Bug Summary

File:llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp
Warning:line 1086, column 31
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LowerMatrixIntrinsics.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/lib/Transforms/Scalar -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-07-26-235520-9401-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp
1//===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Lower matrix intrinsics to vector operations.
10//
11// TODO:
12// * Improve fusion:
13// * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14// transposed.
15// * Improve cost-modeling, e.g. choose different number of rows/columns
16// columns for tiles, consider cost of copies on alias.
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21#include "llvm/ADT/GraphTraits.h"
22#include "llvm/ADT/PostOrderIterator.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/DomTreeUpdater.h"
26#include "llvm/Analysis/OptimizationRemarkEmitter.h"
27#include "llvm/Analysis/TargetTransformInfo.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Analysis/VectorUtils.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DebugInfoMetadata.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/MatrixBuilder.h"
38#include "llvm/IR/PatternMatch.h"
39#include "llvm/InitializePasses.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/Alignment.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Transforms/Scalar.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/LoopUtils.h"
47#include "llvm/Transforms/Utils/MatrixUtils.h"
48
49using namespace llvm;
50using namespace PatternMatch;
51
52#define DEBUG_TYPE"lower-matrix-intrinsics" "lower-matrix-intrinsics"
53
54static cl::opt<bool>
55 FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
56 cl::desc("Enable/disable fusing matrix instructions."));
57// TODO: Allow and use non-square tiles.
58static cl::opt<unsigned> TileSize(
59 "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
60 cl::desc(
61 "Tile size for matrix instruction fusion using square-shaped tiles."));
62static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
63 cl::Hidden,
64 cl::desc("Generate loop nest for tiling."));
65static cl::opt<bool> ForceFusion(
66 "force-fuse-matrix", cl::init(false), cl::Hidden,
67 cl::desc("Force matrix instruction fusion even if not profitable."));
68static cl::opt<bool> AllowContractEnabled(
69 "matrix-allow-contract", cl::init(false), cl::Hidden,
70 cl::desc("Allow the use of FMAs if available and profitable. This may "
71 "result in different results, due to less rounding error."));
72
73enum class MatrixLayoutTy { ColumnMajor, RowMajor };
74
75static cl::opt<MatrixLayoutTy> MatrixLayout(
76 "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
77 cl::desc("Sets the default matrix layout"),
78 cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",llvm::cl::OptionEnumValue { "column-major", int(MatrixLayoutTy
::ColumnMajor), "Use column-major layout" }
79 "Use column-major layout")llvm::cl::OptionEnumValue { "column-major", int(MatrixLayoutTy
::ColumnMajor), "Use column-major layout" }
,
80 clEnumValN(MatrixLayoutTy::RowMajor, "row-major",llvm::cl::OptionEnumValue { "row-major", int(MatrixLayoutTy::
RowMajor), "Use row-major layout" }
81 "Use row-major layout")llvm::cl::OptionEnumValue { "row-major", int(MatrixLayoutTy::
RowMajor), "Use row-major layout" }
));
82
83/// Helper function to either return Scope, if it is a subprogram or the
84/// attached subprogram for a local scope.
85static DISubprogram *getSubprogram(DIScope *Scope) {
86 if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
87 return Subprogram;
88 return cast<DILocalScope>(Scope)->getSubprogram();
89}
90
91namespace {
92
93// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
94// the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
95// assuming \p Stride elements between start two consecutive vectors.
96// \p Stride must be >= \p NumElements.
97// For column-major matrixes, the function computes the address of a column
98// vectors and \p NumElements must be set to the number of elements in a column
99// (= number of rows of the matrix). For row-major matrixes, the function
100// computes the address of a row vector and \p NumElements must be set to the
101// number of elements in a column (= number of columns of the matrix).
102//
103// Consider a 4x4 matrix in column-mjaor layout like below
104//
105// 0 1 2 3
106// 0 v_0_0 v_0_1 v_0_2 v_0_3
107// 1 v_1_0 v_1_1 v_1_2 v_1_3
108// 2 v_2_0 v_2_1 v_2_2 v_2_3
109// 3 v_3_0 v_3_1 v_3_2 v_3_3
110
111// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
112// we need a pointer to the first element of the submatrix as base pointer.
113// Then we can use computeVectorAddr to compute the addresses for the columns
114// of the sub-matrix.
115//
116// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
117// -> just returns Base
118// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
119// -> returns Base + (1 * 4)
120// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
121// -> returns Base + (2 * 4)
122//
123// The graphic below illustrates the number of elements in a column (marked
124// with |) and the number of skipped elements (marked with }).
125//
126// v_0_0 v_0_1 {v_0_2 {v_0_3
127// Base Col 1 Col 2
128// | | |
129// v_1_0 |v_1_1 |v_1_2 |v_1_3
130// v_2_0 |v_2_1 |v_2_2 |v_2_3
131// v_3_0 {v_3_1 {v_3_2 v_3_3
132//
133Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
134 unsigned NumElements, Type *EltType,
135 IRBuilder<> &Builder) {
136
137 assert((!isa<ConstantInt>(Stride) ||(static_cast <bool> ((!isa<ConstantInt>(Stride) ||
cast<ConstantInt>(Stride)->getZExtValue() >= NumElements
) && "Stride must be >= the number of elements in the result vector."
) ? void (0) : __assert_fail ("(!isa<ConstantInt>(Stride) || cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && \"Stride must be >= the number of elements in the result vector.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 139, __extension__ __PRETTY_FUNCTION__))
138 cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&(static_cast <bool> ((!isa<ConstantInt>(Stride) ||
cast<ConstantInt>(Stride)->getZExtValue() >= NumElements
) && "Stride must be >= the number of elements in the result vector."
) ? void (0) : __assert_fail ("(!isa<ConstantInt>(Stride) || cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && \"Stride must be >= the number of elements in the result vector.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 139, __extension__ __PRETTY_FUNCTION__))
139 "Stride must be >= the number of elements in the result vector.")(static_cast <bool> ((!isa<ConstantInt>(Stride) ||
cast<ConstantInt>(Stride)->getZExtValue() >= NumElements
) && "Stride must be >= the number of elements in the result vector."
) ? void (0) : __assert_fail ("(!isa<ConstantInt>(Stride) || cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && \"Stride must be >= the number of elements in the result vector.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 139, __extension__ __PRETTY_FUNCTION__))
;
140 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
141
142 // Compute the start of the vector with index VecIdx as VecIdx * Stride.
143 Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
144
145 // Get pointer to the start of the selected vector. Skip GEP creation,
146 // if we select vector 0.
147 if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
148 VecStart = BasePtr;
149 else
150 VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
151
152 // Cast elementwise vector start pointer to a pointer to a vector
153 // (EltType x NumElements)*.
154 auto *VecType = FixedVectorType::get(EltType, NumElements);
155 Type *VecPtrType = PointerType::get(VecType, AS);
156 return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
157}
158
159/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
160///
161/// Currently, the lowering for each matrix intrinsic is done as follows:
162/// 1. Propagate the shape information from intrinsics to connected
163/// instructions.
164/// 2. Lower instructions with shape information (assuming column-major layout).
165/// The lowering works similarly using row-major layout.
166/// 2.1. Get column vectors for each argument. If we already lowered the
167/// definition of an argument, use the produced column vectors directly.
168/// If not, split the operand vector containing an embedded matrix into
169/// a set of column vectors,
170/// 2.2. Lower the instruction in terms of column major operations, which
171/// yields a set of column vectors containing result matrix. Note that we
172/// lower all instructions that have shape information. Besides the
173/// intrinsics, this includes stores for example.
174/// 2.3. Update uses of the lowered instruction. If we have shape information
175/// for a user, there is nothing to do, as we will look up the result
176/// column matrix when lowering the user. For other uses, we embed the
177/// result matrix in a flat vector and update the use.
178/// 2.4. Cache the result column matrix for the instruction we lowered
179/// 3. After we lowered all instructions in a function, remove the now
180/// obsolete instructions.
181///
182class LowerMatrixIntrinsics {
183 Function &Func;
184 const DataLayout &DL;
185 const TargetTransformInfo &TTI;
186 AliasAnalysis *AA;
187 DominatorTree *DT;
188 LoopInfo *LI;
189 OptimizationRemarkEmitter *ORE;
190
191 /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
192 struct OpInfoTy {
193 /// Number of stores emitted to generate this matrix.
194 unsigned NumStores = 0;
195 /// Number of loads emitted to generate this matrix.
196 unsigned NumLoads = 0;
197 /// Number of compute operations emitted to generate this matrix.
198 unsigned NumComputeOps = 0;
199 /// Most of the time transposes can be fused with matrix multiplies or can
200 /// be folded away via algebraic simplifications. This is the number of
201 /// transposes that we failed to make "free" via such optimizations.
202 unsigned NumExposedTransposes = 0;
203
204 OpInfoTy &operator+=(const OpInfoTy &RHS) {
205 NumStores += RHS.NumStores;
206 NumLoads += RHS.NumLoads;
207 NumComputeOps += RHS.NumComputeOps;
208 NumExposedTransposes += RHS.NumExposedTransposes;
209 return *this;
210 }
211 };
212
213 /// Wrapper class representing a matrix as a set of vectors, either in row or
214 /// column major layout. All vectors must have the same vector type.
215 class MatrixTy {
216 SmallVector<Value *, 16> Vectors;
217
218 OpInfoTy OpInfo;
219
220 bool IsColumnMajor = true;
221
222 public:
223 MatrixTy()
224 : Vectors(),
225 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
226 MatrixTy(ArrayRef<Value *> Vectors)
227 : Vectors(Vectors.begin(), Vectors.end()),
228 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
229 MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
230 : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
231
232 unsigned D = isColumnMajor() ? NumColumns : NumRows;
233 for (unsigned J = 0; J < D; ++J)
234 addVector(UndefValue::get(FixedVectorType::get(
235 EltTy, isColumnMajor() ? NumRows : NumColumns)));
236 }
237
238 Value *getVector(unsigned i) const { return Vectors[i]; }
239 Value *getColumn(unsigned i) const {
240 assert(isColumnMajor() && "only supported for column-major matrixes")(static_cast <bool> (isColumnMajor() && "only supported for column-major matrixes"
) ? void (0) : __assert_fail ("isColumnMajor() && \"only supported for column-major matrixes\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 240, __extension__ __PRETTY_FUNCTION__))
;
241 return Vectors[i];
242 }
243 Value *getRow(unsigned i) const {
244 assert(!isColumnMajor() && "only supported for row-major matrixes")(static_cast <bool> (!isColumnMajor() && "only supported for row-major matrixes"
) ? void (0) : __assert_fail ("!isColumnMajor() && \"only supported for row-major matrixes\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 244, __extension__ __PRETTY_FUNCTION__))
;
245 return Vectors[i];
246 }
247
248 void setVector(unsigned i, Value *V) { Vectors[i] = V; }
249
250 Type *getElementType() const { return getVectorTy()->getElementType(); }
251
252 unsigned getNumVectors() const {
253 if (isColumnMajor())
254 return getNumColumns();
255 return getNumRows();
256 }
257
258 unsigned getNumColumns() const {
259 if (isColumnMajor())
260 return Vectors.size();
261 else {
262 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns")(static_cast <bool> (Vectors.size() > 0 && "Cannot call getNumRows without columns"
) ? void (0) : __assert_fail ("Vectors.size() > 0 && \"Cannot call getNumRows without columns\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 262, __extension__ __PRETTY_FUNCTION__))
;
263 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
264 }
265 }
266 unsigned getNumRows() const {
267 if (isColumnMajor()) {
268 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns")(static_cast <bool> (Vectors.size() > 0 && "Cannot call getNumRows without columns"
) ? void (0) : __assert_fail ("Vectors.size() > 0 && \"Cannot call getNumRows without columns\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 268, __extension__ __PRETTY_FUNCTION__))
;
269 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
270 } else
271 return Vectors.size();
272 }
273
274 void addVector(Value *V) { Vectors.push_back(V); }
275 VectorType *getColumnTy() {
276 assert(isColumnMajor() && "only supported for column-major matrixes")(static_cast <bool> (isColumnMajor() && "only supported for column-major matrixes"
) ? void (0) : __assert_fail ("isColumnMajor() && \"only supported for column-major matrixes\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 276, __extension__ __PRETTY_FUNCTION__))
;
277 return getVectorTy();
278 }
279
280 VectorType *getVectorTy() const {
281 return cast<VectorType>(Vectors[0]->getType());
282 }
283
284 iterator_range<SmallVector<Value *, 8>::iterator> columns() {
285 assert(isColumnMajor() &&(static_cast <bool> (isColumnMajor() && "columns() only supported for column-major matrixes"
) ? void (0) : __assert_fail ("isColumnMajor() && \"columns() only supported for column-major matrixes\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 286, __extension__ __PRETTY_FUNCTION__))
286 "columns() only supported for column-major matrixes")(static_cast <bool> (isColumnMajor() && "columns() only supported for column-major matrixes"
) ? void (0) : __assert_fail ("isColumnMajor() && \"columns() only supported for column-major matrixes\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 286, __extension__ __PRETTY_FUNCTION__))
;
287 return make_range(Vectors.begin(), Vectors.end());
288 }
289
290 iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
291 return make_range(Vectors.begin(), Vectors.end());
292 }
293
294 /// Embed the vectors of the matrix into a flat vector by concatenating
295 /// them.
