Bug Summary

File:lib/Transforms/Vectorize/LoopVectorize.cpp
Warning:line 5959, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopVectorize.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329611/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-7~svn329611/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329611/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329611/build-llvm/lib/Transforms/Vectorize -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-10-031729-19628-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22// of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24// widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26// of vectorization. It decides on the optimal vector width, which
27// can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35// Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// The interleaved access vectorization is based on the paper:
38// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
39// Data for SIMD
40//
41// Other ideas/concepts are from:
42// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43//
44// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
45// Vectorizing Compilers.
46//
47//===----------------------------------------------------------------------===//
48
49#include "llvm/Transforms/Vectorize/LoopVectorize.h"
50#include "LoopVectorizationPlanner.h"
51#include "llvm/ADT/APInt.h"
52#include "llvm/ADT/ArrayRef.h"
53#include "llvm/ADT/DenseMap.h"
54#include "llvm/ADT/DenseMapInfo.h"
55#include "llvm/ADT/Hashing.h"
56#include "llvm/ADT/MapVector.h"
57#include "llvm/ADT/None.h"
58#include "llvm/ADT/Optional.h"
59#include "llvm/ADT/STLExtras.h"
60#include "llvm/ADT/SetVector.h"
61#include "llvm/ADT/SmallPtrSet.h"
62#include "llvm/ADT/SmallSet.h"
63#include "llvm/ADT/SmallVector.h"
64#include "llvm/ADT/Statistic.h"
65#include "llvm/ADT/StringRef.h"
66#include "llvm/ADT/Twine.h"
67#include "llvm/ADT/iterator_range.h"
68#include "llvm/Analysis/AssumptionCache.h"
69#include "llvm/Analysis/BasicAliasAnalysis.h"
70#include "llvm/Analysis/BlockFrequencyInfo.h"
71#include "llvm/Analysis/CFG.h"
72#include "llvm/Analysis/CodeMetrics.h"
73#include "llvm/Analysis/DemandedBits.h"
74#include "llvm/Analysis/GlobalsModRef.h"
75#include "llvm/Analysis/LoopAccessAnalysis.h"
76#include "llvm/Analysis/LoopAnalysisManager.h"
77#include "llvm/Analysis/LoopInfo.h"
78#include "llvm/Analysis/LoopIterator.h"
79#include "llvm/Analysis/OptimizationRemarkEmitter.h"
80#include "llvm/Analysis/ScalarEvolution.h"
81#include "llvm/Analysis/ScalarEvolutionExpander.h"
82#include "llvm/Analysis/ScalarEvolutionExpressions.h"
83#include "llvm/Analysis/TargetLibraryInfo.h"
84#include "llvm/Analysis/TargetTransformInfo.h"
85#include "llvm/Analysis/VectorUtils.h"
86#include "llvm/IR/Attributes.h"
87#include "llvm/IR/BasicBlock.h"
88#include "llvm/IR/CFG.h"
89#include "llvm/IR/Constant.h"
90#include "llvm/IR/Constants.h"
91#include "llvm/IR/DataLayout.h"
92#include "llvm/IR/DebugInfoMetadata.h"
93#include "llvm/IR/DebugLoc.h"
94#include "llvm/IR/DerivedTypes.h"
95#include "llvm/IR/DiagnosticInfo.h"
96#include "llvm/IR/Dominators.h"
97#include "llvm/IR/Function.h"
98#include "llvm/IR/IRBuilder.h"
99#include "llvm/IR/InstrTypes.h"
100#include "llvm/IR/Instruction.h"
101#include "llvm/IR/Instructions.h"
102#include "llvm/IR/IntrinsicInst.h"
103#include "llvm/IR/Intrinsics.h"
104#include "llvm/IR/LLVMContext.h"
105#include "llvm/IR/Metadata.h"
106#include "llvm/IR/Module.h"
107#include "llvm/IR/Operator.h"
108#include "llvm/IR/Type.h"
109#include "llvm/IR/Use.h"
110#include "llvm/IR/User.h"
111#include "llvm/IR/Value.h"
112#include "llvm/IR/ValueHandle.h"
113#include "llvm/IR/Verifier.h"
114#include "llvm/Pass.h"
115#include "llvm/Support/Casting.h"
116#include "llvm/Support/CommandLine.h"
117#include "llvm/Support/Compiler.h"
118#include "llvm/Support/Debug.h"
119#include "llvm/Support/ErrorHandling.h"
120#include "llvm/Support/MathExtras.h"
121#include "llvm/Support/raw_ostream.h"
122#include "llvm/Transforms/Utils/BasicBlockUtils.h"
123#include "llvm/Transforms/Utils/LoopSimplify.h"
124#include "llvm/Transforms/Utils/LoopUtils.h"
125#include "llvm/Transforms/Utils/LoopVersioning.h"
126#include <algorithm>
127#include <cassert>
128#include <cstdint>
129#include <cstdlib>
130#include <functional>
131#include <iterator>
132#include <limits>
133#include <memory>
134#include <string>
135#include <tuple>
136#include <utility>
137#include <vector>
138
139using namespace llvm;
140
141#define LV_NAME"loop-vectorize" "loop-vectorize"
142#define DEBUG_TYPE"loop-vectorize" LV_NAME"loop-vectorize"
143
144STATISTIC(LoopsVectorized, "Number of loops vectorized")static llvm::Statistic LoopsVectorized = {"loop-vectorize", "LoopsVectorized"
, "Number of loops vectorized", {0}, {false}}
;
145STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization")static llvm::Statistic LoopsAnalyzed = {"loop-vectorize", "LoopsAnalyzed"
, "Number of loops analyzed for vectorization", {0}, {false}}
;
146
147static cl::opt<bool>
148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
149 cl::desc("Enable if-conversion during vectorization."));
150
151/// Loops with a known constant trip count below this number are vectorized only
152/// if no scalar iteration overheads are incurred.
153static cl::opt<unsigned> TinyTripCountVectorThreshold(
154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
155 cl::desc("Loops with a constant trip count that is smaller than this "
156 "value are vectorized only if no scalar iteration overheads "
157 "are incurred."));
158
159static cl::opt<bool> MaximizeBandwidth(
160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
161 cl::desc("Maximize bandwidth when selecting vectorization factor which "
162 "will be determined by the smallest type in loop."));
163
164static cl::opt<bool> EnableInterleavedMemAccesses(
165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
166 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
167
168/// Maximum factor for an interleaved memory access.
169static cl::opt<unsigned> MaxInterleaveGroupFactor(
170 "max-interleave-group-factor", cl::Hidden,
171 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
172 cl::init(8));
173
174/// We don't interleave loops with a known constant trip count below this
175/// number.
176static const unsigned TinyTripCountInterleaveThreshold = 128;
177
178static cl::opt<unsigned> ForceTargetNumScalarRegs(
179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
180 cl::desc("A flag that overrides the target's number of scalar registers."));
181
182static cl::opt<unsigned> ForceTargetNumVectorRegs(
183 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
184 cl::desc("A flag that overrides the target's number of vector registers."));
185
186/// Maximum vectorization interleave count.
187static const unsigned MaxInterleaveFactor = 16;
188
189static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
191 cl::desc("A flag that overrides the target's max interleave factor for "
192 "scalar loops."));
193
194static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
196 cl::desc("A flag that overrides the target's max interleave factor for "
197 "vectorized loops."));
198
199static cl::opt<unsigned> ForceTargetInstructionCost(
200 "force-target-instruction-cost", cl::init(0), cl::Hidden,
201 cl::desc("A flag that overrides the target's expected cost for "
202 "an instruction to a single constant value. Mostly "
203 "useful for getting consistent testing."));
204
205static cl::opt<unsigned> SmallLoopCost(
206 "small-loop-cost", cl::init(20), cl::Hidden,
207 cl::desc(
208 "The cost of a loop that is considered 'small' by the interleaver."));
209
210static cl::opt<bool> LoopVectorizeWithBlockFrequency(
211 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
212 cl::desc("Enable the use of the block frequency analysis to access PGO "
213 "heuristics minimizing code growth in cold regions and being more "
214 "aggressive in hot regions."));
215
216// Runtime interleave loops for load/store throughput.
217static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
219 cl::desc(
220 "Enable runtime interleaving until load/store ports are saturated"));
221
222/// The number of stores in a loop that are allowed to need predication.
223static cl::opt<unsigned> NumberOfStoresToPredicate(
224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
225 cl::desc("Max number of stores to be predicated behind an if."));
226
227static cl::opt<bool> EnableIndVarRegisterHeur(
228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
229 cl::desc("Count the induction variable only once when interleaving"));
230
231static cl::opt<bool> EnableCondStoresVectorization(
232 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
233 cl::desc("Enable if predication of stores during vectorization."));
234
235static cl::opt<unsigned> MaxNestedScalarReductionIC(
236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
237 cl::desc("The maximum interleave count to use when interleaving a scalar "
238 "reduction in a nested loop."));
239
240static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
242 cl::desc("The maximum allowed number of runtime memory checks with a "
243 "vectorize(enable) pragma."));
244
245static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
247 cl::desc("The maximum number of SCEV checks allowed."));
248
249static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
251 cl::desc("The maximum number of SCEV checks allowed with a "
252 "vectorize(enable) pragma"));
253
254/// Create an analysis remark that explains why vectorization failed
255///
256/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
257/// RemarkName is the identifier for the remark. If \p I is passed it is an
258/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
259/// the location of the remark. \return the remark object that can be
260/// streamed to.
261static OptimizationRemarkAnalysis
262createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
263 Instruction *I = nullptr) {
264 Value *CodeRegion = TheLoop->getHeader();
265 DebugLoc DL = TheLoop->getStartLoc();
266
267 if (I) {
268 CodeRegion = I->getParent();
269 // If there is no debug location attached to the instruction, revert back to
270 // using the loop's.
271 if (I->getDebugLoc())
272 DL = I->getDebugLoc();
273 }
274
275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
276 R << "loop not vectorized: ";
277 return R;
278}
279
280namespace {
281
282class LoopVectorizationRequirements;
283
284} // end anonymous namespace
285
286/// A helper function for converting Scalar types to vector types.
287/// If the incoming type is void, we return void. If the VF is 1, we return
288/// the scalar type.
289static Type *ToVectorTy(Type *Scalar, unsigned VF) {
290 if (Scalar->isVoidTy() || VF == 1)
291 return Scalar;
292 return VectorType::get(Scalar, VF);
293}
294
295// FIXME: The following helper functions have multiple implementations
296// in the project. They can be effectively organized in a common Load/Store
297// utilities unit.
298
299/// A helper function that returns the type of loaded or stored value.
300static Type *getMemInstValueType(Value *I) {
301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 302, __extension__ __PRETTY_FUNCTION__))
302 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 302, __extension__ __PRETTY_FUNCTION__))
;
303 if (auto *LI = dyn_cast<LoadInst>(I))
304 return LI->getType();
305 return cast<StoreInst>(I)->getValueOperand()->getType();
306}
307
308/// A helper function that returns the alignment of load or store instruction.
309static unsigned getMemInstAlignment(Value *I) {
310 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 311, __extension__ __PRETTY_FUNCTION__))
311 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 311, __extension__ __PRETTY_FUNCTION__))
;
312 if (auto *LI = dyn_cast<LoadInst>(I))
313 return LI->getAlignment();
314 return cast<StoreInst>(I)->getAlignment();
315}
316
317/// A helper function that returns the address space of the pointer operand of
318/// load or store instruction.
319static unsigned getMemInstAddressSpace(Value *I) {
320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
321 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
;
322 if (auto *LI = dyn_cast<LoadInst>(I))
323 return LI->getPointerAddressSpace();
324 return cast<StoreInst>(I)->getPointerAddressSpace();
325}
326
327/// A helper function that returns true if the given type is irregular. The
328/// type is irregular if its allocated size doesn't equal the store size of an
329/// element of the corresponding vector type at the given vectorization factor.
330static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
331 // Determine if an array of VF elements of type Ty is "bitcast compatible"
332 // with a <VF x Ty> vector.
333 if (VF > 1) {
334 auto *VectorTy = VectorType::get(Ty, VF);
335 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
336 }
337
338 // If the vectorization factor is one, we just check if an array of type Ty
339 // requires padding between elements.
340 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
341}
342
343/// A helper function that returns the reciprocal of the block probability of
344/// predicated blocks. If we return X, we are assuming the predicated block
345/// will execute once for every X iterations of the loop header.
346///
347/// TODO: We should use actual block probability here, if available. Currently,
348/// we always assume predicated blocks have a 50% chance of executing.
349static unsigned getReciprocalPredBlockProb() { return 2; }
350
351/// A helper function that adds a 'fast' flag to floating-point operations.
352static Value *addFastMathFlag(Value *V) {
353 if (isa<FPMathOperator>(V)) {
354 FastMathFlags Flags;
355 Flags.setFast();
356 cast<Instruction>(V)->setFastMathFlags(Flags);
357 }
358 return V;
359}
360
361/// A helper function that returns an integer or floating-point constant with
362/// value C.
363static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
364 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
365 : ConstantFP::get(Ty, C);
366}
367
368namespace llvm {
369
370/// InnerLoopVectorizer vectorizes loops which contain only one basic
371/// block to a specified vectorization factor (VF).
372/// This class performs the widening of scalars into vectors, or multiple
373/// scalars. This class also implements the following features:
374/// * It inserts an epilogue loop for handling loops that don't have iteration
375/// counts that are known to be a multiple of the vectorization factor.
376/// * It handles the code generation for reduction variables.
377/// * Scalarization (implementation using scalars) of un-vectorizable
378/// instructions.
379/// InnerLoopVectorizer does not perform any vectorization-legality
380/// checks, and relies on the caller to check for the different legality
381/// aspects. The InnerLoopVectorizer relies on the
382/// LoopVectorizationLegality class to provide information about the induction
383/// and reduction variables that were found to a given vectorization factor.
384class InnerLoopVectorizer {
385public:
386 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
387 LoopInfo *LI, DominatorTree *DT,
388 const TargetLibraryInfo *TLI,
389 const TargetTransformInfo *TTI, AssumptionCache *AC,
390 OptimizationRemarkEmitter *ORE, unsigned VecWidth,
391 unsigned UnrollFactor, LoopVectorizationLegality *LVL,
392 LoopVectorizationCostModel *CM)
393 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
394 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
395 Builder(PSE.getSE()->getContext()),
396 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
397 virtual ~InnerLoopVectorizer() = default;
398
399 /// Create a new empty loop. Unlink the old loop and connect the new one.
400 /// Return the pre-header block of the new loop.
401 BasicBlock *createVectorizedLoopSkeleton();
402
403 /// Widen a single instruction within the innermost loop.
404 void widenInstruction(Instruction &I);
405
406 /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
407 void fixVectorizedLoop();
408
409 // Return true if any runtime check is added.
410 bool areSafetyChecksAdded() { return AddedSafetyChecks; }
411
412 /// A type for vectorized values in the new loop. Each value from the
413 /// original loop, when vectorized, is represented by UF vector values in the
414 /// new unrolled loop, where UF is the unroll factor.
415 using VectorParts = SmallVector<Value *, 2>;
416
417 /// Vectorize a single PHINode in a block. This method handles the induction
418 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
419 /// arbitrary length vectors.
420 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
421
422 /// A helper function to scalarize a single Instruction in the innermost loop.
423 /// Generates a sequence of scalar instances for each lane between \p MinLane
424 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
425 /// inclusive..
426 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
427 bool IfPredicateInstr);
428
429 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
430 /// is provided, the integer induction variable will first be truncated to
431 /// the corresponding type.
432 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
433
434 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
435 /// vector or scalar value on-demand if one is not yet available. When
436 /// vectorizing a loop, we visit the definition of an instruction before its
437 /// uses. When visiting the definition, we either vectorize or scalarize the
438 /// instruction, creating an entry for it in the corresponding map. (In some
439 /// cases, such as induction variables, we will create both vector and scalar
440 /// entries.) Then, as we encounter uses of the definition, we derive values
441 /// for each scalar or vector use unless such a value is already available.
442 /// For example, if we scalarize a definition and one of its uses is vector,
443 /// we build the required vector on-demand with an insertelement sequence
444 /// when visiting the use. Otherwise, if the use is scalar, we can use the
445 /// existing scalar definition.
446 ///
447 /// Return a value in the new loop corresponding to \p V from the original
448 /// loop at unroll index \p Part. If the value has already been vectorized,
449 /// the corresponding vector entry in VectorLoopValueMap is returned. If,
450 /// however, the value has a scalar entry in VectorLoopValueMap, we construct
451 /// a new vector value on-demand by inserting the scalar values into a vector
452 /// with an insertelement sequence. If the value has been neither vectorized
453 /// nor scalarized, it must be loop invariant, so we simply broadcast the
454 /// value into a vector.
455 Value *getOrCreateVectorValue(Value *V, unsigned Part);
456
457 /// Return a value in the new loop corresponding to \p V from the original
458 /// loop at unroll and vector indices \p Instance. If the value has been
459 /// vectorized but not scalarized, the necessary extractelement instruction
460 /// will be generated.
461 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
462
463 /// Construct the vector value of a scalarized value \p V one lane at a time.
464 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
465
466 /// Try to vectorize the interleaved access group that \p Instr belongs to.
467 void vectorizeInterleaveGroup(Instruction *Instr);
468
469 /// Vectorize Load and Store instructions, optionally masking the vector
470 /// operations if \p BlockInMask is non-null.
471 void vectorizeMemoryInstruction(Instruction *Instr,
472 VectorParts *BlockInMask = nullptr);
473
474 /// \brief Set the debug location in the builder using the debug location in
475 /// the instruction.
476 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
477
478protected:
479 friend class LoopVectorizationPlanner;
480
481 /// A small list of PHINodes.
482 using PhiVector = SmallVector<PHINode *, 4>;
483
484 /// A type for scalarized values in the new loop. Each value from the
485 /// original loop, when scalarized, is represented by UF x VF scalar values
486 /// in the new unrolled loop, where UF is the unroll factor and VF is the
487 /// vectorization factor.
488 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
489
490 /// Set up the values of the IVs correctly when exiting the vector loop.
491 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
492 Value *CountRoundDown, Value *EndValue,
493 BasicBlock *MiddleBlock);
494
495 /// Create a new induction variable inside L.
496 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
497 Value *Step, Instruction *DL);
498
499 /// Handle all cross-iteration phis in the header.
500 void fixCrossIterationPHIs();
501
502 /// Fix a first-order recurrence. This is the second phase of vectorizing
503 /// this phi node.
504 void fixFirstOrderRecurrence(PHINode *Phi);
505
506 /// Fix a reduction cross-iteration phi. This is the second phase of
507 /// vectorizing this phi node.
508 void fixReduction(PHINode *Phi);
509
510 /// \brief The Loop exit block may have single value PHI nodes with some
511 /// incoming value. While vectorizing we only handled real values
512 /// that were defined inside the loop and we should have one value for
513 /// each predecessor of its parent basic block. See PR14725.
514 void fixLCSSAPHIs();
515
516 /// Iteratively sink the scalarized operands of a predicated instruction into
517 /// the block that was created for it.
518 void sinkScalarOperands(Instruction *PredInst);
519
520 /// Shrinks vector element sizes to the smallest bitwidth they can be legally
521 /// represented as.
522 void truncateToMinimalBitwidths();
523
524 /// Insert the new loop to the loop hierarchy and pass manager
525 /// and update the analysis passes.
526 void updateAnalysis();
527
528 /// Create a broadcast instruction. This method generates a broadcast
529 /// instruction (shuffle) for loop invariant values and for the induction
530 /// value. If this is the induction variable then we extend it to N, N+1, ...
531 /// this is needed because each iteration in the loop corresponds to a SIMD
532 /// element.
533 virtual Value *getBroadcastInstrs(Value *V);
534
535 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
536 /// to each vector element of Val. The sequence starts at StartIndex.
537 /// \p Opcode is relevant for FP induction variable.
538 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
539 Instruction::BinaryOps Opcode =
540 Instruction::BinaryOpsEnd);
541
542 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
543 /// variable on which to base the steps, \p Step is the size of the step, and
544 /// \p EntryVal is the value from the original loop that maps to the steps.
545 /// Note that \p EntryVal doesn't have to be an induction variable - it
546 /// can also be a truncate instruction.
547 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
548 const InductionDescriptor &ID);
549
550 /// Create a vector induction phi node based on an existing scalar one. \p
551 /// EntryVal is the value from the original loop that maps to the vector phi
552 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
553 /// truncate instruction, instead of widening the original IV, we widen a
554 /// version of the IV truncated to \p EntryVal's type.
555 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
556 Value *Step, Instruction *EntryVal);
557
558 /// Returns true if an instruction \p I should be scalarized instead of
559 /// vectorized for the chosen vectorization factor.
560 bool shouldScalarizeInstruction(Instruction *I) const;
561
562 /// Returns true if we should generate a scalar version of \p IV.
563 bool needsScalarInduction(Instruction *IV) const;
564
565 /// If there is a cast involved in the induction variable \p ID, which should
566 /// be ignored in the vectorized loop body, this function records the
567 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
568 /// cast. We had already proved that the casted Phi is equal to the uncasted
569 /// Phi in the vectorized loop (under a runtime guard), and therefore
570 /// there is no need to vectorize the cast - the same value can be used in the
571 /// vector loop for both the Phi and the cast.
572 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
573 /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
574 ///
575 /// \p EntryVal is the value from the original loop that maps to the vector
576 /// phi node and is used to distinguish what is the IV currently being
577 /// processed - original one (if \p EntryVal is a phi corresponding to the
578 /// original IV) or the "newly-created" one based on the proof mentioned above
579 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
580 /// latter case \p EntryVal is a TruncInst and we must not record anything for
581 /// that IV, but it's error-prone to expect callers of this routine to care
582 /// about that, hence this explicit parameter.
583 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
584 const Instruction *EntryVal,
585 Value *VectorLoopValue,
586 unsigned Part,
587 unsigned Lane = UINT_MAX(2147483647 *2U +1U));
588
589 /// Generate a shuffle sequence that will reverse the vector Vec.
590 virtual Value *reverseVector(Value *Vec);
591
592 /// Returns (and creates if needed) the original loop trip count.
593 Value *getOrCreateTripCount(Loop *NewLoop);
594
595 /// Returns (and creates if needed) the trip count of the widened loop.
596 Value *getOrCreateVectorTripCount(Loop *NewLoop);
597
598 /// Returns a bitcasted value to the requested vector type.
599 /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
600 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
601 const DataLayout &DL);
602
603 /// Emit a bypass check to see if the vector trip count is zero, including if
604 /// it overflows.
605 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
606
607 /// Emit a bypass check to see if all of the SCEV assumptions we've
608 /// had to make are correct.
609 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
610
611 /// Emit bypass checks to check any memory assumptions we may have made.
612 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
613
614 /// Add additional metadata to \p To that was not present on \p Orig.
615 ///
616 /// Currently this is used to add the noalias annotations based on the
617 /// inserted memchecks. Use this for instructions that are *cloned* into the
618 /// vector loop.
619 void addNewMetadata(Instruction *To, const Instruction *Orig);
620
621 /// Add metadata from one instruction to another.
622 ///
623 /// This includes both the original MDs from \p From and additional ones (\see
624 /// addNewMetadata). Use this for *newly created* instructions in the vector
625 /// loop.
626 void addMetadata(Instruction *To, Instruction *From);
627
628 /// \brief Similar to the previous function but it adds the metadata to a
629 /// vector of instructions.
630 void addMetadata(ArrayRef<Value *> To, Instruction *From);
631
632 /// The original loop.
633 Loop *OrigLoop;
634
635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
636 /// dynamic knowledge to simplify SCEV expressions and converts them to a
637 /// more usable form.
638 PredicatedScalarEvolution &PSE;
639
640 /// Loop Info.
641 LoopInfo *LI;
642
643 /// Dominator Tree.
644 DominatorTree *DT;
645
646 /// Alias Analysis.
647 AliasAnalysis *AA;
648
649 /// Target Library Info.
650 const TargetLibraryInfo *TLI;
651
652 /// Target Transform Info.
653 const TargetTransformInfo *TTI;
654
655 /// Assumption Cache.
656 AssumptionCache *AC;
657
658 /// Interface to emit optimization remarks.
659 OptimizationRemarkEmitter *ORE;
660
661 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were
662 /// used.
663 ///
664 /// This is currently only used to add no-alias metadata based on the
665 /// memchecks. The actually versioning is performed manually.
666 std::unique_ptr<LoopVersioning> LVer;
667
668 /// The vectorization SIMD factor to use. Each vector will have this many
669 /// vector elements.
670 unsigned VF;
671
672 /// The vectorization unroll factor to use. Each scalar is vectorized to this
673 /// many different vector instructions.
674 unsigned UF;
675
676 /// The builder that we use
677 IRBuilder<> Builder;
678
679 // --- Vectorization state ---
680
681 /// The vector-loop preheader.
682 BasicBlock *LoopVectorPreHeader;
683
684 /// The scalar-loop preheader.
685 BasicBlock *LoopScalarPreHeader;
686
687 /// Middle Block between the vector and the scalar.
688 BasicBlock *LoopMiddleBlock;
689
690 /// The ExitBlock of the scalar loop.
691 BasicBlock *LoopExitBlock;
692
693 /// The vector loop body.
694 BasicBlock *LoopVectorBody;
695
696 /// The scalar loop body.
697 BasicBlock *LoopScalarBody;
698
699 /// A list of all bypass blocks. The first block is the entry of the loop.
700 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
701
702 /// The new Induction variable which was added to the new block.
703 PHINode *Induction = nullptr;
704
705 /// The induction variable of the old basic block.
706 PHINode *OldInduction = nullptr;
707
708 /// Maps values from the original loop to their corresponding values in the
709 /// vectorized loop. A key value can map to either vector values, scalar
710 /// values or both kinds of values, depending on whether the key was
711 /// vectorized and scalarized.
712 VectorizerValueMap VectorLoopValueMap;
713
714 /// Store instructions that were predicated.
715 SmallVector<Instruction *, 4> PredicatedInstructions;
716
717 /// Trip count of the original loop.
718 Value *TripCount = nullptr;
719
720 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
721 Value *VectorTripCount = nullptr;
722
723 /// The legality analysis.
724 LoopVectorizationLegality *Legal;
725
726 /// The profitablity analysis.
727 LoopVectorizationCostModel *Cost;
728
729 // Record whether runtime checks are added.
730 bool AddedSafetyChecks = false;
731
732 // Holds the end values for each induction variable. We save the end values
733 // so we can later fix-up the external users of the induction variables.
734 DenseMap<PHINode *, Value *> IVEndValues;
735};
736
737class InnerLoopUnroller : public InnerLoopVectorizer {
738public:
739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
740 LoopInfo *LI, DominatorTree *DT,
741 const TargetLibraryInfo *TLI,
742 const TargetTransformInfo *TTI, AssumptionCache *AC,
743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
744 LoopVectorizationLegality *LVL,
745 LoopVectorizationCostModel *CM)
746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
747 UnrollFactor, LVL, CM) {}
748
749private:
750 Value *getBroadcastInstrs(Value *V) override;
751 Value *getStepVector(Value *Val, int StartIdx, Value *Step,
752 Instruction::BinaryOps Opcode =
753 Instruction::BinaryOpsEnd) override;
754 Value *reverseVector(Value *Vec) override;
755};
756
757} // end namespace llvm
758
759/// \brief Look for a meaningful debug location on the instruction or it's
760/// operands.
761static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
762 if (!I)
763 return I;
764
765 DebugLoc Empty;
766 if (I->getDebugLoc() != Empty)
767 return I;
768
769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
771 if (OpInst->getDebugLoc() != Empty)
772 return OpInst;
773 }
774
775 return I;
776}
777
778void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
780 const DILocation *DIL = Inst->getDebugLoc();
781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
782 !isa<DbgInfoIntrinsic>(Inst))
783 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
784 else
785 B.SetCurrentDebugLocation(DIL);
786 } else
787 B.SetCurrentDebugLocation(DebugLoc());
788}
789
790#ifndef NDEBUG
791/// \return string containing a file name and a line # for the given loop.
792static std::string getDebugLocString(const Loop *L) {
793 std::string Result;
794 if (L) {
795 raw_string_ostream OS(Result);
796 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
797 LoopDbgLoc.print(OS);
798 else
799 // Just print the module name.
800 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
801 OS.flush();
802 }
803 return Result;
804}
805#endif
806
807void InnerLoopVectorizer::addNewMetadata(Instruction *To,
808 const Instruction *Orig) {
809 // If the loop was versioned with memchecks, add the corresponding no-alias
810 // metadata.
811 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
812 LVer->annotateInstWithNoAlias(To, Orig);
813}
814
815void InnerLoopVectorizer::addMetadata(Instruction *To,
816 Instruction *From) {
817 propagateMetadata(To, From);
818 addNewMetadata(To, From);
819}
820
821void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
822 Instruction *From) {
823 for (Value *V : To) {
824 if (Instruction *I = dyn_cast<Instruction>(V))
825 addMetadata(I, From);
826 }
827}
828
829namespace llvm {
830
831/// \brief The group of interleaved loads/stores sharing the same stride and
832/// close to each other.
833///
834/// Each member in this group has an index starting from 0, and the largest
835/// index should be less than interleaved factor, which is equal to the absolute
836/// value of the access's stride.
837///
838/// E.g. An interleaved load group of factor 4:
839/// for (unsigned i = 0; i < 1024; i+=4) {
840/// a = A[i]; // Member of index 0
841/// b = A[i+1]; // Member of index 1
842/// d = A[i+3]; // Member of index 3
843/// ...
844/// }
845///
846/// An interleaved store group of factor 4:
847/// for (unsigned i = 0; i < 1024; i+=4) {
848/// ...
849/// A[i] = a; // Member of index 0
850/// A[i+1] = b; // Member of index 1
851/// A[i+2] = c; // Member of index 2
852/// A[i+3] = d; // Member of index 3
853/// }
854///
855/// Note: the interleaved load group could have gaps (missing members), but
856/// the interleaved store group doesn't allow gaps.
857class InterleaveGroup {
858public:
859 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
860 : Align(Align), InsertPos(Instr) {
861 assert(Align && "The alignment should be non-zero")(static_cast <bool> (Align && "The alignment should be non-zero"
) ? void (0) : __assert_fail ("Align && \"The alignment should be non-zero\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 861, __extension__ __PRETTY_FUNCTION__))
;
862
863 Factor = std::abs(Stride);
864 assert(Factor > 1 && "Invalid interleave factor")(static_cast <bool> (Factor > 1 && "Invalid interleave factor"
) ? void (0) : __assert_fail ("Factor > 1 && \"Invalid interleave factor\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 864, __extension__ __PRETTY_FUNCTION__))
;
865
866 Reverse = Stride < 0;
867 Members[0] = Instr;
868 }
869
870 bool isReverse() const { return Reverse; }
871 unsigned getFactor() const { return Factor; }
872 unsigned getAlignment() const { return Align; }
873 unsigned getNumMembers() const { return Members.size(); }
874
875 /// \brief Try to insert a new member \p Instr with index \p Index and
876 /// alignment \p NewAlign. The index is related to the leader and it could be
877 /// negative if it is the new leader.
878 ///
879 /// \returns false if the instruction doesn't belong to the group.
880 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
881 assert(NewAlign && "The new member's alignment should be non-zero")(static_cast <bool> (NewAlign && "The new member's alignment should be non-zero"
) ? void (0) : __assert_fail ("NewAlign && \"The new member's alignment should be non-zero\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 881, __extension__ __PRETTY_FUNCTION__))
;
882
883 int Key = Index + SmallestKey;
884
885 // Skip if there is already a member with the same index.
886 if (Members.count(Key))
887 return false;
888
889 if (Key > LargestKey) {
890 // The largest index is always less than the interleave factor.
891 if (Index >= static_cast<int>(Factor))
892 return false;
893
894 LargestKey = Key;
895 } else if (Key < SmallestKey) {
896 // The largest index is always less than the interleave factor.
897 if (LargestKey - Key >= static_cast<int>(Factor))
898 return false;
899
900 SmallestKey = Key;
901 }
902
903 // It's always safe to select the minimum alignment.
904 Align = std::min(Align, NewAlign);
905 Members[Key] = Instr;
906 return true;
907 }
908
909 /// \brief Get the member with the given index \p Index
910 ///
911 /// \returns nullptr if contains no such member.
912 Instruction *getMember(unsigned Index) const {
913 int Key = SmallestKey + Index;
914 if (!Members.count(Key))
915 return nullptr;
916
917 return Members.find(Key)->second;
918 }
919
920 /// \brief Get the index for the given member. Unlike the key in the member
921 /// map, the index starts from 0.
922 unsigned getIndex(Instruction *Instr) const {
923 for (auto I : Members)
924 if (I.second == Instr)
925 return I.first - SmallestKey;
926
927 llvm_unreachable("InterleaveGroup contains no such member")::llvm::llvm_unreachable_internal("InterleaveGroup contains no such member"
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 927)
;
928 }
929
930 Instruction *getInsertPos() const { return InsertPos; }
931 void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
932
933 /// Add metadata (e.g. alias info) from the instructions in this group to \p
934 /// NewInst.
935 ///
936 /// FIXME: this function currently does not add noalias metadata a'la
937 /// addNewMedata. To do that we need to compute the intersection of the
938 /// noalias info from all members.
939 void addMetadata(Instruction *NewInst) const {
940 SmallVector<Value *, 4> VL;
941 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
942 [](std::pair<int, Instruction *> p) { return p.second; });
943 propagateMetadata(NewInst, VL);
944 }
945
946private:
947 unsigned Factor; // Interleave Factor.
948 bool Reverse;
949 unsigned Align;
950 DenseMap<int, Instruction *> Members;
951 int SmallestKey = 0;
952 int LargestKey = 0;
953
954 // To avoid breaking dependences, vectorized instructions of an interleave
955 // group should be inserted at either the first load or the last store in
956 // program order.
957 //
958 // E.g. %even = load i32 // Insert Position
959 // %add = add i32 %even // Use of %even
960 // %odd = load i32
961 //
962 // store i32 %even
963 // %odd = add i32 // Def of %odd
964 // store i32 %odd // Insert Position
965 Instruction *InsertPos;
966};
967} // end namespace llvm
968
969namespace {
970
971/// \brief Drive the analysis of interleaved memory accesses in the loop.
972///
973/// Use this class to analyze interleaved accesses only when we can vectorize
974/// a loop. Otherwise it's meaningless to do analysis as the vectorization
975/// on interleaved accesses is unsafe.
976///
977/// The analysis collects interleave groups and records the relationships
978/// between the member and the group in a map.
979class InterleavedAccessInfo {
980public:
981 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
982 DominatorTree *DT, LoopInfo *LI)
983 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {}
984
985 ~InterleavedAccessInfo() {
986 SmallSet<InterleaveGroup *, 4> DelSet;
987 // Avoid releasing a pointer twice.
988 for (auto &I : InterleaveGroupMap)
989 DelSet.insert(I.second);
990 for (auto *Ptr : DelSet)
991 delete Ptr;
992 }
993
994 /// \brief Analyze the interleaved accesses and collect them in interleave
995 /// groups. Substitute symbolic strides using \p Strides.
996 void analyzeInterleaving(const ValueToValueMap &Strides);
997
998 /// \brief Check if \p Instr belongs to any interleave group.
999 bool isInterleaved(Instruction *Instr) const {
1000 return InterleaveGroupMap.count(Instr);
1001 }
1002
1003 /// \brief Get the interleave group that \p Instr belongs to.
1004 ///
1005 /// \returns nullptr if doesn't have such group.
1006 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
1007 if (InterleaveGroupMap.count(Instr))
1008 return InterleaveGroupMap.find(Instr)->second;
1009 return nullptr;
1010 }
1011
1012 /// \brief Returns true if an interleaved group that may access memory
1013 /// out-of-bounds requires a scalar epilogue iteration for correctness.
1014 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
1015
1016 /// \brief Initialize the LoopAccessInfo used for dependence checking.
1017 void setLAI(const LoopAccessInfo *Info) { LAI = Info; }
1018
1019private:
1020 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
1021 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
1022 /// The interleaved access analysis can also add new predicates (for example
1023 /// by versioning strides of pointers).
1024 PredicatedScalarEvolution &PSE;
1025
1026 Loop *TheLoop;
1027 DominatorTree *DT;
1028 LoopInfo *LI;
1029 const LoopAccessInfo *LAI = nullptr;
1030
1031 /// True if the loop may contain non-reversed interleaved groups with
1032 /// out-of-bounds accesses. We ensure we don't speculatively access memory
1033 /// out-of-bounds by executing at least one scalar epilogue iteration.
1034 bool RequiresScalarEpilogue = false;
1035
1036 /// Holds the relationships between the members and the interleave group.
1037 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
1038
1039 /// Holds dependences among the memory accesses in the loop. It maps a source
1040 /// access to a set of dependent sink accesses.
1041 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
1042
1043 /// \brief The descriptor for a strided memory access.
1044 struct StrideDescriptor {
1045 StrideDescriptor() = default;
1046 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
1047 unsigned Align)
1048 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
1049
1050 // The access's stride. It is negative for a reverse access.
1051 int64_t Stride = 0;
1052
1053 // The scalar expression of this access.
1054 const SCEV *Scev = nullptr;
1055
1056 // The size of the memory object.
1057 uint64_t Size = 0;
1058
1059 // The alignment of this access.
1060 unsigned Align = 0;
1061 };
1062
1063 /// \brief A type for holding instructions and their stride descriptors.
1064 using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
1065
1066 /// \brief Create a new interleave group with the given instruction \p Instr,
1067 /// stride \p Stride and alignment \p Align.
1068 ///
1069 /// \returns the newly created interleave group.
1070 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
1071 unsigned Align) {
1072 assert(!InterleaveGroupMap.count(Instr) &&(static_cast <bool> (!InterleaveGroupMap.count(Instr) &&
"Already in an interleaved access group") ? void (0) : __assert_fail
("!InterleaveGroupMap.count(Instr) && \"Already in an interleaved access group\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1073, __extension__ __PRETTY_FUNCTION__))
1073 "Already in an interleaved access group")(static_cast <bool> (!InterleaveGroupMap.count(Instr) &&
"Already in an interleaved access group") ? void (0) : __assert_fail
("!InterleaveGroupMap.count(Instr) && \"Already in an interleaved access group\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1073, __extension__ __PRETTY_FUNCTION__))
;
1074 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
1075 return InterleaveGroupMap[Instr];
1076 }
1077
1078 /// \brief Release the group and remove all the relationships.
1079 void releaseGroup(InterleaveGroup *Group) {
1080 for (unsigned i = 0; i < Group->getFactor(); i++)
1081 if (Instruction *Member = Group->getMember(i))
1082 InterleaveGroupMap.erase(Member);
1083
1084 delete Group;
1085 }
1086
1087 /// \brief Collect all the accesses with a constant stride in program order.
1088 void collectConstStrideAccesses(
1089 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1090 const ValueToValueMap &Strides);
1091
1092 /// \brief Returns true if \p Stride is allowed in an interleaved group.
1093 static bool isStrided(int Stride) {
1094 unsigned Factor = std::abs(Stride);
1095 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1096 }
1097
1098 /// \brief Returns true if \p BB is a predicated block.
1099 bool isPredicated(BasicBlock *BB) const {
1100 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1101 }
1102
1103 /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
1104 bool areDependencesValid() const {
1105 return LAI && LAI->getDepChecker().getDependences();
1106 }
1107
1108 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if
1109 /// necessary, when constructing interleaved groups.
1110 ///
1111 /// \p A must precede \p B in program order. We return false if reordering is
1112 /// not necessary or is prevented because \p A and \p B may be dependent.
1113 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
1114 StrideEntry *B) const {
1115 // Code motion for interleaved accesses can potentially hoist strided loads
1116 // and sink strided stores. The code below checks the legality of the
1117 // following two conditions:
1118 //
1119 // 1. Potentially moving a strided load (B) before any store (A) that
1120 // precedes B, or
1121 //
1122 // 2. Potentially moving a strided store (A) after any load or store (B)
1123 // that A precedes.
1124 //
1125 // It's legal to reorder A and B if we know there isn't a dependence from A
1126 // to B. Note that this determination is conservative since some
1127 // dependences could potentially be reordered safely.
1128
1129 // A is potentially the source of a dependence.
1130 auto *Src = A->first;
1131 auto SrcDes = A->second;
1132
1133 // B is potentially the sink of a dependence.
1134 auto *Sink = B->first;
1135 auto SinkDes = B->second;
1136
1137 // Code motion for interleaved accesses can't violate WAR dependences.
1138 // Thus, reordering is legal if the source isn't a write.
1139 if (!Src->mayWriteToMemory())
1140 return true;
1141
1142 // At least one of the accesses must be strided.
1143 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
1144 return true;
1145
1146 // If dependence information is not available from LoopAccessInfo,
1147 // conservatively assume the instructions can't be reordered.
1148 if (!areDependencesValid())
1149 return false;
1150
1151 // If we know there is a dependence from source to sink, assume the
1152 // instructions can't be reordered. Otherwise, reordering is legal.
1153 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1154 }
1155
1156 /// \brief Collect the dependences from LoopAccessInfo.
1157 ///
1158 /// We process the dependences once during the interleaved access analysis to
1159 /// enable constant-time dependence queries.
1160 void collectDependences() {
1161 if (!areDependencesValid())
1162 return;
1163 auto *Deps = LAI->getDepChecker().getDependences();
1164 for (auto Dep : *Deps)
1165 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1166 }
1167};
1168
1169/// Utility class for getting and setting loop vectorizer hints in the form
1170/// of loop metadata.
1171/// This class keeps a number of loop annotations locally (as member variables)
1172/// and can, upon request, write them back as metadata on the loop. It will
1173/// initially scan the loop for existing metadata, and will update the local
1174/// values based on information in the loop.
1175/// We cannot write all values to metadata, as the mere presence of some info,
1176/// for example 'force', means a decision has been made. So, we need to be
1177/// careful NOT to add them if the user hasn't specifically asked so.
1178class LoopVectorizeHints {
1179 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED };
1180
1181 /// Hint - associates name and validation with the hint value.
1182 struct Hint {
1183 const char *Name;
1184 unsigned Value; // This may have to change for non-numeric values.
1185 HintKind Kind;
1186
1187 Hint(const char *Name, unsigned Value, HintKind Kind)
1188 : Name(Name), Value(Value), Kind(Kind) {}
1189
1190 bool validate(unsigned Val) {
1191 switch (Kind) {
1192 case HK_WIDTH:
1193 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1194 case HK_UNROLL:
1195 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1196 case HK_FORCE:
1197 return (Val <= 1);
1198 case HK_ISVECTORIZED:
1199 return (Val==0 || Val==1);
1200 }
1201 return false;
1202 }
1203 };
1204
1205 /// Vectorization width.
1206 Hint Width;
1207
1208 /// Vectorization interleave factor.
1209 Hint Interleave;
1210
1211 /// Vectorization forced
1212 Hint Force;
1213
1214 /// Already Vectorized
1215 Hint IsVectorized;
1216
1217 /// Return the loop metadata prefix.
