Bug Summary

File:lib/Transforms/Utils/LoopUtils.cpp
Warning:line 1679, column 1
Potential memory leak

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopUtils.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Transforms/Utils -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp

/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp

1//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/LoopUtils.h"
15#include "llvm/ADT/ScopeExit.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/BasicAliasAnalysis.h"
18#include "llvm/Analysis/GlobalsModRef.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/LoopPass.h"
22#include "llvm/Analysis/MustExecute.h"
23#include "llvm/Analysis/ScalarEvolution.h"
24#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25#include "llvm/Analysis/ScalarEvolutionExpander.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/Analysis/TargetTransformInfo.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/PatternMatch.h"
33#include "llvm/IR/ValueHandle.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/KnownBits.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38
39using namespace llvm;
40using namespace llvm::PatternMatch;
41
42#define DEBUG_TYPE"loop-utils" "loop-utils"
43
44bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45 SmallPtrSetImpl<Instruction *> &Set) {
46 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47 if (!Set.count(dyn_cast<Instruction>(*Use)))
48 return false;
49 return true;
50}
51
52bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
53 switch (Kind) {
54 default:
55 break;
56 case RK_IntegerAdd:
57 case RK_IntegerMult:
58 case RK_IntegerOr:
59 case RK_IntegerAnd:
60 case RK_IntegerXor:
61 case RK_IntegerMinMax:
62 return true;
63 }
64 return false;
65}
66
67bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
68 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
69}
70
71bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
72 switch (Kind) {
73 default:
74 break;
75 case RK_IntegerAdd:
76 case RK_IntegerMult:
77 case RK_FloatAdd:
78 case RK_FloatMult:
79 return true;
80 }
81 return false;
82}
83
84/// Determines if Phi may have been type-promoted. If Phi has a single user
85/// that ANDs the Phi with a type mask, return the user. RT is updated to
86/// account for the narrower bit width represented by the mask, and the AND
87/// instruction is added to CI.
88static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
89 SmallPtrSetImpl<Instruction *> &Visited,
90 SmallPtrSetImpl<Instruction *> &CI) {
91 if (!Phi->hasOneUse())
92 return Phi;
93
94 const APInt *M = nullptr;
95 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
96
97 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98 // with a new integer type of the corresponding bit width.
99 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
100 int32_t Bits = (*M + 1).exactLogBase2();
101 if (Bits > 0) {
102 RT = IntegerType::get(Phi->getContext(), Bits);
103 Visited.insert(Phi);
104 CI.insert(J);
105 return J;
106 }
107 }
108 return Phi;
109}
110
111/// Compute the minimal bit width needed to represent a reduction whose exit
112/// instruction is given by Exit.
113static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
114 DemandedBits *DB,
115 AssumptionCache *AC,
116 DominatorTree *DT) {
117 bool IsSigned = false;
118 const DataLayout &DL = Exit->getModule()->getDataLayout();
119 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
120
121 if (DB) {
122 // Use the demanded bits analysis to determine the bits that are live out
123 // of the exit instruction, rounding up to the nearest power of two. If the
124 // use of demanded bits results in a smaller bit width, we know the value
125 // must be positive (i.e., IsSigned = false), because if this were not the
126 // case, the sign bit would have been demanded.
127 auto Mask = DB->getDemandedBits(Exit);
128 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
129 }
130
131 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
132 // If demanded bits wasn't able to limit the bit width, we can try to use
133 // value tracking instead. This can be the case, for example, if the value
134 // may be negative.
135 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
136 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
137 MaxBitWidth = NumTypeBits - NumSignBits;
138 KnownBits Bits = computeKnownBits(Exit, DL);
139 if (!Bits.isNonNegative()) {
140 // If the value is not known to be non-negative, we set IsSigned to true,
141 // meaning that we will use sext instructions instead of zext
142 // instructions to restore the original type.
143 IsSigned = true;
144 if (!Bits.isNegative())
145 // If the value is not known to be negative, we don't known what the
146 // upper bit is, and therefore, we don't know what kind of extend we
147 // will need. In this case, just increase the bit width by one bit and
148 // use sext.
149 ++MaxBitWidth;
150 }
151 }
152 if (!isPowerOf2_64(MaxBitWidth))
153 MaxBitWidth = NextPowerOf2(MaxBitWidth);
154
155 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
156 IsSigned);
157}
158
159/// Collect cast instructions that can be ignored in the vectorizer's cost
160/// model, given a reduction exit value and the minimal type in which the
161/// reduction can be represented.
162static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
163 Type *RecurrenceType,
164 SmallPtrSetImpl<Instruction *> &Casts) {
165
166 SmallVector<Instruction *, 8> Worklist;
167 SmallPtrSet<Instruction *, 8> Visited;
168 Worklist.push_back(Exit);
169
170 while (!Worklist.empty()) {
171 Instruction *Val = Worklist.pop_back_val();
172 Visited.insert(Val);
173 if (auto *Cast = dyn_cast<CastInst>(Val))
174 if (Cast->getSrcTy() == RecurrenceType) {
175 // If the source type of a cast instruction is equal to the recurrence
176 // type, it will be eliminated, and should be ignored in the vectorizer
177 // cost model.
178 Casts.insert(Cast);
179 continue;
180 }
181
182 // Add all operands to the work list if they are loop-varying values that
183 // we haven't yet visited.
184 for (Value *O : cast<User>(Val)->operands())
185 if (auto *I = dyn_cast<Instruction>(O))
186 if (TheLoop->contains(I) && !Visited.count(I))
187 Worklist.push_back(I);
188 }
189}
190
191bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
192 Loop *TheLoop, bool HasFunNoNaNAttr,
193 RecurrenceDescriptor &RedDes,
194 DemandedBits *DB,
195 AssumptionCache *AC,
196 DominatorTree *DT) {
197 if (Phi->getNumIncomingValues() != 2)
198 return false;
199
200 // Reduction variables are only found in the loop header block.
201 if (Phi->getParent() != TheLoop->getHeader())
202 return false;
203
204 // Obtain the reduction start value from the value that comes from the loop
205 // preheader.
206 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
207
208 // ExitInstruction is the single value which is used outside the loop.
209 // We only allow for a single reduction value to be used outside the loop.
210 // This includes users of the reduction, variables (which form a cycle
211 // which ends in the phi node).
212 Instruction *ExitInstruction = nullptr;
213 // Indicates that we found a reduction operation in our scan.
214 bool FoundReduxOp = false;
215
216 // We start with the PHI node and scan for all of the users of this
217 // instruction. All users must be instructions that can be used as reduction
218 // variables (such as ADD). We must have a single out-of-block user. The cycle
219 // must include the original PHI.
220 bool FoundStartPHI = false;
221
222 // To recognize min/max patterns formed by a icmp select sequence, we store
223 // the number of instruction we saw from the recognized min/max pattern,
224 // to make sure we only see exactly the two instructions.
225 unsigned NumCmpSelectPatternInst = 0;
226 InstDesc ReduxDesc(false, nullptr);
227
228 // Data used for determining if the recurrence has been type-promoted.
229 Type *RecurrenceType = Phi->getType();
230 SmallPtrSet<Instruction *, 4> CastInsts;
231 Instruction *Start = Phi;
232 bool IsSigned = false;
233
234 SmallPtrSet<Instruction *, 8> VisitedInsts;
235 SmallVector<Instruction *, 8> Worklist;
236
237 // Return early if the recurrence kind does not match the type of Phi. If the
238 // recurrence kind is arithmetic, we attempt to look through AND operations
239 // resulting from the type promotion performed by InstCombine. Vector
240 // operations are not limited to the legal integer widths, so we may be able
241 // to evaluate the reduction in the narrower width.
242 if (RecurrenceType->isFloatingPointTy()) {
243 if (!isFloatingPointRecurrenceKind(Kind))
244 return false;
245 } else {
246 if (!isIntegerRecurrenceKind(Kind))
247 return false;
248 if (isArithmeticRecurrenceKind(Kind))
249 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
250 }
251
252 Worklist.push_back(Start);
253 VisitedInsts.insert(Start);
254
255 // A value in the reduction can be used:
256 // - By the reduction:
257 // - Reduction operation:
258 // - One use of reduction value (safe).
259 // - Multiple use of reduction value (not safe).
260 // - PHI:
261 // - All uses of the PHI must be the reduction (safe).
262 // - Otherwise, not safe.
263 // - By instructions outside of the loop (safe).
264 // * One value may have several outside users, but all outside
265 // uses must be of the same value.
266 // - By an instruction that is not part of the reduction (not safe).
267 // This is either:
268 // * An instruction type other than PHI or the reduction operation.
269 // * A PHI in the header other than the initial PHI.
270 while (!Worklist.empty()) {
271 Instruction *Cur = Worklist.back();
272 Worklist.pop_back();
273
274 // No Users.
275 // If the instruction has no users then this is a broken chain and can't be
276 // a reduction variable.
277 if (Cur->use_empty())
278 return false;
279
280 bool IsAPhi = isa<PHINode>(Cur);
281
282 // A header PHI use other than the original PHI.
283 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
284 return false;
285
286 // Reductions of instructions such as Div, and Sub is only possible if the
287 // LHS is the reduction variable.
288 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
289 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
290 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
291 return false;
292
293 // Any reduction instruction must be of one of the allowed kinds. We ignore
294 // the starting value (the Phi or an AND instruction if the Phi has been
295 // type-promoted).
296 if (Cur != Start) {
297 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
298 if (!ReduxDesc.isRecurrence())
299 return false;
300 }
301
302 // A reduction operation must only have one use of the reduction value.
303 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
304 hasMultipleUsesOf(Cur, VisitedInsts))
305 return false;
306
307 // All inputs to a PHI node must be a reduction value.
308 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
309 return false;
310
311 if (Kind == RK_IntegerMinMax &&
312 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
313 ++NumCmpSelectPatternInst;
314 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
315 ++NumCmpSelectPatternInst;
316
317 // Check whether we found a reduction operator.
318 FoundReduxOp |= !IsAPhi && Cur != Start;
319
320 // Process users of current instruction. Push non-PHI nodes after PHI nodes
321 // onto the stack. This way we are going to have seen all inputs to PHI
322 // nodes once we get to them.
323 SmallVector<Instruction *, 8> NonPHIs;
324 SmallVector<Instruction *, 8> PHIs;
325 for (User *U : Cur->users()) {
326 Instruction *UI = cast<Instruction>(U);
327
328 // Check if we found the exit user.
329 BasicBlock *Parent = UI->getParent();
330 if (!TheLoop->contains(Parent)) {
331 // If we already know this instruction is used externally, move on to
332 // the next user.
333 if (ExitInstruction == Cur)
334 continue;
335
336 // Exit if you find multiple values used outside or if the header phi
337 // node is being used. In this case the user uses the value of the
338 // previous iteration, in which case we would loose "VF-1" iterations of
339 // the reduction operation if we vectorize.
340 if (ExitInstruction != nullptr || Cur == Phi)
341 return false;
342
343 // The instruction used by an outside user must be the last instruction
344 // before we feed back to the reduction phi. Otherwise, we loose VF-1
345 // operations on the value.
346 if (!is_contained(Phi->operands(), Cur))
347 return false;
348
349 ExitInstruction = Cur;
350 continue;
351 }
352
353 // Process instructions only once (termination). Each reduction cycle
354 // value must only be used once, except by phi nodes and min/max
355 // reductions which are represented as a cmp followed by a select.
356 InstDesc IgnoredVal(false, nullptr);
357 if (VisitedInsts.insert(UI).second) {
358 if (isa<PHINode>(UI))
359 PHIs.push_back(UI);
360 else
361 NonPHIs.push_back(UI);
362 } else if (!isa<PHINode>(UI) &&
363 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
364 !isa<SelectInst>(UI)) ||
365 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
366 return false;
367
368 // Remember that we completed the cycle.
369 if (UI == Phi)
370 FoundStartPHI = true;
371 }
372 Worklist.append(PHIs.begin(), PHIs.end());
373 Worklist.append(NonPHIs.begin(), NonPHIs.end());
374 }
375
376 // This means we have seen one but not the other instruction of the
377 // pattern or more than just a select and cmp.
378 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
379 NumCmpSelectPatternInst != 2)
380 return false;
381
382 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
383 return false;
384
385 if (Start != Phi) {
386 // If the starting value is not the same as the phi node, we speculatively
387 // looked through an 'and' instruction when evaluating a potential
388 // arithmetic reduction to determine if it may have been type-promoted.