296 Value *embedInVector(IRBuilder<> &Builder) const {
297 return Vectors.size() == 1 ? Vectors[0]
298 : concatenateVectors(Builder, Vectors);
299 }
300
301 MatrixTy &addNumLoads(unsigned N) {
302 OpInfo.NumLoads += N;
303 return *this;
304 }
305
306 void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
307
308 MatrixTy &addNumStores(unsigned N) {
309 OpInfo.NumStores += N;
310 return *this;
311 }
312
313 MatrixTy &addNumExposedTransposes(unsigned N) {
314 OpInfo.NumExposedTransposes += N;
315 return *this;
316 }
317
318 MatrixTy &addNumComputeOps(unsigned N) {
319 OpInfo.NumComputeOps += N;
320 return *this;
321 }
322
323 unsigned getNumStores() const { return OpInfo.NumStores; }
324 unsigned getNumLoads() const { return OpInfo.NumLoads; }
325 unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
326
327 const OpInfoTy &getOpInfo() const { return OpInfo; }
328
329 bool isColumnMajor() const { return IsColumnMajor; }
29
Returning zero, which participates in a condition later
330
331 unsigned getStride() const {
332 if (isColumnMajor())
333 return getNumRows();
334 return getNumColumns();
335 }
336
337 /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
338 /// matrix is column-major, the result vector is extracted from a column
339 /// vector, otherwise from a row vector.
340 Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
341 IRBuilder<> &Builder) const {
342 Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
343 return Builder.CreateShuffleVector(
344 Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
345 "block");
346 }
347 };
348
349 struct ShapeInfo {
350 unsigned NumRows;
351 unsigned NumColumns;
352
353 bool IsColumnMajor;
354
355 ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
356 : NumRows(NumRows), NumColumns(NumColumns),
357 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
358
359 ShapeInfo(Value *NumRows, Value *NumColumns)
360 : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
361 cast<ConstantInt>(NumColumns)->getZExtValue()) {}
362
363 bool operator==(const ShapeInfo &other) {
364 return NumRows == other.NumRows && NumColumns == other.NumColumns;
365 }
366 bool operator!=(const ShapeInfo &other) { return !(*this == other); }
367
368 /// Returns true if shape-information is defined, meaning both dimensions
369 /// are != 0.
370 operator bool() const {
371 assert(NumRows == 0 || NumColumns != 0)(static_cast <bool> (NumRows == 0 || NumColumns != 0) ?
void (0) : __assert_fail ("NumRows == 0 || NumColumns != 0",
"/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 371, __extension__ __PRETTY_FUNCTION__))
;
372 return NumRows != 0;
373 }
374
375 unsigned getStride() const {
376 if (IsColumnMajor)
377 return NumRows;
378 return NumColumns;
379 }
380
381 unsigned getNumVectors() const {
382 if (IsColumnMajor)
383 return NumColumns;
384 return NumRows;
385 }
386 };
387
388 /// Maps instructions to their shape information. The shape information
389 /// describes the shape to be used while lowering. This matches the shape of
390 /// the result value of the instruction, with the only exceptions being store
391 /// instructions and the matrix_column_major_store intrinsics. For those, the
392 /// shape information indicates that those instructions should be lowered
393 /// using shape information as well. A ValueMap is used so that when
394 /// sub-passes like optimizeTransposes performs RAUW the map stays
395 /// up-to-date.
396 ValueMap<Value *, ShapeInfo> ShapeMap;
397
398 /// List of instructions to remove. While lowering, we are not replacing all
399 /// users of a lowered instruction, if shape information is available and
400 /// those need to be removed after we finished lowering.
401 SmallVector<Instruction *, 16> ToRemove;
402
403 /// Map from instructions to their produced column matrix.
404 MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
405
406private:
407 static FastMathFlags getFastMathFlags(Instruction *Inst) {
408 FastMathFlags FMF;
409
410 if (isa<FPMathOperator>(*Inst))
411 FMF = Inst->getFastMathFlags();
412
413 FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
414
415 return FMF;
416 }
417
418public:
419 LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
420 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
421 OptimizationRemarkEmitter *ORE)
422 : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
423 LI(LI), ORE(ORE) {}
424
425 unsigned getNumOps(Type *VT) {
426 assert(isa<VectorType>(VT) && "Expected vector type")(static_cast <bool> (isa<VectorType>(VT) &&
"Expected vector type") ? void (0) : __assert_fail ("isa<VectorType>(VT) && \"Expected vector type\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 426, __extension__ __PRETTY_FUNCTION__))
;
427 return getNumOps(VT->getScalarType(),
428 cast<FixedVectorType>(VT)->getNumElements());
429 }
430
431 /// Is this the minimal version executed in the backend pipelines.
432 bool isMinimal() const {
433 return !DT;
434 }
435
436 /// Return the estimated number of vector ops required for an operation on
437 /// \p VT * N.
438 unsigned getNumOps(Type *ST, unsigned N) {
439 return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
440 double(TTI.getRegisterBitWidth(
441 TargetTransformInfo::RGK_FixedWidthVector)
442 .getFixedSize()));
443 }
444
445 /// Return the set of vectors that a matrix value is lowered to.
446 ///
447 /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
448 /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
449 /// into vectors.
450 MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
451 IRBuilder<> &Builder) {
452 VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
453 assert(VType && "MatrixVal must be a vector type")(static_cast <bool> (VType && "MatrixVal must be a vector type"
) ? void (0) : __assert_fail ("VType && \"MatrixVal must be a vector type\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 453, __extension__ __PRETTY_FUNCTION__))
;
454 assert(cast<FixedVectorType>(VType)->getNumElements() ==(static_cast <bool> (cast<FixedVectorType>(VType)
->getNumElements() == SI.NumRows * SI.NumColumns &&
"The vector size must match the number of matrix elements") ?
void (0) : __assert_fail ("cast<FixedVectorType>(VType)->getNumElements() == SI.NumRows * SI.NumColumns && \"The vector size must match the number of matrix elements\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 456, __extension__ __PRETTY_FUNCTION__))
455 SI.NumRows * SI.NumColumns &&(static_cast <bool> (cast<FixedVectorType>(VType)
->getNumElements() == SI.NumRows * SI.NumColumns &&
"The vector size must match the number of matrix elements") ?
void (0) : __assert_fail ("cast<FixedVectorType>(VType)->getNumElements() == SI.NumRows * SI.NumColumns && \"The vector size must match the number of matrix elements\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 456, __extension__ __PRETTY_FUNCTION__))
456 "The vector size must match the number of matrix elements")(static_cast <bool> (cast<FixedVectorType>(VType)
->getNumElements() == SI.NumRows * SI.NumColumns &&
"The vector size must match the number of matrix elements") ?
void (0) : __assert_fail ("cast<FixedVectorType>(VType)->getNumElements() == SI.NumRows * SI.NumColumns && \"The vector size must match the number of matrix elements\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 456, __extension__ __PRETTY_FUNCTION__))
;
457
458 // Check if we lowered MatrixVal using shape information. In that case,
459 // return the existing matrix, if it matches the requested shape
460 // information. If there is a mis-match, embed the result in a flat
461 // vector and split it later.
462 auto Found = Inst2ColumnMatrix.find(MatrixVal);
463 if (Found != Inst2ColumnMatrix.end()) {
464 MatrixTy &M = Found->second;
465 // Return the found matrix, if its shape matches the requested shape
466 // information
467 if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
468 return M;
469
470 MatrixVal = M.embedInVector(Builder);
471 }
472
473 // Otherwise split MatrixVal.
474 SmallVector<Value *, 16> SplitVecs;
475 for (unsigned MaskStart = 0;
476 MaskStart < cast<FixedVectorType>(VType)->getNumElements();
477 MaskStart += SI.getStride()) {
478 Value *V = Builder.CreateShuffleVector(
479 MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
480 "split");
481 SplitVecs.push_back(V);
482 }
483
484 return {SplitVecs};
485 }
486
487 /// If \p V already has a known shape return false. Otherwise set the shape
488 /// for instructions that support it.
489 bool setShapeInfo(Value *V, ShapeInfo Shape) {
490 assert(Shape && "Shape not set")(static_cast <bool> (Shape && "Shape not set") ?
void (0) : __assert_fail ("Shape && \"Shape not set\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 if (isa<UndefValue>(V) || !supportsShapeInfo(V))
492 return false;
493
494 auto SIter = ShapeMap.find(V);
495 if (SIter != ShapeMap.end()) {
496 LLVM_DEBUG(dbgs() << " not overriding existing shape: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << " not overriding existing shape: "
<< SIter->second.NumRows << " " << SIter
->second.NumColumns << " for " << *V << "\n"
; } } while (false)
497 << SIter->second.NumRows << " "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << " not overriding existing shape: "
<< SIter->second.NumRows << " " << SIter
->second.NumColumns << " for " << *V << "\n"
; } } while (false)
498 << SIter->second.NumColumns << " for " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << " not overriding existing shape: "
<< SIter->second.NumRows << " " << SIter
->second.NumColumns << " for " << *V << "\n"
; } } while (false)
;
499 return false;
500 }
501
502 ShapeMap.insert({V, Shape});
503 LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumnsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << " " << Shape
.NumRows << " x " << Shape.NumColumns << " for "
<< *V << "\n"; } } while (false)
504 << " for " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << " " << Shape
.NumRows << " x " << Shape.NumColumns << " for "
<< *V << "\n"; } } while (false)
;
505 return true;
506 }
507
508 bool isUniformShape(Value *V) {
509 Instruction *I = dyn_cast<Instruction>(V);
510 if (!I)
511 return true;
512
513 switch (I->getOpcode()) {
514 case Instruction::FAdd:
515 case Instruction::FSub:
516 case Instruction::FMul: // Scalar multiply.
517 case Instruction::FNeg:
518 case Instruction::Add:
519 case Instruction::Mul:
520 case Instruction::Sub:
521 return true;
522 default:
523 return false;
524 }
525 }
526
527 /// Returns true if shape information can be used for \p V. The supported
528 /// instructions must match the instructions that can be lowered by this pass.
529 bool supportsShapeInfo(Value *V) {
530 Instruction *Inst = dyn_cast<Instruction>(V);
531 if (!Inst)
532 return false;
533
534 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
535 if (II)
536 switch (II->getIntrinsicID()) {
537 case Intrinsic::matrix_multiply:
538 case Intrinsic::matrix_transpose:
539 case Intrinsic::matrix_column_major_load:
540 case Intrinsic::matrix_column_major_store:
541 return true;
542 default:
543 return false;
544 }
545 return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
546 }
547
548 /// Propagate the shape information of instructions to their users.
