Bug Summary

File:lib/Transforms/Vectorize/LoopVectorize.cpp
Location:line 1219, column 5
Description:Value stored to 'LoopID' is never read

Annotated Source Code

1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22// of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24// widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26// of vectorization. It decides on the optimal vector width, which
27// can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35// Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41// Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#include "llvm/Transforms/Vectorize.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/EquivalenceClasses.h"
48#include "llvm/ADT/Hashing.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/Statistic.h"
55#include "llvm/ADT/StringExtras.h"
56#include "llvm/Analysis/AliasAnalysis.h"
57#include "llvm/Analysis/AliasSetTracker.h"
58#include "llvm/Analysis/AssumptionTracker.h"
59#include "llvm/Analysis/BlockFrequencyInfo.h"
60#include "llvm/Analysis/CodeMetrics.h"
61#include "llvm/Analysis/LoopInfo.h"
62#include "llvm/Analysis/LoopIterator.h"
63#include "llvm/Analysis/LoopPass.h"
64#include "llvm/Analysis/ScalarEvolution.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Analysis/ScalarEvolutionExpressions.h"
67#include "llvm/Analysis/TargetTransformInfo.h"
68#include "llvm/Analysis/ValueTracking.h"
69#include "llvm/IR/Constants.h"
70#include "llvm/IR/DataLayout.h"
71#include "llvm/IR/DebugInfo.h"
72#include "llvm/IR/DerivedTypes.h"
73#include "llvm/IR/DiagnosticInfo.h"
74#include "llvm/IR/Dominators.h"
75#include "llvm/IR/Function.h"
76#include "llvm/IR/IRBuilder.h"
77#include "llvm/IR/Instructions.h"
78#include "llvm/IR/IntrinsicInst.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Module.h"
81#include "llvm/IR/PatternMatch.h"
82#include "llvm/IR/Type.h"
83#include "llvm/IR/Value.h"
84#include "llvm/IR/ValueHandle.h"
85#include "llvm/IR/Verifier.h"
86#include "llvm/Pass.h"
87#include "llvm/Support/BranchProbability.h"
88#include "llvm/Support/CommandLine.h"
89#include "llvm/Support/Debug.h"
90#include "llvm/Support/raw_ostream.h"
91#include "llvm/Transforms/Scalar.h"
92#include "llvm/Transforms/Utils/BasicBlockUtils.h"
93#include "llvm/Transforms/Utils/Local.h"
94#include "llvm/Transforms/Utils/VectorUtils.h"
95#include <algorithm>
96#include <map>
97#include <tuple>
98
99using namespace llvm;
100using namespace llvm::PatternMatch;
101
102#define LV_NAME"loop-vectorize" "loop-vectorize"
103#define DEBUG_TYPE"loop-vectorize" LV_NAME"loop-vectorize"
104
105STATISTIC(LoopsVectorized, "Number of loops vectorized")static llvm::Statistic LoopsVectorized = { "loop-vectorize", "Number of loops vectorized"
, 0, 0 }
;
106STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization")static llvm::Statistic LoopsAnalyzed = { "loop-vectorize", "Number of loops analyzed for vectorization"
, 0, 0 }
;
107
108static cl::opt<unsigned>
109VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
110 cl::desc("Sets the SIMD width. Zero is autoselect."));
111
112static cl::opt<unsigned>
113VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
114 cl::desc("Sets the vectorization interleave count. "
115 "Zero is autoselect."));
116
117static cl::opt<bool>
118EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119 cl::desc("Enable if-conversion during vectorization."));
120
121/// We don't vectorize loops with a known constant trip count below this number.
122static cl::opt<unsigned>
123TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
124 cl::Hidden,
125 cl::desc("Don't vectorize loops with a constant "
126 "trip count that is smaller than this "
127 "value."));
128
129/// This enables versioning on the strides of symbolically striding memory
130/// accesses in code like the following.
131/// for (i = 0; i < N; ++i)
132/// A[i * Stride1] += B[i * Stride2] ...
133///
134/// Will be roughly translated to
135/// if (Stride1 == 1 && Stride2 == 1) {
136/// for (i = 0; i < N; i+=4)
137/// A[i:i+3] += ...
138/// } else
139/// ...
140static cl::opt<bool> EnableMemAccessVersioning(
141 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
142 cl::desc("Enable symblic stride memory access versioning"));
143
144/// We don't unroll loops with a known constant trip count below this number.
145static const unsigned TinyTripCountUnrollThreshold = 128;
146
147/// When performing memory disambiguation checks at runtime do not make more
148/// than this number of comparisons.
149static const unsigned RuntimeMemoryCheckThreshold = 8;
150
151/// Maximum simd width.
152static const unsigned MaxVectorWidth = 64;
153
154static cl::opt<unsigned> ForceTargetNumScalarRegs(
155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
156 cl::desc("A flag that overrides the target's number of scalar registers."));
157
158static cl::opt<unsigned> ForceTargetNumVectorRegs(
159 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
160 cl::desc("A flag that overrides the target's number of vector registers."));
161
162/// Maximum vectorization interleave count.
163static const unsigned MaxInterleaveFactor = 16;
164
165static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
167 cl::desc("A flag that overrides the target's max interleave factor for "
168 "scalar loops."));
169
170static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
172 cl::desc("A flag that overrides the target's max interleave factor for "
173 "vectorized loops."));
174
175static cl::opt<unsigned> ForceTargetInstructionCost(
176 "force-target-instruction-cost", cl::init(0), cl::Hidden,
177 cl::desc("A flag that overrides the target's expected cost for "
178 "an instruction to a single constant value. Mostly "
179 "useful for getting consistent testing."));
180
181static cl::opt<unsigned> SmallLoopCost(
182 "small-loop-cost", cl::init(20), cl::Hidden,
183 cl::desc("The cost of a loop that is considered 'small' by the unroller."));
184
185static cl::opt<bool> LoopVectorizeWithBlockFrequency(
186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
187 cl::desc("Enable the use of the block frequency analysis to access PGO "
188 "heuristics minimizing code growth in cold regions and being more "
189 "aggressive in hot regions."));
190
191// Runtime unroll loops for load/store throughput.
192static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
194 cl::desc("Enable runtime unrolling until load/store ports are saturated"));
195
196/// The number of stores in a loop that are allowed to need predication.
197static cl::opt<unsigned> NumberOfStoresToPredicate(
198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
199 cl::desc("Max number of stores to be predicated behind an if."));
200
201static cl::opt<bool> EnableIndVarRegisterHeur(
202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
203 cl::desc("Count the induction variable only once when unrolling"));
204
205static cl::opt<bool> EnableCondStoresVectorization(
206 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
207 cl::desc("Enable if predication of stores during vectorization."));
208
209static cl::opt<unsigned> MaxNestedScalarReductionUF(
210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
211 cl::desc("The maximum unroll factor to use when unrolling a scalar "
212 "reduction in a nested loop."));
213
214namespace {
215
216// Forward declarations.
217class LoopVectorizationLegality;
218class LoopVectorizationCostModel;
219class LoopVectorizeHints;
220
221/// Optimization analysis message produced during vectorization. Messages inform
222/// the user why vectorization did not occur.
223class Report {
224 std::string Message;
225 raw_string_ostream Out;
226 Instruction *Instr;
227
228public:
229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
230 Out << "loop not vectorized: ";
231 }
232
233 template <typename A> Report &operator<<(const A &Value) {
234 Out << Value;
235 return *this;
236 }
237
238 Instruction *getInstr() { return Instr; }
239
240 std::string &str() { return Out.str(); }
241 operator Twine() { return Out.str(); }
242};
243
244/// InnerLoopVectorizer vectorizes loops which contain only one basic
245/// block to a specified vectorization factor (VF).
246/// This class performs the widening of scalars into vectors, or multiple
247/// scalars. This class also implements the following features:
248/// * It inserts an epilogue loop for handling loops that don't have iteration
249/// counts that are known to be a multiple of the vectorization factor.
250/// * It handles the code generation for reduction variables.
251/// * Scalarization (implementation using scalars) of un-vectorizable
252/// instructions.
253/// InnerLoopVectorizer does not perform any vectorization-legality
254/// checks, and relies on the caller to check for the different legality
255/// aspects. The InnerLoopVectorizer relies on the
256/// LoopVectorizationLegality class to provide information about the induction
257/// and reduction variables that were found to a given vectorization factor.
258class InnerLoopVectorizer {
259public:
260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
261 DominatorTree *DT, const DataLayout *DL,
262 const TargetLibraryInfo *TLI, unsigned VecWidth,
263 unsigned UnrollFactor)
264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
267 Legal(nullptr) {}
268
269 // Perform the actual loop widening (vectorization).
270 void vectorize(LoopVectorizationLegality *L) {
271 Legal = L;
272 // Create a new empty loop. Unlink the old loop and connect the new one.
273 createEmptyLoop();
274 // Widen each instruction in the old loop to a new one in the new loop.
275 // Use the Legality module to find the induction and reduction variables.
276 vectorizeLoop();
277 // Register the new loop and update the analysis passes.
278 updateAnalysis();
279 }
280
281 virtual ~InnerLoopVectorizer() {}
282
283protected:
284 /// A small list of PHINodes.
285 typedef SmallVector<PHINode*, 4> PhiVector;
286 /// When we unroll loops we have multiple vector values for each scalar.
287 /// This data structure holds the unrolled and vectorized values that
288 /// originated from one scalar instruction.
289 typedef SmallVector<Value*, 2> VectorParts;
290
291 // When we if-convert we need create edge masks. We have to cache values so
292 // that we don't end up with exponential recursion/IR.
293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
294 VectorParts> EdgeMaskCache;
295
296 /// \brief Add code that checks at runtime if the accessed arrays overlap.
297 ///
298 /// Returns a pair of instructions where the first element is the first
299 /// instruction generated in possibly a sequence of instructions and the
300 /// second value is the final comparator value or NULL if no check is needed.
301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
302
303 /// \brief Add checks for strides that where assumed to be 1.
304 ///
305 /// Returns the last check instruction and the first check instruction in the
306 /// pair as (first, last).
307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
308
309 /// Create an empty loop, based on the loop ranges of the old loop.
310 void createEmptyLoop();
311 /// Copy and widen the instructions from the old loop.
312 virtual void vectorizeLoop();
313
314 /// \brief The Loop exit block may have single value PHI nodes where the
315 /// incoming value is 'Undef'. While vectorizing we only handled real values
316 /// that were defined inside the loop. Here we fix the 'undef case'.
317 /// See PR14725.
318 void fixLCSSAPHIs();
319
320 /// A helper function that computes the predicate of the block BB, assuming
321 /// that the header block of the loop is set to True. It returns the *entry*
322 /// mask for the block BB.
323 VectorParts createBlockInMask(BasicBlock *BB);
324 /// A helper function that computes the predicate of the edge between SRC
325 /// and DST.
326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
327
328 /// A helper function to vectorize a single BB within the innermost loop.
329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
330
331 /// Vectorize a single PHINode in a block. This method handles the induction
332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
333 /// arbitrary length vectors.
334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
335 unsigned UF, unsigned VF, PhiVector *PV);
336
337 /// Insert the new loop to the loop hierarchy and pass manager
338 /// and update the analysis passes.
339 void updateAnalysis();
340
341 /// This instruction is un-vectorizable. Implement it as a sequence
342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
343 /// scalarized instruction behind an if block predicated on the control
344 /// dependence of the instruction.
345 virtual void scalarizeInstruction(Instruction *Instr,
346 bool IfPredicateStore=false);
347
348 /// Vectorize Load and Store instructions,
349 virtual void vectorizeMemoryInstruction(Instruction *Instr);
350
351 /// Create a broadcast instruction. This method generates a broadcast
352 /// instruction (shuffle) for loop invariant values and for the induction
353 /// value. If this is the induction variable then we extend it to N, N+1, ...
354 /// this is needed because each iteration in the loop corresponds to a SIMD
355 /// element.
356 virtual Value *getBroadcastInstrs(Value *V);
357
358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
360 /// The sequence starts at StartIndex.
361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
362
363 /// When we go over instructions in the basic block we rely on previous
364 /// values within the current basic block or on loop invariant values.
365 /// When we widen (vectorize) values we place them in the map. If the values
366 /// are not within the map, they have to be loop invariant, so we simply
367 /// broadcast them into a vector.
368 VectorParts &getVectorValue(Value *V);
369
370 /// Generate a shuffle sequence that will reverse the vector Vec.
371 virtual Value *reverseVector(Value *Vec);
372
373 /// This is a helper class that holds the vectorizer state. It maps scalar
374 /// instructions to vector instructions. When the code is 'unrolled' then
375 /// then a single scalar value is mapped to multiple vector parts. The parts
376 /// are stored in the VectorPart type.
377 struct ValueMap {
378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
379 /// are mapped.
380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
381
382 /// \return True if 'Key' is saved in the Value Map.
383 bool has(Value *Key) const { return MapStorage.count(Key); }
384
385 /// Initializes a new entry in the map. Sets all of the vector parts to the
386 /// save value in 'Val'.
387 /// \return A reference to a vector with splat values.
388 VectorParts &splat(Value *Key, Value *Val) {
389 VectorParts &Entry = MapStorage[Key];
390 Entry.assign(UF, Val);
391 return Entry;
392 }
393
394 ///\return A reference to the value that is stored at 'Key'.
395 VectorParts &get(Value *Key) {
396 VectorParts &Entry = MapStorage[Key];
397 if (Entry.empty())
398 Entry.resize(UF);
399 assert(Entry.size() == UF)((Entry.size() == UF) ? static_cast<void> (0) : __assert_fail
("Entry.size() == UF", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 399, __PRETTY_FUNCTION__))
;
400 return Entry;
401 }
402
403 private:
404 /// The unroll factor. Each entry in the map stores this number of vector
405 /// elements.
406 unsigned UF;
407
408 /// Map storage. We use std::map and not DenseMap because insertions to a
409 /// dense map invalidates its iterators.
410 std::map<Value *, VectorParts> MapStorage;
411 };
412
413 /// The original loop.
414 Loop *OrigLoop;
415 /// Scev analysis to use.
416 ScalarEvolution *SE;
417 /// Loop Info.
418 LoopInfo *LI;
419 /// Dominator Tree.
420 DominatorTree *DT;
421 /// Alias Analysis.
422 AliasAnalysis *AA;
423 /// Data Layout.
424 const DataLayout *DL;
425 /// Target Library Info.
426 const TargetLibraryInfo *TLI;
427
428 /// The vectorization SIMD factor to use. Each vector will have this many
429 /// vector elements.
430 unsigned VF;
431
432protected:
433 /// The vectorization unroll factor to use. Each scalar is vectorized to this
434 /// many different vector instructions.
435 unsigned UF;
436
437 /// The builder that we use
438 IRBuilder<> Builder;
439
440 // --- Vectorization state ---
441
442 /// The vector-loop preheader.
443 BasicBlock *LoopVectorPreHeader;
444 /// The scalar-loop preheader.
445 BasicBlock *LoopScalarPreHeader;
446 /// Middle Block between the vector and the scalar.
447 BasicBlock *LoopMiddleBlock;
448 ///The ExitBlock of the scalar loop.
449 BasicBlock *LoopExitBlock;
450 ///The vector loop body.
451 SmallVector<BasicBlock *, 4> LoopVectorBody;
452 ///The scalar loop body.
453 BasicBlock *LoopScalarBody;
454 /// A list of all bypass blocks. The first block is the entry of the loop.
455 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
456
457 /// The new Induction variable which was added to the new block.
458 PHINode *Induction;
459 /// The induction variable of the old basic block.
460 PHINode *OldInduction;
461 /// Holds the extended (to the widest induction type) start index.
462 Value *ExtendedIdx;
463 /// Maps scalars to widened vectors.
464 ValueMap WidenMap;
465 EdgeMaskCache MaskCache;
466
467 LoopVectorizationLegality *Legal;
468};
469
470class InnerLoopUnroller : public InnerLoopVectorizer {
471public:
472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
473 DominatorTree *DT, const DataLayout *DL,
474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
476
477private:
478 void scalarizeInstruction(Instruction *Instr,
479 bool IfPredicateStore = false) override;
480 void vectorizeMemoryInstruction(Instruction *Instr) override;
481 Value *getBroadcastInstrs(Value *V) override;
482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
483 Value *reverseVector(Value *Vec) override;
484};
485
486/// \brief Look for a meaningful debug location on the instruction or it's
487/// operands.
488static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
489 if (!I)
490 return I;
491
492 DebugLoc Empty;
493 if (I->getDebugLoc() != Empty)
494 return I;
495
496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
498 if (OpInst->getDebugLoc() != Empty)
499 return OpInst;
500 }
501
502 return I;
503}
504
505/// \brief Set the debug location in the builder using the debug location in the
506/// instruction.
507static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
509 B.SetCurrentDebugLocation(Inst->getDebugLoc());
510 else
511 B.SetCurrentDebugLocation(DebugLoc());
512}
513
514#ifndef NDEBUG
515/// \return string containing a file name and a line # for the given loop.
516static std::string getDebugLocString(const Loop *L) {
517 std::string Result;
518 if (L) {
519 raw_string_ostream OS(Result);
520 const DebugLoc LoopDbgLoc = L->getStartLoc();
521 if (!LoopDbgLoc.isUnknown())
522 LoopDbgLoc.print(L->getHeader()->getContext(), OS);
523 else
524 // Just print the module name.
525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
526 OS.flush();
527 }
528 return Result;
529}
530#endif
531
532/// \brief Propagate known metadata from one instruction to another.
533static void propagateMetadata(Instruction *To, const Instruction *From) {
534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
535 From->getAllMetadataOtherThanDebugLoc(Metadata);
536
537 for (auto M : Metadata) {
538 unsigned Kind = M.first;
539
540 // These are safe to transfer (this is safe for TBAA, even when we
541 // if-convert, because should that metadata have had a control dependency
542 // on the condition, and thus actually aliased with some other
543 // non-speculated memory access when the condition was false, this would be
544 // caught by the runtime overlap checks).
545 if (Kind != LLVMContext::MD_tbaa &&
546 Kind != LLVMContext::MD_alias_scope &&
547 Kind != LLVMContext::MD_noalias &&
548 Kind != LLVMContext::MD_fpmath)
549 continue;
550
551 To->setMetadata(Kind, M.second);
552 }
553}
554
555/// \brief Propagate known metadata from one instruction to a vector of others.
556static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
557 for (Value *V : To)
558 if (Instruction *I = dyn_cast<Instruction>(V))
559 propagateMetadata(I, From);
560}
561
562/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
563/// to what vectorization factor.
564/// This class does not look at the profitability of vectorization, only the
565/// legality. This class has two main kinds of checks:
566/// * Memory checks - The code in canVectorizeMemory checks if vectorization
567/// will change the order of memory accesses in a way that will change the
568/// correctness of the program.
569/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
570/// checks for a number of different conditions, such as the availability of a
571/// single induction variable, that all types are supported and vectorize-able,
572/// etc. This code reflects the capabilities of InnerLoopVectorizer.
573/// This class is also used by InnerLoopVectorizer for identifying
574/// induction variable and the different reduction variables.
575class LoopVectorizationLegality {
576public:
577 unsigned NumLoads;
578 unsigned NumStores;
579 unsigned NumPredStores;
580
581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
582 DominatorTree *DT, TargetLibraryInfo *TLI,
583 AliasAnalysis *AA, Function *F,
584 const TargetTransformInfo *TTI)
585 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
586 DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr),
587 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
588 }
589
590 /// This enum represents the kinds of reductions that we support.
591 enum ReductionKind {
592 RK_NoReduction, ///< Not a reduction.
593 RK_IntegerAdd, ///< Sum of integers.
594 RK_IntegerMult, ///< Product of integers.
595 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
596 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
597 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
598 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
599 RK_FloatAdd, ///< Sum of floats.
600 RK_FloatMult, ///< Product of floats.
601 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
602 };
603
604 /// This enum represents the kinds of inductions that we support.
605 enum InductionKind {
606 IK_NoInduction, ///< Not an induction variable.
607 IK_IntInduction, ///< Integer induction variable. Step = 1.
608 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
609 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
610 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
611 };
612
613 // This enum represents the kind of minmax reduction.
614 enum MinMaxReductionKind {
615 MRK_Invalid,
616 MRK_UIntMin,
617 MRK_UIntMax,
618 MRK_SIntMin,
619 MRK_SIntMax,
620 MRK_FloatMin,
621 MRK_FloatMax
622 };
623
624 /// This struct holds information about reduction variables.
625 struct ReductionDescriptor {
626 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
627 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
628
629 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
630 MinMaxReductionKind MK)
631 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
632
633 // The starting value of the reduction.
634 // It does not have to be zero!
635 TrackingVH<Value> StartValue;
636 // The instruction who's value is used outside the loop.
637 Instruction *LoopExitInstr;
638 // The kind of the reduction.
639 ReductionKind Kind;
640 // If this a min/max reduction the kind of reduction.
641 MinMaxReductionKind MinMaxKind;
642 };
643
644 /// This POD struct holds information about a potential reduction operation.
645 struct ReductionInstDesc {
646 ReductionInstDesc(bool IsRedux, Instruction *I) :
647 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
648
649 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
650 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
651
652 // Is this instruction a reduction candidate.
653 bool IsReduction;
654 // The last instruction in a min/max pattern (select of the select(icmp())
655 // pattern), or the current reduction instruction otherwise.
656 Instruction *PatternLastInst;
657 // If this is a min/max pattern the comparison predicate.
658 MinMaxReductionKind MinMaxKind;
659 };
660
661 /// This struct holds information about the memory runtime legality
662 /// check that a group of pointers do not overlap.
663 struct RuntimePointerCheck {
664 RuntimePointerCheck() : Need(false) {}
665
666 /// Reset the state of the pointer runtime information.
667 void reset() {
668 Need = false;
669 Pointers.clear();
670 Starts.clear();
671 Ends.clear();
672 IsWritePtr.clear();
673 DependencySetId.clear();
674 AliasSetId.clear();
675 }
676
677 /// Insert a pointer and calculate the start and end SCEVs.
678 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
679 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
680
681 /// This flag indicates if we need to add the runtime check.
682 bool Need;
683 /// Holds the pointers that we need to check.
684 SmallVector<TrackingVH<Value>, 2> Pointers;
685 /// Holds the pointer value at the beginning of the loop.
686 SmallVector<const SCEV*, 2> Starts;
687 /// Holds the pointer value at the end of the loop.
688 SmallVector<const SCEV*, 2> Ends;
689 /// Holds the information if this pointer is used for writing to memory.
690 SmallVector<bool, 2> IsWritePtr;
691 /// Holds the id of the set of pointers that could be dependent because of a
692 /// shared underlying object.
693 SmallVector<unsigned, 2> DependencySetId;
694 /// Holds the id of the disjoint alias set to which this pointer belongs.
695 SmallVector<unsigned, 2> AliasSetId;
696 };
697
698 /// A struct for saving information about induction variables.
699 struct InductionInfo {
700 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
701 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
702 /// Start value.
703 TrackingVH<Value> StartValue;
704 /// Induction kind.
705 InductionKind IK;
706 };
707
708 /// ReductionList contains the reduction descriptors for all
709 /// of the reductions that were found in the loop.
710 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
711
712 /// InductionList saves induction variables and maps them to the
713 /// induction descriptor.
714 typedef MapVector<PHINode*, InductionInfo> InductionList;
715
716 /// Returns true if it is legal to vectorize this loop.
717 /// This does not mean that it is profitable to vectorize this
718 /// loop, only that it is legal to do so.
719 bool canVectorize();
720
721 /// Returns the Induction variable.
722 PHINode *getInduction() { return Induction; }
723
724 /// Returns the reduction variables found in the loop.
725 ReductionList *getReductionVars() { return &Reductions; }
726
727 /// Returns the induction variables found in the loop.
728 InductionList *getInductionVars() { return &Inductions; }
729
730 /// Returns the widest induction type.
731 Type *getWidestInductionType() { return WidestIndTy; }
732
733 /// Returns True if V is an induction variable in this loop.
734 bool isInductionVariable(const Value *V);
735
736 /// Return true if the block BB needs to be predicated in order for the loop
737 /// to be vectorized.
738 bool blockNeedsPredication(BasicBlock *BB);
739
740 /// Check if this pointer is consecutive when vectorizing. This happens
741 /// when the last index of the GEP is the induction variable, or that the
742 /// pointer itself is an induction variable.
743 /// This check allows us to vectorize A[idx] into a wide load/store.
744 /// Returns:
745 /// 0 - Stride is unknown or non-consecutive.
746 /// 1 - Address is consecutive.
747 /// -1 - Address is consecutive, and decreasing.
748 int isConsecutivePtr(Value *Ptr);
749
750 /// Returns true if the value V is uniform within the loop.
751 bool isUniform(Value *V);
752
753 /// Returns true if this instruction will remain scalar after vectorization.
754 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
755
756 /// Returns the information that we collected about runtime memory check.
757 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
758
759 /// This function returns the identity element (or neutral element) for
760 /// the operation K.
761 static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
762
763 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
764
765 bool hasStride(Value *V) { return StrideSet.count(V); }
766 bool mustCheckStrides() { return !StrideSet.empty(); }
767 SmallPtrSet<Value *, 8>::iterator strides_begin() {
768 return StrideSet.begin();
769 }
770 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
771
772 /// Returns true if the target machine supports masked store operation
773 /// for the given \p DataType and kind of access to \p Ptr.
774 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
775 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
776 }
777 /// Returns true if the target machine supports masked load operation
778 /// for the given \p DataType and kind of access to \p Ptr.
779 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
780 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
781 }
782 /// Returns true if vector representation of the instruction \p I
783 /// requires mask.
784 bool isMaskRequired(const Instruction* I) {
785 return (MaskedOp.count(I) != 0);
786 }
787private:
788 /// Check if a single basic block loop is vectorizable.
789 /// At this point we know that this is a loop with a constant trip count
790 /// and we only need to check individual instructions.
791 bool canVectorizeInstrs();
792
793 /// When we vectorize loops we may change the order in which
794 /// we read and write from memory. This method checks if it is
795 /// legal to vectorize the code, considering only memory constrains.
796 /// Returns true if the loop is vectorizable
797 bool canVectorizeMemory();
798
799 /// Return true if we can vectorize this loop using the IF-conversion
800 /// transformation.
801 bool canVectorizeWithIfConvert();
802
803 /// Collect the variables that need to stay uniform after vectorization.
804 void collectLoopUniforms();
805
806 /// Return true if all of the instructions in the block can be speculatively
807 /// executed. \p SafePtrs is a list of addresses that are known to be legal
808 /// and we know that we can read from them without segfault.
809 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
810
811 /// Returns True, if 'Phi' is the kind of reduction variable for type
812 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
813 bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
814 /// Returns a struct describing if the instruction 'I' can be a reduction
815 /// variable of type 'Kind'. If the reduction is a min/max pattern of
816 /// select(icmp()) this function advances the instruction pointer 'I' from the
817 /// compare instruction to the select instruction and stores this pointer in
818 /// 'PatternLastInst' member of the returned struct.
819 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
820 ReductionInstDesc &Desc);
821 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
822 /// pattern corresponding to a min(X, Y) or max(X, Y).
823 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
824 ReductionInstDesc &Prev);
825 /// Returns the induction kind of Phi. This function may return NoInduction
826 /// if the PHI is not an induction variable.
827 InductionKind isInductionVariable(PHINode *Phi);
828
829 /// \brief Collect memory access with loop invariant strides.
830 ///
831 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
832 /// invariant.
833 void collectStridedAcccess(Value *LoadOrStoreInst);
834
835 /// Report an analysis message to assist the user in diagnosing loops that are
836 /// not vectorized.
837 void emitAnalysis(Report &Message) {
838 DebugLoc DL = TheLoop->getStartLoc();
839 if (Instruction *I = Message.getInstr())
840 DL = I->getDebugLoc();
841 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE"loop-vectorize",
842 *TheFunction, DL, Message.str());
843 }
844
845 /// The loop that we evaluate.
846 Loop *TheLoop;
847 /// Scev analysis.
848 ScalarEvolution *SE;
849 /// DataLayout analysis.
850 const DataLayout *DL;
851 /// Dominators.
852 DominatorTree *DT;
853 /// Target Library Info.
854 TargetLibraryInfo *TLI;
855 /// Alias analysis.
856 AliasAnalysis *AA;
857 /// Parent function
858 Function *TheFunction;
859 /// Target Transform Info
860 const TargetTransformInfo *TTI;
861
862 // --- vectorization state --- //
863
864 /// Holds the integer induction variable. This is the counter of the
865 /// loop.
866 PHINode *Induction;
867 /// Holds the reduction variables.
868 ReductionList Reductions;
869 /// Holds all of the induction variables that we found in the loop.
870 /// Notice that inductions don't need to start at zero and that induction
871 /// variables can be pointers.
872 InductionList Inductions;
873 /// Holds the widest induction type encountered.
874 Type *WidestIndTy;
875
876 /// Allowed outside users. This holds the reduction
877 /// vars which can be accessed from outside the loop.
878 SmallPtrSet<Value*, 4> AllowedExit;
879 /// This set holds the variables which are known to be uniform after
880 /// vectorization.
881 SmallPtrSet<Instruction*, 4> Uniforms;
882 /// We need to check that all of the pointers in this list are disjoint
883 /// at runtime.
884 RuntimePointerCheck PtrRtCheck;
885 /// Can we assume the absence of NaNs.
886 bool HasFunNoNaNAttr;
887
888 unsigned MaxSafeDepDistBytes;
889
890 ValueToValueMap Strides;
891 SmallPtrSet<Value *, 8> StrideSet;
892
893 /// While vectorizing these instructions we have to generate a
894 /// call to the appropriate masked intrinsic
895 SmallPtrSet<const Instruction*, 8> MaskedOp;
896};
897
898/// LoopVectorizationCostModel - estimates the expected speedups due to
899/// vectorization.
