------------------------------===//
3545// IndirectBrInst Class
3546//===----------------------------------------------------------------------===//
3547
3548//===---------------------------------------------------------------------------
3549/// Indirect Branch Instruction.
3550///
3551class IndirectBrInst : public Instruction {
3552 unsigned ReservedSpace;
3553
3554 // Operand[0] = Address to jump to
3555 // Operand[n+1] = n-th destination
3556 IndirectBrInst(const IndirectBrInst &IBI);
3557
3558 /// Create a new indirectbr instruction, specifying an
3559 /// Address to jump to. The number of expected destinations can be specified
3560 /// here to make memory allocation more efficient. This constructor can also
3561 /// autoinsert before another instruction.
3562 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3563
3564 /// Create a new indirectbr instruction, specifying an
3565 /// Address to jump to. The number of expected destinations can be specified
3566 /// here to make memory allocation more efficient. This constructor also
3567 /// autoinserts at the end of the specified BasicBlock.
3568 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3569
3570 // allocate space for exactly zero operands
3571 void *operator new(size_t s) {
3572 return User::operator new(s);
3573 }
3574
3575 void init(Value *Address, unsigned NumDests);
3576 void growOperands();
3577
3578protected:
3579 // Note: Instruction needs to be a friend here to call cloneImpl.
3580 friend class Instruction;
3581
3582 IndirectBrInst *cloneImpl() const;
3583
3584public:
3585 /// Iterator type that casts an operand to a basic block.
3586 ///
3587 /// This only makes sense because the successors are stored as adjacent
3588 /// operands for indirectbr instructions.
3589 struct succ_op_iterator
3590 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3591 std::random_access_iterator_tag, BasicBlock *,
3592 ptrdiff_t, BasicBlock *, BasicBlock *> {
3593 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3594
3595 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3596 BasicBlock *operator->() const { return operator*(); }
3597 };
3598
3599 /// The const version of `succ_op_iterator`.
3600 struct const_succ_op_iterator
3601 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3602 std::random_access_iterator_tag,
3603 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3604 const BasicBlock *> {
3605 explicit const_succ_op_iterator(const_value_op_iterator I)
3606 : iterator_adaptor_base(I) {}
3607
3608 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3609 const BasicBlock *operator->() const { return operator*(); }
3610 };
3611
3612 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3613 Instruction *InsertBefore = nullptr) {
3614 return new IndirectBrInst(Address, NumDests, InsertBefore);
3615 }
3616
3617 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3618 BasicBlock *InsertAtEnd) {
3619 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3620 }
3621
3622 /// Provide fast operand accessors.
3623 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3624
3625 // Accessor Methods for IndirectBrInst instruction.
3626 Value *getAddress() { return getOperand(0); }
3627 const Value *getAddress() const { return getOperand(0); }
3628 void setAddress(Value *V) { setOperand(0, V); }
3629
3630 /// return the number of possible destinations in this
3631 /// indirectbr instruction.
3632 unsigned getNumDestinations() const { return getNumOperands()-1; }
3633
3634 /// Return the specified destination.
3635 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3636 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3637
3638 /// Add a destination.
3639 ///
3640 void addDestination(BasicBlock *Dest);
3641
3642 /// This method removes the specified successor from the
3643 /// indirectbr instruction.
3644 void removeDestination(unsigned i);
3645
3646 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3647 BasicBlock *getSuccessor(unsigned i) const {
3648 return cast<BasicBlock>(getOperand(i+1));
3649 }
3650 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3651 setOperand(i + 1, NewSucc);
3652 }
3653
3654 iterator_range<succ_op_iterator> successors() {
3655 return make_range(succ_op_iterator(std::next(value_op_begin())),
3656 succ_op_iterator(value_op_end()));
3657 }
3658
3659 iterator_range<const_succ_op_iterator> successors() const {
3660 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3661 const_succ_op_iterator(value_op_end()));
3662 }
3663
3664 // Methods for support type inquiry through isa, cast, and dyn_cast:
3665 static bool classof(const Instruction *I) {
3666 return I->getOpcode() == Instruction::IndirectBr;
3667 }
3668 static bool classof(const Value *V) {
3669 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3670 }
3671};
3672
3673template <>
3674struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3675};
3676
3677DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3677, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3677, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3678
3679//===----------------------------------------------------------------------===//
3680// InvokeInst Class
3681//===----------------------------------------------------------------------===//
3682
3683/// Invoke instruction. The SubclassData field is used to hold the
3684/// calling convention of the call.
3685///
3686class InvokeInst : public CallBase {
3687 /// The number of operands for this call beyond the called function,
3688 /// arguments, and operand bundles.
3689 static constexpr int NumExtraOperands = 2;
3690
3691 /// The index from the end of the operand array to the normal destination.
3692 static constexpr int NormalDestOpEndIdx = -3;
3693
3694 /// The index from the end of the operand array to the unwind destination.
3695 static constexpr int UnwindDestOpEndIdx = -2;
3696
3697 InvokeInst(const InvokeInst &BI);
3698
3699 /// Construct an InvokeInst given a range of arguments.
3700 ///
3701 /// Construct an InvokeInst from a range of arguments
3702 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3703 BasicBlock *IfException, ArrayRef<Value *> Args,
3704 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3705 const Twine &NameStr, Instruction *InsertBefore);
3706
3707 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3708 BasicBlock *IfException, ArrayRef<Value *> Args,
3709 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3710 const Twine &NameStr, BasicBlock *InsertAtEnd);
3711
3712 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3713 BasicBlock *IfException, ArrayRef<Value *> Args,
3714 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3715
3716 /// Compute the number of operands to allocate.
3717 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3718 // We need one operand for the called function, plus our extra operands and
3719 // the input operand counts provided.
3720 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3721 }
3722
3723protected:
3724 // Note: Instruction needs to be a friend here to call cloneImpl.
3725 friend class Instruction;
3726
3727 InvokeInst *cloneImpl() const;
3728
3729public:
3730 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3731 BasicBlock *IfException, ArrayRef<Value *> Args,
3732 const Twine &NameStr,
3733 Instruction *InsertBefore = nullptr) {
3734 int NumOperands = ComputeNumOperands(Args.size());
3735 return new (NumOperands)
3736 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3737 NameStr, InsertBefore);
3738 }
3739
3740 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3741 BasicBlock *IfException, ArrayRef<Value *> Args,
3742 ArrayRef<OperandBundleDef> Bundles = None,
3743 const Twine &NameStr = "",
3744 Instruction *InsertBefore = nullptr) {
3745 int NumOperands =
3746 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3747 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3748
3749 return new (NumOperands, DescriptorBytes)
3750 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3751 NameStr, InsertBefore);
3752 }
3753
3754 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3755 BasicBlock *IfException, ArrayRef<Value *> Args,
3756 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3757 int NumOperands = ComputeNumOperands(Args.size());
3758 return new (NumOperands)
3759 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3760 NameStr, InsertAtEnd);
3761 }
3762
3763 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3764 BasicBlock *IfException, ArrayRef<Value *> Args,
3765 ArrayRef<OperandBundleDef> Bundles,
3766 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3767 int NumOperands =
3768 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3769 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3770
3771 return new (NumOperands, DescriptorBytes)
3772 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3773 NameStr, InsertAtEnd);
3774 }
3775
3776 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3777 BasicBlock *IfException, ArrayRef<Value *> Args,
3778 const Twine &NameStr,
3779 Instruction *InsertBefore = nullptr) {
3780 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3781 IfException, Args, None, NameStr, InsertBefore);
3782 }
3783
3784 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3785 BasicBlock *IfException, ArrayRef<Value *> Args,
3786 ArrayRef<OperandBundleDef> Bundles = None,
3787 const Twine &NameStr = "",
3788 Instruction *InsertBefore = nullptr) {
3789 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3790 IfException, Args, Bundles, NameStr, InsertBefore);
3791 }
3792
3793 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3794 BasicBlock *IfException, ArrayRef<Value *> Args,
3795 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3796 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3797 IfException, Args, NameStr, InsertAtEnd);
3798 }
3799
3800 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3801 BasicBlock *IfException, ArrayRef<Value *> Args,
3802 ArrayRef<OperandBundleDef> Bundles,
3803 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3804 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3805 IfException, Args, Bundles, NameStr, InsertAtEnd);
3806 }
3807
3808 /// Create a clone of \p II with a different set of operand bundles and
3809 /// insert it before \p InsertPt.
3810 ///
3811 /// The returned invoke instruction is identical to \p II in every way except
3812 /// that the operand bundles for the new instruction are set to the operand
3813 /// bundles in \p Bundles.
3814 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3815 Instruction *InsertPt = nullptr);
3816
3817 // get*Dest - Return the destination basic blocks...
3818 BasicBlock *getNormalDest() const {
3819 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3820 }
3821 BasicBlock *getUnwindDest() const {
3822 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3823 }
3824 void setNormalDest(BasicBlock *B) {
3825 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3826 }
3827 void setUnwindDest(BasicBlock *B) {
3828 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3829 }
3830
3831 /// Get the landingpad instruction from the landing pad
3832 /// block (the unwind destination).
3833 LandingPadInst *getLandingPadInst() const;
3834
3835 BasicBlock *getSuccessor(unsigned i) const {
3836 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3836, __PRETTY_FUNCTION__))
;
3837 return i == 0 ? getNormalDest() : getUnwindDest();
3838 }
3839
3840 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3841 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 3841, __PRETTY_FUNCTION__))
;
3842 if (i == 0)
3843 setNormalDest(NewSucc);
3844 else
3845 setUnwindDest(NewSucc);
3846 }
3847
3848 unsigned getNumSuccessors() const { return 2; }
3849
3850 // Methods for support type inquiry through isa, cast, and dyn_cast:
3851 static bool classof(const Instruction *I) {
3852 return (I->getOpcode() == Instruction::Invoke);
3853 }
3854 static bool classof(const Value *V) {
3855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3856 }
3857
3858private:
3859 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3860 // method so that subclasses cannot accidentally use it.