549 /// The work list contains instructions for which we can compute the shape,
550 /// either based on the information provided by matrix intrinsics or known
551 /// shapes of operands.
552 SmallVector<Instruction *, 32>
553 propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
554 SmallVector<Instruction *, 32> NewWorkList;
555 // Pop an element for which we guaranteed to have at least one of the
556 // operand shapes. Add the shape for this and then add users to the work
557 // list.
558 LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << "Forward-propagate shapes:\n"
; } } while (false)
;
559 while (!WorkList.empty()) {
560 Instruction *Inst = WorkList.pop_back_val();
561
562 // New entry, set the value and insert operands
563 bool Propagate = false;
564
565 Value *MatrixA;
566 Value *MatrixB;
567 Value *M;
568 Value *N;
569 Value *K;
570 if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
571 m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
572 m_Value(N), m_Value(K)))) {
573 Propagate = setShapeInfo(Inst, {M, K});
574 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
575 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
576 // Flip dimensions.
577 Propagate = setShapeInfo(Inst, {N, M});
578 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
579 m_Value(MatrixA), m_Value(), m_Value(),
580 m_Value(), m_Value(M), m_Value(N)))) {
581 Propagate = setShapeInfo(Inst, {N, M});
582 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
583 m_Value(), m_Value(), m_Value(), m_Value(M),
584 m_Value(N)))) {
585 Propagate = setShapeInfo(Inst, {M, N});
586 } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
587 auto OpShape = ShapeMap.find(MatrixA);
588 if (OpShape != ShapeMap.end())
589 setShapeInfo(Inst, OpShape->second);
590 continue;
591 } else if (isUniformShape(Inst)) {
592 // Find the first operand that has a known shape and use that.
593 for (auto &Op : Inst->operands()) {
594 auto OpShape = ShapeMap.find(Op.get());
595 if (OpShape != ShapeMap.end()) {
596 Propagate |= setShapeInfo(Inst, OpShape->second);
597 break;
598 }
599 }
600 }
601
602 if (Propagate) {
603 NewWorkList.push_back(Inst);
604 for (auto *User : Inst->users())
605 if (ShapeMap.count(User) == 0)
606 WorkList.push_back(cast<Instruction>(User));
607 }
608 }
609
610 return NewWorkList;
611 }
612
613 /// Propagate the shape to operands of instructions with shape information.
614 /// \p Worklist contains the instruction for which we already know the shape.
615 SmallVector<Instruction *, 32>
616 propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
617 SmallVector<Instruction *, 32> NewWorkList;
618
619 auto pushInstruction = [](Value *V,
620 SmallVectorImpl<Instruction *> &WorkList) {
621 Instruction *I = dyn_cast<Instruction>(V);
622 if (I)
623 WorkList.push_back(I);
624 };
625 // Pop an element with known shape. Traverse the operands, if their shape
626 // derives from the result shape and is unknown, add it and add them to the
627 // worklist.
628 LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { dbgs() << "Backward-propagate shapes:\n"
; } } while (false)
;
629 while (!WorkList.empty()) {
630 Value *V = WorkList.pop_back_val();
631
632 size_t BeforeProcessingV = WorkList.size();
633 if (!isa<Instruction>(V))
634 continue;
635
636 Value *MatrixA;
637 Value *MatrixB;
638 Value *M;
639 Value *N;
640 Value *K;
641 if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
642 m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
643 m_Value(N), m_Value(K)))) {
644 if (setShapeInfo(MatrixA, {M, N}))
645 pushInstruction(MatrixA, WorkList);
646
647 if (setShapeInfo(MatrixB, {N, K}))
648 pushInstruction(MatrixB, WorkList);
649
650 } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
651 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
652 // Flip dimensions.
653 if (setShapeInfo(MatrixA, {M, N}))
654 pushInstruction(MatrixA, WorkList);
655 } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
656 m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
657 m_Value(M), m_Value(N)))) {
658 if (setShapeInfo(MatrixA, {M, N})) {
659 pushInstruction(MatrixA, WorkList);
660 }
661 } else if (isa<LoadInst>(V) ||
662 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
663 // Nothing to do, no matrix input.
664 } else if (isa<StoreInst>(V)) {
665 // Nothing to do. We forward-propagated to this so we would just
666 // backward propagate to an instruction with an already known shape.
667 } else if (isUniformShape(V)) {
668 // Propagate to all operands.
669 ShapeInfo Shape = ShapeMap[V];
670 for (Use &U : cast<Instruction>(V)->operands()) {
671 if (setShapeInfo(U.get(), Shape))
672 pushInstruction(U.get(), WorkList);
673 }
674 }
675 // After we discovered new shape info for new instructions in the
676 // worklist, we use their users as seeds for the next round of forward
677 // propagation.
678 for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
679 for (User *U : WorkList[I]->users())
680 if (isa<Instruction>(U) && V != U)
681 NewWorkList.push_back(cast<Instruction>(U));
682 }
683 return NewWorkList;
684 }
685
686 /// Try moving transposes in order to fold them away or into multiplies.
687 void optimizeTransposes() {
688 // First sink all transposes inside matmuls, hoping that we end up with NN,
689 // NT or TN variants.
690 for (BasicBlock &BB : reverse(Func)) {
691 for (auto II = BB.rbegin(); II != BB.rend();) {
692 Instruction &I = *II;
693 // We may remove II. By default continue on the next/prev instruction.
694 ++II;
695 // If we were to erase II, move again.
696 auto EraseFromParent = [&II](Value *V) {
697 auto *Inst = cast<Instruction>(V);
698 if (Inst->use_empty()) {
699 if (Inst == &*II) {
700 ++II;
701 }
702 Inst->eraseFromParent();
703 }
704 };
705
706 // If we're creating a new instruction, continue from there.
707 Instruction *NewInst = nullptr;
708
709 IRBuilder<> IB(&I);
710 MatrixBuilder<IRBuilder<>> Builder(IB);
711
712 Value *TA, *TAMA, *TAMB;
713 ConstantInt *R, *K, *C;
714 if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {
715
716 // Transpose of a transpose is a nop
717 Value *TATA;
718 if (match(TA,
719 m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
720 I.replaceAllUsesWith(TATA);
721 EraseFromParent(&I);
722 EraseFromParent(TA);
723 }
724
725 // (A * B)^t -> B^t * A^t
726 // RxK KxC CxK KxR
727 else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
728 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
729 m_ConstantInt(K), m_ConstantInt(C)))) {
730 Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
731 C->getZExtValue(),
732 TAMB->getName() + "_t");
733 // We are being run after shape prop, add shape for newly created
734 // instructions so that we lower them later.
735 setShapeInfo(T0, {C, K});
736 Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
737 K->getZExtValue(),
738 TAMA->getName() + "_t");
739 setShapeInfo(T1, {K, R});
740 NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
741 K->getZExtValue(),
742 R->getZExtValue(), "mmul");
743 setShapeInfo(NewInst, {C, R});
744 I.replaceAllUsesWith(NewInst);
745 EraseFromParent(&I);
746 EraseFromParent(TA);
747 }
748 }
749
750 // If we replaced I with a new instruction, continue from there.
751 if (NewInst)
752 II = std::next(BasicBlock::reverse_iterator(NewInst));
753 }
754 }
755
756 // If we have a TT matmul, lift the transpose. We may be able to fold into
757 // consuming multiply.
758 for (BasicBlock &BB : Func) {
759 for (BasicBlock::iterator II = BB.begin(); II != BB.end();) {
760 Instruction *I = &*II;
761 // We may remove I.
762 ++II;
763 Value *A, *B, *AT, *BT;
764 ConstantInt *R, *K, *C;
765 if (match(&*I, m_Intrinsic<Intrinsic::matrix_multiply>(
766 m_Value(A), m_Value(B), m_ConstantInt(R),
767 m_ConstantInt(K), m_ConstantInt(C))) &&
768 match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
769 match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
770 IRBuilder<> IB(&*I);
771 MatrixBuilder<IRBuilder<>> Builder(IB);
772 Value *M = Builder.CreateMatrixMultiply(
773 BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
774 setShapeInfo(M, {C, R});
775 Value *NewInst = Builder.CreateMatrixTranspose(M, R->getZExtValue(),
776 C->getZExtValue());
777 setShapeInfo(NewInst, {C, R});
778 I->replaceAllUsesWith(NewInst);
779 if (I->use_empty())
780 I->eraseFromParent();
781 if (A->use_empty())
782 cast<Instruction>(A)->eraseFromParent();
783 if (A != B && B->use_empty())
784 cast<Instruction>(B)->eraseFromParent();
785 }
786 }
787 }
788 }
789
790 bool Visit() {
791 SmallVector<Instruction *, 32> WorkList;
792
793 // Initially only the shape of matrix intrinsics is known.
794 // Initialize the work list with ops carrying shape information.
795 for (BasicBlock &BB : Func)
796 for (Instruction &Inst : BB) {
797 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
798 if (!II)
799 continue;
800
801 switch (II->getIntrinsicID()) {
802 case Intrinsic::matrix_multiply:
803 case Intrinsic::matrix_transpose:
804 case Intrinsic::matrix_column_major_load:
805 case Intrinsic::matrix_column_major_store:
806 WorkList.push_back(&Inst);
807 break;
808 default:
809 break;
810 }
811 }
812
813 // Avoid unnecessary work if there are no matrix intrinsics in the function.
814 if (WorkList.empty())
2
Taking false branch
815 return false;
816
817 // Propagate shapes until nothing changes any longer.
818 while (!WorkList.empty()) {
3
Loop condition is true. Entering loop body
4
Loop condition is false. Execution continues on line 823
819 WorkList = propagateShapeForward(WorkList);
820 WorkList = propagateShapeBackward(WorkList);
821 }
822
823 if (!isMinimal()) {
5
Taking true branch
824 optimizeTransposes();
825 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { { dbgs() << "Dump after matrix transpose optimization:\n"
; Func.dump(); }; } } while (false)
6
Assuming 'DebugFlag' is false
7
Loop condition is false. Exiting loop
826 dbgs() << "Dump after matrix transpose optimization:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { { dbgs() << "Dump after matrix transpose optimization:\n"
; Func.dump(); }; } } while (false)
827 Func.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { { dbgs() << "Dump after matrix transpose optimization:\n"
; Func.dump(); }; } } while (false)
828 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lower-matrix-intrinsics")) { { dbgs() << "Dump after matrix transpose optimization:\n"
; Func.dump(); }; } } while (false)
;
829 }
830
831 bool Changed = false;
832 SmallVector<CallInst *, 16> MaybeFusableInsts;
833 SmallVector<Instruction *, 16> MatrixInsts;
834
835 // First, collect all instructions with shape information and candidates for
836 // fusion (currently only matrix multiplies).
837 ReversePostOrderTraversal<Function *> RPOT(&Func);
838 for (auto *BB : RPOT)
839 for (Instruction &I : *BB) {
840 if (ShapeMap.find(&I) == ShapeMap.end())
841 continue;
842 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
843 MaybeFusableInsts.push_back(cast<CallInst>(&I));
844 MatrixInsts.push_back(&I);
845 }
846
847 // Second, try to fuse candidates.
848 SmallPtrSet<Instruction *, 16> FusedInsts;
849 for (CallInst *CI : MaybeFusableInsts)
8
Assuming '__begin2' is equal to '__end2'
850 LowerMatrixMultiplyFused(CI, FusedInsts);
851 Changed = !FusedInsts.empty();
852
853 // Third, lower remaining instructions with shape information.