389 //
390 // We now compute the minimal bit width that is required to represent the
391 // reduction. If this is the same width that was indicated by the 'and', we
392 // can represent the reduction in the smaller type. The 'and' instruction
393 // will be eliminated since it will essentially be a cast instruction that
394 // can be ignore in the cost model. If we compute a different type than we
395 // did when evaluating the 'and', the 'and' will not be eliminated, and we
396 // will end up with different kinds of operations in the recurrence
397 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
398 // the case.
399 //
400 // The vectorizer relies on InstCombine to perform the actual
401 // type-shrinking. It does this by inserting instructions to truncate the
402 // exit value of the reduction to the width indicated by RecurrenceType and
403 // then extend this value back to the original width. If IsSigned is false,
404 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
405 // used.
406 //
407 // TODO: We should not rely on InstCombine to rewrite the reduction in the
408 // smaller type. We should just generate a correctly typed expression
409 // to begin with.
410 Type *ComputedType;
411 std::tie(ComputedType, IsSigned) =
412 computeRecurrenceType(ExitInstruction, DB, AC, DT);
413 if (ComputedType != RecurrenceType)
414 return false;
415
416 // The recurrence expression will be represented in a narrower type. If
417 // there are any cast instructions that will be unnecessary, collect them
418 // in CastInsts. Note that the 'and' instruction was already included in
419 // this list.
420 //
421 // TODO: A better way to represent this may be to tag in some way all the
422 // instructions that are a part of the reduction. The vectorizer cost
423 // model could then apply the recurrence type to these instructions,
424 // without needing a white list of instructions to ignore.
425 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
426 }
427
428 // We found a reduction var if we have reached the original phi node and we
429 // only have a single instruction with out-of-loop users.
430
431 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
432 // is saved as part of the RecurrenceDescriptor.
433
434 // Save the description of this reduction variable.
435 RecurrenceDescriptor RD(
436 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
437 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
438 RedDes = RD;
439
440 return true;
441}
442
443/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
444/// pattern corresponding to a min(X, Y) or max(X, Y).
445RecurrenceDescriptor::InstDesc
446RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
447
448 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&(static_cast <bool> ((isa<ICmpInst>(I) || isa<
FCmpInst>(I) || isa<SelectInst>(I)) && "Expect a select instruction"
) ? void (0) : __assert_fail ("(isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && \"Expect a select instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 449, __extension__ __PRETTY_FUNCTION__))
449 "Expect a select instruction")(static_cast <bool> ((isa<ICmpInst>(I) || isa<
FCmpInst>(I) || isa<SelectInst>(I)) && "Expect a select instruction"
) ? void (0) : __assert_fail ("(isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && \"Expect a select instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 449, __extension__ __PRETTY_FUNCTION__))
;
450 Instruction *Cmp = nullptr;
451 SelectInst *Select = nullptr;
452
453 // We must handle the select(cmp()) as a single instruction. Advance to the
454 // select.
455 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
456 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
457 return InstDesc(false, I);
458 return InstDesc(Select, Prev.getMinMaxKind());
459 }
460
461 // Only handle single use cases for now.
462 if (!(Select = dyn_cast<SelectInst>(I)))
463 return InstDesc(false, I);
464 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
465 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
466 return InstDesc(false, I);
467 if (!Cmp->hasOneUse())
468 return InstDesc(false, I);
469
470 Value *CmpLeft;
471 Value *CmpRight;
472
473 // Look for a min/max pattern.
474 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
475 return InstDesc(Select, MRK_UIntMin);
476 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
477 return InstDesc(Select, MRK_UIntMax);
478 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
479 return InstDesc(Select, MRK_SIntMax);
480 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
481 return InstDesc(Select, MRK_SIntMin);
482 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
483 return InstDesc(Select, MRK_FloatMin);
484 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
485 return InstDesc(Select, MRK_FloatMax);
486 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
487 return InstDesc(Select, MRK_FloatMin);
488 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489 return InstDesc(Select, MRK_FloatMax);
490
491 return InstDesc(false, I);
492}
493
494RecurrenceDescriptor::InstDesc
495RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
496 InstDesc &Prev, bool HasFunNoNaNAttr) {
497 bool FP = I->getType()->isFloatingPointTy();
498 Instruction *UAI = Prev.getUnsafeAlgebraInst();
499 if (!UAI && FP && !I->isFast())
500 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
501
502 switch (I->getOpcode()) {
503 default:
504 return InstDesc(false, I);
505 case Instruction::PHI:
506 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
507 case Instruction::Sub:
508 case Instruction::Add:
509 return InstDesc(Kind == RK_IntegerAdd, I);
510 case Instruction::Mul:
511 return InstDesc(Kind == RK_IntegerMult, I);
512 case Instruction::And:
513 return InstDesc(Kind == RK_IntegerAnd, I);
514 case Instruction::Or:
515 return InstDesc(Kind == RK_IntegerOr, I);
516 case Instruction::Xor:
517 return InstDesc(Kind == RK_IntegerXor, I);
518 case Instruction::FMul:
519 return InstDesc(Kind == RK_FloatMult, I, UAI);
520 case Instruction::FSub:
521 case Instruction::FAdd:
522 return InstDesc(Kind == RK_FloatAdd, I, UAI);
523 case Instruction::FCmp:
524 case Instruction::ICmp:
525 case Instruction::Select:
526 if (Kind != RK_IntegerMinMax &&
527 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
528 return InstDesc(false, I);
529 return isMinMaxSelectCmpPattern(I, Prev);
530 }
531}
532
533bool RecurrenceDescriptor::hasMultipleUsesOf(
534 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
535 unsigned NumUses = 0;
536 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
537 ++Use) {
538 if (Insts.count(dyn_cast<Instruction>(*Use)))
539 ++NumUses;
540 if (NumUses > 1)
541 return true;
542 }
543
544 return false;
545}
546bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
547 RecurrenceDescriptor &RedDes,
548 DemandedBits *DB, AssumptionCache *AC,
549 DominatorTree *DT) {
550
551 BasicBlock *Header = TheLoop->getHeader();
552 Function &F = *Header->getParent();
553 bool HasFunNoNaNAttr =
554 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
555
556 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
557 AC, DT)) {
558 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found an ADD reduction PHI."
<< *Phi << "\n"; } } while (false)
;
559 return true;
560 }
561 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
562 AC, DT)) {
563 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found a MUL reduction PHI."
<< *Phi << "\n"; } } while (false)
;
564 return true;
565 }
566 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
567 AC, DT)) {
568 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found an OR reduction PHI."
<< *Phi << "\n"; } } while (false)
;
569 return true;
570 }
571 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
572 AC, DT)) {
573 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found an AND reduction PHI."
<< *Phi << "\n"; } } while (false)
;
574 return true;
575 }
576 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
577 AC, DT)) {
578 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found a XOR reduction PHI."
<< *Phi << "\n"; } } while (false)
;
579 return true;
580 }
581 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
582 DB, AC, DT)) {
583 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found a MINMAX reduction PHI."
<< *Phi << "\n"; } } while (false)
;
584 return true;
585 }
586 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
587 AC, DT)) {
588 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found an FMult reduction PHI."
<< *Phi << "\n"; } } while (false)
;
589 return true;
590 }
591 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
592 AC, DT)) {
593 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found an FAdd reduction PHI."
<< *Phi << "\n"; } } while (false)
;
594 return true;
595 }
596 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
597 AC, DT)) {
598 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "Found an float MINMAX reduction PHI."
<< *Phi << "\n"; } } while (false)
;
599 return true;
600 }
601 // Not a reduction of known type.
602 return false;
603}
604
605bool RecurrenceDescriptor::isFirstOrderRecurrence(
606 PHINode *Phi, Loop *TheLoop,
607 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
608
609 // Ensure the phi node is in the loop header and has two incoming values.
610 if (Phi->getParent() != TheLoop->getHeader() ||
611 Phi->getNumIncomingValues() != 2)
612 return false;
613
614 // Ensure the loop has a preheader and a single latch block. The loop
615 // vectorizer will need the latch to set up the next iteration of the loop.
616 auto *Preheader = TheLoop->getLoopPreheader();
617 auto *Latch = TheLoop->getLoopLatch();
618 if (!Preheader || !Latch)
619 return false;
620
621 // Ensure the phi node's incoming blocks are the loop preheader and latch.
622 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
623 Phi->getBasicBlockIndex(Latch) < 0)
624 return false;
625
626 // Get the previous value. The previous value comes from the latch edge while
627 // the initial value comes form the preheader edge.
628 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
629 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
630 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
631 return false;
632
633 // Ensure every user of the phi node is dominated by the previous value.
634 // The dominance requirement ensures the loop vectorizer will not need to
635 // vectorize the initial value prior to the first iteration of the loop.
636 // TODO: Consider extending this sinking to handle other kinds of instructions
637 // and expressions, beyond sinking a single cast past Previous.
638 if (Phi->hasOneUse()) {
639 auto *I = Phi->user_back();
640 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
641 DT->dominates(Previous, I->user_back())) {
642 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
643 SinkAfter[I] = Previous;
644 return true;
645 }
646 }
647
648 for (User *U : Phi->users())
649 if (auto *I = dyn_cast<Instruction>(U)) {
650 if (!DT->dominates(Previous, I))
651 return false;
652 }
653
654 return true;
655}
656
657/// This function returns the identity element (or neutral element) for
658/// the operation K.
659Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
660 Type *Tp) {
661 switch (K) {
662 case RK_IntegerXor:
663 case RK_IntegerAdd:
664 case RK_IntegerOr:
665 // Adding, Xoring, Oring zero to a number does not change it.
666 return ConstantInt::get(Tp, 0);
667 case RK_IntegerMult:
668 // Multiplying a number by 1 does not change it.
669 return ConstantInt::get(Tp, 1);
670 case RK_IntegerAnd:
671 // AND-ing a number with an all-1 value does not change it.
672 return ConstantInt::get(Tp, -1, true);
673 case RK_FloatMult:
674 // Multiplying a number by 1 does not change it.
675 return ConstantFP::get(Tp, 1.0L);
676 case RK_FloatAdd:
677 // Adding zero to a number does not change it.
678 return ConstantFP::get(Tp, 0.0L);
679 default:
680 llvm_unreachable("Unknown recurrence kind")::llvm::llvm_unreachable_internal("Unknown recurrence kind", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 680)
;
681 }
682}
683
684/// This function translates the recurrence kind to an LLVM binary operator.
685unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
686 switch (Kind) {
687 case RK_IntegerAdd:
688 return Instruction::Add;
689 case RK_IntegerMult:
690 return Instruction::Mul;
691 case RK_IntegerOr:
692 return Instruction::Or;
693 case RK_IntegerAnd:
694 return Instruction::And;
695 case RK_IntegerXor:
696 return Instruction::Xor;
697 case RK_FloatMult:
698 return Instruction::FMul;
699 case RK_FloatAdd:
700 return Instruction::FAdd;
701 case RK_IntegerMinMax:
702 return Instruction::ICmp;
703 case RK_FloatMinMax:
704 return Instruction::FCmp;
705 default:
706 llvm_unreachable("Unknown recurrence operation")::llvm::llvm_unreachable_internal("Unknown recurrence operation"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 706)
;
707 }
708}
709
710Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
711 MinMaxRecurrenceKind RK,
712 Value *Left, Value *Right) {
713 CmpInst::Predicate P = CmpInst::ICMP_NE;
714 switch (RK) {
715 default:
716 llvm_unreachable("Unknown min/max recurrence kind")::llvm::llvm_unreachable_internal("Unknown min/max recurrence kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 716)
;
717 case MRK_UIntMin:
718 P = CmpInst::ICMP_ULT;
719 break;
720 case MRK_UIntMax:
721 P = CmpInst::ICMP_UGT;
722 break;
723 case MRK_SIntMin:
724 P = CmpInst::ICMP_SLT;
725 break;
726 case MRK_SIntMax:
727 P = CmpInst::ICMP_SGT;
728 break;
729 case MRK_FloatMin:
730 P = CmpInst::FCMP_OLT;
731 break;
732 case MRK_FloatMax:
733 P = CmpInst::FCMP_OGT;
734 break;
735 }
736
737 // We only match FP sequences that are 'fast', so we can unconditionally
738 // set it on any generated instructions.