3861 template <typename Bitfield>
3862 void setSubclassData(typename Bitfield::Type Value) {
3863 Instruction::setSubclassData<Bitfield>(Value);
3864 }
3865};
3866
3867InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3868 BasicBlock *IfException, ArrayRef<Value *> Args,
3869 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3870 const Twine &NameStr, Instruction *InsertBefore)
3871 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3872 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3873 InsertBefore) {
3874 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3875}
3876
3877InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3878 BasicBlock *IfException, ArrayRef<Value *> Args,
3879 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3880 const Twine &NameStr, BasicBlock *InsertAtEnd)
3881 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3882 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3883 InsertAtEnd) {
3884 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3885}
3886
3887//===----------------------------------------------------------------------===//
3888// CallBrInst Class
3889//===----------------------------------------------------------------------===//
3890
3891/// CallBr instruction, tracking function calls that may not return control but
3892/// instead transfer it to a third location. The SubclassData field is used to
3893/// hold the calling convention of the call.
3894///
3895class CallBrInst : public CallBase {
3896
3897 unsigned NumIndirectDests;
3898
3899 CallBrInst(const CallBrInst &BI);
3900
3901 /// Construct a CallBrInst given a range of arguments.
3902 ///
3903 /// Construct a CallBrInst from a range of arguments
3904 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3905 ArrayRef<BasicBlock *> IndirectDests,
3906 ArrayRef<Value *> Args,
3907 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3908 const Twine &NameStr, Instruction *InsertBefore);
3909
3910 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3911 ArrayRef<BasicBlock *> IndirectDests,
3912 ArrayRef<Value *> Args,
3913 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3914 const Twine &NameStr, BasicBlock *InsertAtEnd);
3915
3916 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3917 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3918 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3919
3920 /// Should the Indirect Destinations change, scan + update the Arg list.
3921 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3922
3923 /// Compute the number of operands to allocate.
3924 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3925 int NumBundleInputs = 0) {
3926 // We need one operand for the called function, plus our extra operands and
3927 // the input operand counts provided.
3928 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3929 }
3930
3931protected:
3932 // Note: Instruction needs to be a friend here to call cloneImpl.
3933 friend class Instruction;
3934
3935 CallBrInst *cloneImpl() const;
3936
3937public:
3938 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3939 BasicBlock *DefaultDest,
3940 ArrayRef<BasicBlock *> IndirectDests,
3941 ArrayRef<Value *> Args, const Twine &NameStr,
3942 Instruction *InsertBefore = nullptr) {
3943 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3944 return new (NumOperands)
3945 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3946 NumOperands, NameStr, InsertBefore);
3947 }
3948
3949 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3950 BasicBlock *DefaultDest,
3951 ArrayRef<BasicBlock *> IndirectDests,
3952 ArrayRef<Value *> Args,
3953 ArrayRef<OperandBundleDef> Bundles = None,
3954 const Twine &NameStr = "",
3955 Instruction *InsertBefore = nullptr) {
3956 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3957 CountBundleInputs(Bundles));
3958 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3959
3960 return new (NumOperands, DescriptorBytes)
3961 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3962 NumOperands, NameStr, InsertBefore);
3963 }
3964
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 BasicBlock *InsertAtEnd) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertAtEnd);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles,
3981 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3982 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3983 CountBundleInputs(Bundles));
3984 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3985
3986 return new (NumOperands, DescriptorBytes)
3987 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3988 NumOperands, NameStr, InsertAtEnd);
3989 }
3990
3991 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3992 ArrayRef<BasicBlock *> IndirectDests,
3993 ArrayRef<Value *> Args, const Twine &NameStr,
3994 Instruction *InsertBefore = nullptr) {
3995 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3996 IndirectDests, Args, NameStr, InsertBefore);
3997 }
3998
3999 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4000 ArrayRef<BasicBlock *> IndirectDests,
4001 ArrayRef<Value *> Args,
4002 ArrayRef<OperandBundleDef> Bundles = None,
4003 const Twine &NameStr = "",
4004 Instruction *InsertBefore = nullptr) {
4005 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4006 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4007 }
4008
4009 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4010 ArrayRef<BasicBlock *> IndirectDests,
4011 ArrayRef<Value *> Args, const Twine &NameStr,
4012 BasicBlock *InsertAtEnd) {
4013 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4014 IndirectDests, Args, NameStr, InsertAtEnd);
4015 }
4016
4017 static CallBrInst *Create(FunctionCallee Func,
4018 BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args,
4021 ArrayRef<OperandBundleDef> Bundles,
4022 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4023 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4024 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4025 }
4026
4027 /// Create a clone of \p CBI with a different set of operand bundles and
4028 /// insert it before \p InsertPt.
4029 ///
4030 /// The returned callbr instruction is identical to \p CBI in every way
4031 /// except that the operand bundles for the new instruction are set to the
4032 /// operand bundles in \p Bundles.
4033 static CallBrInst *Create(CallBrInst *CBI,
4034 ArrayRef<OperandBundleDef> Bundles,
4035 Instruction *InsertPt = nullptr);
4036
4037 /// Return the number of callbr indirect dest labels.
4038 ///
4039 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4040
4041 /// getIndirectDestLabel - Return the i-th indirect dest label.
4042 ///
4043 Value *getIndirectDestLabel(unsigned i) const {
4044 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4044, __PRETTY_FUNCTION__))
;
4045 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4046 1);
4047 }
4048
4049 Value *getIndirectDestLabelUse(unsigned i) const {
4050 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4050, __PRETTY_FUNCTION__))
;
4051 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4052 1);
4053 }
4054
4055 // Return the destination basic blocks...
4056 BasicBlock *getDefaultDest() const {
4057 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4058 }
4059 BasicBlock *getIndirectDest(unsigned i) const {
4060 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4061 }
4062 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4063 SmallVector<BasicBlock *, 16> IndirectDests;
4064 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4065 IndirectDests.push_back(getIndirectDest(i));
4066 return IndirectDests;
4067 }
4068 void setDefaultDest(BasicBlock *B) {
4069 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4070 }
4071 void setIndirectDest(unsigned i, BasicBlock *B) {
4072 updateArgBlockAddresses(i, B);
4073 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4074 }
4075
4076 BasicBlock *getSuccessor(unsigned i) const {
4077 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4078, __PRETTY_FUNCTION__))
4078 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4078, __PRETTY_FUNCTION__))
;
4079 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4080 }
4081
4082 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4083 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4084, __PRETTY_FUNCTION__))
4084 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4084, __PRETTY_FUNCTION__))
;
4085 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4086 }
4087
4088 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4089
4090 // Methods for support type inquiry through isa, cast, and dyn_cast:
4091 static bool classof(const Instruction *I) {
4092 return (I->getOpcode() == Instruction::CallBr);
4093 }
4094 static bool classof(const Value *V) {
4095 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4096 }
4097
4098private:
4099 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4100 // method so that subclasses cannot accidentally use it.
4101 template <typename Bitfield>
4102 void setSubclassData(typename Bitfield::Type Value) {
4103 Instruction::setSubclassData<Bitfield>(Value);
4104 }
4105};
4106
4107CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4108 ArrayRef<BasicBlock *> IndirectDests,
4109 ArrayRef<Value *> Args,
4110 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4111 const Twine &NameStr, Instruction *InsertBefore)
4112 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4113 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4114 InsertBefore) {
4115 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4116}
4117
4118CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4119 ArrayRef<BasicBlock *> IndirectDests,
4120 ArrayRef<Value *> Args,
4121 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4122 const Twine &NameStr, BasicBlock *InsertAtEnd)
4123 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4124 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4125 InsertAtEnd) {
4126 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4127}
4128
4129//===----------------------------------------------------------------------===//
4130// ResumeInst Class
4131//===----------------------------------------------------------------------===//
4132
4133//===---------------------------------------------------------------------------
4134/// Resume the propagation of an exception.
4135///
4136class ResumeInst : public Instruction {
4137 ResumeInst(const ResumeInst &RI);
4138
4139 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4140 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4141
4142protected:
4143 // Note: Instruction needs to be a friend here to call cloneImpl.
4144 friend class Instruction;
4145
4146 ResumeInst *cloneImpl() const;
4147
4148public:
4149 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4150 return new(1) ResumeInst(Exn, InsertBefore);
4151 }
4152
4153 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4154 return new(1) ResumeInst(Exn, InsertAtEnd);
4155 }
4156
4157 /// Provide fast operand accessors
4158 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4159
4160 /// Convenience accessor.
4161 Value *getValue() const { return Op<0>(); }
4162
4163 unsigned getNumSuccessors() const { return 0; }
4164
4165 // Methods for support type inquiry through isa, cast, and dyn_cast:
4166 static bool classof(const Instruction *I) {
4167 return I->getOpcode() == Instruction::Resume;
4168 }
4169 static bool classof(const Value *V) {
4170 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4171 }
4172
4173private:
4174 BasicBlock *getSuccessor(unsigned idx) const {
4175 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4175)
;
4176 }
4177
4178 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4179 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4179)
;
4180 }
4181};
4182
4183template <>
4184struct OperandTraits<ResumeInst> :
4185 public FixedNumOperandTraits<ResumeInst, 1> {
4186};
4187
4188DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4188, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4188, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4189
4190//===----------------------------------------------------------------------===//
4191// CatchSwitchInst Class
4192//===----------------------------------------------------------------------===//
4193class CatchSwitchInst : public Instruction {
4194 using UnwindDestField = BoolBitfieldElementT<0>;
4195
4196 /// The number of operands actually allocated. NumOperands is
4197 /// the number actually in use.