854 for (Instruction *Inst : MatrixInsts) {
9
Assuming '__begin2' is not equal to '__end2'
855 if (FusedInsts.count(Inst))
10
Assuming the condition is false
11
Taking false branch
856 continue;
857
858 IRBuilder<> Builder(Inst);
859
860 if (CallInst *CInst
12.1
'CInst' is non-null
= dyn_cast<CallInst>(Inst))
12
Assuming 'Inst' is a 'CallInst'
13
Taking true branch
861 Changed |= VisitCallInst(CInst);
14
Calling 'LowerMatrixIntrinsics::VisitCallInst'
862
863 Value *Op1;
864 Value *Op2;
865 if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
866 Changed |= VisitBinaryOperator(BinOp);
867 if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
868 Changed |= VisitUnaryOperator(UnOp);
869 if (match(Inst, m_Load(m_Value(Op1))))
870 Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
871 else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
872 Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
873 }
874
875 if (ORE) {
876 RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
877 RemarkGen.emitRemarks();
878 }
879
880 // Delete the instructions backwards, as it has a reduced likelihood of
881 // having to update as many def-use and use-def chains.
882 for (auto *Inst : reverse(ToRemove)) {
883 if (!Inst->use_empty())
884 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
885 Inst->eraseFromParent();
886 }
887
888 return Changed;
889 }
890
891 /// Turns \p BasePtr into an elementwise pointer to \p EltType.
892 Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
893 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
894 Type *EltPtrType = PointerType::get(EltType, AS);
895 return Builder.CreatePointerCast(BasePtr, EltPtrType);
896 }
897
898 /// Replace intrinsic calls
899 bool VisitCallInst(CallInst *Inst) {
900 if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
15
Assuming the condition is false
16
Taking false branch
901 return false;
902
903 switch (Inst->getCalledFunction()->getIntrinsicID()) {
17
Control jumps to 'case matrix_multiply:' at line 904
904 case Intrinsic::matrix_multiply:
905 LowerMultiply(Inst);
18
Calling 'LowerMatrixIntrinsics::LowerMultiply'
906 break;
907 case Intrinsic::matrix_transpose:
908 LowerTranspose(Inst);
909 break;
910 case Intrinsic::matrix_column_major_load:
911 LowerColumnMajorLoad(Inst);
912 break;
913 case Intrinsic::matrix_column_major_store:
914 LowerColumnMajorStore(Inst);
915 break;
916 default:
917 return false;
918 }
919 return true;
920 }
921
922 /// Compute the alignment for a column/row \p Idx with \p Stride between them.
923 /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
924 /// ConstantInt, reduce the initial alignment based on the byte offset. For
925 /// non-ConstantInt strides, return the common alignment of the initial
926 /// alignment and the element size in bytes.
927 Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
928 MaybeAlign A) const {
929 Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
930 if (Idx == 0)
931 return InitialAlign;
932
933 TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
934 if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
935 uint64_t StrideInBytes =
936 ConstStride->getZExtValue() * ElementSizeInBits / 8;
937 return commonAlignment(InitialAlign, Idx * StrideInBytes);
938 }
939 return commonAlignment(InitialAlign, ElementSizeInBits / 8);
940 }
941
942 /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
943 /// vectors.
944 MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
945 bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
946 auto *VType = cast<VectorType>(Ty);
947 Type *EltTy = VType->getElementType();
948 Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
949 Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
950 MatrixTy Result;
951 for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
952 Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride,
953 Shape.getStride(), EltTy, Builder);
954 Value *Vector = Builder.CreateAlignedLoad(
955 VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
956 IsVolatile, "col.load");
957
958 Result.addVector(Vector);
959 }
960 return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
961 Result.getNumVectors());
962 }
963
964 /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
965 /// starting at \p MatrixPtr[I][J].
966 MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
967 ShapeInfo MatrixShape, Value *I, Value *J,
968 ShapeInfo ResultShape, Type *EltTy,
969 IRBuilder<> &Builder) {
970
971 Value *Offset = Builder.CreateAdd(
972 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
973
974 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
975 Value *EltPtr =
976 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
977 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
978 auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
979 ResultShape.NumColumns);
980 Type *TilePtrTy = PointerType::get(TileTy, AS);
981 Value *TilePtr =
982 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
983
984 return loadMatrix(TileTy, TilePtr, Align,
985 Builder.getInt64(MatrixShape.getStride()), IsVolatile,
986 ResultShape, Builder);
987 }
988
989 /// Lower a load instruction with shape information.
990 void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
991 bool IsVolatile, ShapeInfo Shape) {
992 IRBuilder<> Builder(Inst);
993 finalizeLowering(Inst,
994 loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
995 Shape, Builder),
996 Builder);
997 }
998
999 /// Lowers llvm.matrix.column.major.load.
1000 ///
1001 /// The intrinsic loads a matrix from memory using a stride between columns.
1002 void LowerColumnMajorLoad(CallInst *Inst) {
1003 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&(static_cast <bool> (MatrixLayout == MatrixLayoutTy::ColumnMajor
&& "Intrinsic only supports column-major layout!") ?
void (0) : __assert_fail ("MatrixLayout == MatrixLayoutTy::ColumnMajor && \"Intrinsic only supports column-major layout!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1004, __extension__ __PRETTY_FUNCTION__))
1004 "Intrinsic only supports column-major layout!")(static_cast <bool> (MatrixLayout == MatrixLayoutTy::ColumnMajor
&& "Intrinsic only supports column-major layout!") ?
void (0) : __assert_fail ("MatrixLayout == MatrixLayoutTy::ColumnMajor && \"Intrinsic only supports column-major layout!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1004, __extension__ __PRETTY_FUNCTION__))
;
1005 Value *Ptr = Inst->getArgOperand(0);
1006 Value *Stride = Inst->getArgOperand(1);
1007 LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1008 cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1009 {Inst->getArgOperand(3), Inst->getArgOperand(4)});
1010 }
1011
1012 /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1013 /// MatrixPtr[I][J].
1014 void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1015 MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1016 Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1017 Value *Offset = Builder.CreateAdd(
1018 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1019
1020 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1021 Value *EltPtr =
1022 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1023 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1024 auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1025 StoreVal.getNumColumns());
1026 Type *TilePtrTy = PointerType::get(TileTy, AS);
1027 Value *TilePtr =
1028 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1029
1030 storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1031 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
1032 }
1033
1034 /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1035 /// vectors.
1036 MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1037 MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1038 IRBuilder<> &Builder) {
1039 auto VType = cast<VectorType>(Ty);
1040 Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
1041 for (auto Vec : enumerate(StoreVal.vectors())) {
1042 Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()),
1043 Stride, StoreVal.getStride(),
1044 VType->getElementType(), Builder);
1045 Builder.CreateAlignedStore(Vec.value(), GEP,
1046 getAlignForIndex(Vec.index(), Stride,
1047 VType->getElementType(),
1048 MAlign),
1049 IsVolatile);
1050 }
1051 return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1052 StoreVal.getNumVectors());
1053 }
1054
1055 /// Lower a store instruction with shape information.
1056 void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
1057 Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1058 IRBuilder<> Builder(Inst);
1059 auto StoreVal = getMatrix(Matrix, Shape, Builder);
1060 finalizeLowering(Inst,
1061 storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1062 IsVolatile, Builder),
1063 Builder);
1064 }
1065
1066 /// Lowers llvm.matrix.column.major.store.
1067 ///
1068 /// The intrinsic store a matrix back memory using a stride between columns.
1069 void LowerColumnMajorStore(CallInst *Inst) {
1070 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&(static_cast <bool> (MatrixLayout == MatrixLayoutTy::ColumnMajor
&& "Intrinsic only supports column-major layout!") ?
void (0) : __assert_fail ("MatrixLayout == MatrixLayoutTy::ColumnMajor && \"Intrinsic only supports column-major layout!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1071, __extension__ __PRETTY_FUNCTION__))
1071 "Intrinsic only supports column-major layout!")(static_cast <bool> (MatrixLayout == MatrixLayoutTy::ColumnMajor
&& "Intrinsic only supports column-major layout!") ?
void (0) : __assert_fail ("MatrixLayout == MatrixLayoutTy::ColumnMajor && \"Intrinsic only supports column-major layout!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1071, __extension__ __PRETTY_FUNCTION__))
;
1072 Value *Matrix = Inst->getArgOperand(0);
1073 Value *Ptr = Inst->getArgOperand(1);
1074 Value *Stride = Inst->getArgOperand(2);
1075 LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1076 cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1077 {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1078 }
1079
1080 // Set elements I..I+NumElts-1 to Block
1081 Value *insertVector(Value *Col, unsigned I, Value *Block,
1082 IRBuilder<> &Builder) {
1083
1084 // First, bring Block to the same size as Col
1085 unsigned BlockNumElts =
1086 cast<FixedVectorType>(Block->getType())->getNumElements();
43
Called C++ object pointer is null
1087 unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1088 assert(NumElts >= BlockNumElts && "Too few elements for current block")(static_cast <bool> (NumElts >= BlockNumElts &&
"Too few elements for current block") ? void (0) : __assert_fail
("NumElts >= BlockNumElts && \"Too few elements for current block\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1088, __extension__ __PRETTY_FUNCTION__))
;
1089
1090 Block = Builder.CreateShuffleVector(
1091 Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1092
1093 // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1094 // 8, 4, 5, 6
1095 SmallVector<int, 16> Mask;
1096 unsigned i;
1097 for (i = 0; i < I; i++)
1098 Mask.push_back(i);
1099
1100 unsigned VecNumElts =
1101 cast<FixedVectorType>(Col->getType())->getNumElements();
1102 for (; i < I + BlockNumElts; i++)
1103 Mask.push_back(i - I + VecNumElts);
1104
1105 for (; i < VecNumElts; i++)
1106 Mask.push_back(i);
1107
1108 return Builder.CreateShuffleVector(Col, Block, Mask);
1109 }
1110
1111 Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1112 IRBuilder<> &Builder, bool AllowContraction,
1113 unsigned &NumComputeOps) {
1114 NumComputeOps += getNumOps(A->getType());
1115 if (!Sum)
1116 return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1117
1118 if (UseFPOp) {
1119 if (AllowContraction) {
1120 // Use fmuladd for floating point operations and let the backend decide
1121 // if that's profitable.
1122 Function *FMulAdd = Intrinsic::getDeclaration(
1123 Func.getParent(), Intrinsic::fmuladd, A->getType());
1124 return Builder.CreateCall(FMulAdd, {A, B, Sum});
1125 }
1126 NumComputeOps += getNumOps(A->getType());
1127 Value *Mul = Builder.CreateFMul(A, B);
1128 return Builder.CreateFAdd(Sum, Mul);
1129 }
1130
1131 NumComputeOps += getNumOps(A->getType());
1132 Value *Mul = Builder.CreateMul(A, B);
1133 return Builder.CreateAdd(Sum, Mul);
1134 }
1135
1136 /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1137 /// users with shape information, there's nothing to do: they will use the
1138 /// cached value when they are lowered. For other users, \p Matrix is
1139 /// flattened and the uses are updated to use it. Also marks \p Inst for
1140 /// deletion.
1141 void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1142 IRBuilder<> &Builder) {
1143 auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1144 (void)inserted;
1145 assert(inserted.second && "multiple matrix lowering mapping")(static_cast <bool> (inserted.second && "multiple matrix lowering mapping"
) ? void (0) : __assert_fail ("inserted.second && \"multiple matrix lowering mapping\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1145, __extension__ __PRETTY_FUNCTION__))
;
1146
1147 ToRemove.push_back(Inst);
1148 Value *Flattened = nullptr;
1149 for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1150 if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1151 if (!Flattened)
1152 Flattened = Matrix.embedInVector(Builder);
1153 U.set(Flattened);
1154 }
1155 }
1156 }
1157
1158 /// Compute \p Result += \p A * \p B for input matrices with left-associating
1159 /// addition.
1160 ///
1161 /// We can fold a transpose into the operand that is used to extract scalars.
1162 /// This is the first operands with row-major and the second with
1163 /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate
1164 /// operand is transposed.