739 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
740 FastMathFlags FMF;
741 FMF.setFast();
742 Builder.setFastMathFlags(FMF);
743
744 Value *Cmp;
745 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
746 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
747 else
748 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
749
750 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
751 return Select;
752}
753
754InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
755 const SCEV *Step, BinaryOperator *BOp,
756 SmallVectorImpl<Instruction *> *Casts)
757 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
758 assert(IK != IK_NoInduction && "Not an induction")(static_cast <bool> (IK != IK_NoInduction && "Not an induction"
) ? void (0) : __assert_fail ("IK != IK_NoInduction && \"Not an induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 758, __extension__ __PRETTY_FUNCTION__))
;
759
760 // Start value type should match the induction kind and the value
761 // itself should not be null.
762 assert(StartValue && "StartValue is null")(static_cast <bool> (StartValue && "StartValue is null"
) ? void (0) : __assert_fail ("StartValue && \"StartValue is null\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 762, __extension__ __PRETTY_FUNCTION__))
;
763 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&(static_cast <bool> ((IK != IK_PtrInduction || StartValue
->getType()->isPointerTy()) && "StartValue is not a pointer for pointer induction"
) ? void (0) : __assert_fail ("(IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && \"StartValue is not a pointer for pointer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 764, __extension__ __PRETTY_FUNCTION__))
764 "StartValue is not a pointer for pointer induction")(static_cast <bool> ((IK != IK_PtrInduction || StartValue
->getType()->isPointerTy()) && "StartValue is not a pointer for pointer induction"
) ? void (0) : __assert_fail ("(IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && \"StartValue is not a pointer for pointer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 764, __extension__ __PRETTY_FUNCTION__))
;
765 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&(static_cast <bool> ((IK != IK_IntInduction || StartValue
->getType()->isIntegerTy()) && "StartValue is not an integer for integer induction"
) ? void (0) : __assert_fail ("(IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && \"StartValue is not an integer for integer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 766, __extension__ __PRETTY_FUNCTION__))
766 "StartValue is not an integer for integer induction")(static_cast <bool> ((IK != IK_IntInduction || StartValue
->getType()->isIntegerTy()) && "StartValue is not an integer for integer induction"
) ? void (0) : __assert_fail ("(IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && \"StartValue is not an integer for integer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 766, __extension__ __PRETTY_FUNCTION__))
;
767
768 // Check the Step Value. It should be non-zero integer value.
769 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&(static_cast <bool> ((!getConstIntStepValue() || !getConstIntStepValue
()->isZero()) && "Step value is zero") ? void (0) :
__assert_fail ("(!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && \"Step value is zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 770, __extension__ __PRETTY_FUNCTION__))
770 "Step value is zero")(static_cast <bool> ((!getConstIntStepValue() || !getConstIntStepValue
()->isZero()) && "Step value is zero") ? void (0) :
__assert_fail ("(!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && \"Step value is zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 770, __extension__ __PRETTY_FUNCTION__))
;
771
772 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&(static_cast <bool> ((IK != IK_PtrInduction || getConstIntStepValue
()) && "Step value should be constant for pointer induction"
) ? void (0) : __assert_fail ("(IK != IK_PtrInduction || getConstIntStepValue()) && \"Step value should be constant for pointer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 773, __extension__ __PRETTY_FUNCTION__))
773 "Step value should be constant for pointer induction")(static_cast <bool> ((IK != IK_PtrInduction || getConstIntStepValue
()) && "Step value should be constant for pointer induction"
) ? void (0) : __assert_fail ("(IK != IK_PtrInduction || getConstIntStepValue()) && \"Step value should be constant for pointer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 773, __extension__ __PRETTY_FUNCTION__))
;
774 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&(static_cast <bool> ((IK == IK_FpInduction || Step->
getType()->isIntegerTy()) && "StepValue is not an integer"
) ? void (0) : __assert_fail ("(IK == IK_FpInduction || Step->getType()->isIntegerTy()) && \"StepValue is not an integer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 775, __extension__ __PRETTY_FUNCTION__))
775 "StepValue is not an integer")(static_cast <bool> ((IK == IK_FpInduction || Step->
getType()->isIntegerTy()) && "StepValue is not an integer"
) ? void (0) : __assert_fail ("(IK == IK_FpInduction || Step->getType()->isIntegerTy()) && \"StepValue is not an integer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 775, __extension__ __PRETTY_FUNCTION__))
;
776
777 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&(static_cast <bool> ((IK != IK_FpInduction || Step->
getType()->isFloatingPointTy()) && "StepValue is not FP for FpInduction"
) ? void (0) : __assert_fail ("(IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && \"StepValue is not FP for FpInduction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 778, __extension__ __PRETTY_FUNCTION__))
778 "StepValue is not FP for FpInduction")(static_cast <bool> ((IK != IK_FpInduction || Step->
getType()->isFloatingPointTy()) && "StepValue is not FP for FpInduction"
) ? void (0) : __assert_fail ("(IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && \"StepValue is not FP for FpInduction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779 assert((IK != IK_FpInduction || (InductionBinOp &&(static_cast <bool> ((IK != IK_FpInduction || (InductionBinOp
&& (InductionBinOp->getOpcode() == Instruction::FAdd
|| InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction") ? void
(0) : __assert_fail ("(IK != IK_FpInduction || (InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub))) && \"Binary opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
780 (InductionBinOp->getOpcode() == Instruction::FAdd ||(static_cast <bool> ((IK != IK_FpInduction || (InductionBinOp
&& (InductionBinOp->getOpcode() == Instruction::FAdd
|| InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction") ? void
(0) : __assert_fail ("(IK != IK_FpInduction || (InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub))) && \"Binary opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
781 InductionBinOp->getOpcode() == Instruction::FSub))) &&(static_cast <bool> ((IK != IK_FpInduction || (InductionBinOp
&& (InductionBinOp->getOpcode() == Instruction::FAdd
|| InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction") ? void
(0) : __assert_fail ("(IK != IK_FpInduction || (InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub))) && \"Binary opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
782 "Binary opcode should be specified for FP induction")(static_cast <bool> ((IK != IK_FpInduction || (InductionBinOp
&& (InductionBinOp->getOpcode() == Instruction::FAdd
|| InductionBinOp->getOpcode() == Instruction::FSub))) &&
"Binary opcode should be specified for FP induction") ? void
(0) : __assert_fail ("(IK != IK_FpInduction || (InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub))) && \"Binary opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 782, __extension__ __PRETTY_FUNCTION__))
;
783
784 if (Casts) {
785 for (auto &Inst : *Casts) {
786 RedundantCasts.push_back(Inst);
787 }
788 }
789}
790
791int InductionDescriptor::getConsecutiveDirection() const {
792 ConstantInt *ConstStep = getConstIntStepValue();
793 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
794 return ConstStep->getSExtValue();
795 return 0;
796}
797
798ConstantInt *InductionDescriptor::getConstIntStepValue() const {
799 if (isa<SCEVConstant>(Step))
800 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
801 return nullptr;
802}
803
804Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
805 ScalarEvolution *SE,
806 const DataLayout& DL) const {
807
808 SCEVExpander Exp(*SE, DL, "induction");
809 assert(Index->getType() == Step->getType() &&(static_cast <bool> (Index->getType() == Step->getType
() && "Index type does not match StepValue type") ? void
(0) : __assert_fail ("Index->getType() == Step->getType() && \"Index type does not match StepValue type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 810, __extension__ __PRETTY_FUNCTION__))
810 "Index type does not match StepValue type")(static_cast <bool> (Index->getType() == Step->getType
() && "Index type does not match StepValue type") ? void
(0) : __assert_fail ("Index->getType() == Step->getType() && \"Index type does not match StepValue type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 810, __extension__ __PRETTY_FUNCTION__))
;
811 switch (IK) {
812 case IK_IntInduction: {
813 assert(Index->getType() == StartValue->getType() &&(static_cast <bool> (Index->getType() == StartValue->
getType() && "Index type does not match StartValue type"
) ? void (0) : __assert_fail ("Index->getType() == StartValue->getType() && \"Index type does not match StartValue type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 814, __extension__ __PRETTY_FUNCTION__))
814 "Index type does not match StartValue type")(static_cast <bool> (Index->getType() == StartValue->
getType() && "Index type does not match StartValue type"
) ? void (0) : __assert_fail ("Index->getType() == StartValue->getType() && \"Index type does not match StartValue type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 814, __extension__ __PRETTY_FUNCTION__))
;
815
816 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
817 // and calculate (Start + Index * Step) for all cases, without
818 // special handling for "isOne" and "isMinusOne".
819 // But in the real life the result code getting worse. We mix SCEV
820 // expressions and ADD/SUB operations and receive redundant
821 // intermediate values being calculated in different ways and
822 // Instcombine is unable to reduce them all.
823
824 if (getConstIntStepValue() &&
825 getConstIntStepValue()->isMinusOne())
826 return B.CreateSub(StartValue, Index);
827 if (getConstIntStepValue() &&
828 getConstIntStepValue()->isOne())
829 return B.CreateAdd(StartValue, Index);
830 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
831 SE->getMulExpr(Step, SE->getSCEV(Index)));
832 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
833 }
834 case IK_PtrInduction: {
835 assert(isa<SCEVConstant>(Step) &&(static_cast <bool> (isa<SCEVConstant>(Step) &&
"Expected constant step for pointer induction") ? void (0) :
__assert_fail ("isa<SCEVConstant>(Step) && \"Expected constant step for pointer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 836, __extension__ __PRETTY_FUNCTION__))
836 "Expected constant step for pointer induction")(static_cast <bool> (isa<SCEVConstant>(Step) &&
"Expected constant step for pointer induction") ? void (0) :
__assert_fail ("isa<SCEVConstant>(Step) && \"Expected constant step for pointer induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 836, __extension__ __PRETTY_FUNCTION__))
;
837 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
838 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
839 return B.CreateGEP(nullptr, StartValue, Index);
840 }
841 case IK_FpInduction: {
842 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value")(static_cast <bool> (Step->getType()->isFloatingPointTy
() && "Expected FP Step value") ? void (0) : __assert_fail
("Step->getType()->isFloatingPointTy() && \"Expected FP Step value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 842, __extension__ __PRETTY_FUNCTION__))
;
843 assert(InductionBinOp &&(static_cast <bool> (InductionBinOp && (InductionBinOp
->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode
() == Instruction::FSub) && "Original bin op should be defined for FP induction"
) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 846, __extension__ __PRETTY_FUNCTION__))
844 (InductionBinOp->getOpcode() == Instruction::FAdd ||(static_cast <bool> (InductionBinOp && (InductionBinOp
->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode
() == Instruction::FSub) && "Original bin op should be defined for FP induction"
) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 846, __extension__ __PRETTY_FUNCTION__))
845 InductionBinOp->getOpcode() == Instruction::FSub) &&(static_cast <bool> (InductionBinOp && (InductionBinOp
->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode
() == Instruction::FSub) && "Original bin op should be defined for FP induction"
) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 846, __extension__ __PRETTY_FUNCTION__))
846 "Original bin op should be defined for FP induction")(static_cast <bool> (InductionBinOp && (InductionBinOp
->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode
() == Instruction::FSub) && "Original bin op should be defined for FP induction"
) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 846, __extension__ __PRETTY_FUNCTION__))
;
847
848 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
849
850 // Floating point operations had to be 'fast' to enable the induction.
851 FastMathFlags Flags;
852 Flags.setFast();
853
854 Value *MulExp = B.CreateFMul(StepValue, Index);
855 if (isa<Instruction>(MulExp))
856 // We have to check, the MulExp may be a constant.
857 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
858
859 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
860 MulExp, "induction");
861 if (isa<Instruction>(BOp))
862 cast<Instruction>(BOp)->setFastMathFlags(Flags);
863
864 return BOp;
865 }
866 case IK_NoInduction:
867 return nullptr;
868 }
869 llvm_unreachable("invalid enum")::llvm::llvm_unreachable_internal("invalid enum", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 869)
;
870}
871
872bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
873 ScalarEvolution *SE,
874 InductionDescriptor &D) {
875
876 // Here we only handle FP induction variables.
877 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type")(static_cast <bool> (Phi->getType()->isFloatingPointTy
() && "Unexpected Phi type") ? void (0) : __assert_fail
("Phi->getType()->isFloatingPointTy() && \"Unexpected Phi type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 877, __extension__ __PRETTY_FUNCTION__))
;
878
879 if (TheLoop->getHeader() != Phi->getParent())
880 return false;
881
882 // The loop may have multiple entrances or multiple exits; we can analyze
883 // this phi if it has a unique entry value and a unique backedge value.