4198 unsigned ReservedSpace;
4199
4200 // Operand[0] = Outer scope
4201 // Operand[1] = Unwind block destination
4202 // Operand[n] = BasicBlock to go to on match
4203 CatchSwitchInst(const CatchSwitchInst &CSI);
4204
4205 /// Create a new switch instruction, specifying a
4206 /// default destination. The number of additional handlers can be specified
4207 /// here to make memory allocation more efficient.
4208 /// This constructor can also autoinsert before another instruction.
4209 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4210 unsigned NumHandlers, const Twine &NameStr,
4211 Instruction *InsertBefore);
4212
4213 /// Create a new switch instruction, specifying a
4214 /// default destination. The number of additional handlers can be specified
4215 /// here to make memory allocation more efficient.
4216 /// This constructor also autoinserts at the end of the specified BasicBlock.
4217 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4218 unsigned NumHandlers, const Twine &NameStr,
4219 BasicBlock *InsertAtEnd);
4220
4221 // allocate space for exactly zero operands
4222 void *operator new(size_t s) { return User::operator new(s); }
4223
4224 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4225 void growOperands(unsigned Size);
4226
4227protected:
4228 // Note: Instruction needs to be a friend here to call cloneImpl.
4229 friend class Instruction;
4230
4231 CatchSwitchInst *cloneImpl() const;
4232
4233public:
4234 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4235 unsigned NumHandlers,
4236 const Twine &NameStr = "",
4237 Instruction *InsertBefore = nullptr) {
4238 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4239 InsertBefore);
4240 }
4241
4242 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4243 unsigned NumHandlers, const Twine &NameStr,
4244 BasicBlock *InsertAtEnd) {
4245 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4246 InsertAtEnd);
4247 }
4248
4249 /// Provide fast operand accessors
4250 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4251
4252 // Accessor Methods for CatchSwitch stmt
4253 Value *getParentPad() const { return getOperand(0); }
4254 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4255
4256 // Accessor Methods for CatchSwitch stmt
4257 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4258 bool unwindsToCaller() const { return !hasUnwindDest(); }
4259 BasicBlock *getUnwindDest() const {
4260 if (hasUnwindDest())
4261 return cast<BasicBlock>(getOperand(1));
4262 return nullptr;
4263 }
4264 void setUnwindDest(BasicBlock *UnwindDest) {
4265 assert(UnwindDest)((UnwindDest) ? static_cast<void> (0) : __assert_fail (
"UnwindDest", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4265, __PRETTY_FUNCTION__))
;
4266 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4266, __PRETTY_FUNCTION__))
;
4267 setOperand(1, UnwindDest);
4268 }
4269
4270 /// return the number of 'handlers' in this catchswitch
4271 /// instruction, except the default handler
4272 unsigned getNumHandlers() const {
4273 if (hasUnwindDest())
4274 return getNumOperands() - 2;
4275 return getNumOperands() - 1;
4276 }
4277
4278private:
4279 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4280 static const BasicBlock *handler_helper(const Value *V) {
4281 return cast<BasicBlock>(V);
4282 }
4283
4284public:
4285 using DerefFnTy = BasicBlock *(*)(Value *);
4286 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4287 using handler_range = iterator_range<handler_iterator>;
4288 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4289 using const_handler_iterator =
4290 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4291 using const_handler_range = iterator_range<const_handler_iterator>;
4292
4293 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4294 handler_iterator handler_begin() {
4295 op_iterator It = op_begin() + 1;
4296 if (hasUnwindDest())
4297 ++It;
4298 return handler_iterator(It, DerefFnTy(handler_helper));
4299 }
4300
4301 /// Returns an iterator that points to the first handler in the
4302 /// CatchSwitchInst.
4303 const_handler_iterator handler_begin() const {
4304 const_op_iterator It = op_begin() + 1;
4305 if (hasUnwindDest())
4306 ++It;
4307 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4308 }
4309
4310 /// Returns a read-only iterator that points one past the last
4311 /// handler in the CatchSwitchInst.
4312 handler_iterator handler_end() {
4313 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4314 }
4315
4316 /// Returns an iterator that points one past the last handler in the
4317 /// CatchSwitchInst.
4318 const_handler_iterator handler_end() const {
4319 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4320 }
4321
4322 /// iteration adapter for range-for loops.
4323 handler_range handlers() {
4324 return make_range(handler_begin(), handler_end());
4325 }
4326
4327 /// iteration adapter for range-for loops.
4328 const_handler_range handlers() const {
4329 return make_range(handler_begin(), handler_end());
4330 }
4331
4332 /// Add an entry to the switch instruction...
4333 /// Note:
4334 /// This action invalidates handler_end(). Old handler_end() iterator will
4335 /// point to the added handler.
4336 void addHandler(BasicBlock *Dest);
4337
4338 void removeHandler(handler_iterator HI);
4339
4340 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4341 BasicBlock *getSuccessor(unsigned Idx) const {
4342 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4343, __PRETTY_FUNCTION__))
4343 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4343, __PRETTY_FUNCTION__))
;
4344 return cast<BasicBlock>(getOperand(Idx + 1));
4345 }
4346 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4347 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4348, __PRETTY_FUNCTION__))
4348 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4348, __PRETTY_FUNCTION__))
;
4349 setOperand(Idx + 1, NewSucc);
4350 }
4351
4352 // Methods for support type inquiry through isa, cast, and dyn_cast:
4353 static bool classof(const Instruction *I) {
4354 return I->getOpcode() == Instruction::CatchSwitch;
4355 }
4356 static bool classof(const Value *V) {
4357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4358 }
4359};
4360
4361template <>
4362struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4363
4364DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4364, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this))[i_nocapture].get()); } void CatchSwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchSwitchInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4364, __PRETTY_FUNCTION__)); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4365
4366//===----------------------------------------------------------------------===//
4367// CleanupPadInst Class
4368//===----------------------------------------------------------------------===//
4369class CleanupPadInst : public FuncletPadInst {
4370private:
4371 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4372 unsigned Values, const Twine &NameStr,
4373 Instruction *InsertBefore)
4374 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4375 NameStr, InsertBefore) {}
4376 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4377 unsigned Values, const Twine &NameStr,
4378 BasicBlock *InsertAtEnd)
4379 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4380 NameStr, InsertAtEnd) {}
4381
4382public:
4383 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4384 const Twine &NameStr = "",
4385 Instruction *InsertBefore = nullptr) {
4386 unsigned Values = 1 + Args.size();
4387 return new (Values)
4388 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4389 }
4390
4391 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4392 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4393 unsigned Values = 1 + Args.size();
4394 return new (Values)
4395 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4396 }
4397
4398 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4399 static bool classof(const Instruction *I) {
4400 return I->getOpcode() == Instruction::CleanupPad;
4401 }
4402 static bool classof(const Value *V) {
4403 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4404 }
4405};
4406
4407//===----------------------------------------------------------------------===//
4408// CatchPadInst Class
4409//===----------------------------------------------------------------------===//
4410class CatchPadInst : public FuncletPadInst {
4411private:
4412 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4413 unsigned Values, const Twine &NameStr,
4414 Instruction *InsertBefore)
4415 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4416 NameStr, InsertBefore) {}
4417 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4418 unsigned Values, const Twine &NameStr,
4419 BasicBlock *InsertAtEnd)
4420 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4421 NameStr, InsertAtEnd) {}
4422
4423public:
4424 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4425 const Twine &NameStr = "",
4426 Instruction *InsertBefore = nullptr) {
4427 unsigned Values = 1 + Args.size();
4428 return new (Values)
4429 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4430 }
4431
4432 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4433 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4434 unsigned Values = 1 + Args.size();
4435 return new (Values)
4436 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4437 }
4438
4439 /// Convenience accessors
4440 CatchSwitchInst *getCatchSwitch() const {
4441 return cast<CatchSwitchInst>(Op<-1>());
4442 }
4443 void setCatchSwitch(Value *CatchSwitch) {
4444 assert(CatchSwitch)((CatchSwitch) ? static_cast<void> (0) : __assert_fail (
"CatchSwitch", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4444, __PRETTY_FUNCTION__))
;
4445 Op<-1>() = CatchSwitch;
4446 }
4447
4448 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4449 static bool classof(const Instruction *I) {
4450 return I->getOpcode() == Instruction::CatchPad;
4451 }
4452 static bool classof(const Value *V) {
4453 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4454 }
4455};
4456
4457//===----------------------------------------------------------------------===//
4458// CatchReturnInst Class
4459//===----------------------------------------------------------------------===//
4460
4461class CatchReturnInst : public Instruction {
4462 CatchReturnInst(const CatchReturnInst &RI);
4463 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4464 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4465
4466 void init(Value *CatchPad, BasicBlock *BB);
4467
4468protected:
4469 // Note: Instruction needs to be a friend here to call cloneImpl.
4470 friend class Instruction;
4471
4472 CatchReturnInst *cloneImpl() const;
4473
4474public:
4475 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4476 Instruction *InsertBefore = nullptr) {
4477 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4477, __PRETTY_FUNCTION__))
;
4478 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4478, __PRETTY_FUNCTION__))
;
4479 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4480 }
4481
4482 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4483 BasicBlock *InsertAtEnd) {
4484 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4484, __PRETTY_FUNCTION__))
;
4485 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4485, __PRETTY_FUNCTION__))
;
4486 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4487 }
4488
4489 /// Provide fast operand accessors
4490 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4491
4492 /// Convenience accessors.