1165 void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1166 const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1167 bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1168 const unsigned VF = std::max<unsigned>(
1169 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1170 .getFixedSize() /
1171 Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1172 1U);
1173 unsigned R = Result.getNumRows();
1174 unsigned C = Result.getNumColumns();
1175 unsigned M = A.getNumColumns();
1176
1177 bool IsFP = Result.getElementType()->isFloatingPointTy();
1178 assert(A.isColumnMajor() == B.isColumnMajor() &&(static_cast <bool> (A.isColumnMajor() == B.isColumnMajor
() && Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout") ? void (0) : __assert_fail
("A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && \"operands must agree on matrix layout\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1180, __extension__ __PRETTY_FUNCTION__))
27
'?' condition is true
1179 Result.isColumnMajor() == A.isColumnMajor() &&(static_cast <bool> (A.isColumnMajor() == B.isColumnMajor
() && Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout") ? void (0) : __assert_fail
("A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && \"operands must agree on matrix layout\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1180, __extension__ __PRETTY_FUNCTION__))
1180 "operands must agree on matrix layout")(static_cast <bool> (A.isColumnMajor() == B.isColumnMajor
() && Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout") ? void (0) : __assert_fail
("A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && \"operands must agree on matrix layout\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1180, __extension__ __PRETTY_FUNCTION__))
;
1181 unsigned NumComputeOps = 0;
1182
1183 Builder.setFastMathFlags(FMF);
1184
1185 if (A.isColumnMajor()) {
28
Calling 'MatrixTy::isColumnMajor'
30
Returning from 'MatrixTy::isColumnMajor'
31
Taking false branch
1186 // Multiply columns from the first operand with scalars from the second
1187 // operand. Then move along the K axes and accumulate the columns. With
1188 // this the adds can be vectorized without reassociation.
1189 for (unsigned J = 0; J < C; ++J) {
1190 unsigned BlockSize = VF;
1191 // If Result is zero, we don't need to accumulate in the K==0 iteration.
1192 bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1193
1194 for (unsigned I = 0; I < R; I += BlockSize) {
1195 // Gradually lower the vectorization factor to cover the remainder.
1196 while (I + BlockSize > R)
1197 BlockSize /= 2;
1198
1199 Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1200 : nullptr;
1201 for (unsigned K = 0; K < M; ++K) {
1202 Value *L = A.extractVector(I, K, BlockSize, Builder);
1203 Value *RH = Builder.CreateExtractElement(
1204 B.getColumn(IsScalarMatrixTransposed ? K : J),
1205 IsScalarMatrixTransposed ? J : K);
1206 Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1207 Sum =
1208 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1209 IsFP, Builder, FMF.allowContract(), NumComputeOps);
1210 }
1211 Result.setVector(J,
1212 insertVector(Result.getVector(J), I, Sum, Builder));
1213 }
1214 }
1215 } else {
1216 // Multiply rows from the second operand with scalars from the first
1217 // operand. Then move along the K axes and accumulate the rows. With this
1218 // the adds can be vectorized without reassociation.
1219 for (unsigned I = 0; I
31.1
'I' is < 'R'
< R; ++I) {
32
Loop condition is true. Entering loop body
1220 unsigned BlockSize = VF;
1221 bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
33
Assuming the object is not a 'ConstantAggregateZero'
1222 for (unsigned J = 0; J < C; J += BlockSize) {
34
Assuming 'J' is < 'C'
35
Loop condition is true. Entering loop body
1223 // Gradually lower the vectorization factor to cover the remainder.
1224 while (J + BlockSize > C)
36
Assuming the condition is false
37
Loop condition is false. Execution continues on line 1227
1225 BlockSize /= 2;
1226
1227 Value *Sum = nullptr;
38
'Sum' initialized to a null pointer value
1228 for (unsigned K = 0; K < M; ++K) {
39
Assuming 'K' is >= 'M'
40
Loop condition is false. Execution continues on line 1238
1229 Value *R = B.extractVector(K, J, BlockSize, Builder);
1230 Value *LH = Builder.CreateExtractElement(
1231 A.getVector(IsScalarMatrixTransposed ? K : I),
1232 IsScalarMatrixTransposed ? I : K);
1233 Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1234 Sum =
1235 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1236 IsFP, Builder, FMF.allowContract(), NumComputeOps);
1237 }
1238 Result.setVector(I,
1239 insertVector(Result.getVector(I), J, Sum, Builder));
41
Passing null pointer value via 3rd parameter 'Block'
42
Calling 'LowerMatrixIntrinsics::insertVector'
1240 }
1241 }
1242 }
1243 Result.addNumComputeOps(NumComputeOps);
1244 }
1245
1246 /// Ensure that the memory in \p Load does not alias \p Store by potentially
1247 /// copying it to a new location. This new or otherwise the original location
1248 /// is returned.
1249 Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1250 CallInst *MatMul) {
1251 MemoryLocation StoreLoc = MemoryLocation::get(Store);
1252 MemoryLocation LoadLoc = MemoryLocation::get(Load);
1253
1254 // If we can statically determine noalias we're good.
1255 if (AA->isNoAlias(LoadLoc, StoreLoc))
1256 return Load->getPointerOperand();
1257
1258 // Create code to check if the memory locations of the Load and Store
1259 // overlap and if they do, copy Load's operand to a new buffer.
1260
1261 // First, create new blocks for 2n part of the check and the copy.
1262 BasicBlock *Check0 = MatMul->getParent();
1263 // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1264 // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1265 // as we adjust Check0 and Check1's branches.
1266 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1267 for (BasicBlock *Succ : successors(Check0))
1268 DTUpdates.push_back({DT->Delete, Check0, Succ});
1269
1270 BasicBlock *Check1 =
1271 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1272 nullptr, "alias_cont");
1273 BasicBlock *Copy =
1274 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1275 nullptr, "copy");
1276 BasicBlock *Fusion =
1277 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1278 nullptr, "no_alias");
1279
1280 // Check if the loaded memory location begins before the end of the store
1281 // location. If the condition holds, they might overlap, otherwise they are
1282 // guaranteed to not overlap.
1283 IRBuilder<> Builder(MatMul);
1284 Check0->getTerminator()->eraseFromParent();
1285 Builder.SetInsertPoint(Check0);
1286 Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1287 Value *StoreBegin = Builder.CreatePtrToInt(
1288 const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1289 Value *StoreEnd = Builder.CreateAdd(
1290 StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1291 "store.end", true, true);
1292 Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1293 IntPtrTy, "load.begin");
1294 Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1295 Fusion);
1296
1297 // Check if the store begins before the end of the load location. If the
1298 // condition holds, they alias, otherwise they are guaranteed to not
1299 // overlap.
1300 Check1->getTerminator()->eraseFromParent();
1301 Builder.SetInsertPoint(Check1, Check1->begin());
1302 Value *LoadEnd = Builder.CreateAdd(
1303 LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1304 "load.end", true, true);
1305 Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1306 Fusion);
1307
1308 // Copy load operand to new alloca.
1309 Builder.SetInsertPoint(Copy, Copy->begin());
1310 AllocaInst *NewLd =
1311 Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
1312 Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
1313 Load->getPointerOperand(), Load->getAlign(),
1314 LoadLoc.Size.getValue());
1315 Builder.SetInsertPoint(Fusion, Fusion->begin());
1316 PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1317 PHI->addIncoming(Load->getPointerOperand(), Check0);
1318 PHI->addIncoming(Load->getPointerOperand(), Check1);
1319 PHI->addIncoming(NewLd, Copy);
1320
1321 // Adjust DT.
1322 DTUpdates.push_back({DT->Insert, Check0, Check1});
1323 DTUpdates.push_back({DT->Insert, Check0, Fusion});
1324 DTUpdates.push_back({DT->Insert, Check1, Copy});
1325 DTUpdates.push_back({DT->Insert, Check1, Fusion});
1326 DT->applyUpdates(DTUpdates);
1327 return PHI;
1328 }
1329
1330 bool isFusionProfitable(CallInst *MatMul) {
1331 if (ForceFusion)
1332 return true;
1333
1334 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1335 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1336
1337 const unsigned R = LShape.NumRows;
1338 const unsigned C = RShape.NumColumns;
1339 const unsigned M = LShape.NumColumns;
1340 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1341
1342 const unsigned VF = std::max<unsigned>(
1343 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1344 .getFixedSize() /
1345 EltType->getPrimitiveSizeInBits().getFixedSize(),
1346 1U);
1347
1348 // Cost model for tiling
1349 //
1350 // For tiling to be beneficial, we need reuse either along the R or
1351 // the C axis. We vectorize along the R axis so that means at least
1352 // 3 elements.
1353 // TODO: Also consider cost of copying if operands alias.
1354 if (R <= VF && C == 1)
1355 return false;
1356 // Then we need enough elements to exceed the number of vector
1357 // registers we have. Note that this is an oversimplification since
1358 // fusing also takes some extra loads which may exceed the number of
1359 // reloads necessary.
1360 unsigned Op0Regs = (R + VF - 1) / VF * M;
1361 unsigned Op1Regs = (M + VF - 1) / VF * C;
1362 return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true);
1363 }
1364
1365 MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1366 MatrixTy Res;
1367 auto *ColumType = FixedVectorType::get(EltType, R);
1368 for (unsigned I = 0; I < C; ++I)
1369 Res.addVector(ConstantAggregateZero::get(ColumType));
1370 return Res;
1371 }
1372
1373 void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1374 Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1375 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1376
1377 // Create the main tiling loop nest.
1378 TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1379 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1380 Instruction *InsertI = cast<Instruction>(MatMul);
1381 BasicBlock *Start = InsertI->getParent();
1382 BasicBlock *End =
1383 SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1384 IRBuilder<> Builder(MatMul);
1385 BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1386
1387 Type *TileVecTy =
1388 FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1389 MatrixTy TileResult;
1390 // Insert in the inner loop header.
1391 Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
1392 // Create PHI nodes for the result columns to accumulate across iterations.
1393 SmallVector<PHINode *, 4> ColumnPhis;
1394 for (unsigned I = 0; I < TileSize; I++) {
1395 auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1396 Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1397 TI.RowLoopHeader->getSingleSuccessor());
1398 TileResult.addVector(Phi);
1399 ColumnPhis.push_back(Phi);
1400 }
1401
1402 // Insert in the inner loop body, which computes
1403 // Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1404 Builder.SetInsertPoint(InnerBody->getTerminator());
1405 // Load tiles of the operands.
1406 MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
1407 {TileSize, TileSize}, EltType, Builder);
1408 MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
1409 {TileSize, TileSize}, EltType, Builder);
1410 emitMatrixMultiply(TileResult, A, B, Builder, true, false,
1411 getFastMathFlags(MatMul));
1412 // Store result after the inner loop is done.
1413 Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
1414 storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1415 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1416 TI.CurrentRow, TI.CurrentCol, EltType, Builder);
1417
1418 for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1419 ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);
1420
1421 // Force unrolling of a few iterations of the inner loop, to make sure there
1422 // is enough work per iteration.
1423 // FIXME: The unroller should make this decision directly instead, but
1424 // currently the cost-model is not up to the task.
1425 unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1426 addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
1427 "llvm.loop.unroll.count", InnerLoopUnrollCount);
1428 }
1429
1430 void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1431 StoreInst *Store,
1432 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1433 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&(static_cast <bool> (MatrixLayout == MatrixLayoutTy::ColumnMajor
&& "Tiling only supported for column-major matrixes at the moment!"
) ? void (0) : __assert_fail ("MatrixLayout == MatrixLayoutTy::ColumnMajor && \"Tiling only supported for column-major matrixes at the moment!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1434, __extension__ __PRETTY_FUNCTION__))
1434 "Tiling only supported for column-major matrixes at the moment!")(static_cast <bool> (MatrixLayout == MatrixLayoutTy::ColumnMajor
&& "Tiling only supported for column-major matrixes at the moment!"