1218 static StringRef Prefix() { return "llvm.loop."; }
1219
1220 /// True if there is any unsafe math in the loop.
1221 bool PotentiallyUnsafe = false;
1222
1223public:
1224 enum ForceKind {
1225 FK_Undefined = -1, ///< Not selected.
1226 FK_Disabled = 0, ///< Forcing disabled.
1227 FK_Enabled = 1, ///< Forcing enabled.
1228 };
1229
1230 LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
1231 OptimizationRemarkEmitter &ORE)
1232 : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1233 HK_WIDTH),
1234 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1235 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1236 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
1237 // Populate values with existing loop metadata.
1238 getHintsFromMetadata();
1239
1240 // force-vector-interleave overrides DisableInterleaving.
1241 if (VectorizerParams::isInterleaveForced())
1242 Interleave.Value = VectorizerParams::VectorizationInterleave;
1243
1244 if (IsVectorized.Value != 1)
1245 // If the vectorization width and interleaving count are both 1 then
1246 // consider the loop to have been already vectorized because there's
1247 // nothing more that we can do.
1248 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
1249 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (DisableInterleaving && Interleave
.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"
; } } while (false)
1250 << "LV: Interleaving disabled by the pass manager\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (DisableInterleaving && Interleave
.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"
; } } while (false)
;
1251 }
1252
1253 /// Mark the loop L as already vectorized by setting the width to 1.
1254 void setAlreadyVectorized() {
1255 IsVectorized.Value = 1;
1256 Hint Hints[] = {IsVectorized};
1257 writeHintsToMetadata(Hints);
1258 }
1259
1260 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1261 if (getForce() == LoopVectorizeHints::FK_Disabled) {
1262 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"
; } } while (false)
;
1263 emitRemarkWithHints();
1264 return false;
1265 }
1266
1267 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1268 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"
; } } while (false)
;
1269 emitRemarkWithHints();
1270 return false;
1271 }
1272
1273 if (getIsVectorized() == 1) {
1274 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"
; } } while (false)
;
1275 // FIXME: Add interleave.disable metadata. This will allow
1276 // vectorize.disable to be used without disabling the pass and errors
1277 // to differentiate between disabled vectorization and a width of 1.
1278 ORE.emit([&]() {
1279 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
1280 "AllDisabled", L->getStartLoc(),
1281 L->getHeader())
1282 << "loop not vectorized: vectorization and interleaving are "
1283 "explicitly disabled, or the loop has already been "
1284 "vectorized";
1285 });
1286 return false;
1287 }
1288
1289 return true;
1290 }
1291
1292 /// Dumps all the hint information.
1293 void emitRemarkWithHints() const {
1294 using namespace ore;
1295
1296 ORE.emit([&]() {
1297 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1298 return OptimizationRemarkMissed(LV_NAME"loop-vectorize", "MissedExplicitlyDisabled",
1299 TheLoop->getStartLoc(),
1300 TheLoop->getHeader())
1301 << "loop not vectorized: vectorization is explicitly disabled";
1302 else {
1303 OptimizationRemarkMissed R(LV_NAME"loop-vectorize", "MissedDetails",
1304 TheLoop->getStartLoc(),
1305 TheLoop->getHeader());
1306 R << "loop not vectorized";
1307 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1308 R << " (Force=" << NV("Force", true);
1309 if (Width.Value != 0)
1310 R << ", Vector Width=" << NV("VectorWidth", Width.Value);
1311 if (Interleave.Value != 0)
1312 R << ", Interleave Count="
1313 << NV("InterleaveCount", Interleave.Value);
1314 R << ")";
1315 }
1316 return R;
1317 }
1318 });
1319 }
1320
1321 unsigned getWidth() const { return Width.Value; }
1322 unsigned getInterleave() const { return Interleave.Value; }
1323 unsigned getIsVectorized() const { return IsVectorized.Value; }
1324 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1325
1326 /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1327 /// pass name to force the frontend to print the diagnostic.
1328 const char *vectorizeAnalysisPassName() const {
1329 if (getWidth() == 1)
1330 return LV_NAME"loop-vectorize";
1331 if (getForce() == LoopVectorizeHints::FK_Disabled)
1332 return LV_NAME"loop-vectorize";
1333 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1334 return LV_NAME"loop-vectorize";
1335 return OptimizationRemarkAnalysis::AlwaysPrint;
1336 }
1337
1338 bool allowReordering() const {
1339 // When enabling loop hints are provided we allow the vectorizer to change
1340 // the order of operations that is given by the scalar loop. This is not
1341 // enabled by default because can be unsafe or inefficient. For example,
1342 // reordering floating-point operations will change the way round-off
1343 // error accumulates in the loop.
1344 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1345 }
1346
1347 bool isPotentiallyUnsafe() const {
1348 // Avoid FP vectorization if the target is unsure about proper support.
1349 // This may be related to the SIMD unit in the target not handling
1350 // IEEE 754 FP ops properly, or bad single-to-double promotions.
1351 // Otherwise, a sequence of vectorized loops, even without reduction,
1352 // could lead to different end results on the destination vectors.
1353 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1354 }
1355
1356 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1357
1358private:
1359 /// Find hints specified in the loop metadata and update local values.
1360 void getHintsFromMetadata() {
1361 MDNode *LoopID = TheLoop->getLoopID();
1362 if (!LoopID)
1363 return;
1364
1365 // First operand should refer to the loop id itself.
1366 assert(LoopID->getNumOperands() > 0 && "requires at least one operand")(static_cast <bool> (LoopID->getNumOperands() > 0
&& "requires at least one operand") ? void (0) : __assert_fail
("LoopID->getNumOperands() > 0 && \"requires at least one operand\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1366, __extension__ __PRETTY_FUNCTION__))
;
1367 assert(LoopID->getOperand(0) == LoopID && "invalid loop id")(static_cast <bool> (LoopID->getOperand(0) == LoopID
&& "invalid loop id") ? void (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop id\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1367, __extension__ __PRETTY_FUNCTION__))
;
1368
1369 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1370 const MDString *S = nullptr;
1371 SmallVector<Metadata *, 4> Args;
1372
1373 // The expected hint is either a MDString or a MDNode with the first
1374 // operand a MDString.
1375 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1376 if (!MD || MD->getNumOperands() == 0)
1377 continue;
1378 S = dyn_cast<MDString>(MD->getOperand(0));
1379 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1380 Args.push_back(MD->getOperand(i));
1381 } else {
1382 S = dyn_cast<MDString>(LoopID->getOperand(i));
1383 assert(Args.size() == 0 && "too many arguments for MDString")(static_cast <bool> (Args.size() == 0 && "too many arguments for MDString"
) ? void (0) : __assert_fail ("Args.size() == 0 && \"too many arguments for MDString\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1383, __extension__ __PRETTY_FUNCTION__))
;
1384 }
1385
1386 if (!S)
1387 continue;
1388
1389 // Check if the hint starts with the loop metadata prefix.
1390 StringRef Name = S->getString();
1391 if (Args.size() == 1)
1392 setHint(Name, Args[0]);
1393 }
1394 }
1395
1396 /// Checks string hint with one operand and set value if valid.
1397 void setHint(StringRef Name, Metadata *Arg) {
1398 if (!Name.startswith(Prefix()))
1399 return;
1400 Name = Name.substr(Prefix().size(), StringRef::npos);
1401
1402 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1403 if (!C)
1404 return;
1405 unsigned Val = C->getZExtValue();
1406
1407 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
1408 for (auto H : Hints) {
1409 if (Name == H->Name) {
1410 if (H->validate(Val))
1411 H->Value = Val;
1412 else
1413 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: ignoring invalid hint '"
<< Name << "'\n"; } } while (false)
;
1414 break;
1415 }
1416 }
1417 }
1418
1419 /// Create a new hint from name / value pair.
1420 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1421 LLVMContext &Context = TheLoop->getHeader()->getContext();
1422 Metadata *MDs[] = {MDString::get(Context, Name),
1423 ConstantAsMetadata::get(
1424 ConstantInt::get(Type::getInt32Ty(Context), V))};
1425 return MDNode::get(Context, MDs);
1426 }
1427
1428 /// Matches metadata with hint name.
1429 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1430 MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1431 if (!Name)
1432 return false;
1433
1434 for (auto H : HintTypes)
1435 if (Name->getString().endswith(H.Name))
1436 return true;
1437 return false;
1438 }
1439
1440 /// Sets current hints into loop metadata, keeping other values intact.
1441 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1442 if (HintTypes.empty())
1443 return;
1444
1445 // Reserve the first element to LoopID (see below).
1446 SmallVector<Metadata *, 4> MDs(1);
1447 // If the loop already has metadata, then ignore the existing operands.
1448 MDNode *LoopID = TheLoop->getLoopID();
1449 if (LoopID) {
1450 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1451 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1452 // If node in update list, ignore old value.
1453 if (!matchesHintMetadataName(Node, HintTypes))
1454 MDs.push_back(Node);
1455 }
1456 }
1457
1458 // Now, add the missing hints.
1459 for (auto H : HintTypes)
1460 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1461
1462 // Replace current metadata node with new one.
1463 LLVMContext &Context = TheLoop->getHeader()->getContext();
1464 MDNode *NewLoopID = MDNode::get(Context, MDs);
1465 // Set operand 0 to refer to the loop id itself.
1466 NewLoopID->replaceOperandWith(0, NewLoopID);
1467
1468 TheLoop->setLoopID(NewLoopID);
1469 }
1470
1471 /// The loop these hints belong to.
1472 const Loop *TheLoop;
1473
1474 /// Interface to emit optimization remarks.
1475 OptimizationRemarkEmitter &ORE;
1476};
1477
1478} // end anonymous namespace
1479
1480static void emitMissedWarning(Function *F, Loop *L,
1481 const LoopVectorizeHints &LH,
1482 OptimizationRemarkEmitter *ORE) {
1483 LH.emitRemarkWithHints();
1484
1485 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1486 if (LH.getWidth() != 1)
1487 ORE->emit(DiagnosticInfoOptimizationFailure(
1488 DEBUG_TYPE"loop-vectorize", "FailedRequestedVectorization",
1489 L->getStartLoc(), L->getHeader())
1490 << "loop not vectorized: "
1491 << "failed explicitly specified loop vectorization");
1492 else if (LH.getInterleave() != 1)
1493 ORE->emit(DiagnosticInfoOptimizationFailure(
1494 DEBUG_TYPE"loop-vectorize", "FailedRequestedInterleaving", L->getStartLoc(),
1495 L->getHeader())
1496 << "loop not interleaved: "
1497 << "failed explicitly specified loop interleaving");
1498 }
1499}
1500
1501namespace llvm {
1502
1503/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1504/// to what vectorization factor.
1505/// This class does not look at the profitability of vectorization, only the
1506/// legality. This class has two main kinds of checks:
1507/// * Memory checks - The code in canVectorizeMemory checks if vectorization
1508/// will change the order of memory accesses in a way that will change the
1509/// correctness of the program.
1510/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1511/// checks for a number of different conditions, such as the availability of a
1512/// single induction variable, that all types are supported and vectorize-able,
1513/// etc. This code reflects the capabilities of InnerLoopVectorizer.
1514/// This class is also used by InnerLoopVectorizer for identifying
1515/// induction variable and the different reduction variables.
1516class LoopVectorizationLegality {
1517public:
1518 LoopVectorizationLegality(
1519 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1520 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1521 const TargetTransformInfo *TTI,
1522 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1523 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
1524 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC)
1525 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA),
1526 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H),
1527 DB(DB), AC(AC) {}
1528
1529 /// ReductionList contains the reduction descriptors for all
1530 /// of the reductions that were found in the loop.
1531 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;
1532
1533 /// InductionList saves induction variables and maps them to the
1534 /// induction descriptor.
1535 using InductionList = MapVector<PHINode *, InductionDescriptor>;
1536
1537 /// RecurrenceSet contains the phi nodes that are recurrences other than
1538 /// inductions and reductions.
1539 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;
1540
1541 /// Returns true if it is legal to vectorize this loop.
1542 /// This does not mean that it is profitable to vectorize this
1543 /// loop, only that it is legal to do so.
1544 bool canVectorize();
1545
1546 /// Returns the primary induction variable.
1547 PHINode *getPrimaryInduction() { return PrimaryInduction; }
1548
1549 /// Returns the reduction variables found in the loop.
1550 ReductionList *getReductionVars() { return &Reductions; }
1551
1552 /// Returns the induction variables found in the loop.
1553 InductionList *getInductionVars() { return &Inductions; }
1554
1555 /// Return the first-order recurrences found in the loop.
1556 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1557
1558 /// Return the set of instructions to sink to handle first-order recurrences.
1559 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }
1560
1561 /// Returns the widest induction type.
1562 Type *getWidestInductionType() { return WidestIndTy; }
1563
1564 /// Returns True if V is a Phi node of an induction variable in this loop.
1565 bool isInductionPhi(const Value *V);
1566
1567 /// Returns True if V is a cast that is part of an induction def-use chain,
1568 /// and had been proven to be redundant under a runtime guard (in other
1569 /// words, the cast has the same SCEV expression as the induction phi).
1570 bool isCastedInductionVariable(const Value *V);
1571
1572 /// Returns True if V can be considered as an induction variable in this
1573 /// loop. V can be the induction phi, or some redundant cast in the def-use
1574 /// chain of the inducion phi.
1575 bool isInductionVariable(const Value *V);
1576
1577 /// Returns True if PN is a reduction variable in this loop.
1578 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1579
1580 /// Returns True if Phi is a first-order recurrence in this loop.
1581 bool isFirstOrderRecurrence(const PHINode *Phi);
1582
1583 /// Return true if the block BB needs to be predicated in order for the loop
1584 /// to be vectorized.
1585 bool blockNeedsPredication(BasicBlock *BB);
1586
1587 /// Check if this pointer is consecutive when vectorizing. This happens
1588 /// when the last index of the GEP is the induction variable, or that the
1589 /// pointer itself is an induction variable.
1590 /// This check allows us to vectorize A[idx] into a wide load/store.
1591 /// Returns:
1592 /// 0 - Stride is unknown or non-consecutive.
1593 /// 1 - Address is consecutive.
1594 /// -1 - Address is consecutive, and decreasing.
1595 /// NOTE: This method must only be used before modifying the original scalar
1596 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
1597 int isConsecutivePtr(Value *Ptr);
1598
1599 /// Returns true if the value V is uniform within the loop.
1600 bool isUniform(Value *V);
1601
1602 /// Returns the information that we collected about runtime memory check.
1603 const RuntimePointerChecking *getRuntimePointerChecking() const {
1604 return LAI->getRuntimePointerChecking();
1605 }
1606
1607 const LoopAccessInfo *getLAI() const { return LAI; }
1608
1609 /// \brief Check if \p Instr belongs to any interleaved access group.
1610 bool isAccessInterleaved(Instruction *Instr) {
1611 return InterleaveInfo.isInterleaved(Instr);
1612 }
1613
1614 /// \brief Get the interleaved access group that \p Instr belongs to.
1615 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1616 return InterleaveInfo.getInterleaveGroup(Instr);
1617 }
1618
1619 /// \brief Returns true if an interleaved group requires a scalar iteration
1620 /// to handle accesses with gaps.
1621 bool requiresScalarEpilogue() const {
1622 return InterleaveInfo.requiresScalarEpilogue();
1623 }
1624
1625 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1626
1627 uint64_t getMaxSafeRegisterWidth() const {
1628 return LAI->getDepChecker().getMaxSafeRegisterWidth();
1629 }
1630
1631 bool hasStride(Value *V) { return LAI->hasStride(V); }
1632
1633 /// Returns true if vector representation of the instruction \p I
1634 /// requires mask.
1635 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
1636
1637 unsigned getNumStores() const { return LAI->getNumStores(); }
1638 unsigned getNumLoads() const { return LAI->getNumLoads(); }
1639
1640 // Returns true if the NoNaN attribute is set on the function.
1641 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }
1642
1643private:
1644 /// Check if a single basic block loop is vectorizable.
1645 /// At this point we know that this is a loop with a constant trip count
1646 /// and we only need to check individual instructions.
1647 bool canVectorizeInstrs();
1648
1649 /// When we vectorize loops we may change the order in which
1650 /// we read and write from memory. This method checks if it is
1651 /// legal to vectorize the code, considering only memory constrains.
1652 /// Returns true if the loop is vectorizable
1653 bool canVectorizeMemory();
1654
1655 /// Return true if we can vectorize this loop using the IF-conversion
1656 /// transformation.
1657 bool canVectorizeWithIfConvert();
1658
1659 /// Return true if all of the instructions in the block can be speculatively
1660 /// executed. \p SafePtrs is a list of addresses that are known to be legal
1661 /// and we know that we can read from them without segfault.
1662 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1663
1664 /// Updates the vectorization state by adding \p Phi to the inductions list.
1665 /// This can set \p Phi as the main induction of the loop if \p Phi is a
1666 /// better choice for the main induction than the existing one.
1667 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1668 SmallPtrSetImpl<Value *> &AllowedExit);
1669
1670 /// Create an analysis remark that explains why vectorization failed
1671 ///
1672 /// \p RemarkName is the identifier for the remark. If \p I is passed it is
1673 /// an instruction that prevents vectorization. Otherwise the loop is used
1674 /// for the location of the remark. \return the remark object that can be
1675 /// streamed to.
1676 OptimizationRemarkAnalysis
1677 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
1678 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
1679 RemarkName, TheLoop, I);
1680 }
1681
1682 /// \brief If an access has a symbolic strides, this maps the pointer value to
1683 /// the stride symbol.
1684 const ValueToValueMap *getSymbolicStrides() {
1685 // FIXME: Currently, the set of symbolic strides is sometimes queried before
1686 // it's collected. This happens from canVectorizeWithIfConvert, when the
1687 // pointer is checked to reference consecutive elements suitable for a
1688 // masked access.
1689 return LAI ? &LAI->getSymbolicStrides() : nullptr;
1690 }
1691
1692 /// The loop that we evaluate.
1693 Loop *TheLoop;
1694
1695 /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1696 /// Applies dynamic knowledge to simplify SCEV expressions in the context
1697 /// of existing SCEV assumptions. The analysis will also add a minimal set
1698 /// of new predicates if this is required to enable vectorization and
1699 /// unrolling.
1700 PredicatedScalarEvolution &PSE;
1701
1702 /// Target Library Info.
1703 TargetLibraryInfo *TLI;
1704
1705 /// Target Transform Info
1706 const TargetTransformInfo *TTI;
1707
1708 /// Dominator Tree.
1709 DominatorTree *DT;
1710
1711 // LoopAccess analysis.
1712 std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1713
1714 // And the loop-accesses info corresponding to this loop. This pointer is
1715 // null until canVectorizeMemory sets it up.
1716 const LoopAccessInfo *LAI = nullptr;
1717
1718 /// Interface to emit optimization remarks.
1719 OptimizationRemarkEmitter *ORE;
1720
1721 /// The interleave access information contains groups of interleaved accesses
1722 /// with the same stride and close to each other.
1723 InterleavedAccessInfo InterleaveInfo;
1724
1725 // --- vectorization state --- //
1726
1727 /// Holds the primary induction variable. This is the counter of the
1728 /// loop.
1729 PHINode *PrimaryInduction = nullptr;
1730
1731 /// Holds the reduction variables.
1732 ReductionList Reductions;
1733
1734 /// Holds all of the induction variables that we found in the loop.
1735 /// Notice that inductions don't need to start at zero and that induction
1736 /// variables can be pointers.
1737 InductionList Inductions;
1738
1739 /// Holds all the casts that participate in the update chain of the induction
1740 /// variables, and that have been proven to be redundant (possibly under a
1741 /// runtime guard). These casts can be ignored when creating the vectorized
1742 /// loop body.
1743 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;
1744
1745 /// Holds the phi nodes that are first-order recurrences.
1746 RecurrenceSet FirstOrderRecurrences;
1747
1748 /// Holds instructions that need to sink past other instructions to handle
1749 /// first-order recurrences.
1750 DenseMap<Instruction *, Instruction *> SinkAfter;
1751
1752 /// Holds the widest induction type encountered.
1753 Type *WidestIndTy = nullptr;
1754
1755 /// Allowed outside users. This holds the induction and reduction
1756 /// vars which can be accessed from outside the loop.
1757 SmallPtrSet<Value *, 4> AllowedExit;
1758
1759 /// Can we assume the absence of NaNs.
1760 bool HasFunNoNaNAttr = false;
1761
1762 /// Vectorization requirements that will go through late-evaluation.
1763 LoopVectorizationRequirements *Requirements;
1764
1765 /// Used to emit an analysis of any legality issues.
1766 LoopVectorizeHints *Hints;
1767
1768 /// The demanded bits analsyis is used to compute the minimum type size in
1769 /// which a reduction can be computed.
1770 DemandedBits *DB;
1771
1772 /// The assumption cache analysis is used to compute the minimum type size in
1773 /// which a reduction can be computed.
1774 AssumptionCache *AC;
1775
1776 /// While vectorizing these instructions we have to generate a
1777 /// call to the appropriate masked intrinsic
1778 SmallPtrSet<const Instruction *, 8> MaskedOp;
1779};
1780
1781/// LoopVectorizationCostModel - estimates the expected speedups due to
1782/// vectorization.
1783/// In many cases vectorization is not profitable. This can happen because of
1784/// a number of reasons. In this class we mainly attempt to predict the
1785/// expected speedup/slowdowns due to the supported instruction set. We use the
1786/// TargetTransformInfo to query the different backends for the cost of
1787/// different operations.
1788class LoopVectorizationCostModel {
1789public:
1790 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1791 LoopInfo *LI, LoopVectorizationLegality *Legal,
1792 const TargetTransformInfo &TTI,
1793 const TargetLibraryInfo *TLI, DemandedBits *DB,
1794 AssumptionCache *AC,
1795 OptimizationRemarkEmitter *ORE, const Function *F,
1796 const LoopVectorizeHints *Hints)
1797 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1798 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {}
1799
1800 /// \return An upper bound for the vectorization factor, or None if
1801 /// vectorization should be avoided up front.
1802 Optional<unsigned> computeMaxVF(bool OptForSize);
1803
1804 /// \return The most profitable vectorization factor and the cost of that VF.
1805 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1806 /// then this vectorization factor will be selected if vectorization is
1807 /// possible.
1808 VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
1809
1810 /// Setup cost-based decisions for user vectorization factor.
1811 void selectUserVectorizationFactor(unsigned UserVF) {
1812 collectUniformsAndScalars(UserVF);
1813 collectInstsToScalarize(UserVF);
1814 }
1815
1816 /// \return The size (in bits) of the smallest and widest types in the code
1817 /// that needs to be vectorized. We ignore values that remain scalar such as
1818 /// 64 bit loop indices.
1819 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1820
1821 /// \return The desired interleave count.
1822 /// If interleave count has been specified by metadata it will be returned.
1823 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1824 /// are the selected vectorization factor and the cost of the selected VF.
1825 unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1826 unsigned LoopCost);
1827
1828 /// Memory access instruction may be vectorized in more than one way.
1829 /// Form of instruction after vectorization depends on cost.
1830 /// This function takes cost-based decisions for Load/Store instructions
1831 /// and collects them in a map. This decisions map is used for building
1832 /// the lists of loop-uniform and loop-scalar instructions.
1833 /// The calculated cost is saved with widening decision in order to
1834 /// avoid redundant calculations.
1835 void setCostBasedWideningDecision(unsigned VF);
1836
1837 /// \brief A struct that represents some properties of the register usage
1838 /// of a loop.
1839 struct RegisterUsage {
1840 /// Holds the number of loop invariant values that are used in the loop.
1841 unsigned LoopInvariantRegs;
1842
1843 /// Holds the maximum number of concurrent live intervals in the loop.
1844 unsigned MaxLocalUsers;
1845 };
1846
1847 /// \return Returns information about the register usages of the loop for the
1848 /// given vectorization factors.
1849 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1850
1851 /// Collect values we want to ignore in the cost model.
1852 void collectValuesToIgnore();
1853
1854 /// \returns The smallest bitwidth each instruction can be represented with.
1855 /// The vector equivalents of these instructions should be truncated to this
1856 /// type.
1857 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1858 return MinBWs;
1859 }
1860
1861 /// \returns True if it is more profitable to scalarize instruction \p I for
1862 /// vectorization factor \p VF.
1863 bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1864 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.")(static_cast <bool> (VF > 1 && "Profitable to scalarize relevant only for VF > 1."
) ? void (0) : __assert_fail ("VF > 1 && \"Profitable to scalarize relevant only for VF > 1.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1864, __extension__ __PRETTY_FUNCTION__))
;
1865 auto Scalars = InstsToScalarize.find(VF);
1866 assert(Scalars != InstsToScalarize.end() &&(static_cast <bool> (Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability") ? void
(0) : __assert_fail ("Scalars != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1867, __extension__ __PRETTY_FUNCTION__))
1867 "VF not yet analyzed for scalarization profitability")(static_cast <bool> (Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability") ? void
(0) : __assert_fail ("Scalars != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1867, __extension__ __PRETTY_FUNCTION__))
;
1868 return Scalars->second.count(I);
1869 }
1870
1871 /// Returns true if \p I is known to be uniform after vectorization.
1872 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1873 if (VF == 1)
1874 return true;
1875 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity")(static_cast <bool> (Uniforms.count(VF) && "VF not yet analyzed for uniformity"
) ? void (0) : __assert_fail ("Uniforms.count(VF) && \"VF not yet analyzed for uniformity\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1875, __extension__ __PRETTY_FUNCTION__))
;
1876 auto UniformsPerVF = Uniforms.find(VF);
1877 return UniformsPerVF->second.count(I);
1878 }
1879
1880 /// Returns true if \p I is known to be scalar after vectorization.
1881 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1882 if (VF == 1)
1883 return true;
1884 assert(Scalars.count(VF) && "Scalar values are not calculated for VF")(static_cast <bool> (Scalars.count(VF) && "Scalar values are not calculated for VF"
) ? void (0) : __assert_fail ("Scalars.count(VF) && \"Scalar values are not calculated for VF\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1884, __extension__ __PRETTY_FUNCTION__))
;
1885 auto ScalarsPerVF = Scalars.find(VF);
1886 return ScalarsPerVF->second.count(I);
1887 }
1888
1889 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1890 /// for vectorization factor \p VF.
1891 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1892 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
1893 !isScalarAfterVectorization(I, VF);
1894 }
1895
1896 /// Decision that was taken during cost calculation for memory instruction.
1897 enum InstWidening {
1898 CM_Unknown,
1899 CM_Widen, // For consecutive accesses with stride +1.
1900 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1901 CM_Interleave,
1902 CM_GatherScatter,
1903 CM_Scalarize
1904 };
1905
1906 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1907 /// instruction \p I and vector width \p VF.
1908 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1909 unsigned Cost) {
1910 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1910, __extension__ __PRETTY_FUNCTION__))
;
1911 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1912 }
1913
1914 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1915 /// interleaving group \p Grp and vector width \p VF.
1916 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
1917 InstWidening W, unsigned Cost) {
1918 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1918, __extension__ __PRETTY_FUNCTION__))
;
1919 /// Broadcast this decicion to all instructions inside the group.
1920 /// But the cost will be assigned to one instruction only.
1921 for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1922 if (auto *I = Grp->getMember(i)) {
1923 if (Grp->getInsertPos() == I)
1924 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1925 else
1926 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1927 }
1928 }
1929 }
1930
1931 /// Return the cost model decision for the given instruction \p I and vector
1932 /// width \p VF. Return CM_Unknown if this instruction did not pass
1933 /// through the cost modeling.
1934 InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1935 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1935, __extension__ __PRETTY_FUNCTION__))
;
1936 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1937 auto Itr = WideningDecisions.find(InstOnVF);
1938 if (Itr == WideningDecisions.end())
1939 return CM_Unknown;
1940 return Itr->second.first;
1941 }
1942
1943 /// Return the vectorization cost for the given instruction \p I and vector
1944 /// width \p VF.
1945 unsigned getWideningCost(Instruction *I, unsigned VF) {
1946 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1946, __extension__ __PRETTY_FUNCTION__))
;
1947 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1948 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated")(static_cast <bool> (WideningDecisions.count(InstOnVF) &&
"The cost is not calculated") ? void (0) : __assert_fail ("WideningDecisions.count(InstOnVF) && \"The cost is not calculated\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1948, __extension__ __PRETTY_FUNCTION__))
;
1949 return WideningDecisions[InstOnVF].second;
1950 }
1951
1952 /// Return True if instruction \p I is an optimizable truncate whose operand
1953 /// is an induction variable. Such a truncate will be removed by adding a new
1954 /// induction variable with the destination type.
1955 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1956 // If the instruction is not a truncate, return false.
1957 auto *Trunc = dyn_cast<TruncInst>(I);
1958 if (!Trunc)
1959 return false;
1960
1961 // Get the source and destination types of the truncate.
1962 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1963 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1964
1965 // If the truncate is free for the given types, return false. Replacing a
1966 // free truncate with an induction variable would add an induction variable
1967 // update instruction to each iteration of the loop. We exclude from this
1968 // check the primary induction variable since it will need an update
1969 // instruction regardless.
1970 Value *Op = Trunc->getOperand(0);
1971 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1972 return false;
1973
1974 // If the truncated value is not an induction variable, return false.
1975 return Legal->isInductionPhi(Op);
1976 }
1977
1978 /// Collects the instructions to scalarize for each predicated instruction in
1979 /// the loop.
1980 void collectInstsToScalarize(unsigned VF);
1981
1982 /// Collect Uniform and Scalar values for the given \p VF.
1983 /// The sets depend on CM decision for Load/Store instructions
1984 /// that may be vectorized as interleave, gather-scatter or scalarized.
1985 void collectUniformsAndScalars(unsigned VF) {
1986 // Do the analysis once.
1987 if (VF == 1 || Uniforms.count(VF))
1988 return;
1989 setCostBasedWideningDecision(VF);
1990 collectLoopUniforms(VF);
1991 collectLoopScalars(VF);
1992 }
1993
1994 /// Returns true if the target machine supports masked store operation
1995 /// for the given \p DataType and kind of access to \p Ptr.
1996 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1997 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
1998 }
1999
2000 /// Returns true if the target machine supports masked load operation
2001 /// for the given \p DataType and kind of access to \p Ptr.
2002 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
2003 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
2004 }
2005
2006 /// Returns true if the target machine supports masked scatter operation
2007 /// for the given \p DataType.
2008 bool isLegalMaskedScatter(Type *DataType) {
2009 return TTI.isLegalMaskedScatter(DataType);
2010 }
2011
2012 /// Returns true if the target machine supports masked gather operation
2013 /// for the given \p DataType.
2014 bool isLegalMaskedGather(Type *DataType) {
2015 return TTI.isLegalMaskedGather(DataType);
2016 }
2017
2018 /// Returns true if the target machine can represent \p V as a masked gather
2019 /// or scatter operation.
2020 bool isLegalGatherOrScatter(Value *V) {
2021 bool LI = isa<LoadInst>(V);
2022 bool SI = isa<StoreInst>(V);
2023 if (!LI && !SI)
2024 return false;
2025 auto *Ty = getMemInstValueType(V);
2026 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
2027 }
2028
2029 /// Returns true if \p I is an instruction that will be scalarized with
2030 /// predication. Such instructions include conditional stores and
2031 /// instructions that may divide by zero.
2032 bool isScalarWithPredication(Instruction *I);
2033
2034 /// Returns true if \p I is a memory instruction with consecutive memory
2035 /// access that can be widened.
2036 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
2037
2038private:
2039 unsigned NumPredStores = 0;
2040
2041 /// \return An upper bound for the vectorization factor, larger than zero.
2042 /// One is returned if vectorization should best be avoided due to cost.
2043 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
2044
2045 /// The vectorization cost is a combination of the cost itself and a boolean
2046 /// indicating whether any of the contributing operations will actually
2047 /// operate on
2048 /// vector values after type legalization in the backend. If this latter value
2049 /// is
2050 /// false, then all operations will be scalarized (i.e. no vectorization has
2051 /// actually taken place).
2052 using VectorizationCostTy = std::pair<unsigned, bool>;
2053
2054 /// Returns the expected execution cost. The unit of the cost does
2055 /// not matter because we use the 'cost' units to compare different
2056 /// vector widths. The cost that is returned is *not* normalized by
2057 /// the factor width.
2058 VectorizationCostTy expectedCost(unsigned VF);
2059
2060 /// Returns the execution time cost of an instruction for a given vector
2061 /// width. Vector width of one means scalar.
2062 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
2063
2064 /// The cost-computation logic from getInstructionCost which provides
2065 /// the vector type as an output parameter.
2066 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
2067
2068 /// Calculate vectorization cost of memory instruction \p I.
2069 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
2070
2071 /// The cost computation for scalarized memory instruction.
2072 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
2073
2074 /// The cost computation for interleaving group of memory instructions.
2075 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
2076
2077 /// The cost computation for Gather/Scatter instruction.
2078 unsigned getGatherScatterCost(Instruction *I, unsigned VF);
2079
2080 /// The cost computation for widening instruction \p I with consecutive
2081 /// memory access.
2082 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
2083
2084 /// The cost calculation for Load instruction \p I with uniform pointer -
2085 /// scalar load + broadcast.
2086 unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
2087
2088 /// Returns whether the instruction is a load or store and will be a emitted
2089 /// as a vector operation.
2090 bool isConsecutiveLoadOrStore(Instruction *I);
2091
2092 /// Returns true if an artificially high cost for emulated masked memrefs
2093 /// should be used.
2094 bool useEmulatedMaskMemRefHack(Instruction *I);
2095
2096 /// Create an analysis remark that explains why vectorization failed
2097 ///
2098 /// \p RemarkName is the identifier for the remark. \return the remark object
2099 /// that can be streamed to.
2100 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
2101 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
2102 RemarkName, TheLoop);
2103 }
2104
2105 /// Map of scalar integer values to the smallest bitwidth they can be legally
2106 /// represented as. The vector equivalents of these values should be truncated
2107 /// to this type.
2108 MapVector<Instruction *, uint64_t> MinBWs;
2109
2110 /// A type representing the costs for instructions if they were to be
2111 /// scalarized rather than vectorized. The entries are Instruction-Cost
2112 /// pairs.
2113 using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
2114
2115 /// A set containing all BasicBlocks that are known to present after
2116 /// vectorization as a predicated block.
2117 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
2118
2119 /// A map holding scalar costs for different vectorization factors. The
2120 /// presence of a cost for an instruction in the mapping indicates that the
2121 /// instruction will be scalarized when vectorizing with the associated
2122 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
2123 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
2124
2125 /// Holds the instructions known to be uniform after vectorization.
2126 /// The data is collected per VF.
2127 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
2128
2129 /// Holds the instructions known to be scalar after vectorization.
2130 /// The data is collected per VF.
2131 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
2132
2133 /// Holds the instructions (address computations) that are forced to be
2134 /// scalarized.
2135 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
2136
2137 /// Returns the expected difference in cost from scalarizing the expression
2138 /// feeding a predicated instruction \p PredInst. The instructions to
2139 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
2140 /// non-negative return value implies the expression will be scalarized.
2141 /// Currently, only single-use chains are considered for scalarization.
2142 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
2143 unsigned VF);
2144
2145 /// Collect the instructions that are uniform after vectorization. An
2146 /// instruction is uniform if we represent it with a single scalar value in
2147 /// the vectorized loop corresponding to each vector iteration. Examples of
2148 /// uniform instructions include pointer operands of consecutive or
2149 /// interleaved memory accesses. Note that although uniformity implies an
2150 /// instruction will be scalar, the reverse is not true. In general, a
2151 /// scalarized instruction will be represented by VF scalar values in the
2152 /// vectorized loop, each corresponding to an iteration of the original
2153 /// scalar loop.
2154 void collectLoopUniforms(unsigned VF);
2155
2156 /// Collect the instructions that are scalar after vectorization. An
2157 /// instruction is scalar if it is known to be uniform or will be scalarized
2158 /// during vectorization. Non-uniform scalarized instructions will be
2159 /// represented by VF values in the vectorized loop, each corresponding to an
2160 /// iteration of the original scalar loop.
2161 void collectLoopScalars(unsigned VF);
2162
2163 /// Keeps cost model vectorization decision and cost for instructions.
2164 /// Right now it is used for memory instructions only.
2165 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
2166 std::pair<InstWidening, unsigned>>;
2167
2168 DecisionList WideningDecisions;
2169
2170public:
2171 /// The loop that we evaluate.
2172 Loop *TheLoop;
2173
2174 /// Predicated scalar evolution analysis.
2175 PredicatedScalarEvolution &PSE;
2176
2177 /// Loop Info analysis.
2178 LoopInfo *LI;
2179
2180 /// Vectorization legality.
2181 LoopVectorizationLegality *Legal;
2182
2183 /// Vector target information.
2184 const TargetTransformInfo &TTI;
2185
2186 /// Target Library Info.
2187 const TargetLibraryInfo *TLI;
2188
2189 /// Demanded bits analysis.
2190 DemandedBits *DB;
2191
2192 /// Assumption cache.
2193 AssumptionCache *AC;
2194
2195 /// Interface to emit optimization remarks.
2196 OptimizationRemarkEmitter *ORE;
2197
2198 const Function *TheFunction;
2199
2200 /// Loop Vectorize Hint.
2201 const LoopVectorizeHints *Hints;
2202
2203 /// Values to ignore in the cost model.
2204 SmallPtrSet<const Value *, 16> ValuesToIgnore;
2205
2206 /// Values to ignore in the cost model when VF > 1.
2207 SmallPtrSet<const Value *, 16> VecValuesToIgnore;
2208};
2209
2210} // end namespace llvm
2211
2212namespace {
2213
2214/// \brief This holds vectorization requirements that must be verified late in
2215/// the process. The requirements are set by legalize and costmodel. Once
2216/// vectorization has been determined to be possible and profitable the
2217/// requirements can be verified by looking for metadata or compiler options.
2218/// For example, some loops require FP commutativity which is only allowed if
2219/// vectorization is explicitly specified or if the fast-math compiler option
2220/// has been provided.
2221/// Late evaluation of these requirements allows helpful diagnostics to be
2222/// composed that tells the user what need to be done to vectorize the loop. For
2223/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
2224/// evaluation should be used only when diagnostics can generated that can be
2225/// followed by a non-expert user.
2226class LoopVectorizationRequirements {
2227public:
2228 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}
2229
2230 void addUnsafeAlgebraInst(Instruction *I) {
2231 // First unsafe algebra instruction.
2232 if (!UnsafeAlgebraInst)
2233 UnsafeAlgebraInst = I;
2234 }
2235
2236 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
2237
2238 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
2239 const char *PassName = Hints.vectorizeAnalysisPassName();
2240 bool Failed = false;
2241 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
2242 ORE.emit([&]() {
2243 return OptimizationRemarkAnalysisFPCommute(
2244 PassName, "CantReorderFPOps",
2245 UnsafeAlgebraInst->getDebugLoc(),
2246 UnsafeAlgebraInst->getParent())
2247 << "loop not vectorized: cannot prove it is safe to reorder "
2248 "floating-point operations";
2249 });
2250 Failed = true;
2251 }
2252
2253 // Test if runtime memcheck thresholds are exceeded.
2254 bool PragmaThresholdReached =
2255 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
2256 bool ThresholdReached =
2257 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
2258 if ((ThresholdReached && !Hints.allowReordering()) ||
2259 PragmaThresholdReached) {
2260 ORE.emit([&]() {
2261 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
2262 L->getStartLoc(),
2263 L->getHeader())
2264 << "loop not vectorized: cannot prove it is safe to reorder "
2265 "memory operations";
2266 });
2267 DEBUG(dbgs() << "LV: Too many memory checks needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Too many memory checks needed.\n"
; } } while (false)
;
2268 Failed = true;
2269 }
2270
2271 return Failed;
2272 }
2273
2274private:
2275 unsigned NumRuntimePointerChecks = 0;
2276 Instruction *UnsafeAlgebraInst = nullptr;
2277
2278 /// Interface to emit optimization remarks.
2279 OptimizationRemarkEmitter &ORE;
2280};
2281
2282} // end anonymous namespace
2283
2284static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI,
2285 SmallVectorImpl<Loop *> &V) {
2286 if (L.empty()) {
2287 LoopBlocksRPO RPOT(&L);
2288 RPOT.perform(&LI);
2289 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2290 V.push_back(&L);
2291 return;
2292 }
2293 for (Loop *InnerL : L)
2294 addAcyclicInnerLoop(*InnerL, LI, V);
2295}
2296
2297namespace {
2298
2299/// The LoopVectorize Pass.
2300struct LoopVectorize : public FunctionPass {
2301 /// Pass identification, replacement for typeid
2302 static char ID;
2303
2304 LoopVectorizePass Impl;
2305
2306 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
2307 : FunctionPass(ID) {
2308 Impl.DisableUnrolling = NoUnrolling;
2309 Impl.AlwaysVectorize = AlwaysVectorize;
2310 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2311 }
2312
2313 bool runOnFunction(Function &F) override {
2314 if (skipFunction(F))
2315 return false;
2316
2317 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2318 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2319 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2320 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2321 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2322 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2323 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2324 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2325 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2326 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2327 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2328 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2329
2330 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2331 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2332
2333 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2334 GetLAA, *ORE);
2335 }
2336
2337 void getAnalysisUsage(AnalysisUsage &AU) const override {
2338 AU.addRequired<AssumptionCacheTracker>();
2339 AU.addRequired<BlockFrequencyInfoWrapperPass>();
2340 AU.addRequired<DominatorTreeWrapperPass>();
2341 AU.addRequired<LoopInfoWrapperPass>();
2342 AU.addRequired<ScalarEvolutionWrapperPass>();
2343 AU.addRequired<TargetTransformInfoWrapperPass>();
2344 AU.addRequired<AAResultsWrapperPass>();
2345 AU.addRequired<LoopAccessLegacyAnalysis>();
2346 AU.addRequired<DemandedBitsWrapperPass>();
2347 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2348 AU.addPreserved<LoopInfoWrapperPass>();
2349 AU.addPreserved<DominatorTreeWrapperPass>();
2350 AU.addPreserved<BasicAAWrapperPass>();
2351 AU.addPreserved<GlobalsAAWrapperPass>();
2352 }
2353};
2354
2355} // end anonymous namespace
2356
2357//===----------------------------------------------------------------------===//
2358// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2359// LoopVectorizationCostModel and LoopVectorizationPlanner.
2360//===----------------------------------------------------------------------===//
2361
2362Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2363 // We need to place the broadcast of invariant variables outside the loop.
2364 Instruction *Instr = dyn_cast<Instruction>(V);
2365 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
2366 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
2367
2368 // Place the code for broadcasting invariant variables in the new preheader.
2369 IRBuilder<>::InsertPointGuard Guard(Builder);
2370 if (Invariant)
2371 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2372
2373 // Broadcast the scalar into all locations in the vector.