4493 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4494 void setCatchPad(CatchPadInst *CatchPad) {
4495 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4495, __PRETTY_FUNCTION__))
;
4496 Op<0>() = CatchPad;
4497 }
4498
4499 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4500 void setSuccessor(BasicBlock *NewSucc) {
4501 assert(NewSucc)((NewSucc) ? static_cast<void> (0) : __assert_fail ("NewSucc"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4501, __PRETTY_FUNCTION__))
;
4502 Op<1>() = NewSucc;
4503 }
4504 unsigned getNumSuccessors() const { return 1; }
4505
4506 /// Get the parentPad of this catchret's catchpad's catchswitch.
4507 /// The successor block is implicitly a member of this funclet.
4508 Value *getCatchSwitchParentPad() const {
4509 return getCatchPad()->getCatchSwitch()->getParentPad();
4510 }
4511
4512 // Methods for support type inquiry through isa, cast, and dyn_cast:
4513 static bool classof(const Instruction *I) {
4514 return (I->getOpcode() == Instruction::CatchRet);
4515 }
4516 static bool classof(const Value *V) {
4517 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4518 }
4519
4520private:
4521 BasicBlock *getSuccessor(unsigned Idx) const {
4522 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4522, __PRETTY_FUNCTION__))
;
4523 return getSuccessor();
4524 }
4525
4526 void setSuccessor(unsigned Idx, BasicBlock *B) {
4527 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4527, __PRETTY_FUNCTION__))
;
4528 setSuccessor(B);
4529 }
4530};
4531
4532template <>
4533struct OperandTraits<CatchReturnInst>
4534 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4535
4536DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4536, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this))[i_nocapture].get()); } void CatchReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchReturnInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4536, __PRETTY_FUNCTION__)); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4537
4538//===----------------------------------------------------------------------===//
4539// CleanupReturnInst Class
4540//===----------------------------------------------------------------------===//
4541
4542class CleanupReturnInst : public Instruction {
4543 using UnwindDestField = BoolBitfieldElementT<0>;
4544
4545private:
4546 CleanupReturnInst(const CleanupReturnInst &RI);
4547 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4548 Instruction *InsertBefore = nullptr);
4549 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4550 BasicBlock *InsertAtEnd);
4551
4552 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4553
4554protected:
4555 // Note: Instruction needs to be a friend here to call cloneImpl.
4556 friend class Instruction;
4557
4558 CleanupReturnInst *cloneImpl() const;
4559
4560public:
4561 static CleanupReturnInst *Create(Value *CleanupPad,
4562 BasicBlock *UnwindBB = nullptr,
4563 Instruction *InsertBefore = nullptr) {
4564 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4564, __PRETTY_FUNCTION__))
;
4565 unsigned Values = 1;
4566 if (UnwindBB)
4567 ++Values;
4568 return new (Values)
4569 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4570 }
4571
4572 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4573 BasicBlock *InsertAtEnd) {
4574 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4574, __PRETTY_FUNCTION__))
;
4575 unsigned Values = 1;
4576 if (UnwindBB)
4577 ++Values;
4578 return new (Values)
4579 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4580 }
4581
4582 /// Provide fast operand accessors
4583 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4584
4585 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4586 bool unwindsToCaller() const { return !hasUnwindDest(); }
4587
4588 /// Convenience accessor.
4589 CleanupPadInst *getCleanupPad() const {
4590 return cast<CleanupPadInst>(Op<0>());
4591 }
4592 void setCleanupPad(CleanupPadInst *CleanupPad) {
4593 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4593, __PRETTY_FUNCTION__))
;
4594 Op<0>() = CleanupPad;
4595 }
4596
4597 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4598
4599 BasicBlock *getUnwindDest() const {
4600 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4601 }
4602 void setUnwindDest(BasicBlock *NewDest) {
4603 assert(NewDest)((NewDest) ? static_cast<void> (0) : __assert_fail ("NewDest"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4603, __PRETTY_FUNCTION__))
;
4604 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4604, __PRETTY_FUNCTION__))
;
4605 Op<1>() = NewDest;
4606 }
4607
4608 // Methods for support type inquiry through isa, cast, and dyn_cast:
4609 static bool classof(const Instruction *I) {
4610 return (I->getOpcode() == Instruction::CleanupRet);
4611 }
4612 static bool classof(const Value *V) {
4613 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4614 }
4615
4616private:
4617 BasicBlock *getSuccessor(unsigned Idx) const {
4618 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4618, __PRETTY_FUNCTION__))
;
4619 return getUnwindDest();
4620 }
4621
4622 void setSuccessor(unsigned Idx, BasicBlock *B) {
4623 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4623, __PRETTY_FUNCTION__))
;
4624 setUnwindDest(B);
4625 }
4626
4627 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4628 // method so that subclasses cannot accidentally use it.
4629 template <typename Bitfield>
4630 void setSubclassData(typename Bitfield::Type Value) {
4631 Instruction::setSubclassData<Bitfield>(Value);
4632 }
4633};
4634
4635template <>
4636struct OperandTraits<CleanupReturnInst>
4637 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4638
4639DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CleanupReturnInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4639, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<CleanupReturnInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4639, __PRETTY_FUNCTION__)); OperandTraits<CleanupReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CleanupReturnInst::getNumOperands() const { return OperandTraits
<CleanupReturnInst>::operands(this); } template <int
Idx_nocapture> Use &CleanupReturnInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CleanupReturnInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
4640
4641//===----------------------------------------------------------------------===//
4642// UnreachableInst Class
4643//===----------------------------------------------------------------------===//
4644
4645//===---------------------------------------------------------------------------
4646/// This function has undefined behavior. In particular, the
4647/// presence of this instruction indicates some higher level knowledge that the
4648/// end of the block cannot be reached.
4649///
4650class UnreachableInst : public Instruction {
4651protected:
4652 // Note: Instruction needs to be a friend here to call cloneImpl.
4653 friend class Instruction;
4654
4655 UnreachableInst *cloneImpl() const;
4656
4657public:
4658 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4659 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4660
4661 // allocate space for exactly zero operands
4662 void *operator new(size_t s) {
4663 return User::operator new(s, 0);
4664 }
4665
4666 unsigned getNumSuccessors() const { return 0; }
4667
4668 // Methods for support type inquiry through isa, cast, and dyn_cast:
4669 static bool classof(const Instruction *I) {
4670 return I->getOpcode() == Instruction::Unreachable;
4671 }
4672 static bool classof(const Value *V) {
4673 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4674 }
4675
4676private:
4677 BasicBlock *getSuccessor(unsigned idx) const {
4678 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4678)
;
4679 }
4680
4681 void setSuccessor(unsigned idx, BasicBlock *B) {
4682 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 4682)
;
4683 }
4684};
4685
4686//===----------------------------------------------------------------------===//
4687// TruncInst Class
4688//===----------------------------------------------------------------------===//
4689
4690/// This class represents a truncation of integer types.
4691class TruncInst : public CastInst {
4692protected:
4693 // Note: Instruction needs to be a friend here to call cloneImpl.
4694 friend class Instruction;
4695
4696 /// Clone an identical TruncInst
4697 TruncInst *cloneImpl() const;
4698
4699public:
4700 /// Constructor with insert-before-instruction semantics
4701 TruncInst(
4702 Value *S, ///< The value to be truncated
4703 Type *Ty, ///< The (smaller) type to truncate to
4704 const Twine &NameStr = "", ///< A name for the new instruction
4705 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4706 );
4707
4708 /// Constructor with insert-at-end-of-block semantics
4709 TruncInst(
4710 Value *S, ///< The value to be truncated
4711 Type *Ty, ///< The (smaller) type to truncate to
4712 const Twine &NameStr, ///< A name for the new instruction
4713 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4714 );
4715
4716 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4717 static bool classof(const Instruction *I) {
4718 return I->getOpcode() == Trunc;
4719 }
4720 static bool classof(const Value *V) {
4721 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4722 }
4723};
4724
4725//===----------------------------------------------------------------------===//
4726// ZExtInst Class
4727//===----------------------------------------------------------------------===//
4728
4729/// This class represents zero extension of integer types.
4730class ZExtInst : public CastInst {
4731protected:
4732 // Note: Instruction needs to be a friend here to call cloneImpl.
4733 friend class Instruction;
4734
4735 /// Clone an identical ZExtInst
4736 ZExtInst *cloneImpl() const;
4737
4738public:
4739 /// Constructor with insert-before-instruction semantics
4740 ZExtInst(
4741 Value *S, ///< The value to be zero extended
4742 Type *Ty, ///< The type to zero extend to
4743 const Twine &NameStr = "", ///< A name for the new instruction
4744 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4745 );
4746
4747 /// Constructor with insert-at-end semantics.
4748 ZExtInst(
4749 Value *S, ///< The value to be zero extended
4750 Type *Ty, ///< The type to zero extend to
4751 const Twine &NameStr, ///< A name for the new instruction
4752 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4753 );
4754
4755 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4756 static bool classof(const Instruction *I) {
4757 return I->getOpcode() == ZExt;
4758 }
4759 static bool classof(const Value *V) {
4760 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4761 }
4762};
4763
4764//===----------------------------------------------------------------------===//
4765// SExtInst Class
4766//===----------------------------------------------------------------------===//
4767
4768/// This class represents a sign extension of integer types.