884 if (Phi->getNumIncomingValues() != 2)
885 return false;
886 Value *BEValue = nullptr, *StartValue = nullptr;
887 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
888 BEValue = Phi->getIncomingValue(0);
889 StartValue = Phi->getIncomingValue(1);
890 } else {
891 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&(static_cast <bool> (TheLoop->contains(Phi->getIncomingBlock
(1)) && "Unexpected Phi node in the loop") ? void (0)
: __assert_fail ("TheLoop->contains(Phi->getIncomingBlock(1)) && \"Unexpected Phi node in the loop\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 892, __extension__ __PRETTY_FUNCTION__))
892 "Unexpected Phi node in the loop")(static_cast <bool> (TheLoop->contains(Phi->getIncomingBlock
(1)) && "Unexpected Phi node in the loop") ? void (0)
: __assert_fail ("TheLoop->contains(Phi->getIncomingBlock(1)) && \"Unexpected Phi node in the loop\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 892, __extension__ __PRETTY_FUNCTION__))
;
893 BEValue = Phi->getIncomingValue(1);
894 StartValue = Phi->getIncomingValue(0);
895 }
896
897 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
898 if (!BOp)
899 return false;
900
901 Value *Addend = nullptr;
902 if (BOp->getOpcode() == Instruction::FAdd) {
903 if (BOp->getOperand(0) == Phi)
904 Addend = BOp->getOperand(1);
905 else if (BOp->getOperand(1) == Phi)
906 Addend = BOp->getOperand(0);
907 } else if (BOp->getOpcode() == Instruction::FSub)
908 if (BOp->getOperand(0) == Phi)
909 Addend = BOp->getOperand(1);
910
911 if (!Addend)
912 return false;
913
914 // The addend should be loop invariant
915 if (auto *I = dyn_cast<Instruction>(Addend))
916 if (TheLoop->contains(I))
917 return false;
918
919 // FP Step has unknown SCEV
920 const SCEV *Step = SE->getUnknown(Addend);
921 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
922 return true;
923}
924
925/// This function is called when we suspect that the update-chain of a phi node
926/// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
927/// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
928/// predicate P under which the SCEV expression for the phi can be the
929/// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
930/// cast instructions that are involved in the update-chain of this induction.
931/// A caller that adds the required runtime predicate can be free to drop these
932/// cast instructions, and compute the phi using \p AR (instead of some scev
933/// expression with casts).
934///
935/// For example, without a predicate the scev expression can take the following
936/// form:
937/// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
938///
939/// It corresponds to the following IR sequence:
940/// %for.body:
941/// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
942/// %casted_phi = "ExtTrunc i64 %x"
943/// %add = add i64 %casted_phi, %step
944///
945/// where %x is given in \p PN,
946/// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
947/// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
948/// several forms, for example, such as:
949/// ExtTrunc1: %casted_phi = and %x, 2^n-1
950/// or:
951/// ExtTrunc2: %t = shl %x, m
952/// %casted_phi = ashr %t, m
953///
954/// If we are able to find such sequence, we return the instructions
955/// we found, namely %casted_phi and the instructions on its use-def chain up
956/// to the phi (not including the phi).
957static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
958 const SCEVUnknown *PhiScev,
959 const SCEVAddRecExpr *AR,
960 SmallVectorImpl<Instruction *> &CastInsts) {
961
962 assert(CastInsts.empty() && "CastInsts is expected to be empty.")(static_cast <bool> (CastInsts.empty() && "CastInsts is expected to be empty."
) ? void (0) : __assert_fail ("CastInsts.empty() && \"CastInsts is expected to be empty.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 962, __extension__ __PRETTY_FUNCTION__))
;
963 auto *PN = cast<PHINode>(PhiScev->getValue());
964 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression")(static_cast <bool> (PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"
) ? void (0) : __assert_fail ("PSE.getSCEV(PN) == AR && \"Unexpected phi node SCEV expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 964, __extension__ __PRETTY_FUNCTION__))
;
965 const Loop *L = AR->getLoop();
966
967 // Find any cast instructions that participate in the def-use chain of
968 // PhiScev in the loop.
969 // FORNOW/TODO: We currently expect the def-use chain to include only
970 // two-operand instructions, where one of the operands is an invariant.
971 // createAddRecFromPHIWithCasts() currently does not support anything more
972 // involved than that, so we keep the search simple. This can be
973 // extended/generalized as needed.
974
975 auto getDef = [&](const Value *Val) -> Value * {
976 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
977 if (!BinOp)
978 return nullptr;
979 Value *Op0 = BinOp->getOperand(0);
980 Value *Op1 = BinOp->getOperand(1);
981 Value *Def = nullptr;
982 if (L->isLoopInvariant(Op0))
983 Def = Op1;
984 else if (L->isLoopInvariant(Op1))
985 Def = Op0;
986 return Def;
987 };
988
989 // Look for the instruction that defines the induction via the
990 // loop backedge.
991 BasicBlock *Latch = L->getLoopLatch();
992 if (!Latch)
993 return false;
994 Value *Val = PN->getIncomingValueForBlock(Latch);
995 if (!Val)
996 return false;
997
998 // Follow the def-use chain until the induction phi is reached.
999 // If on the way we encounter a Value that has the same SCEV Expr as the
1000 // phi node, we can consider the instructions we visit from that point
1001 // as part of the cast-sequence that can be ignored.
1002 bool InCastSequence = false;
1003 auto *Inst = dyn_cast<Instruction>(Val);
1004 while (Val != PN) {
1005 // If we encountered a phi node other than PN, or if we left the loop,
1006 // we bail out.
1007 if (!Inst || !L->contains(Inst)) {
1008 return false;
1009 }
1010 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1011 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1012 InCastSequence = true;
1013 if (InCastSequence) {
1014 // Only the last instruction in the cast sequence is expected to have
1015 // uses outside the induction def-use chain.
1016 if (!CastInsts.empty())
1017 if (!Inst->hasOneUse())
1018 return false;
1019 CastInsts.push_back(Inst);
1020 }
1021 Val = getDef(Val);
1022 if (!Val)
1023 return false;
1024 Inst = dyn_cast<Instruction>(Val);
1025 }
1026
1027 return InCastSequence;
1028}
1029
1030bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1031 PredicatedScalarEvolution &PSE,
1032 InductionDescriptor &D,
1033 bool Assume) {
1034 Type *PhiTy = Phi->getType();
1035
1036 // Handle integer and pointer inductions variables.
1037 // Now we handle also FP induction but not trying to make a
1038 // recurrent expression from the PHI node in-place.
1039
1040 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
1041 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1042 return false;
1043
1044 if (PhiTy->isFloatingPointTy())
1045 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1046
1047 const SCEV *PhiScev = PSE.getSCEV(Phi);
1048 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1049
1050 // We need this expression to be an AddRecExpr.
1051 if (Assume && !AR)
1052 AR = PSE.getAsAddRec(Phi);
1053
1054 if (!AR) {
1055 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "LV: PHI is not a poly recurrence.\n"
; } } while (false)
;
1056 return false;
1057 }
1058
1059 // Record any Cast instructions that participate in the induction update
1060 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1061 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1062 // only after enabling Assume with PSCEV, this means we may have encountered
1063 // cast instructions that required adding a runtime check in order to
1064 // guarantee the correctness of the AddRecurence respresentation of the
1065 // induction.
1066 if (PhiScev != AR && SymbolicPhi) {
1067 SmallVector<Instruction *, 2> Casts;
1068 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1069 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1070 }
1071
1072 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1073}
1074
1075bool InductionDescriptor::isInductionPHI(
1076 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1077 InductionDescriptor &D, const SCEV *Expr,
1078 SmallVectorImpl<Instruction *> *CastsToIgnore) {
1079 Type *PhiTy = Phi->getType();
1080 // We only handle integer and pointer inductions variables.
1081 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1082 return false;
1083
1084 // Check that the PHI is consecutive.
1085 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1086 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1087
1088 if (!AR) {
1089 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "LV: PHI is not a poly recurrence.\n"
; } } while (false)
;
1090 return false;
1091 }
1092
1093 if (AR->getLoop() != TheLoop) {
1094 // FIXME: We should treat this as a uniform. Unfortunately, we
1095 // don't currently know how to handled uniform PHIs.
1096 DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"
; } } while (false)
;
1097 return false;
1098 }
1099
1100 Value *StartValue =
1101 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1102 const SCEV *Step = AR->getStepRecurrence(*SE);
1103 // Calculate the pointer stride and check if it is consecutive.
1104 // The stride may be a constant or a loop invariant integer value.
1105 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1106 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1107 return false;
1108
1109 if (PhiTy->isIntegerTy()) {
1110 D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
1111 CastsToIgnore);
1112 return true;
1113 }
1114
1115 assert(PhiTy->isPointerTy() && "The PHI must be a pointer")(static_cast <bool> (PhiTy->isPointerTy() &&
"The PHI must be a pointer") ? void (0) : __assert_fail ("PhiTy->isPointerTy() && \"The PHI must be a pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1115, __extension__ __PRETTY_FUNCTION__))
;
1116 // Pointer induction should be a constant.
1117 if (!ConstStep)
1118 return false;
1119
1120 ConstantInt *CV = ConstStep->getValue();
1121 Type *PointerElementType = PhiTy->getPointerElementType();
1122 // The pointer stride cannot be determined if the pointer element type is not
1123 // sized.
1124 if (!PointerElementType->isSized())
1125 return false;
1126
1127 const DataLayout &DL = Phi->getModule()->getDataLayout();
1128 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1129 if (!Size)
1130 return false;
1131
1132 int64_t CVSize = CV->getSExtValue();
1133 if (CVSize % Size)
1134 return false;
1135 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
1136 true /* signed */);
1137 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1138 return true;
1139}
1140
1141bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
1142 bool PreserveLCSSA) {
1143 bool Changed = false;
1144
1145 // We re-use a vector for the in-loop predecesosrs.
1146 SmallVector<BasicBlock *, 4> InLoopPredecessors;
1147
1148 auto RewriteExit = [&](BasicBlock *BB) {
1149 assert(InLoopPredecessors.empty() &&(static_cast <bool> (InLoopPredecessors.empty() &&
"Must start with an empty predecessors list!") ? void (0) : __assert_fail
("InLoopPredecessors.empty() && \"Must start with an empty predecessors list!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1150, __extension__ __PRETTY_FUNCTION__))
1150 "Must start with an empty predecessors list!")(static_cast <bool> (InLoopPredecessors.empty() &&
"Must start with an empty predecessors list!") ? void (0) : __assert_fail
("InLoopPredecessors.empty() && \"Must start with an empty predecessors list!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1150, __extension__ __PRETTY_FUNCTION__))
;
1151 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
1152
1153 // See if there are any non-loop predecessors of this exit block and
1154 // keep track of the in-loop predecessors.
1155 bool IsDedicatedExit = true;
1156 for (auto *PredBB : predecessors(BB))
1157 if (L->contains(PredBB)) {
1158 if (isa<IndirectBrInst>(PredBB->getTerminator()))
1159 // We cannot rewrite exiting edges from an indirectbr.
1160 return false;
1161
1162 InLoopPredecessors.push_back(PredBB);
1163 } else {
1164 IsDedicatedExit = false;
1165 }
1166
1167 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!")(static_cast <bool> (!InLoopPredecessors.empty() &&
"Must have *some* loop predecessor!") ? void (0) : __assert_fail
("!InLoopPredecessors.empty() && \"Must have *some* loop predecessor!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1167, __extension__ __PRETTY_FUNCTION__))
;
1168
1169 // Nothing to do if this is already a dedicated exit.
1170 if (IsDedicatedExit)
1171 return false;
1172
1173 auto *NewExitBB = SplitBlockPredecessors(
1174 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
1175
1176 if (!NewExitBB)
1177 DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
<< *L << "\n"; } } while (false)
1178 << *L << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
<< *L << "\n"; } } while (false)
;
1179 else
1180 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n"; } } while (false
)
1181 << NewExitBB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-utils")) { dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n"; } } while (false
)
;
1182 return true;
1183 };
1184
1185 // Walk the exit blocks directly rather than building up a data structure for
1186 // them, but only visit each one once.