2374 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2375
2376 return Shuf;
2377}
2378
2379void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2380 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
2381 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2382, __extension__ __PRETTY_FUNCTION__))
2382 "Expected either an induction phi-node or a truncate of it!")(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2382, __extension__ __PRETTY_FUNCTION__))
;
2383 Value *Start = II.getStartValue();
2384
2385 // Construct the initial value of the vector IV in the vector loop preheader
2386 auto CurrIP = Builder.saveIP();
2387 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2388 if (isa<TruncInst>(EntryVal)) {
2389 assert(Start->getType()->isIntegerTy() &&(static_cast <bool> (Start->getType()->isIntegerTy
() && "Truncation requires an integer type") ? void (
0) : __assert_fail ("Start->getType()->isIntegerTy() && \"Truncation requires an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2390, __extension__ __PRETTY_FUNCTION__))
2390 "Truncation requires an integer type")(static_cast <bool> (Start->getType()->isIntegerTy
() && "Truncation requires an integer type") ? void (
0) : __assert_fail ("Start->getType()->isIntegerTy() && \"Truncation requires an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2390, __extension__ __PRETTY_FUNCTION__))
;
2391 auto *TruncType = cast<IntegerType>(EntryVal->getType());
2392 Step = Builder.CreateTrunc(Step, TruncType);
2393 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2394 }
2395 Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2396 Value *SteppedStart =
2397 getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2398
2399 // We create vector phi nodes for both integer and floating-point induction
2400 // variables. Here, we determine the kind of arithmetic we will perform.
2401 Instruction::BinaryOps AddOp;
2402 Instruction::BinaryOps MulOp;
2403 if (Step->getType()->isIntegerTy()) {
2404 AddOp = Instruction::Add;
2405 MulOp = Instruction::Mul;
2406 } else {
2407 AddOp = II.getInductionOpcode();
2408 MulOp = Instruction::FMul;
2409 }
2410
2411 // Multiply the vectorization factor by the step using integer or
2412 // floating-point arithmetic as appropriate.
2413 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
2414 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
2415
2416 // Create a vector splat to use in the induction update.
2417 //
2418 // FIXME: If the step is non-constant, we create the vector splat with
2419 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2420 // handle a constant vector splat.
2421 Value *SplatVF = isa<Constant>(Mul)
2422 ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2423 : Builder.CreateVectorSplat(VF, Mul);
2424 Builder.restoreIP(CurrIP);
2425
2426 // We may need to add the step a number of times, depending on the unroll
2427 // factor. The last of those goes into the PHI.
2428 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2429 &*LoopVectorBody->getFirstInsertionPt());
2430 Instruction *LastInduction = VecInd;
2431 for (unsigned Part = 0; Part < UF; ++Part) {
2432 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
2433
2434 if (isa<TruncInst>(EntryVal))
2435 addMetadata(LastInduction, EntryVal);
2436 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
2437
2438 LastInduction = cast<Instruction>(addFastMathFlag(
2439 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
2440 }
2441
2442 // Move the last step to the end of the latch block. This ensures consistent
2443 // placement of all induction updates.
2444 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2445 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2446 auto *ICmp = cast<Instruction>(Br->getCondition());
2447 LastInduction->moveBefore(ICmp);
2448 LastInduction->setName("vec.ind.next");
2449
2450 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2451 VecInd->addIncoming(LastInduction, LoopVectorLatch);
2452}
2453
2454bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2455 return Cost->isScalarAfterVectorization(I, VF) ||
2456 Cost->isProfitableToScalarize(I, VF);
2457}
2458
2459bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2460 if (shouldScalarizeInstruction(IV))
2461 return true;
2462 auto isScalarInst = [&](User *U) -> bool {
2463 auto *I = cast<Instruction>(U);
2464 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2465 };
2466 return llvm::any_of(IV->users(), isScalarInst);
2467}
2468
2469void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2470 const InductionDescriptor &ID, const Instruction *EntryVal,
2471 Value *VectorLoopVal, unsigned Part, unsigned Lane) {
2472 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2473, __extension__ __PRETTY_FUNCTION__))
2473 "Expected either an induction phi-node or a truncate of it!")(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2473, __extension__ __PRETTY_FUNCTION__))
;
2474
2475 // This induction variable is not the phi from the original loop but the
2476 // newly-created IV based on the proof that casted Phi is equal to the
2477 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2478 // re-uses the same InductionDescriptor that original IV uses but we don't
2479 // have to do any recording in this case - that is done when original IV is
2480 // processed.
2481 if (isa<TruncInst>(EntryVal))
2482 return;
2483
2484 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2485 if (Casts.empty())
2486 return;
2487 // Only the first Cast instruction in the Casts vector is of interest.
2488 // The rest of the Casts (if exist) have no uses outside the
2489 // induction update chain itself.
2490 Instruction *CastInst = *Casts.begin();
2491 if (Lane < UINT_MAX(2147483647 *2U +1U))
2492 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
2493 else
2494 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
2495}
2496
2497void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
2498 assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&(static_cast <bool> ((IV->getType()->isIntegerTy(
) || IV != OldInduction) && "Primary induction variable must have an integer type"
) ? void (0) : __assert_fail ("(IV->getType()->isIntegerTy() || IV != OldInduction) && \"Primary induction variable must have an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2499, __extension__ __PRETTY_FUNCTION__))
2499 "Primary induction variable must have an integer type")(static_cast <bool> ((IV->getType()->isIntegerTy(
) || IV != OldInduction) && "Primary induction variable must have an integer type"
) ? void (0) : __assert_fail ("(IV->getType()->isIntegerTy() || IV != OldInduction) && \"Primary induction variable must have an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2499, __extension__ __PRETTY_FUNCTION__))
;
2500
2501 auto II = Legal->getInductionVars()->find(IV);
2502 assert(II != Legal->getInductionVars()->end() && "IV is not an induction")(static_cast <bool> (II != Legal->getInductionVars()
->end() && "IV is not an induction") ? void (0) : __assert_fail
("II != Legal->getInductionVars()->end() && \"IV is not an induction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2502, __extension__ __PRETTY_FUNCTION__))
;
2503
2504 auto ID = II->second;
2505 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match")(static_cast <bool> (IV->getType() == ID.getStartValue
()->getType() && "Types must match") ? void (0) : __assert_fail
("IV->getType() == ID.getStartValue()->getType() && \"Types must match\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2505, __extension__ __PRETTY_FUNCTION__))
;
2506
2507 // The scalar value to broadcast. This will be derived from the canonical
2508 // induction variable.
2509 Value *ScalarIV = nullptr;
2510
2511 // The value from the original loop to which we are mapping the new induction
2512 // variable.
2513 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2514
2515 // True if we have vectorized the induction variable.
2516 auto VectorizedIV = false;
2517
2518 // Determine if we want a scalar version of the induction variable. This is
2519 // true if the induction variable itself is not widened, or if it has at
2520 // least one user in the loop that is not widened.
2521 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
2522
2523 // Generate code for the induction step. Note that induction steps are
2524 // required to be loop-invariant
2525 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&(static_cast <bool> (PSE.getSE()->isLoopInvariant(ID
.getStep(), OrigLoop) && "Induction step should be loop invariant"
) ? void (0) : __assert_fail ("PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && \"Induction step should be loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2526, __extension__ __PRETTY_FUNCTION__))
2526 "Induction step should be loop invariant")(static_cast <bool> (PSE.getSE()->isLoopInvariant(ID
.getStep(), OrigLoop) && "Induction step should be loop invariant"
) ? void (0) : __assert_fail ("PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && \"Induction step should be loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2526, __extension__ __PRETTY_FUNCTION__))
;
2527 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2528 Value *Step = nullptr;
2529 if (PSE.getSE()->isSCEVable(IV->getType())) {
2530 SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2531 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
2532 LoopVectorPreHeader->getTerminator());
2533 } else {
2534 Step = cast<SCEVUnknown>(ID.getStep())->getValue();
2535 }
2536
2537 // Try to create a new independent vector induction variable. If we can't
2538 // create the phi node, we will splat the scalar induction variable in each
2539 // loop iteration.
2540 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
2541 createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2542 VectorizedIV = true;
2543 }
2544
2545 // If we haven't yet vectorized the induction variable, or if we will create
2546 // a scalar one, we need to define the scalar induction variable and step
2547 // values. If we were given a truncation type, truncate the canonical
2548 // induction variable and step. Otherwise, derive these values from the
2549 // induction descriptor.
2550 if (!VectorizedIV || NeedsScalarIV) {
2551 ScalarIV = Induction;
2552 if (IV != OldInduction) {
2553 ScalarIV = IV->getType()->isIntegerTy()
2554 ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2555 : Builder.CreateCast(Instruction::SIToFP, Induction,
2556 IV->getType());
2557 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
2558 ScalarIV->setName("offset.idx");
2559 }
2560 if (Trunc) {
2561 auto *TruncType = cast<IntegerType>(Trunc->getType());
2562 assert(Step->getType()->isIntegerTy() &&(static_cast <bool> (Step->getType()->isIntegerTy
() && "Truncation requires an integer step") ? void (
0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2563, __extension__ __PRETTY_FUNCTION__))
2563 "Truncation requires an integer step")(static_cast <bool> (Step->getType()->isIntegerTy
() && "Truncation requires an integer step") ? void (
0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2563, __extension__ __PRETTY_FUNCTION__))
;
2564 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2565 Step = Builder.CreateTrunc(Step, TruncType);
2566 }
2567 }
2568
2569 // If we haven't yet vectorized the induction variable, splat the scalar
2570 // induction variable, and build the necessary step vectors.
2571 // TODO: Don't do it unless the vectorized IV is really required.
2572 if (!VectorizedIV) {
2573 Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2574 for (unsigned Part = 0; Part < UF; ++Part) {
2575 Value *EntryPart =
2576 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
2577 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
2578 if (Trunc)
2579 addMetadata(EntryPart, Trunc);
2580 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
2581 }
2582 }
2583
2584 // If an induction variable is only used for counting loop iterations or
2585 // calculating addresses, it doesn't need to be widened. Create scalar steps
2586 // that can be used by instructions we will later scalarize. Note that the
2587 // addition of the scalar steps will not increase the number of instructions
2588 // in the loop in the common case prior to InstCombine. We will be trading
2589 // one vector extract for each scalar step.
2590 if (NeedsScalarIV)
2591 buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2592}
2593
2594Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2595 Instruction::BinaryOps BinOp) {
2596 // Create and check the types.
2597 assert(Val->getType()->isVectorTy() && "Must be a vector")(static_cast <bool> (Val->getType()->isVectorTy()
&& "Must be a vector") ? void (0) : __assert_fail ("Val->getType()->isVectorTy() && \"Must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2597, __extension__ __PRETTY_FUNCTION__))
;
2598 int VLen = Val->getType()->getVectorNumElements();
2599
2600 Type *STy = Val->getType()->getScalarType();
2601 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&(static_cast <bool> ((STy->isIntegerTy() || STy->
isFloatingPointTy()) && "Induction Step must be an integer or FP"
) ? void (0) : __assert_fail ("(STy->isIntegerTy() || STy->isFloatingPointTy()) && \"Induction Step must be an integer or FP\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2602, __extension__ __PRETTY_FUNCTION__))
2602 "Induction Step must be an integer or FP")(static_cast <bool> ((STy->isIntegerTy() || STy->
isFloatingPointTy()) && "Induction Step must be an integer or FP"
) ? void (0) : __assert_fail ("(STy->isIntegerTy() || STy->isFloatingPointTy()) && \"Induction Step must be an integer or FP\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2602, __extension__ __PRETTY_FUNCTION__))
;
2603 assert(Step->getType() == STy && "Step has wrong type")(static_cast <bool> (Step->getType() == STy &&
"Step has wrong type") ? void (0) : __assert_fail ("Step->getType() == STy && \"Step has wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2603, __extension__ __PRETTY_FUNCTION__))
;
2604
2605 SmallVector<Constant *, 8> Indices;
2606
2607 if (STy->isIntegerTy()) {
2608 // Create a vector of consecutive numbers from zero to VF.
2609 for (int i = 0; i < VLen; ++i)
2610 Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2611
2612 // Add the consecutive indices to the vector value.
2613 Constant *Cv = ConstantVector::get(Indices);
2614 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec")(static_cast <bool> (Cv->getType() == Val->getType
() && "Invalid consecutive vec") ? void (0) : __assert_fail
("Cv->getType() == Val->getType() && \"Invalid consecutive vec\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2614, __extension__ __PRETTY_FUNCTION__))
;
2615 Step = Builder.CreateVectorSplat(VLen, Step);
2616 assert(Step->getType() == Val->getType() && "Invalid step vec")(static_cast <bool> (Step->getType() == Val->getType
() && "Invalid step vec") ? void (0) : __assert_fail (
"Step->getType() == Val->getType() && \"Invalid step vec\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2616, __extension__ __PRETTY_FUNCTION__))
;
2617 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2618 // which can be found from the original scalar operations.
2619 Step = Builder.CreateMul(Cv, Step);
2620 return Builder.CreateAdd(Val, Step, "induction");
2621 }
2622
2623 // Floating point induction.
2624 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&(static_cast <bool> ((BinOp == Instruction::FAdd || BinOp
== Instruction::FSub) && "Binary Opcode should be specified for FP induction"
) ? void (0) : __assert_fail ("(BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && \"Binary Opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2625, __extension__ __PRETTY_FUNCTION__))
2625 "Binary Opcode should be specified for FP induction")(static_cast <bool> ((BinOp == Instruction::FAdd || BinOp
== Instruction::FSub) && "Binary Opcode should be specified for FP induction"
) ? void (0) : __assert_fail ("(BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && \"Binary Opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2625, __extension__ __PRETTY_FUNCTION__))
;
2626 // Create a vector of consecutive numbers from zero to VF.
2627 for (int i = 0; i < VLen; ++i)
2628 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2629
2630 // Add the consecutive indices to the vector value.
2631 Constant *Cv = ConstantVector::get(Indices);
2632
2633 Step = Builder.CreateVectorSplat(VLen, Step);
2634
2635 // Floating point operations had to be 'fast' to enable the induction.
2636 FastMathFlags Flags;
2637 Flags.setFast();
2638
2639 Value *MulOp = Builder.CreateFMul(Cv, Step);
2640 if (isa<Instruction>(MulOp))
2641 // Have to check, MulOp may be a constant
2642 cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2643
2644 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2645 if (isa<Instruction>(BOp))
2646 cast<Instruction>(BOp)->setFastMathFlags(Flags);
2647 return BOp;
2648}
2649
2650void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2651 Instruction *EntryVal,
2652 const InductionDescriptor &ID) {
2653 // We shouldn't have to build scalar steps if we aren't vectorizing.
2654 assert(VF > 1 && "VF should be greater than one")(static_cast <bool> (VF > 1 && "VF should be greater than one"
) ? void (0) : __assert_fail ("VF > 1 && \"VF should be greater than one\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2654, __extension__ __PRETTY_FUNCTION__))
;
2655
2656 // Get the value type and ensure it and the step have the same integer type.
2657 Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2658 assert(ScalarIVTy == Step->getType() &&(static_cast <bool> (ScalarIVTy == Step->getType() &&
"Val and Step should have the same type") ? void (0) : __assert_fail
("ScalarIVTy == Step->getType() && \"Val and Step should have the same type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2659, __extension__ __PRETTY_FUNCTION__))
2659 "Val and Step should have the same type")(static_cast <bool> (ScalarIVTy == Step->getType() &&
"Val and Step should have the same type") ? void (0) : __assert_fail
("ScalarIVTy == Step->getType() && \"Val and Step should have the same type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2659, __extension__ __PRETTY_FUNCTION__))
;
2660
2661 // We build scalar steps for both integer and floating-point induction
2662 // variables. Here, we determine the kind of arithmetic we will perform.
2663 Instruction::BinaryOps AddOp;
2664 Instruction::BinaryOps MulOp;
2665 if (ScalarIVTy->isIntegerTy()) {
2666 AddOp = Instruction::Add;
2667 MulOp = Instruction::Mul;
2668 } else {
2669 AddOp = ID.getInductionOpcode();
2670 MulOp = Instruction::FMul;
2671 }
2672
2673 // Determine the number of scalars we need to generate for each unroll
2674 // iteration. If EntryVal is uniform, we only need to generate the first
2675 // lane. Otherwise, we generate all VF values.
2676 unsigned Lanes =
2677 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2678 : VF;
2679 // Compute the scalar steps and save the results in VectorLoopValueMap.
2680 for (unsigned Part = 0; Part < UF; ++Part) {
2681 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2682 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2683 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2684 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2685 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2686 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2687 }
2688 }
2689}
2690
2691int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2692 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
2693 ValueToValueMap();
2694
2695 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
2696 if (Stride == 1 || Stride == -1)
2697 return Stride;
2698 return 0;
2699}
2700
2701bool LoopVectorizationLegality::isUniform(Value *V) {
2702 return LAI->isUniform(V);
2703}
2704
2705Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2706 assert(V != Induction && "The new induction variable should not be used.")(static_cast <bool> (V != Induction && "The new induction variable should not be used."
) ? void (0) : __assert_fail ("V != Induction && \"The new induction variable should not be used.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2706, __extension__ __PRETTY_FUNCTION__))
;
2707 assert(!V->getType()->isVectorTy() && "Can't widen a vector")(static_cast <bool> (!V->getType()->isVectorTy() &&
"Can't widen a vector") ? void (0) : __assert_fail ("!V->getType()->isVectorTy() && \"Can't widen a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2707, __extension__ __PRETTY_FUNCTION__))
;
2708 assert(!V->getType()->isVoidTy() && "Type does not produce a value")(static_cast <bool> (!V->getType()->isVoidTy() &&
"Type does not produce a value") ? void (0) : __assert_fail (
"!V->getType()->isVoidTy() && \"Type does not produce a value\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2708, __extension__ __PRETTY_FUNCTION__))
;
2709
2710 // If we have a stride that is replaced by one, do it here.
2711 if (Legal->hasStride(V))
2712 V = ConstantInt::get(V->getType(), 1);
2713
2714 // If we have a vector mapped to this value, return it.
2715 if (VectorLoopValueMap.hasVectorValue(V, Part))
2716 return VectorLoopValueMap.getVectorValue(V, Part);
2717
2718 // If the value has not been vectorized, check if it has been scalarized
2719 // instead. If it has been scalarized, and we actually need the value in
2720 // vector form, we will construct the vector values on demand.
2721 if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2722 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2723
2724 // If we've scalarized a value, that value should be an instruction.
2725 auto *I = cast<Instruction>(V);
2726
2727 // If we aren't vectorizing, we can just copy the scalar map values over to
2728 // the vector map.
2729 if (VF == 1) {
2730 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2731 return ScalarValue;
2732 }
2733
2734 // Get the last scalar instruction we generated for V and Part. If the value
2735 // is known to be uniform after vectorization, this corresponds to lane zero
2736 // of the Part unroll iteration. Otherwise, the last instruction is the one
2737 // we created for the last vector lane of the Part unroll iteration.
2738 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2739 auto *LastInst = cast<Instruction>(
2740 VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2741
2742 // Set the insert point after the last scalarized instruction. This ensures
2743 // the insertelement sequence will directly follow the scalar definitions.
2744 auto OldIP = Builder.saveIP();
2745 auto NewIP = std::next(BasicBlock::iterator(LastInst));
2746 Builder.SetInsertPoint(&*NewIP);
2747
2748 // However, if we are vectorizing, we need to construct the vector values.
2749 // If the value is known to be uniform after vectorization, we can just
2750 // broadcast the scalar value corresponding to lane zero for each unroll
2751 // iteration. Otherwise, we construct the vector values using insertelement
2752 // instructions. Since the resulting vectors are stored in
2753 // VectorLoopValueMap, we will only generate the insertelements once.
2754 Value *VectorValue = nullptr;
2755 if (Cost->isUniformAfterVectorization(I, VF)) {
2756 VectorValue = getBroadcastInstrs(ScalarValue);
2757 VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2758 } else {
2759 // Initialize packing with insertelements to start from undef.
2760 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2761 VectorLoopValueMap.setVectorValue(V, Part, Undef);
2762 for (unsigned Lane = 0; Lane < VF; ++Lane)
2763 packScalarIntoVectorValue(V, {Part, Lane});
2764 VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2765 }
2766 Builder.restoreIP(OldIP);
2767 return VectorValue;
2768 }
2769
2770 // If this scalar is unknown, assume that it is a constant or that it is
2771 // loop invariant. Broadcast V and save the value for future uses.
2772 Value *B = getBroadcastInstrs(V);
2773 VectorLoopValueMap.setVectorValue(V, Part, B);
2774 return B;
2775}
2776
2777Value *
2778InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2779 const VPIteration &Instance) {
2780 // If the value is not an instruction contained in the loop, it should
2781 // already be scalar.
2782 if (OrigLoop->isLoopInvariant(V))
2783 return V;
2784
2785 assert(Instance.Lane > 0(static_cast <bool> (Instance.Lane > 0 ? !Cost->isUniformAfterVectorization
(cast<Instruction>(V), VF) : true && "Uniform values only have lane zero"
) ? void (0) : __assert_fail ("Instance.Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) : true && \"Uniform values only have lane zero\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2787, __extension__ __PRETTY_FUNCTION__))
2786 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)(static_cast <bool> (Instance.Lane > 0 ? !Cost->isUniformAfterVectorization
(cast<Instruction>(V), VF) : true && "Uniform values only have lane zero"
) ? void (0) : __assert_fail ("Instance.Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) : true && \"Uniform values only have lane zero\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2787, __extension__ __PRETTY_FUNCTION__))
2787 : true && "Uniform values only have lane zero")(static_cast <bool> (Instance.Lane > 0 ? !Cost->isUniformAfterVectorization
(cast<Instruction>(V), VF) : true && "Uniform values only have lane zero"
) ? void (0) : __assert_fail ("Instance.Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) : true && \"Uniform values only have lane zero\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2787, __extension__ __PRETTY_FUNCTION__))
;
2788
2789 // If the value from the original loop has not been vectorized, it is
2790 // represented by UF x VF scalar values in the new loop. Return the requested
2791 // scalar value.
2792 if (VectorLoopValueMap.hasScalarValue(V, Instance))
2793 return VectorLoopValueMap.getScalarValue(V, Instance);
2794
2795 // If the value has not been scalarized, get its entry in VectorLoopValueMap
2796 // for the given unroll part. If this entry is not a vector type (i.e., the
2797 // vectorization factor is one), there is no need to generate an
2798 // extractelement instruction.
2799 auto *U = getOrCreateVectorValue(V, Instance.Part);
2800 if (!U->getType()->isVectorTy()) {
2801 assert(VF == 1 && "Value not scalarized has non-vector type")(static_cast <bool> (VF == 1 && "Value not scalarized has non-vector type"
) ? void (0) : __assert_fail ("VF == 1 && \"Value not scalarized has non-vector type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2801, __extension__ __PRETTY_FUNCTION__))
;
2802 return U;
2803 }
2804
2805 // Otherwise, the value from the original loop has been vectorized and is
2806 // represented by UF vector values. Extract and return the requested scalar
2807 // value from the appropriate vector lane.
2808 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2809}
2810
2811void InnerLoopVectorizer::packScalarIntoVectorValue(
2812 Value *V, const VPIteration &Instance) {
2813 assert(V != Induction && "The new induction variable should not be used.")(static_cast <bool> (V != Induction && "The new induction variable should not be used."
) ? void (0) : __assert_fail ("V != Induction && \"The new induction variable should not be used.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2813, __extension__ __PRETTY_FUNCTION__))
;
2814 assert(!V->getType()->isVectorTy() && "Can't pack a vector")(static_cast <bool> (!V->getType()->isVectorTy() &&
"Can't pack a vector") ? void (0) : __assert_fail ("!V->getType()->isVectorTy() && \"Can't pack a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2814, __extension__ __PRETTY_FUNCTION__))
;
2815 assert(!V->getType()->isVoidTy() && "Type does not produce a value")(static_cast <bool> (!V->getType()->isVoidTy() &&
"Type does not produce a value") ? void (0) : __assert_fail (
"!V->getType()->isVoidTy() && \"Type does not produce a value\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2815, __extension__ __PRETTY_FUNCTION__))
;
2816
2817 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2818 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2819 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2820 Builder.getInt32(Instance.Lane));
2821 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2822}
2823
2824Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2825 assert(Vec->getType()->isVectorTy() && "Invalid type")(static_cast <bool> (Vec->getType()->isVectorTy()
&& "Invalid type") ? void (0) : __assert_fail ("Vec->getType()->isVectorTy() && \"Invalid type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2825, __extension__ __PRETTY_FUNCTION__))
;
2826 SmallVector<Constant *, 8> ShuffleMask;
2827 for (unsigned i = 0; i < VF; ++i)
2828 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2829
2830 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2831 ConstantVector::get(ShuffleMask),
2832 "reverse");
2833}
2834
2835// Try to vectorize the interleave group that \p Instr belongs to.
2836//
2837// E.g. Translate following interleaved load group (factor = 3):
2838// for (i = 0; i < N; i+=3) {
2839// R = Pic[i]; // Member of index 0
2840// G = Pic[i+1]; // Member of index 1
2841// B = Pic[i+2]; // Member of index 2
2842// ... // do something to R, G, B
2843// }
2844// To:
2845// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2846// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2847// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2848// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2849//
2850// Or translate following interleaved store group (factor = 3):
2851// for (i = 0; i < N; i+=3) {
2852// ... do something to R, G, B
2853// Pic[i] = R; // Member of index 0
2854// Pic[i+1] = G; // Member of index 1
2855// Pic[i+2] = B; // Member of index 2
2856// }
2857// To:
2858// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2859// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2860// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2861// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2862// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
2863void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2864 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr);
2865 assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group."
) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2865, __extension__ __PRETTY_FUNCTION__))
;
2866
2867 // Skip if current instruction is not the insert position.
2868 if (Instr != Group->getInsertPos())
2869 return;
2870
2871 const DataLayout &DL = Instr->getModule()->getDataLayout();
2872 Value *Ptr = getLoadStorePointerOperand(Instr);
2873
2874 // Prepare for the vector type of the interleaved load/store.
2875 Type *ScalarTy = getMemInstValueType(Instr);
2876 unsigned InterleaveFactor = Group->getFactor();
2877 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2878 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));
2879
2880 // Prepare for the new pointers.
2881 setDebugLocFromInst(Builder, Ptr);
2882 SmallVector<Value *, 2> NewPtrs;
2883 unsigned Index = Group->getIndex(Instr);
2884
2885 // If the group is reverse, adjust the index to refer to the last vector lane
2886 // instead of the first. We adjust the index from the first vector lane,
2887 // rather than directly getting the pointer for lane VF - 1, because the
2888 // pointer operand of the interleaved access is supposed to be uniform. For
2889 // uniform instructions, we're only required to generate a value for the
2890 // first vector lane in each unroll iteration.
2891 if (Group->isReverse())
2892 Index += (VF - 1) * Group->getFactor();
2893
2894 for (unsigned Part = 0; Part < UF; Part++) {
2895 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
2896
2897 // Notice current instruction could be any index. Need to adjust the address
2898 // to the member of index 0.
2899 //
2900 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2901 // b = A[i]; // Member of index 0
2902 // Current pointer is pointed to A[i+1], adjust it to A[i].
2903 //
2904 // E.g. A[i+1] = a; // Member of index 1
2905 // A[i] = b; // Member of index 0
2906 // A[i+2] = c; // Member of index 2 (Current instruction)
2907 // Current pointer is pointed to A[i+2], adjust it to A[i].
2908 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2909
2910 // Cast to the vector pointer type.
2911 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2912 }
2913
2914 setDebugLocFromInst(Builder, Instr);
2915 Value *UndefVec = UndefValue::get(VecTy);
2916
2917 // Vectorize the interleaved load group.
2918 if (isa<LoadInst>(Instr)) {
2919 // For each unroll part, create a wide load for the group.
2920 SmallVector<Value *, 2> NewLoads;
2921 for (unsigned Part = 0; Part < UF; Part++) {
2922 auto *NewLoad = Builder.CreateAlignedLoad(
2923 NewPtrs[Part], Group->getAlignment(), "wide.vec");
2924 Group->addMetadata(NewLoad);
2925 NewLoads.push_back(NewLoad);
2926 }
2927
2928 // For each member in the group, shuffle out the appropriate data from the
2929 // wide loads.
2930 for (unsigned I = 0; I < InterleaveFactor; ++I) {
2931 Instruction *Member = Group->getMember(I);
2932
2933 // Skip the gaps in the group.
2934 if (!Member)
2935 continue;
2936
2937 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2938 for (unsigned Part = 0; Part < UF; Part++) {
2939 Value *StridedVec = Builder.CreateShuffleVector(
2940 NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2941
2942 // If this member has different type, cast the result type.
2943 if (Member->getType() != ScalarTy) {
2944 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2945 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2946 }
2947
2948 if (Group->isReverse())
2949 StridedVec = reverseVector(StridedVec);
2950
2951 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2952 }
2953 }
2954 return;
2955 }
2956
2957 // The sub vector type for current instruction.
2958 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2959
2960 // Vectorize the interleaved store group.
2961 for (unsigned Part = 0; Part < UF; Part++) {
2962 // Collect the stored vector from each member.
2963 SmallVector<Value *, 4> StoredVecs;
2964 for (unsigned i = 0; i < InterleaveFactor; i++) {
2965 // Interleaved store group doesn't allow a gap, so each index has a member
2966 Instruction *Member = Group->getMember(i);
2967 assert(Member && "Fail to get a member from an interleaved store group")(static_cast <bool> (Member && "Fail to get a member from an interleaved store group"
) ? void (0) : __assert_fail ("Member && \"Fail to get a member from an interleaved store group\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2967, __extension__ __PRETTY_FUNCTION__))
;
2968
2969 Value *StoredVec = getOrCreateVectorValue(
2970 cast<StoreInst>(Member)->getValueOperand(), Part);
2971 if (Group->isReverse())
2972 StoredVec = reverseVector(StoredVec);
2973
2974 // If this member has different type, cast it to a unified type.
2975
2976 if (StoredVec->getType() != SubVT)
2977 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2978
2979 StoredVecs.push_back(StoredVec);
2980 }
2981
2982 // Concatenate all vectors into a wide vector.
2983 Value *WideVec = concatenateVectors(Builder, StoredVecs);
2984
2985 // Interleave the elements in the wide vector.
2986 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2987 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2988 "interleaved.vec");
2989
2990 Instruction *NewStoreInstr =
2991 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2992
2993 Group->addMetadata(NewStoreInstr);
2994 }
2995}
2996
2997void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2998 VectorParts *BlockInMask) {
2999 // Attempt to issue a wide load.
3000 LoadInst *LI = dyn_cast<LoadInst>(Instr);
3001 StoreInst *SI = dyn_cast<StoreInst>(Instr);
3002
3003 assert((LI || SI) && "Invalid Load/Store instruction")(static_cast <bool> ((LI || SI) && "Invalid Load/Store instruction"
) ? void (0) : __assert_fail ("(LI || SI) && \"Invalid Load/Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3003, __extension__ __PRETTY_FUNCTION__))
;
3004
3005 LoopVectorizationCostModel::InstWidening Decision =
3006 Cost->getWideningDecision(Instr, VF);
3007 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
3008 "CM decision should be taken at this point")(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3008, __extension__ __PRETTY_FUNCTION__))
;
3009 if (Decision == LoopVectorizationCostModel::CM_Interleave)
3010 return vectorizeInterleaveGroup(Instr);
3011
3012 Type *ScalarDataTy = getMemInstValueType(Instr);
3013 Type *DataTy = VectorType::get(ScalarDataTy, VF);
3014 Value *Ptr = getLoadStorePointerOperand(Instr);
3015 unsigned Alignment = getMemInstAlignment(Instr);
3016 // An alignment of 0 means target abi alignment. We need to use the scalar's
3017 // target abi alignment in such a case.
3018 const DataLayout &DL = Instr->getModule()->getDataLayout();
3019 if (!Alignment)
3020 Alignment = DL.getABITypeAlignment(ScalarDataTy);
3021 unsigned AddressSpace = getMemInstAddressSpace(Instr);
3022
3023 // Determine if the pointer operand of the access is either consecutive or
3024 // reverse consecutive.
3025 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
3026 bool ConsecutiveStride =
3027 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
3028 bool CreateGatherScatter =
3029 (Decision == LoopVectorizationCostModel::CM_GatherScatter);
3030
3031 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
3032 // gather/scatter. Otherwise Decision should have been to Scalarize.
3033 assert((ConsecutiveStride || CreateGatherScatter) &&(static_cast <bool> ((ConsecutiveStride || CreateGatherScatter
) && "The instruction should be scalarized") ? void (
0) : __assert_fail ("(ConsecutiveStride || CreateGatherScatter) && \"The instruction should be scalarized\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
3034 "The instruction should be scalarized")(static_cast <bool> ((ConsecutiveStride || CreateGatherScatter
) && "The instruction should be scalarized") ? void (
0) : __assert_fail ("(ConsecutiveStride || CreateGatherScatter) && \"The instruction should be scalarized\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3034, __extension__ __PRETTY_FUNCTION__))
;
3035
3036 // Handle consecutive loads/stores.
3037 if (ConsecutiveStride)
3038 Ptr = getOrCreateScalarValue(Ptr, {0, 0});
3039
3040 VectorParts Mask;
3041 bool isMaskRequired = BlockInMask;
3042 if (isMaskRequired)
3043 Mask = *BlockInMask;
3044
3045 // Handle Stores:
3046 if (SI) {
3047 setDebugLocFromInst(Builder, SI);
3048
3049 for (unsigned Part = 0; Part < UF; ++Part) {
3050 Instruction *NewSI = nullptr;
3051 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
3052 if (CreateGatherScatter) {
3053 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
3054 Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
3055 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
3056 MaskPart);
3057 } else {
3058 // Calculate the pointer for the specific unroll-part.
3059 Value *PartPtr =
3060 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3061
3062 if (Reverse) {
3063 // If we store to reverse consecutive memory locations, then we need
3064 // to reverse the order of elements in the stored value.
3065 StoredVal = reverseVector(StoredVal);
3066 // We don't want to update the value in the map as it might be used in
3067 // another expression. So don't call resetVectorValue(StoredVal).
3068
3069 // If the address is consecutive but reversed, then the
3070 // wide store needs to start at the last vector element.
3071 PartPtr =
3072 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3073 PartPtr =
3074 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3075 if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3076 Mask[Part] = reverseVector(Mask[Part]);
3077 }
3078
3079 Value *VecPtr =
3080 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3081
3082 if (isMaskRequired)
3083 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3084 Mask[Part]);
3085 else
3086 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3087 }
3088 addMetadata(NewSI, SI);
3089 }
3090 return;
3091 }
3092
3093 // Handle loads.
3094 assert(LI && "Must have a load instruction")(static_cast <bool> (LI && "Must have a load instruction"
) ? void (0) : __assert_fail ("LI && \"Must have a load instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3094, __extension__ __PRETTY_FUNCTION__))
;
3095 setDebugLocFromInst(Builder, LI);
3096 for (unsigned Part = 0; Part < UF; ++Part) {
3097 Value *NewLI;
3098 if (CreateGatherScatter) {
3099 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
3100 Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
3101 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
3102 nullptr, "wide.masked.gather");
3103 addMetadata(NewLI, LI);
3104 } else {
3105 // Calculate the pointer for the specific unroll-part.
3106 Value *PartPtr =
3107 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3108
3109 if (Reverse) {
3110 // If the address is consecutive but reversed, then the
3111 // wide load needs to start at the last vector element.
3112 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3113 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3114 if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3115 Mask[Part] = reverseVector(Mask[Part]);
3116 }
3117
3118 Value *VecPtr =
3119 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3120 if (isMaskRequired)
3121 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
3122 UndefValue::get(DataTy),
3123 "wide.masked.load");
3124 else
3125 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
3126
3127 // Add metadata to the load, but setVectorValue to the reverse shuffle.
3128 addMetadata(NewLI, LI);
3129 if (Reverse)
3130 NewLI = reverseVector(NewLI);
3131 }
3132 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
3133 }
3134}
3135
3136void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3137 const VPIteration &Instance,
3138 bool IfPredicateInstr) {
3139 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors")(static_cast <bool> (!Instr->getType()->isAggregateType
() && "Can't handle vectors") ? void (0) : __assert_fail
("!Instr->getType()->isAggregateType() && \"Can't handle vectors\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3139, __extension__ __PRETTY_FUNCTION__))
;
3140
3141 setDebugLocFromInst(Builder, Instr);
3142
3143 // Does this instruction return a value ?
3144 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3145
3146 Instruction *Cloned = Instr->clone();
3147 if (!IsVoidRetTy)
3148 Cloned->setName(Instr->getName() + ".cloned");
3149
3150 // Replace the operands of the cloned instructions with their scalar
3151 // equivalents in the new loop.
3152 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
3153 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
3154 Cloned->setOperand(op, NewOp);
3155 }
3156 addNewMetadata(Cloned, Instr);
3157
3158 // Place the cloned scalar in the new loop.
3159 Builder.Insert(Cloned);
3160
3161 // Add the cloned scalar to the scalar map entry.
3162 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
3163
3164 // If we just cloned a new assumption, add it the assumption cache.
3165 if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
3166 if (II->getIntrinsicID() == Intrinsic::assume)
3167 AC->registerAssumption(II);
3168
3169 // End if-block.
3170 if (IfPredicateInstr)
3171 PredicatedInstructions.push_back(Cloned);
3172}
3173
3174PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3175 Value *End, Value *Step,
3176 Instruction *DL) {
3177 BasicBlock *Header = L->getHeader();
3178 BasicBlock *Latch = L->getLoopLatch();
3179 // As we're just creating this loop, it's possible no latch exists
3180 // yet. If so, use the header as this will be a single block loop.
3181 if (!Latch)
3182 Latch = Header;
3183
3184 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3185 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3186 setDebugLocFromInst(Builder, OldInst);
3187 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3188
3189 Builder.SetInsertPoint(Latch->getTerminator());
3190 setDebugLocFromInst(Builder, OldInst);
3191
3192 // Create i+1 and fill the PHINode.
3193 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3194 Induction->addIncoming(Start, L->getLoopPreheader());
3195 Induction->addIncoming(Next, Latch);
3196 // Create the compare.
3197 Value *ICmp = Builder.CreateICmpEQ(Next, End);
3198 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
3199
3200 // Now we have two terminators. Remove the old one from the block.
3201 Latch->getTerminator()->eraseFromParent();
3202
3203 return Induction;
3204}
3205
3206Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3207 if (TripCount)
3208 return TripCount;
3209
3210 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3211 // Find the loop boundaries.
3212 ScalarEvolution *SE = PSE.getSE();
3213 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3214 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&(static_cast <bool> (BackedgeTakenCount != SE->getCouldNotCompute
() && "Invalid loop count") ? void (0) : __assert_fail
("BackedgeTakenCount != SE->getCouldNotCompute() && \"Invalid loop count\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3215, __extension__ __PRETTY_FUNCTION__))
3215 "Invalid loop count")(static_cast <bool> (BackedgeTakenCount != SE->getCouldNotCompute
() && "Invalid loop count") ? void (0) : __assert_fail
("BackedgeTakenCount != SE->getCouldNotCompute() && \"Invalid loop count\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3215, __extension__ __PRETTY_FUNCTION__))
;
3216
3217 Type *IdxTy = Legal->getWidestInductionType();
3218
3219 // The exit count might have the type of i64 while the phi is i32. This can
3220 // happen if we have an induction variable that is sign extended before the
3221 // compare. The only way that we get a backedge taken count is that the
3222 // induction variable was signed and as such will not overflow. In such a case
3223 // truncation is legal.
3224 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
3225 IdxTy->getPrimitiveSizeInBits())
3226 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3227 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3228
3229 // Get the total trip count from the count by adding 1.
3230 const SCEV *ExitCount = SE->getAddExpr(
3231 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3232
3233 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3234
3235 // Expand the trip count and place the new instructions in the preheader.
3236 // Notice that the pre-header does not change, only the loop body.
3237 SCEVExpander Exp(*SE, DL, "induction");
3238
3239 // Count holds the overall loop count (N).
3240 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3241 L->getLoopPreheader()->getTerminator());
3242
3243 if (TripCount->getType()->isPointerTy())
3244 TripCount =
3245 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3246 L->getLoopPreheader()->getTerminator());
3247
3248 return TripCount;
3249}
3250
3251Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3252 if (VectorTripCount)
3253 return VectorTripCount;
3254
3255 Value *TC = getOrCreateTripCount(L);
3256 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3257
3258 // Now we need to generate the expression for the part of the loop that the
3259 // vectorized body will execute. This is equal to N - (N % Step) if scalar
3260 // iterations are not required for correctness, or N - Step, otherwise. Step
3261 // is equal to the vectorization factor (number of SIMD elements) times the
3262 // unroll factor (number of SIMD instructions).
3263 Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
3264 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3265
3266 // If there is a non-reversed interleaved group that may speculatively access
3267 // memory out-of-bounds, we need to ensure that there will be at least one
3268 // iteration of the scalar epilogue loop. Thus, if the step evenly divides
3269 // the trip count, we set the remainder to be equal to the step. If the step
3270 // does not evenly divide the trip count, no adjustment is necessary since
3271 // there will already be scalar iterations. Note that the minimum iterations
3272 // check ensures that N >= Step.
3273 if (VF > 1 && Legal->requiresScalarEpilogue()) {
3274 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3275 R = Builder.CreateSelect(IsZero, Step, R);
3276 }
3277
3278 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3279
3280 return VectorTripCount;
3281}
3282
3283Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3284 const DataLayout &DL) {
3285 // Verify that V is a vector type with same number of elements as DstVTy.
3286 unsigned VF = DstVTy->getNumElements();
3287 VectorType *SrcVecTy = cast<VectorType>(V->getType());
3288 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match")(static_cast <bool> ((VF == SrcVecTy->getNumElements
()) && "Vector dimensions do not match") ? void (0) :
__assert_fail ("(VF == SrcVecTy->getNumElements()) && \"Vector dimensions do not match\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3288, __extension__ __PRETTY_FUNCTION__))
;
3289 Type *SrcElemTy = SrcVecTy->getElementType();
3290 Type *DstElemTy = DstVTy->getElementType();
3291 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&(static_cast <bool> ((DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) && "Vector elements must have same size"
) ? void (0) : __assert_fail ("(DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && \"Vector elements must have same size\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3292, __extension__ __PRETTY_FUNCTION__))
3292 "Vector elements must have same size")(static_cast <bool> ((DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) && "Vector elements must have same size"
) ? void (0) : __assert_fail ("(DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && \"Vector elements must have same size\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3292, __extension__ __PRETTY_FUNCTION__))
;
3293
3294 // Do a direct cast if element types are castable.
3295 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3296 return Builder.CreateBitOrPointerCast(V, DstVTy);
3297 }
3298 // V cannot be directly casted to desired vector type.