4769class SExtInst : public CastInst {
4770protected:
4771 // Note: Instruction needs to be a friend here to call cloneImpl.
4772 friend class Instruction;
4773
4774 /// Clone an identical SExtInst
4775 SExtInst *cloneImpl() const;
4776
4777public:
4778 /// Constructor with insert-before-instruction semantics
4779 SExtInst(
4780 Value *S, ///< The value to be sign extended
4781 Type *Ty, ///< The type to sign extend to
4782 const Twine &NameStr = "", ///< A name for the new instruction
4783 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4784 );
4785
4786 /// Constructor with insert-at-end-of-block semantics
4787 SExtInst(
4788 Value *S, ///< The value to be sign extended
4789 Type *Ty, ///< The type to sign extend to
4790 const Twine &NameStr, ///< A name for the new instruction
4791 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4792 );
4793
4794 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4795 static bool classof(const Instruction *I) {
4796 return I->getOpcode() == SExt;
4797 }
4798 static bool classof(const Value *V) {
4799 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4800 }
4801};
4802
4803//===----------------------------------------------------------------------===//
4804// FPTruncInst Class
4805//===----------------------------------------------------------------------===//
4806
4807/// This class represents a truncation of floating point types.
4808class FPTruncInst : public CastInst {
4809protected:
4810 // Note: Instruction needs to be a friend here to call cloneImpl.
4811 friend class Instruction;
4812
4813 /// Clone an identical FPTruncInst
4814 FPTruncInst *cloneImpl() const;
4815
4816public:
4817 /// Constructor with insert-before-instruction semantics
4818 FPTruncInst(
4819 Value *S, ///< The value to be truncated
4820 Type *Ty, ///< The type to truncate to
4821 const Twine &NameStr = "", ///< A name for the new instruction
4822 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4823 );
4824
4825 /// Constructor with insert-before-instruction semantics
4826 FPTruncInst(
4827 Value *S, ///< The value to be truncated
4828 Type *Ty, ///< The type to truncate to
4829 const Twine &NameStr, ///< A name for the new instruction
4830 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4831 );
4832
4833 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4834 static bool classof(const Instruction *I) {
4835 return I->getOpcode() == FPTrunc;
4836 }
4837 static bool classof(const Value *V) {
4838 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4839 }
4840};
4841
4842//===----------------------------------------------------------------------===//
4843// FPExtInst Class
4844//===----------------------------------------------------------------------===//
4845
4846/// This class represents an extension of floating point types.
4847class FPExtInst : public CastInst {
4848protected:
4849 // Note: Instruction needs to be a friend here to call cloneImpl.
4850 friend class Instruction;
4851
4852 /// Clone an identical FPExtInst
4853 FPExtInst *cloneImpl() const;
4854
4855public:
4856 /// Constructor with insert-before-instruction semantics
4857 FPExtInst(
4858 Value *S, ///< The value to be extended
4859 Type *Ty, ///< The type to extend to
4860 const Twine &NameStr = "", ///< A name for the new instruction
4861 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4862 );
4863
4864 /// Constructor with insert-at-end-of-block semantics
4865 FPExtInst(
4866 Value *S, ///< The value to be extended
4867 Type *Ty, ///< The type to extend to
4868 const Twine &NameStr, ///< A name for the new instruction
4869 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4870 );
4871
4872 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4873 static bool classof(const Instruction *I) {
4874 return I->getOpcode() == FPExt;
4875 }
4876 static bool classof(const Value *V) {
4877 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4878 }
4879};
4880
4881//===----------------------------------------------------------------------===//
4882// UIToFPInst Class
4883//===----------------------------------------------------------------------===//
4884
4885/// This class represents a cast unsigned integer to floating point.
4886class UIToFPInst : public CastInst {
4887protected:
4888 // Note: Instruction needs to be a friend here to call cloneImpl.
4889 friend class Instruction;
4890
4891 /// Clone an identical UIToFPInst
4892 UIToFPInst *cloneImpl() const;
4893
4894public:
4895 /// Constructor with insert-before-instruction semantics
4896 UIToFPInst(
4897 Value *S, ///< The value to be converted
4898 Type *Ty, ///< The type to convert to
4899 const Twine &NameStr = "", ///< A name for the new instruction
4900 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4901 );
4902
4903 /// Constructor with insert-at-end-of-block semantics
4904 UIToFPInst(
4905 Value *S, ///< The value to be converted
4906 Type *Ty, ///< The type to convert to
4907 const Twine &NameStr, ///< A name for the new instruction
4908 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4909 );
4910
4911 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4912 static bool classof(const Instruction *I) {
4913 return I->getOpcode() == UIToFP;
4914 }
4915 static bool classof(const Value *V) {
4916 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4917 }
4918};
4919
4920//===----------------------------------------------------------------------===//
4921// SIToFPInst Class
4922//===----------------------------------------------------------------------===//
4923
4924/// This class represents a cast from signed integer to floating point.
4925class SIToFPInst : public CastInst {
4926protected:
4927 // Note: Instruction needs to be a friend here to call cloneImpl.
4928 friend class Instruction;
4929
4930 /// Clone an identical SIToFPInst
4931 SIToFPInst *cloneImpl() const;
4932
4933public:
4934 /// Constructor with insert-before-instruction semantics
4935 SIToFPInst(
4936 Value *S, ///< The value to be converted
4937 Type *Ty, ///< The type to convert to
4938 const Twine &NameStr = "", ///< A name for the new instruction
4939 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4940 );
4941
4942 /// Constructor with insert-at-end-of-block semantics
4943 SIToFPInst(
4944 Value *S, ///< The value to be converted
4945 Type *Ty, ///< The type to convert to
4946 const Twine &NameStr, ///< A name for the new instruction
4947 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4948 );
4949
4950 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4951 static bool classof(const Instruction *I) {
4952 return I->getOpcode() == SIToFP;
4953 }
4954 static bool classof(const Value *V) {
4955 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4956 }
4957};
4958
4959//===----------------------------------------------------------------------===//
4960// FPToUIInst Class
4961//===----------------------------------------------------------------------===//
4962
4963/// This class represents a cast from floating point to unsigned integer
4964class FPToUIInst : public CastInst {
4965protected:
4966 // Note: Instruction needs to be a friend here to call cloneImpl.
4967 friend class Instruction;
4968
4969 /// Clone an identical FPToUIInst
4970 FPToUIInst *cloneImpl() const;
4971
4972public:
4973 /// Constructor with insert-before-instruction semantics
4974 FPToUIInst(
4975 Value *S, ///< The value to be converted
4976 Type *Ty, ///< The type to convert to
4977 const Twine &NameStr = "", ///< A name for the new instruction
4978 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4979 );
4980
4981 /// Constructor with insert-at-end-of-block semantics
4982 FPToUIInst(
4983 Value *S, ///< The value to be converted
4984 Type *Ty, ///< The type to convert to
4985 const Twine &NameStr, ///< A name for the new instruction
4986 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4987 );
4988
4989 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4990 static bool classof(const Instruction *I) {
4991 return I->getOpcode() == FPToUI;
4992 }
4993 static bool classof(const Value *V) {
4994 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4995 }
4996};
4997
4998//===----------------------------------------------------------------------===//
4999// FPToSIInst Class
5000//===----------------------------------------------------------------------===//
5001
5002/// This class represents a cast from floating point to signed integer.
5003class FPToSIInst : public CastInst {
5004protected:
5005 // Note: Instruction needs to be a friend here to call cloneImpl.
5006 friend class Instruction;
5007
5008 /// Clone an identical FPToSIInst
5009 FPToSIInst *cloneImpl() const;
5010
5011public:
5012 /// Constructor with insert-before-instruction semantics
5013 FPToSIInst(
5014 Value *S, ///< The value to be converted
5015 Type *Ty, ///< The type to convert to
5016 const Twine &NameStr = "", ///< A name for the new instruction
5017 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5018 );
5019
5020 /// Constructor with insert-at-end-of-block semantics
5021 FPToSIInst(
5022 Value *S, ///< The value to be converted
5023 Type *Ty, ///< The type to convert to
5024 const Twine &NameStr, ///< A name for the new instruction
5025 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5026 );
5027
5028 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5029 static bool classof(const Instruction *I) {
5030 return I->getOpcode() == FPToSI;
5031 }
5032 static bool classof(const Value *V) {
5033 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5034 }
5035};
5036
5037//===----------------------------------------------------------------------===//
5038// IntToPtrInst Class
5039//===----------------------------------------------------------------------===//
5040
5041/// This class represents a cast from an integer to a pointer.
5042class IntToPtrInst : public CastInst {
5043public:
5044 // Note: Instruction needs to be a friend here to call cloneImpl.
5045 friend class Instruction;
5046
5047 /// Constructor with insert-before-instruction semantics
5048 IntToPtrInst(
5049 Value *S, ///< The value to be converted
5050 Type *Ty, ///< The type to convert to
5051 const Twine &NameStr = "", ///< A name for the new instruction
5052 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5053 );
5054
5055 /// Constructor with insert-at-end-of-block semantics
5056 IntToPtrInst(
5057 Value *S, ///< The value to be converted
5058 Type *Ty, ///< The type to convert to
5059 const Twine &NameStr, ///< A name for the new instruction
5060 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5061 );
5062
5063 /// Clone an identical IntToPtrInst.
5064 IntToPtrInst *cloneImpl() const;
5065
5066 /// Returns the address space of this instruction's pointer type.