900/// In many cases vectorization is not profitable. This can happen because of
901/// a number of reasons. In this class we mainly attempt to predict the
902/// expected speedup/slowdowns due to the supported instruction set. We use the
903/// TargetTransformInfo to query the different backends for the cost of
904/// different operations.
905class LoopVectorizationCostModel {
906public:
907 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
908 LoopVectorizationLegality *Legal,
909 const TargetTransformInfo &TTI,
910 const DataLayout *DL, const TargetLibraryInfo *TLI,
911 AssumptionTracker *AT, const Function *F,
912 const LoopVectorizeHints *Hints)
913 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
914 TheFunction(F), Hints(Hints) {
915 CodeMetrics::collectEphemeralValues(L, AT, EphValues);
916 }
917
918 /// Information about vectorization costs
919 struct VectorizationFactor {
920 unsigned Width; // Vector width with best cost
921 unsigned Cost; // Cost of the loop with that width
922 };
923 /// \return The most profitable vectorization factor and the cost of that VF.
924 /// This method checks every power of two up to VF. If UserVF is not ZERO
925 /// then this vectorization factor will be selected if vectorization is
926 /// possible.
927 VectorizationFactor selectVectorizationFactor(bool OptForSize);
928
929 /// \return The size (in bits) of the widest type in the code that
930 /// needs to be vectorized. We ignore values that remain scalar such as
931 /// 64 bit loop indices.
932 unsigned getWidestType();
933
934 /// \return The most profitable unroll factor.
935 /// If UserUF is non-zero then this method finds the best unroll-factor
936 /// based on register pressure and other parameters.
937 /// VF and LoopCost are the selected vectorization factor and the cost of the
938 /// selected VF.
939 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
940
941 /// \brief A struct that represents some properties of the register usage
942 /// of a loop.
943 struct RegisterUsage {
944 /// Holds the number of loop invariant values that are used in the loop.
945 unsigned LoopInvariantRegs;
946 /// Holds the maximum number of concurrent live intervals in the loop.
947 unsigned MaxLocalUsers;
948 /// Holds the number of instructions in the loop.
949 unsigned NumInstructions;
950 };
951
952 /// \return information about the register usage of the loop.
953 RegisterUsage calculateRegisterUsage();
954
955private:
956 /// Returns the expected execution cost. The unit of the cost does
957 /// not matter because we use the 'cost' units to compare different
958 /// vector widths. The cost that is returned is *not* normalized by
959 /// the factor width.
960 unsigned expectedCost(unsigned VF);
961
962 /// Returns the execution time cost of an instruction for a given vector
963 /// width. Vector width of one means scalar.
964 unsigned getInstructionCost(Instruction *I, unsigned VF);
965
966 /// A helper function for converting Scalar types to vector types.
967 /// If the incoming type is void, we return void. If the VF is 1, we return
968 /// the scalar type.
969 static Type* ToVectorTy(Type *Scalar, unsigned VF);
970
971 /// Returns whether the instruction is a load or store and will be a emitted
972 /// as a vector operation.
973 bool isConsecutiveLoadOrStore(Instruction *I);
974
975 /// Report an analysis message to assist the user in diagnosing loops that are
976 /// not vectorized.
977 void emitAnalysis(Report &Message) {
978 DebugLoc DL = TheLoop->getStartLoc();
979 if (Instruction *I = Message.getInstr())
980 DL = I->getDebugLoc();
981 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE"loop-vectorize",
982 *TheFunction, DL, Message.str());
983 }
984
985 /// Values used only by @llvm.assume calls.
986 SmallPtrSet<const Value *, 32> EphValues;
987
988 /// The loop that we evaluate.
989 Loop *TheLoop;
990 /// Scev analysis.
991 ScalarEvolution *SE;
992 /// Loop Info analysis.
993 LoopInfo *LI;
994 /// Vectorization legality.
995 LoopVectorizationLegality *Legal;
996 /// Vector target information.
997 const TargetTransformInfo &TTI;
998 /// Target data layout information.
999 const DataLayout *DL;
1000 /// Target Library Info.
1001 const TargetLibraryInfo *TLI;
1002 const Function *TheFunction;
1003 // Loop Vectorize Hint.
1004 const LoopVectorizeHints *Hints;
1005};
1006
1007/// Utility class for getting and setting loop vectorizer hints in the form
1008/// of loop metadata.
1009/// This class keeps a number of loop annotations locally (as member variables)
1010/// and can, upon request, write them back as metadata on the loop. It will
1011/// initially scan the loop for existing metadata, and will update the local
1012/// values based on information in the loop.
1013/// We cannot write all values to metadata, as the mere presence of some info,
1014/// for example 'force', means a decision has been made. So, we need to be
1015/// careful NOT to add them if the user hasn't specifically asked so.
1016class LoopVectorizeHints {
1017 enum HintKind {
1018 HK_WIDTH,
1019 HK_UNROLL,
1020 HK_FORCE
1021 };
1022
1023 /// Hint - associates name and validation with the hint value.
1024 struct Hint {
1025 const char * Name;
1026 unsigned Value; // This may have to change for non-numeric values.
1027 HintKind Kind;
1028
1029 Hint(const char * Name, unsigned Value, HintKind Kind)
1030 : Name(Name), Value(Value), Kind(Kind) { }
1031
1032 bool validate(unsigned Val) {
1033 switch (Kind) {
1034 case HK_WIDTH:
1035 return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
1036 case HK_UNROLL:
1037 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1038 case HK_FORCE:
1039 return (Val <= 1);
1040 }
1041 return false;
1042 }
1043 };
1044
1045 /// Vectorization width.
1046 Hint Width;
1047 /// Vectorization interleave factor.
1048 Hint Interleave;
1049 /// Vectorization forced
1050 Hint Force;
1051
1052 /// Return the loop metadata prefix.
1053 static StringRef Prefix() { return "llvm.loop."; }
1054
1055public:
1056 enum ForceKind {
1057 FK_Undefined = -1, ///< Not selected.
1058 FK_Disabled = 0, ///< Forcing disabled.
1059 FK_Enabled = 1, ///< Forcing enabled.
1060 };
1061
1062 LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1063 : Width("vectorize.width", VectorizationFactor, HK_WIDTH),
1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1065 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1066 TheLoop(L) {
1067 // Populate values with existing loop metadata.
1068 getHintsFromMetadata();
1069
1070 // force-vector-interleave overrides DisableInterleaving.
1071 if (VectorizationInterleave.getNumOccurrences() > 0)
1072 Interleave.Value = VectorizationInterleave;
1073
1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (DisableInterleaving && Interleave
.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"
; } } while (0)
1075 << "LV: Interleaving disabled by the pass manager\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (DisableInterleaving && Interleave
.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"
; } } while (0)
;
1076 }
1077
1078 /// Mark the loop L as already vectorized by setting the width to 1.
1079 void setAlreadyVectorized() {
1080 Width.Value = Interleave.Value = 1;
1081 Hint Hints[] = {Width, Interleave};
1082 writeHintsToMetadata(Hints);
1083 }
1084
1085 /// Dumps all the hint information.
1086 std::string emitRemark() const {
1087 Report R;
1088 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1089 R << "vectorization is explicitly disabled";
1090 else {
1091 R << "use -Rpass-analysis=loop-vectorize for more info";
1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1093 R << " (Force=true";
1094 if (Width.Value != 0)
1095 R << ", Vector Width=" << Width.Value;
1096 if (Interleave.Value != 0)
1097 R << ", Interleave Count=" << Interleave.Value;
1098 R << ")";
1099 }
1100 }
1101
1102 return R.str();
1103 }
1104
1105 unsigned getWidth() const { return Width.Value; }
1106 unsigned getInterleave() const { return Interleave.Value; }
1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1108
1109private:
1110 /// Find hints specified in the loop metadata and update local values.
1111 void getHintsFromMetadata() {
1112 MDNode *LoopID = TheLoop->getLoopID();
1113 if (!LoopID)
1114 return;
1115
1116 // First operand should refer to the loop id itself.
1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand")((LoopID->getNumOperands() > 0 && "requires at least one operand"
) ? static_cast<void> (0) : __assert_fail ("LoopID->getNumOperands() > 0 && \"requires at least one operand\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1117, __PRETTY_FUNCTION__))
;
1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id")((LoopID->getOperand(0) == LoopID && "invalid loop id"
) ? static_cast<void> (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop id\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1118, __PRETTY_FUNCTION__))
;
1119
1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1121 const MDString *S = nullptr;
1122 SmallVector<Metadata *, 4> Args;
1123
1124 // The expected hint is either a MDString or a MDNode with the first
1125 // operand a MDString.
1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1127 if (!MD || MD->getNumOperands() == 0)
1128 continue;
1129 S = dyn_cast<MDString>(MD->getOperand(0));
1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1131 Args.push_back(MD->getOperand(i));
1132 } else {
1133 S = dyn_cast<MDString>(LoopID->getOperand(i));
1134 assert(Args.size() == 0 && "too many arguments for MDString")((Args.size() == 0 && "too many arguments for MDString"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 0 && \"too many arguments for MDString\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1134, __PRETTY_FUNCTION__))
;
1135 }
1136
1137 if (!S)
1138 continue;
1139
1140 // Check if the hint starts with the loop metadata prefix.
1141 StringRef Name = S->getString();
1142 if (Args.size() == 1)
1143 setHint(Name, Args[0]);
1144 }
1145 }
1146
1147 /// Checks string hint with one operand and set value if valid.
1148 void setHint(StringRef Name, Metadata *Arg) {
1149 if (!Name.startswith(Prefix()))
1150 return;
1151 Name = Name.substr(Prefix().size(), StringRef::npos);
1152
1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1154 if (!C) return;
1155 unsigned Val = C->getZExtValue();
1156
1157 Hint *Hints[] = {&Width, &Interleave, &Force};
1158 for (auto H : Hints) {
1159 if (Name == H->Name) {
1160 if (H->validate(Val))
1161 H->Value = Val;
1162 else
1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: ignoring invalid hint '"
<< Name << "'\n"; } } while (0)
;
1164 break;
1165 }
1166 }
1167 }
1168
1169 /// Create a new hint from name / value pair.
1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1171 LLVMContext &Context = TheLoop->getHeader()->getContext();
1172 Metadata *MDs[] = {MDString::get(Context, Name),
1173 ConstantAsMetadata::get(
1174 ConstantInt::get(Type::getInt32Ty(Context), V))};
1175 return MDNode::get(Context, MDs);
1176 }
1177
1178 /// Matches metadata with hint name.
1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1181 if (!Name)
1182 return false;
1183
1184 for (auto H : HintTypes)
1185 if (Name->getString().endswith(H.Name))
1186 return true;
1187 return false;
1188 }
1189
1190 /// Sets current hints into loop metadata, keeping other values intact.
1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1192 if (HintTypes.size() == 0)
1193 return;
1194
1195 // Reserve the first element to LoopID (see below).
1196 SmallVector<Metadata *, 4> MDs(1);
1197 // If the loop already has metadata, then ignore the existing operands.
1198 MDNode *LoopID = TheLoop->getLoopID();
1199 if (LoopID) {
1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1202 // If node in update list, ignore old value.
1203 if (!matchesHintMetadataName(Node, HintTypes))
1204 MDs.push_back(Node);
1205 }
1206 }
1207
1208 // Now, add the missing hints.
1209 for (auto H : HintTypes)
1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1211
1212 // Replace current metadata node with new one.
1213 LLVMContext &Context = TheLoop->getHeader()->getContext();
1214 MDNode *NewLoopID = MDNode::get(Context, MDs);
1215 // Set operand 0 to refer to the loop id itself.
1216 NewLoopID->replaceOperandWith(0, NewLoopID);
1217
1218 TheLoop->setLoopID(NewLoopID);
1219 LoopID = NewLoopID;
Value stored to 'LoopID' is never read
1220 }
1221
1222 /// The loop these hints belong to.
1223 const Loop *TheLoop;
1224};
1225
1226static void emitMissedWarning(Function *F, Loop *L,
1227 const LoopVectorizeHints &LH) {
1228 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE"loop-vectorize", *F,
1229 L->getStartLoc(), LH.emitRemark());
1230
1231 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1232 if (LH.getWidth() != 1)
1233 emitLoopVectorizeWarning(
1234 F->getContext(), *F, L->getStartLoc(),
1235 "failed explicitly specified loop vectorization");
1236 else if (LH.getInterleave() != 1)
1237 emitLoopInterleaveWarning(
1238 F->getContext(), *F, L->getStartLoc(),
1239 "failed explicitly specified loop interleaving");
1240 }
1241}
1242
1243static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1244 if (L.empty())
1245 return V.push_back(&L);
1246
1247 for (Loop *InnerL : L)
1248 addInnerLoop(*InnerL, V);
1249}
1250
1251/// The LoopVectorize Pass.
1252struct LoopVectorize : public FunctionPass {
1253 /// Pass identification, replacement for typeid
1254 static char ID;
1255
1256 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1257 : FunctionPass(ID),
1258 DisableUnrolling(NoUnrolling),
1259 AlwaysVectorize(AlwaysVectorize) {
1260 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1261 }
1262
1263 ScalarEvolution *SE;
1264 const DataLayout *DL;
1265 LoopInfo *LI;
1266 TargetTransformInfo *TTI;
1267 DominatorTree *DT;
1268 BlockFrequencyInfo *BFI;
1269 TargetLibraryInfo *TLI;
1270 AliasAnalysis *AA;
1271 AssumptionTracker *AT;
1272 bool DisableUnrolling;
1273 bool AlwaysVectorize;
1274
1275 BlockFrequency ColdEntryFreq;
1276
1277 bool runOnFunction(Function &F) override {
1278 SE = &getAnalysis<ScalarEvolution>();
1279 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1280 DL = DLP ? &DLP->getDataLayout() : nullptr;
1281 LI = &getAnalysis<LoopInfo>();
1282 TTI = &getAnalysis<TargetTransformInfo>();
1283 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1284 BFI = &getAnalysis<BlockFrequencyInfo>();
1285 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1286 AA = &getAnalysis<AliasAnalysis>();
1287 AT = &getAnalysis<AssumptionTracker>();
1288
1289 // Compute some weights outside of the loop over the loops. Compute this
1290 // using a BranchProbability to re-use its scaling math.
1291 const BranchProbability ColdProb(1, 5); // 20%
1292 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1293
1294 // If the target claims to have no vector registers don't attempt
1295 // vectorization.
1296 if (!TTI->getNumberOfRegisters(true))
1297 return false;
1298
1299 if (!DL) {
1300 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Not vectorizing "
<< F.getName() << ": Missing data layout\n"; } }
while (0)
1301 << ": Missing data layout\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Not vectorizing "
<< F.getName() << ": Missing data layout\n"; } }
while (0)
;
1302 return false;
1303 }
1304
1305 // Build up a worklist of inner-loops to vectorize. This is necessary as
1306 // the act of vectorizing or partially unrolling a loop creates new loops
1307 // and can invalidate iterators across the loops.
1308 SmallVector<Loop *, 8> Worklist;
1309
1310 for (Loop *L : *LI)
1311 addInnerLoop(*L, Worklist);
1312
1313 LoopsAnalyzed += Worklist.size();
1314
1315 // Now walk the identified inner loops.
1316 bool Changed = false;
1317 while (!Worklist.empty())
1318 Changed |= processLoop(Worklist.pop_back_val());
1319
1320 // Process each loop nest in the function.
1321 return Changed;
1322 }
1323
1324 bool processLoop(Loop *L) {
1325 assert(L->empty() && "Only process inner loops.")((L->empty() && "Only process inner loops.") ? static_cast
<void> (0) : __assert_fail ("L->empty() && \"Only process inner loops.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1325, __PRETTY_FUNCTION__))
;
1326
1327#ifndef NDEBUG
1328 const std::string DebugLocStr = getDebugLocString(L);
1329#endif /* NDEBUG */
1330
1331 DEBUG(dbgs() << "\nLV: Checking a loop in \""do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (0)
1332 << L->getHeader()->getParent()->getName() << "\" from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (0)
1333 << DebugLocStr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (0)
;
1334
1335 LoopVectorizeHints Hints(L, DisableUnrolling);
1336
1337 DEBUG(dbgs() << "LV: Loop hints:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1338 << " force="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1339 << (Hints.getForce() == LoopVectorizeHints::FK_Disableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1340 ? "disabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1341 : (Hints.getForce() == LoopVectorizeHints::FK_Enableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1342 ? "enabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1343 : "?")) << " width=" << Hints.getWidth()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
1344 << " unroll=" << Hints.getInterleave() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (0)
;
1345
1346 // Function containing loop
1347 Function *F = L->getHeader()->getParent();
1348
1349 // Looking at the diagnostic output is the only way to determine if a loop
1350 // was vectorized (other than looking at the IR or machine code), so it
1351 // is important to generate an optimization remark for each loop. Most of
1352 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1353 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1354 // less verbose reporting vectorized loops and unvectorized loops that may
1355 // benefit from vectorization, respectively.
1356
1357 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1358 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"
; } } while (0)
;
1359 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE"loop-vectorize", *F,
1360 L->getStartLoc(), Hints.emitRemark());
1361 return false;
1362 }
1363
1364 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1365 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"
; } } while (0)
;
1366 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE"loop-vectorize", *F,
1367 L->getStartLoc(), Hints.emitRemark());
1368 return false;
1369 }
1370
1371 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
1372 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"
; } } while (0)
;
1373 emitOptimizationRemarkAnalysis(
1374 F->getContext(), DEBUG_TYPE"loop-vectorize", *F, L->getStartLoc(),
1375 "loop not vectorized: vector width and interleave count are "
1376 "explicitly set to 1");
1377 return false;
1378 }
1379
1380 // Check the loop for a trip count threshold:
1381 // do not vectorize loops with a tiny trip count.
1382 const unsigned TC = SE->getSmallConstantTripCount(L);
1383 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1384 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is not worth vectorizing."; } } while (0
)
1385 << "This loop is not worth vectorizing.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is not worth vectorizing."; } } while (0
)
;
1386 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1387 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << " But vectorizing was explicitly forced.\n"
; } } while (0)
;
1388 else {
1389 DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\n"; } } while (0)
;
1390 emitOptimizationRemarkAnalysis(
1391 F->getContext(), DEBUG_TYPE"loop-vectorize", *F, L->getStartLoc(),
1392 "vectorization is not beneficial and is not explicitly forced");
1393 return false;
1394 }
1395 }
1396
1397 // Check if it is legal to vectorize the loop.
1398 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
1399 if (!LVL.canVectorize()) {
1400 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"
; } } while (0)
;
1401 emitMissedWarning(F, L, Hints);
1402 return false;
1403 }
1404
1405 // Use the cost model.
1406 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AT, F,
1407 &Hints);
1408
1409 // Check the function attributes to find out if this function should be
1410 // optimized for size.
1411 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1412 F->hasFnAttribute(Attribute::OptimizeForSize);
1413
1414 // Compute the weighted frequency of this loop being executed and see if it
1415 // is less than 20% of the function entry baseline frequency. Note that we
1416 // always have a canonical loop here because we think we *can* vectoriez.
1417 // FIXME: This is hidden behind a flag due to pervasive problems with
1418 // exactly what block frequency models.
1419 if (LoopVectorizeWithBlockFrequency) {
1420 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1421 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1422 LoopEntryFreq < ColdEntryFreq)
1423 OptForSize = true;
1424 }
1425
1426 // Check the function attributes to see if implicit floats are allowed.a
1427 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1428 // an integer loop and the vector instructions selected are purely integer
1429 // vector instructions?
1430 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1431 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n"; } } while (0)
1432 "attribute is used.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n"; } } while (0)
;
1433 emitOptimizationRemarkAnalysis(
1434 F->getContext(), DEBUG_TYPE"loop-vectorize", *F, L->getStartLoc(),
1435 "loop not vectorized due to NoImplicitFloat attribute");
1436 emitMissedWarning(F, L, Hints);
1437 return false;
1438 }
1439
1440 // Select the optimal vectorization factor.
1441 const LoopVectorizationCostModel::VectorizationFactor VF =
1442 CM.selectVectorizationFactor(OptForSize);
1443
1444 // Select the unroll factor.
1445 const unsigned UF =
1446 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
1447
1448 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (0)
1449 << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (0)
;
1450 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Unroll Factor is "
<< UF << '\n'; } } while (0)
;
1451
1452 if (VF.Width == 1) {
1453 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vectorization is possible but not beneficial\n"
; } } while (0)
;
1454
1455 if (UF == 1) {
1456 emitOptimizationRemarkAnalysis(
1457 F->getContext(), DEBUG_TYPE"loop-vectorize", *F, L->getStartLoc(),
1458 "not beneficial to vectorize and user disabled interleaving");
1459 return false;
1460 }
1461 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Trying to at least unroll the loops.\n"
; } } while (0)
;
1462
1463 // Report the unrolling decision.
1464 emitOptimizationRemark(F->getContext(), DEBUG_TYPE"loop-vectorize", *F, L->getStartLoc(),
1465 Twine("unrolled with interleaving factor " +
1466 Twine(UF) +
1467 " (vectorization not beneficial)"));
1468
1469 // We decided not to vectorize, but we may want to unroll.
1470
1471 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
1472 Unroller.vectorize(&LVL);
1473 } else {
1474 // If we decided that it is *legal* to vectorize the loop then do it.
1475 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
1476 LB.vectorize(&LVL);
1477 ++LoopsVectorized;
1478
1479 // Report the vectorization decision.
1480 emitOptimizationRemark(
1481 F->getContext(), DEBUG_TYPE"loop-vectorize", *F, L->getStartLoc(),
1482 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1483 ", unrolling interleave factor: " + Twine(UF) + ")");
1484 }
1485
1486 // Mark the loop as already vectorized to avoid vectorizing again.
1487 Hints.setAlreadyVectorized();
1488
1489 DEBUG(verifyFunction(*L->getHeader()->getParent()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { verifyFunction(*L->getHeader()->getParent
()); } } while (0)
;
1490 return true;
1491 }
1492
1493 void getAnalysisUsage(AnalysisUsage &AU) const override {
1494 AU.addRequired<AssumptionTracker>();
1495 AU.addRequiredID(LoopSimplifyID);
1496 AU.addRequiredID(LCSSAID);
1497 AU.addRequired<BlockFrequencyInfo>();
1498 AU.addRequired<DominatorTreeWrapperPass>();
1499 AU.addRequired<LoopInfo>();
1500 AU.addRequired<ScalarEvolution>();
1501 AU.addRequired<TargetTransformInfo>();
1502 AU.addRequired<AliasAnalysis>();
1503 AU.addPreserved<LoopInfo>();
1504 AU.addPreserved<DominatorTreeWrapperPass>();
1505 AU.addPreserved<AliasAnalysis>();
1506 }
1507
1508};
1509
1510} // end anonymous namespace
1511
1512//===----------------------------------------------------------------------===//
1513// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1514// LoopVectorizationCostModel.
1515//===----------------------------------------------------------------------===//
1516
1517static Value *stripIntegerCast(Value *V) {
1518 if (CastInst *CI = dyn_cast<CastInst>(V))
1519 if (CI->getOperand(0)->getType()->isIntegerTy())
1520 return CI->getOperand(0);
1521 return V;
1522}
1523
1524///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
1525///
1526/// If \p OrigPtr is not null, use it to look up the stride value instead of
1527/// \p Ptr.
1528static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
1529 ValueToValueMap &PtrToStride,
1530 Value *Ptr, Value *OrigPtr = nullptr) {
1531
1532 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
1533
1534 // If there is an entry in the map return the SCEV of the pointer with the
1535 // symbolic stride replaced by one.
1536 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1537 if (SI != PtrToStride.end()) {
1538 Value *StrideVal = SI->second;
1539
1540 // Strip casts.
1541 StrideVal = stripIntegerCast(StrideVal);
1542
1543 // Replace symbolic stride by one.
1544 Value *One = ConstantInt::get(StrideVal->getType(), 1);
1545 ValueToValueMap RewriteMap;
1546 RewriteMap[StrideVal] = One;
1547
1548 const SCEV *ByOne =
1549 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
1550 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOnedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Replacing SCEV: " <<
*OrigSCEV << " by: " << *ByOne << "\n"; } }
while (0)
1551 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Replacing SCEV: " <<
*OrigSCEV << " by: " << *ByOne << "\n"; } }
while (0)
;
1552 return ByOne;
1553 }
1554
1555 // Otherwise, just return the SCEV of the original pointer.
1556 return SE->getSCEV(Ptr);
1557}
1558
1559void LoopVectorizationLegality::RuntimePointerCheck::insert(
1560 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
1561 unsigned ASId, ValueToValueMap &Strides) {
1562 // Get the stride replaced scev.
1563 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
1564 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1565 assert(AR && "Invalid addrec expression")((AR && "Invalid addrec expression") ? static_cast<
void> (0) : __assert_fail ("AR && \"Invalid addrec expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1567 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1568 Pointers.push_back(Ptr);
1569 Starts.push_back(AR->getStart());
1570 Ends.push_back(ScEnd);
1571 IsWritePtr.push_back(WritePtr);
1572 DependencySetId.push_back(DepSetId);
1573 AliasSetId.push_back(ASId);
1574}
1575
1576Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1577 // We need to place the broadcast of invariant variables outside the loop.
1578 Instruction *Instr = dyn_cast<Instruction>(V);
1579 bool NewInstr =
1580 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1581 Instr->getParent()) != LoopVectorBody.end());
1582 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1583
1584 // Place the code for broadcasting invariant variables in the new preheader.
1585 IRBuilder<>::InsertPointGuard Guard(Builder);
1586 if (Invariant)
1587 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1588
1589 // Broadcast the scalar into all locations in the vector.
1590 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1591
1592 return Shuf;
1593}
1594
1595Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1596 bool Negate) {
1597 assert(Val->getType()->isVectorTy() && "Must be a vector")((Val->getType()->isVectorTy() && "Must be a vector"
) ? static_cast<void> (0) : __assert_fail ("Val->getType()->isVectorTy() && \"Must be a vector\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1597, __PRETTY_FUNCTION__))
;
1598 assert(Val->getType()->getScalarType()->isIntegerTy() &&((Val->getType()->getScalarType()->isIntegerTy() &&
"Elem must be an integer") ? static_cast<void> (0) : __assert_fail
("Val->getType()->getScalarType()->isIntegerTy() && \"Elem must be an integer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1599, __PRETTY_FUNCTION__))
1599 "Elem must be an integer")((Val->getType()->getScalarType()->isIntegerTy() &&
"Elem must be an integer") ? static_cast<void> (0) : __assert_fail
("Val->getType()->getScalarType()->isIntegerTy() && \"Elem must be an integer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1599, __PRETTY_FUNCTION__))
;
1600 // Create the types.
1601 Type *ITy = Val->getType()->getScalarType();
1602 VectorType *Ty = cast<VectorType>(Val->getType());
1603 int VLen = Ty->getNumElements();
1604 SmallVector<Constant*, 8> Indices;
1605
1606 // Create a vector of consecutive numbers from zero to VF.
1607 for (int i = 0; i < VLen; ++i) {
1608 int64_t Idx = Negate ? (-i) : i;
1609 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1610 }
1611
1612 // Add the consecutive indices to the vector value.
1613 Constant *Cv = ConstantVector::get(Indices);
1614 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec")((Cv->getType() == Val->getType() && "Invalid consecutive vec"
) ? static_cast<void> (0) : __assert_fail ("Cv->getType() == Val->getType() && \"Invalid consecutive vec\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1614, __PRETTY_FUNCTION__))
;
1615 return Builder.CreateAdd(Val, Cv, "induction");
1616}
1617
1618/// \brief Find the operand of the GEP that should be checked for consecutive
1619/// stores. This ignores trailing indices that have no effect on the final
1620/// pointer.
1621static unsigned getGEPInductionOperand(const DataLayout *DL,
1622 const GetElementPtrInst *Gep) {
1623 unsigned LastOperand = Gep->getNumOperands() - 1;
1624 unsigned GEPAllocSize = DL->getTypeAllocSize(
1625 cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1626
1627 // Walk backwards and try to peel off zeros.
1628 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1629 // Find the type we're currently indexing into.
1630 gep_type_iterator GEPTI = gep_type_begin(Gep);
1631 std::advance(GEPTI, LastOperand - 1);
1632
1633 // If it's a type with the same allocation size as the result of the GEP we
1634 // can peel off the zero index.
1635 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1636 break;
1637 --LastOperand;
1638 }
1639
1640 return LastOperand;
1641}
1642
1643int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1644 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr")((Ptr->getType()->isPointerTy() && "Unexpected non-ptr"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Unexpected non-ptr\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1644, __PRETTY_FUNCTION__))
;
1645 // Make sure that the pointer does not point to structs.
1646 if (Ptr->getType()->getPointerElementType()->isAggregateType())
1647 return 0;
1648
1649 // If this value is a pointer induction variable we know it is consecutive.
1650 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1651 if (Phi && Inductions.count(Phi)) {
1652 InductionInfo II = Inductions[Phi];
1653 if (IK_PtrInduction == II.IK)
1654 return 1;
1655 else if (IK_ReversePtrInduction == II.IK)
1656 return -1;
1657 }
1658
1659 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1660 if (!Gep)
1661 return 0;
1662
1663 unsigned NumOperands = Gep->getNumOperands();
1664 Value *GpPtr = Gep->getPointerOperand();
1665 // If this GEP value is a consecutive pointer induction variable and all of
1666 // the indices are constant then we know it is consecutive. We can
1667 Phi = dyn_cast<PHINode>(GpPtr);
1668 if (Phi && Inductions.count(Phi)) {
1669
1670 // Make sure that the pointer does not point to structs.
1671 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1672 if (GepPtrType->getElementType()->isAggregateType())
1673 return 0;
1674
1675 // Make sure that all of the index operands are loop invariant.
1676 for (unsigned i = 1; i < NumOperands; ++i)
1677 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1678 return 0;
1679
1680 InductionInfo II = Inductions[Phi];
1681 if (IK_PtrInduction == II.IK)
1682 return 1;
1683 else if (IK_ReversePtrInduction == II.IK)
1684 return -1;
1685 }
1686
1687 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1688
1689 // Check that all of the gep indices are uniform except for our induction
1690 // operand.