1187 SmallPtrSet<BasicBlock *, 4> Visited;
1188 for (auto *BB : L->blocks())
1189 for (auto *SuccBB : successors(BB)) {
1190 // We're looking for exit blocks so skip in-loop successors.
1191 if (L->contains(SuccBB))
1192 continue;
1193
1194 // Visit each exit block exactly once.
1195 if (!Visited.insert(SuccBB).second)
1196 continue;
1197
1198 Changed |= RewriteExit(SuccBB);
1199 }
1200
1201 return Changed;
1202}
1203
1204/// \brief Returns the instructions that use values defined in the loop.
1205SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1206 SmallVector<Instruction *, 8> UsedOutside;
1207
1208 for (auto *Block : L->getBlocks())
1209 // FIXME: I believe that this could use copy_if if the Inst reference could
1210 // be adapted into a pointer.
1211 for (auto &Inst : *Block) {
1212 auto Users = Inst.users();
1213 if (any_of(Users, [&](User *U) {
1214 auto *Use = cast<Instruction>(U);
1215 return !L->contains(Use->getParent());
1216 }))
1217 UsedOutside.push_back(&Inst);
1218 }
1219
1220 return UsedOutside;
1221}
1222
1223void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1224 // By definition, all loop passes need the LoopInfo analysis and the
1225 // Dominator tree it depends on. Because they all participate in the loop
1226 // pass manager, they must also preserve these.
1227 AU.addRequired<DominatorTreeWrapperPass>();
1228 AU.addPreserved<DominatorTreeWrapperPass>();
1229 AU.addRequired<LoopInfoWrapperPass>();
1230 AU.addPreserved<LoopInfoWrapperPass>();
1231
1232 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1233 // here because users shouldn't directly get them from this header.
1234 extern char &LoopSimplifyID;
1235 extern char &LCSSAID;
1236 AU.addRequiredID(LoopSimplifyID);
1237 AU.addPreservedID(LoopSimplifyID);
1238 AU.addRequiredID(LCSSAID);
1239 AU.addPreservedID(LCSSAID);
1240 // This is used in the LPPassManager to perform LCSSA verification on passes
1241 // which preserve lcssa form
1242 AU.addRequired<LCSSAVerificationPass>();
1243 AU.addPreserved<LCSSAVerificationPass>();
1244
1245 // Loop passes are designed to run inside of a loop pass manager which means
1246 // that any function analyses they require must be required by the first loop
1247 // pass in the manager (so that it is computed before the loop pass manager
1248 // runs) and preserved by all loop pasess in the manager. To make this
1249 // reasonably robust, the set needed for most loop passes is maintained here.
1250 // If your loop pass requires an analysis not listed here, you will need to
1251 // carefully audit the loop pass manager nesting structure that results.
1252 AU.addRequired<AAResultsWrapperPass>();
1253 AU.addPreserved<AAResultsWrapperPass>();
1254 AU.addPreserved<BasicAAWrapperPass>();
1255 AU.addPreserved<GlobalsAAWrapperPass>();
1256 AU.addPreserved<SCEVAAWrapperPass>();
1257 AU.addRequired<ScalarEvolutionWrapperPass>();
1258 AU.addPreserved<ScalarEvolutionWrapperPass>();
1259}
1260
1261/// Manually defined generic "LoopPass" dependency initialization. This is used
1262/// to initialize the exact set of passes from above in \c
1263/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1264/// with:
1265///
1266/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1267///
1268/// As-if "LoopPass" were a pass.
1269void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1270 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
1271 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
1272 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
1273 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)initializeLCSSAWrapperPassPass(Registry);
1274 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
1275 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)initializeBasicAAWrapperPassPass(Registry);
1276 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
1277 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)initializeSCEVAAWrapperPassPass(Registry);
1278 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
1279}
1280
1281/// \brief Find string metadata for loop
1282///
1283/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1284/// operand or null otherwise. If the string metadata is not found return
1285/// Optional's not-a-value.
1286Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1287 StringRef Name) {
1288 MDNode *LoopID = TheLoop->getLoopID();
1289 // Return none if LoopID is false.
1290 if (!LoopID)
1291 return None;
1292
1293 // First operand should refer to the loop id itself.
1294 assert(LoopID->getNumOperands() > 0 && "requires at least one operand")(static_cast <bool> (LoopID->getNumOperands() > 0
&& "requires at least one operand") ? void (0) : __assert_fail
("LoopID->getNumOperands() > 0 && \"requires at least one operand\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1294, __extension__ __PRETTY_FUNCTION__))
;
1295 assert(LoopID->getOperand(0) == LoopID && "invalid loop id")(static_cast <bool> (LoopID->getOperand(0) == LoopID
&& "invalid loop id") ? void (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop id\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1295, __extension__ __PRETTY_FUNCTION__))
;
1296
1297 // Iterate over LoopID operands and look for MDString Metadata
1298 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1299 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1300 if (!MD)
1301 continue;
1302 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1303 if (!S)
1304 continue;
1305 // Return true if MDString holds expected MetaData.
1306 if (Name.equals(S->getString()))
1307 switch (MD->getNumOperands()) {
1308 case 1:
1309 return nullptr;
1310 case 2:
1311 return &MD->getOperand(1);
1312 default:
1313 llvm_unreachable("loop metadata has 0 or 1 operand")::llvm::llvm_unreachable_internal("loop metadata has 0 or 1 operand"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1313)
;
1314 }
1315 }
1316 return None;
1317}
1318
1319/// Does a BFS from a given node to all of its children inside a given loop.
1320/// The returned vector of nodes includes the starting point.
1321SmallVector<DomTreeNode *, 16>
1322llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1323 SmallVector<DomTreeNode *, 16> Worklist;
1324 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1325 // Only include subregions in the top level loop.
1326 BasicBlock *BB = DTN->getBlock();
1327 if (CurLoop->contains(BB))
1328 Worklist.push_back(DTN);
1329 };
1330
1331 AddRegionToWorklist(N);
1332
1333 for (size_t I = 0; I < Worklist.size(); I++)
1334 for (DomTreeNode *Child : Worklist[I]->getChildren())
1335 AddRegionToWorklist(Child);
1336
1337 return Worklist;
1338}
1339
1340void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1341 ScalarEvolution *SE = nullptr,
1342 LoopInfo *LI = nullptr) {
1343 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!")(static_cast <bool> ((!DT || L->isLCSSAForm(*DT)) &&
"Expected LCSSA!") ? void (0) : __assert_fail ("(!DT || L->isLCSSAForm(*DT)) && \"Expected LCSSA!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1343, __extension__ __PRETTY_FUNCTION__))
;
1344 auto *Preheader = L->getLoopPreheader();
1345 assert(Preheader && "Preheader should exist!")(static_cast <bool> (Preheader && "Preheader should exist!"
) ? void (0) : __assert_fail ("Preheader && \"Preheader should exist!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1345, __extension__ __PRETTY_FUNCTION__))
;
1346
1347 // Now that we know the removal is safe, remove the loop by changing the
1348 // branch from the preheader to go to the single exit block.
1349 //
1350 // Because we're deleting a large chunk of code at once, the sequence in which
1351 // we remove things is very important to avoid invalidation issues.
1352
1353 // Tell ScalarEvolution that the loop is deleted. Do this before
1354 // deleting the loop so that ScalarEvolution can look at the loop
1355 // to determine what it needs to clean up.
1356 if (SE)
1357 SE->forgetLoop(L);
1358
1359 auto *ExitBlock = L->getUniqueExitBlock();
1360 assert(ExitBlock && "Should have a unique exit block!")(static_cast <bool> (ExitBlock && "Should have a unique exit block!"
) ? void (0) : __assert_fail ("ExitBlock && \"Should have a unique exit block!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1360, __extension__ __PRETTY_FUNCTION__))
;
1361 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!")(static_cast <bool> (L->hasDedicatedExits() &&
"Loop should have dedicated exits!") ? void (0) : __assert_fail
("L->hasDedicatedExits() && \"Loop should have dedicated exits!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1361, __extension__ __PRETTY_FUNCTION__))
;
1362
1363 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1364 assert(OldBr && "Preheader must end with a branch")(static_cast <bool> (OldBr && "Preheader must end with a branch"
) ? void (0) : __assert_fail ("OldBr && \"Preheader must end with a branch\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1364, __extension__ __PRETTY_FUNCTION__))
;
1365 assert(OldBr->isUnconditional() && "Preheader must have a single successor")(static_cast <bool> (OldBr->isUnconditional() &&
"Preheader must have a single successor") ? void (0) : __assert_fail
("OldBr->isUnconditional() && \"Preheader must have a single successor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1365, __extension__ __PRETTY_FUNCTION__))
;
1366 // Connect the preheader to the exit block. Keep the old edge to the header
1367 // around to perform the dominator tree update in two separate steps
1368 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1369 // preheader -> header.
1370 //
1371 //
1372 // 0. Preheader 1. Preheader 2. Preheader
1373 // | | | |
1374 // V | V |
1375 // Header <--\ | Header <--\ | Header <--\
1376 // | | | | | | | | | | |
1377 // | V | | | V | | | V |
1378 // | Body --/ | | Body --/ | | Body --/
1379 // V V V V V
1380 // Exit Exit Exit
1381 //
1382 // By doing this is two separate steps we can perform the dominator tree
1383 // update without using the batch update API.
1384 //
1385 // Even when the loop is never executed, we cannot remove the edge from the
1386 // source block to the exit block. Consider the case where the unexecuted loop
1387 // branches back to an outer loop. If we deleted the loop and removed the edge
1388 // coming to this inner loop, this will break the outer loop structure (by
1389 // deleting the backedge of the outer loop). If the outer loop is indeed a
1390 // non-loop, it will be deleted in a future iteration of loop deletion pass.
1391 IRBuilder<> Builder(OldBr);
1392 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1393 // Remove the old branch. The conditional branch becomes a new terminator.
1394 OldBr->eraseFromParent();
1395
1396 // Rewrite phis in the exit block to get their inputs from the Preheader
1397 // instead of the exiting block.
1398 for (PHINode &P : ExitBlock->phis()) {
1399 // Set the zero'th element of Phi to be from the preheader and remove all
1400 // other incoming values. Given the loop has dedicated exits, all other
1401 // incoming values must be from the exiting blocks.
1402 int PredIndex = 0;
1403 P.setIncomingBlock(PredIndex, Preheader);
1404 // Removes all incoming values from all other exiting blocks (including
1405 // duplicate values from an exiting block).
1406 // Nuke all entries except the zero'th entry which is the preheader entry.
1407 // NOTE! We need to remove Incoming Values in the reverse order as done
1408 // below, to keep the indices valid for deletion (removeIncomingValues
1409 // updates getNumIncomingValues and shifts all values down into the operand
1410 // being deleted).
1411 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
1412 P.removeIncomingValue(e - i, false);
1413
1414 assert((P.getNumIncomingValues() == 1 &&(static_cast <bool> ((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) && "Should have exactly one value and that's from the preheader!"
) ? void (0) : __assert_fail ("(P.getNumIncomingValues() == 1 && P.getIncomingBlock(PredIndex) == Preheader) && \"Should have exactly one value and that's from the preheader!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
1415 P.getIncomingBlock(PredIndex) == Preheader) &&(static_cast <bool> ((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) && "Should have exactly one value and that's from the preheader!"
) ? void (0) : __assert_fail ("(P.getNumIncomingValues() == 1 && P.getIncomingBlock(PredIndex) == Preheader) && \"Should have exactly one value and that's from the preheader!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
1416 "Should have exactly one value and that's from the preheader!")(static_cast <bool> ((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) && "Should have exactly one value and that's from the preheader!"
) ? void (0) : __assert_fail ("(P.getNumIncomingValues() == 1 && P.getIncomingBlock(PredIndex) == Preheader) && \"Should have exactly one value and that's from the preheader!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1416, __extension__ __PRETTY_FUNCTION__))
;
1417 }
1418
1419 // Disconnect the loop body by branching directly to its exit.
1420 Builder.SetInsertPoint(Preheader->getTerminator());
1421 Builder.CreateBr(ExitBlock);
1422 // Remove the old branch.
1423 Preheader->getTerminator()->eraseFromParent();
1424
1425 if (DT) {
1426 // Update the dominator tree by informing it about the new edge from the
1427 // preheader to the exit.
1428 DT->insertEdge(Preheader, ExitBlock);
1429 // Inform the dominator tree about the removed edge.