3299 // May happen when V is a floating point vector but DstVTy is a vector of
3300 // pointers or vice-versa. Handle this using a two-step bitcast using an
3301 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3302 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&(static_cast <bool> ((DstElemTy->isPointerTy() != SrcElemTy
->isPointerTy()) && "Only one type should be a pointer type"
) ? void (0) : __assert_fail ("(DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && \"Only one type should be a pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3303, __extension__ __PRETTY_FUNCTION__))
3303 "Only one type should be a pointer type")(static_cast <bool> ((DstElemTy->isPointerTy() != SrcElemTy
->isPointerTy()) && "Only one type should be a pointer type"
) ? void (0) : __assert_fail ("(DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && \"Only one type should be a pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3303, __extension__ __PRETTY_FUNCTION__))
;
3304 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&(static_cast <bool> ((DstElemTy->isFloatingPointTy()
!= SrcElemTy->isFloatingPointTy()) && "Only one type should be a floating point type"
) ? void (0) : __assert_fail ("(DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && \"Only one type should be a floating point type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3305, __extension__ __PRETTY_FUNCTION__))
3305 "Only one type should be a floating point type")(static_cast <bool> ((DstElemTy->isFloatingPointTy()
!= SrcElemTy->isFloatingPointTy()) && "Only one type should be a floating point type"
) ? void (0) : __assert_fail ("(DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && \"Only one type should be a floating point type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3305, __extension__ __PRETTY_FUNCTION__))
;
3306 Type *IntTy =
3307 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3308 VectorType *VecIntTy = VectorType::get(IntTy, VF);
3309 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3310 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3311}
3312
3313void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3314 BasicBlock *Bypass) {
3315 Value *Count = getOrCreateTripCount(L);
3316 BasicBlock *BB = L->getLoopPreheader();
3317 IRBuilder<> Builder(BB->getTerminator());
3318
3319 // Generate code to check if the loop's trip count is less than VF * UF, or
3320 // equal to it in case a scalar epilogue is required; this implies that the
3321 // vector trip count is zero. This check also covers the case where adding one
3322 // to the backedge-taken count overflowed leading to an incorrect trip count
3323 // of zero. In this case we will also jump to the scalar loop.
3324 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3325 : ICmpInst::ICMP_ULT;
3326 Value *CheckMinIters = Builder.CreateICmp(
3327 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
3328
3329 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3330 // Update dominator tree immediately if the generated block is a
3331 // LoopBypassBlock because SCEV expansions to generate loop bypass
3332 // checks may query it before the current function is finished.
3333 DT->addNewBlock(NewBB, BB);
3334 if (L->getParentLoop())
3335 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3336 ReplaceInstWithInst(BB->getTerminator(),
3337 BranchInst::Create(Bypass, NewBB, CheckMinIters));
3338 LoopBypassBlocks.push_back(BB);
3339}
3340
3341void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3342 BasicBlock *BB = L->getLoopPreheader();
3343
3344 // Generate the code to check that the SCEV assumptions that we made.
3345 // We want the new basic block to start at the first instruction in a
3346 // sequence of instructions that form a check.
3347 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
3348 "scev.check");
3349 Value *SCEVCheck =
3350 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
3351
3352 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
3353 if (C->isZero())
3354 return;
3355
3356 // Create a new block containing the stride check.
3357 BB->setName("vector.scevcheck");
3358 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3359 // Update dominator tree immediately if the generated block is a
3360 // LoopBypassBlock because SCEV expansions to generate loop bypass
3361 // checks may query it before the current function is finished.
3362 DT->addNewBlock(NewBB, BB);
3363 if (L->getParentLoop())
3364 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3365 ReplaceInstWithInst(BB->getTerminator(),
3366 BranchInst::Create(Bypass, NewBB, SCEVCheck));
3367 LoopBypassBlocks.push_back(BB);
3368 AddedSafetyChecks = true;
3369}
3370
3371void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
3372 BasicBlock *BB = L->getLoopPreheader();
3373
3374 // Generate the code that checks in runtime if arrays overlap. We put the
3375 // checks into a separate block to make the more common case of few elements
3376 // faster.
3377 Instruction *FirstCheckInst;
3378 Instruction *MemRuntimeCheck;
3379 std::tie(FirstCheckInst, MemRuntimeCheck) =
3380 Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
3381 if (!MemRuntimeCheck)
3382 return;
3383
3384 // Create a new block containing the memory check.
3385 BB->setName("vector.memcheck");
3386 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3387 // Update dominator tree immediately if the generated block is a
3388 // LoopBypassBlock because SCEV expansions to generate loop bypass
3389 // checks may query it before the current function is finished.
3390 DT->addNewBlock(NewBB, BB);
3391 if (L->getParentLoop())
3392 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3393 ReplaceInstWithInst(BB->getTerminator(),
3394 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
3395 LoopBypassBlocks.push_back(BB);
3396 AddedSafetyChecks = true;
3397
3398 // We currently don't use LoopVersioning for the actual loop cloning but we
3399 // still use it to add the noalias metadata.
3400 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
3401 PSE.getSE());
3402 LVer->prepareNoAliasMetadata();
3403}
3404
3405BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3406 /*
3407 In this function we generate a new loop. The new loop will contain
3408 the vectorized instructions while the old loop will continue to run the
3409 scalar remainder.
3410
3411 [ ] <-- loop iteration number check.
3412 / |
3413 / v
3414 | [ ] <-- vector loop bypass (may consist of multiple blocks).
3415 | / |
3416 | / v
3417 || [ ] <-- vector pre header.
3418 |/ |
3419 | v
3420 | [ ] \
3421 | [ ]_| <-- vector loop.
3422 | |
3423 | v
3424 | -[ ] <--- middle-block.
3425 | / |
3426 | / v
3427 -|- >[ ] <--- new preheader.
3428 | |
3429 | v
3430 | [ ] \
3431 | [ ]_| <-- old scalar loop to handle remainder.
3432 \ |
3433 \ v
3434 >[ ] <-- exit block.
3435 ...
3436 */
3437
3438 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
3439 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
3440 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
3441 assert(VectorPH && "Invalid loop structure")(static_cast <bool> (VectorPH && "Invalid loop structure"
) ? void (0) : __assert_fail ("VectorPH && \"Invalid loop structure\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3441, __extension__ __PRETTY_FUNCTION__))
;
3442 assert(ExitBlock && "Must have an exit block")(static_cast <bool> (ExitBlock && "Must have an exit block"
) ? void (0) : __assert_fail ("ExitBlock && \"Must have an exit block\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3442, __extension__ __PRETTY_FUNCTION__))
;
3443
3444 // Some loops have a single integer induction variable, while other loops
3445 // don't. One example is c++ iterators that often have multiple pointer
3446 // induction variables. In the code below we also support a case where we
3447 // don't have a single induction variable.
3448 //
3449 // We try to obtain an induction variable from the original loop as hard
3450 // as possible. However if we don't find one that:
3451 // - is an integer
3452 // - counts from zero, stepping by one
3453 // - is the size of the widest induction variable type
3454 // then we create a new one.
3455 OldInduction = Legal->getPrimaryInduction();
3456 Type *IdxTy = Legal->getWidestInductionType();
3457
3458 // Split the single block loop into the two loop structure described above.
3459 BasicBlock *VecBody =
3460 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3461 BasicBlock *MiddleBlock =
3462 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3463 BasicBlock *ScalarPH =
3464 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3465
3466 // Create and register the new vector loop.
3467 Loop *Lp = LI->AllocateLoop();
3468 Loop *ParentLoop = OrigLoop->getParentLoop();
3469
3470 // Insert the new loop into the loop nest and register the new basic blocks
3471 // before calling any utilities such as SCEV that require valid LoopInfo.
3472 if (ParentLoop) {
3473 ParentLoop->addChildLoop(Lp);
3474 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3475 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3476 } else {
3477 LI->addTopLevelLoop(Lp);
3478 }
3479 Lp->addBasicBlockToLoop(VecBody, *LI);
3480
3481 // Find the loop boundaries.
3482 Value *Count = getOrCreateTripCount(Lp);
3483
3484 Value *StartIdx = ConstantInt::get(IdxTy, 0);
3485
3486 // Now, compare the new count to zero. If it is zero skip the vector loop and
3487 // jump to the scalar loop. This check also covers the case where the
3488 // backedge-taken count is uint##_max: adding one to it will overflow leading
3489 // to an incorrect trip count of zero. In this (rare) case we will also jump
3490 // to the scalar loop.
3491 emitMinimumIterationCountCheck(Lp, ScalarPH);
3492
3493 // Generate the code to check any assumptions that we've made for SCEV
3494 // expressions.
3495 emitSCEVChecks(Lp, ScalarPH);
3496
3497 // Generate the code that checks in runtime if arrays overlap. We put the
3498 // checks into a separate block to make the more common case of few elements
3499 // faster.
3500 emitMemRuntimeChecks(Lp, ScalarPH);
3501
3502 // Generate the induction variable.
3503 // The loop step is equal to the vectorization factor (num of SIMD elements)
3504 // times the unroll factor (num of SIMD instructions).
3505 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3506 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3507 Induction =
3508 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3509 getDebugLocFromInstOrOperands(OldInduction));
3510
3511 // We are going to resume the execution of the scalar loop.
3512 // Go over all of the induction variables that we found and fix the
3513 // PHIs that are left in the scalar version of the loop.
3514 // The starting values of PHI nodes depend on the counter of the last
3515 // iteration in the vectorized loop.
3516 // If we come from a bypass edge then we need to start from the original
3517 // start value.
3518
3519 // This variable saves the new starting index for the scalar loop. It is used
3520 // to test if there are any tail iterations left once the vector loop has
3521 // completed.
3522 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3523 for (auto &InductionEntry : *List) {
3524 PHINode *OrigPhi = InductionEntry.first;
3525 InductionDescriptor II = InductionEntry.second;
3526
3527 // Create phi nodes to merge from the backedge-taken check block.
3528 PHINode *BCResumeVal = PHINode::Create(
3529 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3530 Value *&EndValue = IVEndValues[OrigPhi];
3531 if (OrigPhi == OldInduction) {
3532 // We know what the end value is.
3533 EndValue = CountRoundDown;
3534 } else {
3535 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3536 Type *StepType = II.getStep()->getType();
3537 Instruction::CastOps CastOp =
3538 CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3539 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3540 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3541 EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3542 EndValue->setName("ind.end");
3543 }
3544
3545 // The new PHI merges the original incoming value, in case of a bypass,
3546 // or the value at the end of the vectorized loop.
3547 BCResumeVal->addIncoming(EndValue, MiddleBlock);
3548
3549 // Fix the scalar body counter (PHI node).
3550 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3551
3552 // The old induction's phi node in the scalar body needs the truncated
3553 // value.
3554 for (BasicBlock *BB : LoopBypassBlocks)
3555 BCResumeVal->addIncoming(II.getStartValue(), BB);
3556 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3557 }
3558
3559 // Add a check in the middle block to see if we have completed
3560 // all of the iterations in the first vector loop.
3561 // If (N - N%VF) == N, then we *don't* need to run the remainder.
3562 Value *CmpN =
3563 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3564 CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3565 ReplaceInstWithInst(MiddleBlock->getTerminator(),
3566 BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3567
3568 // Get ready to start creating new instructions into the vectorized body.
3569 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3570
3571 // Save the state.
3572 LoopVectorPreHeader = Lp->getLoopPreheader();
3573 LoopScalarPreHeader = ScalarPH;
3574 LoopMiddleBlock = MiddleBlock;
3575 LoopExitBlock = ExitBlock;
3576 LoopVectorBody = VecBody;
3577 LoopScalarBody = OldBasicBlock;
3578
3579 // Keep all loop hints from the original loop on the vector loop (we'll
3580 // replace the vectorizer-specific hints below).
3581 if (MDNode *LID = OrigLoop->getLoopID())
3582 Lp->setLoopID(LID);
3583
3584 LoopVectorizeHints Hints(Lp, true, *ORE);
3585 Hints.setAlreadyVectorized();
3586
3587 return LoopVectorPreHeader;
3588}
3589
3590// Fix up external users of the induction variable. At this point, we are
3591// in LCSSA form, with all external PHIs that use the IV having one input value,
3592// coming from the remainder loop. We need those PHIs to also have a correct
3593// value for the IV when arriving directly from the middle block.
3594void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3595 const InductionDescriptor &II,
3596 Value *CountRoundDown, Value *EndValue,
3597 BasicBlock *MiddleBlock) {
3598 // There are two kinds of external IV usages - those that use the value
3599 // computed in the last iteration (the PHI) and those that use the penultimate
3600 // value (the value that feeds into the phi from the loop latch).
3601 // We allow both, but they, obviously, have different values.
3602
3603 assert(OrigLoop->getExitBlock() && "Expected a single exit block")(static_cast <bool> (OrigLoop->getExitBlock() &&
"Expected a single exit block") ? void (0) : __assert_fail (
"OrigLoop->getExitBlock() && \"Expected a single exit block\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3603, __extension__ __PRETTY_FUNCTION__))
;
3604
3605 DenseMap<Value *, Value *> MissingVals;
3606
3607 // An external user of the last iteration's value should see the value that
3608 // the remainder loop uses to initialize its own IV.
3609 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3610 for (User *U : PostInc->users()) {
3611 Instruction *UI = cast<Instruction>(U);
3612 if (!OrigLoop->contains(UI)) {
3613 assert(isa<PHINode>(UI) && "Expected LCSSA form")(static_cast <bool> (isa<PHINode>(UI) && "Expected LCSSA form"
) ? void (0) : __assert_fail ("isa<PHINode>(UI) && \"Expected LCSSA form\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3613, __extension__ __PRETTY_FUNCTION__))
;
3614 MissingVals[UI] = EndValue;
3615 }
3616 }
3617
3618 // An external user of the penultimate value need to see EndValue - Step.
3619 // The simplest way to get this is to recompute it from the constituent SCEVs,
3620 // that is Start + (Step * (CRD - 1)).
3621 for (User *U : OrigPhi->users()) {
3622 auto *UI = cast<Instruction>(U);
3623 if (!OrigLoop->contains(UI)) {
3624 const DataLayout &DL =
3625 OrigLoop->getHeader()->getModule()->getDataLayout();
3626 assert(isa<PHINode>(UI) && "Expected LCSSA form")(static_cast <bool> (isa<PHINode>(UI) && "Expected LCSSA form"
) ? void (0) : __assert_fail ("isa<PHINode>(UI) && \"Expected LCSSA form\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3626, __extension__ __PRETTY_FUNCTION__))
;
3627
3628 IRBuilder<> B(MiddleBlock->getTerminator());
3629 Value *CountMinusOne = B.CreateSub(
3630 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3631 Value *CMO =
3632 !II.getStep()->getType()->isIntegerTy()
3633 ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3634 II.getStep()->getType())
3635 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3636 CMO->setName("cast.cmo");
3637 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3638 Escape->setName("ind.escape");
3639 MissingVals[UI] = Escape;
3640 }
3641 }
3642
3643 for (auto &I : MissingVals) {
3644 PHINode *PHI = cast<PHINode>(I.first);
3645 // One corner case we have to handle is two IVs "chasing" each-other,
3646 // that is %IV2 = phi [...], [ %IV1, %latch ]
3647 // In this case, if IV1 has an external use, we need to avoid adding both
3648 // "last value of IV1" and "penultimate value of IV2". So, verify that we
3649 // don't already have an incoming value for the middle block.
3650 if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3651 PHI->addIncoming(I.second, MiddleBlock);
3652 }
3653}
3654
3655namespace {
3656
3657struct CSEDenseMapInfo {
3658 static bool canHandle(const Instruction *I) {
3659 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3660 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3661 }
3662
3663 static inline Instruction *getEmptyKey() {
3664 return DenseMapInfo<Instruction *>::getEmptyKey();
3665 }
3666
3667 static inline Instruction *getTombstoneKey() {
3668 return DenseMapInfo<Instruction *>::getTombstoneKey();
3669 }
3670
3671 static unsigned getHashValue(const Instruction *I) {
3672 assert(canHandle(I) && "Unknown instruction!")(static_cast <bool> (canHandle(I) && "Unknown instruction!"
) ? void (0) : __assert_fail ("canHandle(I) && \"Unknown instruction!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3672, __extension__ __PRETTY_FUNCTION__))
;
3673 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3674 I->value_op_end()));
3675 }
3676
3677 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3678 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3679 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3680 return LHS == RHS;
3681 return LHS->isIdenticalTo(RHS);
3682 }
3683};
3684
3685} // end anonymous namespace
3686
3687///\brief Perform cse of induction variable instructions.
3688static void cse(BasicBlock *BB) {
3689 // Perform simple cse.
3690 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3691 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3692 Instruction *In = &*I++;
3693
3694 if (!CSEDenseMapInfo::canHandle(In))
3695 continue;
3696
3697 // Check if we can replace this instruction with any of the
3698 // visited instructions.
3699 if (Instruction *V = CSEMap.lookup(In)) {
3700 In->replaceAllUsesWith(V);
3701 In->eraseFromParent();
3702 continue;
3703 }
3704
3705 CSEMap[In] = In;
3706 }
3707}
3708
3709/// \brief Estimate the overhead of scalarizing an instruction. This is a
3710/// convenience wrapper for the type-based getScalarizationOverhead API.
3711static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
3712 const TargetTransformInfo &TTI) {
3713 if (VF == 1)
3714 return 0;
3715
3716 unsigned Cost = 0;
3717 Type *RetTy = ToVectorTy(I->getType(), VF);
3718 if (!RetTy->isVoidTy() &&
3719 (!isa<LoadInst>(I) ||
3720 !TTI.supportsEfficientVectorElementLoadStore()))
3721 Cost += TTI.getScalarizationOverhead(RetTy, true, false);
3722
3723 if (CallInst *CI = dyn_cast<CallInst>(I)) {
3724 SmallVector<const Value *, 4> Operands(CI->arg_operands());
3725 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3726 }
3727 else if (!isa<StoreInst>(I) ||
3728 !TTI.supportsEfficientVectorElementLoadStore()) {
3729 SmallVector<const Value *, 4> Operands(I->operand_values());
3730 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3731 }
3732
3733 return Cost;
3734}
3735
3736// Estimate cost of a call instruction CI if it were vectorized with factor VF.
3737// Return the cost of the instruction, including scalarization overhead if it's
3738// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3739// i.e. either vector version isn't available, or is too expensive.
3740static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3741 const TargetTransformInfo &TTI,
3742 const TargetLibraryInfo *TLI,
3743 bool &NeedToScalarize) {
3744 Function *F = CI->getCalledFunction();
3745 StringRef FnName = CI->getCalledFunction()->getName();
3746 Type *ScalarRetTy = CI->getType();
3747 SmallVector<Type *, 4> Tys, ScalarTys;
3748 for (auto &ArgOp : CI->arg_operands())
3749 ScalarTys.push_back(ArgOp->getType());
3750
3751 // Estimate cost of scalarized vector call. The source operands are assumed
3752 // to be vectors, so we need to extract individual elements from there,
3753 // execute VF scalar calls, and then gather the result into the vector return
3754 // value.
3755 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3756 if (VF == 1)
3757 return ScalarCallCost;
3758
3759 // Compute corresponding vector type for return value and arguments.
3760 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3761 for (Type *ScalarTy : ScalarTys)
3762 Tys.push_back(ToVectorTy(ScalarTy, VF));
3763
3764 // Compute costs of unpacking argument values for the scalar calls and
3765 // packing the return values to a vector.
3766 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
3767
3768 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3769
3770 // If we can't emit a vector call for this function, then the currently found
3771 // cost is the cost we need to return.
3772 NeedToScalarize = true;
3773 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3774 return Cost;
3775
3776 // If the corresponding vector cost is cheaper, return its cost.
3777 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3778 if (VectorCallCost < Cost) {
3779 NeedToScalarize = false;
3780 return VectorCallCost;
3781 }
3782 return Cost;
3783}
3784
3785// Estimate cost of an intrinsic call instruction CI if it were vectorized with
3786// factor VF. Return the cost of the instruction, including scalarization
3787// overhead if it's needed.
3788static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3789 const TargetTransformInfo &TTI,
3790 const TargetLibraryInfo *TLI) {
3791 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3792 assert(ID && "Expected intrinsic call!")(static_cast <bool> (ID && "Expected intrinsic call!"
) ? void (0) : __assert_fail ("ID && \"Expected intrinsic call!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3792, __extension__ __PRETTY_FUNCTION__))
;
3793
3794 FastMathFlags FMF;
3795 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3796 FMF = FPMO->getFastMathFlags();
3797
3798 SmallVector<Value *, 4> Operands(CI->arg_operands());
3799 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3800}
3801
3802static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3803 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3804 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3805 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3806}
3807static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3808 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3809 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3810 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3811}
3812
3813void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3814 // For every instruction `I` in MinBWs, truncate the operands, create a
3815 // truncated version of `I` and reextend its result. InstCombine runs
3816 // later and will remove any ext/trunc pairs.
3817 SmallPtrSet<Value *, 4> Erased;
3818 for (const auto &KV : Cost->getMinimalBitwidths()) {
3819 // If the value wasn't vectorized, we must maintain the original scalar
3820 // type. The absence of the value from VectorLoopValueMap indicates that it
3821 // wasn't vectorized.
3822 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3823 continue;
3824 for (unsigned Part = 0; Part < UF; ++Part) {
3825 Value *I = getOrCreateVectorValue(KV.first, Part);
3826 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3827 continue;
3828 Type *OriginalTy = I->getType();
3829 Type *ScalarTruncatedTy =
3830 IntegerType::get(OriginalTy->getContext(), KV.second);
3831 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3832 OriginalTy->getVectorNumElements());
3833 if (TruncatedTy == OriginalTy)
3834 continue;
3835
3836 IRBuilder<> B(cast<Instruction>(I));
3837 auto ShrinkOperand = [&](Value *V) -> Value * {
3838 if (auto *ZI = dyn_cast<ZExtInst>(V))
3839 if (ZI->getSrcTy() == TruncatedTy)
3840 return ZI->getOperand(0);
3841 return B.CreateZExtOrTrunc(V, TruncatedTy);
3842 };
3843
3844 // The actual instruction modification depends on the instruction type,
3845 // unfortunately.
3846 Value *NewI = nullptr;
3847 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3848 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3849 ShrinkOperand(BO->getOperand(1)));
3850
3851 // Any wrapping introduced by shrinking this operation shouldn't be
3852 // considered undefined behavior. So, we can't unconditionally copy
3853 // arithmetic wrapping flags to NewI.
3854 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3855 } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3856 NewI =
3857 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3858 ShrinkOperand(CI->getOperand(1)));
3859 } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3860 NewI = B.CreateSelect(SI->getCondition(),
3861 ShrinkOperand(SI->getTrueValue()),
3862 ShrinkOperand(SI->getFalseValue()));
3863 } else if (auto *CI = dyn_cast<CastInst>(I)) {
3864 switch (CI->getOpcode()) {
3865 default:
3866 llvm_unreachable("Unhandled cast!")::llvm::llvm_unreachable_internal("Unhandled cast!", "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3866)
;
3867 case Instruction::Trunc:
3868 NewI = ShrinkOperand(CI->getOperand(0));
3869 break;
3870 case Instruction::SExt:
3871 NewI = B.CreateSExtOrTrunc(
3872 CI->getOperand(0),
3873 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3874 break;
3875 case Instruction::ZExt:
3876 NewI = B.CreateZExtOrTrunc(
3877 CI->getOperand(0),
3878 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3879 break;
3880 }
3881 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3882 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3883 auto *O0 = B.CreateZExtOrTrunc(
3884 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3885 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3886 auto *O1 = B.CreateZExtOrTrunc(
3887 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3888
3889 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3890 } else if (isa<LoadInst>(I)) {
3891 // Don't do anything with the operands, just extend the result.
3892 continue;
3893 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3894 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3895 auto *O0 = B.CreateZExtOrTrunc(
3896 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3897 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3898 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3899 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3900 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3901 auto *O0 = B.CreateZExtOrTrunc(
3902 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3903 NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3904 } else {
3905 llvm_unreachable("Unhandled instruction type!")::llvm::llvm_unreachable_internal("Unhandled instruction type!"
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3905)
;
3906 }
3907
3908 // Lastly, extend the result.
3909 NewI->takeName(cast<Instruction>(I));
3910 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3911 I->replaceAllUsesWith(Res);
3912 cast<Instruction>(I)->eraseFromParent();
3913 Erased.insert(I);
3914 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3915 }
3916 }
3917
3918 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3919 for (const auto &KV : Cost->getMinimalBitwidths()) {
3920 // If the value wasn't vectorized, we must maintain the original scalar
3921 // type. The absence of the value from VectorLoopValueMap indicates that it
3922 // wasn't vectorized.
3923 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3924 continue;
3925 for (unsigned Part = 0; Part < UF; ++Part) {
3926 Value *I = getOrCreateVectorValue(KV.first, Part);
3927 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3928 if (Inst && Inst->use_empty()) {
3929 Value *NewI = Inst->getOperand(0);
3930 Inst->eraseFromParent();
3931 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3932 }
3933 }
3934 }
3935}
3936
3937void InnerLoopVectorizer::fixVectorizedLoop() {
3938 // Insert truncates and extends for any truncated instructions as hints to
3939 // InstCombine.
3940 if (VF > 1)
3941 truncateToMinimalBitwidths();
3942
3943 // At this point every instruction in the original loop is widened to a
3944 // vector form. Now we need to fix the recurrences in the loop. These PHI
3945 // nodes are currently empty because we did not want to introduce cycles.
3946 // This is the second stage of vectorizing recurrences.
3947 fixCrossIterationPHIs();
3948
3949 // Update the dominator tree.
3950 //
3951 // FIXME: After creating the structure of the new loop, the dominator tree is
3952 // no longer up-to-date, and it remains that way until we update it
3953 // here. An out-of-date dominator tree is problematic for SCEV,
3954 // because SCEVExpander uses it to guide code generation. The
3955 // vectorizer use SCEVExpanders in several places. Instead, we should
3956 // keep the dominator tree up-to-date as we go.
3957 updateAnalysis();
3958
3959 // Fix-up external users of the induction variables.
3960 for (auto &Entry : *Legal->getInductionVars())
3961 fixupIVUsers(Entry.first, Entry.second,
3962 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3963 IVEndValues[Entry.first], LoopMiddleBlock);
3964
3965 fixLCSSAPHIs();
3966 for (Instruction *PI : PredicatedInstructions)
3967 sinkScalarOperands(&*PI);
3968
3969 // Remove redundant induction instructions.
3970 cse(LoopVectorBody);
3971}
3972
3973void InnerLoopVectorizer::fixCrossIterationPHIs() {
3974 // In order to support recurrences we need to be able to vectorize Phi nodes.
3975 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3976 // stage #2: We now need to fix the recurrences by adding incoming edges to
3977 // the currently empty PHI nodes. At this point every instruction in the
3978 // original loop is widened to a vector form so we can use them to construct
3979 // the incoming edges.
3980 for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3981 // Handle first-order recurrences and reductions that need to be fixed.
3982 if (Legal->isFirstOrderRecurrence(&Phi))
3983 fixFirstOrderRecurrence(&Phi);
3984 else if (Legal->isReductionVariable(&Phi))
3985 fixReduction(&Phi);
3986 }
3987}
3988
3989void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3990 // This is the second phase of vectorizing first-order recurrences. An
3991 // overview of the transformation is described below. Suppose we have the
3992 // following loop.
3993 //
3994 // for (int i = 0; i < n; ++i)
3995 // b[i] = a[i] - a[i - 1];
3996 //
3997 // There is a first-order recurrence on "a". For this loop, the shorthand
3998 // scalar IR looks like:
3999 //
4000 // scalar.ph:
4001 // s_init = a[-1]
4002 // br scalar.body
4003 //
4004 // scalar.body:
4005 // i = phi [0, scalar.ph], [i+1, scalar.body]
4006 // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4007 // s2 = a[i]
4008 // b[i] = s2 - s1
4009 // br cond, scalar.body, ...
4010 //
4011 // In this example, s1 is a recurrence because it's value depends on the
4012 // previous iteration. In the first phase of vectorization, we created a
4013 // temporary value for s1. We now complete the vectorization and produce the
4014 // shorthand vector IR shown below (for VF = 4, UF = 1).
4015 //
4016 // vector.ph:
4017 // v_init = vector(..., ..., ..., a[-1])
4018 // br vector.body
4019 //
4020 // vector.body
4021 // i = phi [0, vector.ph], [i+4, vector.body]
4022 // v1 = phi [v_init, vector.ph], [v2, vector.body]
4023 // v2 = a[i, i+1, i+2, i+3];
4024 // v3 = vector(v1(3), v2(0, 1, 2))
4025 // b[i, i+1, i+2, i+3] = v2 - v3
4026 // br cond, vector.body, middle.block
4027 //
4028 // middle.block:
4029 // x = v2(3)
4030 // br scalar.ph
4031 //
4032 // scalar.ph:
4033 // s_init = phi [x, middle.block], [a[-1], otherwise]
4034 // br scalar.body
4035 //
4036 // After execution completes the vector loop, we extract the next value of
4037 // the recurrence (x) to use as the initial value in the scalar loop.
4038
4039 // Get the original loop preheader and single loop latch.
4040 auto *Preheader = OrigLoop->getLoopPreheader();
4041 auto *Latch = OrigLoop->getLoopLatch();
4042
4043 // Get the initial and previous values of the scalar recurrence.
4044 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4045 auto *Previous = Phi->getIncomingValueForBlock(Latch);
4046
4047 // Create a vector from the initial value.
4048 auto *VectorInit = ScalarInit;
4049 if (VF > 1) {
4050 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4051 VectorInit = Builder.CreateInsertElement(
4052 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4053 Builder.getInt32(VF - 1), "vector.recur.init");
4054 }
4055
4056 // We constructed a temporary phi node in the first phase of vectorization.
4057 // This phi node will eventually be deleted.
4058 Builder.SetInsertPoint(
4059 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
4060
4061 // Create a phi node for the new recurrence. The current value will either be
4062 // the initial value inserted into a vector or loop-varying vector value.
4063 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4064 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4065
4066 // Get the vectorized previous value of the last part UF - 1. It appears last
4067 // among all unrolled iterations, due to the order of their construction.
4068 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
4069
4070 // Set the insertion point after the previous value if it is an instruction.
4071 // Note that the previous value may have been constant-folded so it is not
4072 // guaranteed to be an instruction in the vector loop. Also, if the previous
4073 // value is a phi node, we should insert after all the phi nodes to avoid
4074 // breaking basic block verification.
4075 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
4076 isa<PHINode>(PreviousLastPart))
4077 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
4078 else
4079 Builder.SetInsertPoint(
4080 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
4081
4082 // We will construct a vector for the recurrence by combining the values for
4083 // the current and previous iterations. This is the required shuffle mask.
4084 SmallVector<Constant *, 8> ShuffleMask(VF);
4085 ShuffleMask[0] = Builder.getInt32(VF - 1);
4086 for (unsigned I = 1; I < VF; ++I)
4087 ShuffleMask[I] = Builder.getInt32(I + VF - 1);
4088
4089 // The vector from which to take the initial value for the current iteration
4090 // (actual or unrolled). Initially, this is the vector phi node.
4091 Value *Incoming = VecPhi;
4092
4093 // Shuffle the current and previous vector and update the vector parts.
4094 for (unsigned Part = 0; Part < UF; ++Part) {
4095 Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
4096 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
4097 auto *Shuffle =
4098 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
4099 ConstantVector::get(ShuffleMask))
4100 : Incoming;
4101 PhiPart->replaceAllUsesWith(Shuffle);
4102 cast<Instruction>(PhiPart)->eraseFromParent();
4103 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
4104 Incoming = PreviousPart;
4105 }
4106
4107 // Fix the latch value of the new recurrence in the vector loop.
4108 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4109
4110 // Extract the last vector element in the middle block. This will be the
4111 // initial value for the recurrence when jumping to the scalar loop.
4112 auto *ExtractForScalar = Incoming;
4113 if (VF > 1) {
4114 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4115 ExtractForScalar = Builder.CreateExtractElement(
4116 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
4117 }
4118 // Extract the second last element in the middle block if the
4119 // Phi is used outside the loop. We need to extract the phi itself
4120 // and not the last element (the phi update in the current iteration). This
4121 // will be the value when jumping to the exit block from the LoopMiddleBlock,
4122 // when the scalar loop is not run at all.
4123 Value *ExtractForPhiUsedOutsideLoop = nullptr;
4124 if (VF > 1)
4125 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4126 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
4127 // When loop is unrolled without vectorizing, initialize
4128 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4129 // `Incoming`. This is analogous to the vectorized case above: extracting the
4130 // second last element when VF > 1.
4131 else if (UF > 1)
4132 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
4133
4134 // Fix the initial value of the original recurrence in the scalar loop.
4135 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4136 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4137 for (auto *BB : predecessors(LoopScalarPreHeader)) {
4138 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4139 Start->addIncoming(Incoming, BB);
4140 }
4141
4142 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
4143 Phi->setName("scalar.recur");
4144
4145 // Finally, fix users of the recurrence outside the loop. The users will need
4146 // either the last value of the scalar recurrence or the last value of the
4147 // vector recurrence we extracted in the middle block. Since the loop is in
4148 // LCSSA form, we just need to find the phi node for the original scalar
4149 // recurrence in the exit block, and then add an edge for the middle block.
4150 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4151 if (LCSSAPhi.getIncomingValue(0) == Phi) {
4152 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4153 break;
4154 }
4155 }
4156}
4157
4158void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
4159 Constant *Zero = Builder.getInt32(0);
4160
4161 // Get it's reduction variable descriptor.
4162 assert(Legal->isReductionVariable(Phi) &&(static_cast <bool> (Legal->isReductionVariable(Phi)
&& "Unable to find the reduction variable") ? void (
0) : __assert_fail ("Legal->isReductionVariable(Phi) && \"Unable to find the reduction variable\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4163, __extension__ __PRETTY_FUNCTION__))
4163 "Unable to find the reduction variable")(static_cast <bool> (Legal->isReductionVariable(Phi)
&& "Unable to find the reduction variable") ? void (
0) : __assert_fail ("Legal->isReductionVariable(Phi) && \"Unable to find the reduction variable\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4163, __extension__ __PRETTY_FUNCTION__))
;
4164 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
4165
4166 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4167 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4168 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4169 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
4170 RdxDesc.getMinMaxRecurrenceKind();
4171 setDebugLocFromInst(Builder, ReductionStartValue);
4172
4173 // We need to generate a reduction vector from the incoming scalar.
4174 // To do so, we need to generate the 'identity' vector and override
4175 // one of the elements with the incoming scalar reduction. We need
4176 // to do it in the vector-loop preheader.
4177 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4178
4179 // This is the vector-clone of the value that leaves the loop.
4180 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
4181
4182 // Find the reduction identity variable. Zero for addition, or, xor,
4183 // one for multiplication, -1 for And.
4184 Value *Identity;
4185 Value *VectorStart;
4186 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
4187 RK == RecurrenceDescriptor::RK_FloatMinMax) {
4188 // MinMax reduction have the start value as their identify.
4189 if (VF == 1) {
4190 VectorStart = Identity = ReductionStartValue;
4191 } else {
4192 VectorStart = Identity =
4193 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
4194 }
4195 } else {
4196 // Handle other reduction kinds:
4197 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
4198 RK, VecTy->getScalarType());
4199 if (VF == 1) {
4200 Identity = Iden;
4201 // This vector is the Identity vector where the first element is the
4202 // incoming scalar reduction.
4203 VectorStart = ReductionStartValue;
4204 } else {
4205 Identity = ConstantVector::getSplat(VF, Iden);
4206
4207 // This vector is the Identity vector where the first element is the
4208 // incoming scalar reduction.
4209 VectorStart =
4210 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
4211 }
4212 }
4213
4214 // Fix the vector-loop phi.
4215
4216 // Reductions do not have to start at zero. They can start with
4217 // any loop invariant values.
4218 BasicBlock *Latch = OrigLoop->getLoopLatch();
4219 Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4220 for (unsigned Part = 0; Part < UF; ++Part) {
4221 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
4222 Value *Val = getOrCreateVectorValue(LoopVal, Part);
4223 // Make sure to add the reduction stat value only to the
4224 // first unroll part.
4225 Value *StartVal = (Part == 0) ? VectorStart : Identity;
4226 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
4227 cast<PHINode>(VecRdxPhi)
4228 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4229 }
4230
4231 // Before each round, move the insertion point right between
4232 // the PHIs and the values we are going to write.
4233 // This allows us to write both PHINodes and the extractelement
4234 // instructions.
4235 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4236
4237 setDebugLocFromInst(Builder, LoopExitInst);
4238
4239 // If the vector reduction can be performed in a smaller type, we truncate
4240 // then extend the loop exit value to enable InstCombine to evaluate the
4241 // entire expression in the smaller type.
4242 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
4243 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4244 Builder.SetInsertPoint(
4245 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4246 VectorParts RdxParts(UF);
4247 for (unsigned Part = 0; Part < UF; ++Part) {
4248 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4249 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4250 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4251 : Builder.CreateZExt(Trunc, VecTy);
4252 for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4253 UI != RdxParts[Part]->user_end();)
4254 if (*UI != Trunc) {
4255 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4256 RdxParts[Part] = Extnd;
4257 } else {
4258 ++UI;
4259 }
4260 }
4261 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4262 for (unsigned Part = 0; Part < UF; ++Part) {
4263 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4264 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
4265 }
4266 }
4267
4268 // Reduce all of the unrolled parts into a single vector.
4269 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
4270 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4271 setDebugLocFromInst(Builder, ReducedPartRdx);
4272 for (unsigned Part = 1; Part < UF; ++Part) {
4273 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4274 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4275 // Floating point operations had to be 'fast' to enable the reduction.
4276 ReducedPartRdx = addFastMathFlag(
4277 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
4278 ReducedPartRdx, "bin.rdx"));
4279 else
4280 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
4281 Builder, MinMaxKind, ReducedPartRdx, RdxPart);
4282 }
4283
4284 if (VF > 1) {
4285 bool NoNaN = Legal->hasFunNoNaNAttr();
4286 ReducedPartRdx =
4287 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4288 // If the reduction can be performed in a smaller type, we need to extend
4289 // the reduction to the wider type before we branch to the original loop.
4290 if (Phi->getType() != RdxDesc.getRecurrenceType())
4291 ReducedPartRdx =
4292 RdxDesc.isSigned()
4293 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4294 : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4295 }
4296
4297 // Create a phi node that merges control-flow from the backedge-taken check
4298 // block and the middle block.
4299 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4300 LoopScalarPreHeader->getTerminator());
4301 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4302 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4303 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4304
4305 // Now, we need to fix the users of the reduction variable
4306 // inside and outside of the scalar remainder loop.
4307 // We know that the loop is in LCSSA form. We need to update the
4308 // PHI nodes in the exit blocks.
4309 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4310 // All PHINodes need to have a single entry edge, or two if
4311 // we already fixed them.
4312 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI")(static_cast <bool> (LCSSAPhi.getNumIncomingValues() <
3 && "Invalid LCSSA PHI") ? void (0) : __assert_fail
("LCSSAPhi.getNumIncomingValues() < 3 && \"Invalid LCSSA PHI\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4312, __extension__ __PRETTY_FUNCTION__))
;
4313
4314 // We found a reduction value exit-PHI. Update it with the
4315 // incoming bypass edge.
4316 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
4317 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4318 } // end of the LCSSA phi scan.
4319
4320 // Fix the scalar loop reduction variable with the incoming reduction sum
4321 // from the vector body and from the backedge value.
4322 int IncomingEdgeBlockIdx =
4323 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4324 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index")(static_cast <bool> (IncomingEdgeBlockIdx >= 0 &&
"Invalid block index") ? void (0) : __assert_fail ("IncomingEdgeBlockIdx >= 0 && \"Invalid block index\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4324, __extension__ __PRETTY_FUNCTION__))
;
4325 // Pick the other block.
4326 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4327 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4328 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4329}
4330
4331void InnerLoopVectorizer::fixLCSSAPHIs() {
4332 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4333 if (LCSSAPhi.getNumIncomingValues() == 1) {
4334 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) &&(static_cast <bool> (OrigLoop->isLoopInvariant(LCSSAPhi
.getIncomingValue(0)) && "Incoming value isn't loop invariant"
) ? void (0) : __assert_fail ("OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && \"Incoming value isn't loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4335, __extension__ __PRETTY_FUNCTION__))
4335 "Incoming value isn't loop invariant")(static_cast <bool> (OrigLoop->isLoopInvariant(LCSSAPhi
.getIncomingValue(0)) && "Incoming value isn't loop invariant"
) ? void (0) : __assert_fail ("OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && \"Incoming value isn't loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4335, __extension__ __PRETTY_FUNCTION__))
;
4336 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock);
4337 }
4338 }
4339}
4340
4341void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4342 // The basic block and loop containing the predicated instruction.
4343 auto *PredBB = PredInst->getParent();
4344 auto *VectorLoop = LI->getLoopFor(PredBB);
4345
4346 // Initialize a worklist with the operands of the predicated instruction.
4347 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4348
4349 // Holds instructions that we need to analyze again. An instruction may be
4350 // reanalyzed if we don't yet know if we can sink it or not.
4351 SmallVector<Instruction *, 8> InstsToReanalyze;
4352
4353 // Returns true if a given use occurs in the predicated block. Phi nodes use
4354 // their operands in their corresponding predecessor blocks.
4355 auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4356 auto *I = cast<Instruction>(U.getUser());
4357 BasicBlock *BB = I->getParent();
4358 if (auto *Phi = dyn_cast<PHINode>(I))
4359 BB = Phi->getIncomingBlock(
4360 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4361 return BB == PredBB;
4362 };
4363
4364 // Iteratively sink the scalarized operands of the predicated instruction
4365 // into the block we created for it. When an instruction is sunk, it's
4366 // operands are then added to the worklist. The algorithm ends after one pass
4367 // through the worklist doesn't sink a single instruction.
4368 bool Changed;
4369 do {
4370 // Add the instructions that need to be reanalyzed to the worklist, and
4371 // reset the changed indicator.
4372 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4373 InstsToReanalyze.clear();
4374 Changed = false;
4375
4376 while (!Worklist.empty()) {
4377 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4378
4379 // We can't sink an instruction if it is a phi node, is already in the
4380 // predicated block, is not in the loop, or may have side effects.
4381 if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4382 !VectorLoop->contains(I) || I->mayHaveSideEffects())
4383 continue;
4384
4385 // It's legal to sink the instruction if all its uses occur in the
4386 // predicated block. Otherwise, there's nothing to do yet, and we may
4387 // need to reanalyze the instruction.
4388 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4389 InstsToReanalyze.push_back(I);
4390 continue;
4391 }
4392
4393 // Move the instruction to the beginning of the predicated block, and add
4394 // it's operands to the worklist.
4395 I->moveBefore(&*PredBB->getFirstInsertionPt());
4396 Worklist.insert(I->op_begin(), I->op_end());
4397
4398 // The sinking may have enabled other instructions to be sunk, so we will
4399 // need to iterate.