1691 for (unsigned i = 0; i != NumOperands; ++i)
1692 if (i != InductionOperand &&
1693 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1694 return 0;
1695
1696 // We can emit wide load/stores only if the last non-zero index is the
1697 // induction variable.
1698 const SCEV *Last = nullptr;
1699 if (!Strides.count(Gep))
1700 Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1701 else {
1702 // Because of the multiplication by a stride we can have a s/zext cast.
1703 // We are going to replace this stride by 1 so the cast is safe to ignore.
1704 //
1705 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1706 // %0 = trunc i64 %indvars.iv to i32
1707 // %mul = mul i32 %0, %Stride1
1708 // %idxprom = zext i32 %mul to i64 << Safe cast.
1709 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1710 //
1711 Last = replaceSymbolicStrideSCEV(SE, Strides,
1712 Gep->getOperand(InductionOperand), Gep);
1713 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1714 Last =
1715 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1716 ? C->getOperand()
1717 : Last;
1718 }
1719 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1720 const SCEV *Step = AR->getStepRecurrence(*SE);
1721
1722 // The memory is consecutive because the last index is consecutive
1723 // and all other indices are loop invariant.
1724 if (Step->isOne())
1725 return 1;
1726 if (Step->isAllOnesValue())
1727 return -1;
1728 }
1729
1730 return 0;
1731}
1732
1733bool LoopVectorizationLegality::isUniform(Value *V) {
1734 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1735}
1736
1737InnerLoopVectorizer::VectorParts&
1738InnerLoopVectorizer::getVectorValue(Value *V) {
1739 assert(V != Induction && "The new induction variable should not be used.")((V != Induction && "The new induction variable should not be used."
) ? static_cast<void> (0) : __assert_fail ("V != Induction && \"The new induction variable should not be used.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1739, __PRETTY_FUNCTION__))
;
1740 assert(!V->getType()->isVectorTy() && "Can't widen a vector")((!V->getType()->isVectorTy() && "Can't widen a vector"
) ? static_cast<void> (0) : __assert_fail ("!V->getType()->isVectorTy() && \"Can't widen a vector\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1740, __PRETTY_FUNCTION__))
;
1741
1742 // If we have a stride that is replaced by one, do it here.
1743 if (Legal->hasStride(V))
1744 V = ConstantInt::get(V->getType(), 1);
1745
1746 // If we have this scalar in the map, return it.
1747 if (WidenMap.has(V))
1748 return WidenMap.get(V);
1749
1750 // If this scalar is unknown, assume that it is a constant or that it is
1751 // loop invariant. Broadcast V and save the value for future uses.
1752 Value *B = getBroadcastInstrs(V);
1753 return WidenMap.splat(V, B);
1754}
1755
1756Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1757 assert(Vec->getType()->isVectorTy() && "Invalid type")((Vec->getType()->isVectorTy() && "Invalid type"
) ? static_cast<void> (0) : __assert_fail ("Vec->getType()->isVectorTy() && \"Invalid type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1757, __PRETTY_FUNCTION__))
;
1758 SmallVector<Constant*, 8> ShuffleMask;
1759 for (unsigned i = 0; i < VF; ++i)
1760 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1761
1762 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1763 ConstantVector::get(ShuffleMask),
1764 "reverse");
1765}
1766
1767void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1768 // Attempt to issue a wide load.
1769 LoadInst *LI = dyn_cast<LoadInst>(Instr);
1770 StoreInst *SI = dyn_cast<StoreInst>(Instr);
1771
1772 assert((LI || SI) && "Invalid Load/Store instruction")(((LI || SI) && "Invalid Load/Store instruction") ? static_cast
<void> (0) : __assert_fail ("(LI || SI) && \"Invalid Load/Store instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1772, __PRETTY_FUNCTION__))
;
1773
1774 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1775 Type *DataTy = VectorType::get(ScalarDataTy, VF);
1776 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1777 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1778 // An alignment of 0 means target abi alignment. We need to use the scalar's
1779 // target abi alignment in such a case.
1780 if (!Alignment)
1781 Alignment = DL->getABITypeAlignment(ScalarDataTy);
1782 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1783 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1784 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1785
1786 if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
1787 !Legal->isMaskRequired(SI))
1788 return scalarizeInstruction(Instr, true);
1789
1790 if (ScalarAllocatedSize != VectorElementSize)
1791 return scalarizeInstruction(Instr);
1792
1793 // If the pointer is loop invariant or if it is non-consecutive,
1794 // scalarize the load.
1795 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1796 bool Reverse = ConsecutiveStride < 0;
1797 bool UniformLoad = LI && Legal->isUniform(Ptr);
1798 if (!ConsecutiveStride || UniformLoad)
1799 return scalarizeInstruction(Instr);
1800
1801 Constant *Zero = Builder.getInt32(0);
1802 VectorParts &Entry = WidenMap.get(Instr);
1803
1804 // Handle consecutive loads/stores.
1805 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1806 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1807 setDebugLocFromInst(Builder, Gep);
1808 Value *PtrOperand = Gep->getPointerOperand();
1809 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1810 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1811
1812 // Create the new GEP with the new induction variable.
1813 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1814 Gep2->setOperand(0, FirstBasePtr);
1815 Gep2->setName("gep.indvar.base");
1816 Ptr = Builder.Insert(Gep2);
1817 } else if (Gep) {
1818 setDebugLocFromInst(Builder, Gep);
1819 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),((SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand
()), OrigLoop) && "Base ptr must be invariant") ? static_cast
<void> (0) : __assert_fail ("SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), OrigLoop) && \"Base ptr must be invariant\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1820, __PRETTY_FUNCTION__))
1820 OrigLoop) && "Base ptr must be invariant")((SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand
()), OrigLoop) && "Base ptr must be invariant") ? static_cast
<void> (0) : __assert_fail ("SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), OrigLoop) && \"Base ptr must be invariant\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1820, __PRETTY_FUNCTION__))
;
1821
1822 // The last index does not have to be the induction. It can be
1823 // consecutive and be a function of the index. For example A[I+1];
1824 unsigned NumOperands = Gep->getNumOperands();
1825 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1826 // Create the new GEP with the new induction variable.
1827 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1828
1829 for (unsigned i = 0; i < NumOperands; ++i) {
1830 Value *GepOperand = Gep->getOperand(i);
1831 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1832
1833 // Update last index or loop invariant instruction anchored in loop.
1834 if (i == InductionOperand ||
1835 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1836 assert((i == InductionOperand ||(((i == InductionOperand || SE->isLoopInvariant(SE->getSCEV
(GepOperandInst), OrigLoop)) && "Must be last index or loop invariant"
) ? static_cast<void> (0) : __assert_fail ("(i == InductionOperand || SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && \"Must be last index or loop invariant\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1838, __PRETTY_FUNCTION__))
1837 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&(((i == InductionOperand || SE->isLoopInvariant(SE->getSCEV
(GepOperandInst), OrigLoop)) && "Must be last index or loop invariant"
) ? static_cast<void> (0) : __assert_fail ("(i == InductionOperand || SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && \"Must be last index or loop invariant\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1838, __PRETTY_FUNCTION__))
1838 "Must be last index or loop invariant")(((i == InductionOperand || SE->isLoopInvariant(SE->getSCEV
(GepOperandInst), OrigLoop)) && "Must be last index or loop invariant"
) ? static_cast<void> (0) : __assert_fail ("(i == InductionOperand || SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && \"Must be last index or loop invariant\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1838, __PRETTY_FUNCTION__))
;
1839
1840 VectorParts &GEPParts = getVectorValue(GepOperand);
1841 Value *Index = GEPParts[0];
1842 Index = Builder.CreateExtractElement(Index, Zero);
1843 Gep2->setOperand(i, Index);
1844 Gep2->setName("gep.indvar.idx");
1845 }
1846 }
1847 Ptr = Builder.Insert(Gep2);
1848 } else {
1849 // Use the induction element ptr.
1850 assert(isa<PHINode>(Ptr) && "Invalid induction ptr")((isa<PHINode>(Ptr) && "Invalid induction ptr")
? static_cast<void> (0) : __assert_fail ("isa<PHINode>(Ptr) && \"Invalid induction ptr\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1850, __PRETTY_FUNCTION__))
;
1851 setDebugLocFromInst(Builder, Ptr);
1852 VectorParts &PtrVal = getVectorValue(Ptr);
1853 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1854 }
1855
1856 // Handle Stores:
1857 if (SI) {
1858 assert(!Legal->isUniform(SI->getPointerOperand()) &&((!Legal->isUniform(SI->getPointerOperand()) &&
"We do not allow storing to uniform addresses") ? static_cast
<void> (0) : __assert_fail ("!Legal->isUniform(SI->getPointerOperand()) && \"We do not allow storing to uniform addresses\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1859, __PRETTY_FUNCTION__))
1859 "We do not allow storing to uniform addresses")((!Legal->isUniform(SI->getPointerOperand()) &&
"We do not allow storing to uniform addresses") ? static_cast
<void> (0) : __assert_fail ("!Legal->isUniform(SI->getPointerOperand()) && \"We do not allow storing to uniform addresses\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1859, __PRETTY_FUNCTION__))
;
1860 setDebugLocFromInst(Builder, SI);
1861 // We don't want to update the value in the map as it might be used in
1862 // another expression. So don't use a reference type for "StoredVal".
1863 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1864
1865 for (unsigned Part = 0; Part < UF; ++Part) {
1866 // Calculate the pointer for the specific unroll-part.
1867 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1868
1869 if (Reverse) {
1870 // If we store to reverse consecutive memory locations then we need
1871 // to reverse the order of elements in the stored value.
1872 StoredVal[Part] = reverseVector(StoredVal[Part]);
1873 // If the address is consecutive but reversed, then the
1874 // wide store needs to start at the last vector element.
1875 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1876 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1877 }
1878
1879 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1880 DataTy->getPointerTo(AddressSpace));
1881
1882 Instruction *NewSI;
1883 if (Legal->isMaskRequired(SI)) {
1884 Type *I8PtrTy =
1885 Builder.getInt8PtrTy(PartPtr->getType()->getPointerAddressSpace());
1886
1887 Value *I8Ptr = Builder.CreateBitCast(PartPtr, I8PtrTy);
1888
1889 VectorParts Cond = createBlockInMask(SI->getParent());
1890 SmallVector <Value *, 8> Ops;
1891 Ops.push_back(I8Ptr);
1892 Ops.push_back(StoredVal[Part]);
1893 Ops.push_back(Builder.getInt32(Alignment));
1894 Ops.push_back(Cond[Part]);
1895 NewSI = Builder.CreateMaskedStore(Ops);
1896 }
1897 else
1898 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
1899 propagateMetadata(NewSI, SI);
1900 }
1901 return;
1902 }
1903
1904 // Handle loads.
1905 assert(LI && "Must have a load instruction")((LI && "Must have a load instruction") ? static_cast
<void> (0) : __assert_fail ("LI && \"Must have a load instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1905, __PRETTY_FUNCTION__))
;
1906 setDebugLocFromInst(Builder, LI);
1907 for (unsigned Part = 0; Part < UF; ++Part) {
1908 // Calculate the pointer for the specific unroll-part.
1909 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1910
1911 if (Reverse) {
1912 // If the address is consecutive but reversed, then the
1913 // wide load needs to start at the last vector element.
1914 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1915 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1916 }
1917
1918 Instruction* NewLI;
1919 if (Legal->isMaskRequired(LI)) {
1920 Type *I8PtrTy =
1921 Builder.getInt8PtrTy(PartPtr->getType()->getPointerAddressSpace());
1922
1923 Value *I8Ptr = Builder.CreateBitCast(PartPtr, I8PtrTy);
1924
1925 VectorParts SrcMask = createBlockInMask(LI->getParent());
1926 SmallVector <Value *, 8> Ops;
1927 Ops.push_back(I8Ptr);
1928 Ops.push_back(UndefValue::get(DataTy));
1929 Ops.push_back(Builder.getInt32(Alignment));
1930 Ops.push_back(SrcMask[Part]);
1931 NewLI = Builder.CreateMaskedLoad(Ops);
1932 }
1933 else {
1934 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1935 DataTy->getPointerTo(AddressSpace));
1936 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
1937 }
1938 propagateMetadata(NewLI, LI);
1939 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI;
1940 }
1941}
1942
1943void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1944 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors")((!Instr->getType()->isAggregateType() && "Can't handle vectors"
) ? static_cast<void> (0) : __assert_fail ("!Instr->getType()->isAggregateType() && \"Can't handle vectors\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1944, __PRETTY_FUNCTION__))
;
1945 // Holds vector parameters or scalars, in case of uniform vals.
1946 SmallVector<VectorParts, 4> Params;
1947
1948 setDebugLocFromInst(Builder, Instr);
1949
1950 // Find all of the vectorized parameters.
1951 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1952 Value *SrcOp = Instr->getOperand(op);
1953
1954 // If we are accessing the old induction variable, use the new one.
1955 if (SrcOp == OldInduction) {
1956 Params.push_back(getVectorValue(SrcOp));
1957 continue;
1958 }
1959
1960 // Try using previously calculated values.
1961 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1962
1963 // If the src is an instruction that appeared earlier in the basic block
1964 // then it should already be vectorized.
1965 if (SrcInst && OrigLoop->contains(SrcInst)) {
1966 assert(WidenMap.has(SrcInst) && "Source operand is unavailable")((WidenMap.has(SrcInst) && "Source operand is unavailable"
) ? static_cast<void> (0) : __assert_fail ("WidenMap.has(SrcInst) && \"Source operand is unavailable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1966, __PRETTY_FUNCTION__))
;
1967 // The parameter is a vector value from earlier.
1968 Params.push_back(WidenMap.get(SrcInst));
1969 } else {
1970 // The parameter is a scalar from outside the loop. Maybe even a constant.
1971 VectorParts Scalars;
1972 Scalars.append(UF, SrcOp);
1973 Params.push_back(Scalars);
1974 }
1975 }
1976
1977 assert(Params.size() == Instr->getNumOperands() &&((Params.size() == Instr->getNumOperands() && "Invalid number of operands"
) ? static_cast<void> (0) : __assert_fail ("Params.size() == Instr->getNumOperands() && \"Invalid number of operands\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1978, __PRETTY_FUNCTION__))
1978 "Invalid number of operands")((Params.size() == Instr->getNumOperands() && "Invalid number of operands"
) ? static_cast<void> (0) : __assert_fail ("Params.size() == Instr->getNumOperands() && \"Invalid number of operands\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1978, __PRETTY_FUNCTION__))
;
1979
1980 // Does this instruction return a value ?
1981 bool IsVoidRetTy = Instr->getType()->isVoidTy();
1982
1983 Value *UndefVec = IsVoidRetTy ? nullptr :
1984 UndefValue::get(VectorType::get(Instr->getType(), VF));
1985 // Create a new entry in the WidenMap and initialize it to Undef or Null.
1986 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1987
1988 Instruction *InsertPt = Builder.GetInsertPoint();
1989 BasicBlock *IfBlock = Builder.GetInsertBlock();
1990 BasicBlock *CondBlock = nullptr;
1991
1992 VectorParts Cond;
1993 Loop *VectorLp = nullptr;
1994 if (IfPredicateStore) {
1995 assert(Instr->getParent()->getSinglePredecessor() &&((Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks") ? static_cast<void
> (0) : __assert_fail ("Instr->getParent()->getSinglePredecessor() && \"Only support single predecessor blocks\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1996, __PRETTY_FUNCTION__))
1996 "Only support single predecessor blocks")((Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks") ? static_cast<void
> (0) : __assert_fail ("Instr->getParent()->getSinglePredecessor() && \"Only support single predecessor blocks\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1996, __PRETTY_FUNCTION__))
;
1997 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
1998 Instr->getParent());
1999 VectorLp = LI->getLoopFor(IfBlock);
2000 assert(VectorLp && "Must have a loop for this block")((VectorLp && "Must have a loop for this block") ? static_cast
<void> (0) : __assert_fail ("VectorLp && \"Must have a loop for this block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2000, __PRETTY_FUNCTION__))
;
2001 }
2002
2003 // For each vector unroll 'part':
2004 for (unsigned Part = 0; Part < UF; ++Part) {
2005 // For each scalar that we create:
2006 for (unsigned Width = 0; Width < VF; ++Width) {
2007
2008 // Start if-block.
2009 Value *Cmp = nullptr;
2010 if (IfPredicateStore) {
2011 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
2012 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
2013 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
2014 LoopVectorBody.push_back(CondBlock);
2015 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
2016 // Update Builder with newly created basic block.
2017 Builder.SetInsertPoint(InsertPt);
2018 }
2019
2020 Instruction *Cloned = Instr->clone();
2021 if (!IsVoidRetTy)
2022 Cloned->setName(Instr->getName() + ".cloned");
2023 // Replace the operands of the cloned instructions with extracted scalars.
2024 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2025 Value *Op = Params[op][Part];
2026 // Param is a vector. Need to extract the right lane.
2027 if (Op->getType()->isVectorTy())
2028 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
2029 Cloned->setOperand(op, Op);
2030 }
2031
2032 // Place the cloned scalar in the new loop.
2033 Builder.Insert(Cloned);
2034
2035 // If the original scalar returns a value we need to place it in a vector
2036 // so that future users will be able to use it.
2037 if (!IsVoidRetTy)
2038 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2039 Builder.getInt32(Width));
2040 // End if-block.
2041 if (IfPredicateStore) {
2042 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
2043 LoopVectorBody.push_back(NewIfBlock);
2044 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
2045 Builder.SetInsertPoint(InsertPt);
2046 Instruction *OldBr = IfBlock->getTerminator();
2047 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2048 OldBr->eraseFromParent();
2049 IfBlock = NewIfBlock;
2050 }
2051 }
2052 }
2053}
2054
2055static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2056 Instruction *Loc) {
2057 if (FirstInst)
2058 return FirstInst;
2059 if (Instruction *I = dyn_cast<Instruction>(V))
2060 return I->getParent() == Loc->getParent() ? I : nullptr;
2061 return nullptr;
2062}
2063
2064std::pair<Instruction *, Instruction *>
2065InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
2066 Instruction *tnullptr = nullptr;
2067 if (!Legal->mustCheckStrides())
2068 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2069
2070 IRBuilder<> ChkBuilder(Loc);
2071
2072 // Emit checks.
2073 Value *Check = nullptr;
2074 Instruction *FirstInst = nullptr;
2075 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
2076 SE = Legal->strides_end();
2077 SI != SE; ++SI) {
2078 Value *Ptr = stripIntegerCast(*SI);
2079 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
2080 "stride.chk");
2081 // Store the first instruction we create.
2082 FirstInst = getFirstInst(FirstInst, C, Loc);
2083 if (Check)
2084 Check = ChkBuilder.CreateOr(Check, C);
2085 else
2086 Check = C;
2087 }
2088
2089 // We have to do this trickery because the IRBuilder might fold the check to a
2090 // constant expression in which case there is no Instruction anchored in a
2091 // the block.
2092 LLVMContext &Ctx = Loc->getContext();
2093 Instruction *TheCheck =
2094 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
2095 ChkBuilder.Insert(TheCheck, "stride.not.one");
2096 FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
2097
2098 return std::make_pair(FirstInst, TheCheck);
2099}
2100
2101std::pair<Instruction *, Instruction *>
2102InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
2103 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
2104 Legal->getRuntimePointerCheck();
2105
2106 Instruction *tnullptr = nullptr;
2107 if (!PtrRtCheck->Need)
2108 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2109
2110 unsigned NumPointers = PtrRtCheck->Pointers.size();
2111 SmallVector<TrackingVH<Value> , 2> Starts;
2112 SmallVector<TrackingVH<Value> , 2> Ends;
2113
2114 LLVMContext &Ctx = Loc->getContext();
2115 SCEVExpander Exp(*SE, "induction");
2116 Instruction *FirstInst = nullptr;
2117
2118 for (unsigned i = 0; i < NumPointers; ++i) {
2119 Value *Ptr = PtrRtCheck->Pointers[i];
2120 const SCEV *Sc = SE->getSCEV(Ptr);
2121
2122 if (SE->isLoopInvariant(Sc, OrigLoop)) {
2123 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Adding RT check for a loop invariant ptr:"
<< *Ptr <<"\n"; } } while (0)
2124 *Ptr <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Adding RT check for a loop invariant ptr:"
<< *Ptr <<"\n"; } } while (0)
;
2125 Starts.push_back(Ptr);
2126 Ends.push_back(Ptr);
2127 } else {
2128 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Adding RT check for range:"
<< *Ptr << '\n'; } } while (0)
;
2129 unsigned AS = Ptr->getType()->getPointerAddressSpace();
2130
2131 // Use this type for pointer arithmetic.
2132 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2133
2134 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
2135 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
2136 Starts.push_back(Start);
2137 Ends.push_back(End);
2138 }
2139 }
2140
2141 IRBuilder<> ChkBuilder(Loc);
2142 // Our instructions might fold to a constant.
2143 Value *MemoryRuntimeCheck = nullptr;
2144 for (unsigned i = 0; i < NumPointers; ++i) {
2145 for (unsigned j = i+1; j < NumPointers; ++j) {
2146 // No need to check if two readonly pointers intersect.
2147 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
2148 continue;
2149
2150 // Only need to check pointers between two different dependency sets.
2151 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
2152 continue;
2153 // Only need to check pointers in the same alias set.
2154 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j])
2155 continue;
2156
2157 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
2158 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
2159
2160 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&(((AS0 == Ends[j]->getType()->getPointerAddressSpace())
&& (AS1 == Ends[i]->getType()->getPointerAddressSpace
()) && "Trying to bounds check pointers with different address spaces"
) ? static_cast<void> (0) : __assert_fail ("(AS0 == Ends[j]->getType()->getPointerAddressSpace()) && (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && \"Trying to bounds check pointers with different address spaces\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2162, __PRETTY_FUNCTION__))
2161 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&(((AS0 == Ends[j]->getType()->getPointerAddressSpace())
&& (AS1 == Ends[i]->getType()->getPointerAddressSpace
()) && "Trying to bounds check pointers with different address spaces"
) ? static_cast<void> (0) : __assert_fail ("(AS0 == Ends[j]->getType()->getPointerAddressSpace()) && (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && \"Trying to bounds check pointers with different address spaces\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2162, __PRETTY_FUNCTION__))
2162 "Trying to bounds check pointers with different address spaces")(((AS0 == Ends[j]->getType()->getPointerAddressSpace())
&& (AS1 == Ends[i]->getType()->getPointerAddressSpace
()) && "Trying to bounds check pointers with different address spaces"
) ? static_cast<void> (0) : __assert_fail ("(AS0 == Ends[j]->getType()->getPointerAddressSpace()) && (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && \"Trying to bounds check pointers with different address spaces\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2162, __PRETTY_FUNCTION__))
;
2163
2164 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2165 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2166
2167 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
2168 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
2169 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
2170 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
2171
2172 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
2173 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2174 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
2175 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2176 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2177 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2178 if (MemoryRuntimeCheck) {
2179 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
2180 "conflict.rdx");
2181 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2182 }
2183 MemoryRuntimeCheck = IsConflict;
2184 }
2185 }
2186
2187 // We have to do this trickery because the IRBuilder might fold the check to a
2188 // constant expression in which case there is no Instruction anchored in a
2189 // the block.
2190 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2191 ConstantInt::getTrue(Ctx));
2192 ChkBuilder.Insert(Check, "memcheck.conflict");
2193 FirstInst = getFirstInst(FirstInst, Check, Loc);
2194 return std::make_pair(FirstInst, Check);
2195}
2196
2197void InnerLoopVectorizer::createEmptyLoop() {
2198 /*
2199 In this function we generate a new loop. The new loop will contain
2200 the vectorized instructions while the old loop will continue to run the
2201 scalar remainder.
2202
2203 [ ] <-- Back-edge taken count overflow check.
2204 / |
2205 / v
2206 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2207 | / |
2208 | / v
2209 || [ ] <-- vector pre header.
2210 || |
2211 || v
2212 || [ ] \
2213 || [ ]_| <-- vector loop.
2214 || |
2215 | \ v
2216 | >[ ] <--- middle-block.
2217 | / |
2218 | / v
2219 -|- >[ ] <--- new preheader.
2220 | |
2221 | v
2222 | [ ] \
2223 | [ ]_| <-- old scalar loop to handle remainder.
2224 \ |
2225 \ v
2226 >[ ] <-- exit block.
2227 ...
2228 */
2229
2230 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2231 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2232 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2233 assert(BypassBlock && "Invalid loop structure")((BypassBlock && "Invalid loop structure") ? static_cast
<void> (0) : __assert_fail ("BypassBlock && \"Invalid loop structure\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2233, __PRETTY_FUNCTION__))
;
2234 assert(ExitBlock && "Must have an exit block")((ExitBlock && "Must have an exit block") ? static_cast
<void> (0) : __assert_fail ("ExitBlock && \"Must have an exit block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2234, __PRETTY_FUNCTION__))
;
2235
2236 // Some loops have a single integer induction variable, while other loops
2237 // don't. One example is c++ iterators that often have multiple pointer
2238 // induction variables. In the code below we also support a case where we
2239 // don't have a single induction variable.
2240 OldInduction = Legal->getInduction();
2241 Type *IdxTy = Legal->getWidestInductionType();
2242
2243 // Find the loop boundaries.
2244 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2245 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count")((ExitCount != SE->getCouldNotCompute() && "Invalid loop count"
) ? static_cast<void> (0) : __assert_fail ("ExitCount != SE->getCouldNotCompute() && \"Invalid loop count\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2245, __PRETTY_FUNCTION__))
;
2246
2247 // The exit count might have the type of i64 while the phi is i32. This can
2248 // happen if we have an induction variable that is sign extended before the
2249 // compare. The only way that we get a backedge taken count is that the
2250 // induction variable was signed and as such will not overflow. In such a case
2251 // truncation is legal.
2252 if (ExitCount->getType()->getPrimitiveSizeInBits() >
2253 IdxTy->getPrimitiveSizeInBits())
2254 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2255
2256 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2257 // Get the total trip count from the count by adding 1.
2258 ExitCount = SE->getAddExpr(BackedgeTakeCount,
2259 SE->getConstant(BackedgeTakeCount->getType(), 1));
2260
2261 // Expand the trip count and place the new instructions in the preheader.
2262 // Notice that the pre-header does not change, only the loop body.
2263 SCEVExpander Exp(*SE, "induction");
2264
2265 // We need to test whether the backedge-taken count is uint##_max. Adding one
2266 // to it will cause overflow and an incorrect loop trip count in the vector
2267 // body. In case of overflow we want to directly jump to the scalar remainder
2268 // loop.
2269 Value *BackedgeCount =
2270 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2271 BypassBlock->getTerminator());
2272 if (BackedgeCount->getType()->isPointerTy())
2273 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2274 "backedge.ptrcnt.to.int",
2275 BypassBlock->getTerminator());
2276 Instruction *CheckBCOverflow =
2277 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2278 Constant::getAllOnesValue(BackedgeCount->getType()),
2279 "backedge.overflow", BypassBlock->getTerminator());
2280
2281 // The loop index does not have to start at Zero. Find the original start
2282 // value from the induction PHI node. If we don't have an induction variable
2283 // then we know that it starts at zero.
2284 Builder.SetInsertPoint(BypassBlock->getTerminator());
2285 Value *StartIdx = ExtendedIdx = OldInduction ?
2286 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2287 IdxTy):
2288 ConstantInt::get(IdxTy, 0);
2289
2290 // We need an instruction to anchor the overflow check on. StartIdx needs to
2291 // be defined before the overflow check branch. Because the scalar preheader
2292 // is going to merge the start index and so the overflow branch block needs to
2293 // contain a definition of the start index.
2294 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2295 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2296 BypassBlock->getTerminator());
2297
2298 // Count holds the overall loop count (N).
2299 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2300 BypassBlock->getTerminator());
2301
2302 LoopBypassBlocks.push_back(BypassBlock);
2303
2304 // Split the single block loop into the two loop structure described above.
2305 BasicBlock *VectorPH =
2306 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2307 BasicBlock *VecBody =
2308 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2309 BasicBlock *MiddleBlock =
2310 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2311 BasicBlock *ScalarPH =
2312 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2313
2314 // Create and register the new vector loop.
2315 Loop* Lp = new Loop();
2316 Loop *ParentLoop = OrigLoop->getParentLoop();
2317
2318 // Insert the new loop into the loop nest and register the new basic blocks
2319 // before calling any utilities such as SCEV that require valid LoopInfo.
2320 if (ParentLoop) {
2321 ParentLoop->addChildLoop(Lp);
2322 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
2323 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
2324 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
2325 } else {
2326 LI->addTopLevelLoop(Lp);
2327 }
2328 Lp->addBasicBlockToLoop(VecBody, LI->getBase());
2329
2330 // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2331 // inside the loop.
2332 Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2333
2334 // Generate the induction variable.
2335 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2336 Induction = Builder.CreatePHI(IdxTy, 2, "index");
2337 // The loop step is equal to the vectorization factor (num of SIMD elements)
2338 // times the unroll factor (num of SIMD instructions).
2339 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2340
2341 // This is the IR builder that we use to add all of the logic for bypassing
2342 // the new vector loop.
2343 IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2344 setDebugLocFromInst(BypassBuilder,
2345 getDebugLocFromInstOrOperands(OldInduction));
2346
2347 // We may need to extend the index in case there is a type mismatch.
2348 // We know that the count starts at zero and does not overflow.
2349 if (Count->getType() != IdxTy) {
2350 // The exit count can be of pointer type. Convert it to the correct
2351 // integer type.
2352 if (ExitCount->getType()->isPointerTy())
2353 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2354 else
2355 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2356 }
2357
2358 // Add the start index to the loop count to get the new end index.