1430 DT->deleteEdge(Preheader, L->getHeader());
1431 }
1432
1433 // Given LCSSA form is satisfied, we should not have users of instructions
1434 // within the dead loop outside of the loop. However, LCSSA doesn't take
1435 // unreachable uses into account. We handle them here.
1436 // We could do it after drop all references (in this case all users in the
1437 // loop will be already eliminated and we have less work to do but according
1438 // to API doc of User::dropAllReferences only valid operation after dropping
1439 // references, is deletion. So let's substitute all usages of
1440 // instruction from the loop with undef value of corresponding type first.
1441 for (auto *Block : L->blocks())
1442 for (Instruction &I : *Block) {
1443 auto *Undef = UndefValue::get(I.getType());
1444 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
1445 Use &U = *UI;
1446 ++UI;
1447 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
1448 if (L->contains(Usr->getParent()))
1449 continue;
1450 // If we have a DT then we can check that uses outside a loop only in
1451 // unreachable block.
1452 if (DT)
1453 assert(!DT->isReachableFromEntry(U) &&(static_cast <bool> (!DT->isReachableFromEntry(U) &&
"Unexpected user in reachable block") ? void (0) : __assert_fail
("!DT->isReachableFromEntry(U) && \"Unexpected user in reachable block\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1454, __extension__ __PRETTY_FUNCTION__))
1454 "Unexpected user in reachable block")(static_cast <bool> (!DT->isReachableFromEntry(U) &&
"Unexpected user in reachable block") ? void (0) : __assert_fail
("!DT->isReachableFromEntry(U) && \"Unexpected user in reachable block\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1454, __extension__ __PRETTY_FUNCTION__))
;
1455 U.set(Undef);
1456 }
1457 }
1458
1459 // Remove the block from the reference counting scheme, so that we can
1460 // delete it freely later.
1461 for (auto *Block : L->blocks())
1462 Block->dropAllReferences();
1463
1464 if (LI) {
1465 // Erase the instructions and the blocks without having to worry
1466 // about ordering because we already dropped the references.
1467 // NOTE: This iteration is safe because erasing the block does not remove
1468 // its entry from the loop's block list. We do that in the next section.
1469 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1470 LpI != LpE; ++LpI)
1471 (*LpI)->eraseFromParent();
1472
1473 // Finally, the blocks from loopinfo. This has to happen late because
1474 // otherwise our loop iterators won't work.
1475
1476 SmallPtrSet<BasicBlock *, 8> blocks;
1477 blocks.insert(L->block_begin(), L->block_end());
1478 for (BasicBlock *BB : blocks)
1479 LI->removeBlock(BB);
1480
1481 // The last step is to update LoopInfo now that we've eliminated this loop.
1482 LI->erase(L);
1483 }
1484}
1485
1486Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1487 // Only support loops with a unique exiting block, and a latch.
1488 if (!L->getExitingBlock())
1489 return None;
1490
1491 // Get the branch weights for the loop's backedge.
1492 BranchInst *LatchBR =
1493 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1494 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1495 return None;
1496
1497 assert((LatchBR->getSuccessor(0) == L->getHeader() ||(static_cast <bool> ((LatchBR->getSuccessor(0) == L->
getHeader() || LatchBR->getSuccessor(1) == L->getHeader
()) && "At least one edge out of the latch must go to the header"
) ? void (0) : __assert_fail ("(LatchBR->getSuccessor(0) == L->getHeader() || LatchBR->getSuccessor(1) == L->getHeader()) && \"At least one edge out of the latch must go to the header\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1499, __extension__ __PRETTY_FUNCTION__))
1498 LatchBR->getSuccessor(1) == L->getHeader()) &&(static_cast <bool> ((LatchBR->getSuccessor(0) == L->
getHeader() || LatchBR->getSuccessor(1) == L->getHeader
()) && "At least one edge out of the latch must go to the header"
) ? void (0) : __assert_fail ("(LatchBR->getSuccessor(0) == L->getHeader() || LatchBR->getSuccessor(1) == L->getHeader()) && \"At least one edge out of the latch must go to the header\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1499, __extension__ __PRETTY_FUNCTION__))
1499 "At least one edge out of the latch must go to the header")(static_cast <bool> ((LatchBR->getSuccessor(0) == L->
getHeader() || LatchBR->getSuccessor(1) == L->getHeader
()) && "At least one edge out of the latch must go to the header"
) ? void (0) : __assert_fail ("(LatchBR->getSuccessor(0) == L->getHeader() || LatchBR->getSuccessor(1) == L->getHeader()) && \"At least one edge out of the latch must go to the header\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1499, __extension__ __PRETTY_FUNCTION__))
;
1500
1501 // To estimate the number of times the loop body was executed, we want to
1502 // know the number of times the backedge was taken, vs. the number of times
1503 // we exited the loop.
1504 uint64_t TrueVal, FalseVal;
1505 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1506 return None;
1507
1508 if (!TrueVal || !FalseVal)
1509 return 0;
1510
1511 // Divide the count of the backedge by the count of the edge exiting the loop,
1512 // rounding to nearest.
1513 if (LatchBR->getSuccessor(0) == L->getHeader())
1514 return (TrueVal + (FalseVal / 2)) / FalseVal;
1515 else
1516 return (FalseVal + (TrueVal / 2)) / TrueVal;
1517}
1518
1519/// \brief Adds a 'fast' flag to floating point operations.
1520static Value *addFastMathFlag(Value *V) {
1521 if (isa<FPMathOperator>(V)) {
1522 FastMathFlags Flags;
1523 Flags.setFast();
1524 cast<Instruction>(V)->setFastMathFlags(Flags);
1525 }
1526 return V;
1527}
1528
1529// Helper to generate an ordered reduction.
1530Value *
1531llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
1532 unsigned Op,
1533 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1534 ArrayRef<Value *> RedOps) {
1535 unsigned VF = Src->getType()->getVectorNumElements();
1536
1537 // Extract and apply reduction ops in ascending order:
1538 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1539 Value *Result = Acc;
1540 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1541 Value *Ext =
1542 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1543
1544 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1545 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1546 "bin.rdx");
1547 } else {
1548 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&(static_cast <bool> (MinMaxKind != RecurrenceDescriptor
::MRK_Invalid && "Invalid min/max") ? void (0) : __assert_fail
("MinMaxKind != RecurrenceDescriptor::MRK_Invalid && \"Invalid min/max\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1549, __extension__ __PRETTY_FUNCTION__))
1549 "Invalid min/max")(static_cast <bool> (MinMaxKind != RecurrenceDescriptor
::MRK_Invalid && "Invalid min/max") ? void (0) : __assert_fail
("MinMaxKind != RecurrenceDescriptor::MRK_Invalid && \"Invalid min/max\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1549, __extension__ __PRETTY_FUNCTION__))
;
1550 Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result,
1551 Ext);
1552 }
1553
1554 if (!RedOps.empty())
1555 propagateIRFlags(Result, RedOps);
1556 }
1557
1558 return Result;
1559}
1560
1561// Helper to generate a log2 shuffle reduction.
1562Value *
1563llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1564 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1565 ArrayRef<Value *> RedOps) {
1566 unsigned VF = Src->getType()->getVectorNumElements();
1567 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1568 // and vector ops, reducing the set of values being computed by half each
1569 // round.
1570 assert(isPowerOf2_32(VF) &&(static_cast <bool> (isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"
) ? void (0) : __assert_fail ("isPowerOf2_32(VF) && \"Reduction emission only supported for pow2 vectors!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1571, __extension__ __PRETTY_FUNCTION__))
1571 "Reduction emission only supported for pow2 vectors!")(static_cast <bool> (isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"
) ? void (0) : __assert_fail ("isPowerOf2_32(VF) && \"Reduction emission only supported for pow2 vectors!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1571, __extension__ __PRETTY_FUNCTION__))
;
1572 Value *TmpVec = Src;
1573 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1574 for (unsigned i = VF; i != 1; i >>= 1) {
1575 // Move the upper half of the vector to the lower half.
1576 for (unsigned j = 0; j != i / 2; ++j)
1577 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1578
1579 // Fill the rest of the mask with undef.
1580 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1581 UndefValue::get(Builder.getInt32Ty()));
1582
1583 Value *Shuf = Builder.CreateShuffleVector(
1584 TmpVec, UndefValue::get(TmpVec->getType()),
1585 ConstantVector::get(ShuffleMask), "rdx.shuf");
1586
1587 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1588 // Floating point operations had to be 'fast' to enable the reduction.
1589 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1590 TmpVec, Shuf, "bin.rdx"));
1591 } else {
1592 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&(static_cast <bool> (MinMaxKind != RecurrenceDescriptor
::MRK_Invalid && "Invalid min/max") ? void (0) : __assert_fail
("MinMaxKind != RecurrenceDescriptor::MRK_Invalid && \"Invalid min/max\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1593, __extension__ __PRETTY_FUNCTION__))
1593 "Invalid min/max")(static_cast <bool> (MinMaxKind != RecurrenceDescriptor
::MRK_Invalid && "Invalid min/max") ? void (0) : __assert_fail
("MinMaxKind != RecurrenceDescriptor::MRK_Invalid && \"Invalid min/max\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1593, __extension__ __PRETTY_FUNCTION__))
;
1594 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1595 Shuf);
1596 }
1597 if (!RedOps.empty())
1598 propagateIRFlags(TmpVec, RedOps);
1599 }
1600 // The result is in the first element of the vector.
1601 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1602}
1603
1604/// Create a simple vector reduction specified by an opcode and some
1605/// flags (if generating min/max reductions).
1606Value *llvm::createSimpleTargetReduction(
1607 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1608 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1609 ArrayRef<Value *> RedOps) {
1610 assert(isa<VectorType>(Src->getType()) && "Type must be a vector")(static_cast <bool> (isa<VectorType>(Src->getType
()) && "Type must be a vector") ? void (0) : __assert_fail
("isa<VectorType>(Src->getType()) && \"Type must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1610, __extension__ __PRETTY_FUNCTION__))
;
1611
1612 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1613 std::function<Value*()> BuildFunc;
1614 using RD = RecurrenceDescriptor;
1615 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1616 // TODO: Support creating ordered reductions.
1617 FastMathFlags FMFFast;
1618 FMFFast.setFast();
1619
1620 switch (Opcode) {
3
Control jumps to 'case FAdd:' at line 1636
1621 case Instruction::Add:
1622 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1623 break;
1624 case Instruction::Mul:
1625 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1626 break;
1627 case Instruction::And:
1628 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1629 break;
1630 case Instruction::Or:
1631 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1632 break;
1633 case Instruction::Xor:
1634 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1635 break;
1636 case Instruction::FAdd:
1637 BuildFunc = [&]() {
4
Calling 'function::operator='
13
Returned allocated memory
1638 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1639 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1640 return Rdx;
1641 };
1642 break;
14
Execution continues on line 1676
1643 case Instruction::FMul:
1644 BuildFunc = [&]() {
1645 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1646 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1647 return Rdx;
1648 };
1649 break;
1650 case Instruction::ICmp:
1651 if (Flags.IsMaxOp) {
1652 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1653 BuildFunc = [&]() {
1654 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1655 };
1656 } else {
1657 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1658 BuildFunc = [&]() {
1659 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1660 };
1661 }
1662 break;
1663 case Instruction::FCmp:
1664 if (Flags.IsMaxOp) {
1665 MinMaxKind = RD::MRK_FloatMax;
1666 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1667 } else {
1668 MinMaxKind = RD::MRK_FloatMin;
1669 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1670 }
1671 break;
1672 default:
1673 llvm_unreachable("Unhandled opcode")::llvm::llvm_unreachable_internal("Unhandled opcode", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1673)
;
1674 break;
1675 }
1676 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
15
Assuming the condition is false
16
Taking false branch
1677 return BuildFunc();
1678 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1679}
17
Potential memory leak
1680
1681/// Create a vector reduction using a given recurrence descriptor.
1682Value *llvm::createTargetReduction(IRBuilder<> &B,
1683 const TargetTransformInfo *TTI,
1684 RecurrenceDescriptor &Desc, Value *Src,
1685 bool NoNaN) {
1686 // TODO: Support in-order reductions based on the recurrence descriptor.