5067 unsigned getAddressSpace() const {
5068 return getType()->getPointerAddressSpace();
5069 }
5070
5071 // Methods for support type inquiry through isa, cast, and dyn_cast:
5072 static bool classof(const Instruction *I) {
5073 return I->getOpcode() == IntToPtr;
5074 }
5075 static bool classof(const Value *V) {
5076 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5077 }
5078};
5079
5080//===----------------------------------------------------------------------===//
5081// PtrToIntInst Class
5082//===----------------------------------------------------------------------===//
5083
5084/// This class represents a cast from a pointer to an integer.
5085class PtrToIntInst : public CastInst {
5086protected:
5087 // Note: Instruction needs to be a friend here to call cloneImpl.
5088 friend class Instruction;
5089
5090 /// Clone an identical PtrToIntInst.
5091 PtrToIntInst *cloneImpl() const;
5092
5093public:
5094 /// Constructor with insert-before-instruction semantics
5095 PtrToIntInst(
5096 Value *S, ///< The value to be converted
5097 Type *Ty, ///< The type to convert to
5098 const Twine &NameStr = "", ///< A name for the new instruction
5099 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5100 );
5101
5102 /// Constructor with insert-at-end-of-block semantics
5103 PtrToIntInst(
5104 Value *S, ///< The value to be converted
5105 Type *Ty, ///< The type to convert to
5106 const Twine &NameStr, ///< A name for the new instruction
5107 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5108 );
5109
5110 /// Gets the pointer operand.
5111 Value *getPointerOperand() { return getOperand(0); }
5112 /// Gets the pointer operand.
5113 const Value *getPointerOperand() const { return getOperand(0); }
5114 /// Gets the operand index of the pointer operand.
5115 static unsigned getPointerOperandIndex() { return 0U; }
5116
5117 /// Returns the address space of the pointer operand.
5118 unsigned getPointerAddressSpace() const {
5119 return getPointerOperand()->getType()->getPointerAddressSpace();
5120 }
5121
5122 // Methods for support type inquiry through isa, cast, and dyn_cast:
5123 static bool classof(const Instruction *I) {
5124 return I->getOpcode() == PtrToInt;
5125 }
5126 static bool classof(const Value *V) {
5127 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5128 }
5129};
5130
5131//===----------------------------------------------------------------------===//
5132// BitCastInst Class
5133//===----------------------------------------------------------------------===//
5134
5135/// This class represents a no-op cast from one type to another.
5136class BitCastInst : public CastInst {
5137protected:
5138 // Note: Instruction needs to be a friend here to call cloneImpl.
5139 friend class Instruction;
5140
5141 /// Clone an identical BitCastInst.
5142 BitCastInst *cloneImpl() const;
5143
5144public:
5145 /// Constructor with insert-before-instruction semantics
5146 BitCastInst(
5147 Value *S, ///< The value to be casted
5148 Type *Ty, ///< The type to casted to
5149 const Twine &NameStr = "", ///< A name for the new instruction
5150 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5151 );
5152
5153 /// Constructor with insert-at-end-of-block semantics
5154 BitCastInst(
5155 Value *S, ///< The value to be casted
5156 Type *Ty, ///< The type to casted to
5157 const Twine &NameStr, ///< A name for the new instruction
5158 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5159 );
5160
5161 // Methods for support type inquiry through isa, cast, and dyn_cast:
5162 static bool classof(const Instruction *I) {
5163 return I->getOpcode() == BitCast;
5164 }
5165 static bool classof(const Value *V) {
5166 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5167 }
5168};
5169
5170//===----------------------------------------------------------------------===//
5171// AddrSpaceCastInst Class
5172//===----------------------------------------------------------------------===//
5173
5174/// This class represents a conversion between pointers from one address space
5175/// to another.
5176class AddrSpaceCastInst : public CastInst {
5177protected:
5178 // Note: Instruction needs to be a friend here to call cloneImpl.
5179 friend class Instruction;
5180
5181 /// Clone an identical AddrSpaceCastInst.
5182 AddrSpaceCastInst *cloneImpl() const;
5183
5184public:
5185 /// Constructor with insert-before-instruction semantics
5186 AddrSpaceCastInst(
5187 Value *S, ///< The value to be casted
5188 Type *Ty, ///< The type to casted to
5189 const Twine &NameStr = "", ///< A name for the new instruction
5190 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5191 );
5192
5193 /// Constructor with insert-at-end-of-block semantics
5194 AddrSpaceCastInst(
5195 Value *S, ///< The value to be casted
5196 Type *Ty, ///< The type to casted to
5197 const Twine &NameStr, ///< A name for the new instruction
5198 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5199 );
5200
5201 // Methods for support type inquiry through isa, cast, and dyn_cast:
5202 static bool classof(const Instruction *I) {
5203 return I->getOpcode() == AddrSpaceCast;
5204 }
5205 static bool classof(const Value *V) {
5206 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5207 }
5208
5209 /// Gets the pointer operand.
5210 Value *getPointerOperand() {
5211 return getOperand(0);
5212 }
5213
5214 /// Gets the pointer operand.
5215 const Value *getPointerOperand() const {
5216 return getOperand(0);
5217 }
5218
5219 /// Gets the operand index of the pointer operand.
5220 static unsigned getPointerOperandIndex() {
5221 return 0U;
5222 }
5223
5224 /// Returns the address space of the pointer operand.
5225 unsigned getSrcAddressSpace() const {
5226 return getPointerOperand()->getType()->getPointerAddressSpace();
5227 }
5228
5229 /// Returns the address space of the result.
5230 unsigned getDestAddressSpace() const {
5231 return getType()->getPointerAddressSpace();
5232 }
5233};
5234
5235/// A helper function that returns the pointer operand of a load or store
5236/// instruction. Returns nullptr if not load or store.
5237inline const Value *getLoadStorePointerOperand(const Value *V) {
5238 if (auto *Load = dyn_cast<LoadInst>(V))
5239 return Load->getPointerOperand();
5240 if (auto *Store = dyn_cast<StoreInst>(V))
5241 return Store->getPointerOperand();
5242 return nullptr;
5243}
5244inline Value *getLoadStorePointerOperand(Value *V) {
5245 return const_cast<Value *>(
5246 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5247}
5248
5249/// A helper function that returns the pointer operand of a load, store
5250/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5251inline const Value *getPointerOperand(const Value *V) {
5252 if (auto *Ptr = getLoadStorePointerOperand(V))
5253 return Ptr;
5254 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5255 return Gep->getPointerOperand();
5256 return nullptr;
5257}
5258inline Value *getPointerOperand(Value *V) {
5259 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5260}
5261
5262/// A helper function that returns the alignment of load or store instruction.
5263inline Align getLoadStoreAlignment(Value *I) {
5264 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 5265, __PRETTY_FUNCTION__))
5265 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 5265, __PRETTY_FUNCTION__))
;
5266 if (auto *LI = dyn_cast<LoadInst>(I))
5267 return LI->getAlign();
5268 return cast<StoreInst>(I)->getAlign();
5269}
5270
5271/// A helper function that returns the address space of the pointer operand of
5272/// load or store instruction.
5273inline unsigned getLoadStoreAddressSpace(Value *I) {
5274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 5275, __PRETTY_FUNCTION__))
5275 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/IR/Instructions.h"
, 5275, __PRETTY_FUNCTION__))
;
5276 if (auto *LI = dyn_cast<LoadInst>(I))
5277 return LI->getPointerAddressSpace();
5278 return cast<StoreInst>(I)->getPointerAddressSpace();
5279}
5280
5281//===----------------------------------------------------------------------===//
5282// FreezeInst Class
5283//===----------------------------------------------------------------------===//
5284
5285/// This class represents a freeze function that returns random concrete
5286/// value if an operand is either a poison value or an undef value
5287class FreezeInst : public UnaryInstruction {
5288protected:
5289 // Note: Instruction needs to be a friend here to call cloneImpl.
5290 friend class Instruction;
5291
5292 /// Clone an identical FreezeInst
5293 FreezeInst *cloneImpl() const;
5294
5295public:
5296 explicit FreezeInst(Value *S,
5297 const Twine &NameStr = "",
5298 Instruction *InsertBefore = nullptr);
5299 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5300
5301 // Methods for support type inquiry through isa, cast, and dyn_cast:
5302 static inline bool classof(const Instruction *I) {
5303 return I->getOpcode() == Freeze;
5304 }
5305 static inline bool classof(const Value *V) {
5306 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5307 }
5308};
5309
5310} // end namespace llvm
5311
5312#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h

1//===- ValueLattice.h - Value constraint analysis ---------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ANALYSIS_VALUELATTICE_H
10#define LLVM_ANALYSIS_VALUELATTICE_H
11
12#include "llvm/IR/ConstantRange.h"
13#include "llvm/IR/Constants.h"
14#include "llvm/IR/Instructions.h"
15//
16//===----------------------------------------------------------------------===//
17// ValueLatticeElement
18//===----------------------------------------------------------------------===//
19
20/// This class represents lattice values for constants.
21///
22/// FIXME: This is basically just for bringup, this can be made a lot more rich
23/// in the future.
24///
25
26namespace llvm {
27class ValueLatticeElement {
28 enum ValueLatticeElementTy {
29 /// This Value has no known value yet. As a result, this implies the
30 /// producing instruction is dead. Caution: We use this as the starting
31 /// state in our local meet rules. In this usage, it's taken to mean
32 /// "nothing known yet".
33 /// Transition to any other state allowed.
34 unknown,
35
36 /// This Value is an UndefValue constant or produces undef. Undefined values
37 /// can be merged with constants (or single element constant ranges),
38 /// assuming all uses of the result will be replaced.
39 /// Transition allowed to the following states:
40 /// constant
41 /// constantrange_including_undef
42 /// overdefined
43 undef,
44
45 /// This Value has a specific constant value. The constant cannot be undef.