) ? void (0) : __assert_fail ("MatrixLayout == MatrixLayoutTy::ColumnMajor && \"Tiling only supported for column-major matrixes at the moment!\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1434, __extension__ __PRETTY_FUNCTION__))
;
1435 if (!isFusionProfitable(MatMul))
1436 return;
1437
1438 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1439 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1440
1441 const unsigned R = LShape.NumRows;
1442 const unsigned C = RShape.NumColumns;
1443 const unsigned M = LShape.NumColumns;
1444 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1445
1446 Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1447 Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1448 Value *CPtr = Store->getPointerOperand();
1449
1450 if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1451 createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1452 else {
1453 IRBuilder<> Builder(Store);
1454 for (unsigned J = 0; J < C; J += TileSize)
1455 for (unsigned I = 0; I < R; I += TileSize) {
1456 const unsigned TileR = std::min(R - I, unsigned(TileSize));
1457 const unsigned TileC = std::min(C - J, unsigned(TileSize));
1458 MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1459
1460 for (unsigned K = 0; K < M; K += TileSize) {
1461 const unsigned TileM = std::min(M - K, unsigned(TileSize));
1462 MatrixTy A =
1463 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1464 LShape, Builder.getInt64(I), Builder.getInt64(K),
1465 {TileR, TileM}, EltType, Builder);
1466 MatrixTy B =
1467 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1468 RShape, Builder.getInt64(K), Builder.getInt64(J),
1469 {TileM, TileC}, EltType, Builder);
1470 emitMatrixMultiply(Res, A, B, Builder, true, false,
1471 getFastMathFlags(MatMul));
1472 }
1473 storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1474 Builder.getInt64(I), Builder.getInt64(J), EltType,
1475 Builder);
1476 }
1477 }
1478
1479 // Mark eliminated instructions as fused and remove them.
1480 FusedInsts.insert(Store);
1481 FusedInsts.insert(MatMul);
1482 Store->eraseFromParent();
1483 MatMul->eraseFromParent();
1484 if (LoadOp0->hasNUses(0)) {
1485 FusedInsts.insert(LoadOp0);
1486 LoadOp0->eraseFromParent();
1487 }
1488 if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1489 FusedInsts.insert(LoadOp1);
1490 LoadOp1->eraseFromParent();
1491 }
1492 }
1493
1494 /// Try to lower matrix multiply chains by fusing operations.
1495 ///
1496 /// Call finalizeLowering on lowered instructions. Instructions that are
1497 /// completely eliminated by fusion are added to \p FusedInsts.
1498 void LowerMatrixMultiplyFused(CallInst *MatMul,
1499 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1500 if (!FuseMatrix || !DT)
1501 return;
1502
1503 assert(AA && LI && "Analyses should be available")(static_cast <bool> (AA && LI && "Analyses should be available"
) ? void (0) : __assert_fail ("AA && LI && \"Analyses should be available\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1503, __extension__ __PRETTY_FUNCTION__))
;
1504
1505 Value *A = MatMul->getArgOperand(0);
1506 Value *B = MatMul->getArgOperand(1);
1507
1508 // We can fold the transpose into the operand that is used to fetch scalars.
1509 Value *T;
1510 if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1511 ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1512 : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1513 IRBuilder<> Builder(MatMul);
1514 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1515 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1516 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1517 const unsigned R = LShape.NumRows;
1518 const unsigned M = LShape.NumColumns;
1519 const unsigned C = RShape.NumColumns;
1520
1521 MatrixTy MA;
1522 MatrixTy MB;
1523
1524 Value *Transpose;
1525 if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1526 MA = getMatrix(A, ShapeInfo(R, M), Builder);
1527 MB = getMatrix(T, ShapeInfo(C, M), Builder);
1528 Transpose = B;
1529 } else {
1530 MA = getMatrix(T, ShapeInfo(R, M), Builder);
1531 MB = getMatrix(B, ShapeInfo(C, M), Builder);
1532 Transpose = A;
1533 }
1534
1535 // Initialize the output
1536 MatrixTy Result(R, C, EltType);
1537
1538 emitMatrixMultiply(Result, MA, MB, Builder, false, true,
1539 getFastMathFlags(MatMul));
1540
1541 FusedInsts.insert(MatMul);
1542 if (Transpose->hasOneUse()) {
1543 FusedInsts.insert(cast<Instruction>(Transpose));
1544 ToRemove.push_back(cast<Instruction>(Transpose));
1545 // TODO: add a fake entry for the folded instruction so that this is
1546 // included in the expression in the remark.
1547 Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1548 }
1549 finalizeLowering(MatMul, Result, Builder);
1550 return;
1551 }
1552
1553 if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1554 return;
1555
1556 // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering
1557 // since the single store user will be lowered as part of this.
1558 auto *LoadOp0 = dyn_cast<LoadInst>(A);
1559 auto *LoadOp1 = dyn_cast<LoadInst>(B);
1560 auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1561 if (LoadOp0 && LoadOp1 && Store) {
1562 // The store address must dominate the MatMul instruction, otherwise
1563 // we create invalid IR.
1564 SetVector<Value *> WorkList;
1565 WorkList.insert(Store->getOperand(1));
1566 SmallVector<Instruction *> ToHoist;
1567 for (unsigned I = 0; I != WorkList.size(); ++I) {
1568 Value *Current = WorkList[I];
1569 auto *CurrI = dyn_cast<Instruction>(Current);
1570 if (!CurrI)
1571 continue;
1572 if (isa<PHINode>(CurrI))
1573 return;
1574 if (DT->dominates(CurrI, MatMul))
1575 continue;
1576 if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
1577 return;
1578 ToHoist.push_back(CurrI);
1579 WorkList.insert(CurrI->op_begin(), CurrI->op_end());
1580 }
1581
1582 sort(ToHoist, [this](Instruction *A, Instruction *B) {
1583 return DT->dominates(A, B);
1584 });
1585 for (Instruction *I : ToHoist)
1586 I->moveBefore(MatMul);
1587
1588 emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1589 return;
1590 }
1591 }
1592
1593 /// Lowers llvm.matrix.multiply.
1594 void LowerMultiply(CallInst *MatMul) {
1595 IRBuilder<> Builder(MatMul);
1596 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
19
The object is a 'VectorType'
1597 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1598 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1599
1600 const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1601 const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1602 assert(Lhs.getElementType() == Rhs.getElementType() &&(static_cast <bool> (Lhs.getElementType() == Rhs.getElementType
() && "Matrix multiply argument element types do not match."
) ? void (0) : __assert_fail ("Lhs.getElementType() == Rhs.getElementType() && \"Matrix multiply argument element types do not match.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1603, __extension__ __PRETTY_FUNCTION__))
20
Assuming the condition is true
21
'?' condition is true
1603 "Matrix multiply argument element types do not match.")(static_cast <bool> (Lhs.getElementType() == Rhs.getElementType
() && "Matrix multiply argument element types do not match."
) ? void (0) : __assert_fail ("Lhs.getElementType() == Rhs.getElementType() && \"Matrix multiply argument element types do not match.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1603, __extension__ __PRETTY_FUNCTION__))
;
1604
1605 const unsigned R = LShape.NumRows;
1606 const unsigned C = RShape.NumColumns;
1607 assert(LShape.NumColumns == RShape.NumRows)(static_cast <bool> (LShape.NumColumns == RShape.NumRows
) ? void (0) : __assert_fail ("LShape.NumColumns == RShape.NumRows"
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1607, __extension__ __PRETTY_FUNCTION__))
;
22
Assuming field 'NumColumns' is equal to field 'NumRows'
23
'?' condition is true
1608
1609 // Initialize the output
1610 MatrixTy Result(R, C, EltType);
1611 assert(Lhs.getElementType() == Result.getElementType() &&(static_cast <bool> (Lhs.getElementType() == Result.getElementType
() && "Matrix multiply result element type does not match arguments."
) ? void (0) : __assert_fail ("Lhs.getElementType() == Result.getElementType() && \"Matrix multiply result element type does not match arguments.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1612, __extension__ __PRETTY_FUNCTION__))
24
Assuming the condition is true
25
'?' condition is true
1612 "Matrix multiply result element type does not match arguments.")(static_cast <bool> (Lhs.getElementType() == Result.getElementType
() && "Matrix multiply result element type does not match arguments."
) ? void (0) : __assert_fail ("Lhs.getElementType() == Result.getElementType() && \"Matrix multiply result element type does not match arguments.\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1612, __extension__ __PRETTY_FUNCTION__))
;
1613
1614 emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
26
Calling 'LowerMatrixIntrinsics::emitMatrixMultiply'
1615 getFastMathFlags(MatMul));
1616 finalizeLowering(MatMul, Result, Builder);
1617 }
1618
1619 /// Lowers llvm.matrix.transpose.
1620 void LowerTranspose(CallInst *Inst) {
1621 MatrixTy Result;
1622 IRBuilder<> Builder(Inst);
1623 Value *InputVal = Inst->getArgOperand(0);
1624 VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1625 ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1626 MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1627
1628 const unsigned NewNumVecs =
1629 InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1630 const unsigned NewNumElts =
1631 InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1632
1633 for (unsigned I = 0; I < NewNumVecs; ++I) {
1634 // Build a single result vector. First initialize it.
1635 Value *ResultVector = UndefValue::get(
1636 FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1637 // Go through the old elements and insert it into the resulting vector.
1638 for (auto J : enumerate(InputMatrix.vectors())) {
1639 Value *Elt = Builder.CreateExtractElement(J.value(), I);
1640 // Row and column indices are transposed.
1641 ResultVector =
1642 Builder.CreateInsertElement(ResultVector, Elt, J.index());
1643 }
1644 Result.addVector(ResultVector);
1645 }
1646
1647 // TODO: Improve estimate of operations needed for transposes. Currently we
1648 // just count the insertelement/extractelement instructions, but do not
1649 // account for later simplifications/combines.
1650 finalizeLowering(
1651 Inst,
1652 Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1653 .addNumExposedTransposes(1),
1654 Builder);
1655 }
1656
1657 /// Lower load instructions, if shape information is available.
1658 bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1659 auto I = ShapeMap.find(Inst);
1660 if (I == ShapeMap.end())
1661 return false;
1662
1663 LowerLoad(Inst, Ptr, Inst->getAlign(),
1664 Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1665 I->second);
1666 return true;
1667 }
1668
1669 bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1670 IRBuilder<> &Builder) {
1671 auto I = ShapeMap.find(StoredVal);
1672 if (I == ShapeMap.end())
1673 return false;
1674
1675 LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1676 Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1677 I->second);
1678 return true;
1679 }
1680
1681 /// Lower binary operators, if shape information is available.
1682 bool VisitBinaryOperator(BinaryOperator *Inst) {
1683 auto I = ShapeMap.find(Inst);
1684 if (I == ShapeMap.end())
1685 return false;
1686
1687 Value *Lhs = Inst->getOperand(0);
1688 Value *Rhs = Inst->getOperand(1);
1689
1690 IRBuilder<> Builder(Inst);
1691 ShapeInfo &Shape = I->second;
1692
1693 MatrixTy Result;
1694 MatrixTy A = getMatrix(Lhs, Shape, Builder);
1695 MatrixTy B = getMatrix(Rhs, Shape, Builder);
1696 assert(A.isColumnMajor() == B.isColumnMajor() &&(static_cast <bool> (A.isColumnMajor() == B.isColumnMajor
() && Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout") ? void (0) : __assert_fail
("A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && \"operands must agree on matrix layout\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1698, __extension__ __PRETTY_FUNCTION__))
1697 Result.isColumnMajor() == A.isColumnMajor() &&(static_cast <bool> (A.isColumnMajor() == B.isColumnMajor
() && Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout") ? void (0) : __assert_fail
("A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && \"operands must agree on matrix layout\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1698, __extension__ __PRETTY_FUNCTION__))
1698 "operands must agree on matrix layout")(static_cast <bool> (A.isColumnMajor() == B.isColumnMajor
() && Result.isColumnMajor() == A.isColumnMajor() &&
"operands must agree on matrix layout") ? void (0) : __assert_fail
("A.isColumnMajor() == B.isColumnMajor() && Result.isColumnMajor() == A.isColumnMajor() && \"operands must agree on matrix layout\""
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1698, __extension__ __PRETTY_FUNCTION__))
;
1699
1700 Builder.setFastMathFlags(getFastMathFlags(Inst));
1701
1702 // Helper to perform binary op on vectors.