2359 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2360
2361 // Now we need to generate the expression for N - (N % VF), which is
2362 // the part that the vectorized body will execute.
2363 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2364 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2365 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2366 "end.idx.rnd.down");
2367
2368 // Now, compare the new count to zero. If it is zero skip the vector loop and
2369 // jump to the scalar loop.
2370 Value *Cmp =
2371 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2372
2373 BasicBlock *LastBypassBlock = BypassBlock;
2374
2375 // Generate code to check that the loops trip count that we computed by adding
2376 // one to the backedge-taken count will not overflow.
2377 {
2378 auto PastOverflowCheck =
2379 std::next(BasicBlock::iterator(OverflowCheckAnchor));
2380 BasicBlock *CheckBlock =
2381 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2382 if (ParentLoop)
2383 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2384 LoopBypassBlocks.push_back(CheckBlock);
2385 Instruction *OldTerm = LastBypassBlock->getTerminator();
2386 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2387 OldTerm->eraseFromParent();
2388 LastBypassBlock = CheckBlock;
2389 }
2390
2391 // Generate the code to check that the strides we assumed to be one are really
2392 // one. We want the new basic block to start at the first instruction in a
2393 // sequence of instructions that form a check.
2394 Instruction *StrideCheck;
2395 Instruction *FirstCheckInst;
2396 std::tie(FirstCheckInst, StrideCheck) =
2397 addStrideCheck(LastBypassBlock->getTerminator());
2398 if (StrideCheck) {
2399 // Create a new block containing the stride check.
2400 BasicBlock *CheckBlock =
2401 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2402 if (ParentLoop)
2403 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2404 LoopBypassBlocks.push_back(CheckBlock);
2405
2406 // Replace the branch into the memory check block with a conditional branch
2407 // for the "few elements case".
2408 Instruction *OldTerm = LastBypassBlock->getTerminator();
2409 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2410 OldTerm->eraseFromParent();
2411
2412 Cmp = StrideCheck;
2413 LastBypassBlock = CheckBlock;
2414 }
2415
2416 // Generate the code that checks in runtime if arrays overlap. We put the
2417 // checks into a separate block to make the more common case of few elements
2418 // faster.
2419 Instruction *MemRuntimeCheck;
2420 std::tie(FirstCheckInst, MemRuntimeCheck) =
2421 addRuntimeCheck(LastBypassBlock->getTerminator());
2422 if (MemRuntimeCheck) {
2423 // Create a new block containing the memory check.
2424 BasicBlock *CheckBlock =
2425 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
2426 if (ParentLoop)
2427 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2428 LoopBypassBlocks.push_back(CheckBlock);
2429
2430 // Replace the branch into the memory check block with a conditional branch
2431 // for the "few elements case".
2432 Instruction *OldTerm = LastBypassBlock->getTerminator();
2433 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2434 OldTerm->eraseFromParent();
2435
2436 Cmp = MemRuntimeCheck;
2437 LastBypassBlock = CheckBlock;
2438 }
2439
2440 LastBypassBlock->getTerminator()->eraseFromParent();
2441 BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2442 LastBypassBlock);
2443
2444 // We are going to resume the execution of the scalar loop.
2445 // Go over all of the induction variables that we found and fix the
2446 // PHIs that are left in the scalar version of the loop.
2447 // The starting values of PHI nodes depend on the counter of the last
2448 // iteration in the vectorized loop.
2449 // If we come from a bypass edge then we need to start from the original
2450 // start value.
2451
2452 // This variable saves the new starting index for the scalar loop.
2453 PHINode *ResumeIndex = nullptr;
2454 LoopVectorizationLegality::InductionList::iterator I, E;
2455 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2456 // Set builder to point to last bypass block.
2457 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2458 for (I = List->begin(), E = List->end(); I != E; ++I) {
2459 PHINode *OrigPhi = I->first;
2460 LoopVectorizationLegality::InductionInfo II = I->second;
2461
2462 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2463 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2464 MiddleBlock->getTerminator());
2465 // We might have extended the type of the induction variable but we need a
2466 // truncated version for the scalar loop.
2467 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2468 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2469 MiddleBlock->getTerminator()) : nullptr;
2470
2471 // Create phi nodes to merge from the backedge-taken check block.
2472 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2473 ScalarPH->getTerminator());
2474 BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2475
2476 PHINode *BCTruncResumeVal = nullptr;
2477 if (OrigPhi == OldInduction) {
2478 BCTruncResumeVal =
2479 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2480 ScalarPH->getTerminator());
2481 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2482 }
2483
2484 Value *EndValue = nullptr;
2485 switch (II.IK) {
2486 case LoopVectorizationLegality::IK_NoInduction:
2487 llvm_unreachable("Unknown induction")::llvm::llvm_unreachable_internal("Unknown induction", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2487)
;
2488 case LoopVectorizationLegality::IK_IntInduction: {
2489 // Handle the integer induction counter.
2490 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type")((OrigPhi->getType()->isIntegerTy() && "Invalid type"
) ? static_cast<void> (0) : __assert_fail ("OrigPhi->getType()->isIntegerTy() && \"Invalid type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2490, __PRETTY_FUNCTION__))
;
2491
2492 // We have the canonical induction variable.
2493 if (OrigPhi == OldInduction) {
2494 // Create a truncated version of the resume value for the scalar loop,
2495 // we might have promoted the type to a larger width.
2496 EndValue =
2497 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2498 // The new PHI merges the original incoming value, in case of a bypass,
2499 // or the value at the end of the vectorized loop.
2500 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2501 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2502 TruncResumeVal->addIncoming(EndValue, VecBody);
2503
2504 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2505
2506 // We know what the end value is.
2507 EndValue = IdxEndRoundDown;
2508 // We also know which PHI node holds it.
2509 ResumeIndex = ResumeVal;
2510 break;
2511 }
2512
2513 // Not the canonical induction variable - add the vector loop count to the
2514 // start value.
2515 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2516 II.StartValue->getType(),
2517 "cast.crd");
2518 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
2519 break;
2520 }
2521 case LoopVectorizationLegality::IK_ReverseIntInduction: {
2522 // Convert the CountRoundDown variable to the PHI size.
2523 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2524 II.StartValue->getType(),
2525 "cast.crd");
2526 // Handle reverse integer induction counter.
2527 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
2528 break;
2529 }
2530 case LoopVectorizationLegality::IK_PtrInduction: {
2531 // For pointer induction variables, calculate the offset using
2532 // the end index.
2533 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
2534 "ptr.ind.end");
2535 break;
2536 }
2537 case LoopVectorizationLegality::IK_ReversePtrInduction: {
2538 // The value at the end of the loop for the reverse pointer is calculated
2539 // by creating a GEP with a negative index starting from the start value.
2540 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
2541 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
2542 "rev.ind.end");
2543 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
2544 "rev.ptr.ind.end");
2545 break;
2546 }
2547 }// end of case
2548
2549 // The new PHI merges the original incoming value, in case of a bypass,
2550 // or the value at the end of the vectorized loop.
2551 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2552 if (OrigPhi == OldInduction)
2553 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2554 else
2555 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2556 }
2557 ResumeVal->addIncoming(EndValue, VecBody);
2558
2559 // Fix the scalar body counter (PHI node).
2560 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2561
2562 // The old induction's phi node in the scalar body needs the truncated
2563 // value.
2564 if (OrigPhi == OldInduction) {
2565 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2566 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2567 } else {
2568 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2569 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2570 }
2571 }
2572
2573 // If we are generating a new induction variable then we also need to
2574 // generate the code that calculates the exit value. This value is not
2575 // simply the end of the counter because we may skip the vectorized body
2576 // in case of a runtime check.
2577 if (!OldInduction){
2578 assert(!ResumeIndex && "Unexpected resume value found")((!ResumeIndex && "Unexpected resume value found") ? static_cast
<void> (0) : __assert_fail ("!ResumeIndex && \"Unexpected resume value found\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2578, __PRETTY_FUNCTION__))
;
2579 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2580 MiddleBlock->getTerminator());
2581 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2582 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2583 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2584 }
2585
2586 // Make sure that we found the index where scalar loop needs to continue.
2587 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&((ResumeIndex && ResumeIndex->getType()->isIntegerTy
() && "Invalid resume Index") ? static_cast<void>
(0) : __assert_fail ("ResumeIndex && ResumeIndex->getType()->isIntegerTy() && \"Invalid resume Index\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2588, __PRETTY_FUNCTION__))
2588 "Invalid resume Index")((ResumeIndex && ResumeIndex->getType()->isIntegerTy
() && "Invalid resume Index") ? static_cast<void>
(0) : __assert_fail ("ResumeIndex && ResumeIndex->getType()->isIntegerTy() && \"Invalid resume Index\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2588, __PRETTY_FUNCTION__))
;
2589
2590 // Add a check in the middle block to see if we have completed
2591 // all of the iterations in the first vector loop.
2592 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2593 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2594 ResumeIndex, "cmp.n",
2595 MiddleBlock->getTerminator());
2596
2597 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2598 // Remove the old terminator.
2599 MiddleBlock->getTerminator()->eraseFromParent();
2600
2601 // Create i+1 and fill the PHINode.
2602 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2603 Induction->addIncoming(StartIdx, VectorPH);
2604 Induction->addIncoming(NextIdx, VecBody);
2605 // Create the compare.
2606 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2607 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2608
2609 // Now we have two terminators. Remove the old one from the block.
2610 VecBody->getTerminator()->eraseFromParent();
2611
2612 // Get ready to start creating new instructions into the vectorized body.
2613 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2614
2615 // Save the state.
2616 LoopVectorPreHeader = VectorPH;
2617 LoopScalarPreHeader = ScalarPH;
2618 LoopMiddleBlock = MiddleBlock;
2619 LoopExitBlock = ExitBlock;
2620 LoopVectorBody.push_back(VecBody);
2621 LoopScalarBody = OldBasicBlock;
2622
2623 LoopVectorizeHints Hints(Lp, true);
2624 Hints.setAlreadyVectorized();
2625}
2626
2627/// This function returns the identity element (or neutral element) for
2628/// the operation K.
2629Constant*
2630LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2631 switch (K) {
2632 case RK_IntegerXor:
2633 case RK_IntegerAdd:
2634 case RK_IntegerOr:
2635 // Adding, Xoring, Oring zero to a number does not change it.
2636 return ConstantInt::get(Tp, 0);
2637 case RK_IntegerMult:
2638 // Multiplying a number by 1 does not change it.
2639 return ConstantInt::get(Tp, 1);
2640 case RK_IntegerAnd:
2641 // AND-ing a number with an all-1 value does not change it.
2642 return ConstantInt::get(Tp, -1, true);
2643 case RK_FloatMult:
2644 // Multiplying a number by 1 does not change it.
2645 return ConstantFP::get(Tp, 1.0L);
2646 case RK_FloatAdd:
2647 // Adding zero to a number does not change it.
2648 return ConstantFP::get(Tp, 0.0L);
2649 default:
2650 llvm_unreachable("Unknown reduction kind")::llvm::llvm_unreachable_internal("Unknown reduction kind", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2650)
;
2651 }
2652}
2653
2654/// This function translates the reduction kind to an LLVM binary operator.
2655static unsigned
2656getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2657 switch (Kind) {
2658 case LoopVectorizationLegality::RK_IntegerAdd:
2659 return Instruction::Add;
2660 case LoopVectorizationLegality::RK_IntegerMult:
2661 return Instruction::Mul;
2662 case LoopVectorizationLegality::RK_IntegerOr:
2663 return Instruction::Or;
2664 case LoopVectorizationLegality::RK_IntegerAnd:
2665 return Instruction::And;
2666 case LoopVectorizationLegality::RK_IntegerXor:
2667 return Instruction::Xor;
2668 case LoopVectorizationLegality::RK_FloatMult:
2669 return Instruction::FMul;
2670 case LoopVectorizationLegality::RK_FloatAdd:
2671 return Instruction::FAdd;
2672 case LoopVectorizationLegality::RK_IntegerMinMax:
2673 return Instruction::ICmp;
2674 case LoopVectorizationLegality::RK_FloatMinMax:
2675 return Instruction::FCmp;
2676 default:
2677 llvm_unreachable("Unknown reduction operation")::llvm::llvm_unreachable_internal("Unknown reduction operation"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2677)
;
2678 }
2679}
2680
2681Value *createMinMaxOp(IRBuilder<> &Builder,
2682 LoopVectorizationLegality::MinMaxReductionKind RK,
2683 Value *Left,
2684 Value *Right) {
2685 CmpInst::Predicate P = CmpInst::ICMP_NE;
2686 switch (RK) {
2687 default:
2688 llvm_unreachable("Unknown min/max reduction kind")::llvm::llvm_unreachable_internal("Unknown min/max reduction kind"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2688)
;
2689 case LoopVectorizationLegality::MRK_UIntMin:
2690 P = CmpInst::ICMP_ULT;
2691 break;
2692 case LoopVectorizationLegality::MRK_UIntMax:
2693 P = CmpInst::ICMP_UGT;
2694 break;
2695 case LoopVectorizationLegality::MRK_SIntMin:
2696 P = CmpInst::ICMP_SLT;
2697 break;
2698 case LoopVectorizationLegality::MRK_SIntMax:
2699 P = CmpInst::ICMP_SGT;
2700 break;
2701 case LoopVectorizationLegality::MRK_FloatMin:
2702 P = CmpInst::FCMP_OLT;
2703 break;
2704 case LoopVectorizationLegality::MRK_FloatMax:
2705 P = CmpInst::FCMP_OGT;
2706 break;
2707 }
2708
2709 Value *Cmp;
2710 if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2711 RK == LoopVectorizationLegality::MRK_FloatMax)
2712 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2713 else
2714 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2715
2716 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2717 return Select;
2718}
2719
2720namespace {
2721struct CSEDenseMapInfo {
2722 static bool canHandle(Instruction *I) {
2723 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2724 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2725 }
2726 static inline Instruction *getEmptyKey() {
2727 return DenseMapInfo<Instruction *>::getEmptyKey();
2728 }
2729 static inline Instruction *getTombstoneKey() {
2730 return DenseMapInfo<Instruction *>::getTombstoneKey();
2731 }
2732 static unsigned getHashValue(Instruction *I) {
2733 assert(canHandle(I) && "Unknown instruction!")((canHandle(I) && "Unknown instruction!") ? static_cast
<void> (0) : __assert_fail ("canHandle(I) && \"Unknown instruction!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2733, __PRETTY_FUNCTION__))
;
2734 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2735 I->value_op_end()));
2736 }
2737 static bool isEqual(Instruction *LHS, Instruction *RHS) {
2738 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2739 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2740 return LHS == RHS;
2741 return LHS->isIdenticalTo(RHS);
2742 }
2743};
2744}
2745
2746/// \brief Check whether this block is a predicated block.
2747/// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2748/// = ...; " blocks. We start with one vectorized basic block. For every
2749/// conditional block we split this vectorized block. Therefore, every second
2750/// block will be a predicated one.
2751static bool isPredicatedBlock(unsigned BlockNum) {
2752 return BlockNum % 2;
2753}
2754
2755///\brief Perform cse of induction variable instructions.
2756static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2757 // Perform simple cse.
2758 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2759 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2760 BasicBlock *BB = BBs[i];
2761 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2762 Instruction *In = I++;
2763
2764 if (!CSEDenseMapInfo::canHandle(In))
2765 continue;
2766
2767 // Check if we can replace this instruction with any of the
2768 // visited instructions.
2769 if (Instruction *V = CSEMap.lookup(In)) {
2770 In->replaceAllUsesWith(V);
2771 In->eraseFromParent();
2772 continue;
2773 }
2774 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2775 // ...;" blocks for predicated stores. Every second block is a predicated
2776 // block.
2777 if (isPredicatedBlock(i))
2778 continue;
2779
2780 CSEMap[In] = In;
2781 }
2782 }
2783}
2784
2785/// \brief Adds a 'fast' flag to floating point operations.
2786static Value *addFastMathFlag(Value *V) {
2787 if (isa<FPMathOperator>(V)){
2788 FastMathFlags Flags;
2789 Flags.setUnsafeAlgebra();
2790 cast<Instruction>(V)->setFastMathFlags(Flags);
2791 }
2792 return V;
2793}
2794
2795void InnerLoopVectorizer::vectorizeLoop() {
2796 //===------------------------------------------------===//
2797 //
2798 // Notice: any optimization or new instruction that go
2799 // into the code below should be also be implemented in
2800 // the cost-model.
2801 //
2802 //===------------------------------------------------===//
2803 Constant *Zero = Builder.getInt32(0);
2804
2805 // In order to support reduction variables we need to be able to vectorize
2806 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2807 // stages. First, we create a new vector PHI node with no incoming edges.
2808 // We use this value when we vectorize all of the instructions that use the
2809 // PHI. Next, after all of the instructions in the block are complete we
2810 // add the new incoming edges to the PHI. At this point all of the
2811 // instructions in the basic block are vectorized, so we can use them to
2812 // construct the PHI.
2813 PhiVector RdxPHIsToFix;
2814
2815 // Scan the loop in a topological order to ensure that defs are vectorized
2816 // before users.
2817 LoopBlocksDFS DFS(OrigLoop);
2818 DFS.perform(LI);
2819
2820 // Vectorize all of the blocks in the original loop.
2821 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2822 be = DFS.endRPO(); bb != be; ++bb)
2823 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2824
2825 // At this point every instruction in the original loop is widened to
2826 // a vector form. We are almost done. Now, we need to fix the PHI nodes
2827 // that we vectorized. The PHI nodes are currently empty because we did
2828 // not want to introduce cycles. Notice that the remaining PHI nodes
2829 // that we need to fix are reduction variables.
2830
2831 // Create the 'reduced' values for each of the induction vars.
2832 // The reduced values are the vector values that we scalarize and combine
2833 // after the loop is finished.
2834 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2835 it != e; ++it) {
2836 PHINode *RdxPhi = *it;
2837 assert(RdxPhi && "Unable to recover vectorized PHI")((RdxPhi && "Unable to recover vectorized PHI") ? static_cast
<void> (0) : __assert_fail ("RdxPhi && \"Unable to recover vectorized PHI\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2837, __PRETTY_FUNCTION__))
;
2838
2839 // Find the reduction variable descriptor.
2840 assert(Legal->getReductionVars()->count(RdxPhi) &&((Legal->getReductionVars()->count(RdxPhi) && "Unable to find the reduction variable"
) ? static_cast<void> (0) : __assert_fail ("Legal->getReductionVars()->count(RdxPhi) && \"Unable to find the reduction variable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2841, __PRETTY_FUNCTION__))
2841 "Unable to find the reduction variable")((Legal->getReductionVars()->count(RdxPhi) && "Unable to find the reduction variable"
) ? static_cast<void> (0) : __assert_fail ("Legal->getReductionVars()->count(RdxPhi) && \"Unable to find the reduction variable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2841, __PRETTY_FUNCTION__))
;
2842 LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2843 (*Legal->getReductionVars())[RdxPhi];
2844
2845 setDebugLocFromInst(Builder, RdxDesc.StartValue);
2846
2847 // We need to generate a reduction vector from the incoming scalar.
2848 // To do so, we need to generate the 'identity' vector and override
2849 // one of the elements with the incoming scalar reduction. We need
2850 // to do it in the vector-loop preheader.
2851 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2852
2853 // This is the vector-clone of the value that leaves the loop.
2854 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2855 Type *VecTy = VectorExit[0]->getType();
2856
2857 // Find the reduction identity variable. Zero for addition, or, xor,
2858 // one for multiplication, -1 for And.
2859 Value *Identity;
2860 Value *VectorStart;
2861 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2862 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2863 // MinMax reduction have the start value as their identify.
2864 if (VF == 1) {
2865 VectorStart = Identity = RdxDesc.StartValue;
2866 } else {
2867 VectorStart = Identity = Builder.CreateVectorSplat(VF,
2868 RdxDesc.StartValue,
2869 "minmax.ident");
2870 }
2871 } else {
2872 // Handle other reduction kinds:
2873 Constant *Iden =
2874 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2875 VecTy->getScalarType());
2876 if (VF == 1) {
2877 Identity = Iden;
2878 // This vector is the Identity vector where the first element is the
2879 // incoming scalar reduction.
2880 VectorStart = RdxDesc.StartValue;
2881 } else {
2882 Identity = ConstantVector::getSplat(VF, Iden);
2883
2884 // This vector is the Identity vector where the first element is the
2885 // incoming scalar reduction.
2886 VectorStart = Builder.CreateInsertElement(Identity,
2887 RdxDesc.StartValue, Zero);
2888 }
2889 }
2890
2891 // Fix the vector-loop phi.
2892
2893 // Reductions do not have to start at zero. They can start with
2894 // any loop invariant values.
2895 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2896 BasicBlock *Latch = OrigLoop->getLoopLatch();
2897 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2898 VectorParts &Val = getVectorValue(LoopVal);
2899 for (unsigned part = 0; part < UF; ++part) {
2900 // Make sure to add the reduction stat value only to the
2901 // first unroll part.
2902 Value *StartVal = (part == 0) ? VectorStart : Identity;
2903 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
2904 LoopVectorPreHeader);
2905 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2906 LoopVectorBody.back());
2907 }
2908
2909 // Before each round, move the insertion point right between
2910 // the PHIs and the values we are going to write.
2911 // This allows us to write both PHINodes and the extractelement
2912 // instructions.
2913 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2914
2915 VectorParts RdxParts;
2916 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2917 for (unsigned part = 0; part < UF; ++part) {
2918 // This PHINode contains the vectorized reduction variable, or
2919 // the initial value vector, if we bypass the vector loop.
2920 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2921 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2922 Value *StartVal = (part == 0) ? VectorStart : Identity;
2923 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2924 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2925 NewPhi->addIncoming(RdxExitVal[part],
2926 LoopVectorBody.back());
2927 RdxParts.push_back(NewPhi);
2928 }
2929
2930 // Reduce all of the unrolled parts into a single vector.
2931 Value *ReducedPartRdx = RdxParts[0];
2932 unsigned Op = getReductionBinOp(RdxDesc.Kind);
2933 setDebugLocFromInst(Builder, ReducedPartRdx);
2934 for (unsigned part = 1; part < UF; ++part) {
2935 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2936 // Floating point operations had to be 'fast' to enable the reduction.
2937 ReducedPartRdx = addFastMathFlag(
2938 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2939 ReducedPartRdx, "bin.rdx"));
2940 else
2941 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2942 ReducedPartRdx, RdxParts[part]);
2943 }
2944
2945 if (VF > 1) {
2946 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2947 // and vector ops, reducing the set of values being computed by half each
2948 // round.
2949 assert(isPowerOf2_32(VF) &&((isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(VF) && \"Reduction emission only supported for pow2 vectors!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2950, __PRETTY_FUNCTION__))
2950 "Reduction emission only supported for pow2 vectors!")((isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(VF) && \"Reduction emission only supported for pow2 vectors!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2950, __PRETTY_FUNCTION__))
;
2951 Value *TmpVec = ReducedPartRdx;
2952 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2953 for (unsigned i = VF; i != 1; i >>= 1) {
2954 // Move the upper half of the vector to the lower half.
2955 for (unsigned j = 0; j != i/2; ++j)
2956 ShuffleMask[j] = Builder.getInt32(i/2 + j);
2957
2958 // Fill the rest of the mask with undef.
2959 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2960 UndefValue::get(Builder.getInt32Ty()));
2961
2962 Value *Shuf =
2963 Builder.CreateShuffleVector(TmpVec,
2964 UndefValue::get(TmpVec->getType()),
2965 ConstantVector::get(ShuffleMask),
2966 "rdx.shuf");
2967
2968 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2969 // Floating point operations had to be 'fast' to enable the reduction.
2970 TmpVec = addFastMathFlag(Builder.CreateBinOp(
2971 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2972 else
2973 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2974 }
2975
2976 // The result is in the first element of the vector.
2977 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2978 Builder.getInt32(0));
2979 }
2980
2981 // Create a phi node that merges control-flow from the backedge-taken check
2982 // block and the middle block.
2983 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2984 LoopScalarPreHeader->getTerminator());
2985 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2986 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2987
2988 // Now, we need to fix the users of the reduction variable
2989 // inside and outside of the scalar remainder loop.
2990 // We know that the loop is in LCSSA form. We need to update the
2991 // PHI nodes in the exit blocks.
2992 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2993 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2994 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2995 if (!LCSSAPhi) break;
2996
2997 // All PHINodes need to have a single entry edge, or two if
2998 // we already fixed them.
2999 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI")((LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"
) ? static_cast<void> (0) : __assert_fail ("LCSSAPhi->getNumIncomingValues() < 3 && \"Invalid LCSSA PHI\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2999, __PRETTY_FUNCTION__))
;
3000
3001 // We found our reduction value exit-PHI. Update it with the
3002 // incoming bypass edge.
3003 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
3004 // Add an edge coming from the bypass.
3005 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3006 break;
3007 }
3008 }// end of the LCSSA phi scan.
3009
3010 // Fix the scalar loop reduction variable with the incoming reduction sum
3011 // from the vector body and from the backedge value.
3012 int IncomingEdgeBlockIdx =
3013 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
3014 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index")((IncomingEdgeBlockIdx >= 0 && "Invalid block index"
) ? static_cast<void> (0) : __assert_fail ("IncomingEdgeBlockIdx >= 0 && \"Invalid block index\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3014, __PRETTY_FUNCTION__))
;
3015 // Pick the other block.
3016 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3017 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3018 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
3019 }// end of for each redux variable.
3020
3021 fixLCSSAPHIs();
3022
3023 // Remove redundant induction instructions.
3024 cse(LoopVectorBody);
3025}
3026
3027void InnerLoopVectorizer::fixLCSSAPHIs() {
3028 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3029 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3030 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3031 if (!LCSSAPhi) break;
3032 if (LCSSAPhi->getNumIncomingValues() == 1)
3033 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3034 LoopMiddleBlock);
3035 }
3036}
3037
3038InnerLoopVectorizer::VectorParts
3039InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3040 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&((std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(
Dst) && "Invalid edge") ? static_cast<void> (0)
: __assert_fail ("std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && \"Invalid edge\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3041, __PRETTY_FUNCTION__))
3041 "Invalid edge")((std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(
Dst) && "Invalid edge") ? static_cast<void> (0)
: __assert_fail ("std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && \"Invalid edge\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3041, __PRETTY_FUNCTION__))
;
3042
3043 // Look for cached value.
3044 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
3045 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3046 if (ECEntryIt != MaskCache.end())
3047 return ECEntryIt->second;
3048
3049 VectorParts SrcMask = createBlockInMask(Src);
3050
3051 // The terminator has to be a branch inst!
3052 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3053 assert(BI && "Unexpected terminator found")((BI && "Unexpected terminator found") ? static_cast<
void> (0) : __assert_fail ("BI && \"Unexpected terminator found\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3053, __PRETTY_FUNCTION__))
;
3054
3055 if (BI->isConditional()) {
3056 VectorParts EdgeMask = getVectorValue(BI->getCondition());
3057
3058 if (BI->getSuccessor(0) != Dst)
3059 for (unsigned part = 0; part < UF; ++part)
3060 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3061
3062 for (unsigned part = 0; part < UF; ++part)
3063 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3064
3065 MaskCache[Edge] = EdgeMask;
3066 return EdgeMask;
3067 }
3068
3069 MaskCache[Edge] = SrcMask;
3070 return SrcMask;
3071}
3072
3073InnerLoopVectorizer::VectorParts
3074InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3075 assert(OrigLoop->contains(BB) && "Block is not a part of a loop")((OrigLoop->contains(BB) && "Block is not a part of a loop"
) ? static_cast<void> (0) : __assert_fail ("OrigLoop->contains(BB) && \"Block is not a part of a loop\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3075, __PRETTY_FUNCTION__))
;
3076
3077 // Loop incoming mask is all-one.
3078 if (OrigLoop->getHeader() == BB) {
3079 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3080 return getVectorValue(C);
3081 }
3082
3083 // This is the block mask. We OR all incoming edges, and with zero.
3084 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3085 VectorParts BlockMask = getVectorValue(Zero);
3086
3087 // For each pred:
3088 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3089 VectorParts EM = createEdgeMask(*it, BB);
3090 for (unsigned part = 0; part < UF; ++part)
3091 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3092 }
3093
3094 return BlockMask;
3095}
3096
3097void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
3098 InnerLoopVectorizer::VectorParts &Entry,
3099 unsigned UF, unsigned VF, PhiVector *PV) {
3100 PHINode* P = cast<PHINode>(PN);
3101 // Handle reduction variables:
3102 if (Legal->getReductionVars()->count(P)) {
3103 for (unsigned part = 0; part < UF; ++part) {
3104 // This is phase one of vectorizing PHIs.
3105 Type *VecTy = (VF == 1) ? PN->getType() :
3106 VectorType::get(PN->getType(), VF);
3107 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
3108 LoopVectorBody.back()-> getFirstInsertionPt());
3109 }
3110 PV->push_back(P);
3111 return;
3112 }
3113
3114 setDebugLocFromInst(Builder, P);
3115 // Check for PHI nodes that are lowered to vector selects.
3116 if (P->getParent() != OrigLoop->getHeader()) {
3117 // We know that all PHIs in non-header blocks are converted into
3118 // selects, so we don't have to worry about the insertion order and we
3119 // can just use the builder.
3120 // At this point we generate the predication tree. There may be
3121 // duplications since this is a simple recursive scan, but future
3122 // optimizations will clean it up.
3123
3124 unsigned NumIncoming = P->getNumIncomingValues();
3125
3126 // Generate a sequence of selects of the form:
3127 // SELECT(Mask3, In3,
3128 // SELECT(Mask2, In2,
3129 // ( ...)))
3130 for (unsigned In = 0; In < NumIncoming; In++) {
3131 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3132 P->getParent());
3133 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3134
3135 for (unsigned part = 0; part < UF; ++part) {
3136 // We might have single edge PHIs (blocks) - use an identity
3137 // 'select' for the first PHI operand.