46 /// (For constant integers, constantrange is used instead. Integer typed
47 /// constantexprs can appear as constant.) Note that the constant state
48 /// can be reached by merging undef & constant states.
49 /// Transition allowed to the following states:
50 /// overdefined
51 constant,
52
53 /// This Value is known to not have the specified value. (For constant
54 /// integers, constantrange is used instead. As above, integer typed
55 /// constantexprs can appear here.)
56 /// Transition allowed to the following states:
57 /// overdefined
58 notconstant,
59
60 /// The Value falls within this range. (Used only for integer typed values.)
61 /// Transition allowed to the following states:
62 /// constantrange (new range must be a superset of the existing range)
63 /// constantrange_including_undef
64 /// overdefined
65 constantrange,
66
67 /// This Value falls within this range, but also may be undef.
68 /// Merging it with other constant ranges results in
69 /// constantrange_including_undef.
70 /// Transition allowed to the following states:
71 /// overdefined
72 constantrange_including_undef,
73
74 /// We can not precisely model the dynamic values this value might take.
75 /// No transitions are allowed after reaching overdefined.
76 overdefined,
77 };
78
79 ValueLatticeElementTy Tag : 8;
80 /// Number of times a constant range has been extended with widening enabled.
81 unsigned NumRangeExtensions : 8;
82
83 /// The union either stores a pointer to a constant or a constant range,
84 /// associated to the lattice element. We have to ensure that Range is
85 /// initialized or destroyed when changing state to or from constantrange.
86 union {
87 Constant *ConstVal;
88 ConstantRange Range;
89 };
90
91 /// Destroy contents of lattice value, without destructing the object.
92 void destroy() {
93 switch (Tag) {
94 case overdefined:
95 case unknown:
96 case undef:
97 case constant:
98 case notconstant:
99 break;
100 case constantrange_including_undef:
101 case constantrange:
102 Range.~ConstantRange();
103 break;
104 };
105 }
106
107public:
108 /// Struct to control some aspects related to merging constant ranges.
109 struct MergeOptions {
110 /// The merge value may include undef.
111 bool MayIncludeUndef;
112
113 /// Handle repeatedly extending a range by going to overdefined after a
114 /// number of steps.
115 bool CheckWiden;
116
117 /// The number of allowed widening steps (including setting the range
118 /// initially).
119 unsigned MaxWidenSteps;
120
121 MergeOptions() : MergeOptions(false, false) {}
122
123 MergeOptions(bool MayIncludeUndef, bool CheckWiden,
124 unsigned MaxWidenSteps = 1)
125 : MayIncludeUndef(MayIncludeUndef), CheckWiden(CheckWiden),
126 MaxWidenSteps(MaxWidenSteps) {}
127
128 MergeOptions &setMayIncludeUndef(bool V = true) {
129 MayIncludeUndef = V;
130 return *this;
131 }
132
133 MergeOptions &setCheckWiden(bool V = true) {
134 CheckWiden = V;
135 return *this;
136 }
137
138 MergeOptions &setMaxWidenSteps(unsigned Steps = 1) {
139 CheckWiden = true;
140 MaxWidenSteps = Steps;
141 return *this;
142 }
143 };
144
145 // ConstVal and Range are initialized on-demand.
146 ValueLatticeElement() : Tag(unknown), NumRangeExtensions(0) {}
147
148 ~ValueLatticeElement() { destroy(); }
149
150 ValueLatticeElement(const ValueLatticeElement &Other)
151 : Tag(Other.Tag), NumRangeExtensions(0) {
152 switch (Other.Tag) {
153 case constantrange:
154 case constantrange_including_undef:
155 new (&Range) ConstantRange(Other.Range);
156 NumRangeExtensions = Other.NumRangeExtensions;
157 break;
158 case constant:
159 case notconstant:
160 ConstVal = Other.ConstVal;
161 break;
162 case overdefined:
163 case unknown:
164 case undef:
165 break;
166 }
167 }
168
169 ValueLatticeElement(ValueLatticeElement &&Other)
170 : Tag(Other.Tag), NumRangeExtensions(0) {
171 switch (Other.Tag) {
172 case constantrange:
173 case constantrange_including_undef:
174 new (&Range) ConstantRange(std::move(Other.Range));
175 NumRangeExtensions = Other.NumRangeExtensions;
176 break;
177 case constant:
178 case notconstant:
179 ConstVal = Other.ConstVal;
180 break;
181 case overdefined:
182 case unknown:
183 case undef:
184 break;
185 }
186 Other.Tag = unknown;
187 }
188
189 ValueLatticeElement &operator=(const ValueLatticeElement &Other) {
190 destroy();
191 new (this) ValueLatticeElement(Other);
192 return *this;
193 }
194
195 ValueLatticeElement &operator=(ValueLatticeElement &&Other) {
196 destroy();
197 new (this) ValueLatticeElement(std::move(Other));
198 return *this;
199 }
200
201 static ValueLatticeElement get(Constant *C) {
202 ValueLatticeElement Res;
203 if (isa<UndefValue>(C))
204 Res.markUndef();
205 else
206 Res.markConstant(C);
207 return Res;
208 }
209 static ValueLatticeElement getNot(Constant *C) {
210 ValueLatticeElement Res;
211 assert(!isa<UndefValue>(C) && "!= undef is not supported")((!isa<UndefValue>(C) && "!= undef is not supported"
) ? static_cast<void> (0) : __assert_fail ("!isa<UndefValue>(C) && \"!= undef is not supported\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 211, __PRETTY_FUNCTION__))
;
212 Res.markNotConstant(C);
213 return Res;
214 }
215 static ValueLatticeElement getRange(ConstantRange CR,
216 bool MayIncludeUndef = false) {
217 if (CR.isFullSet())
218 return getOverdefined();
219
220 if (CR.isEmptySet()) {
221 ValueLatticeElement Res;
222 if (MayIncludeUndef)
223 Res.markUndef();
224 return Res;
225 }
226
227 ValueLatticeElement Res;
228 Res.markConstantRange(std::move(CR),
229 MergeOptions().setMayIncludeUndef(MayIncludeUndef));
230 return Res;
231 }
232 static ValueLatticeElement getOverdefined() {
233 ValueLatticeElement Res;
234 Res.markOverdefined();
235 return Res;
236 }
237
238 bool isUndef() const { return Tag == undef; }
239 bool isUnknown() const { return Tag == unknown; }
240 bool isUnknownOrUndef() const { return Tag == unknown || Tag == undef; }
241 bool isConstant() const { return Tag == constant; }
242 bool isNotConstant() const { return Tag == notconstant; }
243 bool isConstantRangeIncludingUndef() const {
244 return Tag == constantrange_including_undef;
245 }
246 /// Returns true if this value is a constant range. Use \p UndefAllowed to
247 /// exclude non-singleton constant ranges that may also be undef. Note that
248 /// this function also returns true if the range may include undef, but only
249 /// contains a single element. In that case, it can be replaced by a constant.
250 bool isConstantRange(bool UndefAllowed = true) const {
251 return Tag == constantrange || (Tag == constantrange_including_undef &&
252 (UndefAllowed || Range.isSingleElement()));
253 }
254 bool isOverdefined() const { return Tag == overdefined; }
23
Assuming field 'Tag' is equal to overdefined
24
Returning the value 1, which participates in a condition later
255
256 Constant *getConstant() const {
257 assert(isConstant() && "Cannot get the constant of a non-constant!")((isConstant() && "Cannot get the constant of a non-constant!"
) ? static_cast<void> (0) : __assert_fail ("isConstant() && \"Cannot get the constant of a non-constant!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 257, __PRETTY_FUNCTION__))
;
258 return ConstVal;
259 }
260
261 Constant *getNotConstant() const {
262 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!")((isNotConstant() && "Cannot get the constant of a non-notconstant!"
) ? static_cast<void> (0) : __assert_fail ("isNotConstant() && \"Cannot get the constant of a non-notconstant!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 262, __PRETTY_FUNCTION__))
;
263 return ConstVal;
264 }
265
266 /// Returns the constant range for this value. Use \p UndefAllowed to exclude
267 /// non-singleton constant ranges that may also be undef. Note that this
268 /// function also returns a range if the range may include undef, but only
269 /// contains a single element. In that case, it can be replaced by a constant.
270 const ConstantRange &getConstantRange(bool UndefAllowed = true) const {
271 assert(isConstantRange(UndefAllowed) &&((isConstantRange(UndefAllowed) && "Cannot get the constant-range of a non-constant-range!"
) ? static_cast<void> (0) : __assert_fail ("isConstantRange(UndefAllowed) && \"Cannot get the constant-range of a non-constant-range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 272, __PRETTY_FUNCTION__))
272 "Cannot get the constant-range of a non-constant-range!")((isConstantRange(UndefAllowed) && "Cannot get the constant-range of a non-constant-range!"