4400 Changed = true;
4401 }
4402 } while (Changed);
4403}
4404
4405void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4406 unsigned VF) {
4407 assert(PN->getParent() == OrigLoop->getHeader() &&(static_cast <bool> (PN->getParent() == OrigLoop->
getHeader() && "Non-header phis should have been handled elsewhere"
) ? void (0) : __assert_fail ("PN->getParent() == OrigLoop->getHeader() && \"Non-header phis should have been handled elsewhere\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4408, __extension__ __PRETTY_FUNCTION__))
4408 "Non-header phis should have been handled elsewhere")(static_cast <bool> (PN->getParent() == OrigLoop->
getHeader() && "Non-header phis should have been handled elsewhere"
) ? void (0) : __assert_fail ("PN->getParent() == OrigLoop->getHeader() && \"Non-header phis should have been handled elsewhere\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4408, __extension__ __PRETTY_FUNCTION__))
;
4409
4410 PHINode *P = cast<PHINode>(PN);
4411 // In order to support recurrences we need to be able to vectorize Phi nodes.
4412 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4413 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4414 // this value when we vectorize all of the instructions that use the PHI.
4415 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4416 for (unsigned Part = 0; Part < UF; ++Part) {
4417 // This is phase one of vectorizing PHIs.
4418 Type *VecTy =
4419 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4420 Value *EntryPart = PHINode::Create(
4421 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4422 VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4423 }
4424 return;
4425 }
4426
4427 setDebugLocFromInst(Builder, P);
4428
4429 // This PHINode must be an induction variable.
4430 // Make sure that we know about it.
4431 assert(Legal->getInductionVars()->count(P) && "Not an induction variable")(static_cast <bool> (Legal->getInductionVars()->count
(P) && "Not an induction variable") ? void (0) : __assert_fail
("Legal->getInductionVars()->count(P) && \"Not an induction variable\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4431, __extension__ __PRETTY_FUNCTION__))
;
4432
4433 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4434 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4435
4436 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4437 // which can be found from the original scalar operations.
4438 switch (II.getKind()) {
4439 case InductionDescriptor::IK_NoInduction:
4440 llvm_unreachable("Unknown induction")::llvm::llvm_unreachable_internal("Unknown induction", "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4440)
;
4441 case InductionDescriptor::IK_IntInduction:
4442 case InductionDescriptor::IK_FpInduction:
4443 llvm_unreachable("Integer/fp induction is handled elsewhere.")::llvm::llvm_unreachable_internal("Integer/fp induction is handled elsewhere."
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4443)
;
4444 case InductionDescriptor::IK_PtrInduction: {
4445 // Handle the pointer induction variable case.
4446 assert(P->getType()->isPointerTy() && "Unexpected type.")(static_cast <bool> (P->getType()->isPointerTy() &&
"Unexpected type.") ? void (0) : __assert_fail ("P->getType()->isPointerTy() && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4446, __extension__ __PRETTY_FUNCTION__))
;
4447 // This is the normalized GEP that starts counting at zero.
4448 Value *PtrInd = Induction;
4449 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4450 // Determine the number of scalars we need to generate for each unroll
4451 // iteration. If the instruction is uniform, we only need to generate the
4452 // first lane. Otherwise, we generate all VF values.
4453 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4454 // These are the scalar results. Notice that we don't generate vector GEPs
4455 // because scalar GEPs result in better code.
4456 for (unsigned Part = 0; Part < UF; ++Part) {
4457 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4458 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4459 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4460 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4461 SclrGep->setName("next.gep");
4462 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4463 }
4464 }
4465 return;
4466 }
4467 }
4468}
4469
4470/// A helper function for checking whether an integer division-related
4471/// instruction may divide by zero (in which case it must be predicated if
4472/// executed conditionally in the scalar code).
4473/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4474/// Non-zero divisors that are non compile-time constants will not be
4475/// converted into multiplication, so we will still end up scalarizing
4476/// the division, but can do so w/o predication.
4477static bool mayDivideByZero(Instruction &I) {
4478 assert((I.getOpcode() == Instruction::UDiv ||(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4482, __extension__ __PRETTY_FUNCTION__))
4479 I.getOpcode() == Instruction::SDiv ||(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4482, __extension__ __PRETTY_FUNCTION__))
4480 I.getOpcode() == Instruction::URem ||(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4482, __extension__ __PRETTY_FUNCTION__))
4481 I.getOpcode() == Instruction::SRem) &&(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4482, __extension__ __PRETTY_FUNCTION__))
4482 "Unexpected instruction")(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4482, __extension__ __PRETTY_FUNCTION__))
;
4483 Value *Divisor = I.getOperand(1);
4484 auto *CInt = dyn_cast<ConstantInt>(Divisor);
4485 return !CInt || CInt->isZero();
4486}
4487
4488void InnerLoopVectorizer::widenInstruction(Instruction &I) {
4489 switch (I.getOpcode()) {
4490 case Instruction::Br:
4491 case Instruction::PHI:
4492 llvm_unreachable("This instruction is handled by a different recipe.")::llvm::llvm_unreachable_internal("This instruction is handled by a different recipe."
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4492)
;
4493 case Instruction::GetElementPtr: {
4494 // Construct a vector GEP by widening the operands of the scalar GEP as
4495 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4496 // results in a vector of pointers when at least one operand of the GEP
4497 // is vector-typed. Thus, to keep the representation compact, we only use
4498 // vector-typed operands for loop-varying values.
4499 auto *GEP = cast<GetElementPtrInst>(&I);
4500
4501 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
4502 // If we are vectorizing, but the GEP has only loop-invariant operands,
4503 // the GEP we build (by only using vector-typed operands for
4504 // loop-varying values) would be a scalar pointer. Thus, to ensure we
4505 // produce a vector of pointers, we need to either arbitrarily pick an
4506 // operand to broadcast, or broadcast a clone of the original GEP.
4507 // Here, we broadcast a clone of the original.
4508 //
4509 // TODO: If at some point we decide to scalarize instructions having
4510 // loop-invariant operands, this special case will no longer be
4511 // required. We would add the scalarization decision to
4512 // collectLoopScalars() and teach getVectorValue() to broadcast
4513 // the lane-zero scalar value.
4514 auto *Clone = Builder.Insert(GEP->clone());
4515 for (unsigned Part = 0; Part < UF; ++Part) {
4516 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4517 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
4518 addMetadata(EntryPart, GEP);
4519 }
4520 } else {
4521 // If the GEP has at least one loop-varying operand, we are sure to
4522 // produce a vector of pointers. But if we are only unrolling, we want
4523 // to produce a scalar GEP for each unroll part. Thus, the GEP we
4524 // produce with the code below will be scalar (if VF == 1) or vector
4525 // (otherwise). Note that for the unroll-only case, we still maintain
4526 // values in the vector mapping with initVector, as we do for other
4527 // instructions.
4528 for (unsigned Part = 0; Part < UF; ++Part) {
4529 // The pointer operand of the new GEP. If it's loop-invariant, we
4530 // won't broadcast it.
4531 auto *Ptr =
4532 OrigLoop->isLoopInvariant(GEP->getPointerOperand())
4533 ? GEP->getPointerOperand()
4534 : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4535
4536 // Collect all the indices for the new GEP. If any index is
4537 // loop-invariant, we won't broadcast it.
4538 SmallVector<Value *, 4> Indices;
4539 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
4540 if (OrigLoop->isLoopInvariant(U.get()))
4541 Indices.push_back(U.get());
4542 else
4543 Indices.push_back(getOrCreateVectorValue(U.get(), Part));
4544 }
4545
4546 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4547 // but it should be a vector, otherwise.
4548 auto *NewGEP = GEP->isInBounds()
4549 ? Builder.CreateInBoundsGEP(Ptr, Indices)
4550 : Builder.CreateGEP(Ptr, Indices);
4551 assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&(static_cast <bool> ((VF == 1 || NewGEP->getType()->
isVectorTy()) && "NewGEP is not a pointer vector") ? void
(0) : __assert_fail ("(VF == 1 || NewGEP->getType()->isVectorTy()) && \"NewGEP is not a pointer vector\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4552, __extension__ __PRETTY_FUNCTION__))
4552 "NewGEP is not a pointer vector")(static_cast <bool> ((VF == 1 || NewGEP->getType()->
isVectorTy()) && "NewGEP is not a pointer vector") ? void
(0) : __assert_fail ("(VF == 1 || NewGEP->getType()->isVectorTy()) && \"NewGEP is not a pointer vector\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4552, __extension__ __PRETTY_FUNCTION__))
;
4553 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
4554 addMetadata(NewGEP, GEP);
4555 }
4556 }
4557
4558 break;
4559 }
4560 case Instruction::UDiv:
4561 case Instruction::SDiv:
4562 case Instruction::SRem:
4563 case Instruction::URem:
4564 case Instruction::Add:
4565 case Instruction::FAdd:
4566 case Instruction::Sub:
4567 case Instruction::FSub:
4568 case Instruction::Mul:
4569 case Instruction::FMul:
4570 case Instruction::FDiv:
4571 case Instruction::FRem:
4572 case Instruction::Shl:
4573 case Instruction::LShr:
4574 case Instruction::AShr:
4575 case Instruction::And:
4576 case Instruction::Or:
4577 case Instruction::Xor: {
4578 // Just widen binops.
4579 auto *BinOp = cast<BinaryOperator>(&I);
4580 setDebugLocFromInst(Builder, BinOp);
4581
4582 for (unsigned Part = 0; Part < UF; ++Part) {
4583 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
4584 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
4585 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
4586
4587 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4588 VecOp->copyIRFlags(BinOp);
4589
4590 // Use this vector value for all users of the original instruction.
4591 VectorLoopValueMap.setVectorValue(&I, Part, V);
4592 addMetadata(V, BinOp);
4593 }
4594
4595 break;
4596 }
4597 case Instruction::Select: {
4598 // Widen selects.
4599 // If the selector is loop invariant we can create a select
4600 // instruction with a scalar condition. Otherwise, use vector-select.
4601 auto *SE = PSE.getSE();
4602 bool InvariantCond =
4603 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4604 setDebugLocFromInst(Builder, &I);
4605
4606 // The condition can be loop invariant but still defined inside the
4607 // loop. This means that we can't just use the original 'cond' value.
4608 // We have to take the 'vectorized' value and pick the first lane.
4609 // Instcombine will make this a no-op.
4610
4611 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4612
4613 for (unsigned Part = 0; Part < UF; ++Part) {
4614 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4615 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4616 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4617 Value *Sel =
4618 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4619 VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4620 addMetadata(Sel, &I);
4621 }
4622
4623 break;
4624 }
4625
4626 case Instruction::ICmp:
4627 case Instruction::FCmp: {
4628 // Widen compares. Generate vector compares.
4629 bool FCmp = (I.getOpcode() == Instruction::FCmp);
4630 auto *Cmp = dyn_cast<CmpInst>(&I);
4631 setDebugLocFromInst(Builder, Cmp);
4632 for (unsigned Part = 0; Part < UF; ++Part) {
4633 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
4634 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
4635 Value *C = nullptr;
4636 if (FCmp) {
4637 // Propagate fast math flags.
4638 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4639 Builder.setFastMathFlags(Cmp->getFastMathFlags());
4640 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4641 } else {
4642 C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4643 }
4644 VectorLoopValueMap.setVectorValue(&I, Part, C);
4645 addMetadata(C, &I);
4646 }
4647
4648 break;
4649 }
4650
4651 case Instruction::ZExt:
4652 case Instruction::SExt:
4653 case Instruction::FPToUI:
4654 case Instruction::FPToSI:
4655 case Instruction::FPExt:
4656 case Instruction::PtrToInt:
4657 case Instruction::IntToPtr:
4658 case Instruction::SIToFP:
4659 case Instruction::UIToFP:
4660 case Instruction::Trunc:
4661 case Instruction::FPTrunc:
4662 case Instruction::BitCast: {
4663 auto *CI = dyn_cast<CastInst>(&I);
4664 setDebugLocFromInst(Builder, CI);
4665
4666 /// Vectorize casts.
4667 Type *DestTy =
4668 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4669
4670 for (unsigned Part = 0; Part < UF; ++Part) {
4671 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
4672 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4673 VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4674 addMetadata(Cast, &I);
4675 }
4676 break;
4677 }
4678
4679 case Instruction::Call: {
4680 // Ignore dbg intrinsics.
4681 if (isa<DbgInfoIntrinsic>(I))
4682 break;
4683 setDebugLocFromInst(Builder, &I);
4684
4685 Module *M = I.getParent()->getParent()->getParent();
4686 auto *CI = cast<CallInst>(&I);
4687
4688 StringRef FnName = CI->getCalledFunction()->getName();
4689 Function *F = CI->getCalledFunction();
4690 Type *RetTy = ToVectorTy(CI->getType(), VF);
4691 SmallVector<Type *, 4> Tys;
4692 for (Value *ArgOperand : CI->arg_operands())
4693 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4694
4695 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4696
4697 // The flag shows whether we use Intrinsic or a usual Call for vectorized
4698 // version of the instruction.
4699 // Is it beneficial to perform intrinsic call compared to lib call?
4700 bool NeedToScalarize;
4701 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4702 bool UseVectorIntrinsic =
4703 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4704 assert((UseVectorIntrinsic || !NeedToScalarize) &&(static_cast <bool> ((UseVectorIntrinsic || !NeedToScalarize
) && "Instruction should be scalarized elsewhere.") ?
void (0) : __assert_fail ("(UseVectorIntrinsic || !NeedToScalarize) && \"Instruction should be scalarized elsewhere.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4705, __extension__ __PRETTY_FUNCTION__))
4705 "Instruction should be scalarized elsewhere.")(static_cast <bool> ((UseVectorIntrinsic || !NeedToScalarize
) && "Instruction should be scalarized elsewhere.") ?
void (0) : __assert_fail ("(UseVectorIntrinsic || !NeedToScalarize) && \"Instruction should be scalarized elsewhere.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4705, __extension__ __PRETTY_FUNCTION__))
;
4706
4707 for (unsigned Part = 0; Part < UF; ++Part) {
4708 SmallVector<Value *, 4> Args;
4709 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4710 Value *Arg = CI->getArgOperand(i);
4711 // Some intrinsics have a scalar argument - don't replace it with a
4712 // vector.
4713 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
4714 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
4715 Args.push_back(Arg);
4716 }
4717
4718 Function *VectorF;
4719 if (UseVectorIntrinsic) {
4720 // Use vector version of the intrinsic.
4721 Type *TysForDecl[] = {CI->getType()};
4722 if (VF > 1)
4723 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4724 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4725 } else {
4726 // Use vector version of the library call.
4727 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4728 assert(!VFnName.empty() && "Vector function name is empty.")(static_cast <bool> (!VFnName.empty() && "Vector function name is empty."
) ? void (0) : __assert_fail ("!VFnName.empty() && \"Vector function name is empty.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4728, __extension__ __PRETTY_FUNCTION__))
;
4729 VectorF = M->getFunction(VFnName);
4730 if (!VectorF) {
4731 // Generate a declaration
4732 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4733 VectorF =
4734 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4735 VectorF->copyAttributesFrom(F);
4736 }
4737 }
4738 assert(VectorF && "Can't create vector function.")(static_cast <bool> (VectorF && "Can't create vector function."
) ? void (0) : __assert_fail ("VectorF && \"Can't create vector function.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4738, __extension__ __PRETTY_FUNCTION__))
;
4739
4740 SmallVector<OperandBundleDef, 1> OpBundles;
4741 CI->getOperandBundlesAsDefs(OpBundles);
4742 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4743
4744 if (isa<FPMathOperator>(V))
4745 V->copyFastMathFlags(CI);
4746
4747 VectorLoopValueMap.setVectorValue(&I, Part, V);
4748 addMetadata(V, &I);
4749 }
4750
4751 break;
4752 }
4753
4754 default:
4755 // This instruction is not vectorized by simple widening.
4756 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an unhandled instruction: "
<< I; } } while (false)
;
4757 llvm_unreachable("Unhandled instruction!")::llvm::llvm_unreachable_internal("Unhandled instruction!", "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4757)
;
4758 } // end of switch.
4759}
4760
4761void InnerLoopVectorizer::updateAnalysis() {
4762 // Forget the original basic block.
4763 PSE.getSE()->forgetLoop(OrigLoop);
4764
4765 // Update the dominator tree information.
4766 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&(static_cast <bool> (DT->properlyDominates(LoopBypassBlocks
.front(), LoopExitBlock) && "Entry does not dominate exit."
) ? void (0) : __assert_fail ("DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && \"Entry does not dominate exit.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4767, __extension__ __PRETTY_FUNCTION__))
4767 "Entry does not dominate exit.")(static_cast <bool> (DT->properlyDominates(LoopBypassBlocks
.front(), LoopExitBlock) && "Entry does not dominate exit."
) ? void (0) : __assert_fail ("DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && \"Entry does not dominate exit.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4767, __extension__ __PRETTY_FUNCTION__))
;
4768
4769 DT->addNewBlock(LoopMiddleBlock,
4770 LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4771 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4772 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4773 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4774 assert(DT->verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel
::Fast)) ? void (0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4774, __extension__ __PRETTY_FUNCTION__))
;
4775}
4776
4777/// \brief Check whether it is safe to if-convert this phi node.
4778///
4779/// Phi nodes with constant expressions that can trap are not safe to if
4780/// convert.
4781static bool canIfConvertPHINodes(BasicBlock *BB) {
4782 for (PHINode &Phi : BB->phis()) {
4783 for (Value *V : Phi.incoming_values())
4784 if (auto *C = dyn_cast<Constant>(V))
4785 if (C->canTrap())
4786 return false;
4787 }
4788 return true;
4789}
4790
4791bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4792 if (!EnableIfConversion) {
4793 ORE->emit(createMissedAnalysis("IfConversionDisabled")
4794 << "if-conversion is disabled");
4795 return false;
4796 }
4797
4798 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable")(static_cast <bool> (TheLoop->getNumBlocks() > 1 &&
"Single block loops are vectorizable") ? void (0) : __assert_fail
("TheLoop->getNumBlocks() > 1 && \"Single block loops are vectorizable\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4798, __extension__ __PRETTY_FUNCTION__))
;
4799
4800 // A list of pointers that we can safely read and write to.
4801 SmallPtrSet<Value *, 8> SafePointes;
4802
4803 // Collect safe addresses.
4804 for (BasicBlock *BB : TheLoop->blocks()) {
4805 if (blockNeedsPredication(BB))
4806 continue;
4807
4808 for (Instruction &I : *BB)
4809 if (auto *Ptr = getLoadStorePointerOperand(&I))
4810 SafePointes.insert(Ptr);
4811 }
4812
4813 // Collect the blocks that need predication.
4814 BasicBlock *Header = TheLoop->getHeader();
4815 for (BasicBlock *BB : TheLoop->blocks()) {
4816 // We don't support switch statements inside loops.
4817 if (!isa<BranchInst>(BB->getTerminator())) {
4818 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
4819 << "loop contains a switch statement");
4820 return false;
4821 }
4822
4823 // We must be able to predicate all blocks that need to be predicated.
4824 if (blockNeedsPredication(BB)) {
4825 if (!blockCanBePredicated(BB, SafePointes)) {
4826 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
4827 << "control flow cannot be substituted for a select");
4828 return false;
4829 }
4830 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4831 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
4832 << "control flow cannot be substituted for a select");
4833 return false;
4834 }
4835 }
4836
4837 // We can if-convert this loop.
4838 return true;
4839}
4840
4841bool LoopVectorizationLegality::canVectorize() {
4842 // Store the result and return it at the end instead of exiting early, in case
4843 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
4844 bool Result = true;
4845
4846 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE"loop-vectorize");
4847 // We must have a loop in canonical form. Loops with indirectbr in them cannot
4848 // be canonicalized.
4849 if (!TheLoop->getLoopPreheader()) {
4850 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop doesn't have a legal pre-header.\n"
; } } while (false)
;
4851 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4852 << "loop control flow is not understood by vectorizer");
4853 if (DoExtraAnalysis)
4854 Result = false;
4855 else
4856 return false;
4857 }
4858
4859 // FIXME: The code is currently dead, since the loop gets sent to
4860 // LoopVectorizationLegality is already an innermost loop.
4861 //
4862 // We can only vectorize innermost loops.
4863 if (!TheLoop->empty()) {
4864 ORE->emit(createMissedAnalysis("NotInnermostLoop")
4865 << "loop is not the innermost loop");
4866 if (DoExtraAnalysis)
4867 Result = false;
4868 else
4869 return false;
4870 }
4871
4872 // We must have a single backedge.
4873 if (TheLoop->getNumBackEdges() != 1) {
4874 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4875 << "loop control flow is not understood by vectorizer");
4876 if (DoExtraAnalysis)
4877 Result = false;
4878 else
4879 return false;
4880 }
4881
4882 // We must have a single exiting block.
4883 if (!TheLoop->getExitingBlock()) {
4884 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4885 << "loop control flow is not understood by vectorizer");
4886 if (DoExtraAnalysis)
4887 Result = false;
4888 else
4889 return false;
4890 }
4891
4892 // We only handle bottom-tested loops, i.e. loop in which the condition is
4893 // checked at the end of each iteration. With that we can assume that all
4894 // instructions in the loop are executed the same number of times.
4895 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4896 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4897 << "loop control flow is not understood by vectorizer");
4898 if (DoExtraAnalysis)
4899 Result = false;
4900 else
4901 return false;
4902 }
4903
4904 // We need to have a loop header.
4905 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n'; } } while
(false)
4906 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n'; } } while
(false)
;
4907
4908 // Check if we can if-convert non-single-bb loops.
4909 unsigned NumBlocks = TheLoop->getNumBlocks();
4910 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4911 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't if-convert the loop.\n"
; } } while (false)
;
4912 if (DoExtraAnalysis)
4913 Result = false;
4914 else
4915 return false;
4916 }
4917
4918 // Check if we can vectorize the instructions and CFG in this loop.
4919 if (!canVectorizeInstrs()) {
4920 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize the instructions or CFG\n"
; } } while (false)
;
4921 if (DoExtraAnalysis)
4922 Result = false;
4923 else
4924 return false;
4925 }
4926
4927 // Go over each instruction and look at memory deps.
4928 if (!canVectorizeMemory()) {
4929 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize due to memory conflicts\n"
; } } while (false)
;
4930 if (DoExtraAnalysis)
4931 Result = false;
4932 else
4933 return false;
4934 }
4935
4936 DEBUG(dbgs() << "LV: We can vectorize this loop"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4937 << (LAI->getRuntimePointerChecking()->Needdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4938 ? " (with a runtime bound check)"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4939 : "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4940 << "!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
;
4941
4942 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
4943
4944 // If an override option has been passed in for interleaved accesses, use it.
4945 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
4946 UseInterleaved = EnableInterleavedMemAccesses;
4947
4948 // Analyze interleaved memory accesses.
4949 if (UseInterleaved)
4950 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides());
4951
4952 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4953 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4954 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4955
4956 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4957 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
4958 << "Too many SCEV assumptions need to be made and checked "
4959 << "at runtime");
4960 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Too many SCEV checks needed.\n"
; } } while (false)
;
4961 if (DoExtraAnalysis)
4962 Result = false;
4963 else
4964 return false;
4965 }
4966
4967 // Okay! We've done all the tests. If any have failed, return false. Otherwise
4968 // we can vectorize, and at this point we don't have any other mem analysis
4969 // which may limit our maximum vectorization factor, so just return true with
4970 // no restrictions.
4971 return Result;
4972}
4973
4974static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4975 if (Ty->isPointerTy())
4976 return DL.getIntPtrType(Ty);
4977
4978 // It is possible that char's or short's overflow when we ask for the loop's
4979 // trip count, work around this by changing the type size.
4980 if (Ty->getScalarSizeInBits() < 32)
4981 return Type::getInt32Ty(Ty->getContext());
4982
4983 return Ty;
4984}
4985
4986static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4987 Ty0 = convertPointerToIntegerType(DL, Ty0);
4988 Ty1 = convertPointerToIntegerType(DL, Ty1);
4989 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4990 return Ty0;
4991 return Ty1;
4992}
4993
4994/// \brief Check that the instruction has outside loop users and is not an
4995/// identified reduction variable.
4996static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4997 SmallPtrSetImpl<Value *> &AllowedExit) {
4998 // Reduction and Induction instructions are allowed to have exit users. All
4999 // other instructions must not have external users.
5000 if (!AllowedExit.count(Inst))
5001 // Check that all of the users of the loop are inside the BB.
5002 for (User *U : Inst->users()) {
5003 Instruction *UI = cast<Instruction>(U);
5004 // This user may be a reduction exit value.
5005 if (!TheLoop->contains(UI)) {
5006 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an outside user for : "
<< *UI << '\n'; } } while (false)
;
5007 return true;
5008 }
5009 }
5010 return false;
5011}
5012
5013void LoopVectorizationLegality::addInductionPhi(
5014 PHINode *Phi, const InductionDescriptor &ID,
5015 SmallPtrSetImpl<Value *> &AllowedExit) {
5016 Inductions[Phi] = ID;
5017
5018 // In case this induction also comes with casts that we know we can ignore
5019 // in the vectorized loop body, record them here. All casts could be recorded
5020 // here for ignoring, but suffices to record only the first (as it is the
5021 // only one that may bw used outside the cast sequence).
5022 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
5023 if (!Casts.empty())
5024 InductionCastsToIgnore.insert(*Casts.begin());
5025
5026 Type *PhiTy = Phi->getType();
5027 const DataLayout &DL = Phi->getModule()->getDataLayout();
5028
5029 // Get the widest type.
5030 if (!PhiTy->isFloatingPointTy()) {
5031 if (!WidestIndTy)
5032 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
5033 else
5034 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
5035 }
5036
5037 // Int inductions are special because we only allow one IV.
5038 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
5039 ID.getConstIntStepValue() &&
5040 ID.getConstIntStepValue()->isOne() &&
5041 isa<Constant>(ID.getStartValue()) &&
5042 cast<Constant>(ID.getStartValue())->isNullValue()) {
5043
5044 // Use the phi node with the widest type as induction. Use the last
5045 // one if there are multiple (no good reason for doing this other
5046 // than it is expedient). We've checked that it begins at zero and
5047 // steps by one, so this is a canonical induction variable.
5048 if (!PrimaryInduction || PhiTy == WidestIndTy)
5049 PrimaryInduction = Phi;
5050 }
5051
5052 // Both the PHI node itself, and the "post-increment" value feeding
5053 // back into the PHI node may have external users.
5054 // We can allow those uses, except if the SCEVs we have for them rely
5055 // on predicates that only hold within the loop, since allowing the exit
5056 // currently means re-using this SCEV outside the loop.
5057 if (PSE.getUnionPredicate().isAlwaysTrue()) {
5058 AllowedExit.insert(Phi);
5059 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
5060 }
5061
5062 DEBUG(dbgs() << "LV: Found an induction variable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an induction variable.\n"
; } } while (false)
;
5063}
5064
5065bool LoopVectorizationLegality::canVectorizeInstrs() {
5066 BasicBlock *Header = TheLoop->getHeader();
5067
5068 // Look for the attribute signaling the absence of NaNs.
5069 Function &F = *Header->getParent();
5070 HasFunNoNaNAttr =
5071 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
5072
5073 // For each block in the loop.
5074 for (BasicBlock *BB : TheLoop->blocks()) {
5075 // Scan the instructions in the block and look for hazards.
5076 for (Instruction &I : *BB) {
5077 if (auto *Phi = dyn_cast<PHINode>(&I)) {
5078 Type *PhiTy = Phi->getType();
5079 // Check that this PHI type is allowed.
5080 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
5081 !PhiTy->isPointerTy()) {
5082 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5083 << "loop control flow is not understood by vectorizer");
5084 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an non-int non-pointer PHI.\n"
; } } while (false)
;
5085 return false;
5086 }
5087
5088 // If this PHINode is not in the header block, then we know that we
5089 // can convert it to select during if-conversion. No need to check if
5090 // the PHIs in this block are induction or reduction variables.
5091 if (BB != Header) {
5092 // Check that this instruction has no outside users or is an
5093 // identified reduction value with an outside user.
5094 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
5095 continue;
5096 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
5097 << "value could not be identified as "
5098 "an induction or reduction variable");
5099 return false;
5100 }
5101
5102 // We only allow if-converted PHIs with exactly two incoming values.
5103 if (Phi->getNumIncomingValues() != 2) {
5104 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5105 << "control flow not understood by vectorizer");
5106 DEBUG(dbgs() << "LV: Found an invalid PHI.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an invalid PHI.\n"
; } } while (false)
;
5107 return false;
5108 }
5109
5110 RecurrenceDescriptor RedDes;
5111 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
5112 DT)) {
5113 if (RedDes.hasUnsafeAlgebra())
5114 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
5115 AllowedExit.insert(RedDes.getLoopExitInstr());
5116 Reductions[Phi] = RedDes;
5117 continue;
5118 }
5119
5120 InductionDescriptor ID;
5121 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
5122 addInductionPhi(Phi, ID, AllowedExit);
5123 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
5124 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
5125 continue;
5126 }
5127
5128 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
5129 SinkAfter, DT)) {
5130 FirstOrderRecurrences.insert(Phi);
5131 continue;
5132 }
5133
5134 // As a last resort, coerce the PHI to a AddRec expression
5135 // and re-try classifying it a an induction PHI.
5136 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
5137 addInductionPhi(Phi, ID, AllowedExit);
5138 continue;
5139 }
5140
5141 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
5142 << "value that could not be identified as "
5143 "reduction is used outside the loop");
5144 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an unidentified PHI."
<< *Phi << "\n"; } } while (false)
;
5145 return false;
5146 } // end of PHI handling
5147
5148 // We handle calls that:
5149 // * Are debug info intrinsics.
5150 // * Have a mapping to an IR intrinsic.
5151 // * Have a vector version available.
5152 auto *CI = dyn_cast<CallInst>(&I);
5153 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
5154 !isa<DbgInfoIntrinsic>(CI) &&
5155 !(CI->getCalledFunction() && TLI &&
5156 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
5157 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
5158 << "call instruction cannot be vectorized");
5159 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"
; } } while (false)
;
5160 return false;
5161 }
5162
5163 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
5164 // second argument is the same (i.e. loop invariant)
5165 if (CI && hasVectorInstrinsicScalarOpd(
5166 getVectorIntrinsicIDForCall(CI, TLI), 1)) {
5167 auto *SE = PSE.getSE();
5168 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
5169 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
5170 << "intrinsic instruction cannot be vectorized");
5171 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found unvectorizable intrinsic "
<< *CI << "\n"; } } while (false)
;
5172 return false;
5173 }
5174 }
5175
5176 // Check that the instruction return type is vectorizable.
5177 // Also, we can't vectorize extractelement instructions.
5178 if ((!VectorType::isValidElementType(I.getType()) &&
5179 !I.getType()->isVoidTy()) ||
5180 isa<ExtractElementInst>(I)) {
5181 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
5182 << "instruction return type cannot be vectorized");
5183 DEBUG(dbgs() << "LV: Found unvectorizable type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found unvectorizable type.\n"
; } } while (false)
;
5184 return false;
5185 }
5186
5187 // Check that the stored type is vectorizable.
5188 if (auto *ST = dyn_cast<StoreInst>(&I)) {
5189 Type *T = ST->getValueOperand()->getType();
5190 if (!VectorType::isValidElementType(T)) {
5191 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
5192 << "store instruction cannot be vectorized");
5193 return false;
5194 }
5195
5196 // FP instructions can allow unsafe algebra, thus vectorizable by
5197 // non-IEEE-754 compliant SIMD units.
5198 // This applies to floating-point math operations and calls, not memory
5199 // operations, shuffles, or casts, as they don't change precision or
5200 // semantics.
5201 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
5202 !I.isFast()) {
5203 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found FP op with unsafe algebra.\n"
; } } while (false)
;
5204 Hints->setPotentiallyUnsafe();
5205 }
5206
5207 // Reduction instructions are allowed to have exit users.
5208 // All other instructions must not have external users.
5209 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
5210 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
5211 << "value cannot be used outside the loop");
5212 return false;
5213 }
5214 } // next instr.
5215 }
5216
5217 if (!PrimaryInduction) {
5218 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Did not find one integer induction var.\n"
; } } while (false)
;
5219 if (Inductions.empty()) {
5220 ORE->emit(createMissedAnalysis("NoInductionVariable")
5221 << "loop induction variable could not be identified");
5222 return false;
5223 }
5224 }
5225
5226 // Now we know the widest induction type, check if our found induction
5227 // is the same size. If it's not, unset it here and InnerLoopVectorizer
5228 // will create another.
5229 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
5230 PrimaryInduction = nullptr;
5231
5232 return true;
5233}
5234
5235void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
5236 // We should not collect Scalars more than once per VF. Right now, this
5237 // function is called from collectUniformsAndScalars(), which already does
5238 // this check. Collecting Scalars for VF=1 does not make any sense.
5239 assert(VF >= 2 && !Scalars.count(VF) &&(static_cast <bool> (VF >= 2 && !Scalars.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Scalars.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5240, __extension__ __PRETTY_FUNCTION__))
5240 "This function should not be visited twice for the same VF")(static_cast <bool> (VF >= 2 && !Scalars.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Scalars.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5240, __extension__ __PRETTY_FUNCTION__))
;
5241
5242 SmallSetVector<Instruction *, 8> Worklist;
5243
5244 // These sets are used to seed the analysis with pointers used by memory
5245 // accesses that will remain scalar.
5246 SmallSetVector<Instruction *, 8> ScalarPtrs;
5247 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5248
5249 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5250 // The pointer operands of loads and stores will be scalar as long as the
5251 // memory access is not a gather or scatter operation. The value operand of a
5252 // store will remain scalar if the store is scalarized.
5253 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5254 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5255 assert(WideningDecision != CM_Unknown &&(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5256, __extension__ __PRETTY_FUNCTION__))
5256 "Widening decision should be ready at this moment")(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5256, __extension__ __PRETTY_FUNCTION__))
;
5257 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5258 if (Ptr == Store->getValueOperand())
5259 return WideningDecision == CM_Scalarize;
5260 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&(static_cast <bool> (Ptr == getLoadStorePointerOperand(
MemAccess) && "Ptr is neither a value or pointer operand"
) ? void (0) : __assert_fail ("Ptr == getLoadStorePointerOperand(MemAccess) && \"Ptr is neither a value or pointer operand\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5261, __extension__ __PRETTY_FUNCTION__))
5261 "Ptr is neither a value or pointer operand")(static_cast <bool> (Ptr == getLoadStorePointerOperand(
MemAccess) && "Ptr is neither a value or pointer operand"
) ? void (0) : __assert_fail ("Ptr == getLoadStorePointerOperand(MemAccess) && \"Ptr is neither a value or pointer operand\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5261, __extension__ __PRETTY_FUNCTION__))
;
5262 return WideningDecision != CM_GatherScatter;
5263 };
5264
5265 // A helper that returns true if the given value is a bitcast or
5266 // getelementptr instruction contained in the loop.
5267 auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5268 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5269 isa<GetElementPtrInst>(V)) &&
5270 !TheLoop->isLoopInvariant(V);
5271 };
5272
5273 // A helper that evaluates a memory access's use of a pointer. If the use
5274 // will be a scalar use, and the pointer is only used by memory accesses, we
5275 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
5276 // PossibleNonScalarPtrs.
5277 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5278 // We only care about bitcast and getelementptr instructions contained in
5279 // the loop.
5280 if (!isLoopVaryingBitCastOrGEP(Ptr))
5281 return;
5282
5283 // If the pointer has already been identified as scalar (e.g., if it was
5284 // also identified as uniform), there's nothing to do.
5285 auto *I = cast<Instruction>(Ptr);
5286 if (Worklist.count(I))
5287 return;
5288
5289 // If the use of the pointer will be a scalar use, and all users of the
5290 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5291 // place the pointer in PossibleNonScalarPtrs.
5292 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5293 return isa<LoadInst>(U) || isa<StoreInst>(U);
5294 }))
5295 ScalarPtrs.insert(I);
5296 else
5297 PossibleNonScalarPtrs.insert(I);
5298 };
5299
5300 // We seed the scalars analysis with three classes of instructions: (1)
5301 // instructions marked uniform-after-vectorization, (2) bitcast and
5302 // getelementptr instructions used by memory accesses requiring a scalar use,
5303 // and (3) pointer induction variables and their update instructions (we
5304 // currently only scalarize these).
5305 //
5306 // (1) Add to the worklist all instructions that have been identified as
5307 // uniform-after-vectorization.
5308 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5309
5310 // (2) Add to the worklist all bitcast and getelementptr instructions used by
5311 // memory accesses requiring a scalar use. The pointer operands of loads and
5312 // stores will be scalar as long as the memory accesses is not a gather or
5313 // scatter operation. The value operand of a store will remain scalar if the
5314 // store is scalarized.
5315 for (auto *BB : TheLoop->blocks())
5316 for (auto &I : *BB) {
5317 if (auto *Load = dyn_cast<LoadInst>(&I)) {
5318 evaluatePtrUse(Load, Load->getPointerOperand());
5319 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5320 evaluatePtrUse(Store, Store->getPointerOperand());
5321 evaluatePtrUse(Store, Store->getValueOperand());
5322 }
5323 }
5324 for (auto *I : ScalarPtrs)
5325 if (!PossibleNonScalarPtrs.count(I)) {
5326 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *I << "\n"; } } while (false)
;
5327 Worklist.insert(I);
5328 }
5329
5330 // (3) Add to the worklist all pointer induction variables and their update
5331 // instructions.
5332 //
5333 // TODO: Once we are able to vectorize pointer induction variables we should
5334 // no longer insert them into the worklist here.
5335 auto *Latch = TheLoop->getLoopLatch();
5336 for (auto &Induction : *Legal->getInductionVars()) {
5337 auto *Ind = Induction.first;
5338 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5339 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
5340 continue;
5341 Worklist.insert(Ind);
5342 Worklist.insert(IndUpdate);
5343 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *Ind << "\n"; } } while (false)
;
5344 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *IndUpdate << "\n"; } } while (false)
;
5345 }
5346
5347 // Insert the forced scalars.
5348 // FIXME: Currently widenPHIInstruction() often creates a dead vector
5349 // induction variable when the PHI user is scalarized.
5350 if (ForcedScalars.count(VF))
5351 for (auto *I : ForcedScalars.find(VF)->second)
5352 Worklist.insert(I);
5353
5354 // Expand the worklist by looking through any bitcasts and getelementptr
5355 // instructions we've already identified as scalar. This is similar to the
5356 // expansion step in collectLoopUniforms(); however, here we're only
5357 // expanding to include additional bitcasts and getelementptr instructions.
5358 unsigned Idx = 0;
5359 while (Idx != Worklist.size()) {
5360 Instruction *Dst = Worklist[Idx++];
5361 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5362 continue;
5363 auto *Src = cast<Instruction>(Dst->getOperand(0));
5364 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5365 auto *J = cast<Instruction>(U);
5366 return !TheLoop->contains(J) || Worklist.count(J) ||
5367 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5368 isScalarUse(J, Src));
5369 })) {
5370 Worklist.insert(Src);
5371 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *Src << "\n"; } } while (false)
;
5372 }
5373 }
5374
5375 // An induction variable will remain scalar if all users of the induction
5376 // variable and induction variable update remain scalar.
5377 for (auto &Induction : *Legal->getInductionVars()) {
5378 auto *Ind = Induction.first;
5379 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5380
5381 // We already considered pointer induction variables, so there's no reason
5382 // to look at their users again.
5383 //
5384 // TODO: Once we are able to vectorize pointer induction variables we
5385 // should no longer skip over them here.
5386 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
5387 continue;
5388
5389 // Determine if all users of the induction variable are scalar after
5390 // vectorization.
5391 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5392 auto *I = cast<Instruction>(U);
5393 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5394 });
5395 if (!ScalarInd)
5396 continue;
5397
5398 // Determine if all users of the induction variable update instruction are
5399 // scalar after vectorization.
5400 auto ScalarIndUpdate =
5401 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5402 auto *I = cast<Instruction>(U);
5403 return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5404 });
5405 if (!ScalarIndUpdate)
5406 continue;
5407
5408 // The induction variable and its update instruction will remain scalar.
5409 Worklist.insert(Ind);
5410 Worklist.insert(IndUpdate);
5411 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *Ind << "\n"; } } while (false)
;
5412 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *IndUpdate << "\n"; } } while (false)
;
5413 }
5414
5415 Scalars[VF].insert(Worklist.begin(), Worklist.end());
5416}
5417
5418bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) {
5419 if (!Legal->blockNeedsPredication(I->getParent()))
5420 return false;
5421 switch(I->getOpcode()) {
5422 default:
5423 break;
5424 case Instruction::Load:
5425 case Instruction::Store: {
5426 if (!Legal->isMaskRequired(I))
5427 return false;
5428 auto *Ptr = getLoadStorePointerOperand(I);
5429 auto *Ty = getMemInstValueType(I);
5430 return isa<LoadInst>(I) ?
5431 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty))
5432 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
5433 }
5434 case Instruction::UDiv:
5435 case Instruction::SDiv:
5436 case Instruction::SRem:
5437 case Instruction::URem:
5438 return mayDivideByZero(*I);
5439 }
5440 return false;
5441}
5442
5443bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
5444 unsigned VF) {
5445 // Get and ensure we have a valid memory instruction.
5446 LoadInst *LI = dyn_cast<LoadInst>(I);
5447 StoreInst *SI = dyn_cast<StoreInst>(I);
5448 assert((LI || SI) && "Invalid memory instruction")(static_cast <bool> ((LI || SI) && "Invalid memory instruction"
) ? void (0) : __assert_fail ("(LI || SI) && \"Invalid memory instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5448, __extension__ __PRETTY_FUNCTION__))
;
5449
5450 auto *Ptr = getLoadStorePointerOperand(I);
5451
5452 // In order to be widened, the pointer should be consecutive, first of all.
5453 if (!Legal->isConsecutivePtr(Ptr))
5454 return false;
5455
5456 // If the instruction is a store located in a predicated block, it will be
5457 // scalarized.
5458 if (isScalarWithPredication(I))
5459 return false;
5460
5461 // If the instruction's allocated size doesn't equal it's type size, it
5462 // requires padding and will be scalarized.
5463 auto &DL = I->getModule()->getDataLayout();
5464 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5465 if (hasIrregularType(ScalarTy, DL, VF))
5466 return false;
5467
5468 return true;
5469}
5470
5471void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
5472 // We should not collect Uniforms more than once per VF. Right now,
5473 // this function is called from collectUniformsAndScalars(), which
5474 // already does this check. Collecting Uniforms for VF=1 does not make any
5475 // sense.
5476
5477 assert(VF >= 2 && !Uniforms.count(VF) &&(static_cast <bool> (VF >= 2 && !Uniforms.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Uniforms.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5478, __extension__ __PRETTY_FUNCTION__))
5478 "This function should not be visited twice for the same VF")(static_cast <bool> (VF >= 2 && !Uniforms.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Uniforms.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5478, __extension__ __PRETTY_FUNCTION__))
;
5479
5480 // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5481 // not analyze again. Uniforms.count(VF) will return 1.
5482 Uniforms[VF].clear();
5483
5484 // We now know that the loop is vectorizable!
5485 // Collect instructions inside the loop that will remain uniform after
5486 // vectorization.
5487
5488 // Global values, params and instructions outside of current loop are out of
5489 // scope.