3138 if (In == 0)
3139 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3140 In0[part]);
3141 else
3142 // Select between the current value and the previous incoming edge
3143 // based on the incoming mask.
3144 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3145 Entry[part], "predphi");
3146 }
3147 }
3148 return;
3149 }
3150
3151 // This PHINode must be an induction variable.
3152 // Make sure that we know about it.
3153 assert(Legal->getInductionVars()->count(P) &&((Legal->getInductionVars()->count(P) && "Not an induction variable"
) ? static_cast<void> (0) : __assert_fail ("Legal->getInductionVars()->count(P) && \"Not an induction variable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3154, __PRETTY_FUNCTION__))
3154 "Not an induction variable")((Legal->getInductionVars()->count(P) && "Not an induction variable"
) ? static_cast<void> (0) : __assert_fail ("Legal->getInductionVars()->count(P) && \"Not an induction variable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3154, __PRETTY_FUNCTION__))
;
3155
3156 LoopVectorizationLegality::InductionInfo II =
3157 Legal->getInductionVars()->lookup(P);
3158
3159 switch (II.IK) {
3160 case LoopVectorizationLegality::IK_NoInduction:
3161 llvm_unreachable("Unknown induction")::llvm::llvm_unreachable_internal("Unknown induction", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3161)
;
3162 case LoopVectorizationLegality::IK_IntInduction: {
3163 assert(P->getType() == II.StartValue->getType() && "Types must match")((P->getType() == II.StartValue->getType() && "Types must match"
) ? static_cast<void> (0) : __assert_fail ("P->getType() == II.StartValue->getType() && \"Types must match\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3163, __PRETTY_FUNCTION__))
;
3164 Type *PhiTy = P->getType();
3165 Value *Broadcasted;
3166 if (P == OldInduction) {
3167 // Handle the canonical induction variable. We might have had to
3168 // extend the type.
3169 Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
3170 } else {
3171 // Handle other induction variables that are now based on the
3172 // canonical one.
3173 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
3174 "normalized.idx");
3175 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
3176 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
3177 "offset.idx");
3178 }
3179 Broadcasted = getBroadcastInstrs(Broadcasted);
3180 // After broadcasting the induction variable we need to make the vector
3181 // consecutive by adding 0, 1, 2, etc.
3182 for (unsigned part = 0; part < UF; ++part)
3183 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
3184 return;
3185 }
3186 case LoopVectorizationLegality::IK_ReverseIntInduction:
3187 case LoopVectorizationLegality::IK_PtrInduction:
3188 case LoopVectorizationLegality::IK_ReversePtrInduction:
3189 // Handle reverse integer and pointer inductions.
3190 Value *StartIdx = ExtendedIdx;
3191 // This is the normalized GEP that starts counting at zero.
3192 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
3193 "normalized.idx");
3194
3195 // Handle the reverse integer induction variable case.
3196 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
3197 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
3198 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
3199 "resize.norm.idx");
3200 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
3201 "reverse.idx");
3202
3203 // This is a new value so do not hoist it out.
3204 Value *Broadcasted = getBroadcastInstrs(ReverseInd);
3205 // After broadcasting the induction variable we need to make the
3206 // vector consecutive by adding ... -3, -2, -1, 0.
3207 for (unsigned part = 0; part < UF; ++part)
3208 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
3209 true);
3210 return;
3211 }
3212
3213 // Handle the pointer induction variable case.
3214 assert(P->getType()->isPointerTy() && "Unexpected type.")((P->getType()->isPointerTy() && "Unexpected type."
) ? static_cast<void> (0) : __assert_fail ("P->getType()->isPointerTy() && \"Unexpected type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3214, __PRETTY_FUNCTION__))
;
3215
3216 // Is this a reverse induction ptr or a consecutive induction ptr.
3217 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
3218 II.IK);
3219
3220 // This is the vector of results. Notice that we don't generate
3221 // vector geps because scalar geps result in better code.
3222 for (unsigned part = 0; part < UF; ++part) {
3223 if (VF == 1) {
3224 int EltIndex = (part) * (Reverse ? -1 : 1);
3225 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3226 Value *GlobalIdx;
3227 if (Reverse)
3228 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3229 else
3230 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3231
3232 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3233 "next.gep");
3234 Entry[part] = SclrGep;
3235 continue;
3236 }
3237
3238 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3239 for (unsigned int i = 0; i < VF; ++i) {
3240 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
3241 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3242 Value *GlobalIdx;
3243 if (!Reverse)
3244 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3245 else
3246 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3247
3248 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3249 "next.gep");
3250 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3251 Builder.getInt32(i),
3252 "insert.gep");
3253 }
3254 Entry[part] = VecVal;
3255 }
3256 return;
3257 }
3258}
3259
3260void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3261 // For each instruction in the old loop.
3262 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3263 VectorParts &Entry = WidenMap.get(it);
3264 switch (it->getOpcode()) {
3265 case Instruction::Br:
3266 // Nothing to do for PHIs and BR, since we already took care of the
3267 // loop control flow instructions.
3268 continue;
3269 case Instruction::PHI:{
3270 // Vectorize PHINodes.
3271 widenPHIInstruction(it, Entry, UF, VF, PV);
3272 continue;
3273 }// End of PHI.
3274
3275 case Instruction::Add:
3276 case Instruction::FAdd:
3277 case Instruction::Sub:
3278 case Instruction::FSub:
3279 case Instruction::Mul:
3280 case Instruction::FMul:
3281 case Instruction::UDiv:
3282 case Instruction::SDiv:
3283 case Instruction::FDiv:
3284 case Instruction::URem:
3285 case Instruction::SRem:
3286 case Instruction::FRem:
3287 case Instruction::Shl:
3288 case Instruction::LShr:
3289 case Instruction::AShr:
3290 case Instruction::And:
3291 case Instruction::Or:
3292 case Instruction::Xor: {
3293 // Just widen binops.
3294 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3295 setDebugLocFromInst(Builder, BinOp);
3296 VectorParts &A = getVectorValue(it->getOperand(0));
3297 VectorParts &B = getVectorValue(it->getOperand(1));
3298
3299 // Use this vector value for all users of the original instruction.
3300 for (unsigned Part = 0; Part < UF; ++Part) {
3301 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3302
3303 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3304 VecOp->copyIRFlags(BinOp);
3305
3306 Entry[Part] = V;
3307 }
3308
3309 propagateMetadata(Entry, it);
3310 break;
3311 }
3312 case Instruction::Select: {
3313 // Widen selects.
3314 // If the selector is loop invariant we can create a select
3315 // instruction with a scalar condition. Otherwise, use vector-select.
3316 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3317 OrigLoop);
3318 setDebugLocFromInst(Builder, it);
3319
3320 // The condition can be loop invariant but still defined inside the
3321 // loop. This means that we can't just use the original 'cond' value.
3322 // We have to take the 'vectorized' value and pick the first lane.
3323 // Instcombine will make this a no-op.
3324 VectorParts &Cond = getVectorValue(it->getOperand(0));
3325 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3326 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3327
3328 Value *ScalarCond = (VF == 1) ? Cond[0] :
3329 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3330
3331 for (unsigned Part = 0; Part < UF; ++Part) {
3332 Entry[Part] = Builder.CreateSelect(
3333 InvariantCond ? ScalarCond : Cond[Part],
3334 Op0[Part],
3335 Op1[Part]);
3336 }
3337
3338 propagateMetadata(Entry, it);
3339 break;
3340 }
3341
3342 case Instruction::ICmp:
3343 case Instruction::FCmp: {
3344 // Widen compares. Generate vector compares.
3345 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3346 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3347 setDebugLocFromInst(Builder, it);
3348 VectorParts &A = getVectorValue(it->getOperand(0));
3349 VectorParts &B = getVectorValue(it->getOperand(1));
3350 for (unsigned Part = 0; Part < UF; ++Part) {
3351 Value *C = nullptr;
3352 if (FCmp)
3353 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3354 else
3355 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3356 Entry[Part] = C;
3357 }
3358
3359 propagateMetadata(Entry, it);
3360 break;
3361 }
3362
3363 case Instruction::Store:
3364 case Instruction::Load:
3365 vectorizeMemoryInstruction(it);
3366 break;
3367 case Instruction::ZExt:
3368 case Instruction::SExt:
3369 case Instruction::FPToUI:
3370 case Instruction::FPToSI:
3371 case Instruction::FPExt:
3372 case Instruction::PtrToInt:
3373 case Instruction::IntToPtr:
3374 case Instruction::SIToFP:
3375 case Instruction::UIToFP:
3376 case Instruction::Trunc:
3377 case Instruction::FPTrunc:
3378 case Instruction::BitCast: {
3379 CastInst *CI = dyn_cast<CastInst>(it);
3380 setDebugLocFromInst(Builder, it);
3381 /// Optimize the special case where the source is the induction
3382 /// variable. Notice that we can only optimize the 'trunc' case
3383 /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3384 /// c. other casts depend on pointer size.
3385 if (CI->getOperand(0) == OldInduction &&
3386 it->getOpcode() == Instruction::Trunc) {
3387 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3388 CI->getType());
3389 Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3390 for (unsigned Part = 0; Part < UF; ++Part)
3391 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
3392 propagateMetadata(Entry, it);
3393 break;
3394 }
3395 /// Vectorize casts.
3396 Type *DestTy = (VF == 1) ? CI->getType() :
3397 VectorType::get(CI->getType(), VF);
3398
3399 VectorParts &A = getVectorValue(it->getOperand(0));
3400 for (unsigned Part = 0; Part < UF; ++Part)
3401 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3402 propagateMetadata(Entry, it);
3403 break;
3404 }
3405
3406 case Instruction::Call: {
3407 // Ignore dbg intrinsics.
3408 if (isa<DbgInfoIntrinsic>(it))
3409 break;
3410 setDebugLocFromInst(Builder, it);
3411
3412 Module *M = BB->getParent()->getParent();
3413 CallInst *CI = cast<CallInst>(it);
3414 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3415 assert(ID && "Not an intrinsic call!")((ID && "Not an intrinsic call!") ? static_cast<void
> (0) : __assert_fail ("ID && \"Not an intrinsic call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3415, __PRETTY_FUNCTION__))
;
3416 switch (ID) {
3417 case Intrinsic::assume:
3418 case Intrinsic::lifetime_end:
3419 case Intrinsic::lifetime_start:
3420 scalarizeInstruction(it);
3421 break;
3422 default:
3423 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
3424 for (unsigned Part = 0; Part < UF; ++Part) {
3425 SmallVector<Value *, 4> Args;
3426 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3427 if (HasScalarOpd && i == 1) {
3428 Args.push_back(CI->getArgOperand(i));
3429 continue;
3430 }
3431 VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
3432 Args.push_back(Arg[Part]);
3433 }
3434 Type *Tys[] = {CI->getType()};
3435 if (VF > 1)
3436 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3437
3438 Function *F = Intrinsic::getDeclaration(M, ID, Tys);
3439 Entry[Part] = Builder.CreateCall(F, Args);
3440 }
3441
3442 propagateMetadata(Entry, it);
3443 break;
3444 }
3445 break;
3446 }
3447
3448 default:
3449 // All other instructions are unsupported. Scalarize them.
3450 scalarizeInstruction(it);
3451 break;
3452 }// end of switch.
3453 }// end of for_each instr.
3454}
3455
3456void InnerLoopVectorizer::updateAnalysis() {
3457 // Forget the original basic block.
3458 SE->forgetLoop(OrigLoop);
3459
3460 // Update the dominator tree information.
3461 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&((DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock
) && "Entry does not dominate exit.") ? static_cast<
void> (0) : __assert_fail ("DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && \"Entry does not dominate exit.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3462, __PRETTY_FUNCTION__))
3462 "Entry does not dominate exit.")((DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock
) && "Entry does not dominate exit.") ? static_cast<
void> (0) : __assert_fail ("DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && \"Entry does not dominate exit.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3462, __PRETTY_FUNCTION__))
;
3463
3464 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3465 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3466 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3467
3468 // Due to if predication of stores we might create a sequence of "if(pred)
3469 // a[i] = ...; " blocks.
3470 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
3471 if (i == 0)
3472 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3473 else if (isPredicatedBlock(i)) {
3474 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
3475 } else {
3476 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
3477 }
3478 }
3479
3480 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
3481 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3482 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3483 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
3484
3485 DEBUG(DT->verifyDomTree())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { DT->verifyDomTree(); } } while (0)
;
3486}
3487
3488/// \brief Check whether it is safe to if-convert this phi node.
3489///
3490/// Phi nodes with constant expressions that can trap are not safe to if
3491/// convert.
3492static bool canIfConvertPHINodes(BasicBlock *BB) {
3493 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3494 PHINode *Phi = dyn_cast<PHINode>(I);
3495 if (!Phi)
3496 return true;
3497 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3498 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3499 if (C->canTrap())
3500 return false;
3501 }
3502 return true;
3503}
3504
3505bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
3506 if (!EnableIfConversion) {
3507 emitAnalysis(Report() << "if-conversion is disabled");
3508 return false;
3509 }
3510
3511 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable")((TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"
) ? static_cast<void> (0) : __assert_fail ("TheLoop->getNumBlocks() > 1 && \"Single block loops are vectorizable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3511, __PRETTY_FUNCTION__))
;
3512
3513 // A list of pointers that we can safely read and write to.
3514 SmallPtrSet<Value *, 8> SafePointes;
3515
3516 // Collect safe addresses.
3517 for (Loop::block_iterator BI = TheLoop->block_begin(),
3518 BE = TheLoop->block_end(); BI != BE; ++BI) {
3519 BasicBlock *BB = *BI;
3520
3521 if (blockNeedsPredication(BB))
3522 continue;
3523
3524 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3525 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3526 SafePointes.insert(LI->getPointerOperand());
3527 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
3528 SafePointes.insert(SI->getPointerOperand());
3529 }
3530 }
3531
3532 // Collect the blocks that need predication.
3533 BasicBlock *Header = TheLoop->getHeader();
3534 for (Loop::block_iterator BI = TheLoop->block_begin(),
3535 BE = TheLoop->block_end(); BI != BE; ++BI) {
3536 BasicBlock *BB = *BI;
3537
3538 // We don't support switch statements inside loops.
3539 if (!isa<BranchInst>(BB->getTerminator())) {
3540 emitAnalysis(Report(BB->getTerminator())
3541 << "loop contains a switch statement");
3542 return false;
3543 }
3544
3545 // We must be able to predicate all blocks that need to be predicated.
3546 if (blockNeedsPredication(BB)) {
3547 if (!blockCanBePredicated(BB, SafePointes)) {
3548 emitAnalysis(Report(BB->getTerminator())
3549 << "control flow cannot be substituted for a select");
3550 return false;
3551 }
3552 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
3553 emitAnalysis(Report(BB->getTerminator())
3554 << "control flow cannot be substituted for a select");
3555 return false;
3556 }
3557 }
3558
3559 // We can if-convert this loop.
3560 return true;
3561}
3562
3563bool LoopVectorizationLegality::canVectorize() {
3564 // We must have a loop in canonical form. Loops with indirectbr in them cannot
3565 // be canonicalized.
3566 if (!TheLoop->getLoopPreheader()) {
3567 emitAnalysis(
3568 Report() << "loop control flow is not understood by vectorizer");
3569 return false;
3570 }
3571
3572 // We can only vectorize innermost loops.
3573 if (TheLoop->getSubLoopsVector().size()) {
3574 emitAnalysis(Report() << "loop is not the innermost loop");
3575 return false;
3576 }
3577
3578 // We must have a single backedge.
3579 if (TheLoop->getNumBackEdges() != 1) {
3580 emitAnalysis(
3581 Report() << "loop control flow is not understood by vectorizer");
3582 return false;
3583 }
3584
3585 // We must have a single exiting block.
3586 if (!TheLoop->getExitingBlock()) {
3587 emitAnalysis(
3588 Report() << "loop control flow is not understood by vectorizer");
3589 return false;
3590 }
3591
3592 // We only handle bottom-tested loops, i.e. loop in which the condition is
3593 // checked at the end of each iteration. With that we can assume that all
3594 // instructions in the loop are executed the same number of times.
3595 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
3596 emitAnalysis(
3597 Report() << "loop control flow is not understood by vectorizer");
3598 return false;
3599 }
3600
3601 // We need to have a loop header.
3602 DEBUG(dbgs() << "LV: Found a loop: " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n'; } } while
(0)
3603 TheLoop->getHeader()->getName() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n'; } } while
(0)
;
3604
3605 // Check if we can if-convert non-single-bb loops.
3606 unsigned NumBlocks = TheLoop->getNumBlocks();
3607 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
3608 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't if-convert the loop.\n"
; } } while (0)
;
3609 return false;
3610 }
3611
3612 // ScalarEvolution needs to be able to find the exit count.
3613 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
3614 if (ExitCount == SE->getCouldNotCompute()) {
3615 emitAnalysis(Report() << "could not determine number of loop iterations");
3616 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: SCEV could not compute the loop exit count.\n"
; } } while (0)
;
3617 return false;
3618 }
3619
3620 // Check if we can vectorize the instructions and CFG in this loop.
3621 if (!canVectorizeInstrs()) {
3622 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize the instructions or CFG\n"
; } } while (0)
;
3623 return false;
3624 }
3625
3626 // Go over each instruction and look at memory deps.
3627 if (!canVectorizeMemory()) {
3628 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize due to memory conflicts\n"
; } } while (0)
;
3629 return false;
3630 }
3631
3632 // Collect all of the variables that remain uniform after vectorization.
3633 collectLoopUniforms();
3634
3635 DEBUG(dbgs() << "LV: We can vectorize this loop" <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (PtrRtCheck.Need ? " (with a runtime bound check)" :
"") <<"!\n"; } } while (0)
3636 (PtrRtCheck.Need ? " (with a runtime bound check)" : "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (PtrRtCheck.Need ? " (with a runtime bound check)" :
"") <<"!\n"; } } while (0)
3637 <<"!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (PtrRtCheck.Need ? " (with a runtime bound check)" :
"") <<"!\n"; } } while (0)
;
3638
3639 // Okay! We can vectorize. At this point we don't have any other mem analysis
3640 // which may limit our maximum vectorization factor, so just return true with
3641 // no restrictions.
3642 return true;
3643}
3644
3645static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
3646 if (Ty->isPointerTy())
3647 return DL.getIntPtrType(Ty);
3648
3649 // It is possible that char's or short's overflow when we ask for the loop's
3650 // trip count, work around this by changing the type size.
3651 if (Ty->getScalarSizeInBits() < 32)
3652 return Type::getInt32Ty(Ty->getContext());
3653
3654 return Ty;
3655}
3656
3657static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
3658 Ty0 = convertPointerToIntegerType(DL, Ty0);
3659 Ty1 = convertPointerToIntegerType(DL, Ty1);
3660 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
3661 return Ty0;
3662 return Ty1;
3663}
3664
3665/// \brief Check that the instruction has outside loop users and is not an
3666/// identified reduction variable.
3667static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
3668 SmallPtrSetImpl<Value *> &Reductions) {
3669 // Reduction instructions are allowed to have exit users. All other
3670 // instructions must not have external users.
3671 if (!Reductions.count(Inst))
3672 //Check that all of the users of the loop are inside the BB.
3673 for (User *U : Inst->users()) {
3674 Instruction *UI = cast<Instruction>(U);
3675 // This user may be a reduction exit value.
3676 if (!TheLoop->contains(UI)) {
3677 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an outside user for : "
<< *UI << '\n'; } } while (0)
;
3678 return true;
3679 }
3680 }
3681 return false;
3682}
3683
3684bool LoopVectorizationLegality::canVectorizeInstrs() {
3685 BasicBlock *PreHeader = TheLoop->getLoopPreheader();
3686 BasicBlock *Header = TheLoop->getHeader();
3687
3688 // Look for the attribute signaling the absence of NaNs.
3689 Function &F = *Header->getParent();
3690 if (F.hasFnAttribute("no-nans-fp-math"))
3691 HasFunNoNaNAttr = F.getAttributes().getAttribute(
3692 AttributeSet::FunctionIndex,
3693 "no-nans-fp-math").getValueAsString() == "true";
3694
3695 // For each block in the loop.
3696 for (Loop::block_iterator bb = TheLoop->block_begin(),
3697 be = TheLoop->block_end(); bb != be; ++bb) {
3698
3699 // Scan the instructions in the block and look for hazards.
3700 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3701 ++it) {
3702
3703 if (PHINode *Phi = dyn_cast<PHINode>(it)) {
3704 Type *PhiTy = Phi->getType();
3705 // Check that this PHI type is allowed.
3706 if (!PhiTy->isIntegerTy() &&
3707 !PhiTy->isFloatingPointTy() &&
3708 !PhiTy->isPointerTy()) {
3709 emitAnalysis(Report(it)
3710 << "loop control flow is not understood by vectorizer");
3711 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an non-int non-pointer PHI.\n"
; } } while (0)
;
3712 return false;
3713 }
3714
3715 // If this PHINode is not in the header block, then we know that we
3716 // can convert it to select during if-conversion. No need to check if
3717 // the PHIs in this block are induction or reduction variables.
3718 if (*bb != Header) {
3719 // Check that this instruction has no outside users or is an
3720 // identified reduction value with an outside user.
3721 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
3722 continue;
3723 emitAnalysis(Report(it) << "value could not be identified as "
3724 "an induction or reduction variable");
3725 return false;
3726 }
3727
3728 // We only allow if-converted PHIs with more than two incoming values.
3729 if (Phi->getNumIncomingValues() != 2) {
3730 emitAnalysis(Report(it)
3731 << "control flow not understood by vectorizer");
3732 DEBUG(dbgs() << "LV: Found an invalid PHI.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an invalid PHI.\n"
; } } while (0)
;
3733 return false;
3734 }
3735
3736 // This is the value coming from the preheader.
3737 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3738 // Check if this is an induction variable.
3739 InductionKind IK = isInductionVariable(Phi);
3740
3741 if (IK_NoInduction != IK) {
3742 // Get the widest type.
3743 if (!WidestIndTy)
3744 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
3745 else
3746 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
3747
3748 // Int inductions are special because we only allow one IV.
3749 if (IK == IK_IntInduction) {
3750 // Use the phi node with the widest type as induction. Use the last
3751 // one if there are multiple (no good reason for doing this other
3752 // than it is expedient).
3753 if (!Induction || PhiTy == WidestIndTy)
3754 Induction = Phi;
3755 }
3756
3757 DEBUG(dbgs() << "LV: Found an induction variable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an induction variable.\n"
; } } while (0)
;
3758 Inductions[Phi] = InductionInfo(StartValue, IK);
3759
3760 // Until we explicitly handle the case of an induction variable with
3761 // an outside loop user we have to give up vectorizing this loop.
3762 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3763 emitAnalysis(Report(it) << "use of induction value outside of the "
3764 "loop is not handled by vectorizer");
3765 return false;
3766 }
3767
3768 continue;
3769 }
3770
3771 if (AddReductionVar(Phi, RK_IntegerAdd)) {
3772 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an ADD reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3773 continue;
3774 }
3775 if (AddReductionVar(Phi, RK_IntegerMult)) {
3776 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a MUL reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3777 continue;
3778 }
3779 if (AddReductionVar(Phi, RK_IntegerOr)) {
3780 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an OR reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3781 continue;
3782 }
3783 if (AddReductionVar(Phi, RK_IntegerAnd)) {
3784 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an AND reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3785 continue;
3786 }
3787 if (AddReductionVar(Phi, RK_IntegerXor)) {
3788 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a XOR reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3789 continue;
3790 }
3791 if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3792 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a MINMAX reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3793 continue;
3794 }
3795 if (AddReductionVar(Phi, RK_FloatMult)) {
3796 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an FMult reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3797 continue;
3798 }
3799 if (AddReductionVar(Phi, RK_FloatAdd)) {
3800 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an FAdd reduction PHI."
<< *Phi <<"\n"; } } while (0)
;
3801 continue;
3802 }
3803 if (AddReductionVar(Phi, RK_FloatMinMax)) {
3804 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an float MINMAX reduction PHI."
<< *Phi << "\n"; } } while (0)
3805 "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an float MINMAX reduction PHI."
<< *Phi << "\n"; } } while (0)
;
3806 continue;
3807 }
3808
3809 emitAnalysis(Report(it) << "value that could not be identified as "
3810 "reduction is used outside the loop");
3811 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an unidentified PHI."
<< *Phi <<"\n"; } } while (0)
;
3812 return false;
3813 }// end of PHI handling
3814
3815 // We still don't handle functions. However, we can ignore dbg intrinsic
3816 // calls and we do handle certain intrinsic and libm functions.
3817 CallInst *CI = dyn_cast<CallInst>(it);
3818 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3819 emitAnalysis(Report(it) << "call instruction cannot be vectorized");
3820 DEBUG(dbgs() << "LV: Found a call site.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a call site.\n"
; } } while (0)
;
3821 return false;
3822 }
3823
3824 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
3825 // second argument is the same (i.e. loop invariant)
3826 if (CI &&
3827 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
3828 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
3829 emitAnalysis(Report(it)
3830 << "intrinsic instruction cannot be vectorized");
3831 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found unvectorizable intrinsic "
<< *CI << "\n"; } } while (0)
;
3832 return false;
3833 }
3834 }
3835
3836 // Check that the instruction return type is vectorizable.
3837 // Also, we can't vectorize extractelement instructions.
3838 if ((!VectorType::isValidElementType(it->getType()) &&
3839 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3840 emitAnalysis(Report(it)
3841 << "instruction return type cannot be vectorized");
3842 DEBUG(dbgs() << "LV: Found unvectorizable type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found unvectorizable type.\n"
; } } while (0)
;
3843 return false;
3844 }
3845
3846 // Check that the stored type is vectorizable.
3847 if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3848 Type *T = ST->getValueOperand()->getType();
3849 if (!VectorType::isValidElementType(T)) {
3850 emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
3851 return false;
3852 }
3853 if (EnableMemAccessVersioning)
3854 collectStridedAcccess(ST);
3855 }
3856
3857 if (EnableMemAccessVersioning)
3858 if (LoadInst *LI = dyn_cast<LoadInst>(it))
3859 collectStridedAcccess(LI);
3860
3861 // Reduction instructions are allowed to have exit users.
3862 // All other instructions must not have external users.
3863 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3864 emitAnalysis(Report(it) << "value cannot be used outside the loop");
3865 return false;
3866 }
3867
3868 } // next instr.
3869
3870 }
3871
3872 if (!Induction) {
3873 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Did not find one integer induction var.\n"
; } } while (0)
;
3874 if (Inductions.empty()) {
3875 emitAnalysis(Report()
3876 << "loop induction variable could not be identified");
3877 return false;
3878 }
3879 }
3880
3881 return true;
3882}
3883
3884///\brief Remove GEPs whose indices but the last one are loop invariant and
3885/// return the induction operand of the gep pointer.
3886static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
3887 const DataLayout *DL, Loop *Lp) {
3888 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3889 if (!GEP)
3890 return Ptr;
3891
3892 unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
3893
3894 // Check that all of the gep indices are uniform except for our induction
3895 // operand.
3896 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
3897 if (i != InductionOperand &&
3898 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
3899 return Ptr;
3900 return GEP->getOperand(InductionOperand);
3901}
3902
3903///\brief Look for a cast use of the passed value.
3904static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
3905 Value *UniqueCast = nullptr;
3906 for (User *U : Ptr->users()) {
3907 CastInst *CI = dyn_cast<CastInst>(U);
3908 if (CI && CI->getType() == Ty) {
3909 if (!UniqueCast)
3910 UniqueCast = CI;
3911 else
3912 return nullptr;
3913 }
3914 }
3915 return UniqueCast;
3916}
3917
3918///\brief Get the stride of a pointer access in a loop.
3919/// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
3920/// pointer to the Value, or null otherwise.
3921static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
3922 const DataLayout *DL, Loop *Lp) {
3923 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3924 if (!PtrTy || PtrTy->isAggregateType())
3925 return nullptr;
3926
3927 // Try to remove a gep instruction to make the pointer (actually index at this
3928 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
3929 // pointer, otherwise, we are analyzing the index.
3930 Value *OrigPtr = Ptr;
3931
3932 // The size of the pointer access.
3933 int64_t PtrAccessSize = 1;
3934
3935 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
3936 const SCEV *V = SE->getSCEV(Ptr);
3937
3938 if (Ptr != OrigPtr)
3939 // Strip off casts.
3940 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
3941 V = C->getOperand();
3942
3943 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
3944 if (!S)
3945 return nullptr;
3946
3947 V = S->getStepRecurrence(*SE);
3948 if (!V)
3949 return nullptr;
3950
3951 // Strip off the size of access multiplication if we are still analyzing the
3952 // pointer.
3953 if (OrigPtr == Ptr) {
3954 DL->getTypeAllocSize(PtrTy->getElementType());
3955 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
3956 if (M->getOperand(0)->getSCEVType() != scConstant)
3957 return nullptr;
3958
3959 const APInt &APStepVal =
3960 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
3961
3962 // Huge step value - give up.
3963 if (APStepVal.getBitWidth() > 64)
3964 return nullptr;
3965
3966 int64_t StepVal = APStepVal.getSExtValue();
3967 if (PtrAccessSize != StepVal)
3968 return nullptr;
3969 V = M->getOperand(1);
3970 }
3971 }
3972
3973 // Strip off casts.
3974 Type *StripedOffRecurrenceCast = nullptr;
3975 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
3976 StripedOffRecurrenceCast = C->getType();
3977 V = C->getOperand();
3978 }
3979
3980 // Look for the loop invariant symbolic value.
3981 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
3982 if (!U)
3983 return nullptr;
3984
3985 Value *Stride = U->getValue();
3986 if (!Lp->isLoopInvariant(Stride))
3987 return nullptr;
3988
3989 // If we have stripped off the recurrence cast we have to make sure that we
3990 // return the value that is used in this loop so that we can replace it later.