1703 auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1704 switch (Inst->getOpcode()) {
1705 case Instruction::Add:
1706 return Builder.CreateAdd(LHS, RHS);
1707 case Instruction::Mul:
1708 return Builder.CreateMul(LHS, RHS);
1709 case Instruction::Sub:
1710 return Builder.CreateSub(LHS, RHS);
1711 case Instruction::FAdd:
1712 return Builder.CreateFAdd(LHS, RHS);
1713 case Instruction::FMul:
1714 return Builder.CreateFMul(LHS, RHS);
1715 case Instruction::FSub:
1716 return Builder.CreateFSub(LHS, RHS);
1717 default:
1718 llvm_unreachable("Unsupported binary operator for matrix")::llvm::llvm_unreachable_internal("Unsupported binary operator for matrix"
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1718)
;
1719 }
1720 };
1721
1722 for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1723 Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1724
1725 finalizeLowering(Inst,
1726 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1727 Result.getNumVectors()),
1728 Builder);
1729 return true;
1730 }
1731
1732 /// Lower unary operators, if shape information is available.
1733 bool VisitUnaryOperator(UnaryOperator *Inst) {
1734 auto I = ShapeMap.find(Inst);
1735 if (I == ShapeMap.end())
1736 return false;
1737
1738 Value *Op = Inst->getOperand(0);
1739
1740 IRBuilder<> Builder(Inst);
1741 ShapeInfo &Shape = I->second;
1742
1743 MatrixTy Result;
1744 MatrixTy M = getMatrix(Op, Shape, Builder);
1745
1746 Builder.setFastMathFlags(getFastMathFlags(Inst));
1747
1748 // Helper to perform unary op on vectors.
1749 auto BuildVectorOp = [&Builder, Inst](Value *Op) {
1750 switch (Inst->getOpcode()) {
1751 case Instruction::FNeg:
1752 return Builder.CreateFNeg(Op);
1753 default:
1754 llvm_unreachable("Unsupported unary operator for matrix")::llvm::llvm_unreachable_internal("Unsupported unary operator for matrix"
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1754)
;
1755 }
1756 };
1757
1758 for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1759 Result.addVector(BuildVectorOp(M.getVector(I)));
1760
1761 finalizeLowering(Inst,
1762 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1763 Result.getNumVectors()),
1764 Builder);
1765 return true;
1766 }
1767
1768 /// Helper to linearize a matrix expression tree into a string. Currently
1769 /// matrix expressions are linarized by starting at an expression leaf and
1770 /// linearizing bottom up.
1771 struct ExprLinearizer {
1772 unsigned LengthToBreak = 100;
1773 std::string Str;
1774 raw_string_ostream Stream;
1775 unsigned LineLength = 0;
1776 const DataLayout &DL;
1777
1778 /// Mapping from instructions to matrixes. It is used to identify
1779 /// matrix instructions.
1780 const MapVector<Value *, MatrixTy> &Inst2Matrix;
1781
1782 /// Mapping from values to the leaves of all expressions that the value is
1783 /// part of.
1784 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1785
1786 /// Set of matrix expressions in the scope of a given DISubprogram.
1787 const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1788
1789 /// Leaf node of the expression to linearize.
1790 Value *Leaf;
1791
1792 /// Used to keep track of sub-expressions that get reused while linearizing
1793 /// the expression. Re-used sub-expressions are marked as (reused).
1794 SmallPtrSet<Value *, 8> ReusedExprs;
1795
1796 ExprLinearizer(const DataLayout &DL,
1797 const MapVector<Value *, MatrixTy> &Inst2Matrix,
1798 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1799 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1800 Value *Leaf)
1801 : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1802 ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1803
1804 void indent(unsigned N) {
1805 LineLength += N;
1806 for (unsigned i = 0; i < N; i++)
1807 Stream << " ";
1808 }
1809
1810 void lineBreak() {
1811 Stream << "\n";
1812 LineLength = 0;
1813 }
1814
1815 void maybeIndent(unsigned Indent) {
1816 if (LineLength >= LengthToBreak)
1817 lineBreak();
1818
1819 if (LineLength == 0)
1820 indent(Indent);
1821 }
1822
1823 void write(StringRef S) {
1824 LineLength += S.size();
1825 Stream << S;
1826 }
1827
1828 Value *getUnderlyingObjectThroughLoads(Value *V) {
1829 if (Value *Ptr = getPointerOperand(V))
1830 return getUnderlyingObjectThroughLoads(Ptr);
1831 else if (V->getType()->isPointerTy())
1832 return getUnderlyingObject(V);
1833 return V;
1834 }
1835
1836 /// Returns true if \p V is a matrix value in the given subprogram.
1837 bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1838
1839 /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1840 /// \p SS.
1841 void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
1842 auto M = Inst2Matrix.find(V);
1843 if (M == Inst2Matrix.end())
1844 SS << "unknown";
1845 else {
1846 SS << M->second.getNumRows();
1847 SS << "x";
1848 SS << M->second.getNumColumns();
1849 }
1850 }
1851
1852 /// Write the called function name. Handles calls to llvm.matrix.*
1853 /// specially: we write the name, followed by the dimensions of the input
1854 /// matrixes, followed by the scalar type name.
1855 void writeFnName(CallInst *CI) {
1856 if (!CI->getCalledFunction())
1857 write("<no called fn>");
1858 else {
1859 StringRef Name = CI->getCalledFunction()->getName();
1860 if (!Name.startswith("llvm.matrix")) {
1861 write(Name);
1862 return;
1863 }
1864 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1865 write(Intrinsic::getBaseName(II->getIntrinsicID())
1866 .drop_front(StringRef("llvm.matrix.").size()));
1867 write(".");
1868 std::string Tmp;
1869 raw_string_ostream SS(Tmp);
1870
1871 switch (II->getIntrinsicID()) {
1872 case Intrinsic::matrix_multiply:
1873 prettyPrintMatrixType(II->getOperand(0), SS);
1874 SS << ".";
1875 prettyPrintMatrixType(II->getOperand(1), SS);
1876 SS << "." << *II->getType()->getScalarType();
1877 break;
1878 case Intrinsic::matrix_transpose:
1879 prettyPrintMatrixType(II->getOperand(0), SS);
1880 SS << "." << *II->getType()->getScalarType();
1881 break;
1882 case Intrinsic::matrix_column_major_load:
1883 prettyPrintMatrixType(II, SS);
1884 SS << "." << *II->getType()->getScalarType();
1885 break;
1886 case Intrinsic::matrix_column_major_store:
1887 prettyPrintMatrixType(II->getOperand(0), SS);
1888 SS << "." << *II->getOperand(0)->getType()->getScalarType();
1889 break;
1890 default:
1891 llvm_unreachable("Unhandled case")::llvm::llvm_unreachable_internal("Unhandled case", "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1891)
;
1892 }
1893 SS.flush();
1894 write(Tmp);
1895 }
1896 }
1897
1898 unsigned getNumShapeArgs(CallInst *CI) const {
1899 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1900 switch (II->getIntrinsicID()) {
1901 case Intrinsic::matrix_multiply:
1902 return 3;
1903 case Intrinsic::matrix_transpose:
1904 return 2;
1905 case Intrinsic::matrix_column_major_load:
1906 case Intrinsic::matrix_column_major_store:
1907 return 3;
1908 default:
1909 return 0;
1910 }
1911 }
1912 return 0;
1913 }
1914
1915 /// Special printing for values: for pointers, we print if they refer to an
1916 /// (function) external address or a stack address, for other values we
1917 /// either print the constant or "scalar"/"matrix" for other values.
1918 void write(Value *V) {
1919 V = getUnderlyingObjectThroughLoads(V);
1920 if (V->getType()->isPointerTy()) {
1921 if (isa<AllocaInst>(V)) {
1922 Stream << "stack addr";
1923 LineLength += StringRef("stack addr").size();
1924 } else {
1925 Stream << "addr";
1926 LineLength += StringRef("addr").size();
1927 }
1928 if (!V->getName().empty()) {
1929 Stream << " %" << V->getName() << "";
1930 LineLength += V->getName().size() + 2;
1931 }
1932 return;
1933 }
1934
1935 std::string Tmp;
1936 raw_string_ostream TmpStream(Tmp);
1937
1938 if (auto *CI = dyn_cast<ConstantInt>(V))
1939 TmpStream << CI->getValue();
1940 else if (isa<Constant>(V))
1941 TmpStream << "constant";
1942 else {
1943 if (isMatrix(V))
1944 TmpStream << "matrix";
1945 else
1946 TmpStream << "scalar";
1947 }
1948 TmpStream.flush();
1949 Tmp = std::string(StringRef(Tmp).trim());
1950 LineLength += Tmp.size();
1951 Stream << Tmp;
1952 }
1953
1954 /// Linearize expression \p Expr starting at an indentation of \p Indent.
1955 /// Expressions that are re-used multiple times are prefixed with (reused)
1956 /// at the re-used root instruction.
1957 void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
1958 bool ParentShared) {
1959 auto *I = cast<Instruction>(Expr);
1960 maybeIndent(Indent);
1961 SmallVector<Value *, 8> Ops;
1962
1963 // Is Expr shared with other expression leaves?
1964 bool ExprShared = false;
1965
1966 // Deal with shared subtrees. Mark them as shared, if required.
1967 if (!ParentShared) {
1968 auto SI = Shared.find(Expr);
1969 assert(SI != Shared.end() && SI->second.count(Leaf))(static_cast <bool> (SI != Shared.end() && SI->
second.count(Leaf)) ? void (0) : __assert_fail ("SI != Shared.end() && SI->second.count(Leaf)"
, "/build/llvm-toolchain-snapshot-13~++20210726100616+dead50d4427c/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp"
, 1969, __extension__ __PRETTY_FUNCTION__))
;
1970
1971 for (Value *S : SI->second) {
1972 if (S == Leaf)
1973 continue;
1974 DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
1975 write("shared with remark at line " + std::to_string(DL.getLine()) +
1976 " column " + std::to_string(DL.getCol()) + " (");
1977 }
1978 ExprShared = SI->second.size() > 1;
1979 }
1980
1981 bool Reused = !ReusedExprs.insert(Expr).second;
1982 if (Reused && !ParentReused)
1983 write("(reused) ");
1984
1985 if (auto *CI = dyn_cast<CallInst>(I)) {
1986 writeFnName(CI);
1987
1988 Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
1989 } else if (isa<BitCastInst>(Expr)) {
1990 // Special case bitcasts, which are used to materialize matrixes from
1991 // non-matrix ops.
1992 write("matrix");
1993 return;
1994 } else {
1995 Ops.append(I->value_op_begin(), I->value_op_end());
1996 write(std::string(I->getOpcodeName()));
1997 }
1998
1999 write(std::string("("));
2000
2001 unsigned NumOpsToBreak = 1;
2002 if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2003 NumOpsToBreak = 2;
2004
2005 for (Value *Op : Ops) {
2006 if (Ops.size() > NumOpsToBreak)
2007 lineBreak();
2008
2009 maybeIndent(Indent + 1);
2010 if (isMatrix(Op))
2011 linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2012 else
2013 write(Op);
2014 if (Op != Ops.back())
2015 write(", ");
2016 }
2017
2018 write(")");
2019 }
2020
2021 const std::string &getResult() {
2022 Stream.flush();
2023 return Str;
2024 }
2025 };
2026
2027 /// Generate remarks for matrix operations in a function. To generate remarks
2028 /// for matrix expressions, the following approach is used:
2029 /// 1. Use the inlined-at debug information to group matrix operations to the
2030 /// DISubprograms they are contained in.
2031 /// 2. Collect leaves of matrix expressions (done in
2032 /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2033 // mapping. Leaves are lowered matrix instructions without other matrix
2034 // users (like stores) in the current subprogram.
2035 /// 3. For each leaf, create a remark containing a linearizied version of the
2036 /// matrix expression. The expression is linearized by a recursive
2037 /// bottom-up traversal of the matrix operands, starting at a leaf. Note
2038 /// that multiple leaves can share sub-expressions. Shared subexpressions
2039 /// are explicitly marked as shared().