5490 auto isOutOfScope = [&](Value *V) -> bool {
5491 Instruction *I = dyn_cast<Instruction>(V);
5492 return (!I || !TheLoop->contains(I));
5493 };
5494
5495 SetVector<Instruction *> Worklist;
5496 BasicBlock *Latch = TheLoop->getLoopLatch();
5497
5498 // Start with the conditional branch. If the branch condition is an
5499 // instruction contained in the loop that is only used by the branch, it is
5500 // uniform.
5501 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5502 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
5503 Worklist.insert(Cmp);
5504 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *Cmp << "\n"; } } while (false)
;
5505 }
5506
5507 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5508 // are pointers that are treated like consecutive pointers during
5509 // vectorization. The pointer operands of interleaved accesses are an
5510 // example.
5511 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
5512
5513 // Holds pointer operands of instructions that are possibly non-uniform.
5514 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
5515
5516 auto isUniformDecision = [&](Instruction *I, unsigned VF) {
5517 InstWidening WideningDecision = getWideningDecision(I, VF);
5518 assert(WideningDecision != CM_Unknown &&(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5519, __extension__ __PRETTY_FUNCTION__))
5519 "Widening decision should be ready at this moment")(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5519, __extension__ __PRETTY_FUNCTION__))
;
5520
5521 return (WideningDecision == CM_Widen ||
5522 WideningDecision == CM_Widen_Reverse ||
5523 WideningDecision == CM_Interleave);
5524 };
5525 // Iterate over the instructions in the loop, and collect all
5526 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5527 // that a consecutive-like pointer operand will be scalarized, we collect it
5528 // in PossibleNonUniformPtrs instead. We use two sets here because a single
5529 // getelementptr instruction can be used by both vectorized and scalarized
5530 // memory instructions. For example, if a loop loads and stores from the same
5531 // location, but the store is conditional, the store will be scalarized, and
5532 // the getelementptr won't remain uniform.
5533 for (auto *BB : TheLoop->blocks())
5534 for (auto &I : *BB) {
5535 // If there's no pointer operand, there's nothing to do.
5536 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
5537 if (!Ptr)
5538 continue;
5539
5540 // True if all users of Ptr are memory accesses that have Ptr as their
5541 // pointer operand.
5542 auto UsersAreMemAccesses =
5543 llvm::all_of(Ptr->users(), [&](User *U) -> bool {
5544 return getLoadStorePointerOperand(U) == Ptr;
5545 });
5546
5547 // Ensure the memory instruction will not be scalarized or used by
5548 // gather/scatter, making its pointer operand non-uniform. If the pointer
5549 // operand is used by any instruction other than a memory access, we
5550 // conservatively assume the pointer operand may be non-uniform.
5551 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5552 PossibleNonUniformPtrs.insert(Ptr);
5553
5554 // If the memory instruction will be vectorized and its pointer operand
5555 // is consecutive-like, or interleaving - the pointer operand should
5556 // remain uniform.
5557 else
5558 ConsecutiveLikePtrs.insert(Ptr);
5559 }
5560
5561 // Add to the Worklist all consecutive and consecutive-like pointers that
5562 // aren't also identified as possibly non-uniform.
5563 for (auto *V : ConsecutiveLikePtrs)
5564 if (!PossibleNonUniformPtrs.count(V)) {
5565 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *V << "\n"; } } while (false)
;
5566 Worklist.insert(V);
5567 }
5568
5569 // Expand Worklist in topological order: whenever a new instruction
5570 // is added , its users should be either already inside Worklist, or
5571 // out of scope. It ensures a uniform instruction will only be used
5572 // by uniform instructions or out of scope instructions.
5573 unsigned idx = 0;
5574 while (idx != Worklist.size()) {
5575 Instruction *I = Worklist[idx++];
5576
5577 for (auto OV : I->operand_values()) {
5578 if (isOutOfScope(OV))
5579 continue;
5580 auto *OI = cast<Instruction>(OV);
5581 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5582 auto *J = cast<Instruction>(U);
5583 return !TheLoop->contains(J) || Worklist.count(J) ||
5584 (OI == getLoadStorePointerOperand(J) &&
5585 isUniformDecision(J, VF));
5586 })) {
5587 Worklist.insert(OI);
5588 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *OI << "\n"; } } while (false)
;
5589 }
5590 }
5591 }
5592
5593 // Returns true if Ptr is the pointer operand of a memory access instruction
5594 // I, and I is known to not require scalarization.
5595 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5596 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5597 };
5598
5599 // For an instruction to be added into Worklist above, all its users inside
5600 // the loop should also be in Worklist. However, this condition cannot be
5601 // true for phi nodes that form a cyclic dependence. We must process phi
5602 // nodes separately. An induction variable will remain uniform if all users
5603 // of the induction variable and induction variable update remain uniform.
5604 // The code below handles both pointer and non-pointer induction variables.
5605 for (auto &Induction : *Legal->getInductionVars()) {
5606 auto *Ind = Induction.first;
5607 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5608
5609 // Determine if all users of the induction variable are uniform after
5610 // vectorization.
5611 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5612 auto *I = cast<Instruction>(U);
5613 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5614 isVectorizedMemAccessUse(I, Ind);
5615 });
5616 if (!UniformInd)
5617 continue;
5618
5619 // Determine if all users of the induction variable update instruction are
5620 // uniform after vectorization.
5621 auto UniformIndUpdate =
5622 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5623 auto *I = cast<Instruction>(U);
5624 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5625 isVectorizedMemAccessUse(I, IndUpdate);
5626 });
5627 if (!UniformIndUpdate)
5628 continue;
5629
5630 // The induction variable and its update instruction will remain uniform.
5631 Worklist.insert(Ind);
5632 Worklist.insert(IndUpdate);
5633 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *Ind << "\n"; } } while (false)
;
5634 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *IndUpdate << "\n"; } } while (false)
;
5635 }
5636
5637 Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5638}
5639
5640bool LoopVectorizationLegality::canVectorizeMemory() {
5641 LAI = &(*GetLAA)(*TheLoop);
5642 InterleaveInfo.setLAI(LAI);
5643 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
5644 if (LAR) {
5645 ORE->emit([&]() {
5646 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
5647 "loop not vectorized: ", *LAR);
5648 });
5649 }
5650 if (!LAI->canVectorizeMemory())
5651 return false;
5652
5653 if (LAI->hasStoreToLoopInvariantAddress()) {
5654 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
5655 << "write to a loop invariant address could not be vectorized");
5656 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We don't allow storing to uniform addresses\n"
; } } while (false)
;
5657 return false;
5658 }
5659
5660 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
5661 PSE.addPredicate(LAI->getPSE().getUnionPredicate());
5662
5663 return true;
5664}
5665
5666bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
5667 Value *In0 = const_cast<Value *>(V);
5668 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5669 if (!PN)
5670 return false;
5671
5672 return Inductions.count(PN);
5673}
5674
5675bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
5676 auto *Inst = dyn_cast<Instruction>(V);
5677 return (Inst && InductionCastsToIgnore.count(Inst));
5678}
5679
5680bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5681 return isInductionPhi(V) || isCastedInductionVariable(V);
5682}
5683
5684bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
5685 return FirstOrderRecurrences.count(Phi);
5686}
5687
5688bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5689 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
5690}
5691
5692bool LoopVectorizationLegality::blockCanBePredicated(
5693 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
5694 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
5695
5696 for (Instruction &I : *BB) {
5697 // Check that we don't have a constant expression that can trap as operand.
5698 for (Value *Operand : I.operands()) {
5699 if (auto *C = dyn_cast<Constant>(Operand))
5700 if (C->canTrap())
5701 return false;
5702 }
5703 // We might be able to hoist the load.
5704 if (I.mayReadFromMemory()) {
5705 auto *LI = dyn_cast<LoadInst>(&I);
5706 if (!LI)
5707 return false;
5708 if (!SafePtrs.count(LI->getPointerOperand())) {
5709 // !llvm.mem.parallel_loop_access implies if-conversion safety.
5710 // Otherwise, record that the load needs (real or emulated) masking
5711 // and let the cost model decide.
5712 if (!IsAnnotatedParallel)
5713 MaskedOp.insert(LI);
5714 continue;
5715 }
5716 }
5717
5718 if (I.mayWriteToMemory()) {
5719 auto *SI = dyn_cast<StoreInst>(&I);
5720 if (!SI)
5721 return false;
5722 // Predicated store requires some form of masking:
5723 // 1) masked store HW instruction,
5724 // 2) emulation via load-blend-store (only if safe and legal to do so,
5725 // be aware on the race conditions), or
5726 // 3) element-by-element predicate check and scalar store.
5727 MaskedOp.insert(SI);
5728 continue;
5729 }
5730 if (I.mayThrow())
5731 return false;
5732 }
5733
5734 return true;
5735}
5736
5737void InterleavedAccessInfo::collectConstStrideAccesses(
5738 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
5739 const ValueToValueMap &Strides) {
5740 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
5741
5742 // Since it's desired that the load/store instructions be maintained in
5743 // "program order" for the interleaved access analysis, we have to visit the
5744 // blocks in the loop in reverse postorder (i.e., in a topological order).
5745 // Such an ordering will ensure that any load/store that may be executed
5746 // before a second load/store will precede the second load/store in
5747 // AccessStrideInfo.
5748 LoopBlocksDFS DFS(TheLoop);
5749 DFS.perform(LI);
5750 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
5751 for (auto &I : *BB) {
5752 auto *LI = dyn_cast<LoadInst>(&I);
5753 auto *SI = dyn_cast<StoreInst>(&I);
5754 if (!LI && !SI)
5755 continue;
5756
5757 Value *Ptr = getLoadStorePointerOperand(&I);
5758 // We don't check wrapping here because we don't know yet if Ptr will be
5759 // part of a full group or a group with gaps. Checking wrapping for all
5760 // pointers (even those that end up in groups with no gaps) will be overly
5761 // conservative. For full groups, wrapping should be ok since if we would
5762 // wrap around the address space we would do a memory access at nullptr
5763 // even without the transformation. The wrapping checks are therefore
5764 // deferred until after we've formed the interleaved groups.
5765 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
5766 /*Assume=*/true, /*ShouldCheckWrap=*/false);
5767
5768 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
5769 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5770 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
5771
5772 // An alignment of 0 means target ABI alignment.
5773 unsigned Align = getMemInstAlignment(&I);
5774 if (!Align)
5775 Align = DL.getABITypeAlignment(PtrTy->getElementType());
5776
5777 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
5778 }
5779}
5780
5781// Analyze interleaved accesses and collect them into interleaved load and
5782// store groups.
5783//
5784// When generating code for an interleaved load group, we effectively hoist all
5785// loads in the group to the location of the first load in program order. When
5786// generating code for an interleaved store group, we sink all stores to the
5787// location of the last store. This code motion can change the order of load
5788// and store instructions and may break dependences.
5789//
5790// The code generation strategy mentioned above ensures that we won't violate
5791// any write-after-read (WAR) dependences.
5792//
5793// E.g., for the WAR dependence: a = A[i]; // (1)
5794// A[i] = b; // (2)
5795//
5796// The store group of (2) is always inserted at or below (2), and the load
5797// group of (1) is always inserted at or above (1). Thus, the instructions will
5798// never be reordered. All other dependences are checked to ensure the
5799// correctness of the instruction reordering.
5800//
5801// The algorithm visits all memory accesses in the loop in bottom-up program
5802// order. Program order is established by traversing the blocks in the loop in
5803// reverse postorder when collecting the accesses.
5804//
5805// We visit the memory accesses in bottom-up order because it can simplify the
5806// construction of store groups in the presence of write-after-write (WAW)
5807// dependences.
5808//
5809// E.g., for the WAW dependence: A[i] = a; // (1)
5810// A[i] = b; // (2)
5811// A[i + 1] = c; // (3)
5812//
5813// We will first create a store group with (3) and (2). (1) can't be added to
5814// this group because it and (2) are dependent. However, (1) can be grouped
5815// with other accesses that may precede it in program order. Note that a
5816// bottom-up order does not imply that WAW dependences should not be checked.
5817void InterleavedAccessInfo::analyzeInterleaving(
5818 const ValueToValueMap &Strides) {
5819 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Analyzing interleaved accesses...\n"
; } } while (false)
;
5820
5821 // Holds all accesses with a constant stride.
5822 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
5823 collectConstStrideAccesses(AccessStrideInfo, Strides);
5824
5825 if (AccessStrideInfo.empty())
1
Assuming the condition is false
2
Taking false branch
5826 return;
5827
5828 // Collect the dependences in the loop.
5829 collectDependences();
5830
5831 // Holds all interleaved store groups temporarily.
5832 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
5833 // Holds all interleaved load groups temporarily.
5834 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
5835
5836 // Search in bottom-up program order for pairs of accesses (A and B) that can
5837 // form interleaved load or store groups. In the algorithm below, access A
5838 // precedes access B in program order. We initialize a group for B in the
5839 // outer loop of the algorithm, and then in the inner loop, we attempt to
5840 // insert each A into B's group if:
5841 //
5842 // 1. A and B have the same stride,
5843 // 2. A and B have the same memory object size, and
5844 // 3. A belongs in B's group according to its distance from B.
5845 //
5846 // Special care is taken to ensure group formation will not break any
5847 // dependences.
5848 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
3
Loop condition is true. Entering loop body
5849 BI != E; ++BI) {
5850 Instruction *B = BI->first;
5851 StrideDescriptor DesB = BI->second;
5852
5853 // Initialize a group for B if it has an allowable stride. Even if we don't
5854 // create a group for B, we continue with the bottom-up algorithm to ensure
5855 // we don't break any of B's dependences.
5856 InterleaveGroup *Group = nullptr;
4
'Group' initialized to a null pointer value
5857 if (isStrided(DesB.Stride)) {
5
Taking false branch
5858 Group = getInterleaveGroup(B);
5859 if (!Group) {
5860 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Creating an interleave group with:"
<< *B << '\n'; } } while (false)
;
5861 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
5862 }
5863 if (B->mayWriteToMemory())
5864 StoreGroups.insert(Group);
5865 else
5866 LoadGroups.insert(Group);
5867 }
5868
5869 for (auto AI = std::next(BI); AI != E; ++AI) {
6
Loop condition is true. Entering loop body
5870 Instruction *A = AI->first;
5871 StrideDescriptor DesA = AI->second;
5872
5873 // Our code motion strategy implies that we can't have dependences
5874 // between accesses in an interleaved group and other accesses located
5875 // between the first and last member of the group. Note that this also
5876 // means that a group can't have more than one member at a given offset.
5877 // The accesses in a group can have dependences with other accesses, but
5878 // we must ensure we don't extend the boundaries of the group such that
5879 // we encompass those dependent accesses.
5880 //
5881 // For example, assume we have the sequence of accesses shown below in a
5882 // stride-2 loop:
5883 //
5884 // (1, 2) is a group | A[i] = a; // (1)
5885 // | A[i-1] = b; // (2) |
5886 // A[i-3] = c; // (3)
5887 // A[i] = d; // (4) | (2, 4) is not a group
5888 //
5889 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
5890 // but not with (4). If we did, the dependent access (3) would be within
5891 // the boundaries of the (2, 4) group.
5892 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
7
Taking false branch
5893 // If a dependence exists and A is already in a group, we know that A
5894 // must be a store since A precedes B and WAR dependences are allowed.
5895 // Thus, A would be sunk below B. We release A's group to prevent this
5896 // illegal code motion. A will then be free to form another group with
5897 // instructions that precede it.
5898 if (isInterleaved(A)) {
5899 InterleaveGroup *StoreGroup = getInterleaveGroup(A);
5900 StoreGroups.remove(StoreGroup);
5901 releaseGroup(StoreGroup);
5902 }
5903
5904 // If a dependence exists and A is not already in a group (or it was
5905 // and we just released it), B might be hoisted above A (if B is a
5906 // load) or another store might be sunk below A (if B is a store). In
5907 // either case, we can't add additional instructions to B's group. B
5908 // will only form a group with instructions that it precedes.
5909 break;
5910 }
5911
5912 // At this point, we've checked for illegal code motion. If either A or B
5913 // isn't strided, there's nothing left to do.
5914 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
8
Taking false branch
5915 continue;
5916
5917 // Ignore A if it's already in a group or isn't the same kind of memory
5918 // operation as B.
5919 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory
5920 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory()
5921 // should have returned false - except for the case we asked for optimization
5922 // remarks.
5923 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory())
9
Assuming the condition is false
10
Taking false branch
5924 || (A->mayWriteToMemory() != B->mayWriteToMemory()))
5925 continue;
5926
5927 // Check rules 1 and 2. Ignore A if its stride or size is different from
5928 // that of B.
5929 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
11
Taking false branch
5930 continue;
5931
5932 // Ignore A if the memory object of A and B don't belong to the same
5933 // address space
5934 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
12
Taking false branch
5935 continue;
5936
5937 // Calculate the distance from A to B.
5938 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
5939 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
5940 if (!DistToB)
13
Assuming 'DistToB' is non-null
14
Taking false branch
5941 continue;
5942 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
5943
5944 // Check rule 3. Ignore A if its distance to B is not a multiple of the
5945 // size.
5946 if (DistanceToB % static_cast<int64_t>(DesB.Size))
15
Taking false branch
5947 continue;
5948
5949 // Ignore A if either A or B is in a predicated block. Although we
5950 // currently prevent group formation for predicated accesses, we may be
5951 // able to relax this limitation in the future once we handle more
5952 // complicated blocks.
5953 if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
16
Assuming the condition is false
17
Assuming the condition is false
18
Taking false branch
5954 continue;
5955
5956 // The index of A is the index of B plus A's distance to B in multiples
5957 // of the size.
5958 int IndexA =
5959 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
19
Called C++ object pointer is null
5960
5961 // Try to insert A into B's group.
5962 if (Group->insertMember(A, IndexA, DesA.Align)) {
5963 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Inserted:" <<
*A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
5964 << " into the interleave group with" << *B << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Inserted:" <<
*A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
;
5965 InterleaveGroupMap[A] = Group;
5966
5967 // Set the first load in program order as the insert position.
5968 if (A->mayReadFromMemory())
5969 Group->setInsertPos(A);
5970 }
5971 } // Iteration over A accesses.
5972 } // Iteration over B accesses.
5973
5974 // Remove interleaved store groups with gaps.
5975 for (InterleaveGroup *Group : StoreGroups)
5976 if (Group->getNumMembers() != Group->getFactor()) {
5977 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
5978 "to gaps.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
;
5979 releaseGroup(Group);
5980 }
5981 // Remove interleaved groups with gaps (currently only loads) whose memory
5982 // accesses may wrap around. We have to revisit the getPtrStride analysis,
5983 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
5984 // not check wrapping (see documentation there).
5985 // FORNOW we use Assume=false;
5986 // TODO: Change to Assume=true but making sure we don't exceed the threshold
5987 // of runtime SCEV assumptions checks (thereby potentially failing to
5988 // vectorize altogether).
5989 // Additional optional optimizations:
5990 // TODO: If we are peeling the loop and we know that the first pointer doesn't
5991 // wrap then we can deduce that all pointers in the group don't wrap.
5992 // This means that we can forcefully peel the loop in order to only have to
5993 // check the first pointer for no-wrap. When we'll change to use Assume=true
5994 // we'll only need at most one runtime check per interleaved group.
5995 for (InterleaveGroup *Group : LoadGroups) {
5996 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
5997 // load would wrap around the address space we would do a memory access at
5998 // nullptr even without the transformation.
5999 if (Group->getNumMembers() == Group->getFactor())
6000 continue;
6001
6002 // Case 2: If first and last members of the group don't wrap this implies
6003 // that all the pointers in the group don't wrap.
6004 // So we check only group member 0 (which is always guaranteed to exist),
6005 // and group member Factor - 1; If the latter doesn't exist we rely on
6006 // peeling (if it is a non-reveresed accsess -- see Case 3).
6007 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
6008 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
6009 /*ShouldCheckWrap=*/true)) {
6010 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
6011 "first group member potentially pointer-wrapping.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
;
6012 releaseGroup(Group);
6013 continue;
6014 }
6015 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
6016 if (LastMember) {
6017 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
6018 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
6019 /*ShouldCheckWrap=*/true)) {
6020 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
6021 "last group member potentially pointer-wrapping.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
;
6022 releaseGroup(Group);
6023 }
6024 } else {
6025 // Case 3: A non-reversed interleaved load group with gaps: We need
6026 // to execute at least one scalar epilogue iteration. This will ensure
6027 // we don't speculatively access memory out-of-bounds. We only need
6028 // to look for a member at index factor - 1, since every group must have
6029 // a member at index zero.
6030 if (Group->isReverse()) {
6031 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
6032 "a reverse access with gaps.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
;
6033 releaseGroup(Group);
6034 continue;
6035 }
6036 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaved group requires epilogue iteration.\n"
; } } while (false)
;
6037 RequiresScalarEpilogue = true;
6038 }
6039 }
6040}
6041
6042Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
6043 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
6044 // TODO: It may by useful to do since it's still likely to be dynamically
6045 // uniform if the target can skip.
6046 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not inserting runtime ptr check for divergent target"
; } } while (false)
;
6047
6048 ORE->emit(
6049 createMissedAnalysis("CantVersionLoopWithDivergentTarget")
6050 << "runtime pointer checks needed. Not enabled for divergent target");
6051
6052 return None;
6053 }
6054
6055 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6056 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
6057 return computeFeasibleMaxVF(OptForSize, TC);
6058
6059 if (Legal->getRuntimePointerChecking()->Need) {
6060 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
6061 << "runtime pointer checks needed. Enable vectorization of this "
6062 "loop with '#pragma clang loop vectorize(enable)' when "
6063 "compiling with -Os/-Oz");
6064 DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"
; } } while (false)
6065 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"
; } } while (false)
;
6066 return None;
6067 }
6068
6069 // If we optimize the program for size, avoid creating the tail loop.
6070 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found trip count: "
<< TC << '\n'; } } while (false)
;
6071
6072 // If we don't know the precise trip count, don't try to vectorize.
6073 if (TC < 2) {
6074 ORE->emit(
6075 createMissedAnalysis("UnknownLoopCountComplexCFG")
6076 << "unable to calculate the loop count due to complex control flow");
6077 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"
; } } while (false)
;
6078 return None;
6079 }
6080
6081 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
6082
6083 if (TC % MaxVF != 0) {
6084 // If the trip count that we found modulo the vectorization factor is not
6085 // zero then we require a tail.
6086 // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
6087 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
6088 // smaller MaxVF that does not require a scalar epilog.
6089
6090 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
6091 << "cannot optimize for size and vectorize at the "
6092 "same time. Enable vectorization of this loop "
6093 "with '#pragma clang loop vectorize(enable)' "
6094 "when compiling with -Os/-Oz");
6095 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"
; } } while (false)
;
6096 return None;
6097 }
6098
6099 return MaxVF;
6100}
6101
6102unsigned
6103LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
6104 unsigned ConstTripCount) {
6105 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
6106 unsigned SmallestType, WidestType;
6107 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
6108 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
6109
6110 // Get the maximum safe dependence distance in bits computed by LAA.
6111 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
6112 // the memory accesses that is most restrictive (involved in the smallest
6113 // dependence distance).
6114 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
6115
6116 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
6117
6118 unsigned MaxVectorSize = WidestRegister / WidestType;
6119
6120 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Smallest and Widest types: "
<< SmallestType << " / " << WidestType <<
" bits.\n"; } } while (false)
6121 << WidestType << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Smallest and Widest types: "
<< SmallestType << " / " << WidestType <<
" bits.\n"; } } while (false)
;
6122 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegisterdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest register safe to use is: "
<< WidestRegister << " bits.\n"; } } while (false
)
6123 << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest register safe to use is: "
<< WidestRegister << " bits.\n"; } } while (false
)
;
6124
6125 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"(static_cast <bool> (MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!") ? void (0) : __assert_fail ("MaxVectorSize <= 64 && \"Did not expect to pack so many elements\" \" into one vector!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6126, __extension__ __PRETTY_FUNCTION__))
6126 " into one vector!")(static_cast <bool> (MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!") ? void (0) : __assert_fail ("MaxVectorSize <= 64 && \"Did not expect to pack so many elements\" \" into one vector!\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6126, __extension__ __PRETTY_FUNCTION__))
;
6127 if (MaxVectorSize == 0) {
6128 DEBUG(dbgs() << "LV: The target has no vector registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has no vector registers.\n"
; } } while (false)
;
6129 MaxVectorSize = 1;
6130 return MaxVectorSize;
6131 } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
6132 isPowerOf2_32(ConstTripCount)) {
6133 // We need to clamp the VF to be the ConstTripCount. There is no point in
6134 // choosing a higher viable VF as done in the loop below.
6135 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
<< ConstTripCount << "\n"; } } while (false)
6136 << ConstTripCount << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
<< ConstTripCount << "\n"; } } while (false)
;
6137 MaxVectorSize = ConstTripCount;
6138 return MaxVectorSize;
6139 }
6140
6141 unsigned MaxVF = MaxVectorSize;
6142 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
6143 (MaximizeBandwidth && !OptForSize)) {
6144 // Collect all viable vectorization factors larger than the default MaxVF
6145 // (i.e. MaxVectorSize).
6146 SmallVector<unsigned, 8> VFs;
6147 unsigned NewMaxVectorSize = WidestRegister / SmallestType;
6148 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
6149 VFs.push_back(VS);
6150
6151 // For each VF calculate its register usage.
6152 auto RUs = calculateRegisterUsage(VFs);
6153
6154 // Select the largest VF which doesn't require more registers than existing
6155 // ones.
6156 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
6157 for (int i = RUs.size() - 1; i >= 0; --i) {
6158 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
6159 MaxVF = VFs[i];
6160 break;
6161 }
6162 }
6163 }
6164 return MaxVF;
6165}
6166
6167VectorizationFactor
6168LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
6169 float Cost = expectedCost(1).first;
6170 const float ScalarCost = Cost;
6171 unsigned Width = 1;
6172 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalar loop costs: "
<< (int)ScalarCost << ".\n"; } } while (false)
;
6173
6174 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6175 // Ignore scalar width, because the user explicitly wants vectorization.
6176 if (ForceVectorization && MaxVF > 1) {
6177 Width = 2;
6178 Cost = expectedCost(Width).first / (float)Width;
6179 }
6180
6181 for (unsigned i = 2; i <= MaxVF; i *= 2) {
6182 // Notice that the vector loop needs to be executed less times, so
6183 // we need to divide the cost of the vector loops by the width of
6184 // the vector elements.
6185 VectorizationCostTy C = expectedCost(i);
6186 float VectorCost = C.first / (float)i;
6187 DEBUG(dbgs() << "LV: Vector loop of width " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vector loop of width "
<< i << " costs: " << (int)VectorCost <<
".\n"; } } while (false)
6188 << " costs: " << (int)VectorCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vector loop of width "
<< i << " costs: " << (int)VectorCost <<
".\n"; } } while (false)
;
6189 if (!C.second && !ForceVectorization) {
6190 DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width "
<< i << " because it will not generate any vector instructions.\n"
; } } while (false)
6191 dbgs() << "LV: Not considering vector loop of width " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width "
<< i << " because it will not generate any vector instructions.\n"
; } } while (false)
6192 << " because it will not generate any vector instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width "
<< i << " because it will not generate any vector instructions.\n"
; } } while (false)
;
6193 continue;
6194 }
6195 if (VectorCost < Cost) {
6196 Cost = VectorCost;
6197 Width = i;
6198 }
6199 }
6200
6201 if (!EnableCondStoresVectorization && NumPredStores) {
6202 ORE->emit(createMissedAnalysis("ConditionalStore")
6203 << "store that is conditionally executed prevents vectorization");
6204 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: No vectorization. There are conditional stores.\n"
; } } while (false)
;
6205 Width = 1;
6206 Cost = ScalarCost;
6207 }
6208
6209 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (false)
6210 << "LV: Vectorization seems to be not beneficial, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (false)
6211 << "but was forced by a user.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (false)
;
6212 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Selecting VF: " <<
Width << ".\n"; } } while (false)
;
6213 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
6214 return Factor;
6215}
6216
6217std::pair<unsigned, unsigned>
6218LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6219 unsigned MinWidth = -1U;
6220 unsigned MaxWidth = 8;
6221 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6222
6223 // For each block.
6224 for (BasicBlock *BB : TheLoop->blocks()) {
6225 // For each instruction in the loop.
6226 for (Instruction &I : *BB) {
6227 Type *T = I.getType();
6228
6229 // Skip ignored values.
6230 if (ValuesToIgnore.count(&I))
6231 continue;
6232
6233 // Only examine Loads, Stores and PHINodes.
6234 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6235 continue;
6236
6237 // Examine PHI nodes that are reduction variables. Update the type to
6238 // account for the recurrence type.
6239 if (auto *PN = dyn_cast<PHINode>(&I)) {
6240 if (!Legal->isReductionVariable(PN))
6241 continue;
6242 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
6243 T = RdxDesc.getRecurrenceType();
6244 }
6245
6246 // Examine the stored values.
6247 if (auto *ST = dyn_cast<StoreInst>(&I))
6248 T = ST->getValueOperand()->getType();
6249
6250 // Ignore loaded pointer types and stored pointer types that are not
6251 // vectorizable.
6252 //
6253 // FIXME: The check here attempts to predict whether a load or store will
6254 // be vectorized. We only know this for certain after a VF has
6255 // been selected. Here, we assume that if an access can be
6256 // vectorized, it will be. We should also look at extending this
6257 // optimization to non-pointer types.
6258 //
6259 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6260 !Legal->isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6261 continue;
6262
6263 MinWidth = std::min(MinWidth,
6264 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6265 MaxWidth = std::max(MaxWidth,
6266 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6267 }
6268 }
6269
6270 return {MinWidth, MaxWidth};
6271}
6272
6273unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
6274 unsigned VF,
6275 unsigned LoopCost) {
6276 // -- The interleave heuristics --
6277 // We interleave the loop in order to expose ILP and reduce the loop overhead.
6278 // There are many micro-architectural considerations that we can't predict
6279 // at this level. For example, frontend pressure (on decode or fetch) due to
6280 // code size, or the number and capabilities of the execution ports.
6281 //
6282 // We use the following heuristics to select the interleave count:
6283 // 1. If the code has reductions, then we interleave to break the cross
6284 // iteration dependency.
6285 // 2. If the loop is really small, then we interleave to reduce the loop
6286 // overhead.
6287 // 3. We don't interleave if we think that we will spill registers to memory
6288 // due to the increased register pressure.
6289
6290 // When we optimize for size, we don't interleave.
6291 if (OptForSize)
6292 return 1;
6293
6294 // We used the distance for the interleave count.
6295 if (Legal->getMaxSafeDepDistBytes() != -1U)
6296 return 1;
6297
6298 // Do not interleave loops with a relatively small trip count.
6299 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6300 if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
6301 return 1;
6302
6303 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
6304 DEBUG(dbgs() << "LV: The target has " << TargetNumRegistersdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has " <<
TargetNumRegisters << " registers\n"; } } while (false
)
6305 << " registers\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has " <<
TargetNumRegisters << " registers\n"; } } while (false
)
;
6306
6307 if (VF == 1) {
6308 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6309 TargetNumRegisters = ForceTargetNumScalarRegs;
6310 } else {
6311 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6312 TargetNumRegisters = ForceTargetNumVectorRegs;
6313 }
6314
6315 RegisterUsage R = calculateRegisterUsage({VF})[0];
6316 // We divide by these constants so assume that we have at least one
6317 // instruction that uses at least one register.
6318 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
6319
6320 // We calculate the interleave count using the following formula.
6321 // Subtract the number of loop invariants from the number of available
6322 // registers. These registers are used by all of the interleaved instances.
6323 // Next, divide the remaining registers by the number of registers that is
6324 // required by the loop, in order to estimate how many parallel instances
6325 // fit without causing spills. All of this is rounded down if necessary to be
6326 // a power of two. We want power of two interleave count to simplify any
6327 // addressing operations or alignment considerations.
6328 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
6329 R.MaxLocalUsers);
6330
6331 // Don't count the induction variable as interleaved.
6332 if (EnableIndVarRegisterHeur)
6333 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
6334 std::max(1U, (R.MaxLocalUsers - 1)));
6335
6336 // Clamp the interleave ranges to reasonable counts.
6337 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
6338
6339 // Check if the user has overridden the max.
6340 if (VF == 1) {
6341 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6342 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6343 } else {
6344 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6345 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6346 }
6347
6348 // If we did not calculate the cost for VF (because the user selected the VF)
6349 // then we calculate the cost of VF here.
6350 if (LoopCost == 0)
6351 LoopCost = expectedCost(VF).first;
6352
6353 // Clamp the calculated IC to be between the 1 and the max interleave count
6354 // that the target allows.
6355 if (IC > MaxInterleaveCount)
6356 IC = MaxInterleaveCount;
6357 else if (IC < 1)
6358 IC = 1;
6359
6360 // Interleave if we vectorized this loop and there is a reduction that could
6361 // benefit from interleaving.
6362 if (VF > 1 && !Legal->getReductionVars()->empty()) {
6363 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving because of reductions.\n"
; } } while (false)
;
6364 return IC;
6365 }
6366
6367 // Note that if we've already vectorized the loop we will have done the
6368 // runtime check and so interleaving won't require further checks.
6369 bool InterleavingRequiresRuntimePointerCheck =
6370 (VF == 1 && Legal->getRuntimePointerChecking()->Need);
6371
6372 // We want to interleave small loops in order to reduce the loop overhead and
6373 // potentially expose ILP opportunities.
6374 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop cost is " <<
LoopCost << '\n'; } } while (false)
;
6375 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6376 // We assume that the cost overhead is 1 and we use the cost model
6377 // to estimate the cost of the loop and interleave until the cost of the
6378 // loop overhead is about 5% of the cost of the loop.
6379 unsigned SmallIC =
6380 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6381
6382 // Interleave until store/load ports (estimated by max interleave count) are
6383 // saturated.
6384 unsigned NumStores = Legal->getNumStores();
6385 unsigned NumLoads = Legal->getNumLoads();
6386 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6387 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6388
6389 // If we have a scalar reduction (vector reductions are already dealt with
6390 // by this point), we can increase the critical path length if the loop
6391 // we're interleaving is inside another loop. Limit, by default to 2, so the
6392 // critical path only gets increased by one reduction operation.
6393 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
6394 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6395 SmallIC = std::min(SmallIC, F);
6396 StoresIC = std::min(StoresIC, F);
6397 LoadsIC = std::min(LoadsIC, F);
6398 }
6399
6400 if (EnableLoadStoreRuntimeInterleave &&
6401 std::max(StoresIC, LoadsIC) > SmallIC) {
6402 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving to saturate store or load ports.\n"
; } } while (false)
;
6403 return std::max(StoresIC, LoadsIC);
6404 }
6405
6406 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving to reduce branch cost.\n"
; } } while (false)
;
6407 return SmallIC;
6408 }
6409
6410 // Interleave if this is a large loop (small loops are already dealt with by
6411 // this point) that could benefit from interleaving.
6412 bool HasReductions = !Legal->getReductionVars()->empty();
6413 if (TTI.enableAggressiveInterleaving(HasReductions)) {
6414 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving to expose ILP.\n"
; } } while (false)
;
6415 return IC;
6416 }
6417
6418 DEBUG(dbgs() << "LV: Not Interleaving.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not Interleaving.\n"
; } } while (false)
;
6419 return 1;
6420}
6421
6422SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6423LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
6424 // This function calculates the register usage by measuring the highest number
6425 // of values that are alive at a single location. Obviously, this is a very
6426 // rough estimation. We scan the loop in a topological order in order and
6427 // assign a number to each instruction. We use RPO to ensure that defs are
6428 // met before their users. We assume that each instruction that has in-loop
6429 // users starts an interval. We record every time that an in-loop value is
6430 // used, so we have a list of the first and last occurrences of each
6431 // instruction. Next, we transpose this data structure into a multi map that
6432 // holds the list of intervals that *end* at a specific location. This multi
6433 // map allows us to perform a linear search. We scan the instructions linearly
6434 // and record each time that a new interval starts, by placing it in a set.
6435 // If we find this value in the multi-map then we remove it from the set.
6436 // The max register usage is the maximum size of the set.
6437 // We also search for instructions that are defined outside the loop, but are
6438 // used inside the loop. We need this number separately from the max-interval
6439 // usage number because when we unroll, loop-invariant values do not take
6440 // more register.
6441 LoopBlocksDFS DFS(TheLoop);
6442 DFS.perform(LI);
6443
6444 RegisterUsage RU;
6445
6446 // Each 'key' in the map opens a new interval. The values
6447 // of the map are the index of the 'last seen' usage of the
6448 // instruction that is the key.
6449 using IntervalMap = DenseMap<Instruction *, unsigned>;
6450
6451 // Maps instruction to its index.
6452 DenseMap<unsigned, Instruction *> IdxToInstr;
6453 // Marks the end of each interval.
6454 IntervalMap EndPoint;
6455 // Saves the list of instruction indices that are used in the loop.
6456 SmallSet<Instruction *, 8> Ends;
6457 // Saves the list of values that are used in the loop but are
6458 // defined outside the loop, such as arguments and constants.
6459 SmallPtrSet<Value *, 8> LoopInvariants;
6460
6461 unsigned Index = 0;
6462 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6463 for (Instruction &I : *BB) {
6464 IdxToInstr[Index++] = &I;
6465
6466 // Save the end location of each USE.
6467 for (Value *U : I.operands()) {
6468 auto *Instr = dyn_cast<Instruction>(U);
6469
6470 // Ignore non-instruction values such as arguments, constants, etc.
6471 if (!Instr)
6472 continue;
6473
6474 // If this instruction is outside the loop then record it and continue.
6475 if (!TheLoop->contains(Instr)) {
6476 LoopInvariants.insert(Instr);
6477 continue;
6478 }
6479
6480 // Overwrite previous end points.
6481 EndPoint[Instr] = Index;
6482 Ends.insert(Instr);
6483 }
6484 }
6485 }
6486
6487 // Saves the list of intervals that end with the index in 'key'.
6488 using InstrList = SmallVector<Instruction *, 2>;
6489 DenseMap<unsigned, InstrList> TransposeEnds;
6490
6491 // Transpose the EndPoints to a list of values that end at each index.
6492 for (auto &Interval : EndPoint)
6493 TransposeEnds[Interval.second].push_back(Interval.first);
6494
6495 SmallSet<Instruction *, 8> OpenIntervals;
6496
6497 // Get the size of the widest register.
6498 unsigned MaxSafeDepDist = -1U;
6499 if (Legal->getMaxSafeDepDistBytes() != -1U)
6500 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
6501 unsigned WidestRegister =
6502 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
6503 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6504
6505 SmallVector<RegisterUsage, 8> RUs(VFs.size());
6506 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
6507
6508 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Calculating max register usage:\n"
; } } while (false)
;
6509
6510 // A lambda that gets the register usage for the given type and VF.
6511 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
6512 if (Ty->isTokenTy())
6513 return 0U;
6514 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
6515 return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
6516 };
6517
6518 for (unsigned int i = 0; i < Index; ++i) {
6519 Instruction *I = IdxToInstr[i];
6520
6521 // Remove all of the instructions that end at this location.
6522 InstrList &List = TransposeEnds[i];
6523 for (Instruction *ToRemove : List)
6524 OpenIntervals.erase(ToRemove);
6525
6526 // Ignore instructions that are never used within the loop.
6527 if (!Ends.count(I))
6528 continue;
6529
6530 // Skip ignored values.
6531 if (ValuesToIgnore.count(I))
6532 continue;
6533
6534 // For each VF find the maximum usage of registers.
6535 for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6536 if (VFs[j] == 1) {
6537 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
6538 continue;
6539 }
6540 collectUniformsAndScalars(VFs[j]);
6541 // Count the number of live intervals.
6542 unsigned RegUsage = 0;
6543 for (auto Inst : OpenIntervals) {
6544 // Skip ignored values for VF > 1.
6545 if (VecValuesToIgnore.count(Inst) ||
6546 isScalarAfterVectorization(Inst, VFs[j]))
6547 continue;
6548 RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
6549 }
6550 MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
6551 }
6552
6553 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): At #" <<
i << " Interval # " << OpenIntervals.size() <<
'\n'; } } while (false)
6554 << OpenIntervals.size() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): At #" <<
i << " Interval # " << OpenIntervals.size() <<
'\n'; } } while (false)
;
6555
6556 // Add the current instruction to the list of open intervals.
6557 OpenIntervals.insert(I);
6558 }
6559
6560 for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6561 unsigned Invariant = 0;
6562 if (VFs[i] == 1)
6563 Invariant = LoopInvariants.size();
6564 else {
6565 for (auto Inst : LoopInvariants)
6566 Invariant += GetRegUsage(Inst->getType(), VFs[i]);
6567 }
6568
6569 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): VF = " <<
VFs[i] << '\n'; } } while (false)
;
6570 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Found max usage: "
<< MaxUsages[i] << '\n'; } } while (false)
;
6571 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Found invariant usage: "
<< Invariant << '\n'; } } while (false)
;
6572
6573 RU.LoopInvariantRegs = Invariant;
6574 RU.MaxLocalUsers = MaxUsages[i];
6575 RUs[i] = RU;
6576 }
6577
6578 return RUs;
6579}
6580
6581bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6582 // TODO: Cost model for emulated masked load/store is completely
6583 // broken. This hack guides the cost model to use an artificially
6584 // high enough value to practically disable vectorization with such
6585 // operations, except where previously deployed legality hack allowed
6586 // using very low cost values. This is to avoid regressions coming simply
6587 // from moving "masked load/store" check from legality to cost model.
6588 // Masked Load/Gather emulation was previously never allowed.
6589 // Limited number of Masked Store/Scatter emulation was allowed.
6590 assert(isScalarWithPredication(I) &&(static_cast <bool> (isScalarWithPredication(I) &&
"Expecting a scalar emulated instruction") ? void (0) : __assert_fail
("isScalarWithPredication(I) && \"Expecting a scalar emulated instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6591, __extension__ __PRETTY_FUNCTION__))
6591 "Expecting a scalar emulated instruction")(static_cast <bool> (isScalarWithPredication(I) &&
"Expecting a scalar emulated instruction") ? void (0) : __assert_fail
("isScalarWithPredication(I) && \"Expecting a scalar emulated instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6591, __extension__ __PRETTY_FUNCTION__))
;
6592 return isa<LoadInst>(I) ||
6593 (isa<StoreInst>(I) &&
6594 NumPredStores > NumberOfStoresToPredicate);
6595}
6596
6597void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
6598 // If we aren't vectorizing the loop, or if we've already collected the
6599 // instructions to scalarize, there's nothing to do. Collection may already
6600 // have occurred if we have a user-selected VF and are now computing the
6601 // expected cost for interleaving.
6602 if (VF < 2 || InstsToScalarize.count(VF))
6603 return;
6604
6605 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6606 // not profitable to scalarize any instructions, the presence of VF in the
6607 // map will indicate that we've analyzed it already.
6608 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6609
6610 // Find all the instructions that are scalar with predication in the loop and
6611 // determine if it would be better to not if-convert the blocks they are in.