3991 if (StripedOffRecurrenceCast)
3992 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
3993
3994 return Stride;
3995}
3996
3997void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
3998 Value *Ptr = nullptr;
3999 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
4000 Ptr = LI->getPointerOperand();
4001 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
4002 Ptr = SI->getPointerOperand();
4003 else
4004 return;
4005
4006 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
4007 if (!Stride)
4008 return;
4009
4010 DEBUG(dbgs() << "LV: Found a strided access that we can version")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a strided access that we can version"
; } } while (0)
;
4011 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << " Ptr: " << *Ptr
<< " Stride: " << *Stride << "\n"; } } while
(0)
;
4012 Strides[Ptr] = Stride;
4013 StrideSet.insert(Stride);
4014}
4015
4016void LoopVectorizationLegality::collectLoopUniforms() {
4017 // We now know that the loop is vectorizable!
4018 // Collect variables that will remain uniform after vectorization.
4019 std::vector<Value*> Worklist;
4020 BasicBlock *Latch = TheLoop->getLoopLatch();
4021
4022 // Start with the conditional branch and walk up the block.
4023 Worklist.push_back(Latch->getTerminator()->getOperand(0));
4024
4025 // Also add all consecutive pointer values; these values will be uniform
4026 // after vectorization (and subsequent cleanup) and, until revectorization is
4027 // supported, all dependencies must also be uniform.
4028 for (Loop::block_iterator B = TheLoop->block_begin(),
4029 BE = TheLoop->block_end(); B != BE; ++B)
4030 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
4031 I != IE; ++I)
4032 if (I->getType()->isPointerTy() && isConsecutivePtr(I))
4033 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4034
4035 while (Worklist.size()) {
4036 Instruction *I = dyn_cast<Instruction>(Worklist.back());
4037 Worklist.pop_back();
4038
4039 // Look at instructions inside this loop.
4040 // Stop when reaching PHI nodes.
4041 // TODO: we need to follow values all over the loop, not only in this block.
4042 if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
4043 continue;
4044
4045 // This is a known uniform.
4046 Uniforms.insert(I);
4047
4048 // Insert all operands.
4049 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4050 }
4051}
4052
4053namespace {
4054/// \brief Analyses memory accesses in a loop.
4055///
4056/// Checks whether run time pointer checks are needed and builds sets for data
4057/// dependence checking.
4058class AccessAnalysis {
4059public:
4060 /// \brief Read or write access location.
4061 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4062 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4063
4064 /// \brief Set of potential dependent memory accesses.
4065 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
4066
4067 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
4068 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
4069
4070 /// \brief Register a load and whether it is only read from.
4071 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
4072 Value *Ptr = const_cast<Value*>(Loc.Ptr);
4073 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
4074 Accesses.insert(MemAccessInfo(Ptr, false));
4075 if (IsReadOnly)
4076 ReadOnlyPtr.insert(Ptr);
4077 }
4078
4079 /// \brief Register a store.
4080 void addStore(AliasAnalysis::Location &Loc) {
4081 Value *Ptr = const_cast<Value*>(Loc.Ptr);
4082 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
4083 Accesses.insert(MemAccessInfo(Ptr, true));
4084 }
4085
4086 /// \brief Check whether we can check the pointers at runtime for
4087 /// non-intersection.
4088 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
4089 unsigned &NumComparisons, ScalarEvolution *SE,
4090 Loop *TheLoop, ValueToValueMap &Strides,
4091 bool ShouldCheckStride = false);
4092
4093 /// \brief Goes over all memory accesses, checks whether a RT check is needed
4094 /// and builds sets of dependent accesses.
4095 void buildDependenceSets() {
4096 processMemAccesses();
4097 }
4098
4099 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
4100
4101 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
4102 void resetDepChecks() { CheckDeps.clear(); }
4103
4104 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
4105
4106private:
4107 typedef SetVector<MemAccessInfo> PtrAccessSet;
4108
4109 /// \brief Go over all memory access and check whether runtime pointer checks
4110 /// are needed /// and build sets of dependency check candidates.
4111 void processMemAccesses();
4112
4113 /// Set of all accesses.
4114 PtrAccessSet Accesses;
4115
4116 /// Set of accesses that need a further dependence check.
4117 MemAccessInfoSet CheckDeps;
4118
4119 /// Set of pointers that are read only.
4120 SmallPtrSet<Value*, 16> ReadOnlyPtr;
4121
4122 const DataLayout *DL;
4123
4124 /// An alias set tracker to partition the access set by underlying object and
4125 //intrinsic property (such as TBAA metadata).
4126 AliasSetTracker AST;
4127
4128 /// Sets of potentially dependent accesses - members of one set share an
4129 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
4130 /// dependence check.
4131 DepCandidates &DepCands;
4132
4133 bool IsRTCheckNeeded;
4134};
4135
4136} // end anonymous namespace
4137
4138/// \brief Check whether a pointer can participate in a runtime bounds check.
4139static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
4140 Value *Ptr) {
4141 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
4142 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4143 if (!AR)
4144 return false;
4145
4146 return AR->isAffine();
4147}
4148
4149/// \brief Check the stride of the pointer and ensure that it does not wrap in
4150/// the address space.
4151static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4152 const Loop *Lp, ValueToValueMap &StridesMap);
4153
4154bool AccessAnalysis::canCheckPtrAtRT(
4155 LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
4156 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
4157 ValueToValueMap &StridesMap, bool ShouldCheckStride) {
4158 // Find pointers with computable bounds. We are going to use this information
4159 // to place a runtime bound check.
4160 bool CanDoRT = true;
4161
4162 bool IsDepCheckNeeded = isDependencyCheckNeeded();
4163 NumComparisons = 0;
4164
4165 // We assign a consecutive id to access from different alias sets.
4166 // Accesses between different groups doesn't need to be checked.
4167 unsigned ASId = 1;
4168 for (auto &AS : AST) {
4169 unsigned NumReadPtrChecks = 0;
4170 unsigned NumWritePtrChecks = 0;
4171
4172 // We assign consecutive id to access from different dependence sets.
4173 // Accesses within the same set don't need a runtime check.
4174 unsigned RunningDepId = 1;
4175 DenseMap<Value *, unsigned> DepSetId;
4176
4177 for (auto A : AS) {
4178 Value *Ptr = A.getValue();
4179 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
4180 MemAccessInfo Access(Ptr, IsWrite);
4181
4182 if (IsWrite)
4183 ++NumWritePtrChecks;
4184 else
4185 ++NumReadPtrChecks;
4186
4187 if (hasComputableBounds(SE, StridesMap, Ptr) &&
4188 // When we run after a failing dependency check we have to make sure we
4189 // don't have wrapping pointers.
4190 (!ShouldCheckStride ||
4191 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
4192 // The id of the dependence set.
4193 unsigned DepId;
4194
4195 if (IsDepCheckNeeded) {
4196 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
4197 unsigned &LeaderId = DepSetId[Leader];
4198 if (!LeaderId)
4199 LeaderId = RunningDepId++;
4200 DepId = LeaderId;
4201 } else
4202 // Each access has its own dependence set.
4203 DepId = RunningDepId++;
4204
4205 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
4206
4207 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a runtime check ptr:"
<< *Ptr << '\n'; } } while (0)
;
4208 } else {
4209 CanDoRT = false;
4210 }
4211 }
4212
4213 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
4214 NumComparisons += 0; // Only one dependence set.
4215 else {
4216 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
4217 NumWritePtrChecks - 1));
4218 }
4219
4220 ++ASId;
4221 }
4222
4223 // If the pointers that we would use for the bounds comparison have different
4224 // address spaces, assume the values aren't directly comparable, so we can't
4225 // use them for the runtime check. We also have to assume they could
4226 // overlap. In the future there should be metadata for whether address spaces
4227 // are disjoint.
4228 unsigned NumPointers = RtCheck.Pointers.size();
4229 for (unsigned i = 0; i < NumPointers; ++i) {
4230 for (unsigned j = i + 1; j < NumPointers; ++j) {
4231 // Only need to check pointers between two different dependency sets.
4232 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
4233 continue;
4234 // Only need to check pointers in the same alias set.
4235 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
4236 continue;
4237
4238 Value *PtrI = RtCheck.Pointers[i];
4239 Value *PtrJ = RtCheck.Pointers[j];
4240
4241 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
4242 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
4243 if (ASi != ASj) {
4244 DEBUG(dbgs() << "LV: Runtime check would require comparison between"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Runtime check would require comparison between"
" different address spaces\n"; } } while (0)
4245 " different address spaces\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Runtime check would require comparison between"
" different address spaces\n"; } } while (0)
;
4246 return false;
4247 }
4248 }
4249 }
4250
4251 return CanDoRT;
4252}
4253
4254void AccessAnalysis::processMemAccesses() {
4255 // We process the set twice: first we process read-write pointers, last we
4256 // process read-only pointers. This allows us to skip dependence tests for
4257 // read-only pointers.
4258
4259 DEBUG(dbgs() << "LV: Processing memory accesses...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Processing memory accesses...\n"
; } } while (0)
;
4260 DEBUG(dbgs() << " AST: "; AST.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << " AST: "; AST.dump(); }
} while (0)
;
4261 DEBUG(dbgs() << "LV: Accesses:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Accesses:\n"; } }
while (0)
;
4262 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.getPointer() << " (" << (A.getInt
() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
: "read")) << ")\n"; }; } } while (0)
4263 for (auto A : Accesses)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.getPointer() << " (" << (A.getInt
() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
: "read")) << ")\n"; }; } } while (0)
4264 dbgs() << "\t" << *A.getPointer() << " (" <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.getPointer() << " (" << (A.getInt
() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
: "read")) << ")\n"; }; } } while (0)
4265 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.getPointer() << " (" << (A.getInt
() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
: "read")) << ")\n"; }; } } while (0)
4266 "read-only" : "read")) << ")\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.getPointer() << " (" << (A.getInt
() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
: "read")) << ")\n"; }; } } while (0)
4267 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { { for (auto A : Accesses) dbgs() <<
"\t" << *A.getPointer() << " (" << (A.getInt
() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
: "read")) << ")\n"; }; } } while (0)
;
4268
4269 // The AliasSetTracker has nicely partitioned our pointers by metadata
4270 // compatibility and potential for underlying-object overlap. As a result, we
4271 // only need to check for potential pointer dependencies within each alias
4272 // set.
4273 for (auto &AS : AST) {
4274 // Note that both the alias-set tracker and the alias sets themselves used
4275 // linked lists internally and so the iteration order here is deterministic
4276 // (matching the original instruction order within each set).
4277
4278 bool SetHasWrite = false;
4279
4280 // Map of pointers to last access encountered.
4281 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
4282 UnderlyingObjToAccessMap ObjToLastAccess;
4283
4284 // Set of access to check after all writes have been processed.
4285 PtrAccessSet DeferredAccesses;
4286
4287 // Iterate over each alias set twice, once to process read/write pointers,
4288 // and then to process read-only pointers.
4289 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
4290 bool UseDeferred = SetIteration > 0;
4291 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
4292
4293 for (auto A : AS) {
4294 Value *Ptr = A.getValue();
4295 bool IsWrite = S.count(MemAccessInfo(Ptr, true));
4296
4297 // If we're using the deferred access set, then it contains only reads.
4298 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
4299 if (UseDeferred && !IsReadOnlyPtr)
4300 continue;
4301 // Otherwise, the pointer must be in the PtrAccessSet, either as a read
4302 // or a write.
4303 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||((((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count
(MemAccessInfo(Ptr, false))) && "Alias-set pointer not in the access set?"
) ? static_cast<void> (0) : __assert_fail ("((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && \"Alias-set pointer not in the access set?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4305, __PRETTY_FUNCTION__))
4304 S.count(MemAccessInfo(Ptr, false))) &&((((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count
(MemAccessInfo(Ptr, false))) && "Alias-set pointer not in the access set?"
) ? static_cast<void> (0) : __assert_fail ("((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && \"Alias-set pointer not in the access set?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4305, __PRETTY_FUNCTION__))
4305 "Alias-set pointer not in the access set?")((((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count
(MemAccessInfo(Ptr, false))) && "Alias-set pointer not in the access set?"
) ? static_cast<void> (0) : __assert_fail ("((IsReadOnlyPtr && UseDeferred) || IsWrite || S.count(MemAccessInfo(Ptr, false))) && \"Alias-set pointer not in the access set?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4305, __PRETTY_FUNCTION__))
;
4306
4307 MemAccessInfo Access(Ptr, IsWrite);
4308 DepCands.insert(Access);
4309
4310 // Memorize read-only pointers for later processing and skip them in the
4311 // first round (they need to be checked after we have seen all write
4312 // pointers). Note: we also mark pointer that are not consecutive as
4313 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need
4314 // the second check for "!IsWrite".
4315 if (!UseDeferred && IsReadOnlyPtr) {
4316 DeferredAccesses.insert(Access);
4317 continue;
4318 }
4319
4320 // If this is a write - check other reads and writes for conflicts. If
4321 // this is a read only check other writes for conflicts (but only if
4322 // there is no other write to the ptr - this is an optimization to
4323 // catch "a[i] = a[i] + " without having to do a dependence check).
4324 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
4325 CheckDeps.insert(Access);
4326 IsRTCheckNeeded = true;
4327 }
4328
4329 if (IsWrite)
4330 SetHasWrite = true;
4331
4332 // Create sets of pointers connected by a shared alias set and
4333 // underlying object.
4334 typedef SmallVector<Value *, 16> ValueVector;
4335 ValueVector TempObjects;
4336 GetUnderlyingObjects(Ptr, TempObjects, DL);
4337 for (Value *UnderlyingObj : TempObjects) {
4338 UnderlyingObjToAccessMap::iterator Prev =
4339 ObjToLastAccess.find(UnderlyingObj);
4340 if (Prev != ObjToLastAccess.end())
4341 DepCands.unionSets(Access, Prev->second);
4342
4343 ObjToLastAccess[UnderlyingObj] = Access;
4344 }
4345 }
4346 }
4347 }
4348}
4349
4350namespace {
4351/// \brief Checks memory dependences among accesses to the same underlying
4352/// object to determine whether there vectorization is legal or not (and at
4353/// which vectorization factor).
4354///
4355/// This class works under the assumption that we already checked that memory
4356/// locations with different underlying pointers are "must-not alias".
4357/// We use the ScalarEvolution framework to symbolically evalutate access
4358/// functions pairs. Since we currently don't restructure the loop we can rely
4359/// on the program order of memory accesses to determine their safety.
4360/// At the moment we will only deem accesses as safe for:
4361/// * A negative constant distance assuming program order.
4362///
4363/// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
4364/// a[i] = tmp; y = a[i];
4365///
4366/// The latter case is safe because later checks guarantuee that there can't
4367/// be a cycle through a phi node (that is, we check that "x" and "y" is not
4368/// the same variable: a header phi can only be an induction or a reduction, a
4369/// reduction can't have a memory sink, an induction can't have a memory
4370/// source). This is important and must not be violated (or we have to
4371/// resort to checking for cycles through memory).
4372///
4373/// * A positive constant distance assuming program order that is bigger
4374/// than the biggest memory access.
4375///
4376/// tmp = a[i] OR b[i] = x
4377/// a[i+2] = tmp y = b[i+2];
4378///
4379/// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
4380///
4381/// * Zero distances and all accesses have the same size.
4382///
4383class MemoryDepChecker {
4384public:
4385 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4386 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4387
4388 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
4389 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
4390 ShouldRetryWithRuntimeCheck(false) {}
4391
4392 /// \brief Register the location (instructions are given increasing numbers)
4393 /// of a write access.
4394 void addAccess(StoreInst *SI) {
4395 Value *Ptr = SI->getPointerOperand();
4396 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
4397 InstMap.push_back(SI);
4398 ++AccessIdx;
4399 }
4400
4401 /// \brief Register the location (instructions are given increasing numbers)
4402 /// of a write access.
4403 void addAccess(LoadInst *LI) {
4404 Value *Ptr = LI->getPointerOperand();
4405 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
4406 InstMap.push_back(LI);
4407 ++AccessIdx;
4408 }
4409
4410 /// \brief Check whether the dependencies between the accesses are safe.
4411 ///
4412 /// Only checks sets with elements in \p CheckDeps.
4413 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4414 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
4415
4416 /// \brief The maximum number of bytes of a vector register we can vectorize
4417 /// the accesses safely with.
4418 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
4419
4420 /// \brief In same cases when the dependency check fails we can still
4421 /// vectorize the loop with a dynamic array access check.
4422 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
4423
4424private:
4425 ScalarEvolution *SE;
4426 const DataLayout *DL;
4427 const Loop *InnermostLoop;
4428
4429 /// \brief Maps access locations (ptr, read/write) to program order.
4430 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
4431
4432 /// \brief Memory access instructions in program order.
4433 SmallVector<Instruction *, 16> InstMap;
4434
4435 /// \brief The program order index to be used for the next instruction.
4436 unsigned AccessIdx;
4437
4438 // We can access this many bytes in parallel safely.
4439 unsigned MaxSafeDepDistBytes;
4440
4441 /// \brief If we see a non-constant dependence distance we can still try to
4442 /// vectorize this loop with runtime checks.
4443 bool ShouldRetryWithRuntimeCheck;
4444
4445 /// \brief Check whether there is a plausible dependence between the two
4446 /// accesses.
4447 ///
4448 /// Access \p A must happen before \p B in program order. The two indices
4449 /// identify the index into the program order map.
4450 ///
4451 /// This function checks whether there is a plausible dependence (or the
4452 /// absence of such can't be proved) between the two accesses. If there is a
4453 /// plausible dependence but the dependence distance is bigger than one
4454 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
4455 /// distance is smaller than any other distance encountered so far).
4456 /// Otherwise, this function returns true signaling a possible dependence.
4457 bool isDependent(const MemAccessInfo &A, unsigned AIdx,
4458 const MemAccessInfo &B, unsigned BIdx,
4459 ValueToValueMap &Strides);
4460
4461 /// \brief Check whether the data dependence could prevent store-load
4462 /// forwarding.
4463 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
4464};
4465
4466} // end anonymous namespace
4467
4468static bool isInBoundsGep(Value *Ptr) {
4469 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
4470 return GEP->isInBounds();
4471 return false;
4472}
4473
4474/// \brief Check whether the access through \p Ptr has a constant stride.
4475static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4476 const Loop *Lp, ValueToValueMap &StridesMap) {
4477 const Type *Ty = Ptr->getType();
4478 assert(Ty->isPointerTy() && "Unexpected non-ptr")((Ty->isPointerTy() && "Unexpected non-ptr") ? static_cast
<void> (0) : __assert_fail ("Ty->isPointerTy() && \"Unexpected non-ptr\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4478, __PRETTY_FUNCTION__))
;
4479
4480 // Make sure that the pointer does not point to aggregate types.
4481 const PointerType *PtrTy = cast<PointerType>(Ty);
4482 if (PtrTy->getElementType()->isAggregateType()) {
4483 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not a pointer to a scalar type"
<< *Ptr << "\n"; } } while (0)
4484 "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not a pointer to a scalar type"
<< *Ptr << "\n"; } } while (0)
;
4485 return 0;
4486 }
4487
4488 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
4489
4490 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4491 if (!AR) {
4492 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
4493 << *Ptr << " SCEV: " << *PtrScev << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
;
4494 return 0;
4495 }
4496
4497 // The accesss function must stride over the innermost loop.
4498 if (Lp != AR->getLoop()) {
4499 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not striding over innermost loop "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
4500 *Ptr << " SCEV: " << *PtrScev << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not striding over innermost loop "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
;
4501 }
4502
4503 // The address calculation must not wrap. Otherwise, a dependence could be
4504 // inverted.
4505 // An inbounds getelementptr that is a AddRec with a unit stride
4506 // cannot wrap per definition. The unit stride requirement is checked later.
4507 // An getelementptr without an inbounds attribute and unit stride would have
4508 // to access the pointer value "0" which is undefined behavior in address
4509 // space 0, therefore we can also vectorize this case.
4510 bool IsInBoundsGEP = isInBoundsGep(Ptr);
4511 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
4512 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
4513 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
4514 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
4515 << *Ptr << " SCEV: " << *PtrScev << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
;
4516 return 0;
4517 }
4518
4519 // Check the step is constant.
4520 const SCEV *Step = AR->getStepRecurrence(*SE);
4521
4522 // Calculate the pointer stride and check if it is consecutive.
4523 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4524 if (!C) {
4525 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not a constant strided "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
4526 " SCEV: " << *PtrScev << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Bad stride - Not a constant strided "
<< *Ptr << " SCEV: " << *PtrScev << "\n"
; } } while (0)
;
4527 return 0;
4528 }
4529
4530 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
4531 const APInt &APStepVal = C->getValue()->getValue();
4532
4533 // Huge step value - give up.
4534 if (APStepVal.getBitWidth() > 64)
4535 return 0;
4536
4537 int64_t StepVal = APStepVal.getSExtValue();
4538
4539 // Strided access.
4540 int64_t Stride = StepVal / Size;
4541 int64_t Rem = StepVal % Size;
4542 if (Rem)
4543 return 0;
4544
4545 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
4546 // know we can't "wrap around the address space". In case of address space
4547 // zero we know that this won't happen without triggering undefined behavior.
4548 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
4549 Stride != 1 && Stride != -1)
4550 return 0;
4551
4552 return Stride;
4553}
4554
4555bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
4556 unsigned TypeByteSize) {
4557 // If loads occur at a distance that is not a multiple of a feasible vector
4558 // factor store-load forwarding does not take place.
4559 // Positive dependences might cause troubles because vectorizing them might
4560 // prevent store-load forwarding making vectorized code run a lot slower.
4561 // a[i] = a[i-3] ^ a[i-8];
4562 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
4563 // hence on your typical architecture store-load forwarding does not take
4564 // place. Vectorizing in such cases does not make sense.
4565 // Store-load forwarding distance.
4566 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
4567 // Maximum vector factor.
4568 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
4569 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
4570 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
4571
4572 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
4573 vf *= 2) {
4574 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
4575 MaxVFWithoutSLForwardIssues = (vf >>=1);
4576 break;
4577 }
4578 }
4579
4580 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
4581 DEBUG(dbgs() << "LV: Distance " << Distance <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Distance " <<
Distance << " that could cause a store-load forwarding conflict\n"
; } } while (0)
4582 " that could cause a store-load forwarding conflict\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Distance " <<
Distance << " that could cause a store-load forwarding conflict\n"
; } } while (0)
;
4583 return true;
4584 }
4585
4586 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
4587 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
4588 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
4589 return false;
4590}
4591
4592bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
4593 const MemAccessInfo &B, unsigned BIdx,
4594 ValueToValueMap &Strides) {
4595 assert (AIdx < BIdx && "Must pass arguments in program order")((AIdx < BIdx && "Must pass arguments in program order"
) ? static_cast<void> (0) : __assert_fail ("AIdx < BIdx && \"Must pass arguments in program order\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4595, __PRETTY_FUNCTION__))
;
4596
4597 Value *APtr = A.getPointer();
4598 Value *BPtr = B.getPointer();
4599 bool AIsWrite = A.getInt();
4600 bool BIsWrite = B.getInt();
4601
4602 // Two reads are independent.
4603 if (!AIsWrite && !BIsWrite)
4604 return false;
4605
4606 // We cannot check pointers in different address spaces.
4607 if (APtr->getType()->getPointerAddressSpace() !=
4608 BPtr->getType()->getPointerAddressSpace())
4609 return true;
4610
4611 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
4612 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
4613
4614 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
4615 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
4616
4617 const SCEV *Src = AScev;
4618 const SCEV *Sink = BScev;
4619
4620 // If the induction step is negative we have to invert source and sink of the
4621 // dependence.
4622 if (StrideAPtr < 0) {
4623 //Src = BScev;
4624 //Sink = AScev;
4625 std::swap(APtr, BPtr);
4626 std::swap(Src, Sink);
4627 std::swap(AIsWrite, BIsWrite);
4628 std::swap(AIdx, BIdx);
4629 std::swap(StrideAPtr, StrideBPtr);
4630 }
4631
4632 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
4633
4634 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sinkdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Src Scev: " <<
*Src << "Sink Scev: " << *Sink << "(Induction step: "
<< StrideAPtr << ")\n"; } } while (0)
4635 << "(Induction step: " << StrideAPtr << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Src Scev: " <<
*Src << "Sink Scev: " << *Sink << "(Induction step: "
<< StrideAPtr << ")\n"; } } while (0)
;
4636 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Distance for " <<
*InstMap[AIdx] << " to " << *InstMap[BIdx] <<
": " << *Dist << "\n"; } } while (0)
4637 << *InstMap[BIdx] << ": " << *Dist << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Distance for " <<
*InstMap[AIdx] << " to " << *InstMap[BIdx] <<
": " << *Dist << "\n"; } } while (0)
;
4638
4639 // Need consecutive accesses. We don't want to vectorize
4640 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
4641 // the address space.
4642 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
4643 DEBUG(dbgs() << "Non-consecutive pointer access\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Non-consecutive pointer access\n"
; } } while (0)
;
4644 return true;
4645 }
4646
4647 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
4648 if (!C) {
4649 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Dependence because of non-constant distance\n"
; } } while (0)
;
4650 ShouldRetryWithRuntimeCheck = true;
4651 return true;
4652 }
4653
4654 Type *ATy = APtr->getType()->getPointerElementType();
4655 Type *BTy = BPtr->getType()->getPointerElementType();
4656 unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
4657
4658 // Negative distances are not plausible dependencies.
4659 const APInt &Val = C->getValue()->getValue();
4660 if (Val.isNegative()) {
4661 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
4662 if (IsTrueDataDependence &&
4663 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
4664 ATy != BTy))
4665 return true;
4666
4667 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Dependence is negative: NoDep\n"
; } } while (0)
;
4668 return false;
4669 }
4670
4671 // Write to the same location with the same size.
4672 // Could be improved to assert type sizes are the same (i32 == float, etc).
4673 if (Val == 0) {
4674 if (ATy == BTy)
4675 return false;
4676 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Zero dependence difference but different types\n"
; } } while (0)
;
4677 return true;
4678 }
4679
4680 assert(Val.isStrictlyPositive() && "Expect a positive value")((Val.isStrictlyPositive() && "Expect a positive value"
) ? static_cast<void> (0) : __assert_fail ("Val.isStrictlyPositive() && \"Expect a positive value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4680, __PRETTY_FUNCTION__))
;
4681
4682 // Positive distance bigger than max vectorization factor.
4683 if (ATy != BTy) {
4684 DEBUG(dbgs() <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: ReadWrite-Write positive dependency with different types\n"
; } } while (0)
4685 "LV: ReadWrite-Write positive dependency with different types\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: ReadWrite-Write positive dependency with different types\n"
; } } while (0)
;
4686 return false;
4687 }
4688
4689 unsigned Distance = (unsigned) Val.getZExtValue();
4690
4691 // Bail out early if passed-in parameters make vectorization not feasible.
4692 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
4693 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1;
4694
4695 // The distance must be bigger than the size needed for a vectorized version
4696 // of the operation and the size of the vectorized operation must not be
4697 // bigger than the currrent maximum size.
4698 if (Distance < 2*TypeByteSize ||
4699 2*TypeByteSize > MaxSafeDepDistBytes ||
4700 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
4701 DEBUG(dbgs() << "LV: Failure because of Positive distance "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Failure because of Positive distance "
<< Val.getSExtValue() << '\n'; } } while (0)
4702 << Val.getSExtValue() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Failure because of Positive distance "
<< Val.getSExtValue() << '\n'; } } while (0)
;
4703 return true;
4704 }
4705
4706 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
4707 Distance : MaxSafeDepDistBytes;
4708
4709 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
4710 if (IsTrueDataDependence &&
4711 couldPreventStoreLoadForward(Distance, TypeByteSize))
4712 return true;
4713
4714 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Positive distance "
<< Val.getSExtValue() << " with max VF = " <<
MaxSafeDepDistBytes / TypeByteSize << '\n'; } } while (
0)
4715 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Positive distance "
<< Val.getSExtValue() << " with max VF = " <<
MaxSafeDepDistBytes / TypeByteSize << '\n'; } } while (
0)
;
4716
4717 return false;
4718}
4719
4720bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4721 MemAccessInfoSet &CheckDeps,
4722 ValueToValueMap &Strides) {
4723
4724 MaxSafeDepDistBytes = -1U;
4725 while (!CheckDeps.empty()) {
4726 MemAccessInfo CurAccess = *CheckDeps.begin();
4727
4728 // Get the relevant memory access set.
4729 EquivalenceClasses<MemAccessInfo>::iterator I =
4730 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
4731
4732 // Check accesses within this set.
4733 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
4734 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
4735
4736 // Check every access pair.
4737 while (AI != AE) {
4738 CheckDeps.erase(*AI);
4739 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
4740 while (OI != AE) {
4741 // Check every accessing instruction pair in program order.
4742 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
4743 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
4744 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
4745 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
4746 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
4747 return false;
4748 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
4749 return false;
4750 }
4751 ++OI;
4752 }
4753 AI++;
4754 }
4755 }
4756 return true;
4757}
4758
4759bool LoopVectorizationLegality::canVectorizeMemory() {
4760
4761 typedef SmallVector<Value*, 16> ValueVector;
4762 typedef SmallPtrSet<Value*, 16> ValueSet;
4763
4764 // Holds the Load and Store *instructions*.
4765 ValueVector Loads;
4766 ValueVector Stores;
4767
4768 // Holds all the different accesses in the loop.
4769 unsigned NumReads = 0;
4770 unsigned NumReadWrites = 0;
4771
4772 PtrRtCheck.Pointers.clear();
4773 PtrRtCheck.Need = false;
4774
4775 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4776 MemoryDepChecker DepChecker(SE, DL, TheLoop);
4777
4778 // For each block.
4779 for (Loop::block_iterator bb = TheLoop->block_begin(),
4780 be = TheLoop->block_end(); bb != be; ++bb) {
4781
4782 // Scan the BB and collect legal loads and stores.