1687 using RD = RecurrenceDescriptor;
1688 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1689 TargetTransformInfo::ReductionFlags Flags;
1690 Flags.NoNaN = NoNaN;
1691 switch (RecKind) {
1
Control jumps to 'case RK_FloatAdd:' at line 1692
1692 case RD::RK_FloatAdd:
1693 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
2
Calling 'createSimpleTargetReduction'
1694 case RD::RK_FloatMult:
1695 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1696 case RD::RK_IntegerAdd:
1697 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1698 case RD::RK_IntegerMult:
1699 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1700 case RD::RK_IntegerAnd:
1701 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1702 case RD::RK_IntegerOr:
1703 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1704 case RD::RK_IntegerXor:
1705 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1706 case RD::RK_IntegerMinMax: {
1707 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1708 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1709 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1710 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1711 }
1712 case RD::RK_FloatMinMax: {
1713 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1714 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1715 }
1716 default:
1717 llvm_unreachable("Unhandled RecKind")::llvm::llvm_unreachable_internal("Unhandled RecKind", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Utils/LoopUtils.cpp"
, 1717)
;
1718 }
1719}
1720
1721void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1722 auto *VecOp = dyn_cast<Instruction>(I);
1723 if (!VecOp)
1724 return;
1725 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1726 : dyn_cast<Instruction>(OpValue);
1727 if (!Intersection)
1728 return;
1729 const unsigned Opcode = Intersection->getOpcode();
1730 VecOp->copyIRFlags(Intersection);
1731 for (auto *V : VL) {
1732 auto *Instr = dyn_cast<Instruction>(V);
1733 if (!Instr)
1734 continue;
1735 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1736 VecOp->andIRFlags(V);
1737 }
1738}

/usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/bits/std_function.h

1// Implementation of std::function -*- C++ -*-
2
3// Copyright (C) 2004-2017 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/bits/function.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{functional}
28 */
29
30#ifndef _GLIBCXX_STD_FUNCTION_H1
31#define _GLIBCXX_STD_FUNCTION_H1 1
32
33#pragma GCC system_header
34
35#if __cplusplus201103L < 201103L
36# include <bits/c++0x_warning.h>
37#else
38
39#if __cpp_rtti199711
40# include <typeinfo>
41#endif
42#include <bits/stl_function.h>
43#include <bits/invoke.h>
44#include <bits/refwrap.h>
45#include <bits/functexcept.h>
46
47namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
48{
49_GLIBCXX_BEGIN_NAMESPACE_VERSION
50
51 /**
52 * Derives from @c unary_function or @c binary_function, or perhaps
53 * nothing, depending on the number of arguments provided. The
54 * primary template is the basis case, which derives nothing.
55 */
56 template<typename _Res, typename... _ArgTypes>
57 struct _Maybe_unary_or_binary_function { };
58
59 /// Derives from @c unary_function, as appropriate.
60 template<typename _Res, typename _T1>
61 struct _Maybe_unary_or_binary_function<_Res, _T1>
62 : std::unary_function<_T1, _Res> { };
63
64 /// Derives from @c binary_function, as appropriate.
65 template<typename _Res, typename _T1, typename _T2>
66 struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
67 : std::binary_function<_T1, _T2, _Res> { };
68
69
70 /**
71 * @brief Exception class thrown when class template function's
72 * operator() is called with an empty target.
73 * @ingroup exceptions
74 */
75 class bad_function_call : public std::exception
76 {
77 public:
78 virtual ~bad_function_call() noexcept;
79
80 const char* what() const noexcept;
81 };
82
83 /**
84 * Trait identifying "location-invariant" types, meaning that the
85 * address of the object (or any of its members) will not escape.
86 * Trivially copyable types are location-invariant and users can
87 * specialize this trait for other types.
88 */
89 template<typename _Tp>
90 struct __is_location_invariant
91 : is_trivially_copyable<_Tp>::type
92 { };
93
94 class _Undefined_class;
95
96 union _Nocopy_types
97 {
98 void* _M_object;
99 const void* _M_const_object;
100 void (*_M_function_pointer)();
101 void (_Undefined_class::*_M_member_pointer)();
102 };
103
104 union [[gnu::may_alias]] _Any_data
105 {
106 void* _M_access() { return &_M_pod_data[0]; }
107 const void* _M_access() const { return &_M_pod_data[0]; }
108
109 template<typename _Tp>
110 _Tp&
111 _M_access()
112 { return *static_cast<_Tp*>(_M_access()); }
113
114 template<typename _Tp>
115 const _Tp&
116 _M_access() const
117 { return *static_cast<const _Tp*>(_M_access()); }
118
119 _Nocopy_types _M_unused;
120 char _M_pod_data[sizeof(_Nocopy_types)];
121 };
122
123 enum _Manager_operation
124 {
125 __get_type_info,
126 __get_functor_ptr,
127 __clone_functor,
128 __destroy_functor
129 };
130
131 // Simple type wrapper that helps avoid annoying const problems
132 // when casting between void pointers and pointers-to-pointers.
133 template<typename _Tp>
134 struct _Simple_type_wrapper
135 {
136 _Simple_type_wrapper(_Tp __value) : __value(__value) { }
137
138 _Tp __value;
139 };
140
141 template<typename _Tp>
142 struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
143 : __is_location_invariant<_Tp>
144 { };
145
146 template<typename _Signature>
147 class function;
148
149 /// Base class of all polymorphic function object wrappers.
150 class _Function_base
151 {
152 public:
153 static const std::size_t _M_max_size = sizeof(_Nocopy_types);
154 static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
155
156 template<typename _Functor>
157 class _Base_manager
158 {
159 protected:
160 static const bool __stored_locally =
161 (__is_location_invariant<_Functor>::value
162 && sizeof(_Functor) <= _M_max_size
163 && __alignof__(_Functor) <= _M_max_align
164 && (_M_max_align % __alignof__(_Functor) == 0));
165
166 typedef integral_constant<bool, __stored_locally> _Local_storage;
167
168 // Retrieve a pointer to the function object
169 static _Functor*
170 _M_get_pointer(const _Any_data& __source)
171 {
172 const _Functor* __ptr =
173 __stored_locally? std::__addressof(__source._M_access<_Functor>())
174 /* have stored a pointer */ : __source._M_access<_Functor*>();
175 return const_cast<_Functor*>(__ptr);
176 }
177
178 // Clone a location-invariant function object that fits within
179 // an _Any_data structure.
180 static void
181 _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
182 {
183 ::new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
184 }
185
186 // Clone a function object that is not location-invariant or
187 // that cannot fit into an _Any_data structure.
188 static void
189 _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
190 {
191 __dest._M_access<_Functor*>() =
192 new _Functor(*__source._M_access<_Functor*>());
193 }
194
195 // Destroying a location-invariant object may still require
196 // destruction.
197 static void
198 _M_destroy(_Any_data& __victim, true_type)
199 {
200 __victim._M_access<_Functor>().~_Functor();
201 }
202
203 // Destroying an object located on the heap.
204 static void
205 _M_destroy(_Any_data& __victim, false_type)
206 {
207 delete __victim._M_access<_Functor*>();
208 }
209
210 public:
211 static bool
212 _M_manager(_Any_data& __dest, const _Any_data& __source,
213 _Manager_operation __op)
214 {
215 switch (__op)
216 {
217#if __cpp_rtti199711
218 case __get_type_info:
219 __dest._M_access<const type_info*>() = &typeid(_Functor);
220 break;
221#endif
222 case __get_functor_ptr:
223 __dest._M_access<_Functor*>() = _M_get_pointer(__source);
224 break;
225
226 case __clone_functor:
227 _M_clone(__dest, __source, _Local_storage());
228 break;
229
230 case __destroy_functor:
231 _M_destroy(__dest, _Local_storage());
232 break;
233 }
234 return false;
235 }
236
237 static void
238 _M_init_functor(_Any_data& __functor, _Functor&& __f)
239 { _M_init_functor(__functor, std::move(__f), _Local_storage()); }
8
Calling '_Base_manager::_M_init_functor'
10
Returned allocated memory
240
241 template<typename _Signature>
242 static bool
243 _M_not_empty_function(const function<_Signature>& __f)
244 { return static_cast<bool>(__f); }
245
246 template<typename _Tp>
247 static bool
248 _M_not_empty_function(_Tp* __fp)
249 { return __fp != nullptr; }
250
251 template<typename _Class, typename _Tp>
252 static bool
253 _M_not_empty_function(_Tp _Class::* __mp)
254 { return __mp != nullptr; }
255
256 template<typename _Tp>
257 static bool
258 _M_not_empty_function(const _Tp&)
259 { return true; }
260
261 private:
262 static void
263 _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
264 { ::new (__functor._M_access()) _Functor(std::move(__f)); }
265
266 static void
267 _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
268 { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
9
Memory is allocated
269 };
270
271 _Function_base() : _M_manager(nullptr) { }
272
273 ~_Function_base()
274 {
275 if (_M_manager)
276 _M_manager(_M_functor, _M_functor, __destroy_functor);
277 }
278
279 bool _M_empty() const { return !_M_manager; }
280
281 typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
282 _Manager_operation);
283
284 _Any_data _M_functor;
285 _Manager_type _M_manager;
286 };
287
288 template<typename _Signature, typename _Functor>
289 class _Function_handler;
290
291 template<typename _Res, typename _Functor, typename... _ArgTypes>
292 class _Function_handler<_Res(_ArgTypes...), _Functor>
293 : public _Function_base::_Base_manager<_Functor>
294 {
295 typedef _Function_base::_Base_manager<_Functor> _Base;
296
297 public:
298 static _Res
299 _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
300 {
301 return (*_Base::_M_get_pointer(__functor))(
302 std::forward<_ArgTypes>(__args)...);
303 }
304 };
305
306 template<typename _Functor, typename... _ArgTypes>
307 class _Function_handler<void(_ArgTypes...), _Functor>
308 : public _Function_base::_Base_manager<_Functor>
309 {
310 typedef _Function_base::_Base_manager<_Functor> _Base;
311
312 public:
313 static void
314 _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
315 {
316 (*_Base::_M_get_pointer(__functor))(
317 std::forward<_ArgTypes>(__args)...);
318 }
319 };
320
321 template<typename _Class, typename _Member, typename _Res,
322 typename... _ArgTypes>
323 class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
324 : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
325 {
326 typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
327 _Base;
328
329 public:
330 static _Res
331 _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
332 {
333 return std::__invoke(_Base::_M_get_pointer(__functor)->__value,
334 std::forward<_ArgTypes>(__args)...);
335 }
336 };
337
338 template<typename _Class, typename _Member, typename... _ArgTypes>
339 class _Function_handler<void(_ArgTypes...), _Member _Class::*>
340 : public _Function_base::_Base_manager<
341 _Simple_type_wrapper< _Member _Class::* > >
342 {
343 typedef _Member _Class::* _Functor;
344 typedef _Simple_type_wrapper<_Functor> _Wrapper;
345 typedef _Function_base::_Base_manager<_Wrapper> _Base;
346
347 public:
348 static bool
349 _M_manager(_Any_data& __dest, const _Any_data& __source,
350 _Manager_operation __op)
351 {
352 switch (__op)
353 {
354#if __cpp_rtti199711
355 case __get_type_info:
356 __dest._M_access<const type_info*>() = &typeid(_Functor);
357 break;
358#endif
359 case __get_functor_ptr:
360 __dest._M_access<_Functor*>() =
361 &_Base::_M_get_pointer(__source)->__value;
362 break;
363
364 default:
365 _Base::_M_manager(__dest, __source, __op);
366 }
367 return false;
368 }
369
370 static void
371 _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
372 {
373 std::__invoke(_Base::_M_get_pointer(__functor)->__value,
374 std::forward<_ArgTypes>(__args)...);
375 }
376 };
377
378 template<typename _From, typename _To>
379 using __check_func_return_type
380 = __or_<is_void<_To>, is_same<_From, _To>, is_convertible<_From, _To>>;
381
382 /**
383 * @brief Primary class template for std::function.
384 * @ingroup functors
385 *
386 * Polymorphic function wrapper.
387 */
388 template<typename _Res, typename... _ArgTypes>
389 class function<_Res(_ArgTypes...)>
390 : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
391 private _Function_base
392 {
393 template<typename _Func,
394 typename _Res2 = typename result_of<_Func&(_ArgTypes...)>::type>
395 struct _Callable : __check_func_return_type<_Res2, _Res> { };
396
397 // Used so the return type convertibility checks aren't done when
398 // performing overload resolution for copy construction/assignment.