6612 // If so, we also record the instructions to scalarize.
6613 for (BasicBlock *BB : TheLoop->blocks()) {
6614 if (!Legal->blockNeedsPredication(BB))
6615 continue;
6616 for (Instruction &I : *BB)
6617 if (isScalarWithPredication(&I)) {
6618 ScalarCostsTy ScalarCosts;
6619 // Do not apply discount logic if hacked cost is needed
6620 // for emulated masked memrefs.
6621 if (!useEmulatedMaskMemRefHack(&I) &&
6622 computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6623 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6624 // Remember that BB will remain after vectorization.
6625 PredicatedBBsAfterVectorization.insert(BB);
6626 }
6627 }
6628}
6629
6630int LoopVectorizationCostModel::computePredInstDiscount(
6631 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
6632 unsigned VF) {
6633 assert(!isUniformAfterVectorization(PredInst, VF) &&(static_cast <bool> (!isUniformAfterVectorization(PredInst
, VF) && "Instruction marked uniform-after-vectorization will be predicated"
) ? void (0) : __assert_fail ("!isUniformAfterVectorization(PredInst, VF) && \"Instruction marked uniform-after-vectorization will be predicated\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6634, __extension__ __PRETTY_FUNCTION__))
6634 "Instruction marked uniform-after-vectorization will be predicated")(static_cast <bool> (!isUniformAfterVectorization(PredInst
, VF) && "Instruction marked uniform-after-vectorization will be predicated"
) ? void (0) : __assert_fail ("!isUniformAfterVectorization(PredInst, VF) && \"Instruction marked uniform-after-vectorization will be predicated\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6634, __extension__ __PRETTY_FUNCTION__))
;
6635
6636 // Initialize the discount to zero, meaning that the scalar version and the
6637 // vector version cost the same.
6638 int Discount = 0;
6639
6640 // Holds instructions to analyze. The instructions we visit are mapped in
6641 // ScalarCosts. Those instructions are the ones that would be scalarized if
6642 // we find that the scalar version costs less.
6643 SmallVector<Instruction *, 8> Worklist;
6644
6645 // Returns true if the given instruction can be scalarized.
6646 auto canBeScalarized = [&](Instruction *I) -> bool {
6647 // We only attempt to scalarize instructions forming a single-use chain
6648 // from the original predicated block that would otherwise be vectorized.
6649 // Although not strictly necessary, we give up on instructions we know will
6650 // already be scalar to avoid traversing chains that are unlikely to be
6651 // beneficial.
6652 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6653 isScalarAfterVectorization(I, VF))
6654 return false;
6655
6656 // If the instruction is scalar with predication, it will be analyzed
6657 // separately. We ignore it within the context of PredInst.
6658 if (isScalarWithPredication(I))
6659 return false;
6660
6661 // If any of the instruction's operands are uniform after vectorization,
6662 // the instruction cannot be scalarized. This prevents, for example, a
6663 // masked load from being scalarized.
6664 //
6665 // We assume we will only emit a value for lane zero of an instruction
6666 // marked uniform after vectorization, rather than VF identical values.
6667 // Thus, if we scalarize an instruction that uses a uniform, we would
6668 // create uses of values corresponding to the lanes we aren't emitting code
6669 // for. This behavior can be changed by allowing getScalarValue to clone
6670 // the lane zero values for uniforms rather than asserting.
6671 for (Use &U : I->operands())
6672 if (auto *J = dyn_cast<Instruction>(U.get()))
6673 if (isUniformAfterVectorization(J, VF))
6674 return false;
6675
6676 // Otherwise, we can scalarize the instruction.
6677 return true;
6678 };
6679
6680 // Returns true if an operand that cannot be scalarized must be extracted
6681 // from a vector. We will account for this scalarization overhead below. Note
6682 // that the non-void predicated instructions are placed in their own blocks,
6683 // and their return values are inserted into vectors. Thus, an extract would
6684 // still be required.
6685 auto needsExtract = [&](Instruction *I) -> bool {
6686 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
6687 };
6688
6689 // Compute the expected cost discount from scalarizing the entire expression
6690 // feeding the predicated instruction. We currently only consider expressions
6691 // that are single-use instruction chains.
6692 Worklist.push_back(PredInst);
6693 while (!Worklist.empty()) {
6694 Instruction *I = Worklist.pop_back_val();
6695
6696 // If we've already analyzed the instruction, there's nothing to do.
6697 if (ScalarCosts.count(I))
6698 continue;
6699
6700 // Compute the cost of the vector instruction. Note that this cost already
6701 // includes the scalarization overhead of the predicated instruction.
6702 unsigned VectorCost = getInstructionCost(I, VF).first;
6703
6704 // Compute the cost of the scalarized instruction. This cost is the cost of
6705 // the instruction as if it wasn't if-converted and instead remained in the
6706 // predicated block. We will scale this cost by block probability after
6707 // computing the scalarization overhead.
6708 unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
6709
6710 // Compute the scalarization overhead of needed insertelement instructions
6711 // and phi nodes.
6712 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6713 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
6714 true, false);
6715 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
6716 }
6717
6718 // Compute the scalarization overhead of needed extractelement
6719 // instructions. For each of the instruction's operands, if the operand can
6720 // be scalarized, add it to the worklist; otherwise, account for the
6721 // overhead.
6722 for (Use &U : I->operands())
6723 if (auto *J = dyn_cast<Instruction>(U.get())) {
6724 assert(VectorType::isValidElementType(J->getType()) &&(static_cast <bool> (VectorType::isValidElementType(J->
getType()) && "Instruction has non-scalar type") ? void
(0) : __assert_fail ("VectorType::isValidElementType(J->getType()) && \"Instruction has non-scalar type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6725, __extension__ __PRETTY_FUNCTION__))
6725 "Instruction has non-scalar type")(static_cast <bool> (VectorType::isValidElementType(J->
getType()) && "Instruction has non-scalar type") ? void
(0) : __assert_fail ("VectorType::isValidElementType(J->getType()) && \"Instruction has non-scalar type\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6725, __extension__ __PRETTY_FUNCTION__))
;
6726 if (canBeScalarized(J))
6727 Worklist.push_back(J);
6728 else if (needsExtract(J))
6729 ScalarCost += TTI.getScalarizationOverhead(
6730 ToVectorTy(J->getType(),VF), false, true);
6731 }
6732
6733 // Scale the total scalar cost by block probability.
6734 ScalarCost /= getReciprocalPredBlockProb();
6735
6736 // Compute the discount. A non-negative discount means the vector version
6737 // of the instruction costs more, and scalarizing would be beneficial.
6738 Discount += VectorCost - ScalarCost;
6739 ScalarCosts[I] = ScalarCost;
6740 }
6741
6742 return Discount;
6743}
6744
6745LoopVectorizationCostModel::VectorizationCostTy
6746LoopVectorizationCostModel::expectedCost(unsigned VF) {
6747 VectorizationCostTy Cost;
6748
6749 // For each block.
6750 for (BasicBlock *BB : TheLoop->blocks()) {
6751 VectorizationCostTy BlockCost;
6752
6753 // For each instruction in the old loop.
6754 for (Instruction &I : *BB) {
6755 // Skip dbg intrinsics.
6756 if (isa<DbgInfoIntrinsic>(I))
6757 continue;
6758
6759 // Skip ignored values.
6760 if (ValuesToIgnore.count(&I) ||
6761 (VF > 1 && VecValuesToIgnore.count(&I)))
6762 continue;
6763
6764 VectorizationCostTy C = getInstructionCost(&I, VF);
6765
6766 // Check if we should override the cost.
6767 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6768 C.first = ForceTargetInstructionCost;
6769
6770 BlockCost.first += C.first;
6771 BlockCost.second |= C.second;
6772 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of "
<< C.first << " for VF " << VF << " For instruction: "
<< I << '\n'; } } while (false)
6773 << VF << " For instruction: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of "
<< C.first << " for VF " << VF << " For instruction: "
<< I << '\n'; } } while (false)
;
6774 }
6775
6776 // If we are vectorizing a predicated block, it will have been
6777 // if-converted. This means that the block's instructions (aside from
6778 // stores and instructions that may divide by zero) will now be
6779 // unconditionally executed. For the scalar case, we may not always execute
6780 // the predicated block. Thus, scale the block's cost by the probability of
6781 // executing it.
6782 if (VF == 1 && Legal->blockNeedsPredication(BB))
6783 BlockCost.first /= getReciprocalPredBlockProb();
6784
6785 Cost.first += BlockCost.first;
6786 Cost.second |= BlockCost.second;
6787 }
6788
6789 return Cost;
6790}
6791
6792/// \brief Gets Address Access SCEV after verifying that the access pattern
6793/// is loop invariant except the induction variable dependence.
6794///
6795/// This SCEV can be sent to the Target in order to estimate the address
6796/// calculation cost.
6797static const SCEV *getAddressAccessSCEV(
6798 Value *Ptr,
6799 LoopVectorizationLegality *Legal,
6800 PredicatedScalarEvolution &PSE,
6801 const Loop *TheLoop) {
6802
6803 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6804 if (!Gep)
6805 return nullptr;
6806
6807 // We are looking for a gep with all loop invariant indices except for one
6808 // which should be an induction variable.
6809 auto SE = PSE.getSE();
6810 unsigned NumOperands = Gep->getNumOperands();
6811 for (unsigned i = 1; i < NumOperands; ++i) {
6812 Value *Opd = Gep->getOperand(i);
6813 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6814 !Legal->isInductionVariable(Opd))
6815 return nullptr;
6816 }
6817
6818 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6819 return PSE.getSCEV(Ptr);
6820}
6821
6822static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6823 return Legal->hasStride(I->getOperand(0)) ||
6824 Legal->hasStride(I->getOperand(1));
6825}
6826
6827unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6828 unsigned VF) {
6829 Type *ValTy = getMemInstValueType(I);
6830 auto SE = PSE.getSE();
6831
6832 unsigned Alignment = getMemInstAlignment(I);
6833 unsigned AS = getMemInstAddressSpace(I);
6834 Value *Ptr = getLoadStorePointerOperand(I);
6835 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6836
6837 // Figure out whether the access is strided and get the stride value
6838 // if it's known in compile time
6839 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6840
6841 // Get the cost of the scalar memory instruction and address computation.
6842 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6843
6844 Cost += VF *
6845 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6846 AS, I);
6847
6848 // Get the overhead of the extractelement and insertelement instructions
6849 // we might create due to scalarization.
6850 Cost += getScalarizationOverhead(I, VF, TTI);
6851
6852 // If we have a predicated store, it may not be executed for each vector
6853 // lane. Scale the cost by the probability of executing the predicated
6854 // block.
6855 if (isScalarWithPredication(I)) {
6856 Cost /= getReciprocalPredBlockProb();
6857
6858 if (useEmulatedMaskMemRefHack(I))
6859 // Artificially setting to a high enough value to practically disable
6860 // vectorization with such operations.
6861 Cost = 3000000;
6862 }
6863
6864 return Cost;
6865}
6866
6867unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6868 unsigned VF) {
6869 Type *ValTy = getMemInstValueType(I);
6870 Type *VectorTy = ToVectorTy(ValTy, VF);
6871 unsigned Alignment = getMemInstAlignment(I);
6872 Value *Ptr = getLoadStorePointerOperand(I);
6873 unsigned AS = getMemInstAddressSpace(I);
6874 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6875
6876 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Stride should be 1 or -1 for consecutive memory access"
) ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Stride should be 1 or -1 for consecutive memory access\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6877, __extension__ __PRETTY_FUNCTION__))
6877 "Stride should be 1 or -1 for consecutive memory access")(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Stride should be 1 or -1 for consecutive memory access"
) ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Stride should be 1 or -1 for consecutive memory access\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6877, __extension__ __PRETTY_FUNCTION__))
;
6878 unsigned Cost = 0;
6879 if (Legal->isMaskRequired(I))
6880 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6881 else
6882 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
6883
6884 bool Reverse = ConsecutiveStride < 0;
6885 if (Reverse)
6886 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6887 return Cost;
6888}
6889
6890unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6891 unsigned VF) {
6892 LoadInst *LI = cast<LoadInst>(I);
6893 Type *ValTy = LI->getType();
6894 Type *VectorTy = ToVectorTy(ValTy, VF);
6895 unsigned Alignment = LI->getAlignment();
6896 unsigned AS = LI->getPointerAddressSpace();
6897
6898 return TTI.getAddressComputationCost(ValTy) +
6899 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
6900 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6901}
6902
6903unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6904 unsigned VF) {
6905 Type *ValTy = getMemInstValueType(I);
6906 Type *VectorTy = ToVectorTy(ValTy, VF);
6907 unsigned Alignment = getMemInstAlignment(I);
6908 Value *Ptr = getLoadStorePointerOperand(I);
6909
6910 return TTI.getAddressComputationCost(VectorTy) +
6911 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
6912 Legal->isMaskRequired(I), Alignment);
6913}
6914
6915unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6916 unsigned VF) {
6917 Type *ValTy = getMemInstValueType(I);
6918 Type *VectorTy = ToVectorTy(ValTy, VF);
6919 unsigned AS = getMemInstAddressSpace(I);
6920
6921 auto Group = Legal->getInterleavedAccessGroup(I);
6922 assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group."
) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6922, __extension__ __PRETTY_FUNCTION__))
;
6923
6924 unsigned InterleaveFactor = Group->getFactor();
6925 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6926
6927 // Holds the indices of existing members in an interleaved load group.
6928 // An interleaved store group doesn't need this as it doesn't allow gaps.
6929 SmallVector<unsigned, 4> Indices;
6930 if (isa<LoadInst>(I)) {
6931 for (unsigned i = 0; i < InterleaveFactor; i++)
6932 if (Group->getMember(i))
6933 Indices.push_back(i);
6934 }
6935
6936 // Calculate the cost of the whole interleaved group.
6937 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
6938 Group->getFactor(), Indices,
6939 Group->getAlignment(), AS);
6940
6941 if (Group->isReverse())
6942 Cost += Group->getNumMembers() *
6943 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6944 return Cost;
6945}
6946
6947unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6948 unsigned VF) {
6949 // Calculate scalar cost only. Vectorization cost should be ready at this
6950 // moment.
6951 if (VF == 1) {
6952 Type *ValTy = getMemInstValueType(I);
6953 unsigned Alignment = getMemInstAlignment(I);
6954 unsigned AS = getMemInstAddressSpace(I);
6955
6956 return TTI.getAddressComputationCost(ValTy) +
6957 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
6958 }
6959 return getWideningCost(I, VF);
6960}
6961
6962LoopVectorizationCostModel::VectorizationCostTy
6963LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6964 // If we know that this instruction will remain uniform, check the cost of
6965 // the scalar version.
6966 if (isUniformAfterVectorization(I, VF))
6967 VF = 1;
6968
6969 if (VF > 1 && isProfitableToScalarize(I, VF))
6970 return VectorizationCostTy(InstsToScalarize[VF][I], false);
6971
6972 // Forced scalars do not have any scalarization overhead.
6973 if (VF > 1 && ForcedScalars.count(VF) &&
6974 ForcedScalars.find(VF)->second.count(I))
6975 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6976
6977 Type *VectorTy;
6978 unsigned C = getInstructionCost(I, VF, VectorTy);
6979
6980 bool TypeNotScalarized =
6981 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6982 return VectorizationCostTy(C, TypeNotScalarized);
6983}
6984
6985void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6986 if (VF == 1)
6987 return;
6988 NumPredStores = 0;
6989 for (BasicBlock *BB : TheLoop->blocks()) {
6990 // For each instruction in the old loop.
6991 for (Instruction &I : *BB) {
6992 Value *Ptr = getLoadStorePointerOperand(&I);
6993 if (!Ptr)
6994 continue;
6995
6996 if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6997 NumPredStores++;
6998 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
6999 // Scalar load + broadcast
7000 unsigned Cost = getUniformMemOpCost(&I, VF);
7001 setWideningDecision(&I, VF, CM_Scalarize, Cost);
7002 continue;
7003 }
7004
7005 // We assume that widening is the best solution when possible.
7006 if (memoryInstructionCanBeWidened(&I, VF)) {
7007 unsigned Cost = getConsecutiveMemOpCost(&I, VF);
7008 int ConsecutiveStride =
7009 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7010 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Expected consecutive stride.") ? void (0)
: __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Expected consecutive stride.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7011, __extension__ __PRETTY_FUNCTION__))
7011 "Expected consecutive stride.")(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Expected consecutive stride.") ? void (0)
: __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Expected consecutive stride.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7011, __extension__ __PRETTY_FUNCTION__))
;
7012 InstWidening Decision =
7013 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7014 setWideningDecision(&I, VF, Decision, Cost);
7015 continue;
7016 }
7017
7018 // Choose between Interleaving, Gather/Scatter or Scalarization.
7019 unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
7020 unsigned NumAccesses = 1;
7021 if (Legal->isAccessInterleaved(&I)) {
7022 auto Group = Legal->getInterleavedAccessGroup(&I);
7023 assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group."
) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7023, __extension__ __PRETTY_FUNCTION__))
;
7024
7025 // Make one decision for the whole group.
7026 if (getWideningDecision(&I, VF) != CM_Unknown)
7027 continue;
7028
7029 NumAccesses = Group->getNumMembers();
7030 InterleaveCost = getInterleaveGroupCost(&I, VF);
7031 }
7032
7033 unsigned GatherScatterCost =
7034 isLegalGatherOrScatter(&I)
7035 ? getGatherScatterCost(&I, VF) * NumAccesses
7036 : std::numeric_limits<unsigned>::max();
7037
7038 unsigned ScalarizationCost =
7039 getMemInstScalarizationCost(&I, VF) * NumAccesses;
7040
7041 // Choose better solution for the current VF,
7042 // write down this decision and use it during vectorization.
7043 unsigned Cost;
7044 InstWidening Decision;
7045 if (InterleaveCost <= GatherScatterCost &&
7046 InterleaveCost < ScalarizationCost) {
7047 Decision = CM_Interleave;
7048 Cost = InterleaveCost;
7049 } else if (GatherScatterCost < ScalarizationCost) {
7050 Decision = CM_GatherScatter;
7051 Cost = GatherScatterCost;
7052 } else {
7053 Decision = CM_Scalarize;
7054 Cost = ScalarizationCost;
7055 }
7056 // If the instructions belongs to an interleave group, the whole group
7057 // receives the same decision. The whole group receives the cost, but
7058 // the cost will actually be assigned to one instruction.
7059 if (auto Group = Legal->getInterleavedAccessGroup(&I))
7060 setWideningDecision(Group, VF, Decision, Cost);
7061 else
7062 setWideningDecision(&I, VF, Decision, Cost);
7063 }
7064 }
7065
7066 // Make sure that any load of address and any other address computation
7067 // remains scalar unless there is gather/scatter support. This avoids
7068 // inevitable extracts into address registers, and also has the benefit of
7069 // activating LSR more, since that pass can't optimize vectorized
7070 // addresses.
7071 if (TTI.prefersVectorizedAddressing())
7072 return;
7073
7074 // Start with all scalar pointer uses.
7075 SmallPtrSet<Instruction *, 8> AddrDefs;
7076 for (BasicBlock *BB : TheLoop->blocks())
7077 for (Instruction &I : *BB) {
7078 Instruction *PtrDef =
7079 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7080 if (PtrDef && TheLoop->contains(PtrDef) &&
7081 getWideningDecision(&I, VF) != CM_GatherScatter)
7082 AddrDefs.insert(PtrDef);
7083 }
7084
7085 // Add all instructions used to generate the addresses.
7086 SmallVector<Instruction *, 4> Worklist;
7087 for (auto *I : AddrDefs)
7088 Worklist.push_back(I);
7089 while (!Worklist.empty()) {
7090 Instruction *I = Worklist.pop_back_val();
7091 for (auto &Op : I->operands())
7092 if (auto *InstOp = dyn_cast<Instruction>(Op))
7093 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7094 AddrDefs.insert(InstOp).second)
7095 Worklist.push_back(InstOp);
7096 }
7097
7098 for (auto *I : AddrDefs) {
7099 if (isa<LoadInst>(I)) {
7100 // Setting the desired widening decision should ideally be handled in
7101 // by cost functions, but since this involves the task of finding out
7102 // if the loaded register is involved in an address computation, it is
7103 // instead changed here when we know this is the case.
7104 InstWidening Decision = getWideningDecision(I, VF);
7105 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7106 // Scalarize a widened load of address.
7107 setWideningDecision(I, VF, CM_Scalarize,
7108 (VF * getMemoryInstructionCost(I, 1)));
7109 else if (auto Group = Legal->getInterleavedAccessGroup(I)) {
7110 // Scalarize an interleave group of address loads.
7111 for (unsigned I = 0; I < Group->getFactor(); ++I) {
7112 if (Instruction *Member = Group->getMember(I))
7113 setWideningDecision(Member, VF, CM_Scalarize,
7114 (VF * getMemoryInstructionCost(Member, 1)));
7115 }
7116 }
7117 } else
7118 // Make sure I gets scalarized and a cost estimate without
7119 // scalarization overhead.
7120 ForcedScalars[VF].insert(I);
7121 }
7122}
7123
7124unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7125 unsigned VF,
7126 Type *&VectorTy) {
7127 Type *RetTy = I->getType();
7128 if (canTruncateToMinimalBitwidth(I, VF))
7129 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7130 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7131 auto SE = PSE.getSE();
7132
7133 // TODO: We need to estimate the cost of intrinsic calls.
7134 switch (I->getOpcode()) {
7135 case Instruction::GetElementPtr:
7136 // We mark this instruction as zero-cost because the cost of GEPs in
7137 // vectorized code depends on whether the corresponding memory instruction
7138 // is scalarized or not. Therefore, we handle GEPs with the memory
7139 // instruction cost.
7140 return 0;
7141 case Instruction::Br: {
7142 // In cases of scalarized and predicated instructions, there will be VF
7143 // predicated blocks in the vectorized loop. Each branch around these
7144 // blocks requires also an extract of its vector compare i1 element.
7145 bool ScalarPredicatedBB = false;
7146 BranchInst *BI = cast<BranchInst>(I);
7147 if (VF > 1 && BI->isConditional() &&
7148 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7149 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7150 ScalarPredicatedBB = true;
7151
7152 if (ScalarPredicatedBB) {
7153 // Return cost for branches around scalarized and predicated blocks.
7154 Type *Vec_i1Ty =
7155 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7156 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
7157 (TTI.getCFInstrCost(Instruction::Br) * VF));
7158 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
7159 // The back-edge branch will remain, as will all scalar branches.
7160 return TTI.getCFInstrCost(Instruction::Br);
7161 else
7162 // This branch will be eliminated by if-conversion.
7163 return 0;
7164 // Note: We currently assume zero cost for an unconditional branch inside
7165 // a predicated block since it will become a fall-through, although we
7166 // may decide in the future to call TTI for all branches.
7167 }
7168 case Instruction::PHI: {
7169 auto *Phi = cast<PHINode>(I);
7170
7171 // First-order recurrences are replaced by vector shuffles inside the loop.
7172 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
7173 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
7174 VectorTy, VF - 1, VectorTy);
7175
7176 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7177 // converted into select instructions. We require N - 1 selects per phi
7178 // node, where N is the number of incoming values.
7179 if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
7180 return (Phi->getNumIncomingValues() - 1) *
7181 TTI.getCmpSelInstrCost(
7182 Instruction::Select, ToVectorTy(Phi->getType(), VF),
7183 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
7184
7185 return TTI.getCFInstrCost(Instruction::PHI);
7186 }
7187 case Instruction::UDiv:
7188 case Instruction::SDiv:
7189 case Instruction::URem:
7190 case Instruction::SRem:
7191 // If we have a predicated instruction, it may not be executed for each
7192 // vector lane. Get the scalarization cost and scale this amount by the
7193 // probability of executing the predicated block. If the instruction is not
7194 // predicated, we fall through to the next case.
7195 if (VF > 1 && isScalarWithPredication(I)) {
7196 unsigned Cost = 0;
7197
7198 // These instructions have a non-void type, so account for the phi nodes
7199 // that we will create. This cost is likely to be zero. The phi node
7200 // cost, if any, should be scaled by the block probability because it
7201 // models a copy at the end of each predicated block.
7202 Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
7203
7204 // The cost of the non-predicated instruction.
7205 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
7206
7207 // The cost of insertelement and extractelement instructions needed for
7208 // scalarization.
7209 Cost += getScalarizationOverhead(I, VF, TTI);
7210
7211 // Scale the cost by the probability of executing the predicated blocks.
7212 // This assumes the predicated block for each vector lane is equally
7213 // likely.
7214 return Cost / getReciprocalPredBlockProb();
7215 }
7216 LLVM_FALLTHROUGH[[clang::fallthrough]];
7217 case Instruction::Add:
7218 case Instruction::FAdd:
7219 case Instruction::Sub:
7220 case Instruction::FSub:
7221 case Instruction::Mul:
7222 case Instruction::FMul:
7223 case Instruction::FDiv:
7224 case Instruction::FRem:
7225 case Instruction::Shl:
7226 case Instruction::LShr:
7227 case Instruction::AShr:
7228 case Instruction::And:
7229 case Instruction::Or:
7230 case Instruction::Xor: {
7231 // Since we will replace the stride by 1 the multiplication should go away.
7232 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7233 return 0;
7234 // Certain instructions can be cheaper to vectorize if they have a constant
7235 // second vector operand. One example of this are shifts on x86.
7236 TargetTransformInfo::OperandValueKind Op1VK =
7237 TargetTransformInfo::OK_AnyValue;
7238 TargetTransformInfo::OperandValueKind Op2VK =
7239 TargetTransformInfo::OK_AnyValue;
7240 TargetTransformInfo::OperandValueProperties Op1VP =
7241 TargetTransformInfo::OP_None;
7242 TargetTransformInfo::OperandValueProperties Op2VP =
7243 TargetTransformInfo::OP_None;
7244 Value *Op2 = I->getOperand(1);
7245
7246 // Check for a splat or for a non uniform vector of constants.
7247 if (isa<ConstantInt>(Op2)) {
7248 ConstantInt *CInt = cast<ConstantInt>(Op2);
7249 if (CInt && CInt->getValue().isPowerOf2())
7250 Op2VP = TargetTransformInfo::OP_PowerOf2;
7251 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7252 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
7253 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
7254 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
7255 if (SplatValue) {
7256 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
7257 if (CInt && CInt->getValue().isPowerOf2())
7258 Op2VP = TargetTransformInfo::OP_PowerOf2;
7259 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7260 }
7261 } else if (Legal->isUniform(Op2)) {
7262 Op2VK = TargetTransformInfo::OK_UniformValue;
7263 }
7264 SmallVector<const Value *, 4> Operands(I->operand_values());
7265 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
7266 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
7267 Op2VK, Op1VP, Op2VP, Operands);
7268 }
7269 case Instruction::Select: {
7270 SelectInst *SI = cast<SelectInst>(I);
7271 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7272 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7273 Type *CondTy = SI->getCondition()->getType();
7274 if (!ScalarCond)
7275 CondTy = VectorType::get(CondTy, VF);
7276
7277 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
7278 }
7279 case Instruction::ICmp:
7280 case Instruction::FCmp: {
7281 Type *ValTy = I->getOperand(0)->getType();
7282 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7283 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7284 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7285 VectorTy = ToVectorTy(ValTy, VF);
7286 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
7287 }
7288 case Instruction::Store:
7289 case Instruction::Load: {
7290 unsigned Width = VF;
7291 if (Width > 1) {
7292 InstWidening Decision = getWideningDecision(I, Width);
7293 assert(Decision != CM_Unknown &&(static_cast <bool> (Decision != CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7294, __extension__ __PRETTY_FUNCTION__))
7294 "CM decision should be taken at this point")(static_cast <bool> (Decision != CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7294, __extension__ __PRETTY_FUNCTION__))
;
7295 if (Decision == CM_Scalarize)
7296 Width = 1;
7297 }
7298 VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7299 return getMemoryInstructionCost(I, VF);
7300 }
7301 case Instruction::ZExt:
7302 case Instruction::SExt:
7303 case Instruction::FPToUI:
7304 case Instruction::FPToSI:
7305 case Instruction::FPExt:
7306 case Instruction::PtrToInt:
7307 case Instruction::IntToPtr:
7308 case Instruction::SIToFP:
7309 case Instruction::UIToFP:
7310 case Instruction::Trunc:
7311 case Instruction::FPTrunc:
7312 case Instruction::BitCast: {
7313 // We optimize the truncation of induction variables having constant
7314 // integer steps. The cost of these truncations is the same as the scalar
7315 // operation.
7316 if (isOptimizableIVTruncate(I, VF)) {
7317 auto *Trunc = cast<TruncInst>(I);
7318 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7319 Trunc->getSrcTy(), Trunc);
7320 }
7321
7322 Type *SrcScalarTy = I->getOperand(0)->getType();
7323 Type *SrcVecTy =
7324 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7325 if (canTruncateToMinimalBitwidth(I, VF)) {
7326 // This cast is going to be shrunk. This may remove the cast or it might
7327 // turn it into slightly different cast. For example, if MinBW == 16,
7328 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7329 //
7330 // Calculate the modified src and dest types.
7331 Type *MinVecTy = VectorTy;
7332 if (I->getOpcode() == Instruction::Trunc) {
7333 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7334 VectorTy =
7335 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7336 } else if (I->getOpcode() == Instruction::ZExt ||
7337 I->getOpcode() == Instruction::SExt) {
7338 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7339 VectorTy =
7340 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7341 }
7342 }
7343
7344 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
7345 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
7346 }
7347 case Instruction::Call: {
7348 bool NeedToScalarize;
7349 CallInst *CI = cast<CallInst>(I);
7350 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
7351 if (getVectorIntrinsicIDForCall(CI, TLI))
7352 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
7353 return CallCost;
7354 }
7355 default:
7356 // The cost of executing VF copies of the scalar instruction. This opcode
7357 // is unknown. Assume that it is the same as 'mul'.
7358 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
7359 getScalarizationOverhead(I, VF, TTI);
7360 } // end of switch.
7361}
7362
7363char LoopVectorize::ID = 0;
7364
7365static const char lv_name[] = "Loop Vectorization";
7366
7367INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)static void *initializeLoopVectorizePassOnce(PassRegistry &
Registry) {
7368INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
7369INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)initializeBasicAAWrapperPassPass(Registry);
7370INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
7371INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
7372INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
7373INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)initializeBlockFrequencyInfoWrapperPassPass(Registry);
7374INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
7375INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
7376INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
7377INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)initializeLoopAccessLegacyAnalysisPass(Registry);
7378INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
7379INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
7380INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "loop-vectorize", &
LoopVectorize::ID, PassInfo::NormalCtor_t(callDefaultCtor<
LoopVectorize>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeLoopVectorizePassFlag
; void llvm::initializeLoopVectorizePass(PassRegistry &Registry
) { llvm::call_once(InitializeLoopVectorizePassFlag, initializeLoopVectorizePassOnce
, std::ref(Registry)); }
7381
7382namespace llvm {
7383
7384Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
7385 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
7386}
7387
7388} // end namespace llvm
7389
7390bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7391 // Check if the pointer operand of a load or store instruction is
7392 // consecutive.
7393 if (auto *Ptr = getLoadStorePointerOperand(Inst))
7394 return Legal->isConsecutivePtr(Ptr);
7395 return false;
7396}
7397
7398void LoopVectorizationCostModel::collectValuesToIgnore() {
7399 // Ignore ephemeral values.
7400 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7401
7402 // Ignore type-promoting instructions we identified during reduction
7403 // detection.
7404 for (auto &Reduction : *Legal->getReductionVars()) {
7405 RecurrenceDescriptor &RedDes = Reduction.second;
7406 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7407 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7408 }
7409 // Ignore type-casting instructions we identified during induction
7410 // detection.
7411 for (auto &Induction : *Legal->getInductionVars()) {
7412 InductionDescriptor &IndDes = Induction.second;
7413 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7414 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7415 }
7416}
7417
7418VectorizationFactor
7419LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
7420 // Width 1 means no vectorize, cost 0 means uncomputed cost.
7421 const VectorizationFactor NoVectorization = {1U, 0U};
7422 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
7423 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
7424 return NoVectorization;
7425
7426 if (UserVF) {
7427 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Using user VF " <<
UserVF << ".\n"; } } while (false)
;
7428 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two")(static_cast <bool> (isPowerOf2_32(UserVF) && "VF needs to be a power of two"
) ? void (0) : __assert_fail ("isPowerOf2_32(UserVF) && \"VF needs to be a power of two\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7428, __extension__ __PRETTY_FUNCTION__))
;
7429 // Collect the instructions (and their associated costs) that will be more
7430 // profitable to scalarize.
7431 CM.selectUserVectorizationFactor(UserVF);
7432 buildVPlans(UserVF, UserVF);
7433 DEBUG(printPlans(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { printPlans(dbgs()); } } while (false)
;
7434 return {UserVF, 0};
7435 }
7436
7437 unsigned MaxVF = MaybeMaxVF.getValue();
7438 assert(MaxVF != 0 && "MaxVF is zero.")(static_cast <bool> (MaxVF != 0 && "MaxVF is zero."
) ? void (0) : __assert_fail ("MaxVF != 0 && \"MaxVF is zero.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7438, __extension__ __PRETTY_FUNCTION__))
;
7439
7440 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
7441 // Collect Uniform and Scalar instructions after vectorization with VF.
7442 CM.collectUniformsAndScalars(VF);
7443
7444 // Collect the instructions (and their associated costs) that will be more
7445 // profitable to scalarize.
7446 if (VF > 1)
7447 CM.collectInstsToScalarize(VF);
7448 }
7449
7450 buildVPlans(1, MaxVF);
7451 DEBUG(printPlans(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { printPlans(dbgs()); } } while (false)
;
7452 if (MaxVF == 1)
7453 return NoVectorization;
7454
7455 // Select the optimal vectorization factor.
7456 return CM.selectVectorizationFactor(MaxVF);
7457}
7458
7459void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
7460 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Setting best plan to VF="
<< VF << ", UF=" << UF << '\n'; } } while
(false)
;
7461 BestVF = VF;
7462 BestUF = UF;
7463
7464 erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7465 return !Plan->hasVF(VF);
7466 });
7467 assert(VPlans.size() == 1 && "Best VF has not a single VPlan.")(static_cast <bool> (VPlans.size() == 1 && "Best VF has not a single VPlan."
) ? void (0) : __assert_fail ("VPlans.size() == 1 && \"Best VF has not a single VPlan.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7467, __extension__ __PRETTY_FUNCTION__))
;
7468}
7469
7470void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7471 DominatorTree *DT) {
7472 // Perform the actual loop transformation.
7473
7474 // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7475 VPCallbackILV CallbackILV(ILV);
7476
7477 VPTransformState State{BestVF, BestUF, LI,
7478 DT, ILV.Builder, ILV.VectorLoopValueMap,
7479 &ILV, CallbackILV};
7480 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7481
7482 //===------------------------------------------------===//
7483 //
7484 // Notice: any optimization or new instruction that go
7485 // into the code below should also be implemented in
7486 // the cost-model.
7487 //
7488 //===------------------------------------------------===//
7489
7490 // 2. Copy and widen instructions from the old loop into the new loop.
7491 assert(VPlans.size() == 1 && "Not a single VPlan to execute.")(static_cast <bool> (VPlans.size() == 1 && "Not a single VPlan to execute."
) ? void (0) : __assert_fail ("VPlans.size() == 1 && \"Not a single VPlan to execute.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7491, __extension__ __PRETTY_FUNCTION__))
;
7492 VPlans.front()->execute(&State);
7493
7494 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7495 // predication, updating analyses.
7496 ILV.fixVectorizedLoop();
7497}
7498
7499void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7500 SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7501 BasicBlock *Latch = OrigLoop->getLoopLatch();
7502
7503 // We create new control-flow for the vectorized loop, so the original
7504 // condition will be dead after vectorization if it's only used by the
7505 // branch.
7506 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7507 if (Cmp && Cmp->hasOneUse())
7508 DeadInstructions.insert(Cmp);
7509
7510 // We create new "steps" for induction variable updates to which the original
7511 // induction variables map. An original update instruction will be dead if
7512 // all its users except the induction variable are dead.
7513 for (auto &Induction : *Legal->getInductionVars()) {
7514 PHINode *Ind = Induction.first;
7515 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7516 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7517 return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7518 }))
7519 DeadInstructions.insert(IndUpdate);
7520
7521 // We record as "Dead" also the type-casting instructions we had identified
7522 // during induction analysis. We don't need any handling for them in the
7523 // vectorized loop because we have proven that, under a proper runtime
7524 // test guarding the vectorized loop, the value of the phi, and the casted
7525 // value of the phi, are the same. The last instruction in this casting chain
7526 // will get its scalar/vector/widened def from the scalar/vector/widened def
7527 // of the respective phi node. Any other casts in the induction def-use chain
7528 // have no other uses outside the phi update chain, and will be ignored.
7529 InductionDescriptor &IndDes = Induction.second;
7530 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7531 DeadInstructions.insert(Casts.begin(), Casts.end());
7532 }
7533}
7534
7535Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7536
7537Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7538
7539Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7540 Instruction::BinaryOps BinOp) {
7541 // When unrolling and the VF is 1, we only need to add a simple scalar.
7542 Type *Ty = Val->getType();
7543 assert(!Ty->isVectorTy() && "Val must be a scalar")(static_cast <bool> (!Ty->isVectorTy() && "Val must be a scalar"
) ? void (0) : __assert_fail ("!Ty->isVectorTy() && \"Val must be a scalar\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7543, __extension__ __PRETTY_FUNCTION__))
;
7544
7545 if (Ty->isFloatingPointTy()) {
7546 Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7547
7548 // Floating point operations had to be 'fast' to enable the unrolling.
7549 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7550 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7551 }
7552 Constant *C = ConstantInt::get(Ty, StartIdx);
7553 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7554}
7555
7556static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7557 SmallVector<Metadata *, 4> MDs;
7558 // Reserve first location for self reference to the LoopID metadata node.
7559 MDs.push_back(nullptr);
7560 bool IsUnrollMetadata = false;
7561 MDNode *LoopID = L->getLoopID();
7562 if (LoopID) {
7563 // First find existing loop unrolling disable metadata.
7564 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7565 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7566 if (MD) {
7567 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7568 IsUnrollMetadata =
7569 S && S->getString().startswith("llvm.loop.unroll.disable");
7570 }
7571 MDs.push_back(LoopID->getOperand(i));
7572 }
7573 }
7574
7575 if (!IsUnrollMetadata) {
7576 // Add runtime unroll disable metadata.
7577 LLVMContext &Context = L->getHeader()->getContext();
7578 SmallVector<Metadata *, 1> DisableOperands;
7579 DisableOperands.push_back(
7580 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7581 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7582 MDs.push_back(DisableNode);
7583 MDNode *NewLoopID = MDNode::get(Context, MDs);
7584 // Set operand 0 to refer to the loop id itself.
7585 NewLoopID->replaceOperandWith(0, NewLoopID);
7586 L->setLoopID(NewLoopID);
7587 }
7588}
7589
7590bool LoopVectorizationPlanner::getDecisionAndClampRange(
7591 const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
7592 assert(Range.End > Range.Start && "Trying to test an empty VF range.")(static_cast <bool> (Range.End > Range.Start &&
"Trying to test an empty VF range.") ? void (0) : __assert_fail
("Range.End > Range.Start && \"Trying to test an empty VF range.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7592, __extension__ __PRETTY_FUNCTION__))
;
7593 bool PredicateAtRangeStart = Predicate(Range.Start);
7594
7595 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
7596 if (Predicate(TmpVF) != PredicateAtRangeStart) {
7597 Range.End = TmpVF;
7598 break;
7599 }
7600
7601 return PredicateAtRangeStart;
7602}
7603
7604/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7605/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7606/// of VF's starting at a given VF and extending it as much as possible. Each
7607/// vectorization decision can potentially shorten this sub-range during
7608/// buildVPlan().
7609void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
7610
7611 // Collect conditions feeding internal conditional branches; they need to be
7612 // represented in VPlan for it to model masking.
7613 SmallPtrSet<Value *, 1> NeedDef;
7614
7615 auto *Latch = OrigLoop->getLoopLatch();
7616 for (BasicBlock *BB : OrigLoop->blocks()) {
7617 if (BB == Latch)
7618 continue;
7619 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7620 if (Branch && Branch->isConditional())
7621 NeedDef.insert(Branch->getCondition());
7622 }
7623
7624 for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7625 VFRange SubRange = {VF, MaxVF + 1};
7626 VPlans.push_back(buildVPlan(SubRange, NeedDef));
7627 VF = SubRange.End;
7628 }
7629}
7630
7631VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src,
7632 BasicBlock *Dst,
7633 VPlanPtr &Plan) {
7634 assert(is_contained(predecessors(Dst), Src) && "Invalid edge")(static_cast <bool> (is_contained(predecessors(Dst), Src
) && "Invalid edge") ? void (0) : __assert_fail ("is_contained(predecessors(Dst), Src) && \"Invalid edge\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7634, __extension__ __PRETTY_FUNCTION__))
;
7635
7636 // Look for cached value.
7637 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7638 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7639 if (ECEntryIt != EdgeMaskCache.end())
7640 return ECEntryIt->second;
7641
7642 VPValue *SrcMask = createBlockInMask(Src, Plan);
7643
7644 // The terminator has to be a branch inst!
7645 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7646 assert(BI && "Unexpected terminator found")(static_cast <bool> (BI && "Unexpected terminator found"
) ? void (0) : __assert_fail ("BI && \"Unexpected terminator found\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7646, __extension__ __PRETTY_FUNCTION__))
;
7647
7648 if (!BI->isConditional())
7649 return EdgeMaskCache[Edge] = SrcMask;
7650
7651 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
7652 assert(EdgeMask && "No Edge Mask found for condition")(static_cast <bool> (EdgeMask && "No Edge Mask found for condition"
) ? void (0) : __assert_fail ("EdgeMask && \"No Edge Mask found for condition\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7652, __extension__ __PRETTY_FUNCTION__))
;
7653
7654 if (BI->getSuccessor(0) != Dst)
7655 EdgeMask = Builder.createNot(EdgeMask);
7656
7657 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
7658 EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
7659
7660 return EdgeMaskCache[Edge] = EdgeMask;
7661}
7662
7663VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB,
7664 VPlanPtr &Plan) {
7665 assert(OrigLoop->contains(BB) && "Block is not a part of a loop")(static_cast <bool> (OrigLoop->contains(BB) &&
"Block is not a part of a loop") ? void (0) : __assert_fail (
"OrigLoop->contains(BB) && \"Block is not a part of a loop\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7665, __extension__ __PRETTY_FUNCTION__))
;
7666
7667 // Look for cached value.
7668 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
7669 if (BCEntryIt != BlockMaskCache.end())
7670 return BCEntryIt->second;
7671
7672 // All-one mask is modelled as no-mask following the convention for masked
7673 // load/store/gather/scatter. Initialize BlockMask to no-mask.
7674 VPValue *BlockMask = nullptr;
7675
7676 // Loop incoming mask is all-one.