4783 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4784 ++it) {
4785
4786 // If this is a load, save it. If this instruction can read from memory
4787 // but is not a load, then we quit. Notice that we don't handle function
4788 // calls that read or write.
4789 if (it->mayReadFromMemory()) {
4790 // Many math library functions read the rounding mode. We will only
4791 // vectorize a loop if it contains known function calls that don't set
4792 // the flag. Therefore, it is safe to ignore this read from memory.
4793 CallInst *Call = dyn_cast<CallInst>(it);
4794 if (Call && getIntrinsicIDForCall(Call, TLI))
4795 continue;
4796
4797 LoadInst *Ld = dyn_cast<LoadInst>(it);
4798 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
4799 emitAnalysis(Report(Ld)
4800 << "read with atomic ordering or volatile read");
4801 DEBUG(dbgs() << "LV: Found a non-simple load.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a non-simple load.\n"
; } } while (0)
;
4802 return false;
4803 }
4804 NumLoads++;
4805 Loads.push_back(Ld);
4806 DepChecker.addAccess(Ld);
4807 continue;
4808 }
4809
4810 // Save 'store' instructions. Abort if other instructions write to memory.
4811 if (it->mayWriteToMemory()) {
4812 StoreInst *St = dyn_cast<StoreInst>(it);
4813 if (!St) {
4814 emitAnalysis(Report(it) << "instruction cannot be vectorized");
4815 return false;
4816 }
4817 if (!St->isSimple() && !IsAnnotatedParallel) {
4818 emitAnalysis(Report(St)
4819 << "write with atomic ordering or volatile write");
4820 DEBUG(dbgs() << "LV: Found a non-simple store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a non-simple store.\n"
; } } while (0)
;
4821 return false;
4822 }
4823 NumStores++;
4824 Stores.push_back(St);
4825 DepChecker.addAccess(St);
4826 }
4827 } // Next instr.
4828 } // Next block.
4829
4830 // Now we have two lists that hold the loads and the stores.
4831 // Next, we find the pointers that they use.
4832
4833 // Check if we see any stores. If there are no stores, then we don't
4834 // care if the pointers are *restrict*.
4835 if (!Stores.size()) {
4836 DEBUG(dbgs() << "LV: Found a read-only loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a read-only loop!\n"
; } } while (0)
;
4837 return true;
4838 }
4839
4840 AccessAnalysis::DepCandidates DependentAccesses;
4841 AccessAnalysis Accesses(DL, AA, DependentAccesses);
4842
4843 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
4844 // multiple times on the same object. If the ptr is accessed twice, once
4845 // for read and once for write, it will only appear once (on the write
4846 // list). This is okay, since we are going to check for conflicts between
4847 // writes and between reads and writes, but not between reads and reads.
4848 ValueSet Seen;
4849
4850 ValueVector::iterator I, IE;
4851 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
4852 StoreInst *ST = cast<StoreInst>(*I);
4853 Value* Ptr = ST->getPointerOperand();
4854
4855 if (isUniform(Ptr)) {
4856 emitAnalysis(
4857 Report(ST)
4858 << "write to a loop invariant address could not be vectorized");
4859 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We don't allow storing to uniform addresses\n"
; } } while (0)
;
4860 return false;
4861 }
4862
4863 // If we did *not* see this pointer before, insert it to the read-write
4864 // list. At this phase it is only a 'write' list.
4865 if (Seen.insert(Ptr).second) {
4866 ++NumReadWrites;
4867
4868 AliasAnalysis::Location Loc = AA->getLocation(ST);
4869 // The TBAA metadata could have a control dependency on the predication
4870 // condition, so we cannot rely on it when determining whether or not we
4871 // need runtime pointer checks.
4872 if (blockNeedsPredication(ST->getParent()))
4873 Loc.AATags.TBAA = nullptr;
4874
4875 Accesses.addStore(Loc);
4876 }
4877 }
4878
4879 if (IsAnnotatedParallel) {
4880 DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: A loop annotated parallel, ignore memory dependency "
<< "checks.\n"; } } while (0)
4881 << "LV: A loop annotated parallel, ignore memory dependency "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: A loop annotated parallel, ignore memory dependency "
<< "checks.\n"; } } while (0)
4882 << "checks.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: A loop annotated parallel, ignore memory dependency "
<< "checks.\n"; } } while (0)
;
4883 return true;
4884 }
4885
4886 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
4887 LoadInst *LD = cast<LoadInst>(*I);
4888 Value* Ptr = LD->getPointerOperand();
4889 // If we did *not* see this pointer before, insert it to the
4890 // read list. If we *did* see it before, then it is already in
4891 // the read-write list. This allows us to vectorize expressions
4892 // such as A[i] += x; Because the address of A[i] is a read-write
4893 // pointer. This only works if the index of A[i] is consecutive.
4894 // If the address of i is unknown (for example A[B[i]]) then we may
4895 // read a few words, modify, and write a few words, and some of the
4896 // words may be written to the same address.
4897 bool IsReadOnlyPtr = false;
4898 if (Seen.insert(Ptr).second ||
4899 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
4900 ++NumReads;
4901 IsReadOnlyPtr = true;
4902 }
4903
4904 AliasAnalysis::Location Loc = AA->getLocation(LD);
4905 // The TBAA metadata could have a control dependency on the predication
4906 // condition, so we cannot rely on it when determining whether or not we
4907 // need runtime pointer checks.
4908 if (blockNeedsPredication(LD->getParent()))
4909 Loc.AATags.TBAA = nullptr;
4910
4911 Accesses.addLoad(Loc, IsReadOnlyPtr);
4912 }
4913
4914 // If we write (or read-write) to a single destination and there are no
4915 // other reads in this loop then is it safe to vectorize.
4916 if (NumReadWrites == 1 && NumReads == 0) {
4917 DEBUG(dbgs() << "LV: Found a write-only loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a write-only loop!\n"
; } } while (0)
;
4918 return true;
4919 }
4920
4921 // Build dependence sets and check whether we need a runtime pointer bounds
4922 // check.
4923 Accesses.buildDependenceSets();
4924 bool NeedRTCheck = Accesses.isRTCheckNeeded();
4925
4926 // Find pointers with computable bounds. We are going to use this information
4927 // to place a runtime bound check.
4928 unsigned NumComparisons = 0;
4929 bool CanDoRT = false;
4930 if (NeedRTCheck)
4931 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
4932 Strides);
4933
4934 DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We need to do " <<
NumComparisons << " pointer comparisons.\n"; } } while
(0)
4935 " pointer comparisons.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We need to do " <<
NumComparisons << " pointer comparisons.\n"; } } while
(0)
;
4936
4937 // If we only have one set of dependences to check pointers among we don't
4938 // need a runtime check.
4939 if (NumComparisons == 0 && NeedRTCheck)
4940 NeedRTCheck = false;
4941
4942 // Check that we did not collect too many pointers or found an unsizeable
4943 // pointer.
4944 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4945 PtrRtCheck.reset();
4946 CanDoRT = false;
4947 }
4948
4949 if (CanDoRT) {
4950 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can perform a memory runtime check if needed.\n"
; } } while (0)
;
4951 }
4952
4953 if (NeedRTCheck && !CanDoRT) {
4954 emitAnalysis(Report() << "cannot identify array bounds");
4955 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can't vectorize because we can't find "
<< "the array bounds.\n"; } } while (0)
4956 "the array bounds.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can't vectorize because we can't find "
<< "the array bounds.\n"; } } while (0)
;
4957 PtrRtCheck.reset();
4958 return false;
4959 }
4960
4961 PtrRtCheck.Need = NeedRTCheck;
4962
4963 bool CanVecMem = true;
4964 if (Accesses.isDependencyCheckNeeded()) {
4965 DEBUG(dbgs() << "LV: Checking memory dependencies\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Checking memory dependencies\n"
; } } while (0)
;
4966 CanVecMem = DepChecker.areDepsSafe(
4967 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
4968 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
4969
4970 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
4971 DEBUG(dbgs() << "LV: Retrying with memory checks\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Retrying with memory checks\n"
; } } while (0)
;
4972 NeedRTCheck = true;
4973
4974 // Clear the dependency checks. We assume they are not needed.
4975 Accesses.resetDepChecks();
4976
4977 PtrRtCheck.reset();
4978 PtrRtCheck.Need = true;
4979
4980 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
4981 TheLoop, Strides, true);
4982 // Check that we did not collect too many pointers or found an unsizeable
4983 // pointer.
4984 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4985 if (!CanDoRT && NumComparisons > 0)
4986 emitAnalysis(Report()
4987 << "cannot check memory dependencies at runtime");
4988 else
4989 emitAnalysis(Report()
4990 << NumComparisons << " exceeds limit of "
4991 << RuntimeMemoryCheckThreshold
4992 << " dependent memory operations checked at runtime");
4993 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize with memory checks\n"
; } } while (0)
;
4994 PtrRtCheck.reset();
4995 return false;
4996 }
4997
4998 CanVecMem = true;
4999 }
5000 }
5001
5002 if (!CanVecMem)
5003 emitAnalysis(Report() << "unsafe dependent memory operations in loop");
5004
5005 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We" << (NeedRTCheck
? "" : " don't") << " need a runtime memory check.\n";
} } while (0)
5006 " need a runtime memory check.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We" << (NeedRTCheck
? "" : " don't") << " need a runtime memory check.\n";
} } while (0)
;
5007
5008 return CanVecMem;
5009}
5010
5011static bool hasMultipleUsesOf(Instruction *I,
5012 SmallPtrSetImpl<Instruction *> &Insts) {
5013 unsigned NumUses = 0;
5014 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
5015 if (Insts.count(dyn_cast<Instruction>(*Use)))
5016 ++NumUses;
5017 if (NumUses > 1)
5018 return true;
5019 }
5020
5021 return false;
5022}
5023
5024static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
5025 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
5026 if (!Set.count(dyn_cast<Instruction>(*Use)))
5027 return false;
5028 return true;
5029}
5030
5031bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
5032 ReductionKind Kind) {
5033 if (Phi->getNumIncomingValues() != 2)
5034 return false;
5035
5036 // Reduction variables are only found in the loop header block.
5037 if (Phi->getParent() != TheLoop->getHeader())
5038 return false;
5039
5040 // Obtain the reduction start value from the value that comes from the loop
5041 // preheader.
5042 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
5043
5044 // ExitInstruction is the single value which is used outside the loop.
5045 // We only allow for a single reduction value to be used outside the loop.
5046 // This includes users of the reduction, variables (which form a cycle
5047 // which ends in the phi node).
5048 Instruction *ExitInstruction = nullptr;
5049 // Indicates that we found a reduction operation in our scan.
5050 bool FoundReduxOp = false;
5051
5052 // We start with the PHI node and scan for all of the users of this
5053 // instruction. All users must be instructions that can be used as reduction
5054 // variables (such as ADD). We must have a single out-of-block user. The cycle
5055 // must include the original PHI.
5056 bool FoundStartPHI = false;
5057
5058 // To recognize min/max patterns formed by a icmp select sequence, we store
5059 // the number of instruction we saw from the recognized min/max pattern,
5060 // to make sure we only see exactly the two instructions.
5061 unsigned NumCmpSelectPatternInst = 0;
5062 ReductionInstDesc ReduxDesc(false, nullptr);
5063
5064 SmallPtrSet<Instruction *, 8> VisitedInsts;
5065 SmallVector<Instruction *, 8> Worklist;
5066 Worklist.push_back(Phi);
5067 VisitedInsts.insert(Phi);
5068
5069 // A value in the reduction can be used:
5070 // - By the reduction:
5071 // - Reduction operation:
5072 // - One use of reduction value (safe).
5073 // - Multiple use of reduction value (not safe).
5074 // - PHI:
5075 // - All uses of the PHI must be the reduction (safe).
5076 // - Otherwise, not safe.
5077 // - By one instruction outside of the loop (safe).
5078 // - By further instructions outside of the loop (not safe).
5079 // - By an instruction that is not part of the reduction (not safe).
5080 // This is either:
5081 // * An instruction type other than PHI or the reduction operation.
5082 // * A PHI in the header other than the initial PHI.
5083 while (!Worklist.empty()) {
5084 Instruction *Cur = Worklist.back();
5085 Worklist.pop_back();
5086
5087 // No Users.
5088 // If the instruction has no users then this is a broken chain and can't be
5089 // a reduction variable.
5090 if (Cur->use_empty())
5091 return false;
5092
5093 bool IsAPhi = isa<PHINode>(Cur);
5094
5095 // A header PHI use other than the original PHI.
5096 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
5097 return false;
5098
5099 // Reductions of instructions such as Div, and Sub is only possible if the
5100 // LHS is the reduction variable.
5101 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
5102 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
5103 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
5104 return false;
5105
5106 // Any reduction instruction must be of one of the allowed kinds.
5107 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
5108 if (!ReduxDesc.IsReduction)
5109 return false;
5110
5111 // A reduction operation must only have one use of the reduction value.
5112 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
5113 hasMultipleUsesOf(Cur, VisitedInsts))
5114 return false;
5115
5116 // All inputs to a PHI node must be a reduction value.
5117 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
5118 return false;
5119
5120 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
5121 isa<SelectInst>(Cur)))
5122 ++NumCmpSelectPatternInst;
5123 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
5124 isa<SelectInst>(Cur)))
5125 ++NumCmpSelectPatternInst;
5126
5127 // Check whether we found a reduction operator.
5128 FoundReduxOp |= !IsAPhi;
5129
5130 // Process users of current instruction. Push non-PHI nodes after PHI nodes
5131 // onto the stack. This way we are going to have seen all inputs to PHI
5132 // nodes once we get to them.
5133 SmallVector<Instruction *, 8> NonPHIs;
5134 SmallVector<Instruction *, 8> PHIs;
5135 for (User *U : Cur->users()) {
5136 Instruction *UI = cast<Instruction>(U);
5137
5138 // Check if we found the exit user.
5139 BasicBlock *Parent = UI->getParent();
5140 if (!TheLoop->contains(Parent)) {
5141 // Exit if you find multiple outside users or if the header phi node is
5142 // being used. In this case the user uses the value of the previous
5143 // iteration, in which case we would loose "VF-1" iterations of the
5144 // reduction operation if we vectorize.
5145 if (ExitInstruction != nullptr || Cur == Phi)
5146 return false;
5147
5148 // The instruction used by an outside user must be the last instruction
5149 // before we feed back to the reduction phi. Otherwise, we loose VF-1
5150 // operations on the value.
5151 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
5152 return false;
5153
5154 ExitInstruction = Cur;
5155 continue;
5156 }
5157
5158 // Process instructions only once (termination). Each reduction cycle
5159 // value must only be used once, except by phi nodes and min/max
5160 // reductions which are represented as a cmp followed by a select.
5161 ReductionInstDesc IgnoredVal(false, nullptr);
5162 if (VisitedInsts.insert(UI).second) {
5163 if (isa<PHINode>(UI))
5164 PHIs.push_back(UI);
5165 else
5166 NonPHIs.push_back(UI);
5167 } else if (!isa<PHINode>(UI) &&
5168 ((!isa<FCmpInst>(UI) &&
5169 !isa<ICmpInst>(UI) &&
5170 !isa<SelectInst>(UI)) ||
5171 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
5172 return false;
5173
5174 // Remember that we completed the cycle.
5175 if (UI == Phi)
5176 FoundStartPHI = true;
5177 }
5178 Worklist.append(PHIs.begin(), PHIs.end());
5179 Worklist.append(NonPHIs.begin(), NonPHIs.end());
5180 }
5181
5182 // This means we have seen one but not the other instruction of the
5183 // pattern or more than just a select and cmp.
5184 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
5185 NumCmpSelectPatternInst != 2)
5186 return false;
5187
5188 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
5189 return false;
5190
5191 // We found a reduction var if we have reached the original phi node and we
5192 // only have a single instruction with out-of-loop users.
5193
5194 // This instruction is allowed to have out-of-loop users.
5195 AllowedExit.insert(ExitInstruction);
5196
5197 // Save the description of this reduction variable.
5198 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
5199 ReduxDesc.MinMaxKind);
5200 Reductions[Phi] = RD;
5201 // We've ended the cycle. This is a reduction variable if we have an
5202 // outside user and it has a binary op.
5203
5204 return true;
5205}
5206
5207/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
5208/// pattern corresponding to a min(X, Y) or max(X, Y).
5209LoopVectorizationLegality::ReductionInstDesc
5210LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
5211 ReductionInstDesc &Prev) {
5212
5213 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&(((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<
SelectInst>(I)) && "Expect a select instruction") ?
static_cast<void> (0) : __assert_fail ("(isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && \"Expect a select instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5214, __PRETTY_FUNCTION__))
5214 "Expect a select instruction")(((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<
SelectInst>(I)) && "Expect a select instruction") ?
static_cast<void> (0) : __assert_fail ("(isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && \"Expect a select instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5214, __PRETTY_FUNCTION__))
;
5215 Instruction *Cmp = nullptr;
5216 SelectInst *Select = nullptr;
5217
5218 // We must handle the select(cmp()) as a single instruction. Advance to the
5219 // select.
5220 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
5221 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
5222 return ReductionInstDesc(false, I);
5223 return ReductionInstDesc(Select, Prev.MinMaxKind);
5224 }
5225
5226 // Only handle single use cases for now.
5227 if (!(Select = dyn_cast<SelectInst>(I)))
5228 return ReductionInstDesc(false, I);
5229 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
5230 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
5231 return ReductionInstDesc(false, I);
5232 if (!Cmp->hasOneUse())
5233 return ReductionInstDesc(false, I);
5234
5235 Value *CmpLeft;
5236 Value *CmpRight;
5237
5238 // Look for a min/max pattern.
5239 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5240 return ReductionInstDesc(Select, MRK_UIntMin);
5241 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5242 return ReductionInstDesc(Select, MRK_UIntMax);
5243 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5244 return ReductionInstDesc(Select, MRK_SIntMax);
5245 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5246 return ReductionInstDesc(Select, MRK_SIntMin);
5247 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5248 return ReductionInstDesc(Select, MRK_FloatMin);
5249 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5250 return ReductionInstDesc(Select, MRK_FloatMax);
5251 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5252 return ReductionInstDesc(Select, MRK_FloatMin);
5253 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5254 return ReductionInstDesc(Select, MRK_FloatMax);
5255
5256 return ReductionInstDesc(false, I);
5257}
5258
5259LoopVectorizationLegality::ReductionInstDesc
5260LoopVectorizationLegality::isReductionInstr(Instruction *I,
5261 ReductionKind Kind,
5262 ReductionInstDesc &Prev) {
5263 bool FP = I->getType()->isFloatingPointTy();
5264 bool FastMath = FP && I->hasUnsafeAlgebra();
5265 switch (I->getOpcode()) {
5266 default:
5267 return ReductionInstDesc(false, I);
5268 case Instruction::PHI:
5269 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
5270 Kind != RK_FloatMinMax))
5271 return ReductionInstDesc(false, I);
5272 return ReductionInstDesc(I, Prev.MinMaxKind);
5273 case Instruction::Sub:
5274 case Instruction::Add:
5275 return ReductionInstDesc(Kind == RK_IntegerAdd, I);
5276 case Instruction::Mul:
5277 return ReductionInstDesc(Kind == RK_IntegerMult, I);
5278 case Instruction::And:
5279 return ReductionInstDesc(Kind == RK_IntegerAnd, I);
5280 case Instruction::Or:
5281 return ReductionInstDesc(Kind == RK_IntegerOr, I);
5282 case Instruction::Xor:
5283 return ReductionInstDesc(Kind == RK_IntegerXor, I);
5284 case Instruction::FMul:
5285 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
5286 case Instruction::FSub:
5287 case Instruction::FAdd:
5288 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
5289 case Instruction::FCmp:
5290 case Instruction::ICmp:
5291 case Instruction::Select:
5292 if (Kind != RK_IntegerMinMax &&
5293 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
5294 return ReductionInstDesc(false, I);
5295 return isMinMaxSelectCmpPattern(I, Prev);
5296 }
5297}
5298
5299LoopVectorizationLegality::InductionKind
5300LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
5301 Type *PhiTy = Phi->getType();
5302 // We only handle integer and pointer inductions variables.
5303 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
5304 return IK_NoInduction;
5305
5306 // Check that the PHI is consecutive.
5307 const SCEV *PhiScev = SE->getSCEV(Phi);
5308 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
5309 if (!AR) {
5310 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: PHI is not a poly recurrence.\n"
; } } while (0)
;
5311 return IK_NoInduction;
5312 }
5313 const SCEV *Step = AR->getStepRecurrence(*SE);
5314
5315 // Integer inductions need to have a stride of one.
5316 if (PhiTy->isIntegerTy()) {
5317 if (Step->isOne())
5318 return IK_IntInduction;
5319 if (Step->isAllOnesValue())
5320 return IK_ReverseIntInduction;
5321 return IK_NoInduction;
5322 }
5323
5324 // Calculate the pointer stride and check if it is consecutive.
5325 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5326 if (!C)
5327 return IK_NoInduction;
5328
5329 assert(PhiTy->isPointerTy() && "The PHI must be a pointer")((PhiTy->isPointerTy() && "The PHI must be a pointer"
) ? static_cast<void> (0) : __assert_fail ("PhiTy->isPointerTy() && \"The PHI must be a pointer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5329, __PRETTY_FUNCTION__))
;
5330 Type *PointerElementType = PhiTy->getPointerElementType();
5331 // The pointer stride cannot be determined if the pointer element type is not
5332 // sized.
5333 if (!PointerElementType->isSized())
5334 return IK_NoInduction;
5335
5336 uint64_t Size = DL->getTypeAllocSize(PointerElementType);
5337 if (C->getValue()->equalsInt(Size))
5338 return IK_PtrInduction;
5339 else if (C->getValue()->equalsInt(0 - Size))
5340 return IK_ReversePtrInduction;
5341
5342 return IK_NoInduction;
5343}
5344
5345bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5346 Value *In0 = const_cast<Value*>(V);
5347 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5348 if (!PN)
5349 return false;
5350
5351 return Inductions.count(PN);
5352}
5353
5354bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5355 assert(TheLoop->contains(BB) && "Unknown block used")((TheLoop->contains(BB) && "Unknown block used") ?
static_cast<void> (0) : __assert_fail ("TheLoop->contains(BB) && \"Unknown block used\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5355, __PRETTY_FUNCTION__))
;
5356
5357 // Blocks that do not dominate the latch need predication.
5358 BasicBlock* Latch = TheLoop->getLoopLatch();
5359 return !DT->dominates(BB, Latch);
5360}
5361
5362bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
5363 SmallPtrSetImpl<Value *> &SafePtrs) {
5364
5365 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5366 // Check that we don't have a constant expression that can trap as operand.
5367 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
5368 OI != OE; ++OI) {
5369 if (Constant *C = dyn_cast<Constant>(*OI))
5370 if (C->canTrap())
5371 return false;
5372 }
5373 // We might be able to hoist the load.
5374 if (it->mayReadFromMemory()) {
5375 LoadInst *LI = dyn_cast<LoadInst>(it);
5376 if (!LI)
5377 return false;
5378 if (!SafePtrs.count(LI->getPointerOperand())) {
5379 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
5380 MaskedOp.insert(LI);
5381 continue;
5382 }
5383 return false;
5384 }
5385 }
5386
5387 // We don't predicate stores at the moment.
5388 if (it->mayWriteToMemory()) {
5389 StoreInst *SI = dyn_cast<StoreInst>(it);
5390 // We only support predication of stores in basic blocks with one
5391 // predecessor.
5392 if (!SI)
5393 return false;
5394
5395 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
5396 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
5397
5398 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
5399 !isSinglePredecessor) {
5400 // Build a masked store if it is legal for the target, otherwise scalarize
5401 // the block.
5402 bool isLegalMaskedOp =
5403 isLegalMaskedStore(SI->getValueOperand()->getType(),
5404 SI->getPointerOperand());
5405 if (isLegalMaskedOp) {
5406 --NumPredStores;
5407 MaskedOp.insert(SI);
5408 continue;
5409 }
5410 return false;
5411 }
5412 }
5413 if (it->mayThrow())
5414 return false;
5415
5416 // The instructions below can trap.
5417 switch (it->getOpcode()) {
5418 default: continue;
5419 case Instruction::UDiv:
5420 case Instruction::SDiv:
5421 case Instruction::URem:
5422 case Instruction::SRem:
5423 return false;
5424 }
5425 }
5426
5427 return true;
5428}
5429
5430LoopVectorizationCostModel::VectorizationFactor
5431LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
5432 // Width 1 means no vectorize
5433 VectorizationFactor Factor = { 1U, 0U };
5434 if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
5435 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os");
5436 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"
; } } while (0)
;
5437 return Factor;
5438 }
5439
5440 if (!EnableCondStoresVectorization && Legal->NumPredStores) {
5441 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization");
5442 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: No vectorization. There are conditional stores.\n"
; } } while (0)
;
5443 return Factor;
5444 }
5445
5446 // Find the trip count.
5447 unsigned TC = SE->getSmallConstantTripCount(TheLoop);
5448 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found trip count: "
<< TC << '\n'; } } while (0)
;
5449
5450 unsigned WidestType = getWidestType();
5451 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5452 unsigned MaxSafeDepDist = -1U;
5453 if (Legal->getMaxSafeDepDistBytes() != -1U)
5454 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5455 WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
5456 WidestRegister : MaxSafeDepDist);
5457 unsigned MaxVectorSize = WidestRegister / WidestType;
5458 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest type: "
<< WidestType << " bits.\n"; } } while (0)
;
5459 DEBUG(dbgs() << "LV: The Widest register is: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest register is: "
<< WidestRegister << " bits.\n"; } } while (0)
5460 << WidestRegister << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest register is: "
<< WidestRegister << " bits.\n"; } } while (0)
;
5461
5462 if (MaxVectorSize == 0) {
5463 DEBUG(dbgs() << "LV: The target has no vector registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has no vector registers.\n"
; } } while (0)
;
5464 MaxVectorSize = 1;
5465 }
5466
5467 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"((MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!") ? static_cast<void> (0) : __assert_fail
("MaxVectorSize <= 64 && \"Did not expect to pack so many elements\" \" into one vector!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5468, __PRETTY_FUNCTION__))
5468 " into one vector!")((MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!") ? static_cast<void> (0) : __assert_fail
("MaxVectorSize <= 64 && \"Did not expect to pack so many elements\" \" into one vector!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5468, __PRETTY_FUNCTION__))
;
5469
5470 unsigned VF = MaxVectorSize;
5471
5472 // If we optimize the program for size, avoid creating the tail loop.
5473 if (OptForSize) {
5474 // If we are unable to calculate the trip count then don't try to vectorize.
5475 if (TC < 2) {
5476 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow");
5477 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. A tail loop is required in Os.\n"
; } } while (0)
;
5478 return Factor;
5479 }
5480
5481 // Find the maximum SIMD width that can fit within the trip count.
5482 VF = TC % MaxVectorSize;
5483
5484 if (VF == 0)
5485 VF = MaxVectorSize;
5486
5487 // If the trip count that we found modulo the vectorization factor is not
5488 // zero then we require a tail.
5489 if (VF < 2) {
5490 emitAnalysis(Report() << "cannot optimize for size and vectorize at the "
5491 "same time. Enable vectorization of this loop "
5492 "with '#pragma clang loop vectorize(enable)' "
5493 "when compiling with -Os");
5494 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. A tail loop is required in Os.\n"
; } } while (0)
;
5495 return Factor;
5496 }
5497 }
5498
5499 int UserVF = Hints->getWidth();
5500 if (UserVF != 0) {
5501 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two")((isPowerOf2_32(UserVF) && "VF needs to be a power of two"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(UserVF) && \"VF needs to be a power of two\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5501, __PRETTY_FUNCTION__))
;
5502 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Using user VF " <<
UserVF << ".\n"; } } while (0)
;
5503
5504 Factor.Width = UserVF;
5505 return Factor;
5506 }
5507
5508 float Cost = expectedCost(1);
5509#ifndef NDEBUG
5510 const float ScalarCost = Cost;
5511#endif /* NDEBUG */
5512 unsigned Width = 1;
5513 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalar loop costs: "
<< (int)ScalarCost << ".\n"; } } while (0)
;
5514
5515 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5516 // Ignore scalar width, because the user explicitly wants vectorization.
5517 if (ForceVectorization && VF > 1) {
5518 Width = 2;
5519 Cost = expectedCost(Width) / (float)Width;
5520 }
5521
5522 for (unsigned i=2; i <= VF; i*=2) {
5523 // Notice that the vector loop needs to be executed less times, so
5524 // we need to divide the cost of the vector loops by the width of
5525 // the vector elements.
5526 float VectorCost = expectedCost(i) / (float)i;
5527 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vector loop of width "
<< i << " costs: " << (int)VectorCost <<
".\n"; } } while (0)
5528 (int)VectorCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vector loop of width "
<< i << " costs: " << (int)VectorCost <<
".\n"; } } while (0)
;
5529 if (VectorCost < Cost) {
5530 Cost = VectorCost;
5531 Width = i;
5532 }
5533 }
5534
5535 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (0)
5536 << "LV: Vectorization seems to be not beneficial, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (0)
5537 << "but was forced by a user.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (0)
;
5538 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Selecting VF: "<<
Width << ".\n"; } } while (0)
;
5539 Factor.Width = Width;
5540 Factor.Cost = Width * Cost;
5541 return Factor;
5542}
5543
5544unsigned LoopVectorizationCostModel::getWidestType() {
5545 unsigned MaxWidth = 8;
5546
5547 // For each block.
5548 for (Loop::block_iterator bb = TheLoop->block_begin(),
5549 be = TheLoop->block_end(); bb != be; ++bb) {
5550 BasicBlock *BB = *bb;
5551
5552 // For each instruction in the loop.
5553 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5554 Type *T = it->getType();
5555
5556 // Ignore ephemeral values.
5557 if (EphValues.count(it))
5558 continue;
5559
5560 // Only examine Loads, Stores and PHINodes.