) ? static_cast<void> (0) : __assert_fail ("isConstantRange(UndefAllowed) && \"Cannot get the constant-range of a non-constant-range!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 272, __PRETTY_FUNCTION__))
;
273 return Range;
274 }
275
276 Optional<APInt> asConstantInteger() const {
277 if (isConstant() && isa<ConstantInt>(getConstant())) {
278 return cast<ConstantInt>(getConstant())->getValue();
279 } else if (isConstantRange() && getConstantRange().isSingleElement()) {
280 return *getConstantRange().getSingleElement();
281 }
282 return None;
283 }
284
285 bool markOverdefined() {
286 if (isOverdefined())
287 return false;
288 destroy();
289 Tag = overdefined;
290 return true;
291 }
292
293 bool markUndef() {
294 if (isUndef())
295 return false;
296
297 assert(isUnknown())((isUnknown()) ? static_cast<void> (0) : __assert_fail (
"isUnknown()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 297, __PRETTY_FUNCTION__))
;
298 Tag = undef;
299 return true;
300 }
301
302 bool markConstant(Constant *V, bool MayIncludeUndef = false) {
303 if (isa<UndefValue>(V))
304 return markUndef();
305
306 if (isConstant()) {
307 assert(getConstant() == V && "Marking constant with different value")((getConstant() == V && "Marking constant with different value"
) ? static_cast<void> (0) : __assert_fail ("getConstant() == V && \"Marking constant with different value\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 307, __PRETTY_FUNCTION__))
;
308 return false;
309 }
310
311 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
312 return markConstantRange(
313 ConstantRange(CI->getValue()),
314 MergeOptions().setMayIncludeUndef(MayIncludeUndef));
315
316 assert(isUnknown() || isUndef())((isUnknown() || isUndef()) ? static_cast<void> (0) : __assert_fail
("isUnknown() || isUndef()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 316, __PRETTY_FUNCTION__))
;
317 Tag = constant;
318 ConstVal = V;
319 return true;
320 }
321
322 bool markNotConstant(Constant *V) {
323 assert(V && "Marking constant with NULL")((V && "Marking constant with NULL") ? static_cast<
void> (0) : __assert_fail ("V && \"Marking constant with NULL\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 323, __PRETTY_FUNCTION__))
;
324 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
325 return markConstantRange(
326 ConstantRange(CI->getValue() + 1, CI->getValue()));
327
328 if (isa<UndefValue>(V))
329 return false;
330
331 if (isNotConstant()) {
332 assert(getNotConstant() == V && "Marking !constant with different value")((getNotConstant() == V && "Marking !constant with different value"
) ? static_cast<void> (0) : __assert_fail ("getNotConstant() == V && \"Marking !constant with different value\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 332, __PRETTY_FUNCTION__))
;
333 return false;
334 }
335
336 assert(isUnknown())((isUnknown()) ? static_cast<void> (0) : __assert_fail (
"isUnknown()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 336, __PRETTY_FUNCTION__))
;
337 Tag = notconstant;
338 ConstVal = V;
339 return true;
340 }
341
342 /// Mark the object as constant range with \p NewR. If the object is already a
343 /// constant range, nothing changes if the existing range is equal to \p
344 /// NewR and the tag. Otherwise \p NewR must be a superset of the existing
345 /// range or the object must be undef. The tag is set to
346 /// constant_range_including_undef if either the existing value or the new
347 /// range may include undef.
348 bool markConstantRange(ConstantRange NewR,
349 MergeOptions Opts = MergeOptions()) {
350 assert(!NewR.isEmptySet() && "should only be called for non-empty sets")((!NewR.isEmptySet() && "should only be called for non-empty sets"
) ? static_cast<void> (0) : __assert_fail ("!NewR.isEmptySet() && \"should only be called for non-empty sets\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 350, __PRETTY_FUNCTION__))
;
351
352 if (NewR.isFullSet())
353 return markOverdefined();
354
355 ValueLatticeElementTy OldTag = Tag;
356 ValueLatticeElementTy NewTag =
357 (isUndef() || isConstantRangeIncludingUndef() || Opts.MayIncludeUndef)
358 ? constantrange_including_undef
359 : constantrange;
360 if (isConstantRange()) {
361 Tag = NewTag;
362 if (getConstantRange() == NewR)
363 return Tag != OldTag;
364
365 // Simple form of widening. If a range is extended multiple times, go to
366 // overdefined.
367 if (Opts.CheckWiden && ++NumRangeExtensions > Opts.MaxWidenSteps)
368 return markOverdefined();
369
370 assert(NewR.contains(getConstantRange()) &&((NewR.contains(getConstantRange()) && "Existing range must be a subset of NewR"
) ? static_cast<void> (0) : __assert_fail ("NewR.contains(getConstantRange()) && \"Existing range must be a subset of NewR\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 371, __PRETTY_FUNCTION__))
371 "Existing range must be a subset of NewR")((NewR.contains(getConstantRange()) && "Existing range must be a subset of NewR"
) ? static_cast<void> (0) : __assert_fail ("NewR.contains(getConstantRange()) && \"Existing range must be a subset of NewR\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 371, __PRETTY_FUNCTION__))
;
372 Range = std::move(NewR);
373 return true;
374 }
375
376 assert(isUnknown() || isUndef())((isUnknown() || isUndef()) ? static_cast<void> (0) : __assert_fail
("isUnknown() || isUndef()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 376, __PRETTY_FUNCTION__))
;
377
378 NumRangeExtensions = 0;
379 Tag = NewTag;
380 new (&Range) ConstantRange(std::move(NewR));
381 return true;
382 }
383
384 /// Updates this object to approximate both this object and RHS. Returns
385 /// true if this object has been changed.
386 bool mergeIn(const ValueLatticeElement &RHS,
387 MergeOptions Opts = MergeOptions()) {
388 if (RHS.isUnknown() || isOverdefined())
389 return false;
390 if (RHS.isOverdefined()) {
391 markOverdefined();
392 return true;
393 }
394
395 if (isUndef()) {
396 assert(!RHS.isUnknown())((!RHS.isUnknown()) ? static_cast<void> (0) : __assert_fail
("!RHS.isUnknown()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 396, __PRETTY_FUNCTION__))
;
397 if (RHS.isUndef())
398 return false;
399 if (RHS.isConstant())
400 return markConstant(RHS.getConstant(), true);
401 if (RHS.isConstantRange())
402 return markConstantRange(RHS.getConstantRange(true),
403 Opts.setMayIncludeUndef());
404 return markOverdefined();
405 }
406
407 if (isUnknown()) {
408 assert(!RHS.isUnknown() && "Unknow RHS should be handled earlier")((!RHS.isUnknown() && "Unknow RHS should be handled earlier"
) ? static_cast<void> (0) : __assert_fail ("!RHS.isUnknown() && \"Unknow RHS should be handled earlier\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 408, __PRETTY_FUNCTION__))
;
409 *this = RHS;
410 return true;
411 }
412
413 if (isConstant()) {
414 if (RHS.isConstant() && getConstant() == RHS.getConstant())
415 return false;
416 if (RHS.isUndef())
417 return false;
418 markOverdefined();
419 return true;
420 }
421
422 if (isNotConstant()) {
423 if (RHS.isNotConstant() && getNotConstant() == RHS.getNotConstant())
424 return false;
425 markOverdefined();
426 return true;
427 }
428
429 auto OldTag = Tag;
430 assert(isConstantRange() && "New ValueLattice type?")((isConstantRange() && "New ValueLattice type?") ? static_cast
<void> (0) : __assert_fail ("isConstantRange() && \"New ValueLattice type?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include/llvm/Analysis/ValueLattice.h"
, 430, __PRETTY_FUNCTION__))
;
431 if (RHS.isUndef()) {
432 Tag = constantrange_including_undef;
433 return OldTag != Tag;
434 }
435
436 if (!RHS.isConstantRange()) {
437 // We can get here if we've encountered a constantexpr of integer type
438 // and merge it with a constantrange.
439 markOverdefined();
440 return true;
441 }
442
443 ConstantRange NewR = getConstantRange().unionWith(RHS.getConstantRange());
444 return markConstantRange(
445 std::move(NewR),
446 Opts.setMayIncludeUndef(RHS.isConstantRangeIncludingUndef()));
447 }
448
449 // Compares this symbolic value with Other using Pred and returns either
450 /// true, false or undef constants, or nullptr if the comparison cannot be
451 /// evaluated.
452 Constant *getCompare(CmpInst::Predicate Pred, Type *Ty,
453 const ValueLatticeElement &Other) const {
454 if (isUnknownOrUndef() || Other.isUnknownOrUndef())
455 return UndefValue::get(Ty);
456
457 if (isConstant() && Other.isConstant())
458 return ConstantExpr::getCompare(Pred, getConstant(), Other.getConstant());
459
460 if (ICmpInst::isEquality(Pred)) {
461 // not(C) != C => true, not(C) == C => false.
462 if ((isNotConstant() && Other.isConstant() &&
463 getNotConstant() == Other.getConstant()) ||
464 (isConstant() && Other.isNotConstant() &&
465 getConstant() == Other.getNotConstant()))
466 return Pred == ICmpInst::ICMP_NE
467 ? ConstantInt::getTrue(Ty) : ConstantInt::getFalse(Ty);
468 }
469
470 // Integer constants are represented as ConstantRanges with single
471 // elements.
472 if (!isConstantRange() || !Other.isConstantRange())
473 return nullptr;
474
475 const auto &CR = getConstantRange();
476 const auto &OtherCR = Other.getConstantRange();
477 if (ConstantRange::makeSatisfyingICmpRegion(Pred, OtherCR).contains(CR))
478 return ConstantInt::getTrue(Ty);
479 if (ConstantRange::makeSatisfyingICmpRegion(
480 CmpInst::getInversePredicate(Pred), OtherCR)
481 .contains(CR))
482 return ConstantInt::getFalse(Ty);
483
484 return nullptr;
485 }
486
487 unsigned getNumRangeExtensions() const { return NumRangeExtensions; }
488 void setNumRangeExtensions(unsigned N) { NumRangeExtensions = N; }
489};
490
491static_assert(sizeof(ValueLatticeElement) <= 40,
492 "size of ValueLatticeElement changed unexpectedly");
493
494raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val);
495} // end namespace llvm
496#endif