399 template<typename _Tp>
400 struct _Callable<function, _Tp> : false_type { };
401
402 template<typename _Cond, typename _Tp>
403 using _Requires = typename enable_if<_Cond::value, _Tp>::type;
404
405 public:
406 typedef _Res result_type;
407
408 // [3.7.2.1] construct/copy/destroy
409
410 /**
411 * @brief Default construct creates an empty function call wrapper.
412 * @post @c !(bool)*this
413 */
414 function() noexcept
415 : _Function_base() { }
416
417 /**
418 * @brief Creates an empty function call wrapper.
419 * @post @c !(bool)*this
420 */
421 function(nullptr_t) noexcept
422 : _Function_base() { }
423
424 /**
425 * @brief %Function copy constructor.
426 * @param __x A %function object with identical call signature.
427 * @post @c bool(*this) == bool(__x)
428 *
429 * The newly-created %function contains a copy of the target of @a
430 * __x (if it has one).
431 */
432 function(const function& __x);
433
434 /**
435 * @brief %Function move constructor.
436 * @param __x A %function object rvalue with identical call signature.
437 *
438 * The newly-created %function contains the target of @a __x
439 * (if it has one).
440 */
441 function(function&& __x) noexcept : _Function_base()
442 {
443 __x.swap(*this);
444 }
445
446 /**
447 * @brief Builds a %function that targets a copy of the incoming
448 * function object.
449 * @param __f A %function object that is callable with parameters of
450 * type @c T1, @c T2, ..., @c TN and returns a value convertible
451 * to @c Res.
452 *
453 * The newly-created %function object will target a copy of
454 * @a __f. If @a __f is @c reference_wrapper<F>, then this function
455 * object will contain a reference to the function object @c
456 * __f.get(). If @a __f is a NULL function pointer or NULL
457 * pointer-to-member, the newly-created object will be empty.
458 *
459 * If @a __f is a non-NULL function pointer or an object of type @c
460 * reference_wrapper<F>, this function will not throw.
461 */
462 template<typename _Functor,
463 typename = _Requires<__not_<is_same<_Functor, function>>, void>,
464 typename = _Requires<_Callable<_Functor>, void>>
465 function(_Functor);
466
467 /**
468 * @brief %Function assignment operator.
469 * @param __x A %function with identical call signature.
470 * @post @c (bool)*this == (bool)x
471 * @returns @c *this
472 *
473 * The target of @a __x is copied to @c *this. If @a __x has no
474 * target, then @c *this will be empty.
475 *
476 * If @a __x targets a function pointer or a reference to a function
477 * object, then this operation will not throw an %exception.
478 */
479 function&
480 operator=(const function& __x)
481 {
482 function(__x).swap(*this);
483 return *this;
484 }
485
486 /**
487 * @brief %Function move-assignment operator.
488 * @param __x A %function rvalue with identical call signature.
489 * @returns @c *this
490 *
491 * The target of @a __x is moved to @c *this. If @a __x has no
492 * target, then @c *this will be empty.
493 *
494 * If @a __x targets a function pointer or a reference to a function
495 * object, then this operation will not throw an %exception.
496 */
497 function&
498 operator=(function&& __x) noexcept
499 {
500 function(std::move(__x)).swap(*this);
501 return *this;
502 }
503
504 /**
505 * @brief %Function assignment to zero.
506 * @post @c !(bool)*this
507 * @returns @c *this
508 *
509 * The target of @c *this is deallocated, leaving it empty.
510 */
511 function&
512 operator=(nullptr_t) noexcept
513 {
514 if (_M_manager)
515 {
516 _M_manager(_M_functor, _M_functor, __destroy_functor);
517 _M_manager = nullptr;
518 _M_invoker = nullptr;
519 }
520 return *this;
521 }
522
523 /**
524 * @brief %Function assignment to a new target.
525 * @param __f A %function object that is callable with parameters of
526 * type @c T1, @c T2, ..., @c TN and returns a value convertible
527 * to @c Res.
528 * @return @c *this
529 *
530 * This %function object wrapper will target a copy of @a
531 * __f. If @a __f is @c reference_wrapper<F>, then this function
532 * object will contain a reference to the function object @c
533 * __f.get(). If @a __f is a NULL function pointer or NULL
534 * pointer-to-member, @c this object will be empty.
535 *
536 * If @a __f is a non-NULL function pointer or an object of type @c
537 * reference_wrapper<F>, this function will not throw.
538 */
539 template<typename _Functor>
540 _Requires<_Callable<typename decay<_Functor>::type>, function&>
541 operator=(_Functor&& __f)
542 {
543 function(std::forward<_Functor>(__f)).swap(*this);
5
Calling constructor for 'function'
12
Returning from constructor for 'function'
544 return *this;
545 }
546
547 /// @overload
548 template<typename _Functor>
549 function&
550 operator=(reference_wrapper<_Functor> __f) noexcept
551 {
552 function(__f).swap(*this);
553 return *this;
554 }
555
556 // [3.7.2.2] function modifiers
557
558 /**
559 * @brief Swap the targets of two %function objects.
560 * @param __x A %function with identical call signature.
561 *
562 * Swap the targets of @c this function object and @a __f. This
563 * function will not throw an %exception.
564 */
565 void swap(function& __x) noexcept
566 {
567 std::swap(_M_functor, __x._M_functor);
568 std::swap(_M_manager, __x._M_manager);
569 std::swap(_M_invoker, __x._M_invoker);
570 }
571
572 // [3.7.2.3] function capacity
573
574 /**
575 * @brief Determine if the %function wrapper has a target.
576 *
577 * @return @c true when this %function object contains a target,
578 * or @c false when it is empty.
579 *
580 * This function will not throw an %exception.
581 */
582 explicit operator bool() const noexcept
583 { return !_M_empty(); }
584
585 // [3.7.2.4] function invocation
586
587 /**
588 * @brief Invokes the function targeted by @c *this.
589 * @returns the result of the target.
590 * @throws bad_function_call when @c !(bool)*this
591 *
592 * The function call operator invokes the target function object
593 * stored by @c this.
594 */
595 _Res operator()(_ArgTypes... __args) const;
596
597#if __cpp_rtti199711
598 // [3.7.2.5] function target access
599 /**
600 * @brief Determine the type of the target of this function object
601 * wrapper.
602 *
603 * @returns the type identifier of the target function object, or
604 * @c typeid(void) if @c !(bool)*this.
605 *
606 * This function will not throw an %exception.
607 */
608 const type_info& target_type() const noexcept;
609
610 /**
611 * @brief Access the stored target function object.
612 *
613 * @return Returns a pointer to the stored target function object,
614 * if @c typeid(_Functor).equals(target_type()); otherwise, a NULL
615 * pointer.
616 *
617 * This function does not throw exceptions.
618 *
619 * @{
620 */
621 template<typename _Functor> _Functor* target() noexcept;
622
623 template<typename _Functor> const _Functor* target() const noexcept;
624 // @}
625#endif
626
627 private:
628 using _Invoker_type = _Res (*)(const _Any_data&, _ArgTypes&&...);
629 _Invoker_type _M_invoker;
630 };
631
632#if __cpp_deduction_guides >= 201606
633 template<typename>
634 struct __function_guide_helper
635 { };
636
637 template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
638 struct __function_guide_helper<
639 _Res (_Tp::*) (_Args...) noexcept(_Nx)
640 >
641 { using type = _Res(_Args...); };
642
643 template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
644 struct __function_guide_helper<
645 _Res (_Tp::*) (_Args...) & noexcept(_Nx)
646 >
647 { using type = _Res(_Args...); };
648
649 template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
650 struct __function_guide_helper<
651 _Res (_Tp::*) (_Args...) const noexcept(_Nx)
652 >
653 { using type = _Res(_Args...); };
654
655 template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
656 struct __function_guide_helper<
657 _Res (_Tp::*) (_Args...) const & noexcept(_Nx)
658 >
659 { using type = _Res(_Args...); };
660
661 template<typename _Res, typename... _ArgTypes>
662 function(_Res(*)(_ArgTypes...)) -> function<_Res(_ArgTypes...)>;
663
664 template<typename _Functor, typename _Signature = typename
665 __function_guide_helper<decltype(&_Functor::operator())>::type>
666 function(_Functor) -> function<_Signature>;
667#endif
668
669 // Out-of-line member definitions.
670 template<typename _Res, typename... _ArgTypes>
671 function<_Res(_ArgTypes...)>::
672 function(const function& __x)
673 : _Function_base()
674 {
675 if (static_cast<bool>(__x))
676 {
677 __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
678 _M_invoker = __x._M_invoker;
679 _M_manager = __x._M_manager;
680 }
681 }
682
683 template<typename _Res, typename... _ArgTypes>
684 template<typename _Functor, typename, typename>
685 function<_Res(_ArgTypes...)>::
686 function(_Functor __f)
687 : _Function_base()
688 {
689 typedef _Function_handler<_Res(_ArgTypes...), _Functor> _My_handler;
690
691 if (_My_handler::_M_not_empty_function(__f))
6
Taking true branch
692 {
693 _My_handler::_M_init_functor(_M_functor, std::move(__f));
7
Calling '_Base_manager::_M_init_functor'
11
Returned allocated memory
694 _M_invoker = &_My_handler::_M_invoke;
695 _M_manager = &_My_handler::_M_manager;
696 }
697 }
698
699 template<typename _Res, typename... _ArgTypes>
700 _Res
701 function<_Res(_ArgTypes...)>::
702 operator()(_ArgTypes... __args) const
703 {
704 if (_M_empty())
705 __throw_bad_function_call();
706 return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
707 }
708
709#if __cpp_rtti199711
710 template<typename _Res, typename... _ArgTypes>
711 const type_info&
712 function<_Res(_ArgTypes...)>::
713 target_type() const noexcept
714 {
715 if (_M_manager)
716 {
717 _Any_data __typeinfo_result;
718 _M_manager(__typeinfo_result, _M_functor, __get_type_info);
719 return *__typeinfo_result._M_access<const type_info*>();
720 }
721 else
722 return typeid(void);
723 }
724
725 template<typename _Res, typename... _ArgTypes>
726 template<typename _Functor>
727 _Functor*
728 function<_Res(_ArgTypes...)>::
729 target() noexcept
730 {
731 const function* __const_this = this;
732 const _Functor* __func = __const_this->template target<_Functor>();
733 return const_cast<_Functor*>(__func);
734 }
735
736 template<typename _Res, typename... _ArgTypes>
737 template<typename _Functor>
738 const _Functor*
739 function<_Res(_ArgTypes...)>::
740 target() const noexcept
741 {
742 if (typeid(_Functor) == target_type() && _M_manager)
743 {
744 _Any_data __ptr;
745 _M_manager(__ptr, _M_functor, __get_functor_ptr);
746 return __ptr._M_access<const _Functor*>();
747 }
748 else
749 return nullptr;
750 }
751#endif
752
753 // [20.7.15.2.6] null pointer comparisons
754
755 /**
756 * @brief Compares a polymorphic function object wrapper against 0
757 * (the NULL pointer).
758 * @returns @c true if the wrapper has no target, @c false otherwise
759 *
760 * This function will not throw an %exception.
761 */
762 template<typename _Res, typename... _Args>
763 inline bool
764 operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
765 { return !static_cast<bool>(__f); }
766
767 /// @overload
768 template<typename _Res, typename... _Args>
769 inline bool
770 operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
771 { return !static_cast<bool>(__f); }
772
773 /**
774 * @brief Compares a polymorphic function object wrapper against 0
775 * (the NULL pointer).
776 * @returns @c false if the wrapper has no target, @c true otherwise
777 *
778 * This function will not throw an %exception.
779 */
780 template<typename _Res, typename... _Args>
781 inline bool
782 operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
783 { return static_cast<bool>(__f); }
784
785 /// @overload
786 template<typename _Res, typename... _Args>
787 inline bool
788 operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
789 { return static_cast<bool>(__f); }
790
791
792 // [20.7.15.2.7] specialized algorithms
793
794 /**
795 * @brief Swap the targets of two polymorphic function object wrappers.
796 *
797 * This function will not throw an %exception.
798 */
799 // _GLIBCXX_RESOLVE_LIB_DEFECTS
800 // 2062. Effect contradictions w/o no-throw guarantee of std::function swaps
801 template<typename _Res, typename... _Args>
802 inline void
803 swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y) noexcept
804 { __x.swap(__y); }
805
806_GLIBCXX_END_NAMESPACE_VERSION
807} // namespace std
808
809#endif // C++11
810
811#endif // _GLIBCXX_STD_FUNCTION_H