5561 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
5562 continue;
5563
5564 // Examine PHI nodes that are reduction variables.
5565 if (PHINode *PN = dyn_cast<PHINode>(it))
5566 if (!Legal->getReductionVars()->count(PN))
5567 continue;
5568
5569 // Examine the stored values.
5570 if (StoreInst *ST = dyn_cast<StoreInst>(it))
5571 T = ST->getValueOperand()->getType();
5572
5573 // Ignore loaded pointer types and stored pointer types that are not
5574 // consecutive. However, we do want to take consecutive stores/loads of
5575 // pointer vectors into account.
5576 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
5577 continue;
5578
5579 MaxWidth = std::max(MaxWidth,
5580 (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
5581 }
5582 }
5583
5584 return MaxWidth;
5585}
5586
5587unsigned
5588LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
5589 unsigned VF,
5590 unsigned LoopCost) {
5591
5592 // -- The unroll heuristics --
5593 // We unroll the loop in order to expose ILP and reduce the loop overhead.
5594 // There are many micro-architectural considerations that we can't predict
5595 // at this level. For example, frontend pressure (on decode or fetch) due to
5596 // code size, or the number and capabilities of the execution ports.
5597 //
5598 // We use the following heuristics to select the unroll factor:
5599 // 1. If the code has reductions, then we unroll in order to break the cross
5600 // iteration dependency.
5601 // 2. If the loop is really small, then we unroll in order to reduce the loop
5602 // overhead.
5603 // 3. We don't unroll if we think that we will spill registers to memory due
5604 // to the increased register pressure.
5605
5606 // Use the user preference, unless 'auto' is selected.
5607 int UserUF = Hints->getInterleave();
5608 if (UserUF != 0)
5609 return UserUF;
5610
5611 // When we optimize for size, we don't unroll.
5612 if (OptForSize)
5613 return 1;
5614
5615 // We used the distance for the unroll factor.
5616 if (Legal->getMaxSafeDepDistBytes() != -1U)
5617 return 1;
5618
5619 // Do not unroll loops with a relatively small trip count.
5620 unsigned TC = SE->getSmallConstantTripCount(TheLoop);
5621 if (TC > 1 && TC < TinyTripCountUnrollThreshold)
5622 return 1;
5623
5624 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5625 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has " <<
TargetNumRegisters << " registers\n"; } } while (0)
5626 " registers\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has " <<
TargetNumRegisters << " registers\n"; } } while (0)
;
5627
5628 if (VF == 1) {
5629 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5630 TargetNumRegisters = ForceTargetNumScalarRegs;
5631 } else {
5632 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5633 TargetNumRegisters = ForceTargetNumVectorRegs;
5634 }
5635
5636 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
5637 // We divide by these constants so assume that we have at least one
5638 // instruction that uses at least one register.
5639 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5640 R.NumInstructions = std::max(R.NumInstructions, 1U);
5641
5642 // We calculate the unroll factor using the following formula.
5643 // Subtract the number of loop invariants from the number of available
5644 // registers. These registers are used by all of the unrolled instances.
5645 // Next, divide the remaining registers by the number of registers that is
5646 // required by the loop, in order to estimate how many parallel instances
5647 // fit without causing spills. All of this is rounded down if necessary to be
5648 // a power of two. We want power of two unroll factors to simplify any
5649 // addressing operations or alignment considerations.
5650 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5651 R.MaxLocalUsers);
5652
5653 // Don't count the induction variable as unrolled.
5654 if (EnableIndVarRegisterHeur)
5655 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5656 std::max(1U, (R.MaxLocalUsers - 1)));
5657
5658 // Clamp the unroll factor ranges to reasonable factors.
5659 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
5660
5661 // Check if the user has overridden the unroll max.
5662 if (VF == 1) {
5663 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5664 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
5665 } else {
5666 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5667 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
5668 }
5669
5670 // If we did not calculate the cost for VF (because the user selected the VF)
5671 // then we calculate the cost of VF here.
5672 if (LoopCost == 0)
5673 LoopCost = expectedCost(VF);
5674
5675 // Clamp the calculated UF to be between the 1 and the max unroll factor
5676 // that the target allows.
5677 if (UF > MaxInterleaveSize)
5678 UF = MaxInterleaveSize;
5679 else if (UF < 1)
5680 UF = 1;
5681
5682 // Unroll if we vectorized this loop and there is a reduction that could
5683 // benefit from unrolling.
5684 if (VF > 1 && Legal->getReductionVars()->size()) {
5685 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Unrolling because of reductions.\n"
; } } while (0)
;
5686 return UF;
5687 }
5688
5689 // Note that if we've already vectorized the loop we will have done the
5690 // runtime check and so unrolling won't require further checks.
5691 bool UnrollingRequiresRuntimePointerCheck =
5692 (VF == 1 && Legal->getRuntimePointerCheck()->Need);
5693
5694 // We want to unroll small loops in order to reduce the loop overhead and
5695 // potentially expose ILP opportunities.
5696 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop cost is " <<
LoopCost << '\n'; } } while (0)
;
5697 if (!UnrollingRequiresRuntimePointerCheck &&
5698 LoopCost < SmallLoopCost) {
5699 // We assume that the cost overhead is 1 and we use the cost model
5700 // to estimate the cost of the loop and unroll until the cost of the
5701 // loop overhead is about 5% of the cost of the loop.
5702 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5703
5704 // Unroll until store/load ports (estimated by max unroll factor) are
5705 // saturated.
5706 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
5707 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1);
5708
5709 // If we have a scalar reduction (vector reductions are already dealt with
5710 // by this point), we can increase the critical path length if the loop
5711 // we're unrolling is inside another loop. Limit, by default to 2, so the
5712 // critical path only gets increased by one reduction operation.
5713 if (Legal->getReductionVars()->size() &&
5714 TheLoop->getLoopDepth() > 1) {
5715 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
5716 SmallUF = std::min(SmallUF, F);
5717 StoresUF = std::min(StoresUF, F);
5718 LoadsUF = std::min(LoadsUF, F);
5719 }
5720
5721 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
5722 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Unrolling to saturate store or load ports.\n"
; } } while (0)
;
5723 return std::max(StoresUF, LoadsUF);
5724 }
5725
5726 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Unrolling to reduce branch cost.\n"
; } } while (0)
;
5727 return SmallUF;
5728 }
5729
5730 DEBUG(dbgs() << "LV: Not Unrolling.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not Unrolling.\n";
} } while (0)
;
5731 return 1;
5732}
5733
5734LoopVectorizationCostModel::RegisterUsage
5735LoopVectorizationCostModel::calculateRegisterUsage() {
5736 // This function calculates the register usage by measuring the highest number
5737 // of values that are alive at a single location. Obviously, this is a very
5738 // rough estimation. We scan the loop in a topological order in order and
5739 // assign a number to each instruction. We use RPO to ensure that defs are
5740 // met before their users. We assume that each instruction that has in-loop
5741 // users starts an interval. We record every time that an in-loop value is
5742 // used, so we have a list of the first and last occurrences of each
5743 // instruction. Next, we transpose this data structure into a multi map that
5744 // holds the list of intervals that *end* at a specific location. This multi
5745 // map allows us to perform a linear search. We scan the instructions linearly
5746 // and record each time that a new interval starts, by placing it in a set.
5747 // If we find this value in the multi-map then we remove it from the set.
5748 // The max register usage is the maximum size of the set.
5749 // We also search for instructions that are defined outside the loop, but are
5750 // used inside the loop. We need this number separately from the max-interval
5751 // usage number because when we unroll, loop-invariant values do not take
5752 // more register.
5753 LoopBlocksDFS DFS(TheLoop);
5754 DFS.perform(LI);
5755
5756 RegisterUsage R;
5757 R.NumInstructions = 0;
5758
5759 // Each 'key' in the map opens a new interval. The values
5760 // of the map are the index of the 'last seen' usage of the
5761 // instruction that is the key.
5762 typedef DenseMap<Instruction*, unsigned> IntervalMap;
5763 // Maps instruction to its index.
5764 DenseMap<unsigned, Instruction*> IdxToInstr;
5765 // Marks the end of each interval.
5766 IntervalMap EndPoint;
5767 // Saves the list of instruction indices that are used in the loop.
5768 SmallSet<Instruction*, 8> Ends;
5769 // Saves the list of values that are used in the loop but are
5770 // defined outside the loop, such as arguments and constants.
5771 SmallPtrSet<Value*, 8> LoopInvariants;
5772
5773 unsigned Index = 0;
5774 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
5775 be = DFS.endRPO(); bb != be; ++bb) {
5776 R.NumInstructions += (*bb)->size();
5777 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
5778 ++it) {
5779 Instruction *I = it;
5780 IdxToInstr[Index++] = I;
5781
5782 // Save the end location of each USE.
5783 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
5784 Value *U = I->getOperand(i);
5785 Instruction *Instr = dyn_cast<Instruction>(U);
5786
5787 // Ignore non-instruction values such as arguments, constants, etc.
5788 if (!Instr) continue;
5789
5790 // If this instruction is outside the loop then record it and continue.
5791 if (!TheLoop->contains(Instr)) {
5792 LoopInvariants.insert(Instr);
5793 continue;
5794 }
5795
5796 // Overwrite previous end points.
5797 EndPoint[Instr] = Index;
5798 Ends.insert(Instr);
5799 }
5800 }
5801 }
5802
5803 // Saves the list of intervals that end with the index in 'key'.
5804 typedef SmallVector<Instruction*, 2> InstrList;
5805 DenseMap<unsigned, InstrList> TransposeEnds;
5806
5807 // Transpose the EndPoints to a list of values that end at each index.
5808 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
5809 it != e; ++it)
5810 TransposeEnds[it->second].push_back(it->first);
5811
5812 SmallSet<Instruction*, 8> OpenIntervals;
5813 unsigned MaxUsage = 0;
5814
5815
5816 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Calculating max register usage:\n"
; } } while (0)
;
5817 for (unsigned int i = 0; i < Index; ++i) {
5818 Instruction *I = IdxToInstr[i];
5819 // Ignore instructions that are never used within the loop.
5820 if (!Ends.count(I)) continue;
5821
5822 // Ignore ephemeral values.
5823 if (EphValues.count(I))
5824 continue;
5825
5826 // Remove all of the instructions that end at this location.
5827 InstrList &List = TransposeEnds[i];
5828 for (unsigned int j=0, e = List.size(); j < e; ++j)
5829 OpenIntervals.erase(List[j]);
5830
5831 // Count the number of live interals.
5832 MaxUsage = std::max(MaxUsage, OpenIntervals.size());
5833
5834 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): At #" <<
i << " Interval # " << OpenIntervals.size() <<
'\n'; } } while (0)
5835 OpenIntervals.size() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): At #" <<
i << " Interval # " << OpenIntervals.size() <<
'\n'; } } while (0)
;
5836
5837 // Add the current instruction to the list of open intervals.
5838 OpenIntervals.insert(I);
5839 }
5840
5841 unsigned Invariant = LoopInvariants.size();
5842 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Found max usage: "
<< MaxUsage << '\n'; } } while (0)
;
5843 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Found invariant usage: "
<< Invariant << '\n'; } } while (0)
;
5844 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): LoopSize: " <<
R.NumInstructions << '\n'; } } while (0)
;
5845
5846 R.LoopInvariantRegs = Invariant;
5847 R.MaxLocalUsers = MaxUsage;
5848 return R;
5849}
5850
5851unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
5852 unsigned Cost = 0;
5853
5854 // For each block.
5855 for (Loop::block_iterator bb = TheLoop->block_begin(),
5856 be = TheLoop->block_end(); bb != be; ++bb) {
5857 unsigned BlockCost = 0;
5858 BasicBlock *BB = *bb;
5859
5860 // For each instruction in the old loop.
5861 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5862 // Skip dbg intrinsics.
5863 if (isa<DbgInfoIntrinsic>(it))
5864 continue;
5865
5866 // Ignore ephemeral values.
5867 if (EphValues.count(it))
5868 continue;
5869
5870 unsigned C = getInstructionCost(it, VF);
5871
5872 // Check if we should override the cost.
5873 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5874 C = ForceTargetInstructionCost;
5875
5876 BlockCost += C;
5877 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of "
<< C << " for VF " << VF << " For instruction: "
<< *it << '\n'; } } while (0)
5878 VF << " For instruction: " << *it << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of "
<< C << " for VF " << VF << " For instruction: "
<< *it << '\n'; } } while (0)
;
5879 }
5880
5881 // We assume that if-converted blocks have a 50% chance of being executed.
5882 // When the code is scalar then some of the blocks are avoided due to CF.
5883 // When the code is vectorized we execute all code paths.
5884 if (VF == 1 && Legal->blockNeedsPredication(*bb))
5885 BlockCost /= 2;
5886
5887 Cost += BlockCost;
5888 }
5889
5890 return Cost;
5891}
5892
5893/// \brief Check whether the address computation for a non-consecutive memory
5894/// access looks like an unlikely candidate for being merged into the indexing
5895/// mode.
5896///
5897/// We look for a GEP which has one index that is an induction variable and all
5898/// other indices are loop invariant. If the stride of this access is also
5899/// within a small bound we decide that this address computation can likely be
5900/// merged into the addressing mode.
5901/// In all other cases, we identify the address computation as complex.
5902static bool isLikelyComplexAddressComputation(Value *Ptr,
5903 LoopVectorizationLegality *Legal,
5904 ScalarEvolution *SE,
5905 const Loop *TheLoop) {
5906 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5907 if (!Gep)
5908 return true;
5909
5910 // We are looking for a gep with all loop invariant indices except for one
5911 // which should be an induction variable.
5912 unsigned NumOperands = Gep->getNumOperands();
5913 for (unsigned i = 1; i < NumOperands; ++i) {
5914 Value *Opd = Gep->getOperand(i);
5915 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5916 !Legal->isInductionVariable(Opd))
5917 return true;
5918 }
5919
5920 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5921 // can likely be merged into the address computation.
5922 unsigned MaxMergeDistance = 64;
5923
5924 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5925 if (!AddRec)
5926 return true;
5927
5928 // Check the step is constant.
5929 const SCEV *Step = AddRec->getStepRecurrence(*SE);
5930 // Calculate the pointer stride and check if it is consecutive.
5931 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5932 if (!C)
5933 return true;
5934
5935 const APInt &APStepVal = C->getValue()->getValue();
5936
5937 // Huge step value - give up.
5938 if (APStepVal.getBitWidth() > 64)
5939 return true;
5940
5941 int64_t StepVal = APStepVal.getSExtValue();
5942
5943 return StepVal > MaxMergeDistance;
5944}
5945
5946static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5947 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
5948 return true;
5949 return false;
5950}
5951
5952unsigned
5953LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5954 // If we know that this instruction will remain uniform, check the cost of
5955 // the scalar version.
5956 if (Legal->isUniformAfterVectorization(I))
5957 VF = 1;
5958
5959 Type *RetTy = I->getType();
5960 Type *VectorTy = ToVectorTy(RetTy, VF);
5961
5962 // TODO: We need to estimate the cost of intrinsic calls.
5963 switch (I->getOpcode()) {
5964 case Instruction::GetElementPtr:
5965 // We mark this instruction as zero-cost because the cost of GEPs in
5966 // vectorized code depends on whether the corresponding memory instruction
5967 // is scalarized or not. Therefore, we handle GEPs with the memory
5968 // instruction cost.
5969 return 0;
5970 case Instruction::Br: {
5971 return TTI.getCFInstrCost(I->getOpcode());
5972 }
5973 case Instruction::PHI:
5974 //TODO: IF-converted IFs become selects.
5975 return 0;
5976 case Instruction::Add:
5977 case Instruction::FAdd:
5978 case Instruction::Sub:
5979 case Instruction::FSub:
5980 case Instruction::Mul:
5981 case Instruction::FMul:
5982 case Instruction::UDiv:
5983 case Instruction::SDiv:
5984 case Instruction::FDiv:
5985 case Instruction::URem:
5986 case Instruction::SRem:
5987 case Instruction::FRem:
5988 case Instruction::Shl:
5989 case Instruction::LShr:
5990 case Instruction::AShr:
5991 case Instruction::And:
5992 case Instruction::Or:
5993 case Instruction::Xor: {
5994 // Since we will replace the stride by 1 the multiplication should go away.
5995 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5996 return 0;
5997 // Certain instructions can be cheaper to vectorize if they have a constant
5998 // second vector operand. One example of this are shifts on x86.
5999 TargetTransformInfo::OperandValueKind Op1VK =
6000 TargetTransformInfo::OK_AnyValue;
6001 TargetTransformInfo::OperandValueKind Op2VK =
6002 TargetTransformInfo::OK_AnyValue;
6003 TargetTransformInfo::OperandValueProperties Op1VP =
6004 TargetTransformInfo::OP_None;
6005 TargetTransformInfo::OperandValueProperties Op2VP =
6006 TargetTransformInfo::OP_None;
6007 Value *Op2 = I->getOperand(1);
6008
6009 // Check for a splat of a constant or for a non uniform vector of constants.
6010 if (isa<ConstantInt>(Op2)) {
6011 ConstantInt *CInt = cast<ConstantInt>(Op2);
6012 if (CInt && CInt->getValue().isPowerOf2())
6013 Op2VP = TargetTransformInfo::OP_PowerOf2;
6014 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6015 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
6016 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6017 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
6018 if (SplatValue) {
6019 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
6020 if (CInt && CInt->getValue().isPowerOf2())
6021 Op2VP = TargetTransformInfo::OP_PowerOf2;
6022 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6023 }
6024 }
6025
6026 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
6027 Op1VP, Op2VP);
6028 }
6029 case Instruction::Select: {
6030 SelectInst *SI = cast<SelectInst>(I);
6031 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6032 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6033 Type *CondTy = SI->getCondition()->getType();
6034 if (!ScalarCond)
6035 CondTy = VectorType::get(CondTy, VF);
6036
6037 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
6038 }
6039 case Instruction::ICmp:
6040 case Instruction::FCmp: {
6041 Type *ValTy = I->getOperand(0)->getType();
6042 VectorTy = ToVectorTy(ValTy, VF);
6043 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
6044 }
6045 case Instruction::Store:
6046 case Instruction::Load: {
6047 StoreInst *SI = dyn_cast<StoreInst>(I);
6048 LoadInst *LI = dyn_cast<LoadInst>(I);
6049 Type *ValTy = (SI ? SI->getValueOperand()->getType() :
6050 LI->getType());
6051 VectorTy = ToVectorTy(ValTy, VF);
6052
6053 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
6054 unsigned AS = SI ? SI->getPointerAddressSpace() :
6055 LI->getPointerAddressSpace();
6056 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
6057 // We add the cost of address computation here instead of with the gep
6058 // instruction because only here we know whether the operation is
6059 // scalarized.
6060 if (VF == 1)
6061 return TTI.getAddressComputationCost(VectorTy) +
6062 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6063
6064 // Scalarized loads/stores.
6065 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6066 bool Reverse = ConsecutiveStride < 0;
6067 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
6068 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
6069 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
6070 bool IsComplexComputation =
6071 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
6072 unsigned Cost = 0;
6073 // The cost of extracting from the value vector and pointer vector.
6074 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6075 for (unsigned i = 0; i < VF; ++i) {
6076 // The cost of extracting the pointer operand.
6077 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
6078 // In case of STORE, the cost of ExtractElement from the vector.
6079 // In case of LOAD, the cost of InsertElement into the returned
6080 // vector.
6081 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
6082 Instruction::InsertElement,
6083 VectorTy, i);
6084 }
6085
6086 // The cost of the scalar loads/stores.
6087 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
6088 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
6089 Alignment, AS);
6090 return Cost;
6091 }
6092
6093 // Wide load/stores.
6094 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
6095 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6096
6097 if (Reverse)
6098 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
6099 VectorTy, 0);
6100 return Cost;
6101 }
6102 case Instruction::ZExt:
6103 case Instruction::SExt:
6104 case Instruction::FPToUI:
6105 case Instruction::FPToSI:
6106 case Instruction::FPExt:
6107 case Instruction::PtrToInt:
6108 case Instruction::IntToPtr:
6109 case Instruction::SIToFP:
6110 case Instruction::UIToFP:
6111 case Instruction::Trunc:
6112 case Instruction::FPTrunc:
6113 case Instruction::BitCast: {
6114 // We optimize the truncation of induction variable.
6115 // The cost of these is the same as the scalar operation.
6116 if (I->getOpcode() == Instruction::Trunc &&
6117 Legal->isInductionVariable(I->getOperand(0)))
6118 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
6119 I->getOperand(0)->getType());
6120
6121 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
6122 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
6123 }
6124 case Instruction::Call: {
6125 CallInst *CI = cast<CallInst>(I);
6126 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
6127 assert(ID && "Not an intrinsic call!")((ID && "Not an intrinsic call!") ? static_cast<void
> (0) : __assert_fail ("ID && \"Not an intrinsic call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6127, __PRETTY_FUNCTION__))
;
6128 Type *RetTy = ToVectorTy(CI->getType(), VF);
6129 SmallVector<Type*, 4> Tys;
6130 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
6131 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
6132 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
6133 }
6134 default: {
6135 // We are scalarizing the instruction. Return the cost of the scalar
6136 // instruction, plus the cost of insert and extract into vector
6137 // elements, times the vector width.
6138 unsigned Cost = 0;
6139
6140 if (!RetTy->isVoidTy() && VF != 1) {
6141 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
6142 VectorTy);
6143 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
6144 VectorTy);
6145
6146 // The cost of inserting the results plus extracting each one of the
6147 // operands.
6148 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
6149 }
6150
6151 // The cost of executing VF copies of the scalar instruction. This opcode
6152 // is unknown. Assume that it is the same as 'mul'.
6153 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6154 return Cost;
6155 }
6156 }// end of switch.
6157}
6158
6159Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
6160 if (Scalar->isVoidTy() || VF == 1)
6161 return Scalar;
6162 return VectorType::get(Scalar, VF);
6163}
6164
6165char LoopVectorize::ID = 0;
6166static const char lv_name[] = "Loop Vectorization";
6167INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)static void* initializeLoopVectorizePassOnce(PassRegistry &
Registry) {
6168INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)initializeTargetTransformInfoAnalysisGroup(Registry);
6169INITIALIZE_AG_DEPENDENCY(AliasAnalysis)initializeAliasAnalysisAnalysisGroup(Registry);
6170INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)initializeAssumptionTrackerPass(Registry);
6171INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)initializeBlockFrequencyInfoPass(Registry);
6172INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
6173INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)initializeScalarEvolutionPass(Registry);
6174INITIALIZE_PASS_DEPENDENCY(LCSSA)initializeLCSSAPass(Registry);
6175INITIALIZE_PASS_DEPENDENCY(LoopInfo)initializeLoopInfoPass(Registry);
6176INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
6177INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo(lv_name, "loop-vectorize", & LoopVectorize
::ID, PassInfo::NormalCtor_t(callDefaultCtor< LoopVectorize
>), false, false); Registry.registerPass(*PI, true); return
PI; } void llvm::initializeLoopVectorizePass(PassRegistry &
Registry) { static volatile sys::cas_flag initialized = 0; sys
::cas_flag old_val = sys::CompareAndSwap(&initialized, 1,
0); if (old_val == 0) { initializeLoopVectorizePassOnce(Registry
); sys::MemoryFence(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6177); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6177, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6177); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6177, &initialized); }
6178
6179namespace llvm {
6180 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6181 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6182 }
6183}
6184
6185bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6186 // Check for a store.
6187 if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
6188 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
6189
6190 // Check for a load.
6191 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
6192 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
6193
6194 return false;
6195}
6196
6197
6198void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
6199 bool IfPredicateStore) {
6200 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors")((!Instr->getType()->isAggregateType() && "Can't handle vectors"
) ? static_cast<void> (0) : __assert_fail ("!Instr->getType()->isAggregateType() && \"Can't handle vectors\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6200, __PRETTY_FUNCTION__))
;
6201 // Holds vector parameters or scalars, in case of uniform vals.
6202 SmallVector<VectorParts, 4> Params;
6203
6204 setDebugLocFromInst(Builder, Instr);
6205
6206 // Find all of the vectorized parameters.
6207 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6208 Value *SrcOp = Instr->getOperand(op);
6209
6210 // If we are accessing the old induction variable, use the new one.
6211 if (SrcOp == OldInduction) {
6212 Params.push_back(getVectorValue(SrcOp));
6213 continue;
6214 }
6215
6216 // Try using previously calculated values.
6217 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
6218
6219 // If the src is an instruction that appeared earlier in the basic block
6220 // then it should already be vectorized.
6221 if (SrcInst && OrigLoop->contains(SrcInst)) {
6222 assert(WidenMap.has(SrcInst) && "Source operand is unavailable")((WidenMap.has(SrcInst) && "Source operand is unavailable"
) ? static_cast<void> (0) : __assert_fail ("WidenMap.has(SrcInst) && \"Source operand is unavailable\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6222, __PRETTY_FUNCTION__))
;
6223 // The parameter is a vector value from earlier.
6224 Params.push_back(WidenMap.get(SrcInst));
6225 } else {
6226 // The parameter is a scalar from outside the loop. Maybe even a constant.
6227 VectorParts Scalars;
6228 Scalars.append(UF, SrcOp);
6229 Params.push_back(Scalars);
6230 }
6231 }
6232
6233 assert(Params.size() == Instr->getNumOperands() &&((Params.size() == Instr->getNumOperands() && "Invalid number of operands"
) ? static_cast<void> (0) : __assert_fail ("Params.size() == Instr->getNumOperands() && \"Invalid number of operands\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6234, __PRETTY_FUNCTION__))
6234 "Invalid number of operands")((Params.size() == Instr->getNumOperands() && "Invalid number of operands"
) ? static_cast<void> (0) : __assert_fail ("Params.size() == Instr->getNumOperands() && \"Invalid number of operands\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6234, __PRETTY_FUNCTION__))
;
6235
6236 // Does this instruction return a value ?
6237 bool IsVoidRetTy = Instr->getType()->isVoidTy();
6238
6239 Value *UndefVec = IsVoidRetTy ? nullptr :
6240 UndefValue::get(Instr->getType());
6241 // Create a new entry in the WidenMap and initialize it to Undef or Null.
6242 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
6243
6244 Instruction *InsertPt = Builder.GetInsertPoint();
6245 BasicBlock *IfBlock = Builder.GetInsertBlock();
6246 BasicBlock *CondBlock = nullptr;
6247
6248 VectorParts Cond;
6249 Loop *VectorLp = nullptr;
6250 if (IfPredicateStore) {
6251 assert(Instr->getParent()->getSinglePredecessor() &&((Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks") ? static_cast<void
> (0) : __assert_fail ("Instr->getParent()->getSinglePredecessor() && \"Only support single predecessor blocks\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6252, __PRETTY_FUNCTION__))
6252 "Only support single predecessor blocks")((Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks") ? static_cast<void
> (0) : __assert_fail ("Instr->getParent()->getSinglePredecessor() && \"Only support single predecessor blocks\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6252, __PRETTY_FUNCTION__))
;
6253 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
6254 Instr->getParent());
6255 VectorLp = LI->getLoopFor(IfBlock);
6256 assert(VectorLp && "Must have a loop for this block")((VectorLp && "Must have a loop for this block") ? static_cast
<void> (0) : __assert_fail ("VectorLp && \"Must have a loop for this block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6256, __PRETTY_FUNCTION__))
;
6257 }
6258
6259 // For each vector unroll 'part':
6260 for (unsigned Part = 0; Part < UF; ++Part) {
6261 // For each scalar that we create:
6262
6263 // Start an "if (pred) a[i] = ..." block.
6264 Value *Cmp = nullptr;
6265 if (IfPredicateStore) {
6266 if (Cond[Part]->getType()->isVectorTy())
6267 Cond[Part] =
6268 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
6269 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
6270 ConstantInt::get(Cond[Part]->getType(), 1));
6271 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
6272 LoopVectorBody.push_back(CondBlock);
6273 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
6274 // Update Builder with newly created basic block.
6275 Builder.SetInsertPoint(InsertPt);
6276 }
6277
6278 Instruction *Cloned = Instr->clone();
6279 if (!IsVoidRetTy)
6280 Cloned->setName(Instr->getName() + ".cloned");
6281 // Replace the operands of the cloned instructions with extracted scalars.
6282 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6283 Value *Op = Params[op][Part];
6284 Cloned->setOperand(op, Op);
6285 }
6286
6287 // Place the cloned scalar in the new loop.
6288 Builder.Insert(Cloned);
6289
6290 // If the original scalar returns a value we need to place it in a vector
6291 // so that future users will be able to use it.
6292 if (!IsVoidRetTy)
6293 VecResults[Part] = Cloned;
6294
6295 // End if-block.
6296 if (IfPredicateStore) {
6297 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
6298 LoopVectorBody.push_back(NewIfBlock);
6299 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
6300 Builder.SetInsertPoint(InsertPt);
6301 Instruction *OldBr = IfBlock->getTerminator();
6302 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
6303 OldBr->eraseFromParent();
6304 IfBlock = NewIfBlock;
6305 }
6306 }
6307}
6308
6309void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
6310 StoreInst *SI = dyn_cast<StoreInst>(Instr);
6311 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6312
6313 return scalarizeInstruction(Instr, IfPredicateStore);
6314}
6315
6316Value *InnerLoopUnroller::reverseVector(Value *Vec) {
6317 return Vec;
6318}
6319
6320Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
6321 return V;
6322}
6323
6324Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
6325 bool Negate) {
6326 // When unrolling and the VF is 1, we only need to add a simple scalar.
6327 Type *ITy = Val->getType();
6328 assert(!ITy->isVectorTy() && "Val must be a scalar")((!ITy->isVectorTy() && "Val must be a scalar") ? static_cast
<void> (0) : __assert_fail ("!ITy->isVectorTy() && \"Val must be a scalar\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6328, __PRETTY_FUNCTION__))
;
6329 Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
6330 return Builder.CreateAdd(Val, C, "induction");
6331}