7677 if (OrigLoop->getHeader() == BB)
7678 return BlockMaskCache[BB] = BlockMask;
7679
7680 // This is the block mask. We OR all incoming edges.
7681 for (auto *Predecessor : predecessors(BB)) {
7682 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
7683 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
7684 return BlockMaskCache[BB] = EdgeMask;
7685
7686 if (!BlockMask) { // BlockMask has its initialized nullptr value.
7687 BlockMask = EdgeMask;
7688 continue;
7689 }
7690
7691 BlockMask = Builder.createOr(BlockMask, EdgeMask);
7692 }
7693
7694 return BlockMaskCache[BB] = BlockMask;
7695}
7696
7697VPInterleaveRecipe *
7698LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I,
7699 VFRange &Range) {
7700 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I);
7701 if (!IG)
7702 return nullptr;
7703
7704 // Now check if IG is relevant for VF's in the given range.
7705 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
7706 return [=](unsigned VF) -> bool {
7707 return (VF >= 2 && // Query is illegal for VF == 1
7708 CM.getWideningDecision(I, VF) ==
7709 LoopVectorizationCostModel::CM_Interleave);
7710 };
7711 };
7712 if (!getDecisionAndClampRange(isIGMember(I), Range))
7713 return nullptr;
7714
7715 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
7716 // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
7717 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
7718 assert(I == IG->getInsertPos() &&(static_cast <bool> (I == IG->getInsertPos() &&
"Generating a recipe for an adjunct member of an interleave group"
) ? void (0) : __assert_fail ("I == IG->getInsertPos() && \"Generating a recipe for an adjunct member of an interleave group\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7719, __extension__ __PRETTY_FUNCTION__))
7719 "Generating a recipe for an adjunct member of an interleave group")(static_cast <bool> (I == IG->getInsertPos() &&
"Generating a recipe for an adjunct member of an interleave group"
) ? void (0) : __assert_fail ("I == IG->getInsertPos() && \"Generating a recipe for an adjunct member of an interleave group\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7719, __extension__ __PRETTY_FUNCTION__))
;
7720
7721 return new VPInterleaveRecipe(IG);
7722}
7723
7724VPWidenMemoryInstructionRecipe *
7725LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range,
7726 VPlanPtr &Plan) {
7727 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
7728 return nullptr;
7729
7730 auto willWiden = [&](unsigned VF) -> bool {
7731 if (VF == 1)
7732 return false;
7733 if (CM.isScalarAfterVectorization(I, VF) ||
7734 CM.isProfitableToScalarize(I, VF))
7735 return false;
7736 LoopVectorizationCostModel::InstWidening Decision =
7737 CM.getWideningDecision(I, VF);
7738 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7739, __extension__ __PRETTY_FUNCTION__))
7739 "CM decision should be taken at this point.")(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7739, __extension__ __PRETTY_FUNCTION__))
;
7740 assert(Decision != LoopVectorizationCostModel::CM_Interleave &&(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Interleave && "Interleave memory opportunity should be caught earlier."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Interleave && \"Interleave memory opportunity should be caught earlier.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7741, __extension__ __PRETTY_FUNCTION__))
7741 "Interleave memory opportunity should be caught earlier.")(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Interleave && "Interleave memory opportunity should be caught earlier."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Interleave && \"Interleave memory opportunity should be caught earlier.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7741, __extension__ __PRETTY_FUNCTION__))
;
7742 return Decision != LoopVectorizationCostModel::CM_Scalarize;
7743 };
7744
7745 if (!getDecisionAndClampRange(willWiden, Range))
7746 return nullptr;
7747
7748 VPValue *Mask = nullptr;
7749 if (Legal->isMaskRequired(I))
7750 Mask = createBlockInMask(I->getParent(), Plan);
7751
7752 return new VPWidenMemoryInstructionRecipe(*I, Mask);
7753}
7754
7755VPWidenIntOrFpInductionRecipe *
7756LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I,
7757 VFRange &Range) {
7758 if (PHINode *Phi = dyn_cast<PHINode>(I)) {
7759 // Check if this is an integer or fp induction. If so, build the recipe that
7760 // produces its scalar and vector values.
7761 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
7762 if (II.getKind() == InductionDescriptor::IK_IntInduction ||
7763 II.getKind() == InductionDescriptor::IK_FpInduction)
7764 return new VPWidenIntOrFpInductionRecipe(Phi);
7765
7766 return nullptr;
7767 }
7768
7769 // Optimize the special case where the source is a constant integer
7770 // induction variable. Notice that we can only optimize the 'trunc' case
7771 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7772 // (c) other casts depend on pointer size.
7773
7774 // Determine whether \p K is a truncation based on an induction variable that
7775 // can be optimized.
7776 auto isOptimizableIVTruncate =
7777 [&](Instruction *K) -> std::function<bool(unsigned)> {
7778 return
7779 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
7780 };
7781
7782 if (isa<TruncInst>(I) &&
7783 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range))
7784 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
7785 cast<TruncInst>(I));
7786 return nullptr;
7787}
7788
7789VPBlendRecipe *
7790LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) {
7791 PHINode *Phi = dyn_cast<PHINode>(I);
7792 if (!Phi || Phi->getParent() == OrigLoop->getHeader())
7793 return nullptr;
7794
7795 // We know that all PHIs in non-header blocks are converted into selects, so
7796 // we don't have to worry about the insertion order and we can just use the
7797 // builder. At this point we generate the predication tree. There may be
7798 // duplications since this is a simple recursive scan, but future
7799 // optimizations will clean it up.
7800
7801 SmallVector<VPValue *, 2> Masks;
7802 unsigned NumIncoming = Phi->getNumIncomingValues();
7803 for (unsigned In = 0; In < NumIncoming; In++) {
7804 VPValue *EdgeMask =
7805 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
7806 assert((EdgeMask || NumIncoming == 1) &&(static_cast <bool> ((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask") ? void (
0) : __assert_fail ("(EdgeMask || NumIncoming == 1) && \"Multiple predecessors with one having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7807, __extension__ __PRETTY_FUNCTION__))
7807 "Multiple predecessors with one having a full mask")(static_cast <bool> ((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask") ? void (
0) : __assert_fail ("(EdgeMask || NumIncoming == 1) && \"Multiple predecessors with one having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7807, __extension__ __PRETTY_FUNCTION__))
;
7808 if (EdgeMask)
7809 Masks.push_back(EdgeMask);
7810 }
7811 return new VPBlendRecipe(Phi, Masks);
7812}
7813
7814bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
7815 VFRange &Range) {
7816 if (CM.isScalarWithPredication(I))
7817 return false;
7818
7819 auto IsVectorizableOpcode = [](unsigned Opcode) {
7820 switch (Opcode) {
7821 case Instruction::Add:
7822 case Instruction::And:
7823 case Instruction::AShr:
7824 case Instruction::BitCast:
7825 case Instruction::Br:
7826 case Instruction::Call:
7827 case Instruction::FAdd:
7828 case Instruction::FCmp:
7829 case Instruction::FDiv:
7830 case Instruction::FMul:
7831 case Instruction::FPExt:
7832 case Instruction::FPToSI:
7833 case Instruction::FPToUI:
7834 case Instruction::FPTrunc:
7835 case Instruction::FRem:
7836 case Instruction::FSub:
7837 case Instruction::GetElementPtr:
7838 case Instruction::ICmp:
7839 case Instruction::IntToPtr:
7840 case Instruction::Load:
7841 case Instruction::LShr:
7842 case Instruction::Mul:
7843 case Instruction::Or:
7844 case Instruction::PHI:
7845 case Instruction::PtrToInt:
7846 case Instruction::SDiv:
7847 case Instruction::Select:
7848 case Instruction::SExt:
7849 case Instruction::Shl:
7850 case Instruction::SIToFP:
7851 case Instruction::SRem:
7852 case Instruction::Store:
7853 case Instruction::Sub:
7854 case Instruction::Trunc:
7855 case Instruction::UDiv:
7856 case Instruction::UIToFP:
7857 case Instruction::URem:
7858 case Instruction::Xor:
7859 case Instruction::ZExt:
7860 return true;
7861 }
7862 return false;
7863 };
7864
7865 if (!IsVectorizableOpcode(I->getOpcode()))
7866 return false;
7867
7868 if (CallInst *CI = dyn_cast<CallInst>(I)) {
7869 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7870 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7871 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
7872 return false;
7873 }
7874
7875 auto willWiden = [&](unsigned VF) -> bool {
7876 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
7877 CM.isProfitableToScalarize(I, VF)))
7878 return false;
7879 if (CallInst *CI = dyn_cast<CallInst>(I)) {
7880 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7881 // The following case may be scalarized depending on the VF.
7882 // The flag shows whether we use Intrinsic or a usual Call for vectorized
7883 // version of the instruction.
7884 // Is it beneficial to perform intrinsic call compared to lib call?
7885 bool NeedToScalarize;
7886 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
7887 bool UseVectorIntrinsic =
7888 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
7889 return UseVectorIntrinsic || !NeedToScalarize;
7890 }
7891 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
7892 assert(CM.getWideningDecision(I, VF) ==(static_cast <bool> (CM.getWideningDecision(I, VF) == LoopVectorizationCostModel
::CM_Scalarize && "Memory widening decisions should have been taken care by now"
) ? void (0) : __assert_fail ("CM.getWideningDecision(I, VF) == LoopVectorizationCostModel::CM_Scalarize && \"Memory widening decisions should have been taken care by now\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7894, __extension__ __PRETTY_FUNCTION__))
7893 LoopVectorizationCostModel::CM_Scalarize &&(static_cast <bool> (CM.getWideningDecision(I, VF) == LoopVectorizationCostModel
::CM_Scalarize && "Memory widening decisions should have been taken care by now"
) ? void (0) : __assert_fail ("CM.getWideningDecision(I, VF) == LoopVectorizationCostModel::CM_Scalarize && \"Memory widening decisions should have been taken care by now\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7894, __extension__ __PRETTY_FUNCTION__))
7894 "Memory widening decisions should have been taken care by now")(static_cast <bool> (CM.getWideningDecision(I, VF) == LoopVectorizationCostModel
::CM_Scalarize && "Memory widening decisions should have been taken care by now"
) ? void (0) : __assert_fail ("CM.getWideningDecision(I, VF) == LoopVectorizationCostModel::CM_Scalarize && \"Memory widening decisions should have been taken care by now\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7894, __extension__ __PRETTY_FUNCTION__))
;
7895 return false;
7896 }
7897 return true;
7898 };
7899
7900 if (!getDecisionAndClampRange(willWiden, Range))
7901 return false;
7902
7903 // Success: widen this instruction. We optimize the common case where
7904 // consecutive instructions can be represented by a single recipe.
7905 if (!VPBB->empty()) {
7906 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
7907 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
7908 return true;
7909 }
7910
7911 VPBB->appendRecipe(new VPWidenRecipe(I));
7912 return true;
7913}
7914
7915VPBasicBlock *LoopVectorizationPlanner::handleReplication(
7916 Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7917 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7918 VPlanPtr &Plan) {
7919 bool IsUniform = getDecisionAndClampRange(
7920 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7921 Range);
7922
7923 bool IsPredicated = CM.isScalarWithPredication(I);
7924 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
7925
7926 // Find if I uses a predicated instruction. If so, it will use its scalar
7927 // value. Avoid hoisting the insert-element which packs the scalar value into
7928 // a vector value, as that happens iff all users use the vector value.
7929 for (auto &Op : I->operands())
7930 if (auto *PredInst = dyn_cast<Instruction>(Op))
7931 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7932 PredInst2Recipe[PredInst]->setAlsoPack(false);
7933
7934 // Finalize the recipe for Instr, first if it is not predicated.
7935 if (!IsPredicated) {
7936 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalarizing:" <<
*I << "\n"; } } while (false)
;
7937 VPBB->appendRecipe(Recipe);
7938 return VPBB;
7939 }
7940 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalarizing and predicating:"
<< *I << "\n"; } } while (false)
;
7941 assert(VPBB->getSuccessors().empty() &&(static_cast <bool> (VPBB->getSuccessors().empty() &&
"VPBB has successors when handling predicated replication.")
? void (0) : __assert_fail ("VPBB->getSuccessors().empty() && \"VPBB has successors when handling predicated replication.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7942, __extension__ __PRETTY_FUNCTION__))
7942 "VPBB has successors when handling predicated replication.")(static_cast <bool> (VPBB->getSuccessors().empty() &&
"VPBB has successors when handling predicated replication.")
? void (0) : __assert_fail ("VPBB->getSuccessors().empty() && \"VPBB has successors when handling predicated replication.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7942, __extension__ __PRETTY_FUNCTION__))
;
7943 // Record predicated instructions for above packing optimizations.
7944 PredInst2Recipe[I] = Recipe;
7945 VPBlockBase *Region =
7946 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan));
7947 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock()));
7948}
7949
7950VPRegionBlock *
7951LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr,
7952 VPRecipeBase *PredRecipe,
7953 VPlanPtr &Plan) {
7954 // Instructions marked for predication are replicated and placed under an
7955 // if-then construct to prevent side-effects.
7956
7957 // Generate recipes to compute the block mask for this region.
7958 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7959
7960 // Build the triangular if-then region.
7961 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7962 assert(Instr->getParent() && "Predicated instruction not in any basic block")(static_cast <bool> (Instr->getParent() && "Predicated instruction not in any basic block"
) ? void (0) : __assert_fail ("Instr->getParent() && \"Predicated instruction not in any basic block\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7962, __extension__ __PRETTY_FUNCTION__))
;
7963 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7964 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7965 auto *PHIRecipe =
7966 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7967 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7968 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7969 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7970
7971 // Note: first set Entry as region entry and then connect successors starting
7972 // from it in order, to propagate the "parent" of each VPBasicBlock.
7973 Entry->setTwoSuccessors(Pred, Exit);
7974 Pred->setOneSuccessor(Exit);
7975
7976 return Region;
7977}
7978
7979LoopVectorizationPlanner::VPlanPtr
7980LoopVectorizationPlanner::buildVPlan(VFRange &Range,
7981 const SmallPtrSetImpl<Value *> &NeedDef) {
7982 EdgeMaskCache.clear();
7983 BlockMaskCache.clear();
7984 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7985 DenseMap<Instruction *, Instruction *> SinkAfterInverse;
7986
7987 // Collect instructions from the original loop that will become trivially dead
7988 // in the vectorized loop. We don't need to vectorize these instructions. For
7989 // example, original induction update instructions can become dead because we
7990 // separately emit induction "steps" when generating code for the new loop.
7991 // Similarly, we create a new latch condition when setting up the structure
7992 // of the new loop, so the old one can become dead.
7993 SmallPtrSet<Instruction *, 4> DeadInstructions;
7994 collectTriviallyDeadInstructions(DeadInstructions);
7995
7996 // Hold a mapping from predicated instructions to their recipes, in order to
7997 // fix their AlsoPack behavior if a user is determined to replicate and use a
7998 // scalar instead of vector value.
7999 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
8000
8001 // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8002 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8003 auto Plan = llvm::make_unique<VPlan>(VPBB);
8004
8005 // Represent values that will have defs inside VPlan.
8006 for (Value *V : NeedDef)
8007 Plan->addVPValue(V);
8008
8009 // Scan the body of the loop in a topological order to visit each basic block
8010 // after having visited its predecessor basic blocks.
8011 LoopBlocksDFS DFS(OrigLoop);
8012 DFS.perform(LI);
8013
8014 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8015 // Relevant instructions from basic block BB will be grouped into VPRecipe
8016 // ingredients and fill a new VPBasicBlock.
8017 unsigned VPBBsForBB = 0;
8018 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8019 VPBB->setOneSuccessor(FirstVPBBForBB);
8020 VPBB = FirstVPBBForBB;
8021 Builder.setInsertPoint(VPBB);
8022
8023 std::vector<Instruction *> Ingredients;
8024
8025 // Organize the ingredients to vectorize from current basic block in the
8026 // right order.
8027 for (Instruction &I : *BB) {
8028 Instruction *Instr = &I;
8029
8030 // First filter out irrelevant instructions, to ensure no recipes are
8031 // built for them.
8032 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) ||
8033 DeadInstructions.count(Instr))
8034 continue;
8035
8036 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
8037 // member of the IG, do not construct any Recipe for it.
8038 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr);
8039 if (IG && Instr != IG->getInsertPos() &&
8040 Range.Start >= 2 && // Query is illegal for VF == 1
8041 CM.getWideningDecision(Instr, Range.Start) ==
8042 LoopVectorizationCostModel::CM_Interleave) {
8043 if (SinkAfterInverse.count(Instr))
8044 Ingredients.push_back(SinkAfterInverse.find(Instr)->second);
8045 continue;
8046 }
8047
8048 // Move instructions to handle first-order recurrences, step 1: avoid
8049 // handling this instruction until after we've handled the instruction it
8050 // should follow.
8051 auto SAIt = SinkAfter.find(Instr);
8052 if (SAIt != SinkAfter.end()) {
8053 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->seconddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Sinking" << *SAIt
->first << " after" << *SAIt->second <<
" to vectorize a 1st order recurrence.\n"; } } while (false)
8054 << " to vectorize a 1st order recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Sinking" << *SAIt
->first << " after" << *SAIt->second <<
" to vectorize a 1st order recurrence.\n"; } } while (false)
;
8055 SinkAfterInverse[SAIt->second] = Instr;
8056 continue;
8057 }
8058
8059 Ingredients.push_back(Instr);
8060
8061 // Move instructions to handle first-order recurrences, step 2: push the
8062 // instruction to be sunk at its insertion point.
8063 auto SAInvIt = SinkAfterInverse.find(Instr);
8064 if (SAInvIt != SinkAfterInverse.end())
8065 Ingredients.push_back(SAInvIt->second);
8066 }
8067
8068 // Introduce each ingredient into VPlan.
8069 for (Instruction *Instr : Ingredients) {
8070 VPRecipeBase *Recipe = nullptr;
8071
8072 // Check if Instr should belong to an interleave memory recipe, or already
8073 // does. In the latter case Instr is irrelevant.
8074 if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
8075 VPBB->appendRecipe(Recipe);
8076 continue;
8077 }
8078
8079 // Check if Instr is a memory operation that should be widened.
8080 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
8081 VPBB->appendRecipe(Recipe);
8082 continue;
8083 }
8084
8085 // Check if Instr should form some PHI recipe.
8086 if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
8087 VPBB->appendRecipe(Recipe);
8088 continue;
8089 }
8090 if ((Recipe = tryToBlend(Instr, Plan))) {
8091 VPBB->appendRecipe(Recipe);
8092 continue;
8093 }
8094 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
8095 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
8096 continue;
8097 }
8098
8099 // Check if Instr is to be widened by a general VPWidenRecipe, after
8100 // having first checked for specific widening recipes that deal with
8101 // Interleave Groups, Inductions and Phi nodes.
8102 if (tryToWiden(Instr, VPBB, Range))
8103 continue;
8104
8105 // Otherwise, if all widening options failed, Instruction is to be
8106 // replicated. This may create a successor for VPBB.
8107 VPBasicBlock *NextVPBB =
8108 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan);
8109 if (NextVPBB != VPBB) {
8110 VPBB = NextVPBB;
8111 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8112 : "");
8113 }
8114 }
8115 }
8116
8117 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8118 // may also be empty, such as the last one VPBB, reflecting original
8119 // basic-blocks with no recipes.
8120 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8121 assert(PreEntry->empty() && "Expecting empty pre-entry block.")(static_cast <bool> (PreEntry->empty() && "Expecting empty pre-entry block."
) ? void (0) : __assert_fail ("PreEntry->empty() && \"Expecting empty pre-entry block.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8121, __extension__ __PRETTY_FUNCTION__))
;
8122 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8123 PreEntry->disconnectSuccessor(Entry);
8124 delete PreEntry;
8125
8126 std::string PlanName;
8127 raw_string_ostream RSO(PlanName);
8128 unsigned VF = Range.Start;
8129 Plan->addVF(VF);
8130 RSO << "Initial VPlan for VF={" << VF;
8131 for (VF *= 2; VF < Range.End; VF *= 2) {
8132 Plan->addVF(VF);
8133 RSO << "," << VF;
8134 }
8135 RSO << "},UF>=1";
8136 RSO.flush();
8137 Plan->setName(PlanName);
8138
8139 return Plan;
8140}
8141
8142Value* LoopVectorizationPlanner::VPCallbackILV::
8143getOrCreateVectorValues(Value *V, unsigned Part) {
8144 return ILV.getOrCreateVectorValue(V, Part);
8145}
8146
8147void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
8148 O << " +\n"
8149 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
8150 IG->getInsertPos()->printAsOperand(O, false);
8151 O << "\\l\"";
8152 for (unsigned i = 0; i < IG->getFactor(); ++i)
8153 if (Instruction *I = IG->getMember(i))
8154 O << " +\n"
8155 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
8156}
8157
8158void VPWidenRecipe::execute(VPTransformState &State) {
8159 for (auto &Instr : make_range(Begin, End))
8160 State.ILV->widenInstruction(Instr);
8161}
8162
8163void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
8164 assert(!State.Instance && "Int or FP induction being replicated.")(static_cast <bool> (!State.Instance && "Int or FP induction being replicated."
) ? void (0) : __assert_fail ("!State.Instance && \"Int or FP induction being replicated.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8164, __extension__ __PRETTY_FUNCTION__))
;
8165 State.ILV->widenIntOrFpInduction(IV, Trunc);
8166}
8167
8168void VPWidenPHIRecipe::execute(VPTransformState &State) {
8169 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
8170}
8171
8172void VPBlendRecipe::execute(VPTransformState &State) {
8173 State.ILV->setDebugLocFromInst(State.Builder, Phi);
8174 // We know that all PHIs in non-header blocks are converted into
8175 // selects, so we don't have to worry about the insertion order and we
8176 // can just use the builder.
8177 // At this point we generate the predication tree. There may be
8178 // duplications since this is a simple recursive scan, but future
8179 // optimizations will clean it up.
8180
8181 unsigned NumIncoming = Phi->getNumIncomingValues();
8182
8183 assert((User || NumIncoming == 1) &&(static_cast <bool> ((User || NumIncoming == 1) &&
"Multiple predecessors with predecessors having a full mask"
) ? void (0) : __assert_fail ("(User || NumIncoming == 1) && \"Multiple predecessors with predecessors having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8184, __extension__ __PRETTY_FUNCTION__))
8184 "Multiple predecessors with predecessors having a full mask")(static_cast <bool> ((User || NumIncoming == 1) &&
"Multiple predecessors with predecessors having a full mask"
) ? void (0) : __assert_fail ("(User || NumIncoming == 1) && \"Multiple predecessors with predecessors having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8184, __extension__ __PRETTY_FUNCTION__))
;
8185 // Generate a sequence of selects of the form:
8186 // SELECT(Mask3, In3,
8187 // SELECT(Mask2, In2,
8188 // ( ...)))
8189 InnerLoopVectorizer::VectorParts Entry(State.UF);
8190 for (unsigned In = 0; In < NumIncoming; ++In) {
8191 for (unsigned Part = 0; Part < State.UF; ++Part) {
8192 // We might have single edge PHIs (blocks) - use an identity
8193 // 'select' for the first PHI operand.
8194 Value *In0 =
8195 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
8196 if (In == 0)
8197 Entry[Part] = In0; // Initialize with the first incoming value.
8198 else {
8199 // Select between the current value and the previous incoming edge
8200 // based on the incoming mask.
8201 Value *Cond = State.get(User->getOperand(In), Part);
8202 Entry[Part] =
8203 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
8204 }
8205 }
8206 }
8207 for (unsigned Part = 0; Part < State.UF; ++Part)
8208 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
8209}
8210
8211void VPInterleaveRecipe::execute(VPTransformState &State) {
8212 assert(!State.Instance && "Interleave group being replicated.")(static_cast <bool> (!State.Instance && "Interleave group being replicated."
) ? void (0) : __assert_fail ("!State.Instance && \"Interleave group being replicated.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8212, __extension__ __PRETTY_FUNCTION__))
;
8213 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
8214}
8215
8216void VPReplicateRecipe::execute(VPTransformState &State) {
8217 if (State.Instance) { // Generate a single instance.
8218 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
8219 // Insert scalar instance packing it into a vector.
8220 if (AlsoPack && State.VF > 1) {
8221 // If we're constructing lane 0, initialize to start from undef.
8222 if (State.Instance->Lane == 0) {
8223 Value *Undef =
8224 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
8225 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
8226 }
8227 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
8228 }
8229 return;
8230 }
8231
8232 // Generate scalar instances for all VF lanes of all UF parts, unless the
8233 // instruction is uniform inwhich case generate only the first lane for each
8234 // of the UF parts.
8235 unsigned EndLane = IsUniform ? 1 : State.VF;
8236 for (unsigned Part = 0; Part < State.UF; ++Part)
8237 for (unsigned Lane = 0; Lane < EndLane; ++Lane)
8238 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
8239}
8240
8241void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
8242 assert(State.Instance && "Branch on Mask works only on single instance.")(static_cast <bool> (State.Instance && "Branch on Mask works only on single instance."
) ? void (0) : __assert_fail ("State.Instance && \"Branch on Mask works only on single instance.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8242, __extension__ __PRETTY_FUNCTION__))
;
8243
8244 unsigned Part = State.Instance->Part;
8245 unsigned Lane = State.Instance->Lane;
8246
8247 Value *ConditionBit = nullptr;
8248 if (!User) // Block in mask is all-one.
8249 ConditionBit = State.Builder.getTrue();
8250 else {
8251 VPValue *BlockInMask = User->getOperand(0);
8252 ConditionBit = State.get(BlockInMask, Part);
8253 if (ConditionBit->getType()->isVectorTy())
8254 ConditionBit = State.Builder.CreateExtractElement(
8255 ConditionBit, State.Builder.getInt32(Lane));
8256 }
8257
8258 // Replace the temporary unreachable terminator with a new conditional branch,
8259 // whose two destinations will be set later when they are created.
8260 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
8261 assert(isa<UnreachableInst>(CurrentTerminator) &&(static_cast <bool> (isa<UnreachableInst>(CurrentTerminator
) && "Expected to replace unreachable terminator with conditional branch."
) ? void (0) : __assert_fail ("isa<UnreachableInst>(CurrentTerminator) && \"Expected to replace unreachable terminator with conditional branch.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8262, __extension__ __PRETTY_FUNCTION__))
8262 "Expected to replace unreachable terminator with conditional branch.")(static_cast <bool> (isa<UnreachableInst>(CurrentTerminator
) && "Expected to replace unreachable terminator with conditional branch."
) ? void (0) : __assert_fail ("isa<UnreachableInst>(CurrentTerminator) && \"Expected to replace unreachable terminator with conditional branch.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8262, __extension__ __PRETTY_FUNCTION__))
;
8263 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
8264 CondBr->setSuccessor(0, nullptr);
8265 ReplaceInstWithInst(CurrentTerminator, CondBr);
8266}
8267
8268void VPPredInstPHIRecipe::execute(VPTransformState &State) {
8269 assert(State.Instance && "Predicated instruction PHI works per instance.")(static_cast <bool> (State.Instance && "Predicated instruction PHI works per instance."
) ? void (0) : __assert_fail ("State.Instance && \"Predicated instruction PHI works per instance.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8269, __extension__ __PRETTY_FUNCTION__))
;
8270 Instruction *ScalarPredInst = cast<Instruction>(
8271 State.ValueMap.getScalarValue(PredInst, *State.Instance));
8272 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
8273 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
8274 assert(PredicatingBB && "Predicated block has no single predecessor.")(static_cast <bool> (PredicatingBB && "Predicated block has no single predecessor."
) ? void (0) : __assert_fail ("PredicatingBB && \"Predicated block has no single predecessor.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8274, __extension__ __PRETTY_FUNCTION__))
;
8275
8276 // By current pack/unpack logic we need to generate only a single phi node: if
8277 // a vector value for the predicated instruction exists at this point it means
8278 // the instruction has vector users only, and a phi for the vector value is
8279 // needed. In this case the recipe of the predicated instruction is marked to
8280 // also do that packing, thereby "hoisting" the insert-element sequence.
8281 // Otherwise, a phi node for the scalar value is needed.
8282 unsigned Part = State.Instance->Part;
8283 if (State.ValueMap.hasVectorValue(PredInst, Part)) {
8284 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
8285 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
8286 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
8287 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
8288 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
8289 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
8290 } else {
8291 Type *PredInstType = PredInst->getType();
8292 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
8293 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
8294 Phi->addIncoming(ScalarPredInst, PredicatedBB);
8295 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
8296 }
8297}
8298
8299void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
8300 if (!User)
8301 return State.ILV->vectorizeMemoryInstruction(&Instr);
8302
8303 // Last (and currently only) operand is a mask.
8304 InnerLoopVectorizer::VectorParts MaskValues(State.UF);
8305 VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
8306 for (unsigned Part = 0; Part < State.UF; ++Part)
8307 MaskValues[Part] = State.get(Mask, Part);
8308 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
8309}
8310
8311bool LoopVectorizePass::processLoop(Loop *L) {
8312 assert(L->empty() && "Only process inner loops.")(static_cast <bool> (L->empty() && "Only process inner loops."
) ? void (0) : __assert_fail ("L->empty() && \"Only process inner loops.\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8312, __extension__ __PRETTY_FUNCTION__))
;
8313
8314#ifndef NDEBUG
8315 const std::string DebugLocStr = getDebugLocString(L);
8316#endif /* NDEBUG */
8317
8318 DEBUG(dbgs() << "\nLV: Checking a loop in \""do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (false
)
8319 << L->getHeader()->getParent()->getName() << "\" from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (false
)
8320 << DebugLocStr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (false
)
;
8321
8322 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
8323
8324 DEBUG(dbgs() << "LV: Loop hints:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8325 << " force="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8326 << (Hints.getForce() == LoopVectorizeHints::FK_Disableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8327 ? "disabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8328 : (Hints.getForce() == LoopVectorizeHints::FK_Enableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8329 ? "enabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8330 : "?"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8331 << " width=" << Hints.getWidth()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8332 << " unroll=" << Hints.getInterleave() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
;
8333
8334 // Function containing loop
8335 Function *F = L->getHeader()->getParent();
8336
8337 // Looking at the diagnostic output is the only way to determine if a loop
8338 // was vectorized (other than looking at the IR or machine code), so it
8339 // is important to generate an optimization remark for each loop. Most of
8340 // these messages are generated as OptimizationRemarkAnalysis. Remarks
8341 // generated as OptimizationRemark and OptimizationRemarkMissed are
8342 // less verbose reporting vectorized loops and unvectorized loops that may
8343 // benefit from vectorization, respectively.
8344
8345 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
8346 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints prevent vectorization.\n"
; } } while (false)
;
8347 return false;
8348 }
8349
8350 PredicatedScalarEvolution PSE(*SE, *L);
8351
8352 // Check if it is legal to vectorize the loop.
8353 LoopVectorizationRequirements Requirements(*ORE);
8354 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE,
8355 &Requirements, &Hints, DB, AC);
8356 if (!LVL.canVectorize()) {
8357 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"
; } } while (false)
;
8358 emitMissedWarning(F, L, Hints, ORE);
8359 return false;
8360 }
8361
8362 // Check the function attributes to find out if this function should be
8363 // optimized for size.
8364 bool OptForSize =
8365 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
8366
8367 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
8368 // count by optimizing for size, to minimize overheads.
8369 // Prefer constant trip counts over profile data, over upper bound estimate.
8370 unsigned ExpectedTC = 0;
8371 bool HasExpectedTC = false;
8372 if (const SCEVConstant *ConstExits =
8373 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
8374 const APInt &ExitsCount = ConstExits->getAPInt();
8375 // We are interested in small values for ExpectedTC. Skip over those that
8376 // can't fit an unsigned.
8377 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
8378 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
8379 HasExpectedTC = true;
8380 }
8381 }
8382 // ExpectedTC may be large because it's bound by a variable. Check
8383 // profiling information to validate we should vectorize.
8384 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
8385 auto EstimatedTC = getLoopEstimatedTripCount(L);
8386 if (EstimatedTC) {
8387 ExpectedTC = *EstimatedTC;
8388 HasExpectedTC = true;
8389 }
8390 }
8391 if (!HasExpectedTC) {
8392 ExpectedTC = SE->getSmallConstantMaxTripCount(L);
8393 HasExpectedTC = (ExpectedTC > 0);
8394 }
8395
8396 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
8397 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred."; } } while (false
)
8398 << "This loop is worth vectorizing only if no scalar "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred."; } } while (false
)
8399 << "iteration overheads are incurred.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred."; } } while (false
)
;
8400 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
8401 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << " But vectorizing was explicitly forced.\n"
; } } while (false)
;
8402 else {
8403 DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\n"; } } while (false)
;
8404 // Loops with a very small trip count are considered for vectorization
8405 // under OptForSize, thereby making sure the cost of their loop body is
8406 // dominant, free of runtime guards and scalar iteration overheads.
8407 OptForSize = true;
8408 }
8409 }
8410
8411 // Check the function attributes to see if implicit floats are allowed.
8412 // FIXME: This check doesn't seem possibly correct -- what if the loop is
8413 // an integer loop and the vector instructions selected are purely integer
8414 // vector instructions?
8415 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
8416 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n"; } } while (false)
8417 "attribute is used.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n"; } } while (false)
;
8418 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
8419 "NoImplicitFloat", L)
8420 << "loop not vectorized due to NoImplicitFloat attribute");
8421 emitMissedWarning(F, L, Hints, ORE);
8422 return false;
8423 }
8424
8425 // Check if the target supports potentially unsafe FP vectorization.
8426 // FIXME: Add a check for the type of safety issue (denormal, signaling)
8427 // for the target we're vectorizing for, to make sure none of the
8428 // additional fp-math flags can help.
8429 if (Hints.isPotentiallyUnsafe() &&
8430 TTI->isFPVectorizationPotentiallyUnsafe()) {
8431 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"
; } } while (false)
;
8432 ORE->emit(
8433 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
8434 << "loop not vectorized due to unsafe FP support.");
8435 emitMissedWarning(F, L, Hints, ORE);
8436 return false;
8437 }
8438
8439 // Use the cost model.
8440 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
8441 &Hints);
8442 CM.collectValuesToIgnore();
8443
8444 // Use the planner for vectorization.
8445 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
8446
8447 // Get user vectorization factor.
8448 unsigned UserVF = Hints.getWidth();
8449
8450 // Plan how to best vectorize, return the best VF and its cost.
8451 VectorizationFactor VF = LVP.plan(OptForSize, UserVF);
8452
8453 // Select the interleave count.
8454 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
8455
8456 // Get user interleave count.
8457 unsigned UserIC = Hints.getInterleave();
8458
8459 // Identify the diagnostic messages that should be produced.
8460 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
8461 bool VectorizeLoop = true, InterleaveLoop = true;
8462 if (Requirements.doesNotMeet(F, L, Hints)) {
8463 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n"; } } while (false)
8464 "requirements.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n"; } } while (false)
;
8465 emitMissedWarning(F, L, Hints, ORE);
8466 return false;
8467 }
8468
8469 if (VF.Width == 1) {
8470 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vectorization is possible but not beneficial.\n"
; } } while (false)
;
8471 VecDiagMsg = std::make_pair(
8472 "VectorizationNotBeneficial",
8473 "the cost-model indicates that vectorization is not beneficial");
8474 VectorizeLoop = false;
8475 }
8476
8477 if (IC == 1 && UserIC <= 1) {
8478 // Tell the user interleaving is not beneficial.
8479 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving is not beneficial.\n"
; } } while (false)
;
8480 IntDiagMsg = std::make_pair(
8481 "InterleavingNotBeneficial",
8482 "the cost-model indicates that interleaving is not beneficial");
8483 InterleaveLoop = false;
8484 if (UserIC == 1) {
8485 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
8486 IntDiagMsg.second +=
8487 " and is explicitly disabled or interleave count is set to 1";
8488 }
8489 } else if (IC > 1 && UserIC == 1) {
8490 // Tell the user interleaving is beneficial, but it explicitly disabled.
8491 DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."
; } } while (false)
8492 << "LV: Interleaving is beneficial but is explicitly disabled.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."
; } } while (false)
;
8493 IntDiagMsg = std::make_pair(
8494 "InterleavingBeneficialButDisabled",
8495 "the cost-model indicates that interleaving is beneficial "
8496 "but is explicitly disabled or interleave count is set to 1");
8497 InterleaveLoop = false;
8498 }
8499
8500 // Override IC if user provided an interleave count.
8501 IC = UserIC > 0 ? UserIC : IC;
8502
8503 // Emit diagnostic messages, if any.
8504 const char *VAPassName = Hints.vectorizeAnalysisPassName();
8505 if (!VectorizeLoop && !InterleaveLoop) {
8506 // Do not vectorize or interleaving the loop.
8507 ORE->emit([&]() {
8508 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
8509 L->getStartLoc(), L->getHeader())
8510 << VecDiagMsg.second;
8511 });
8512 ORE->emit([&]() {
8513 return OptimizationRemarkMissed(LV_NAME"loop-vectorize", IntDiagMsg.first,
8514 L->getStartLoc(), L->getHeader())
8515 << IntDiagMsg.second;
8516 });
8517 return false;
8518 } else if (!VectorizeLoop && InterleaveLoop) {
8519 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleave Count is "
<< IC << '\n'; } } while (false)
;
8520 ORE->emit([&]() {
8521 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
8522 L->getStartLoc(), L->getHeader())
8523 << VecDiagMsg.second;
8524 });
8525 } else if (VectorizeLoop && !InterleaveLoop) {
8526 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
8527 << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
;
8528 ORE->emit([&]() {
8529 return OptimizationRemarkAnalysis(LV_NAME"loop-vectorize", IntDiagMsg.first,
8530 L->getStartLoc(), L->getHeader())
8531 << IntDiagMsg.second;
8532 });
8533 } else if (VectorizeLoop && InterleaveLoop) {
8534 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
8535 << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
;
8536 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleave Count is "
<< IC << '\n'; } } while (false)
;
8537 }
8538
8539 LVP.setBestPlan(VF.Width, IC);
8540
8541 using namespace ore;
8542
8543 if (!VectorizeLoop) {
8544 assert(IC > 1 && "interleave count should not be 1 or 0")(static_cast <bool> (IC > 1 && "interleave count should not be 1 or 0"
) ? void (0) : __assert_fail ("IC > 1 && \"interleave count should not be 1 or 0\""
, "/build/llvm-toolchain-snapshot-7~svn329611/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8544, __extension__ __PRETTY_FUNCTION__))
;
8545 // If we decided that it is not legal to vectorize the loop, then
8546 // interleave it.
8547 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
8548 &CM);
8549 LVP.executePlan(Unroller, DT);
8550
8551 ORE->emit([&]() {
8552 return OptimizationRemark(LV_NAME"loop-vectorize", "Interleaved", L->getStartLoc(),
8553 L->getHeader())
8554 << "interleaved loop (interleaved count: "
8555 << NV("InterleaveCount", IC) << ")";
8556 });
8557 } else {
8558 // If we decided that it is *legal* to vectorize the loop, then do it.
8559 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
8560 &LVL, &CM);
8561 LVP.executePlan(LB, DT);
8562 ++LoopsVectorized;
8563
8564 // Add metadata to disable runtime unrolling a scalar loop when there are
8565 // no runtime checks about strides and memory. A scalar loop that is
8566 // rarely used is not worth unrolling.
8567 if (!LB.areSafetyChecksAdded())
8568 AddRuntimeUnrollDisableMetaData(L);
8569
8570 // Report the vectorization decision.
8571 ORE->emit([&]() {
8572 return OptimizationRemark(LV_NAME"loop-vectorize", "Vectorized", L->getStartLoc(),
8573 L->getHeader())
8574 << "vectorized loop (vectorization width: "
8575 << NV("VectorizationFactor", VF.Width)
8576 << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
8577 });
8578 }
8579
8580 // Mark the loop as already vectorized to avoid vectorizing again.
8581 Hints.setAlreadyVectorized();
8582
8583 DEBUG(verifyFunction(*L->getHeader()->getParent()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { verifyFunction(*L->getHeader()->getParent
()); } } while (false)
;
8584 return true;
8585}
8586
8587bool LoopVectorizePass::runImpl(
8588 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8589 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8590 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
8591 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8592 OptimizationRemarkEmitter &ORE_) {
8593 SE = &SE_;
8594 LI = &LI_;
8595 TTI = &TTI_;
8596 DT = &DT_;
8597 BFI = &BFI_;
8598 TLI = TLI_;
8599 AA = &AA_;
8600 AC = &AC_;
8601 GetLAA = &GetLAA_;
8602 DB = &DB_;
8603 ORE = &ORE_;
8604
8605 // Don't attempt if
8606 // 1. the target claims to have no vector registers, and
8607 // 2. interleaving won't help ILP.
8608 //
8609 // The second condition is necessary because, even if the target has no
8610 // vector registers, loop vectorization may still enable scalar
8611 // interleaving.
8612 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
8613 return false;
8614
8615 bool Changed = false;
8616
8617 // The vectorizer requires loops to be in simplified form.
8618 // Since simplification may add new inner loops, it has to run before the
8619 // legality and profitability checks. This means running the loop vectorizer
8620 // will simplify all loops, regardless of whether anything end up being
8621 // vectorized.
8622 for (auto &L : *LI)
8623 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
8624
8625 // Build up a worklist of inner-loops to vectorize. This is necessary as
8626 // the act of vectorizing or partially unrolling a loop creates new loops
8627 // and can invalidate iterators across the loops.
8628 SmallVector<Loop *, 8> Worklist;
8629
8630 for (Loop *L : *LI)
8631 addAcyclicInnerLoop(*L, *LI, Worklist);
8632
8633 LoopsAnalyzed += Worklist.size();
8634
8635 // Now walk the identified inner loops.
8636 while (!Worklist.empty()) {
8637 Loop *L = Worklist.pop_back_val();
8638
8639 // For the inner loops we actually process, form LCSSA to simplify the
8640 // transform.
8641 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8642
8643 Changed |= processLoop(L);
8644 }
8645
8646 // Process each loop nest in the function.
8647 return Changed;
8648}
8649
8650PreservedAnalyses LoopVectorizePass::run(Function &F,
8651 FunctionAnalysisManager &AM) {
8652 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8653 auto &LI = AM.getResult<LoopAnalysis>(F);
8654 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8655 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8656 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8657 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8658 auto &AA = AM.getResult<AAManager>(F);
8659 auto &AC = AM.getResult<AssumptionAnalysis>(F);
8660 auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8661 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8662
8663 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8664 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8665 [&](Loop &L) -> const LoopAccessInfo & {
8666 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
8667 return LAM.getResult<LoopAccessAnalysis>(L, AR);
8668 };
8669 bool Changed =
8670 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
8671 if (!Changed)
8672 return PreservedAnalyses::all();
8673 PreservedAnalyses PA;
8674 PA.preserve<LoopAnalysis>();
8675 PA.preserve<DominatorTreeAnalysis>();
8676 PA.preserve<BasicAA>();
8677 PA.preserve<GlobalsAA>();
8678 return PA;
8679}