2040 struct RemarkGenerator {
2041 const MapVector<Value *, MatrixTy> &Inst2Matrix;
2042 OptimizationRemarkEmitter &ORE;
2043 Function &Func;
2044 const DataLayout &DL;
2045
2046 RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2047 OptimizationRemarkEmitter &ORE, Function &Func)
2048 : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2049 DL(Func.getParent()->getDataLayout()) {}
2050
2051 /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2052 /// instructions in Inst2Matrix returning void or without any users in
2053 /// \p ExprsInSubprogram. Currently that should only include stores.
2054 SmallVector<Value *, 4>
2055 getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2056 SmallVector<Value *, 4> Leaves;
2057 for (auto *Expr : ExprsInSubprogram)
2058 if (Expr->getType()->isVoidTy() ||
2059 !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2060 return ExprsInSubprogram.count(U);
2061 }))
2062 Leaves.push_back(Expr);
2063 return Leaves;
2064 }
2065
2066 /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2067 /// to all visited expressions in \p Shared. Limit the matrix operations to
2068 /// the ones in \p ExprsInSubprogram.
2069 void collectSharedInfo(Value *Leaf, Value *V,
2070 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2071 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2072
2073 if (!ExprsInSubprogram.count(V))
2074 return;
2075
2076 auto I = Shared.insert({V, {}});
2077 I.first->second.insert(Leaf);
2078
2079 for (Value *Op : cast<Instruction>(V)->operand_values())
2080 collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2081 }
2082
2083 /// Calculate the number of exclusive and shared op counts for expression
2084 /// starting at \p V. Expressions used multiple times are counted once.
2085 /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2086 std::pair<OpInfoTy, OpInfoTy>
2087 sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2088 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2089 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2090 if (!ExprsInSubprogram.count(Root))
2091 return {};
2092
2093 // Already counted this expression. Stop.
2094 if (!ReusedExprs.insert(Root).second)
2095 return {};
2096
2097 OpInfoTy SharedCount;
2098 OpInfoTy Count;
2099
2100 auto I = Shared.find(Root);
2101 auto CM = Inst2Matrix.find(Root);
2102 if (I->second.size() == 1)
2103 Count = CM->second.getOpInfo();
2104 else
2105 SharedCount = CM->second.getOpInfo();
2106
2107 for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2108 auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2109 Count += C.first;
2110 SharedCount += C.second;
2111 }
2112 return {Count, SharedCount};
2113 }
2114
2115 void emitRemarks() {
2116 if (!ORE.allowExtraAnalysis(DEBUG_TYPE"lower-matrix-intrinsics"))
2117 return;
2118
2119 // Map matrix operations to their containting subprograms, by traversing
2120 // the inlinedAt chain. If the function does not have a DISubprogram, we
2121 // only map them to the containing function.
2122 MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2123 for (auto &KV : Inst2Matrix) {
2124 if (Func.getSubprogram()) {
2125 auto *I = cast<Instruction>(KV.first);
2126 DILocation *Context = I->getDebugLoc();
2127 while (Context) {
2128 auto I =
2129 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2130 I.first->second.push_back(KV.first);
2131 Context = DebugLoc(Context).getInlinedAt();
2132 }
2133 } else {
2134 auto I = Subprog2Exprs.insert({nullptr, {}});
2135 I.first->second.push_back(KV.first);
2136 }
2137 }
2138 for (auto &KV : Subprog2Exprs) {
2139 SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2140 KV.second.end());
2141 auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2142
2143 DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2144 for (Value *Leaf : Leaves)
2145 collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2146
2147 // Generate remarks for each leaf.
2148 for (auto *L : Leaves) {
2149
2150 DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2151 DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2152 while (Context) {
2153 if (getSubprogram(Context->getScope()) == KV.first) {
2154 Loc = Context;
2155 break;
2156 }
2157 Context = DebugLoc(Context).getInlinedAt();
2158 }
2159
2160 SmallPtrSet<Value *, 8> ReusedExprs;
2161 OpInfoTy Counts, SharedCounts;
2162 std::tie(Counts, SharedCounts) =
2163 sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2164
2165 OptimizationRemark Rem(DEBUG_TYPE"lower-matrix-intrinsics", "matrix-lowered", Loc,
2166 cast<Instruction>(L)->getParent());
2167
2168 Rem << "Lowered with ";
2169 Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2170 << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2171 << ore::NV("NumComputeOps", Counts.NumComputeOps)
2172 << " compute ops, "
2173 << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2174 << " exposed transposes";
2175
2176 if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2177 SharedCounts.NumComputeOps > 0) {
2178 Rem << ",\nadditionally "
2179 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2180 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2181 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2182 << " compute ops"
2183 << " are shared with other expressions";
2184 }
2185
2186 Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2187 ORE.emit(Rem);
2188 }
2189 }
2190 }
2191
2192 std::string
2193 linearize(Value *L,
2194 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2195 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2196 const DataLayout &DL) {
2197 ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2198 Lin.linearizeExpr(L, 0, false, false);
2199 return Lin.getResult();
2200 }
2201 };
2202};
2203} // namespace
2204
2205PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2206 FunctionAnalysisManager &AM) {
2207 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2208 OptimizationRemarkEmitter *ORE = nullptr;
2209 AAResults *AA = nullptr;
2210 DominatorTree *DT = nullptr;
2211 LoopInfo *LI = nullptr;
2212
2213 if (!Minimal) {
2214 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2215 AA = &AM.getResult<AAManager>(F);
2216 DT = &AM.getResult<DominatorTreeAnalysis>(F);
2217 LI = &AM.getResult<LoopAnalysis>(F);
2218 }
2219
2220 LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2221 if (LMT.Visit()) {
2222 PreservedAnalyses PA;
2223 if (!Minimal) {
2224 PA.preserve<LoopAnalysis>();
2225 PA.preserve<DominatorTreeAnalysis>();
2226 }
2227 return PA;
2228 }
2229 return PreservedAnalyses::all();
2230}
2231
2232namespace {
2233
2234class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2235public:
2236 static char ID;
2237
2238 LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2239 initializeLowerMatrixIntrinsicsLegacyPassPass(
2240 *PassRegistry::getPassRegistry());
2241 }
2242
2243 bool runOnFunction(Function &F) override {
2244 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2245 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2246 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2247 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2248 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2249 LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2250 bool C = LMT.Visit();
2251 return C;
2252 }
2253
2254 void getAnalysisUsage(AnalysisUsage &AU) const override {
2255 AU.addRequired<TargetTransformInfoWrapperPass>();
2256 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2257 AU.addRequired<AAResultsWrapperPass>();
2258 AU.addRequired<DominatorTreeWrapperPass>();
2259 AU.addPreserved<DominatorTreeWrapperPass>();
2260 AU.addRequired<LoopInfoWrapperPass>();
2261 AU.addPreserved<LoopInfoWrapperPass>();
2262 }
2263};
2264} // namespace
2265
2266static const char pass_name[] = "Lower the matrix intrinsics";
2267char LowerMatrixIntrinsicsLegacyPass::ID = 0;
2268INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,static void *initializeLowerMatrixIntrinsicsLegacyPassPassOnce
(PassRegistry &Registry) {
2269 false, false)static void *initializeLowerMatrixIntrinsicsLegacyPassPassOnce
(PassRegistry &Registry) {
2270INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
2271INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
2272INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
2273INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
2274INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,PassInfo *PI = new PassInfo( pass_name, "lower-matrix-intrinsics"
, &LowerMatrixIntrinsicsLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<LowerMatrixIntrinsicsLegacyPass>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeLowerMatrixIntrinsicsLegacyPassPassFlag
; void llvm::initializeLowerMatrixIntrinsicsLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLowerMatrixIntrinsicsLegacyPassPassFlag
, initializeLowerMatrixIntrinsicsLegacyPassPassOnce, std::ref
(Registry)); }
2275 false, false)PassInfo *PI = new PassInfo( pass_name, "lower-matrix-intrinsics"
, &LowerMatrixIntrinsicsLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<LowerMatrixIntrinsicsLegacyPass>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeLowerMatrixIntrinsicsLegacyPassPassFlag
; void llvm::initializeLowerMatrixIntrinsicsLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLowerMatrixIntrinsicsLegacyPassPassFlag
, initializeLowerMatrixIntrinsicsLegacyPassPassOnce, std::ref
(Registry)); }
2276
2277Pass *llvm::createLowerMatrixIntrinsicsPass() {
2278 return new LowerMatrixIntrinsicsLegacyPass();
2279}
2280
2281namespace {
2282
2283/// A lightweight version of the matrix lowering pass that only requires TTI.
2284/// Advanced features that require DT, AA or ORE like tiling are disabled. This
2285/// is used to lower matrix intrinsics if the main lowering pass is not run, for
2286/// example with -O0.
2287class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2288public:
2289 static char ID;
2290
2291 LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2292 initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2293 *PassRegistry::getPassRegistry());
2294 }
2295
2296 bool runOnFunction(Function &F) override {
2297 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2298 LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2299 bool C = LMT.Visit();
1
Calling 'LowerMatrixIntrinsics::Visit'
2300 return C;
2301 }
2302
2303 void getAnalysisUsage(AnalysisUsage &AU) const override {
2304 AU.addRequired<TargetTransformInfoWrapperPass>();
2305 AU.setPreservesCFG();
2306 }
2307};
2308} // namespace
2309
2310static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2311char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2312INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,static void *initializeLowerMatrixIntrinsicsMinimalLegacyPassPassOnce
(PassRegistry &Registry) {
2313 "lower-matrix-intrinsics-minimal", pass_name_minimal,static void *initializeLowerMatrixIntrinsicsMinimalLegacyPassPassOnce
(PassRegistry &Registry) {
2314 false, false)static void *initializeLowerMatrixIntrinsicsMinimalLegacyPassPassOnce
(PassRegistry &Registry) {
2315INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,PassInfo *PI = new PassInfo( pass_name_minimal, "lower-matrix-intrinsics-minimal"
, &LowerMatrixIntrinsicsMinimalLegacyPass::ID, PassInfo::
NormalCtor_t(callDefaultCtor<LowerMatrixIntrinsicsMinimalLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeLowerMatrixIntrinsicsMinimalLegacyPassPassFlag
; void llvm::initializeLowerMatrixIntrinsicsMinimalLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeLowerMatrixIntrinsicsMinimalLegacyPassPassFlag
, initializeLowerMatrixIntrinsicsMinimalLegacyPassPassOnce, std
::ref(Registry)); }
2316 "lower-matrix-intrinsics-minimal", pass_name_minimal, false,PassInfo *PI = new PassInfo( pass_name_minimal, "lower-matrix-intrinsics-minimal"
, &LowerMatrixIntrinsicsMinimalLegacyPass::ID, PassInfo::
NormalCtor_t(callDefaultCtor<LowerMatrixIntrinsicsMinimalLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeLowerMatrixIntrinsicsMinimalLegacyPassPassFlag
; void llvm::initializeLowerMatrixIntrinsicsMinimalLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeLowerMatrixIntrinsicsMinimalLegacyPassPassFlag
, initializeLowerMatrixIntrinsicsMinimalLegacyPassPassOnce, std
::ref(Registry)); }
2317 false)PassInfo *PI = new PassInfo( pass_name_minimal, "lower-matrix-intrinsics-minimal"
, &LowerMatrixIntrinsicsMinimalLegacyPass::ID, PassInfo::
NormalCtor_t(callDefaultCtor<LowerMatrixIntrinsicsMinimalLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeLowerMatrixIntrinsicsMinimalLegacyPassPassFlag
; void llvm::initializeLowerMatrixIntrinsicsMinimalLegacyPassPass
(PassRegistry &Registry) { llvm::call_once(InitializeLowerMatrixIntrinsicsMinimalLegacyPassPassFlag
, initializeLowerMatrixIntrinsicsMinimalLegacyPassPassOnce, std
::ref(Registry)); }
2318
2319Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2320 return new LowerMatrixIntrinsicsMinimalLegacyPass();
2321}